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80 Introduction

As is well-known, there exists for X a manifold a cohomology theory which gives the so-called
Poincaré duality. What about the case when X is allowed to be a singular space (e.g. singu-
lar algebraic variety)? Does Poincaré duality persist in such context? In their papers, Goresky
and MacPherson gave an affirmative answer to this question, when the space satisfies some con-
ditions and a certain cohomology theory is chosen (i.e. the intersection cohomology). Goresky-
MacPherson’s first proof of Poincaré duality is by means of triangulation approach. Later Deligne
gave a construction which can describe intersection cohomology systematically and put the theory
in a more general context which of course has many applications. He used sheaf-theoretic approach,
working on the derived category, where Verdier duality, a generalized form of Poincaré duality, is
satisfied. The Deligne’s construction and the operations in the derived category are also mentioned
in Goresky-MacPherson’s second paper on intersection homology.

In what follows, we will first give a brief description on Goresky-MacPherson’s triangulation
approach and their definition of intersection cohomology. Then, in order to introduce Deligne’s
construction, we have to set up some foundational background on the derived category. After that
we introduce the triangulated category. In the meantime, we will give the definitions of the six
operations and account the properties they satisfy. Using the six operations, we can describe the
perverse sheaves and Deligne’s perverse extension. All these being done, we will mention the self-
duality for the middle perversity and we’d like to look closer the relations between the perverse
sheaves and intersection cohomology. For example, we'd like to know under what conditions is
the extension sheaf of some kinds just the intersection cohomology sheaf (e.g. could the condition
requiring Poincaré duality be enough?).

§1 Intersection cohomology due to Goresky and MacPherson

For an oriented n-manifold X, Poincaré duality is satisfied, i.e. if 1 + 7 = n then the pairing
Hi(X) x Hj(X)5 Ho(X)-Z

is nondegenerate when tensored with the rational numbers. (Here, € is the augmentation which
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counts the points of a zero cycle according to their multiplicities.) In case X is singular, this
pairing might not exist and Poincaré duality could fail, as can be seen from the following example.

Example 1.1: Let X be the suspension of the torus T" (see Fig.1). Clearly VNW is a nonvanishing
zero-cycle, but since W = 8C, the homology class V N W does not only depend on the homology
class of W. Thus the above pairing is not well-defined. Also by comparing the Betti numbers in
complememtary dimensions, we can easily see that Poincaré duality is false (since

Hy(X) =H\(T) =20 Z,H\(X) = Ho(T) =Z). _ v

/b
Fig.1. Opposite sides in T and opposite faces in X are to be identified.

To rescue the Poincaré duality on a singular space, Goresky and MacPherson modify the -
definition of homology in the usual sense by calculating the homology of a subclass of the chain
complexes consisting of chains which are "allowable”.

To state Goresky-MacPherson’s construction, let’s first give some definitions.

A pseudomanifold of dimension n is a compact space for which there exists a subspace ¥ of
dimension < n — 2 such that X — X is a non-singular oriented manifold of dimension n which
is dense in X. For example, every complex irreducible algebraic variety has a piecewise linear
structrure making it a pseudomanifold.

A stratification of a pseudomanifold of dimension n is a filtration by closed subspaces
X=X, 2Xp1=Xp2D2Xn3D...2X1 DX,
such that for every point p € X; — X;_; there exists a filtered space
V=V,D2Vu_12D...0V; = apoint

and for each j a homeomorphic map between V; x A* and a neighborhood of p in X;. Here A® is
the simplex of dimension 7. We see that X; — X,_; is non-singular of dimension 7, which we will
call the stratum of dimension 1. Every pseudomanifold admits a stratification. In our discussion
of this section, we will assume that X is a pseudomanifold of dimension n with a stratification.

A perversity is an (n — 1)-tuple of integers p = (p2,p3, - .., Pn) such that p, = 0 and pry1 = P&
or pr + 1. We will use four special perversities 0 = (0,0,...,0), £ = (0,1,...,n — 2) and if n = 2n’,
m = (0,0,1,1,..,n' = 2,n' = 1) and m' = (0,1,1,2,...,n' = 1,n' —1). If pyp + qx = ry for all
2 < k < n, we write p + § = 7. For example 7 + m’/ = . If i is an integer and p a perversity, a
subspace Y of X is called (5, 1)-allowable if Y N X,,_ is of dimension < 7 — k + p; for all k.

If T is a triangulation of X, we denote C7 (X) the simplicial i-chains of X with respect to T'.
Let C;(X) be the union of C7 (X) for all T modulo the following equivalent relations: ¢ € C¥ (X)
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and ¢ € CI (X) are equivalent if their canonical image in C7 (X) are the same for a common
refinement 7% of 7' and 7'. The C;(X)s form a chain complex C,(X) whose homology is the
homology of X. We can define the support |c| of a chain ¢ € C;(X) as follows: if ¢ is T- simplicial,
l¢| is the union of all the i simplexes for which the coefficient of ¢ € CT (X) is non-zero.

If p is a perversity, and ICf(X) C Cy(X) is the subgroup of all the chains such that || is
(p,4)-allowable and |d¢c| is (p,i — 1)-allowable. Clearly IC?(X) is a subcomplex of C*(X).

Definition 1.2: The i-th intersection homology group of perversity p , written as IH?(X), is the
i-th homology group of the complex IC¥(X).

Remark 1.3: In the case of Example 1.1, we have a natural stratification X = X3 D> X; =

Xo = {a,b} = L. Here the perversity p is: p» = 0, p3 = 0 or 1. So an allowable ¢-chain must

satisfy the conditioins: dim|é| N X; < i -2, dim|@¢| N X, < ¢ -3, dim|{| N Xy < 7 — 3 + p3, and

dim|0¢| N Xg € 1 — 4 + p3. We easily see that C and V in this example are not allowable 2-chains

for the zero perversity 0. {a}, {b} and {a,b} (resp. the line ab etc.) are not allowable O-chains

(resp. 1-chains). By excluding the chains which are not allowable, the pairings of the intersection

homologies are just the Poincaré duality pairings (with compact support) in X — Z.

Proposition 1.4: TH?(X) is a finite group which is independent of the choice of the stratification .
of X.

Proposition 1.5 (transversality): If 5+ ¢ =7, and ¢ + j — n = [, there exists a unique product

TH?(X) x IH{(X) — TH[(X)

which satisfies [¢] N [¢/] = [en¢/] for all ¢ and ¢’ transversal in dimension, where [¢] denotes the
class of c.

Theorem 1.6 (generalized Poincaré duality): If p+¢ =t and i + j = n, the pairing

THP(X) x THH(X) — TH{(X)-Z

tensored with the rational numbers is non-degenerate.

§2 Derived categories and triangulated categories

When one considers the derived functors, the generalization of a category to the derived
category naturally arises. Before getting into the construction of the derived category, let us
mention some ideas of the derived category:

¢ An object X of an abelian category should be identified with all its resolutions.

e The main reason for such an identification is that some most important functors, such as Hom,
®, I' can be redefined.

e The above redefinition of such functors as I, ® and others makes some semi-exact functors
in some sense "exact”. However we have to point out that the notion of exactness in a derived
category is not so obvious.



Lemma (Definition) 2.1: Let X" and L be two complexes over R and & = (¢?), where ' :
K% — L are a collection of morphisms ¢ in R. Then the maps

h=@d+dp: K — L’

form a morphism of complexes. The morphism h is said to be homotopic to 0 (h ~ 0). We have
the following result:

If f~g(ie. (f—g)~0), then H(f) = H'(g), where H'(-) is the mapping induced on the
homology of a complex.

Definition 2.2: A morphism f : k' — L’ of complexes in an abelian category A is said to be a
quasi-isomorphism if the corresponding homology morphism

H*(f): HY(K') — H™(L")

is an isomorphism for any n.

Remark 2.3: a) For any two projective (injective) resolutions of an object there exists some
quasi-isomorphism between them.
b) Any object X of an abelian category A can be considered as a complex

== 00— 00— X —0—0— -

(with X at the 0-th place).

It is a kind of 0-complex (acyclic outside zero). The augmentation ex of a left resolution
P =% determines a quasi-isomorphism of complexes

— P! — P 5 0 — 0 —

1 1 1

— 0 — X — 0 — 0 —

Hence the notion of a resolution is only a special case of a qua.si-isombrphism.
~ c) Let 0" be the complex with all terms equal to the zero object of A. Then a unique morphism
K" — 0 (and 00 — K) is a quasi-isomorphism iff K is acyclic.

Definition (Theorem) 2.4: Let A be an abelian category, Kom(.A) the category of complexes
over A. There exists a category D(A) and a functor Q : Kom(A) — D with the following
properties:

(a) Q(f) is an isomorphism for any quasi-isomorphism (q.i. for short) f.

(b) Any functor F' : Kom(.A) — D(A) transforming q.i. into q.i. can be uniquely factorized
through D(A4) , i.e. there exists a unique functor G : D(A) — D with FF = G0 Q.

The category D(A) is called the derived category of the abelian category A

Definition 2.5: A class of morphisms S C MorB is said to be localizing if the following conditions
are satisfied :

(a) S is closed under composition: idx € S for every X € ObB and sot € S for any s,t € S
whenever the composition is defined.



(b) Extension conditions: for any f € MorB, s € S there exists ¢ € MorB, ¢t € S such that the

following square .

w L z 1454 VA
L <p T
x Ly x L v

is commutative.

(c) Let f, g be two morphisms from X to Y; the existence of s € S with sf = sg is equivalent
to the existence of t € § with ft = gt.

In general, q.i. in Kom(A) do not form a localizing class. However, through constructing the
category K(A) of complexes modulo homotopic equivalence, we can show that q.i. in this new
category already form a localizing class of morphisms.

Definition 2.6: Let .4 be an abelian category. The homotopic category K*(A) is defined as
follows:

ObK(A) = ObKom(A), MorK(A) = MorKom(A) modulo homotopic equivalence. By K£*(A),
K~ (A), K*(A) we denote the full subcategories of C(A) formed by complexes with the correspond-
ing booundedness conditions.

Definition 2.7: Let f : K° — L' be a morphism of complexes. A cone of f is the following
complex C(f):

C(f)f=K[fe L,
dogp (K, ) = (—dgkith, F(ETY) + dybo).
For difference of taste, one may as well define a cone as
Cr=L ®K[1],

with analogous differential.
Remark 2.8: C(f) can also be written as columns of height 2 and morphisms as matrices, so that

d = .

Rl ( fl] de
L2

Clearly dc(f) =0.

Definition 2.9: The cylinder Cyl(f) of a morphism f is the following complex:
Cyl(fy=K e K[l &L,

By (K K0, 8) = (dickt = B, —dgck™L, f(6) + d..8).

Lemma 2.10: For any morphism f : k' — L'there exists the following commutative diagram in

KomA with exact rows:

0 — L ooy Y okpr — o

Loy ooy — o (+)



It is functorial in f and has the following property: a and  are quasi-isomorphisms; moreover
Ba = idy and of is homotopic to idcy(sy, so that L' and Cyl(f) are canonically isomorphic in
the derived category.

Proof: a) the definition of morphisms in the first row and the verification that they commute with

d:

¢ I (0,6

J'd[, ldc(f)

drlt =5 (0,d0)

(ki+1’ él) _6> kitl
deqg) ldkm
(_dei+1’f(ki+1) b d[,gi) _‘5> _de.i-f-l
The exactness of the first row is clear.

b) the definition of morphisms in the second row and the verification that they commute with

(K k41, 6 _E (K1, )
deyicf) Jvdc(f)
(dick? — KFY, —dki™h, f(R*)) + dpl)) o (—dgki*!, F(EY) + dp &)
HooLo (5,0,0)

J,dK Jdeyl(f)

dxki L (dgk?,0,0)
The exactness of the second row is clear.

c) the definition of morphisms & and £ and the verification that ‘they commute with d:

¢ L, dre

Lo
(0,0,6) =57 (0,0,d.¢")
o o d . , _ . _
(K, B8 T2 (dgk? — K, —dick™, F(R'Y) + dit)
J,ﬁ J,ﬁ
fF+6 25 Fdrk?) +dp ¢
The commutativity of the squares ma = 7, 8f = f is clear.
d)The formula Ba = idy, is clear.
Define h' : Cyl(f)* — Cyl(f)*~! by the formula
Rk, kP 24 = (0, k%, 0).
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We have
aB(k', k) = (0,0, f(K*) + ¢Y),

doyinh' (', K, €) = (=K', —dk k', f(K)),
Wdayir (k' B, ) = (0,dick* — k*1,0).

Hence
afl = idCyl(f) + (dh + hd)

Since af and B« induce the identity mappings on cohomology, o and § are q.i.. QED

Proposition 2.11: An exact triple of complexes in Kom(A) is q.i. to the middle row of an
appropriate diagram of the form (*).

Proof : Let
0 — K-Ln-4Mm —o

be an exact triple. Consider the following diagram:

0 — K LH o 5 M o0

I i T@ Tv (%)

0 — K L ooy -3 o) — o0
where 8 is the map in (%) and 7 is defined by y(k**!, &%) = g(¢*).

a) Let us verify that v is a morphism of complexes:

(kit1, g% dﬂf (_deH-l)f(kH-l +dpe)

g dyg(f) = g(F(K*Y) + g(dpl)
= g(dpf")

b) Let us verify that the right square in (**) is commutative:

(ki,k:i'*'l,éi) iy (k,i+1,€i)

|s |’

FEY+€ 5 g(f(k)) +g(€) = g(€)
c¢) To complete the proof we have to show that v is a q.i..

Since g is an epimorphism, v Is also an epimorphism and Kery is the following complex:

K[1] ® Kerg = K[1] @ Imf
d(E, f(KY) = (—dpk™, f(E + dgk)).

This complex has zero cohomology because its identity mapping is homotopic to the zero one:
xd + dx = id, where
x={x": k" ®mf) - '@ (Imf)"'},

7



XK f(RY) = (K',0).

Hence the long exact sequence of complexes
0 = Kery = C(f)—=M —0

implies that v is a q.i.. QED
Theorem 2.12: The class of g.i. in categories K*(A) for x = +, —, b, is localizing.

Proof: Let’s verify that the conditions (a) to (c) of 2.5 are satisfied.
(a) Obvious.

b) First let us verify the extension condition. For this we must imbed the diagram

K'?—fﬁng—M'
L
into a commutative square "
N — M
J’h G 19_
. f .
K — L
9.{

The required square is a part of the following diagram, which is commutative in £*(A):

Clrg)[-1] -5 M 5 C(f) — Clrg)

lh lg I lh[l] k% %)
kL 5 ooy — K1

An elememt of C(mg)[~1]* = C(rg)*~! is a triple
(mi,ki’ei—l),mi € Mi,k)i c Ki’gi—l c Li—l,
k:(m k67 = (=1)'mb.
Define h(m®, ki, £-1) = (=1)**'k*. Then
gok— foh:(m' k7Y — (1)} (g(m") + f(K)).

The last difference equals
Xdc(rg)(~1] T dLX,

where x = {x'} and
X' Crg)[=1]" = Clmg)™" = L'

1s given by
Xi(mi, /{;i,éi—l) — (_l)i—lgi—l
(Use the formula :
de(rgy—1) (M, k5 871 = (—dym?, —dgk?, dp 871 + f(EY) + g(m?))).

Hence the left square in diagram (***) is commutative modulo homotopy.

8



It remains to prove that k is a q.i.. Since f is a q.i., C(f) is acyclic. But the upper row in
(***) is a distinguished triangle and k is a q.i..
The sencond extension condition can be proved in the same way: imbed

MK L
L,
in p f
c(Hl-1] — K — L — C(f)
n E [ ll
ciHi-1 & M = Cgr) — )
c) Let f : K = L be a morphism in K£*(A) . We will show that the existence of q.i.

s: L' = L with sf =0 in K*(A) implies the existence of q.i. ¢ : K — K~ such that ft = 0.
First construct the triangle (M, L', L';u, 5,v).

T

T J. Ju U
A
K — L L

We have an exact sequence
aE == Hom;c-(A)(K‘, M')—u—'>Hom;C-(A)(K', L')i)Hom;C-(A)(K', .Z,) —

The condition sf = 0 means that f € Kers,, hence there exists g € Homg-(4)(K", M") such
that u.(g) = f.

Next we construct the triangle (K, K", M";t, g, w).

Now we have the following exact sequence

B B === Hom;c-(A)(M',L')—g;‘rHom;C-(A)(K',L')—gHom;C-(A)(R",L') —Fdwe,

Since f € Im(g*), t*(f) = 0; thus we have ft = 0.

To prove that ¢ is a q.i., consider the long exact sequence associated with the above triangles.
From the first sequence we deduce that H*(M") = 0, since s. is a q.i.. So it follows from this and
the second sequence that ¢* is an isomorphism. QED

Definition 2.13: A triangulated category is an additive category D with an additive automorphism
T : D — D called translation functor (sometimes written as X — X [1] instead of T'(X) and
X — X [n] for T™(X)...) and the class of distinguished triangles, which satisfy axioms TR1-TR4
below:

TR1.a) Any triangle isomorphic to a distinguished one is itself distinguished.
b) Any morphism X —Y can be completed to a distinguished triangle

X572 Z2-%X(1)
c) X5X —0-— X (1] is a distinguished triangle.

9



TR2. A triangle
X-5Y-5Z2-5X(1]

is distinguished if and only if the triangle
Y2z x4y

is distinguished .
TR3. Assume that we are given two distinguished triangles and two morphisms f, g as in the
diagram below

X =Yy = 2z 5 X[

b
¥ =S Y D 7 =S x|
This diagram can be completed( not necessarily uniquely) to a morphism of triangles (i.e. the
above diagram is commutative) by a morphism

h:2— 2.

Before stating the fourth axiom, let us describe the octahedron diagram as shown below.

X' VA X'
1>:/T ol P b D
—i T 2 ,\>
(upper ccfp) (lower pﬁ

Let an octahedron be represented by two caps as above with common brim. In these diagram
X, Y, etc. are objects of D; arrows of the type X' — Z' represent morphisms X' — Z’[1]
in D; triangles marked d are distingushed triangles, those marked + are commutative. Further
one requires that the two composite morphisms ¥ — Y’(through Z and Z’) coincide, so do the
composite morphisms ¥’ — Y[1] (through X[1] and X').
TR4. Any diagram of the type ”
equivalently

upper cap” can be completed to an octahedron diagram. (or

TR4’: Any diagram of the type ”lower cap” can be completed to an octahedron diagram.

Remark 2.14: the octahedron diagram can also ge simplified as follows:

ZI
Y/ \\ Y’//
— "
// Z \\ ’
' e

10



Before stating the following theorem, we give a
Definition 2.15: A triangle is said to be distinguished if it is isomorphic to the middle row

K Loy Zse(n) - k(1

of some diagram shown in lemma 2.10.

Theorem 2.16: Let A be an abelian category. The category K(A) with the translation functor
and with distinguished triangles as in the above definition is a triangulated category. The same is
true for K+(A), K~ (A), and K°(A).

Proof : Let us verify the axioms TR1-TR4 of the triangulated category. For convenience of proof,
we expand the octahedron diagram into the following form

X S Y 5H Z S TX

Let T be the class of triangles of 2.15. Then TR4 is equivalent to: given (X,Y,Z';u,v,w) €
T, (V,Z2,X":v',v',w') € T and (X, Z,Y";u",v",w") € T, such that v = v'u, there exist f €
Hom(Z',Y') and ¢ € Hom(Y’, Z') such that (Z',Y',X'; f,¢9,T(v)w') € T and (idx,v’, f) and
(u,idz, g) are morphisms of triangles.

TRI1 : a) is obvious by transitivity of isomorphisms.

b) It suffices to take the standard diagram (X",Y",C,;u,q,p).

¢) We need two simple lemmas:
Lemma 2.16.1: The composition of two consecutive morphisms in the triangle
(X',Y",C,;u,q,p) is homotopic to 0.
Proof: By definition we have pg = 0. To prove that qu ~ 0 (resp. up ~ 0) we take the homotopy
operator to be gx- : X' = Y & T(X") (resp. py : Y @ T(X') — Y') as morphism of degree —1.
Lemma 2.16.2: For each object X in Kom" (A), the cone C;; . is homotopic to the zero complex
o,
Proof: The morphisms idcédx. ,0€ Hom™ (X" @ T(X), X ©T(X")) given by k(z',z") = (0, z').
By the above two lemmas, the diagram

x s x % o 5 7o)

J'idx J'idx J'O idpix)

X 2 x4 g B TX)

is commutative in K(.A) and the third vertical arrow is an isomorphism in £(A).

TR2 : (=) Given (X,Y",C,;u,q,p), we have to prove that

11



(Y',C,, T(X);q,p, —~T(u)) is distinguished. Let C, be the cone of the morphism ¢ : Y = C,,.
Consider the following diagram in K(A):

Y &% o S5 Ty = o7y

J’idy- lidc;. rlfr l’;dT(Y')

¥y L oS5 o 4L T

where §=gc, : C;, = C, @ T(Y") and p =pr(y) : C, @ T(Y") = T(Y").
The morphism r, 7 are defined as follows:

r TX) — C,
T —  (0,z, —u(z))
r C, — T(X)
Wz,y) ~ z

Clearly rir= ZdT(X)

Moreover rr’ ~ idc;, i.e. idc, —rr’ = kd+dk, where k is given by k(y,z,y’) = (0,0,y). Hence
r is a homotopic equivalence.

Furthermore the 1st and 3rd squares are commutative, and the 2nd one is commutative up to
homotopy, with rp ~ § given by k(y,z) = (0,0,y).

((7 = rp)(y, z) = (kd + dk)(y,z))

(¢<=) By applying the first implication twice.
TR3: Given a diagram in Kom(A)

x 5 v L oc b orx

c
N L i
c

x vy 4L oo, B orxn

with the 1st square commutative up to homotopy. (let gu —v'f = kd+dk, with k: X* = Y"")
We dafime-h - € = Q. by

h(y,z) = (9(y) + k(z), f(2)).

It is easily seen that A is a morphism, making 2nd, 3rd squares commutative.

TR4: Given u € Hom(X',Y"), v € Hom(Y",Z") and w € Hom(X",Z") such that w ~ vu
(k: X" — Z the homotopy from vu to w).
Define f: C, -+ C,, and g: C,, =+ C, by

fly,2) = (vly) + £k(2),2)

and
g(Z,ZL‘) = (Z - /C(.’E),’LL(:L‘)),
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then the squares 2,3,5 and 6 are commutative.

X 5 Y S5 o = 1K)

lidxl lv 2 lf ?3/ lidT(X')

Xy 5 2 5 0 = TX)

lu 4 lidzst lg 6 lT(u)

yy % z H ¢ 5 o1y
lT(q)p: 1@
e, -

lldcu tde: wl|lo tdrc;)
& =0 4L oo 4L T

The morphism w : C;, — Cj is defined by
w(z7 y) = (z7 o) y7 O)’

making the 3rd square commutative. Moreover the 2nd square commutes up to homotopy, with
homotopy given by k € Hom™'(C;, Cy)

(k(z,2) = (0,0,0,2),q — wq = kd + dk)

It remains to prove that w is a homotopic equivalence.
Let 6 : C; — C, be given by

0(z,z,y,2') = (2 — k(z),u(z) +y).

Clearly w = idc,. In addition, we have w@ ~ idC',, with homotopy given by k, where k is

defined by k(z,z,y,2') = (0,0,0,2) (idc, — wf = kd + dk).QED
Proposition 2.17: Let (X,Y,Z) and (X',Y’, Z') be two distinguished trianglesand g : ¥ — Y-

X — Y — Z —
AT
X — Y — Z —
Then the following conditions are equivalent:
(a) v'gu =0,
(b) 3f such that (1) is commutative,(b’) 3h such that (2) is commutative,
(c) 3 a morphism of triangles (f,g,h).
Moreover if these conditions are satisfied, and Hom™!(X,Z’) = 0, then the morphism f of (b)
(resp.h of (b')) is unique.
Proof: The exactness of the sequence

Hom '(X, Z') — Hom(X, X') — Hom(X,Y') — Hom(X,Z'),
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applied to gu in Hom(X, Y'), shows that (a) <= (b), with uniqueness of f if
Hom (X, Z') =0.

The implication (b)==(c) follows from TR2: if f satisfies (b), then 3h such that (f,g,h) is a
morphism of triangle. The converse is trivial.

Finally, a dual argument shows that (a) <= ('), and the uniqueness of h if

Hom™!(X, Z') = 0.

Corollary 2.18: Let X — Y —» Z — be a distinguished triangle. If Hom ™' (X, Z) = 0, then
(i) the cone of u is unique up to an isomorphism;
(i) d is the unique morphism z : Z — X [1] such that the triangle X — Y — Z — is
distinguished.
Proof : If in the above proposition, let X = X', Y = Y’ and f, g are identities, then Z is isomorphic
to Z'. Hence Hom™*(X, Z") = 0 and (i) follows from the uniqueness of h.
As for (ii), applying (2.17) to

We necessarily have h = idz, hence d = z. QED
Definition 2.19: A functor H : D — A from a triangulated category D to an abelian category
A is called a cohomological functor if it is additive and the sequence

HX) X v % H(2)
in A is exact for any distinguished triangle
X 5Y-"5Z-5X(1)

in D.
Proposition 2.20: (i) If
X —Y —Z— X|[]]

is a distinguished triangle, then gf = 0.
(ii) For any W € C, Hom¢ (W, -) and Home (-, W) are cohomological functors.
Proof: (i) By TRI,

XEY i —X (1]

is distinguished. Therefore by TR4 there exists a morphism ¢ : 0 — Z which makes the following

diagram commutative:
X — X — 0 — X[1]

L
f g
X — Y = Z — X
Hence go f = ¢p0 0 =0.
(ii) Let
X —=Y —Z— X[]]
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be a distinguished triangle. In order to show that Hom¢(W,-) is a cohomological functor, it is
enough to show that, for any ¢ € Hom¢(W,Y) with go ¢ = 0, we can find ¥ € Home(W, X), with
¢ = f o). This follows from TR1, TR3, and TR4 which imply that the dotted arrow below can

be completed:
w — W — 0 — W[

B
X Ja F 8 & = X
The proof of Home (-, W) is similar. QED
Corollary 2.21: In the diagram below if ¢, ¥ are isomorphisms, then @ is also an isomorphism.

X — Y — Z — X[1

b L L m

L R SRR

2.22. Abelian Subcategories

2.22.0. Let D be a triangulated category and C a full subcategory of D. We suppose that
Hom®(X,Y) := Hom(X, Y[i]) is zero for ¢ < 0 and for X, ¥ € C.

Proposition 2.22.1: Let f : X — Y be a map in C. Complete f to a distinguished triangle
X =Y — Z —, and suppose that Z is a part of some distinguished triangle K[1] = Z —» L —,

with K and L in C: )
K[l] < L

4
=
(2.22.1.1) Mla>z + e
XNy,
Then a[-1]: K — X is a kernel of f in C, and §:Y — L is a cokernel.
Proof: For W € C and under the condition of 2.22.0, the long exact sequence of Hom gives the

exact sequences
0 —» Hom™ (W, Z) = Hom(W, X) — Hom(W,Y)

and
0 — Hom(W, K) — Hom ™} (W, Z) = 0.

They show that (K, a[-1]) is a kernel of f. It follows from a dual argument that (Z, 8)is a
cokernel.
Definition 2.22.2: A morphism f: X — Y in C is called C-admissible (or simply admissible if no
confusion arises) if it is the base of a diagram (2.22.1.1).
Remark 2.22.3: If f is a monomorphism, then K = 0 by 2.22.1. hence Z==C and (2.22.1.1)
reduces to a distinguished triangle (X,Y,Z). If f is an epimorphism, we have L = 0, hence
K[1]=Z, and (2.22.1.1) reduces to a distinguished triangle (K, X,Y). Conversely, for every
distinguished triangle X Y -2Z-% with X, ¥, Z € C, f and ¢ are admissible, f is a kernel of
g, and ¢ a cokernel of f. By 2.22.0 and 2.18, d is determined by f and g¢.
Definition 2.22.4: A sequence X - Y — Z in C is called an admissible short exact sequence if
it is obtained from a distinguished triangle by suppressing the map of degree 1.
Proposition 2.22.5: Suppose C is stable under finite direct sums. Then the following conditions
are equivalent:

(i) C is abelian, and its short exact sequences are admissible.
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(ii) every morphism of C is C-admissible.

Proof: (ii)==(ii). By 2.22.1, every morphism of C has a kernel and cokernel. To prove the
abelianness of C, it remains to show that Coim(f)==Im(f). Take (2.22.1.1) for the lower cap of
an octahedron and apply TR4’ to complete it to an octahedron:

L <—B— ¥ L — ¥
\ d / \ * /

*""I*TXL l deTf
/ d “"\ al / + «?

g R =

By 2.22.1, 8 is an epimorphism, since it is a cokernel of f. By (2.22.2), the triangle (I,Y, L)
is distinguished; hence I is in C and is the image of f. Dually, the distinguished triangle (K, X, I)
(obtained from the distinguished triangle in the upper cap by translation) shows that I is the
coimage of f. Finally, by 2.22.2, the short exact sequences of C are admissible.
(ii)==(1). The kernel K, cokernel L and image I of f : X — Y give two short exact sequences
0K—>X—>I—0and0—>7—Y = L - 0. Let them be the two triangles forming the upper
cap in the above diagram, Applying TR4, we get the lower cap. Hence f is admissible.
Definition 2.22.6: A full subcategory C of D is said to be admissible if it satisfies 2.22.0 and the
equivalent conditions of 2.22.5.

it}

N{1] X N[1] X

Definition 2.22.7: In a triangulated category D, we sometimes call an object Y eztension of Z
by X if there exists a distinguished triangle (X,Y, Z). A subcategory D’ of D is stable if ¥ triangle
(X, Y, Z)with X, ZeD' =Y €D

§3 The t-structure

First let us state some facts:

¢ An important discovery in the homological algebra was that the derived category of two
absolutely different abelian category can be equivalent as triangulated category.

¢ t-structure is a technique that allows us to see various abelian subcategory inside a given
triangulated category.

Definition 3.1: A t-category is a triangulated category D with two full subcategory D2° and D=°
such that ( writting DS™:=D=<%—n] and D2":=D2%—n])

(i) For all X € D=% and Y € D2!, we have Hom(X,Y) = 0.

{ii) We have D0C D5! and DZ? 5 D21,

(iii) For every X € D, there exists a distinguished triangle (4, X, B) with A € D<° and
B e D21,

We say that (D<9, D2%) is a t-structure on D. And its core is the full subcategory C:=D<N
D20,
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Example 3.2: Let A be an abelian category and D= D*(A) be its derived category. Denote by
D27 ( resp.DS™ the full subcategory of D formed by complexes K with H*(K") = 0 for i < n(
resp. for 4 > n). Then the pair (D<? D29) is a t-structure with core A.

Proposition 3.3: (i) The inclusion of D<™ in D has a right adjoint 7<n, and that of D2™ has a
left adjoit m>n,.

(ii) For all X € D, there exists a unique morphism d € Hom(7>,X,7<oX) such that the
triangle T¢oX — X — 751X — is distinguished. Up to a unique isomorphism, this triangle is
the unique triangle (4, X, B) with A € D<% and B € D2!,

Proof: By duality and translation, it suffices to prove (i) for D<°.
It suffices to find A € D0 for every X € D such that VT' € D0 we have
Hom(T, A)~—=Hom(T, X).

Let (A, X, B) be a triangle in the condition (iii) of the definition of ¢-category. By the long
exact sequence of Hom and conditions (ii) and (i), we have

Hom(T, A)—Hom(T, X).

Hence we can set T<oX = A. This proves (i), the existence of a distiguished triangle (<o X,

X, 751X) and the fact that every distinguished triangle 3.1(iii) (A4, X, B) is uniquely isomorphic to
this triangle, without considering the map of degree 1. The uniqueness of this last triangle follows
from 3.1(i), (ii) and 2.18(ii).
Corollary 3.4: The distinguished triangle (7¢¢X, X, 751 X)) shows the equivalence of the following
conditions:
(a) T<oX =0, ie. (a') Hom(T,X) = 0VT € D<°
(b) X751 X, ie. () X € D21,
Remark 3.5:

e (a') <= (b') shows that D2! is right orthogonal to D<? and D2! is stable under extensions.

¢ Dually,

751X =0 &= X € DY,

DS is left orthogonal to D! and stable under extensions. In particular, D<° and D>! are
stable under finite direct sums.
Lemma 3.6: For a < b, we have DS¢ C D= and there exists a unique morphim from T<a X —
T<pX making the diagram
TSQX — TSbX

N e
X

commutative. It indentifies 7<, X and 7<,7<,X. Dually, we have 75, X — 75, X, identifying 75, X
and TZszaX-
Proposition 3.7: Let a <. VX € D, 3! morphism 75,7<s X — T<»7>, X making the diagram

commutative.
TSbX — X — TZa.X

S T

T>aT<h& — T<hT>aX
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It is an isomorphism.
Proof: (1) The map 7<pX — T3, X € D2* can be uniquely factored through 75,7<p X.

(2) Since 75,7<pX is in D=? it factors uniquely through T<pT>aX. Applying TR4 to ¢, X —

T<pX = X, we have P
Y
/ \
T<pX Taal
¥ ) (L .
\
L P 5l Tyl

In this octahedron, Y is at the same time 7>,7<p X ( '.'(’r<a7'§bX = TeoX, T<pX, Y) ) and
TSbTZG.X e TzaX, Tt ) ).

o Set 7o 5| X =TraT<p X ——T<pT>a X
Theorem 3.8: The core C := D<%N D20 of the t-category D is an admissible subcategory of D,
stable under extensions. The functor H% := T>07T<o from D to C is a cohomological functor.
Proof: Let X,Y €C, f: X = Y, and S the cone of f. The distinguished triangle (Y, S, X [1])
shows that § € D0 ND2~!, hence 7505 € C[1] and the distinguished triangle (1<_,5, S, 7505)
gives a diagram (2.22.1.1). Therefore C is admissible abelian. The stability by extensions follows
from the remark after the above lemma.

It remains to show that for every distinguished triangle (X, Y, Z), the sequence H°X —
H%Y — H®Z is exact.

Casel. X, Y, Ze¢DS0 5 H°X - HOY — H°Z - 0 is exact :

For U € D0, V € D2°, we have H'U = 150U, H°V = 1<V and

Hom(HU, H°V)—Hom(U, H'V)——Hom(U,V).

Let T € C( hence T' € D29), the long exact sequence gives

0 — Hom(Z,T) — Hom(Y,T) — Hom(X,T)

0 — Hom(H°Z,T) — Hom(H®Y,T) — Hom(H°X,T) VT. Hence the exactness.
Case2. X € DS0: VT ¢ D21, the long exact sequence of Hom gives

Hom(Z,T)——Hom(Y,T), hence 75,Y —Z.

Applying TR4 to Y —> Z — 7>1Z (or TR4 to X — 7¢oY — Y), we have

/'7
TSOZ
_ N
TSOY - 7 —
X T iz

N
PAN
We obtain a distinguished triangle (X, 7<oY’, 7<0Z), and thus back to Casel.
Case2*. Dually, if Z € D2° 0 — H°X — HOY — H®Z is exact.
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Feneral case. By TR4, we have an octahedron /

e
o X" N
e P
TSOX — Z o

Applying Case2. to (<o X, Y, U), we get H'X — H°Y — H°U — 0. And applying Case2*
to (U, Z.(r>1X)[1]) gives 0 = H°U — H®Z, hence the exactness of H°X — H°Y — H°Z. QED
Definition 3.9: A t-structure is said to be non-degenerate if the intersection of the D<™, and that
of D2™ reduce to the zero objects. We set H:X ;= HO(XT[i]).

Proposition 3.10: Suppose the system of the functors H® is conservative and the ¢-structure of
D is non-degenerate. Then an object X of D is in D0 (resp. D2°) if and only if H*X = 0 for
1 > 0 (resp. for 7 < 0).

Proof: Let X € D. We want to show that X = 0 if all the H*X are zero. If X is in DS°, then the
hypothesis H°X = 0 ensures that X is in D<!; continually, we find that X is in theintersection of
D<™, hence is zero. Dually, if X € D2%, then X = 0. In general, since the H* of 7<oX and 751X
are zero. They are both zero themselves. Hence we conclude that X is zero from the distinguished
triangle (7<oX, X, 7>1X).

If a morphism f : X — Y, of which Z is a cone, induces the isomorphisms of H*(X)—=s H*(Y),
then the cohomological long exact sequence shows that H*(X) are zero (therefore Z = 0) and f
is an isomorphism. Finally, if H*(X) = 0 for ¢ > 0, all the H*(750X) are zero, 750X = 0 and by
(3.5) X is in DS, The case for D20 is dual.

Definition 3.11: Let T : C — C’ be a functor between two triangulated categories. T is said to
be an exact functor if T' is additive, graded by translation, and transforms distinguished triangles
into distinguished triangles. The morphisms of exact functors are the morphisms of the graded
functors.

Definition 3.12: Let D;(z = 1,2) be two t-categories, C; the core of D;, and ¢ the functor of
inclusion of C; in D;. Let T : D; — D, be an exact functor from the triangulated category D;
to the triangulated category D,. We say that T is right t-exact if T(Dlgo) = DZSO, left t-exact if
T(DIZO) e D;O, and t-exact if it is both right t-exact and left t-exact.

Proposition 3.13: (i) If T' is left t-exact (resp. right t-exact), then the additive functor PT" :=
H°oTog:C; — Cy is left (resp. right) exact.

(ii) For a left (resp. right) t-exact functor? and for K in DIEO (resp. Dlgo), we have PTHOK — HT K|l
(resp. H'TK —PTHCK).

(iii) Let (T*,T.) be a pair of adjoint exact functors: T : Dy — D; and T, : D; — D, right adjoint
of T*. Then T* is right t-exact if and only if 7\ if left t-exact, and in this case (?7*,?T,) form a
pair of adjoint functors C; — Cs

(iv) If Ty : D; = Dy and Ty : Dy — D3 are left (resp. right) t-exact, then so is 75 o T} and we have
P(Th 0T )=PT, o P,

Proof: If T is left t-exact, then for every short exact sequence 0 - X — Y — Z — 0 in
C, the cohomological long exact sequence of the distinguished triangle (T'(X),T(Y),T(Z)) gives
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0 - H'T(X) - HT(Y) = HT(Z), since T(Z) is in D2°. This (resp. the dual argument)
proves (i).

For K in DIZO, the triangle (H°K, K, 750K gives a triangle (TH°K,TK, TT50K) with T75 oK
in D3°. Hence it follows from the cohomological long exact sequence that H'TH°K —HOTK.
This (resp. the dual argument) proves (ii).

If T, is left t-exact, then for U € D7% and V € Dzso, we have Hom(T*V,U) = Hom(V,T.U) =
0. Since this is true for all U, we have T5oT*V = 0, i.e. T"V is in D% T* is right t-exact.
For A € C; and B € Cy, we therefore have HT*B = 7¢oT*B and H°T.A = 7<¢T. A, hence a
functorial isomorphism

Hom(H°T™* B, A)——Hom(T" B, A) = Hom(A, T, B)+—Hom(4, H°T. B).

This and the the dual argument prove (iii).
If T and Ty are left t-exact and A € Cy, we have Ty A; € D2° and P(Th o T1)A = HToT1 A =
HOT, HOTy A by (ii). This and the dual argument prove (iv). QED

Remark 3.14: (i) Let D} = UDZ" and D; = UD5". The result (iii) also holds for T* : D; — D,
and T, : D} — D,, where the adjoints are realized as Hom(7T*V,U) = Hom(V,T.U) functorially,
for V in D, and U in D . The proof is the same.

(ii) For A in C; and B in C5, the adjunction maps for (7*,7.) and (PT*,PT.) are related by the
following commutative diagrams:

T*PT,.A — PT*PT,A B — T, 7*B
4 $ and & l
™T.A — A rpT.PT*B — T.,PT*B.

3.15. Let T : D' — D be a fully faithful exact functor between two triangulated category: for a
triangle tr of D’ to be distinguished, it suffieces to require that its image T'tr by T is distinguished:
if try 1s a distinguished triangle of the same base as tr, and T'tr and T'tr;, are distinguished, of the
same base (hence isomorphic), then tr and ¢r; are isomorphic.

Suppose that D and D' are with t-structures and T is ¢- exact. For X in D’ to be in D0
(resp. D'2%), it suffices that TX is in D<O (resp. D2°): we have X € 'S0 &= 750X =0, and T
commutes with 75¢ (resp. the dual argument). Conversely, if D’ is a full triangulated subcategory
of a triangulated category D, and (D<° D2°) is a t-structure on D, then (D'<°, 2% .= (D' n
D50 Ty D29 is a t-structure on D' if and only if D’ is stable under the functor 7<p. If this
condition is satisfied, this t-structure on D’ is called the induced ¢-structure. For D’ with the
induced t-structure, the functor of inclusion of D’ in D is t-exact: we have C' = D' N (, and the
restriction to D' of the functor 7<,, 7>, or H? of D coincides with the functor on D with the same
notation.

§4 Perverse sheaves

Let X be a topological space (or even a topos), with sheaf of ring O. And let D(X, Q) be the
derived category of the abelian category M (X, O) of sheaves of left O-modules over X. We denote
Dt(X, O) the full subcategory of complexes which are bounded below.
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Let U be an open set of X, F its closed complement, ;7 the inclusion of U in X, and ¢ the
inclusion of F' in X. We retain the notation © for sheaf of ring on U or F which is the inverse
image of O on X. We’d like to describe a construction which can, given a t—structure on D+ (U, O)
and a t-structure on DT (F, Q), produce a t-structure on DT (X, O).

The categories M(X,0), M(U,O) and M(F, Q) are related by the functors:
g1 M(U,0) - M(X,0O): extension by 0 (exact);

§* : M(X,0) = M(U,O): restriction (exact), also denoted j';

Ju : MU, O0) - M(X,0):

i M(X,0) - M(F,O): restriction (exact);
is : M(F,0) - M(X,0):

v M(X,0) > M(F,0): sections with support in F' (left exact).

direct image (left exact);
direct image (exact), also denoted 1;

For the convenience of the readers, we give defintions of the six operations introduced above. Let
F be a sheaf on X and G a sheaf on W (= F or U). We have the

Definition 4.1: (1) For a sheaf G on U. Define 571G to be the sheaf on X whose sections over the -
open set V' of X are given by

L'(V,5:G) = {s e (U NV, G) | supp(s) is closed relative to V'}.
(2) For a sheaf G on W, f.G (f =1 or j) is defined to be the sheaf:
V+— £.G(V)=G(f~1(V)), V open in X.
(3) For a sheaf F on X, f*F (f =1 or j) is defined to be the sheaf on W associated to the presheaf:
| Vi— l'%l}'(U’),
V open in W and U’ ranges through the family of open neighborhoods of f(V') in X.
(4) For a sheaf on X, denote F¥ the subsheaf of F such that its sections over the open set V are
D(V,FF) = {s e I(V, F | supp(s) C W}.

We define i' F as i* FF.
Remark 4.2 : 1) j*, i* may be described as

[ (F)z = Frz), ¥z € U (resp.F),and f = j (resp.i).

They are clearly exact.

2) 71 may be described by ji(F). = Fr Vz € U and zero elsewhere. It is clearly exact.

3) Direct images are defined as usual. We have i, = 1, (extension by zero).

4) j. is right adjoint to j* as usual. Also 4’ is right adjoint to 4, = ., since the adjunction map
G — i'1,G is an isomorphism. Therefore 7, and i’ are both left exact.
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5) We keep the notations M(X, Q) (etc.) as in [1]. To avoid confusion, we have to point out that
we have only used their properties as sheaves of abelian goups, though the formulae concerned are
true in a more general context. When necessary, we will mention the extra assumptions to insure
the validity of, say, Verdier duality.

The six operations form two sets of 3 adjoint functors (ji,j* = j*,4.) and (i*,i. = i1,i'). One
has j*i. = 0, whence by adjunction i*5; = 0, and i'j, = 0. For every sheaf 7 on X, the adjunction
maps give the exact sequences

023" F > F o117 F >0

(4.1.1) and
0 1,8 F > F > juj*F

(which can be completed by a 0 at right for injective F).

For F on F (resp. U), they also give the isomorphisms
(4.1.2) L F il F,
(4.1.3) § L F=a F=3§* 5, F.

For each pair of adjoint functors (7", T, ), the adjunction map T*7T. — Id. (resp. Id — T.T*)
is an isomorphism if and only if T\, (resp. 7*) is fully faithful. Hence the assertions (4.1.2), (4.1.3)
are equivalent to : 4., j,. and ji are fully faithful. When a functor 7" between the abelian categories
are exact, it passes trivially to the derived categories. We usually use the same notation for its
extension to the derived categories. This extension is at the same time the left derived functor LT
and the right derived functor RT of T'.

4.3 Let D, Dy, and Dp be three derived categories, and 1., j* be the exact functors:
1« :Dp = D, 7* D — Dy.
We write 4, := 4, and j' := j*. And we assume the following conditioins are satisfied.

(4.3.1) 1. has a left adjoint and a right adjoint, denoted ¢* and i'.
(4.3.2) j* has a left adjoint and a right adjoint, denoted j; and j..
(4.3.3) One has j*i, = 0 and by adjunction i*j; = 0 and i'j, = 0. For A € Dy and B € Dy,

Hom(j:B,i.4) = 0 and Hom(:. A4, j.B) = 0.
(4.3.4) For every K € D, there exists d 14.i"K — 55" K[1]( resp. d : j.j° — 1.1'K[1]), unique by
(4.3.3) and (2.18), such that the triangle j,5*K — K — i,i"K — (resp. i,i'K — K —
7«3 K —) is distinguished.
(4.3.5) 4., 71 and j, are fully faithful: the adjunction morphisms i*i, — Id — i'i, and j*j, — Id =
7%7: are isomorphisms.

The above formulation is self-dual; the duality exchanges j; and j, as well as ¢* and %'
4.4. a) Since the functor 4, is fully faithful, the composotion of the adjunction morphisms 7,i' —
Id — i,1* is the i, of the unique morphism of functors
(4.4.1) ' — i~
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When this morphism applies to i..X, and when we identify i'7. X and i*1.X with X, we obtain the
identity automorphism of X.
b) The composition of adjunction morphisms j;5* — Id = j*7* comes from a unique morphism of
functors

(4.4.2) 1 = j.
If we identify 7* 7y and 7*j, with the identity functor, then j* of (4.4.2) is the identity automorphism.
¢) For X € Dy, the cone over 71X — j7.X is therefore annihilated by j*: it is in ¢, Dp.

By (4.3.3) and 2.18, the distinguished triangle of base 71X — 7.X is unique up to unique
isomorphism, hence we have a functor j./j; : Dy — Dg such that

(4.4.3) (41,70 0(5u/30) .
is a distinguished triangle. The dual construction gives a functor T : Dy — Dp which is charac-
terized by a functorial distinguished triangle (.7, 7, 7.). A triangle of this type is deduced from
(4.4.3) by translation, hence we have an isomorphism T = (j./j:)[—1]. By applying i* and i to
(4.4.3), and using i*j; = i'j, = 0, we obtain the isomorphism

(4.4.4) 2*j.—j. /51— 1[1].

4.5 Let X € D and apply TR4 to the adjunction morphisms j7*X = X — 7.5*X. We want to
show that the octahedron thus obtained

e
A
~ N
- S I
/ jtj*JY \\
fix - o
S

is unique up to unique isomorphism, and is functorial in X.

(a) By (4.3.3), (4.3.4) and 2.18, there exists a unique isomorphism A = ¢,i* X, which identifies
X — A with the adjunction map. It also identifies (717*X, X, A) to the distinguished triangle
(Fif* X, X, 1.5 & ) of {1.3.4).

(b) By applying the same argument to j.j* X, we can identify B with 4,5*j,5*X = i,(j./7)5* X
(4.4.4). By 2.17, a unique morphism A — B makes the upper cap of the octahedron diagram
commutative. The morphism A4 — B, i.e. ,i*X — 1,1*7,7*X is therefore the one deduced from
X — 7.7°X by functoriality.

(¢) Dually, there exists a unique isomorphism of C with 1,i' X[1], identifying the map of degree 1
of (X,j.j*X,C) with the adjunction morphism 4,'X — X. (Here the triangle (X,j.j*X,C)
is deduced from the triangle (4.3.4) (i,#'X, X,j.j*X) by translation (TR2), by changing the
sign of j,‘j*XQ)i.i!X.) The morphism B — C is the unique morphism making the square
(B,C,jj*X, X) commutative. By the isomorphism (4.4.4) of j. /71 with 4'5i[1], it is the morphism
(3. /307" X = 4,4'5,5* X[1] = i.i'X[1] deduced from jij* X — X by functoriality.

(d) We want to determine all the members, and all the maps of the octahedron (by ¢4 we
mean the composition CQX — A) and prove its functoriality. If we replace A, B, C by the
above representations, the octahedron can be written as
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(4.5.1) P

D¢
/ \_ . I
X __ /i X
v 3.3 X TS
X T Se i X[1].

gy
Since the functor 1, is fully faithful, the distinguished triangle
(1a1* X, 14(Ju/51)7* X, 5.1 X[1]) is the i, of a triangle (i.X, (j./41)7 X,i X[1]), which is automati-
cally distinguished by 3.15. The ¢. of the map d of degree 1 of this triangle is the composition
i.i’X[l]—(ll)X — 1,i* X such that d is (4.4.1) for X[1] ( = the transform by [1] of (4.4.1) for X). By
turning the triangle (TR2), changing the sign of the new map of degree 1 and irascing 4, (3.15),
we obtain a functorial distinguished triangle

(4.5.2) (#,4%,(5./3))5")
of base (4.4.1). In the framework of the discussion before 4.3 of this section, this triangle arises
because for each flabby sheaf F, the sequence 0 — ©/F — i*F — i j.j*F — 0 is exact.

Now we can state the construction of glueing two given t—structures. Suppose that the
hypothese of 4.4 are satisfied, and let (’DEO, ’Dgo) be a t—structure on Dy, and (D;O, D%O) be a
t—structure on Dg

Definition 4.6:
DL = (K€D | j*K € D5° and i*K € D’}

DS .= (K€D | j*K € D’ and i'K € D3°}.

Theorem 4.7: With the foregoing hypotheses and notations, (D<°, D<?) is a t-structure on D.
We say that it is the t—structure deduced from Dy and Dp by glueing.
Proof: We have to verify axioms of 3.1.
Axiom (i). Let X € DS0 and Y € D2!. The first triangle of (4.4.4) for X gives an exact sequence
Hom(i,:*X,Y) - Hom(X,Y) - Hom(5i7* X,Y).
We have Hom(i.i*X,Y) = Hom(i*X,7'Y) = 0, by 3.1 for Df. and

Hom(j1j*X,Y) = Hom(j*X,j*Y) = 0, by 3.1 for Dy. The assertion follows.
Axiom (ii). It follows trivially from 3.1 (i) for Dy and Dg.

Axiom (iii). Let X € D. Choose Y, then 4, to make the distinguished triangles (Y, X, j,7507"X) and
(A, Y, t.7501"Y), and apply TR4:

i,T)Oi*Y
e ™~
e
—— T i i
A J«T>05" X.
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We apply the functors j*, i*, i’ to the distinguished triangles of this octahedron, in the
following manner, taking into consideration (4.4.1) to (4.4.5) :

7*(fams0i"Y, B, juts0j*X)= (Q, §* B, >9j*X), hence j*B—75¢j" X,
3*(A, X, B)=(*A, §*X, rygi"X), hence j* A = T<0j" X,
(A, Y, 1,150"Y)=(i"4, i*Y, 1501"Y), hence i" A = 7¢4i"Y,

i (1.T501"Y, B, jaTs0j"X)= (750¢"Y, i'B, 0), hence 750i"Y =~ i'B.

Therefore we have A € D9 and B € D21, and (4, X, B) satisfies 3.1 (iii).
4.8. Suppose that we have only a t-structure on Dp, and we apply 4.7 to the degenerate ¢-
structure (Dy,0) on Dy and the given t-structure on Dp. We denote the functors relative to the
t-structure on D by 'rfp. The functor Tgp is right adjoint to the inclusion of the full subcategory
of D consisiting of X such that ¢*X is in ’D%p. As in the proof of axiom 3.1(iii) of 4.7, we know
that (‘rpr, X,1.75p1* X) is a distinguished triangle (with the notations of 4.7, we have X =Y).
THe recursive HP for this i-structure are therefore equal to i, HPi* X.

F

Dually, we define 7 p D terms of the degenerate t-structure (0, Dy) on Dy; it is left adjoint

to the inclusion of (#*)~!(D#?) in D; we have a distinguished triangle
{iaTept X, X, 7$,X). And the HP are i HP' X,

In the same way, if we are only given a t-structure on Dy and we let Dp be the degen-
erate t-structure (Dg,0) (resp.(0,Dg)), then we can define on D a t¢-structure for which the
functors 7<, (resp.7>,) are denoted by ’TSUP (resp.rgp); they give rise to the distinguished tri-
angle (1Z,X,X,j.7555"X) (resp. (jit<pj*X, X,75,X)) for which the H?X are j.H?j*X (resp.
JiHP X)),

From the proof of the axiom(iii) of 4.7, it follows that 7¢<o = rfov'g 0Y. By translation and
duality, we obtain B

_.F ., U _ . F .U
(4.8.1) T7<p = T<pTep and T>p = 75,73

Definition 4.9: Let Y be an object of Dyy. An object of D is said to be an extension of Y if there is
an isomorphism 7*X =~ Y. such isomorphism gives by adjunction the morphisms 1Y — X — 7.Y.
If an extension X is isomorphic to 75, 71Y (resp. 7£,7.Y), then the isomorphism is unique, and we
simply let X = 7£ 7Y (resp. 75,7.Y).

Proposition 4.10: Let Y € Dy, and p an integer. Then there exists a unique( up to a unique
isomorphism) extension X of Y such that i*X € Ds? ' andi'X € DZP*; in fact X = Tep_1JeY =

F .
Tspr1tY

Proof : The distinguished triangle (i* X, (j./7:)Y, i'X[1]) shows that the following conditions are
equivalent:

(a) i*X e DEP 74X e D27,

)l

(b) @' X[1] = T5p(Ju /7)Y = 751" 1Y
(V) X =11 (4u /)Y

The distinguished triangle (X, 7.Y, i,,z'!X[l]) shows that

(b)) —= X = Tfp_lj*Y and dually
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(t) &= X =15,,,5Y. QED

4.10.1. Let D,, be the full subcategory of D consisting of objects X satisfying the conditions
X € ’D;p_l and i'X € ’D%”H of 4.10. The functor j* induces an equivalence of categories
Dy — Dy. It admits in fact Tfp_lj, as quasi-inverse. We sometimes denote this quasi- inverse by
o <

Jix-

Definition 4.11: Let C, Cy, Cr be cores of the t-categories D, Dy and Dp; Dy, Dp, are with
given t-structures, and D the t-structure of 4.7. Let € be the inclusion of C, Cy, Cr in D, Dy, Dp.
And for T = j), §*, ju, i*, is,and &', let PT = Ho T oe.

Since by definition of t-structure of D, j* is t-exact, i* is right t-exact and i’ is left t-exact.
Applying 3.13(iii), we have

Proposition 4.12: (i) The functors j;, and i* (resp. j* and i., resp. j. and i') are right -
exact(resp. t-exact, resp. left t-exact).

(ii) (P51, P5*, P4.) and (P3*, P1,, P¢') form two sets of three adjoint functors.

Proposition 4.13: (i) The composition ?5* o P4,, Pi* o Pjy, and P¢' o Pj, are zero; for A € Cp and
B € Cy, Hom(?5,B,?i,A) = Hom(%i, A,?5.B) = 0.
(ii) For every A in C, the sequences

PiPi*A - A—-Pi,PI"A -0

and
0—PiPi'A— A—PjP5A

are exact.

(iii) Pi., P4, and P4, are fully faithful: the adjunction morphisms Pi*Pi, — Id — Pi'Pi, and
Pj*P5_ — Id — Pj*Pj, are isomorphism.

Proof: They are consequences of 4.3.3, 4, 5 and 3.13(iv).

 4.13.1. From (i) and either of the exact sequences of (ii), it follows that an object X in C is in
the essential image Cr of P4, if and only if 7j* X = 0. Since the functor Pj* is exact, this essential
image is a thick subcategory (i.e. stable by extensions and by taking quotients) of C. If we identify
Cg via the fully faithful functor ?i, with the subcategory Cz of C, then the adjunctions (Pi*,?1,)
and (Pi.,P1') (4.12(ii)) show that for X in C, Pi*X is the largest quotient of X which is in Cf, and
?i'X is the largest sub-object of X which is in Cp.

Proposition 4.14: The functor ?;* identifies C;; with the quotient of C by the thick subcategory
Cr (or more precisely Cr; cf.4.13.1).

Proof: Let @ : C — C/Cr be the quotient functor. THe exact functor Pj* admits a factorization
T o @, and T is faithful: if f in C/Cr comes from f) in C, and f is killed by T, then f, is killed
by P7*, i.e. Im(f)is in the image of Cp, and f; is killed by Q. Since Id——?j*Pj, = T o Q o Pji,
T is surjective over the isomorphism classes of objects. It remains to show that 7" is fully faithful,
therefore an equivalence of categories. We need a lemma which is a result of (4.3.4) and 4.12(i).
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Lemma 4.15: For every A in C, the sequences
0P, H YA PjP* A APiPi"A—>0

and
05 P,P1'A— A= P3P A P HY' A0

are exact.

Now we complete the proof of 4.14. By the above lemma, the kernel and cokernel of 5,75j* A —
A are in the image of ?i,. Therefore every object of C/2Cr has a representative in the image of
P4, For P1.X and P7Y in this image,

T : Hom(QPj: X, Q°5:Y) — Hom(T Q% X, TQ?j:Y) = Hom(X,Y)

is true for every section of Q?ji, hence is surjective. QED.

4.16. (a) Since the functor Pi, is fully faithful, the composition of the adjunction morphisms
P{ Pi' — Id — Pi,Pi* is the Pi, of a unique morphism of functors
(4.16.1) Pi' — P4*,
The diagrams 3.14(ii) for (:*,4.) and (i.,4'), and the t-exactness of 7, give for 4 in C a commutative
diagram
PiPi'A — A — PPi*A
I ||
i.Pi'A 173" A
1 T

A — A —  ,4%A

from which it follows that for A in C, the morphism (4.16.1): Pi'4A — Pi % A is the composition
(4.16.2) 7i'A — 'A% 4 s pio 4,
When we apply (4.16.1) to 2. A (A in Cr), we obtain the identity automorphism of A.
(b) Since Pj* is a quotient functor (4.14), the composition of the adjunction morphisms ?5,75* —
Id = T?3,P7* comes from a unique morphism of functors ‘
(4.16.3) Pj) — Pj..
The diagrams 3.14(i1) for (j*, j.) and (Ji,7*), and the t-exactness of j* give for A inC a commutative

diagram
PiPj*A — A — P4P5"A
] |
jij* A | jj"A
T i i

sk e R i - Bl

from which it follows that fox;sé? in Cy, the morphism (4.4.2) of 51 B in j.B is the composition
(4.16.4) 1B — 50518 =?jiB*“5V%j, B = r (0. B - j.B.

When we apply P;* to (4.16.3), we obtain the identity automorphism of the identity functor. In

particular, for B in Cy, the kernel and cokernel of (4.16.3): P5;B — ?j,B are in ?i,CF.

Definition 4.17: The functor ji. assigns B € Cy the image of 1B in ?7,B. We thus have a series
of maps
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#B =?4B — B —=?j.B— j.B
Proposition 4.18: For B € Cy, we have
PjHB =150jiB =T1¢_5j.B
JuB = Tglj!B = Tg_lj.‘B
Pl = 'rgf_,ng = Tgoj*B.
More precicely, 7, B with the map 1B — P51 B is Tgoj!B, etc.
Proof : Since

Since j*j1B € Cy, we have j,B = Tgoj!B. By 4.8.1, we have P5i1B = 1501 B = Tgoj!B; by 4.10,
50jtB = 7£_yj.B. Likewise, Pj.B = 75,18 = 735, B.

4.8 gives a distinguished triangle (i. H%'5; B, 7£,51B, 7£,51B). It shows that Tglj!B g Di-1.0],

A dual argument gives a distinguished triangle (t£_,5.B, 7£,j. B, i. H%* B) which shows that
7E_,5.B € D0, . .

By 4.10, we find that Tflng = Tf_lj.B € C, and the above triangles become short exact
sequences

0 i, H%'5B —-?iB - 1L jB -0

0—71f j.B—>?j,B—i,H% j*B—0

They show that 'rflng =1E_,j.B is just the image ji. of P51 B in ?j.B.

Definition 4.19: The subcategory PD<%(X, O) (resp. ?D2%(X, O)) of D(X, O) is the subcategory
consisting of complexes K (resp. K in Dt (X, )) such that for each stratum S (we denote by is
the inclusion of S in X), we have H"i5K = 0 for n > p(S) (resp. H"ixK = 0 for n < p(9)).
Remark 4.20: If a, b are integers such that a < p < b, then it can be shown that (cf.[1] p.56)

DM X, Q) C DX, 0) C PR X. )

(4.20.1) and
D2%(X,0) D PD2%(X,0) > D24(X,0).

We denote by PDH<°(X, O) the intersection of Dt (X, 0) and PD<°(X, O). In the same way

we define the categories with + replaced by —, b, and with 0 replaced by n.
Proposition 4.21: For each perversity p, (PDT<%(X,0),?D2%(X, 0)) is a t-structure on Dt (X, O).
Proof: By induction on the number N of strata: if N = 0, we have X = ) and the assertion is
clear. If N = 1, we are back to the natural ¢-structure, with p(X) as translation. For N > 2,
let F' be a proper closed subset which is a union of strata, and U the open complement. For
example we can take a closed stratum as F. By induction hypothesis applied to F, and U, with
induced stratifications, we have the ¢-structures on D* (U, O) and DT (F, O). Then the t-structure
on D* (X, O) results from 4.7.
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Corollary 4.22: (PD<0(X,0),PD2%(X, 0)) is a t-structure on D(X, O). It induces a t-structure
on D*(X,0) for * = +, —, b.
Remark 4.23: Denote by P7 the corresponding functors 7. Since PD<? C Db and PD2° C D28,
the (usual) cohomological long exact sequence of the distinguished triangle (Pr<oK, K,?7>,K)
shows that H”’TSOK = H'K for i < a. Similarly, HistoK—;)HiK for ¢ > b. It follows that Pr
and P1yq respect D* (x = +, -, ). h
Definition 4.24: The category M(p, X, Q) of p-perverse sheaves of O-modules on X is defined
to be PDS0(X, ©O)NPD2%(X,O). It is an admissible abelian subcategory of D’(X, O.
Proposition 4.25: Let U be a locally closed subset of X, which is a union of strata, and let j
be the inclusion of U in X. Then for each perversity p, the functors ji : D(U, Q) — D(X,O) and
7* : D(X,0 — D(U, Q) are right t-exact.
Proof: It follows directly from the definitions. We omit the details.
4.26 Notation: We omit (X, ©) in the notation. We sometimes write D<? (resp. D2P) instead of
PDL0 (resp. PD20). For p of a constant value a, we have DSP = D<¢ (in the sense of the natural
t-structure), and D2P = D2%. For each integern, we have DSP+" = PDSR apd D2PH" = PD2R,
Finally, for p < q, we have DSP C D9 and D2P D D29, This generalizes (4.20.1). Similarly,
we write 7<, and 7>, for Pr<o and Pr>o, and H? for the H® in the sense of the t-structure of .
perversity p. In the situation of 4.25, we have used the same notations ji, j', j., and j* in the
category of sheaves for the derived functors. We will use p in the left exponent of a functor to
mean that it is deduced by passing to p-perverse sheaves. For example, for A in M(p, U, Q) we set
PiA = 15,01 A = HP(5iA). By 3.14(i), (P5:,77') and (Pj*,Pj.) are two pairs of adjoint functors.
The functors ji, 7', 7., j* for the usual sheaves will be denoted with 0 in the left exponent:
they correspond to the 0 perversity.

For a p-perverse sheaf A on U, 714 is in DSP(X,0) and j.A is in D2P(X, Q). The natural
morphism a : 1A — j. A admits a factorization
JA—PHALP5 A A (B="Ha)).
The functor ?ji, or simply ji., is denfined by
jA =Im(PjiA — Pj.A).

For a p-perverse sheaf A on X, we define a canonical morphism: Pj'A — ?j* A as the composotion
PilA 5 j'A o jTA 5 PiTA

Remark 4.27: For inclusions U -4V -2 X of locally closed sets which are unions of strata, the
transitivity formulae (jk), = jiki, (k). = j.k., (Gk)' = k'5', (jk)* = k*j* give (3.13 (iv)) the
analogous formulae for the p-perverse sheaves. By applying P71, ?ji. and Pj. to the morphisms
Pky — Pky, — Pk,, we obtain a chain of maps

Plik)y =Pl I = f il ly, =0 Pi ke = 5. Pk, < P45,k = P5k)s

which gives an isomorphism of functors
(4.27.1) P(jk)i = PjrlPki..
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Proposition 4.28: For B in M(p,U,®), ji.. B is the unique extension P of B in D(X, Q) such
that for each stratum S C F (denote by s its inclusion in X'), we have His*P =0 for i > p(S) and
H's'P =0 for i < p(S).

Proof: It follows from 4.10.1 that if D’ is the subcategory of D(X,0) formed by K such that
His*K = 0 for i > p(S) and H's'K = 0 for i < p(S) for each stratum s : S — F, then
j* induces an equivalence D' — D(U,0). lts restriction to D' N M(p, X, O) is an equivalence
DN M(p, X,0) = M(p,U,QO), of inverse ji..

Remark 4.29: P B and ?j, B can be charaterized analogously (cf. 4.18, [1]1.3.14).

To state the following proposition, we first make the assumptions below:
4.30.

o If S C T\then p(S) > p(T).

e For each n, the union Fy, (resp. Up,) of strata S such that p(S) > n (resp. p(S) < n) is therefore
closed (resp. open).

e Let j, : U,_1 < U, be the inclusions.

Proposition 4.31: With the hypothese and notations of 4.30, let A be a p-perverse sheaf on U,
a an integer > k such that p < @, and 7 : Uy — X = U,. We have

JieA = Tcq_1Jae " T<kJk+1+A. (T<i are relative to the natural t-structure)

Proof: By (4.27.1), we are led to verify that (jx4+1)1d = T<kjrt1.4. Let F = Ugyy — Ug. By 4.18,
we have

(o)A = PrE_ (k1) A.

On F, the function p is constant, of value £ + 1, and P7f_, is just 'rgk( for the natural
t-structure on F'). Since on Uy we have p < k, A4 is in DS¥(U,0) (4.20.1) and

and Tk (k41)  AC—TETE Th+1A.

§5 Duality

5.1. We list some conditions and notations here:
a) O is the constant sheaf of value R, with R a field.
b) The stata are topological varieties, everywhere of the same dimension. If a stratum S is
contained in the closure of a stratum T, dimS <dimT'.
c¢) For j:S — X astratum, the functor %7, is of finite cohomological dimension over the category
of sheaves of R-modules. For a locally constant sheaf of R-module F on S which is of finite
type, the R*j,F are again locally constant of finite type on each stratum.
For a locally closed set U which is union of strata, we write D (U, R) (or Ds(U, R) if we want to
specify the stratification) for the full triangulated subcategory of D(U, R) formed by constructible

K such that H'K are locally constant of finite type on each stratum. D5 (U, R) (x = +,—,b) is
similarly defined.

30



The condition c) insures that for j : U < V with U and V locally closed unions of strata, the
functors ji, j', j. and j* respect these subcategories. (cf.[1], p.61)

For closed set F' C U which is a union of strata, 7£, respects trivially Dc(U, R). The proof
of 4.7 shows therefore that for each perversity p, 7<, and T>p respect De(X, R).

5.2. Besides the conditions of 5.1, suppose further that X admits a triangulation (locally finite)
such that each stratum S of S is a union of (open) simplexes. For example: real algebraic variety
with a Whitney stratification. We then have the theory of Verdier duality. The Verdier duality is
an involutive automorphism of Dg(X,R), and for j : U — X locally closed, which is a union of
strata, the duality interchanges the functors ji and j., as well as j' and j*.

For each stratum S, of dimension d, with orientation sheaf or, the Verdier dualizing functor
D on S (K — RHom(K, R® or[d]) satisfies: for K € Ds(S, R),

H'DK = (H*K)" ® or.

Here it is essential that the cohomological sheaves of K are locally constant of finite rank, and
R is a field (or a commutative local artinian ring, eg. Z/"Z...).

Definition 5.3: The dual perversity p* of p is defined by
p*(S) = —p(S) — dim(S).

The foregoing discussion shows that D exchanges D2P and D= (as well as D<P and D2?"
we have p = p**). In particular it exchanges p-perverse sheaves and p*-perverse sheaves; ?” H* and
PH~*. For j inclusion of a locally closed set which is a union of strata, it exchanges ?j; and ? j,,
Pi' and ?"j*, and ?j,, with ?" ji,. In particular, in D.(X, R), the defining conditions of p-perverse
sheaves can be rewritten : for each stratum j : S < X, we have

H'5*K =0 Vi > p(S)
and
H'5"DK =0 Vi > p*(S).

If all the strata are of even dimension, there exists a self-dual perversity: the one given by
1S
p1/2(S) = —§dzmS.

Proposition 5.4: Under the hypotheses 5.2, if all the strata are of even dimension and for the
self-dual perversity p,/2, if 7 : U — X is an open set of X which is union of strata and A a
self-dual perverse sheaves on U, then ji. A is the unique self-dual extension P of A (in D.(X,R))
such that for each stratum S C X — U, H*P are zero for i > —%dimS.

Proof: That ji.A is self-dual follows from the self-duality of A, and that of 7. With these
observations, the proposition is an immediate application of 4.28 and 5.2.

Remark 5.5: If U is orientable and smooth, of pure dimension d, we can take for A the constant
sheaf R, put in degree —d/2. For this choice 7. A is the intersection complex IC" and 5.4 is the
Verdier characterization of IC".
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§6 Conclusion

The construction of perverse sheaves is very abstract, and the process involved is sometimes
very complicated. So one may ask for an explanation for all these troubles, since there already
exist theories on intersection cohomology which satisfies the Poincaé duality, Lefschetz’s hyperplane
section theorem, etc. as described in Goresky-MacPherson’s papers. As we have only touched on
the beginning of this subject, the above question is a hard one to answer. However, let us say
something pertinent about it. Goresky-MacPherson’s construction is also very complicated, if not
difficult. It seems not easy to get the essential points of the constructions involved. As for Deligne’s
construction, a great amount of homological algebra is employed. By using the well-developed
sheaf languages and the etale topology, Deligne’s construction can provide results which would be
impossible by Goresky-MacPherson’s construction (eg. there is no such concept as triangulation
in the étale topology). Besides, Deligne’s construction is algebraic and in many cases functorial, it
applies to a very wide range of different fields. This kind of tool can help us proceed further.

In this note we have only restricted to the introduction and some discussion of the duality
problem. A further work is still required. Although it may be redundant, we hope this note can be
of help for those who want to get a feeling of what’s going on for this topics and then can quickly
recourse to the original exposition of the related topics.
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