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Chapter 1

First-Order Single Differential
Equations

1.1 What is mathematical modeling?

In science, we explore and understand our real world from observations, collecting data, finding rules
inside the data, and eventually, we want to explore the rules or principles behind what we observe,
and to apply them to predict the future. This is how we build up our scientific knowledge. The above
rules are usually expressed in terms of mathematics. They are called mathematical models. One
important class such models is the ordinary differential equations. It describes relations between
variables and their derivatives. Such models appear everywhere. For instance, population dynamics
in ecology and biology, mechanics of particles in physics, chemical reaction in chemistry, economics,
etc.

As an example, an important data set is Tycho Brache’s data of planetary motions collected
in the 16th century. This data set leads to Kepler’s discovery of famous three laws of planetary
motion, and later to the birth of Newton’s mechanics and Calculus. The Newton law of motion
is in terms of differential equation. Now-a-day, we have many advanced tools to collect data and
powerful computer tools to analyze them. To build up good mathematical models, we need the
theory of ordinary differential equations, which becomes a basic language of science.

In this course, I will mainly focus on, but not limited to, two important classes of mathematical
models in terms of ordinary differential equations:

• population dynamics in biology,

• dynamics in classical mechanics.

The first class studies behaviors of population of species. It can also be applied to economics,
chemical reactions, etc. The second class includes many important examples such as harmonic
oscillators, pendulum, Kepler problems, electric circuits, etc. Basic physical laws such as growth
laws, conservation laws, etc. for modeling will be introduced.

The goal of this lecture note is to guide students to learn

(i) how to do mathematical modeling,

(ii) how to solve the corresponding differential equations,
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(iii) how to interpret the solutions, and

(iv) how to develop general theory.

1.2 Relaxation and Equilibria

The simplest and most important example, which can be modeled by ODE, is a relaxation process.
The system starts from some state and eventual reaches an equilibrium state. Such process is called
a relaxation process. We use the following two examples to explain this relaxation process.

A falling object Consider an object falling down from height y0. Let v(t) be its velocity at time
t. According to Newton’s law,

m
dv

dt
= −mg, (1.1)

where m is the mass and g the gravitation constant. Usually the object experiences friction. The
direction of the frictional force is opposite to the acceleration. The simplest model of frictional
force is −αv. Adding this frictional force, the complete model becomes

m
dv

dt
= −mg − αv. (1.2)

The parameter α is the friction coefficient, which may depend on other physical parameters, for
instance, the surface area of the object, the viscosity of the environment.

Cooling/Heating of an object An object is taken out of a refrigerator to defrost. Let y(t)
be its temperature at time t. Suppose the room temperature is K and the initial temperature
of the object is y0. To model the cooling/heating process, we first notice that if the object has
temperature K, then there is no variation of the object’s temperature with the environment. Thus,
the rate-of-change of y is proportional to the difference between y(t) and K. The simplest case is

dy(t)

dt
= −α(y(t)−K). (1.3)

Here, α is called the conductivity coefficient. It depends on the object. Sands has larger conductivity
than water. This model is indeed called Newton’s law of cooling/heating.

As you can see that these two models are mathematically identical. We can use one theory to
cover them. This will be discussed below.

Methods and tools to solve the relaxation equation Let us solve the ODE (1.3) by inte-
gration as the follows. The technique is called separation of variables. In this technique, the terms
with same variable are moved to the same side. After that, we can integrate both sides. See the
procedure below. First, we move y to the left-hand side and t to right-hand side:

dy

dt
= −α(y −K).

dy

y −K
= −αdt
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Then we integrate both sides to get
ˆ

dy

y −K
= −

ˆ
αdt.

log |y −K| = −αt+ C.

Here, C is an integration constant.
|y −K| = eC · e−αt

y(t)−K = ±eC · e−αt

y(t)−K = C1e
−αt,

where C1 = ±eC is another constant.
Alternatively, we can interpret the above procedure as a change-of-variable of integration. The

equation
1

y −K
dy

dt
= −α.

We treat y as a function of t. We integrate both sides in t, use the change-of-variable y′(t)dt = dy
to get ˆ

y′

y −K
dt =

ˆ
dy

y −K
= −

ˆ
αdt

log |y −K| = −αt+ C.

Now, we plug the initial condition: y(0) = y0. We then get C1 = y0 −K and

y(t) = K + (y0 −K)e−αt. (1.4)

We observe that y(t) ≡ K if y0 = K. Furthermore, y(t)→ K as t→∞ for any initial datum y0. We
call such K a stable equilibrium. In the heating/cooling problem, this means that the temperature
y(t) will eventually relax to the room temperature K. In the falling object example, the velocity
v(t) will approach a termination velocity K = −mg/α. Indeed, for any time 0 < t < ∞, y(t) is a
linear interpolation between y0 and K with weight e−αt. That is,

y(t) = e−αty0 + (1− e−αt)K.

The time to reach half way (i.e. (y0 +K)/2) is a typical time of this relaxation process. We denote
it by thf . It satisfies

y(thf ) =
1

2
(y0 +K).

e−αthf =
1

2
.

This yields thf = (ln 2)/α ≈ 0.6314718/α. We thus interpret 1/α as the relaxation time. The
solution y(t) relaxes to its stable equilibrium K at time scale 1/α.

What we can learn from these two examples is that the ODE model of the form

dy

dt
= α(K − y)

can be used to model a system that approaches to a constant state (equilibrium) in O(1) time.
Mathematically, the system tends to its equilibrium exponential rate like e−αt.
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Using mathematical software There are many mathematical software which can solve ODEs.
We shall use matlab in this class.

Consider the ODE y′ = f(y). On the t-y plane, we setup a mesh system with command
meshgrid. Then we plot a vector field (1, f(y)) as arrows at every grid points by the command
quivec. The ODE solution is a curve (t, y(t)) on this plane such that its tangent (1, y′(t)) is the
vector field (1, f(y(t)). We call the curve (t, y(t)), t ∈ (a, b) is an integral curve of the vector field
(1, f(y)).

Exercise 1.1. An example of a script m-file:

ode plot p005.m

clc;
clear;

% parameter setting
r = 0.5;
K = 5;
[t, y] = meshgrid(-5:.5:5,-2:.5:7);

% the vector plot needs the slope of each point, which dy/dt = r*(K - y) / 1
dy = r*(K - y);
dt = ones(size(dy));

%plot
quiver(t, y, dt, dy, 1);
xlabel('t');
ylabel('y(t)');

Run the script by typing the filename in the command window:

>> ode plot p005.m
>>

Homework 1.1. 1. A dead body is found at 6:30 AM with temperature 18◦. At 7:30 AM,
the body temperature is 16◦. Suppose the surrounding temperature is 15◦ and the alive
people’s temperature is about 37◦. Use Newton’s cooling/heating law to estimate the
dead time.

2. Consider y′ = −a(y − K)2 with a > 0 and y(0) = y0 > K, find its solution. Will the
solution tends to K as t→∞? At what speed?

3. If the system is y′ = −a
√
|y −K| with a > 0 and y(0) > K, can the solution approach

to K? at finite time? at what speed?

4. y′ = (y − y0)(y1 − y)

5. y′ = r(y − y0)(y − y1)(y − y2)

4



6. y′ = (y − y0)2(y1 − y)

7. y′ = r tanh(y)

1.3 Modeling population dynamics of single species

Simple population growth model Let y(t) be the population (say European population in
U.S.) at time t. The census data are from 1790-2000 (every 10 years). We can build a model based
on the following hypothesis:

dy

dt
= births − deaths + migration. (1.5)

It is natural to assume that the births and the deaths are proportition to the population. Let us
neglect the migration for the moment. In terms of mathematical equations, this reads

dy

dt
= ry (1.6)

where r is called the net growth rate, which is the natural growth rate minus the death rate. We
should have r > 0 if the population is growing. We can set the initial value

y(0) = y0, (1.7)

the population at year 1790. With (1.6) and (1.7), we can find its solution

y(t) = y0e
rt.
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We can find the growth rate r by fitting the data, say the census at year 1800. This yields that
r = 0.03067. We find it fits very well until 1820. From then on, the discrepancy becomes larger
and larger. It suggests that

• the growth rate r is treated as a constant is only valid local in time;

• environmental limitation is not taken into account.

Logistic population model The above population model was proposed by Malthus (1766-1834),
an economist and a mathematician. One criticism of the simple growth model is that it does not
take into account of environmental limitation. A land has only finite amount resources to support
finite amount of people. Thus, there is an environmental carrying capacity K such that

• when y < K, the rate y′ > 0,

• when y > K, the rate y′ < 0.

A simple model with this environmental consideration is the following model:

y′ = ry
(

1− y

K

)
. (1.8)

This is called the logistic population model. It was suggested by the Belgien mathematician Pierre
Verhulst (1838). It is a nonlinear equation. There is another interpretation for the nonlinear term
ry2/K. Namely, y2 represents the rate of pair-interaction. The coefficient r/K is the rate of this
interaction to the change of y. The minus sign simply means that the pair-interaction decreases
the population growth due to a competition of resource.

Exact solutions for the logistic equation We can solve this equation by the method of
separation-of-variable.

y′(t)

y(1− y/K)
= r.

Integrating in t yields ˆ
y′(t)

y(1− y/K)
dt = rt+ C.

By change-variable formula for integration, we have

ˆ
1

y(1− y/K)
dy = rt+ C.

This yields ˆ (
1

y
+

1

K − y

)
dy = rt+ C

log

∣∣∣∣ y

K − y

∣∣∣∣ = rt+ C.∣∣∣∣ y

K − y

∣∣∣∣ =
1

C1e−rt
.
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Here C1 = e−C is another constant. When 0 < y < K, we get

y

K − y
=

1

C1e−rt
.

This yields

y =
K

1 + C1e−rt
.

When y < 0 or y > K, we get
y

K − y
= − 1

C1e−rt
.

This gives

y =
K

1− C1e−rt
.

Suppose the initial population is y0, that is, y(0) = y0. We find that in both cases, C1 = |1−K/y0|.
Thus, the solution is

y(t) =



K
1−C1e−rt when y0 < 0 or y0 > K

K
1+C1e−rt when 0 < y0 < K,

0 if y0 = 0,

K if y0 = K.

Remarks.

1. We observe that

• for initial y0 with y0 > 0, we have y(t) → K; This means that, as long as there is
some positive population at initial time, it will grow and eventually reach the maximum
carrying of the environment.

• the states y ≡ 0 and y(t) ≡ K are constant solutions.

These constant solutions are called the equilibrium states. Any solution with initial state near
K will approach to K as t tends to infinity. We call K a stable equilibrium. On the other
hand, if the initial state is a small perturbation of the 0 state, it will leave off the zero state
and never come back. We call 0 an unstable equilibrium.

2. When y0 < 0, the corresponding C1 > 1, we observe that the solution y(t)→ −∞ as t ↑ t∗1−,
where

1− C1e
−rt∗1 = 0.

We call the solution blows up at finite time. When y0 > K, the corresponding 0 < C1 < 1
and y(t) → +∞ as t ↓ t∗2+, where 1 − C1e

−rt∗2 = 0. These two blow-up solutions have no
ecological meaning.
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*Qualitative analysis for the logistic equation We can analyze the properties (equilibrium,
stability, asymptotic behaviors) of solutions of the logistic equation by the phase portrait analysis.
First, let us notice two important facts:

• For any point (t0, y0), there is a solution y(·) passing through (t0, y0). In other words, there
exists a solution y(·) with y(t0) = y0.

• No more than one solution can pass through (t0, y0).

These are the existence and uniqueness theorems of ODE. Let us accept this fact for the moment.
Next, we can use the equilibria to classify our general solutions.

Here is the procedure of the quantitative analysis for the logistic equation.

• The first step is to find all equilibria of this system. Let us denote the right-hand side of (1.8)
by f(y), i.e.

f(y) = ry
(

1− y

K

)
.

An equilibrium is a constant solution y(t) ≡ ȳ, where f(ȳ) = 0. In our case, the equilibria are
y(t) ≡ 0 and y(t) ≡ K.

• The second step is to classify all other solutions. On the t-y plane, we first draw the above
two constant solutions. Now, by the uniqueness theorem, no solution can pass through these
two constant solution. Therefore, the y-space (it is one dimension in the present case) is
naturally partitioned into three regions:

I1 = (−∞, 0), I2 = (0,K), I3 = (K,∞).

If y(0) ∈ I`, then the corresponding y(t) stays in I` for all t.

• The third step is to characterize all solutions in each regions.

– For any solution in I2, we claim that y(t)→ K as t→∞. From f(y) > 0 in I2, we can
conclude that y(·) is strictly increasing in I2. We claim that y(t) → K as t → ∞ for
any solution in region I2. Indeed, y(t) is increasing and has an upper bound K. By the
monotone convergence property of R, y(t) has a limit as t tends to infinity. Let us call
this limit ȳ. We claim that ȳ = K. If not, ȳ must be in (0,K) and hence f(ȳ) > 0. By
the continuity of f , there must be an ε > 0 and a neighborhood (ỹ, ȳ) such that f(y) > ε
for all y ∈ [ỹ, ȳ). Since limt→∞ y(t) = ȳ monotonically, there must be a t0 such that
ỹ ≤ y(t) < ȳ for t ≥ t0. In this region, the corresponding y′(t) = f(y(t)) ≥ ε. Hence
y(t) ≥ y(t0) + ε(t− t0) for all t ≥ t0. This contradicts to y(t) being bounded. Hence, we
get y(t)→ K as t→∞.

– Similarly, for solution y(·) ∈ I3, y(t)→ K as t→∞.

– Using the same argument, we can show that for solution in I1∪ I2, y(t)→ 0 as t→ −∞.
This means that 0 is unstable. Indeed, for y(0) < 0, we have f(y) < 0. This implies y(·)
is decreasing for t > 0. If y(t) has a lower bound, then y(t) will have a limit and this
limit ȳ < 0 and must be a zero of f . This is a contradiction. Hence y(t) has no lower
bound.

To summarize, we have the following theorem.
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Theorem 1.1. All solutions of (1.8) are classified into the follows.

1. Equilibria: y(t) ≡ 0 and y(t) ≡ K;

2. If y(0) ∈ I1 ∪ I2, then limt→−∞ y(t) = 0;

3. If y(0) ∈ I2 ∪ I3, then limt→∞ y(t) = K.

The biological interpretation is the follows.

• If y(0) < K, then y(t) will increase to a saturated population K as t→∞.

• If y(0) > K, , then y(t) will decrease to the saturated population K as t→∞.

• y(t) ≡ K is the stable equilibrium, whereas y(t) ≡ 0 is an unstable equilibrium.

Exercise 1.2. An example of a script m-file:

ode plot p011.m

clc;
clear;

% parameter setting
r = 0.1;
K = 5;
[t, y] = meshgrid(-50:5:50,-2:.5:7);

% the vector plot needs the slope of each point, which dy/dt = r*(K - y) / 1
dy = r * y .* (1 - y/K);
dt = ones(size(dy));

%plot
quiver(t, y, dt, dy, 0.6);
xlabel('t');
ylabel('y(t)');
xlim([-60 60]);
ylim([-2.5 7.5]);

Run the script by typing the filename in the command window:

>> ode plot p011.m
>>

Exercise 1.3. An example of a script m-file:

ode plot p013.m

clc;
clear;

% parameter setting and differential equation
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r = 0.1;
K = 5;
syms y(t)
eqn = diff(y, t) == r * y .* (1 - y/K);

% solve ODE for different I.C.s and plot
y1 = dsolve(eqn, y(0) == 1);
fplot(y1, [-50 50], 'Color', '#D95319', 'LineWidth', 1.5); hold on

y2 = dsolve(eqn, y(0) == 2);
fplot(y2, [-50 50], 'Color', '#0072BD', 'LineWidth', 1.5); hold on

y3 = dsolve(eqn, y(0) == 6);
fplot(y3, [-50 50], 'Color', '#EDB120', 'LineWidth', 1.5); hold on

y4 = dsolve(eqn, y(0) == -1);
fplot(y4, [-50 50], 'Color', '#77AC30', 'LineWidth', 1.5);

% panel setting
legend('y(0) = 1', 'y(0) = 2', 'y(0) = 6', 'y(0) = -1', 'Location', 'northwest');
xlabel('t'); ylabel('y(t)');
xticks([-50:10:50]); yticks([-2:1:7]);
xlim([-50 50]); ylim([-2 7]);
grid on;

Run the script by typing the filename in the command window:

>> ode plot p011.m
>>

Logistic population model with harvesting Suppose migration is considered. Let e be the
migration rate. We should modify the model by

y′ = ry
(

1− y

K

)
− ey. (1.9)

The migration rate e can be positive (migrate out) or negative (migrate in).

This model is often accepted in ecology for harvesting a renewable resources such as shrimps,
fishes, plants, etc. In this case, e > 0 is the harvesting rate which measures the harvesting effort.
The quantity ey is the amount of harvesting per unit time. It is called the harvesting yield per unit
time.

This harvesting model is still a logistic equation

y′ = (r − e)y
(

1− ry

(r − e)K

)
(1.10)

with new growth rate r − e. The new equilibrium is

Kh(e) := K
(

1− e

r

)
,

which is the sustained population. There are two cases:
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• When e < r, we have 0 < Kh < K. This means that the saturated population Kh decreases
due to harvesting.

• When e > r, then the species will be extinct due to over-harvesting. Indeed, you can check
that y(t) ≡ 0 is the stable equilibrium and y(t) ≡ Kh is the unstable equilibrium now.

The quantity Y (e) := eKh(e) is called the sustained harvesting yield. It is the maximal amount
of harvesting from this environment given the harvest rate e. An ecological goal is to maximize
this sustained harvesting yield at minimal harvesting effort. That is, maxe Y (e). We see that the
maximum occurs at e = r/2. The corresponding sustained harvesting yield is

Y
(r

2

)
=
r

2

K

2
=
rK

4
.

There is another way to model harvesting of natural resources. We may use harvesting amount
C instead of the harvesting rate e as our parameter. The model now reads

y′ = ry
(

1− y

K

)
− C := fC(y). (1.11)

The equilibrium (i.e. fC(y) = 0) occurs at fC(y) = 0. On the C-y plane, fC(y) = 0 is a parabola.
The maximum of the parabola is at y = rK/2 with maximal value rK/4. For C > rK/4, there is
no real solution for fC(y) = 0. For C < rK/4, there are two solutions for fC(y) = 0:

y± =
K

2
±
√
K2

4
− CK

r
.

The ODE y′ = fC(y) is repressed as

y′ = fC(y) = − r

K
(y − y−) (y − y+) .

The constant functions y ≡ y− and y ≡= y+ are two equillibra of the ODE. On the intervals
(−∞, y−), (y−, y+), (y+,∞), we have

y′


< 0 when y ∈ (−∞, y−)
> 0 when y ∈ (y−, y+)
< 0 when y ∈ (y+,∞)

On the y-axis, we draw arrows for the sign of fC to indicate the increasing/decreasing of y(·) in
that interval. We see that all solutions in (y−,∞) tend to y+ as t→∞. We conclude that y+ is a
stable equilibrium. We rename it as y+ := Kh(C).

To have sustained resource, we need Kh > 0. That is,

Kh :=
K

2
+

√
K2

4
− CK

r
> 0.

So the maximal harvesting to maintain Kh > 0 is

C =
rK

4
.
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For C > rK/4, there is no real solution for fC(y) = 0. The function fC(y) < 0 for all y. If y(0) > 0
initially, then y(t)→ 0 as t goes to some t∗ > 0. This means the species is extinct.

Indeed, we can find explicit form of the solution. The solution for y′ = ry(1 − y
K ) − C with

y(0) = y0 is

y(t) =
1

2

(
K +

∆

r
tanh(

∆

2K
(t+ C0))

)
where

∆ =
√
rK(rK − 4C), C0 =

2K

∆
arctanh(

r

∆
(2y0 −K)).

In additional to the constraint C ≤ rK/4, we should also require y(0) > 0. Otherwise, there would
be no harvesting at all. This would give another constraint on C. You may find it by yourself.

Homework 1.2. 1. Solve the Gompertz equation for population growth

y′ = ry ln(K/y).

What are the equilibria? What are the asymptotic behaviors.

2. Solve the equation
y′ = αy(1− y2).

and discuss stability of its equilibria and the asymptotic behaviors of the solution at large
time.

Abstract logistic population models We can use the following abstract model

y′ = f(y) (1.12)

to study the issues of equilibria and their stability. Here, the function f depends on y only. Such
systems with f being independent of t are called autonomous systems. We consider the initial
datum

y(0) = y0. (1.13)

Following the example of the logistic model, let us assume that f(y) has the following qualitative
properties:

• f(y0) = f(y1) = 0,

• f(y) > 0 for y0 < y < y1,

• f(y) < 0 for y < y0, or y > y1,

First, there are two equilibrium solutions:

y(t) ≡ y0, y(t) ≡ y1.

For general solutions, we integrate the equation

dy

f(y)
= dt.
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On the right, we integrate in t from 0 to t. On the left, with the change of variable: t → y(t), we
get the integration domain of y is from y0 to y, and We arrive at

Φ(y)− Φ(y0) = t

where Φ(y) =
´
dy/f(y). From the properties of f , we obtain that

Φ(y) :

{
decreasing, for y > y1, y < y0

increasing, for y0 < y < y1,

Therefore, the function is invertible in each of the three regions: (−∞, y0), (y0, y1), and (y1,∞).
The solution y(t) with initial datum is precisely the inversion of Φ with Φ(y0) = 0.

A bistable model We consider the autonomous equation

y′ = f(y),

where f(y) has three zeros y1 < y2 < y3. Assume the sign of f is f(y) > 0 for y < y1, y2 < y < y3,
and f(y) > 0 for y1 < y < y2, y > y3. In this case, for y(t) with initial data y(0) satisfying
y(0) < y2, we have y(t)→ y1 as t→∞. If y(0) > y1, then y(t)→ y3 as t→∞. The states y1 and
y3 are the two stable states. Such a model is called a bistable model. It is usually used to model
phase field of some material. A simple model is f(y) = y(1− y)

(
1
2 − y

)
.

Matlab tool: phase line analysis Use Matlab to draw the function f(y). The y-axis is partition
into regions where f(y) > 0 or f(y) < 0. Those y∗ such that f(y∗) = 0 are the equilibria. An
equilibrium y∗ is stable if f is increasing near y∗ and unstable if f is decreasing there.

Asymptotic behaviors and convergent rates Let us focus to an autonomous system which
has only one equilibrium, say ȳ = 0. That is, the rate function f(0) = 0. Let us consider two cases:
f(y) = −αy and f(y) = −βy2 with y(0) > 0. We need minus to have y ≡ 0 a stable equilibrium.

• Case 1: y′ = f(y) = −αy. In this case, we have seen that the solution is

y(t) = y(0)e−αt

We see that the solution tends to its equilibrium 0 exponentially fast. The physical meaning
of 1/α is the time that the difference of solution from its equilibrium is reduced by a fixed
factor (e−1). We say the convergent rate to its equilibrium is O(e−αt).

• Case 2: y′ = f(y) = −βy2. In this case,

y(t) =
1

1/y(0) + βt
.

We observe that y(t)→ 0 as t→∞ with rate O(1/t).
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Homework 1.3. 1. Construct an ODE so that y(t) = (1 + t) is its asymptotic solution
with convergent rate e−2t.

2. Construct an ODE so that y(t) = (1 + t) is its asymptotic solution with convergent rate
t−1.

3. Search for ”bistability” in Wikipedia

1.4 Techniques to solve single first-order equations

1.4.1 Linear first-order equation

The linear first-order equation has the form:

y′ = a(t)y + b(t). (1.14)

The term b(t) is called the source term, or the inhomogeneous term, whereas the part

y′ = a(t)y

is called its homogeneous part. We first solve the homogeneous equation. We separate t and y to
get

y′

y
= a(t).

The left-hand side (LHS) is d log y(t)/dt. We integrate it and get

ˆ
d log y(t)

dt
dt =

ˆ
a(t) dt.

This yields
log y(t) = A(t) + C1, or y(t) = CeA(t),

where A′(t) = a(t), and C or C1 is a constant. We may choose A(0) = 0. That is, A(t) =
´ t

0 a(s) ds.
The constant C is y0 if we require y(0) = y0. We conclude that the solution is

y(t) = y(0)e
´ t
0 a(s) ds.

Next, we study the inhomogeneous equation. We will introduce two methods.

Method of Variation-of-Constant We guess our solution having the form

y(t) = C(t)eA(t), A(t) :=

ˆ t

a(s) ds.

Plugging it into (1.14), we obtain

C ′(t)eA(t) + a(t)C(t)eA(t) = a(t)C(t)eA(t) + b(t).

This yields
C ′(t) = b(t)e−A(t).
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Hence the solution is

C(t) = C(0) +

ˆ t

0
b(s)e−A(s) ds.

By plugging the initial datum, we obtain C(0) = y(0). Hence, the general solution is given by

y(t) = y(0)eA(t) +

ˆ t

0
b(s)e−A(s)+A(t) ds.

The idea behind the variation-of-constant is that the ansatz (i.e. the solution form that we guess)

y(t) = C(t)eA(t)

has the property:
y′(t) = C(t)A′(t)eA(t) + C ′(t)eA(t).

In a short time, if C remains nearly unchanged, eA(t) behaves like solutions of y′ = A′(t)y. By
allowing C(t) varying, the C ′(t) term can take care contribution of the source b(t) pumping into
the system.

It is important to notice that the integrand b(s)eA(t)−A(s) is the solution of y′ = a(t)y for s < t
with y(s) = b(s). This means that the source term b(s) generates a solution b(s)eA(t)−A(s) at time
s. The total contribution of the source term from time 0 to t is the accumulation of these solutions,
i.e.
´ t

0 b(s)e
A(t)−A(s) ds. This is called the Duhamel principle. As a real world example, you imagine

a tank with nutrition and bacteria. Suppose the growth of the bacteria satisfies y′ = 2y, i.e. the
population doubles per unit time. Suppose we also fill in b(s) amount of bacteria at time s for
0 < s < t. The bacteria b(s) entering the tank at time s grows to b(s)e2(t−s) at time t. Thus, the
total amount of the bacteria population filled-in and grow from time 0 to t is

ˆ t

0
b(s)e2(t−s) ds.

This together with the grow of the initial population y(0) give the total population at time t to be

y(0)e2t +

ˆ t

0
b(s)e2(t−s) ds.

Method of Integration Factor Alternatively, we may multiply the equation

y′ − a(s)y = b(s)

by e−A(s) on both sides. Then the left-hand side is

e−A(s)(y′ − a(s)y) = e−A(s)(y′ −A′(s)y) =
d

ds

(
e−A(s)y(s)

)
.

Thus, we get
d

ds

(
e−A(s)y(s)

)
= e−A(s)b(s).

Since the left-hand side is a total differential, we can integrate it once to get

e−A(t)y(t)− e−A(0)y(0) =

ˆ t

0

d

ds

(
e−A(s)y(s)

)
ds =

ˆ t

0
e−A(s)b(s) ds.
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From A(0) = 0, we get

e−A(t)y(t) = y(0) +

ˆ t

0
e−A(s)b(s) ds.

Hence

y(t) = eA(t)y(0) +

ˆ t

0
eA(t)−A(s)b(s) ds.

The quantity e−A(s) is used to make the left-hand side of y − a(s)y to be a total differential. This
quantity is called an integration factor. We shall give thorough discussion in the next section.

Example. Consider

y′ +
2

t
y = t− 1.

Let

A(t) = −
ˆ

2 dt

t
= ln t−2

and e−A(t) = t2. By multiplying e−A(t) on both sides, we obtain

t2y′ + 2ty =
d

dt
(t2y) = t2(t− 1).

Integrating in t, we get

t2y =
t4

4
− t3

3
+ C.

Hence,

y(t) =
t2

4
− t

3
+
C

t2
.

Homework 1.4. Solve the following equations

1. y′ + y = te−t

2. y′ + 2ty = te−t
2

3. t3y′ + 4t2y = e−t, y(−1) = 0, y < 0.

4. Consider the initial value problem

y′ + y = 1 + cos 2t, y(0) = 0.

Find the solution and discuss the solution behavior for large t.

5. Find the solutions of
y′ + ay = be−λt

and discuss their large-time behaviors.
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1.4.2 Separation of variables

We can write the ODE
dy

dt
= f(t, y)

in this differential form:

dy − f(t, y)dt = 0.

A general differential 1-form looks like

M(t, y)dt+N(t, y)dy = 0. (1.15)

This is called a Pfaffian equation. Suppose the functions M(t, y) and N(t, y) in (1.15) are separable,
that is

M(t, y) = f1(t)f2(y),

N(t, y) = g1(t)g2(y),

Dividing (1.15) by f2(y)g1(t), then the Pfaffian equation (1.15) becomes

f1(t)

g1(t)
dt+

g2(y)

f2(y)
dy = 0.

We can integrate it to obtain an integral φ:

ψ(t, y) :=

ˆ
f1(t)

g1(t)
dt+

ˆ
g2(y)

f2(y)
dy.

Then ψ(t, y) = constant defines a solution implicitly. In this example, 1/(f2(y)g1(t)) is called an
integration factor, which makes the Pfaffian equation become a total differential and thus integrable.

Homework 1.5. 1. y′ = t/y2. Ans: y3/3 = t2/2 + C, or y(t) =
(

3t2

2 + k
)1/3

.

2. (x2 + 1)(y2 − 1) dx+ xy dy = 0. Ans: y2 = 1 + C e−x2

x2
.

3. y′ = t2/(1− y2). Ans.: −t3 + 3y − y3 = const.

4. y′ = (4x− x3)/(4 + y3). Ans. y4 + 16y + x4 − 8x2 = const.

5. y′ = 3x2+4x+2
2(y−1) . Ans. y2 − 2y = x3 + 2x2 + 2x+ 3.

6. y′ =
y(− 1

2
+x

4 )
x(2− y

2 )
. This equation is arisen from predator-prey model.

1.4.3 Other special classes that are solvable

Bernoulli equation Bernoulli equation has the form

y′ = a(t)y + b(t)yn (1.16)
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Divide both sides by y−n, we obtain

y−ny′ = a(t)y−n+1 + b(t).

Or
1

1− n
(
y1−n)′ = a(t)y1−n + b(t)

This suggests the following change of variable:

z = y1−n.

Then
z′ = (1− n)a(t)z + (1− n)b(t) (1.17)

which can be solved.

Homework 1.6. (Courant and John, Vol. II, pp. 690) Solve the following equations

1. xy′ + y = y2 log x

2. xy2(xy′ + y) = a2

3. (1− x2)y′ − xy = axy2.

* Riccati equation (Courant and John, Vol. II, pp. 690) The Riccati equation reads

y′ = P (x)y2 +Q(x)y +R(x) (1.18)

It can be transformed into a linear equation if we know a particular solution y = y1(x). We
introduce the new unknown

u =
1

y − y1
.

Homework 1.7. Courant and John, Vol. II, pp. 690, Exercises 4–8. Use the above substitu-
tion to solve the following equations.

1. y′ − x2y2 + x4 − 1 = 0 that possesses a particular solution y1 = x.

2. Show that if two solutions, y1(x) and y2(x), of Riccati’s equation are known, then the
general solution is given by

y − y1 = c(y − y2) exp

(ˆ
P (y2 − y1) dx

)
,

where c is an arbitrary constant.

3. Find the general solution of

y′ − y tanx = y2 cosx− 1

cosx
,
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which has solutions of the form a cosn x.

1.5 Vector Fields and Family of Curves

In this section, I will provide geometric view of first order equation, which is, family of plane curves.
They can be generated by vector fields or by first-order ODEs. Here is the outline.

• Examples of vector fields: flow velocity fields, hairs on the head, parametrization on a surface,
etc.

• Solving integral curve ⇔ solving a first-order ODE ⇔ solving a Pfaffian equation.

• Solutions of integral curves are family of curves on the plane. Conversely, family of curves on
the plane generates a vector field on the plane. Family of curves is represented by the level
sets of a function.

1.5.1 Vector Fields

Vector fields A vector field V(x, y) = (u(x, y), v(x, y)) on a domain Ω ⊂ R2 is a mapping Ω →
R2. For instance, V(x, y) = (−y, x) is a vector fields on the plane, while V(x, y) = (−y, x)/(x2+y2)
is a vector field defined on R2 \ {0}. A curve (x(τ), y(τ)) with parameter τ ∈ (a, b) is called an
integral curve of the vector field V = (u(x, y), v(x, y)) if its tangent is parallel to the vector field
V along this curve, that is, [

dx/dτ
dy/dτ

]
‖
[
u(x(τ), y(τ))
v(x(τ), y(τ))

]
for all τ.

From this definition, the integral curves of the two vector fields V = (−y, x) and V = (−y, x)/(x2 +
y2) are identical because they are parallel to each other at every points on R2 \ {0}.

Exercise 1.4. An example of a script m-file:

ode vortex1.m

clc;
clear;

% parameter setting
[x, y] = meshgrid(-5:0.5:5,-5:0.5:5);

% the vector field u = -y, v = x.
u = - y; v = x;
%plot
quiver(x, y, u, v, 0.6);
xlabel('x');
ylabel('y');
xlim([-6 6]);
ylim([-6 6]);

Run the script by typing the filename in the command window:
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>> ode vortex1.m
>>

Exercise 1.5. An example of a script m-file:

ode vortex2.m

clc;
clear;

% parameter setting
[x, y] = meshgrid(-5.25:0.5:5,-5.25:0.5:5);

% the vector field u = -y, v = x.
r = x.ˆ2 + y.ˆ2;
u = - y./r; v = x./r;
%plot
quiver(x, y, u, v, 0);
xlabel('x');
ylabel('y');
xlim([-6 6]);
ylim([-6 6]);

Run the script by typing the filename in the command window:

>> ode vortex2.m
>>

Integral curves of a vector field A general single first-order differential equation y′(x) =
f(x, y) induces a vector field V(x, y) := (1, f(x, y)) on the plane. Conversely, given vector field
V(x, y) = (u(x, y), v(x, y)) on the plane, a curve {(x, y(x))|x ∈ I} is an integral curve of V if its
tangent [

1
dy/dx

]
‖
[
u(x, y)
v(x, y)

]
.

This is equivalent to
dy

dx
=
v(x, y)

u(x, y)
, (1.19)

provided u(x, y) 6= 0. Thus the integral curves of V(x, y) = (u(x, y), v(x, y)) satisfy the single
first-order ODE (1.19). For example, the integral curves of the vector field (u, v) = (1, αy) satisfies
dy/dx = αy. The first-order equation (1.19) can also be written as a Pfaffian equation:

v(x, y)dx− u(x, y)dy = 0. (1.20)

Family of integral curves The solution of a first-order ODE is a one-parameter family of
integral curves of a vector field. For instance, the solution of y′ = αy is y = Ceαx. The constant C
is a free parameter. The set

{(x, y)|y = Ceαx}, C ∈ R.
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is a one-parameter family of integral curves of the vector field (u, v) = (1, αy), or equivalently, the
solutions of the ODE y′ = αy. It can also be represented implicitly as

ψ(x, y) = ye−αx = C.

The function ψ(x, y) is called an integral of the vector field (1, αy).

Integral of a vector field A function ψ : Ω → R is called an integral of the vector field
V(x, y) = (u(x, y), v(x, y)), or of the Pfaffian equation (1.20), if

dψ = 0⇔ vdx− udy = 0. (1.21)

The term

dψ := ψxdx+ ψydy

is called the total differential of ψ. Condition (1.21) is equivalent to

∇ψ ·V = ψxu+ ψyv = 0. (1.22)

We have the following proposition.

Proposition 1.1. A function ψ(x, y) is an integral of the vector field V = (u(x, y), v(x, y)) if and
only if its level set

{(x, y)|ψ(x, y) = C} with fixed constant C,

is an integral curve of V.
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Proof. By the implicit function theorem, the level set of ψ is a curve. We can parametrize it as
{(x(τ), y(τ))|τ ∈ I}. Then ψ(x(τ), y(τ)) = C, for τ ∈ I. We differentiate it in τ to get

ψxẋ+ ψyẏ = 0. (1.23)

Since ψ is an integral of V, it satisfies (1.22). This together with (1.23) give

(ẋ, ẏ) ‖ V.

Thus, this curve is an integral curve of V.
Conversely, if (x(·), y(·)) is an integral curve of the vector field V, then, along this curve, there

exists a scalar function σ such that (ẋ, ẏ) = σV. Thus,

d

dτ
ψ(x(τ), y(τ)) = ψxẋ+ ψyẏ = ∇ψ · (σV) = 0.

Thus, ψ(x(·), y(·)) is a constant. That is, the curve (x(·), y(·)) is a level set of ψ.

Example Consider the vector V = (−y, x)/r2, where r2 = x2 + y2. Its integral curves satisfy

(dx, dy) ‖ (−y, x).

Its ODE form is
y′ = −x/y.

Using the technique of separation-of-variable, we get

xdx+ ydy = 0.

Integrating it, we obtain
x2 + y2 = C.

Thus, the function ψ(x, y) = x2 + y2 is an integral of the vector field (−y, x)/r2. It is also the
integral of the vector field (−y, x).

Conservative vector field A vector field (P (x, y), Q(x, y)) is called conservative ∗ in a domain
Ω ⊂ R2 if there exists a function ψ : Ω→ R such that

dψ = P dx+Qdy. (1.24)

This is equivalent to the conditionˆ
C
P dx+Qdy = 0 for any simple closed curve in the domain Ω. (1.25)

If (P,Q) satisfies (1.24), then it satisfies (1.25) by the fundamental theorem of calculus for line
integrals. Conversely, if (P,Q) satisfies (1.25), then we choose a fixed point (x0, y0) ∈ Ω and for
any point (x, y) ∈ Ω, we define the line integral

ψ(x, y) :=

ˆ (x,y)

(x0,y0)
P (x, y)dx+Q(x, y)dy (1.26)

∗In differential geometry, we call the 1-form P dx+Qdy exact.
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along any path from (x0, y0) to (x, y) in Ω. This line integral is independent of paths, because the
line integral is 0 along any closed curve by our assumption (1.25) of (P,Q).

The function ψ is called a potential of the vector field (P,Q). The vector field (P,Q) = (ψx, ψy)
is called the gradient field of ψ.

A necessary condition for a vector field (P,Q) being conservative is

Py = Qx. (1.27)

This is because (P,Q) is conservative if and only if there exists a function ψ such that P = ψx and
Q = ψy. From ψxy = ψyx, we get Py = Qx.

Conversely, if (P,Q) satisfies (1.27) and the domain Ω is simply connected (i.e. no hole in Ω),
then (P,Q) is conservative in Ω. For any simple closed curve C in Ω, it is the boundary of a simply
connected domain D. That is, C = ∂D. From Green’s theorem

ˆ
∂D

P (x, y)dx+Q(x, y)dy =

ˆ
D

(Qx − Py) dx dy = 0.

Example: The vector field (x, y) is a conservative vector field. The function

ψ =
1

2
(x2 + y2)

is a potential of the vector field (x, y).

Integration factor To find an integral ψ of a general vector field V(x, y) = (u(x, y), v(x, y)) in
a domain Ω ⊂ R2, from (1.22), we see that this is equivalent to

∇ψ ‖ (−v, u),

or
∇ψ = µ(−v, u)

for some function µ(x, y). Let us denote −µv by P and µu by Q. We choose µ such that (P,Q)
is a conservative vector field. Such function µ is called an integration factor. With µ, then we can
obtain ψ by the line integral

ψ(x, y) :=

ˆ (x,y)

(x0,y0)
P (x, y)dx+Q(x, y)dy

along any path from (x0, y0) to (x, y) in Ω. We have seen that a necessary condition for Pdx+Qdy
being integrable (conservative) is

Qx − Py ≡ 0 in Ω.

That is
(µu)x + (µv)y = 0 in Ω.

This is a partial differential equation (PDE) for the integration factor µ. There is a standard PDE
technique (called method of characteristics) to find µ, at least, locally. This means that under
very mind condition, any vector field on the plane is locally integrable up to an integration factor.
However, we shall not go into this topics here. We shall just give some examples instead. Once µ
is obtained, we obtain an integral ψ of V.
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Examples

1. Consider the linear equation

y′ = 2y + t. (1.28)

We claim that µ = e−2t is an integration factor. In fact, the equation can be rewritten as

dy − 2ydt = tdt.

We multiply both sides by µ = e−2t to get

e−2t(dy − 2ydt) = te−2t dt (1.29)

The left-hand side (LHS) is a total differential:

e−2t(dy − 2ydt) = d(e−2ty)

The right-hand side (RHS) is also a total differential:

te−2t dt = d

ˆ
te−2t dt

and
ˆ
te−2t dt = −1

2

ˆ
tde−2t = −1

2
te−2t +

1

2

ˆ
e−2t dt = −1

2
te−2t − 1

4
e−2t + C.

Hence, (1.29) can be expressed as

d

(
e−2ty +

1

2
te−2t +

1

4
e−2t

)
= 0.

Thus, ψ := e−2ty + 1
2 te
−2t + 1

4e
−2t an integral of (1.28).

2. In the linear equation (1.14)

y′ = a(t)y + b(t),

we multiply (1.14) by µ(t) = e−A(t) where A′(t) = a(t), we obtain

e−A(t)y′ −A′(t)e−A(t)y = e−A(t)b(t)

d

dt

(
e−A(t)y

)
= e−A(t)b(t).

We can then integrate this formula in t to obtain the solution for (1.14). In this method,
µ = e−A(t) is an integration factor and

ψ = e−A(t)y −
ˆ
e−A(t)b(t) dt

is an integral.
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Notice that the integration factor and the integral are not unique. Suppose ψ is an integral and
µ is the corresponding integration factor. Consider a composition function

φ(x, y) := h(ψ(x, y)),

where h(·) : R→ R is any smooth function with h′ 6= 0. Then

dφ = h′dψ = h′µ (−vdx+ udy) = 0.

Hence, φ is another integral with a new integration factor h′(ψ(x, y))µ(x, y).
Certainly, if both φ and ψ are integrals of (1.15), which means that their level sets represent

the same integral curves. Thus, there is a one-to-one correspondence between the level sets of ψ
and of φ:

ψ(x, y) = C1 if and only if φ(x, y) = C2.

Two functions φ and ψ with this property is called functional dependent. If we define a function
h which maps:C1 7→ C2, then φ(x, y) = h(ψ(x, y)). Thus, any two integrals of V are functional
dependent. For instance, φ(x, y) = x2 + y2, ψ(x, y) =

√
x2 + y2 are functional dependent. They

have the same level sets.

Stream functions of velocity fields In fluid mechanics, V(x, y) is the velocity field, while its
integral ψ(x, y) represents the stream function, and the level sets ψ(x, y) = C are the stream lines.
Example Consider the velocity field

V = (u, v) =

(
y2 − x2

(x2 + y2)2
,

2xy

(x2 + y2)2

)
.

It is the velocity field of a potential flow around a unit circular disk on the plane. The ODE
corresponding to the stream function is

dy

dx
=
y2 − x2

2xy
.

Let us define a homogeneous variable: η = y/x. We use x and η as the new variables. We have
dy = d(xη) = ηdx+ xdη, or dy/dx = η + xdη/dx. Plug this into the equation, we get

η + x
dη

dx
=
y2 − x2

2xy
=

y2

x2
− 1

2 yx
=
η2 − 1

2η
.

x
dη

dx
=
η2 − 1

2η
− η = −1 + η2

2η
.

Separating variables, we get
2η

1 + η2
dη +

dx

x
= 0.

Integrating this,
ln(1 + η2) + ln |x| = C

The level sets are

|x|+ y2

|x|
= C.
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Figure

In this example, we introduces an important technique for ODE of the form:

dy

dx
=
v(x, y)

u(x, y)
,

where u and v are homogeneous functions of degree n. Following Leibnitz’s method, we define a
homogeneous variable η = y/x. We use x and η as our new variables. We have dy = d(xη) =
x dη + η dx. From homogeneity, we have u(x, xη) = xnu(1, η) and v(x, xη) = xnv(1, η). The
equation becomes

(−v(1, η) + ηu(1, η)) dx+ xu(1, η)dη = 0.

We can use method of separation-of-variables:

dη

R(η)
+
dx

x
= 0,

where

R(η) = η − v(1, η)

u(1, η)
.

The solution is ˆ
dη

R(η)
+ log |x| = C.

Remark Vector fields are arisen in natural world, for examples, fluid mechanics and electromag-
netism. In two dimensional incompressible flow, the velocity V(x, y) = (u(x, y), v(x, y)) satisfies
the incompressibility condition

∇ ·V = 0.

If in addition,

∇×V = 0,

such flows are called irrotational flows. An incompressible and irrotational flow is called a potential
flow. For two dimensional potential flow, the functions

φ(x, y) := −
ˆ (x,y)

udx+ vdy, ψ(x, y) :=

ˆ (x,y)

−vdx+ udy

are called its velocity potential and stream function. Their level sets are orthogonal to each other.

Homework 1.8. Solve the equations

1. y′ = x+y
x−y . Ans. arctan v − 1

2 log(1 + v2) = log |x|+ C.

2. y′ = x2+xy+y2

x2
.

3. y′ = − x2

x2+y2
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1.5.2 Family of curves and Orthogonal trajectories

Representation of curves There are three kinds of representations for a plane curve. We use
unit circle as an example.

• Implicit representation: ψ(x, y) = C. The form x2 + y2 = 1 is an implicit representation of
the unit circle.

• Explicit parameter representationx = x(t), y = y(t), t ∈ I. The parameter form: x =
cos t, y = sin t, t ∈ [0, 2π] is the parameter representation of the unit circle.

• Graphic representation: y = f(x). The form y =
√

1− x2 is the graphic representation of the
upper part of the circle.

Theorem 1.2 (Implicit Function Theorem). Suppose F is a continuously differentiable function
and F (x0, y0) = 0. If Fy(x0, y0) 6= 0, then there exist a neighbor U of x0, a neighborhood V of y0

and a continuously differentiable function f : U → V such that

F (x, f(x)) = 0.

Hint of Proof. The idea behind this theorem can be understood by a Taylor expansion of F near
(x0, y0): using F (x0, y0) = 0, we have

F (x, y, z) ∼ Fx(x0, y0)(x− x0) + Fy(x0, y0)(y − y0).

Thus, F (x, y) = 0 is roughly

Fx(x0, y0)(x− x0) + Fy(x0, y0)(y − y0) = 0.

This linear equation is solvable for y if Fy(x0, y0) 6= 0.

In the above three representations, the corresponding tangent of the curve is:

• (−ψy, ψx),

• (ẋ(t), ẏ(t)),

• (1, f ′(x)).

The normal direction is:

• (ψx, ψy),

• (−ẏ(t), ẋ(t)),

• (f ′(x),−1).
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Family of curves A one-parameter family of plane curves depends on a free parameter. It has
three kinds of representations:

• Implicit representation:
γC = {(x, y)|ψ(x, y) = C}

Here, C is the free parameter. γC is called the level set of the function ψ.

• Explicit representation:
γC = {(xC(t), yC(t))|t ∈ I}

• Graphic representation:
γC = {(x, y)|y = fC(x)}

Concentric circles is a one-parameter family of curves. They are represented as

• level set representation: ψ(x, y) = x2 + y2 = r2,

• parameter representation: x(t) = r cos t, y(t) = r sin t, t ∈ [0, 2π],

• graphic representation: y = ±
√
r2 − x2,−r ≤ x ≤ r.

The radius r > 0 is the free parameter. In the graphic representation, it needs two functions to
represent the circle.

Family of curves and first-order ODE We have seen that general solutions of a first-order
ODE form a one-parameter family of curves on the plane. Conversely, we will show that a one-
parameter family of curves on the plane satisfies a first-order ODE. Let us start from the following
examples.

1. The family of exponential curves y = Ce−αx satisfies y′ = αy. In fact, we differentiate them in
x and get y′ = −αCe−αx. Then we eliminate C from these two equations to get the equation
y′ = αy.

2. Consider the family of quadratic curves y = (x − C)2. We differentiate it in x and obtain
y′ = 2(x−C). We eliminate C from both equations and get

√
y = (x−C) = y′/2. Thus, this

family of quadratic curves satisfies y′ = 2
√
y.

3. The family y = K/(1−C1e
−rt) satisfies y′ = ry(1− y/K). This is left for you as an exercise.

4. Consider the concentric circles: x2 +y2 = C. We differentiate it in x and obtain 2x+2yy′ = 0.
This gives y′ = −x/y.

5. The family of confocal ellipses can be expressed as

x2

a2
+
y2

b2
= 1 with a2 − b2 = c2 fixed.

We look for the ODE that these confocal ellipses satisfy and their orthogonal trajectories.
Without loss of generality, let us assume the foci are (±1, 0), i.e. c = 1. The family of these
confocal ellipses is

x2

a2
+

y2

a2 − 1
= 1, a > 1. (1.30)

29



Let us differentiate this equation in x and obtain

x

a2
+

yy′

a2 − 1
= 0. (1.31)

We eliminate a from the above two equations to obtain an ODE as the follows. From (1.31),
we get

a2 =
x

yy′ + x
.

Plug this into (1.30), we obtain
x2

x
yy′+x

+
y2

−yy′
yy′+x

= 1.

After rearrangement, we get

xy

(
y′ − 1

y′

)
+ x2 − y2 = 1.

This is the ODE for the confocal ellipses.

Figure
We summarize the above procedure below. A family of plane curves can be expressed as

ψ(x, y) = C (level set representation),

or
Ψ(x, y, C) = 0 (implicit representation). (1.32)

In the former representation, we can differentiate it in x and obtain

ψx(x, y) + ψyy
′ = 0.

This is a first order ODE
y′ = −ψy(x, y)/ψx(x, y)

that this family of curves satisfies. In the latter representation, we differentiate (1.32) in x and
obtain

Ψx(x, y, C) + Ψy(x, y, C)y′ = 0. (1.33)

We use (1.32), (1.33) to eliminate C and obtain an equation F (x, y, y′) = 0 . This is the ODE for
this family of curves.

Remarks A family of curves Ψ(x, y, C) = 0 can also be represented as ψ(x, y) = C. This is valid
locally under the condition ΨC(x0, y0, C0) 6= 0. This is called the implicit function theorem, which
will be used very often in this course.

Theorem 1.3 (Implicit Function Theorem). Suppose F is a continuously differentiable function
and F (x0, y0, z0) = 0. If Fz(x0, y0, z0) 6= 0, then there exist a neighbor U of (x0, y0), a neighborhood
V of z0 and a continuously differentiable function f : U → V such that

F (x, y, f(x, y)) = 0.
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The function z = f(x, y) is obtained by solving F (x, y, z) = 0 for z ∼ z0. Suppose F (x0, y0, z0) =
0. Then we choose the solution z =

√
1− x2 − y2 if z0 > 0, and z = −

√
1− x2 − y2 if z0 < 0.

If z0 = 0, Fz(x0, y0, z0) = 0, we cannot apply the implicit function theorem for this case. The
idea behind this theorem can be understood by a Taylor expansion of F near (x0, y0, z0): using
F (x0, y0, z0) = 0, we have

F (x, y, z) ∼ Fx(x0, y0, z0)(x− x0) + Fy(x0, y0, z0)(y − y0) + Fz(x0, y0, z0)(z − z0)

Thus, F (x, y, z) = 0 is roughly

Fx(x0, y0, z0)(x− x0) + Fy(x0, y0, z0)(y − y0) + Fz(x0, y0, z0)(z − z0) = 0.

This linear equation can be solved for z if Fz(x0, y0, z0) 6= 0.

Orthogonal Trajectories In geometry and physics, we encounter problems of constructing or-
thogonal curvilinear coordinate systems. For instance, polar coordinate system is an orthogonal
system. In this example, suppose we are given one family of concentric circles: x2 + y2 − C = 0.
We ask how to construct another family of curves which are orthogonal to these curves. In general,
suppose we are given a family of curves which is represented by Ψ(x, y, C) = 0, we look for their
orthogonal trajectories. The method to find orthogonal trajectories is very simple. First, we find
the ODE: F (x, y, y′) = 0 that this family of curves satisfies. Next, we replace y′ by −1/y′ in this
ODE (i.e. F (x, y,−1/y′) = 0). This is the ODE for the orthogonal trajectories. Finally, we solve
this ODE to get the orthogonal trajectories.

In the example of concentric circles, the tangent of concentric circles is y′ = −x/y. So, its
normal should satisfy −1/y′ = −x/y. The general solutions of this equation are y/x = C. This is
the family of the orthogonal trajectories of the concentric circles.

In the example of confocal ellipses, the corresponding ODE is

xy

(
y′ − 1

y′

)
+ x2 − y2 = 1.

Their orthogonal trajectories satisfy the ODE with y′ replaced by −1/y′. This leads to the same
equation. The general solutions have the same form (1.30), but with the parameter a > 0. We note
that when 0 < a < 1, these curves are confocal hyperbolas:

x2

a2
− y2

1− a2
= 1, 0 < a < 1, (1.34)

which are the orthogonal trajectories of the confocal ellipses.

1.5.3 Envelop

Given a one-parameter family of curves Ψ(x, y, C) = 0. Its envelop is a curve which is tangent
to each member of the family and it is composed of all these tangent points. Envelops appear in
geometric optics, called caustics. We will see that the envelop of Ψ(x, y, C) = 0 is determined by
the two equations:

ΨC(x, y, C) = 0, Ψ(x, y, C) = 0.
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As an example, consider the following family of straight lines:

x

C
+

y

1− C
− 1 = 0

One can express it as
Ψ(x, y, C) := C2 + (−x+ y − 1)C + x = 0.

The envelop is determined by Ψ(x, y, C) = 0,ΨC(x, y, C) = 0, which are{
C2 + (−x+ y − 1)C + x = 0
2C + (−x+ y − 1) = 0.

This is a curve. We can also solve (x, y) in terms of C, which give the representation of this envelop
in parametric form:

x = C2

y = (C − 1)2

We can eliminate C and get
y = (

√
x− 1)2 = x+ 1− 2

√
x.

This is the explicit form of the envelop. Moving x+ 1 to the left-hand side, taking square, we get

(y − x− 1)2 = 4x.

This is the implicit form of the envelop.
Figure

Next, we explain why the envelop of a family of curves Ψ(x, y, C) = 0 is given by{
Ψ(x, y, C) = 0
ΨC(x, y, C) = 0.

Since the envelop is composed of all tangent points, it can be parameterized by the parameter C.
Thus, we may write the envelop in parametric form as (x(C), y(C)). It satisfies

Ψ(x(C), y(C), C) = 0,

because the tangent point (x(C), y(C)) lies on the curve Ψ(x, y, C) = 0. Differentiate this equation
in C, we obtain

Ψx(x(C), y(C), C)x′(C) + Ψy(x(C), y(C), C)y′(C) + ΨC(x(C), y(C), C) = 0,

Since the tangent of this envelop, (x′(C), y′(C)), is tangent to the curve Ψ(x, y, C) = 0 as well, we
obtain

Ψx(x(C), y(C), C)x′(C) + Ψy(x(C), y(C), C)y′(C) = 0.

Thus, we get
ΨC(x(C), y(C), C) = 0.

Given a family of curves, it may not have envelop at all. Confocal ellipses, confocal hyperbolas
have no envelop. Below are some examples that possess envelops.

32



• The family of curve y = (x− C)2 has envelop y(x) ≡ 0.

• Consider the cycles:
(x− cos θ)2 + (y − sin θ)2 = R2.

The parameter θ running in [0, 2π). You can show that its envelop is again a circle.

Figure

Homework 1.9. 1. Find the orthogonal trajectories of family of parabolas with common
vertex and common tangent at the common vertex:

y = cx2, c ∈ R.

2. Find the orthogonal trajectories of the family of parabola y2 = 4c(x+ c).

3. *The potential of an electric dipole is

Vdip(r, θ) =
p cos θ

4πε0r2

Here, (r, θ, φ) is the spherical coordinate system, ε0 is the dielectric coefficient in vacuum,
p is the dipole moment. The equipotential forms a family of curves. The electric field
line is their orthogonal trajectories. Find these orthogonal trajectories.

1.5.4 *An example from thermodynamics – existence of entropy

Consider a thermodynamic system: a container with fixed amount of gases inside and having
one free end (a piston) which allows volume change. The basic thermodynamic variables are the
(specific) volume V , the pressure p, the (specific) internal energy e, and the temperature T . In
order to have a thermo system to exchange energy with external world, we will also introduce a
thermo variable S, called the (specific) entropy, which will be defined below. These five variables
V, p, e, T, S are not independent. There are two constitutive relations (kinematic constitutive law
and caloric constitutive law) plus the first law of thermodynamics relate them. The last one is a
differential relation. Finally, they are only two independent thermo variables. Below, we introduce
the simplest constitutive relations: the ideal gas law and the caloric constitutive law.

The ideal gas law is a kinematic constitutive law. It reads

pV = RT,

where R is called the universal gas constant. For so-called polytropic gases, the internal energy is
linearly proportional to the temperature T , i.e.

e = cvT

where cv is called the specific heat at constant volume. It means that the amount of energy you
need to add to the system at constant volume to gain one degree increase of temperature. This
relation is called the caloric law.

In order to have energy exchange with external world, we introduce the notion “entropy” below.
First, we can change the volume V of the system by moving the piston. If the process is moved
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slowly, we imagine that the system has no energy exchange with external environment except the
work that we apply to it through the piston. Such a process is called an adiabatic process (no heat
exchange with the external world). In such a process, by the conservation of energy,

de = −pdV,

where −pdV is the work we apply to the system. This is a Pfaffian equation. Using the ideal gas
law and the assumption of polytropic gas, we get

de = d(cvT ) = d(
cv
R
pV ) =

cv
R

(pdV + V dp) = −pdV.

This gives (
1 +

cv
R

)
pdV +

cv
R
V dp = 0.

We divide both sides by cv/R to get

γpdV + V dp = 0,

where

γ :=
1 + cv

R
cv
R

,

is called the gas constant. This Pfaffian equation can be integrated by using the technique of
separation of variable:

γdV

V
+
dp

p
= 0.

Thus, we get

ln p+ γ lnV = C

Hence,

pV γ

is a constant. This means that each adiabatic process keeps pV γ invariant (the integral of an
adiabatic process). The quantity pV γ labels a thermo state of the system. It is called an entropy.
Notice that any function of pV γ is also invariant under an adiabatic process. The one which has
1/T as an integration factor for the Pfaffian equation de+ pdV = 0 is called the physical entropy.
That is

TdS = de+ pdV.

This leads to

dS =
1

T
(de+ pdV )

=
R

pV

(cv
R

(pdV + V dp) + pdV
)

= cv

(
γ
dV

V
+
dp

p

)
= cvd ln(pV γ)

= dcv ln(pV γ)
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Thus, the physical entropy

S = cv ln(pV γ).

In conclusion, the first law of thermodynamics is

de = TdS − pdV. (1.35)

This means that the change of internal energy can be due to the heat TdS exchange with external
world, or the work −pdV exerted from outside. For ideal polytropic gases, using the ideal gas law
and the caloric constitutive relation, plus the first law of thermodynamics, we can choose p, V as
the independent variables and express

T =
pV

R
, e =

cv
R
pV, S = cv ln(pV γ).

Homework 1.10. 1. Express thermo variables in terms of e, V for ideal polytropic gases.

2. The van der Waals equation of state for molecular gases replaces the ideal gas law pV =
RT by (

p+
a

V 2

)
(V − b) = RT

where b is the volume excluded by a mole of particles, a represents an internal attraction
among molecules which reduces the pressure exerting to the wall. With this van der
Waals equation and the first law of thermodynamics and an equation of state, compute
the rest of the thermo variables in terms of p and V .

1.6 Existence and Uniqueness

In this section, we shall state but without proof the existence and uniqueness theorems. We also
give examples and counter-examples regarding to the existence and uniqueness. Finally, we give
application of these fundamental theorems.

Existence

Theorem 1.4 (Local existence theorem). Suppose f(t, y) is continuous in a neighborhood of (t0, y0).
Then the initial value problem

y′(t) = f(t, y),

y(t0) = y0

has a solution y(·) existing on a small interval (t0 − ε, t0 + ε) for some small number ε > 0.

This theorem states that there exists an interval (may be small) where a solution does exist.
The solution may not exist for all t. Let us see the following example.
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Examples Consider the initial value problem

y′ = y2

y(0) = y0

By the method of separation of variable,

dy

y2
= dt

ˆ y

y0

dy

y2
= t

−y−1 + y−1
0 = t

y(t) =
y0

1− ty0
.

When y0 < 0, the solution does exist in (1/y0,∞). But when y0 > 0, the solution can only exist in
(−∞, 1/y0). The solution blows up when t→ 1/t0:

lim
t→1/y0

y(t) =∞.

The maximal interval of existence is (−∞, 1/y0) when y0 > 0 and is (1/y0,∞) when y0 < 0.

In the local existence theorem, it only states that the solution exists in a small region. If the
solution does have a limit at the end, say t1, of this interval, we can solve the equation again
to extend this function. One can show that this extended function also satisfies the differential
equation at t1 and beyond. Eventually, we can find the maximal interval of existence. If the
solution remains bounded whenever it exists, then we can always find globally exists if y(·) stays
bounded whenever it exists. We have the following corollary.

Corollary 1.1. Consider the ODE: y′ = f(t, y). Suppose f(t, y) is continuous on R × R and
assume a solution stays bounded as long as it exists, then this solution exists for all time.

Proof. Suppose the maximal interval of existence is (t0, t1). The assumption that y(t) remains
bounded in (t0, t1) plus f(t, y) is continuous imply that limt→t1 y(t) exists (why?). Then we can
extend y(·) beyond t1 by the local existence theorem. This contradicts to the hypothesis that (t0, t1)
is the maximal interval of existence.

Homework 1.11. Find the maximal interval of existence for the problems below.

1. y′ = 1 + y2, y(0) = y0

2. y′ = y3, y(0) = y0

3. y′ = ey, y(0) = y0

4. y′ = y ln y, y(0) = y0 > 0.
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Uniqueness

Theorem 1.5 (Uniqueness). Assume that f and ∂f/∂y are continuous in a small neighborhood of
(t0, y0). Suppose y1(t) and y2(t) are two solutions that solve the initial value problem

y′ = f(t, y), y(t0) = y0

on an interval (t0 − ε, t0 + ε) for some ε > 0. Then

y1(t) = y2(t), for all t ∈ (t0 − ε, t0 + ε).

In other word, no two solutions can pass through the same point in the t-y plane.

Application 1. Reduce high order equation to first-order system The above existence
and uniqueness theorems also hold for general first-order ODE system:

y′ = f(t,y)

where f : R×Rn → Rn is a Lipschitz function. This means that: given initial data (t0,y0) ∈ R×Rn,
there exists a unique solution y : (t0−ε, t0 +ε)→ Rn with y(t0) = y0. This theorem can be applied
to high-order equations too. Indeed, any high-order equation can be transformed to an equivalent
first-order system. Namely, the general n-th order differential equation

y(n) = f(t, y, y′, · · · , y(n−1)) (1.36)

is equivalent to the following system of first-order differential equations:
y1′ = y2

y2′ = y3

...
yn′ = f(t, y1, y2, · · · , yn).

(1.37)

The correspondence is y = (y1, ..., yn) ↔ (y, y′, ..., y(n−1)). We need n conditions to determine a
unique solution for the first-order system (1.37). Likely, we need n conditions to determine a unique
solution for the nth-order differential equations (1.36).

Application 2 Let us apply the existence and uniqueness to the qualitative study of the au-
tonomous system in one dimension. For instance, let consider a smooth f(y) which has the prop-
erty (i) the only zeros of f are 0 and K, (ii) f(y) > 0 for 0 < y < K. The logistic model:
y′ = f(y) := ry(1 − y/K), is one such example. The constant states 0 and K naturally partition
the domain R into three regions: I1 = (−∞, 0), I2 = (0,K) and I3 = (K,∞). By the uniqueness
theorem, no solution can cross these two constant states. Thus, starting y(0) ∈ (0,K), the trajec-
tory y(t) stays in (0,K) for all t because it cannot cross these two constant solutions. So, the solution
stays bounded and thus exists for all time. The limit limt→∞ y(t) must exist because the function
y(·) monotonically increases and stays bounded above. Let us call limt→∞ y(t) = ȳ ∈ [0,K]. Then

lim
t→∞

y′(t) = lim
t→∞

f(y(t)) = f(ȳ).
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We claim that f(ȳ) = 0. Suppose not, then we have f(ȳ) > 0 because f(y) > 0 for y ∈ (0,K). We
choose ε > 0 so that f(ȳ)− ε > 0. With this ε, there exists M > 0 such that f(y(t)) > f(ȳ)− ε for
all t > M . Thus,

y(t)− y(M) =

ˆ t

M
f(y(s)) ds > (f(ȳ)− ε)(t−M)→∞ as t→∞.

This is a contradiction. Thus, we get f(ȳ) = 0. But the only constant states are 0 and K. It has to
be K because 0 < y(0) < y(t) for all t > 0. This shows that when y(0) ∈ (0,K), we have y(t)→ K
as t → ∞. This is asymptotic stability result. We will see more applications of the uniqueness
theorem in the subsequent chapters.

Remarks.

1. The initial value problem may not have a unique solution. Let us see the following problem:

y′ = 2y1/2, y(0) = 0

By the method of separation of variable,

dy

2
√
y

= dt,

√
y = t− C

With the initial condition y(0) = 0, we get C = 0. Hence

y(t) = t2

is a solution. On the other hand, we know y(t) ≡ 0 is also a solution. We should be careful
here. The portion y(t) = t2 for t < 0 is not a solution because y′ < 0 for t < 0. This portion
does not satisfy the equation y′ = 2

√
y > 0. Therefore, one solution is

y(t) =

{
0 for −∞ < t < 0
t2 for t ≥ 0.

We have known that y(t) ≡ 0 is another solution. In fact, there are infinite many solutions
passing through (0, 0):

y(t) =

{
0 for −∞ < t < C
(t− C)2 for t ≥ C,

with parameter C ≥ 0 being arbitrary.

It is important to notice two things. (1) The ODE associated with the family of parabolas
y = (t−C)2 is y′2 = 4y, see the subsection 1.5.2. It contains two branches: y′ = ±2

√
y. The

solutions also contain two branches. The branch y = (t−C)2, t ≥ C satisfies y′ = 2
√
y, while

the branch y = (t− C)2, t ≤ C satisfies y′ = −2
√
y. (2) The curve y(t) ≡ 0 is the envelop of

both families of parabolas.
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2. You can find non-uniqueness examples easily from the envelop of a family of curves. In fact,
suppose the family of curve Ψ(x, y, C) = 0 is the solution of some ODE: F (x, y, y′) = 0. Sup-
pose ((x(C), y(C)) is the envelop of this family of curves. Then at C, both Ψ(x, y, C) = 0 and
the envelop (x(C), y(C)) are the solution curves of the ODE: F (x, y, y′) = 0 at (x(C), y(C)).

3. For vector field V(x, y) = (u(x, y), v(x, y)), its integral curves do not intersect if V 6= 0. More
precisely, if (u(x0, y0), v(x0, y0)) 6= (0, 0), then the integral curve through (x0, y0) is unique.
To show this, if u(x0, y0) 6= 0, then the integral curve of (u, v) satisfies

dy

dx
=
v(x, y)

u(x, y)
= f(x, y).

The function f(x, y) is well-defined in a neighborhood of (x0, y0) because u(x0, y0) 6= 0. By the
uniqueness theorem, the solution y(x) of y′ = f(x, y) with y(x0) = y0 is unique. Therefore,
the integral curve is unique there. If on the other hand, u(x0, y0) = 0, then v(x0, y0) 6= 0, we
solve

dx

dy
=
u(x, y)

v(x, y)

instead.

However, the integral curves can “intersect” at those critical points where V(x, y) = (0, 0).
For instance, the integral curves of V(x, y) = (−x,−y) point to (0, 0). The integral curve of
V = (−x, y) are xy = C. As C = 0, the corresponding integral curve is x = 0 or y = 0. They
intersect at (0, 0).

4. In the example of application 2, we cannot obtain the rate of convergence for y(t) → K as
t → ∞. However, if we know that f ′(K) 6= 0 (in fact, f ′(K) < 0), then we can get that
y(t)→ K at exponential rate. This means that

|y(t)−K| ≤ Cef ′(K)t

as t→∞. A concrete is the logistic model, where f(y) = ry(1− y/K) and f ′(K) = −r. For
y ∼ K, the Taylor expansion of f gives f(y) ∼ −r(y−K). The equation y′ = f(y) ∼ −r(y−K)
leads to y(t) ∼ O(1)e−rt.

On the other hand, if f ′(K) = 0, then f(y) is of high order near y = K. In this case, we can
not have exponential convergence, as you can see from this simple example: y′ = (y −K)2

with y(0) < K.

1.7 Numerical Methods: First Order Difference Equations

1.7.1 Euler method

Consider the first order equation
y′ = f(t, y).

If the solution is smooth (this is what we would expect), we may approximate the derivative y′(t)
by a finite difference

y′(t) ∼ y(t+ h)− y(t)

h
.
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Thus, we choose a time step size h. Let us denote t0 + nh = tn and t0 is the initial time. We shall
approximate y(tn) by yn. For tn < t < tn+1, y(t) is approximated by a linear function. Thus, we
approximate y′ = f(t, y) by

yn+1 − yn

h
= f(tn, yn). (1.38)

This is a difference equation for yn, n = 1, ..., with initial state y0. It can be solved easily. This
method is called the Euler method. It approximates the solution by piecewise linear function. The
approximate solution yn+1 can be computed from yn. If we refine the mesh size h, we would expect
the solution get closer to the true solution. To be more precise, let us fix a time t, and divide [0, t]
into n subintervals evenly. h = t/n is called the step size. We use Euler method to construct yn

with given y0. The convergence at t means that yn → y(t) as n → ∞ (with nh = t fixed, hence
h→ 0). Let us use Euler method to compute the solution for the differential equation

y′ = αy

where α is a constant. In this example, the Euler method gives

yn+1 = yn + hαyn.

Thus,

yn = (1 + αh)yn−1 = · · · = (1 + αh)ny0.

Since h = t
n and t is fixed, we get

yn =

(
1 + α

t

n

)n
y0 → eαt, as n→∞.

1.7.2 First-order difference equation

This subsection is a computer project to study the discrete logistic map:

yn+1 = ρyn

(
1− yn

k

)
. (1.39)

This model can be derived from the Euler method for the logistic equation.

yn+1 − yn
h

= ryn

(
1− yn

K

)
,

with ρ = 1 + rh and k = K(1 + rh)/rh. The discrete model is more suitable for some species which
population has discrete time intervals and generations do not overlap. For instance, the 13-year
periodical cicadas has discrete population growth.

We use the following normalization: xn = yn/k to get

xn+1 = ρxn(1− xn) := F (xn). (1.40)

This mapping (F : xn 7→ xn+1) is called the logistic map. The project is to study the behaviors of
this logistic map by computer simulations.
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Iterative map In general, we consider a function F : R→ R. The mapping

xn+1 = F (xn), n = 0, 1, 2, · · · ,

is called an iterative map. We denote the composition F ◦ F by F 2. It is useful to study the
iterative map by the graph of F on the xn-xn+1 plane.
Fogure

A point x∗ is called a fixed point (or an equilibrium) of the iterative map F if it satisfies

F (x∗) = x∗.

Stable fixed point A fixed point x∗ is called stable if there exists a neighborhood U of x∗ such
that we start the iterative map from any x0 ∈ U , the sequence {Fn(x0)} converges to x∗.
A fixed point x∗ is called unstable if we start the iterative map from any x0 6= x∗ arbitrarily close
to x∗, the sequence {Fn(x0)} cannot converge to x∗. The goal of the homework below is to study
the behavior (stable or unstable) of a fixed point as we vary the parameter ρ.

Homework 1.12. 1. Let F be the logistic map defined as (1.40).

(a) Find the condition on ρ such that the logistic map F maps [0, 1] into [0, 1].

(b) For ρ = 0.5, 1.5, 2.5 find the region of x0 in [0, 1] so that limn→∞ F
nx0 converges.

Such region is called the region of contraction. It means that any point inside will
be contract to a fixed point.

(c) A point x is called a period n point if Fn(x) = x but Fm(x) 6= x for all 0 < m < n.
Find the set of period 2 points.

2. Read the article about chaos for the logistic map from wiki. Wiki Logistic Map

1.8 Historical Note

You can find the figures below from Wikipedia.

Data, modeling

• Tycho Brahe (1546-1601)

• Galileo Galilei (1564-1642)

• Johannes Kepler (1571-1630)

Calculus and Numerical Method

• Isaac Newton (1642-1726)

• Leonhard Euler (1707-1783)
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Population model

• Thomas Malthus (1766-1834)

• Pierre Verhulst (1804-1849)
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Chapter 2

Second-Order Linear Equations

In this chapter, we study linear second-order equations of the form:

ay′′ + by′ + cy = f(t), (2.1)

with constant coefficients and a 6= 0. We shall investigate the model of linear oscillator in great
detail. It is a fundamental model in physics. We shall use spring-mass system and the electric
circuit system as examples.

2.1 Models for linear oscillators

2.1.1 The spring-mass system

Consider a mass attached to a spring in one dimension. Let us denote its current position by y(t).
The origin y = 0 is its position at rest. The motion of the mass is governed by Newton’s force law:

my′′ = F.

This is a force balance equation. The left-hand side is called the inertia force. The right-hand side
is called the exerted force. There are three kinds of exerted forces to the mass:

• Restoration force. The mass at position y is exerted a restoration force from the spring
during its motion. When y > 0, the spring is elongated and produces a force to pull back the
mass. When y < 0, the spring is shorten and produces a force to push the mass forward. The
direction of such restoration force is in the opposite direction of the motion direction of the
mass. The simplest model of the restoration force is the Hook’s law:

Fr = −ky,

where k is called the spring constant. The minus sign indicates that the force is opposite to
the direction of the mass motion.

• Frictional force. The frictional force is proportional to the velocity with opposite direction.
That is

Ff = −γy′,
where γ is called the damping (or friction) coefficient. A dashpot is a mechanical device that
provides such a frictional force to the mass.
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• External force. The mass may be exerted by the gravitational force (i.e. mg), or some other
external force modeled by f(t).

The Newton’s law of motion gives

my′′ = −γy′ − ky + f(t). (2.2)

Figure

2.1.2 An RLC circuit

An RLC circuit is an electrical circuit that consists of a resistor, an inductor and a capacitor,
connected in series by wires. It forms an oscillator as that in a spring-mass system. There are
electric charges moving in the circuit system. Suppose the wire is uniform in width, we may
assume the current between each component is uniform (i.e. it is independent of the position).
This is a good approximation when the electromagnetic wave length is much larger than the wire
length. Across a component, the charge density is unchanged. This is the law of conservation of
charges, or the Kirchhoff current law in the circuit theory. Therefore, on such a circuit loop, we
have only one current I(t), which is independent of position.

When the electrical charges pass through a component, there is a potential difference (jump)
on the two ends of such component. The potential difference ∆V through each kind of component
is the follows.

• ∆Vr = RI for a resistor.
A resister is a dielectric material. It is used to reduce current flow, to lower voltage levels
within circuits. The potential difference between the two ends of a resistance induces an
electric field E. It drives electrons in the resistance move at current I. The Ohm law states
that I is proportional to E and hence ∆Vr = Ed = αId, where d is the length of the resistance.

• ∆Vc = Q/C for a capacitor.
A typical capacitor is a pair of parallel plates with equal charges and opposite signature. The
charge on the plate Q(t) satisfies: Q̇(t) = I(t). There is an electric field E induced by the
charges on the two plates. By Gauss law, εEA = Q, where A is the area of the plate and
ε is the dielectric coefficient. It is clear that the more charges on the plates, the higher the
electric field. The potential difference on the two plates is ∆Vc = Ed, where d is the distance
between the two plates. Hence,

∆Vc = Ed =
d

εA
Q =

Q

C
.

Capacitor is used to store charges or energy within circuits.

• ∆Vi = LdIdt for an inductor.
An inductance is a solenoid. By the Amperè law, the current on a circular wire induces
a magnetic field mainly through the cylinder that the circuit surrounds. The time-varying
current (i.e. dI/dt) induces a time-varying magnetic field. By the Farady law, this time-
varying magnetic field induces an electric field E which can move (electromotive force) the
charges in the wire, called induced current. The magnitude of E is proportional to dI/dt.
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Thus, there is a linear relation between the potential drop ∆iV (which is Ed, d is the length
of the inductance) and dI/dt. That is,

∆Vi = L
dI

dt
.

The constants R,C,L are called the resistance, capacitance and inductance, respectively. As the
charges go around a loop of the circuit, the net potential difference should be zero. This is the
conservation of energy, or the second Kirchhoff law . Thus, this energy balance equation reads

∆Vi + ∆Vr + ∆Vc = 0.

Express this equation in terms of I, we get a second-order ODE for Q:

L
d2Q

dt2
+R

dQ

dt
+

1

C
Q = 0.

If there is a battery, a potential jump appears across the battery. We then have

L
d2Q

dt2
+R

dQ

dt
+

1

C
Q = f(t) (2.3)

where f(t) is the external potential difference from the battery.
Recall that Q̇ = I, we can also express this equation in terms of the current I as

L
d2I

dt2
+R

dI

dt
+

1

C
I = ḟ(t) (2.4)

You can also choose the potential V at any fixed point on the circuit as the unknown. Then V (t)
also satisfies the same equation.

We notice there is an analogy between mechanical oscillators and electrical oscillators.
To see how to derive Kirchhoff laws from Maxwell equalions, see Feynman’s lecture Ch22.

2.2 Methods to solve homogeneous equations

We rewrite the above linear oscillator equation in an abstract form:

ay′′ + by′ + cy = f(t), (2.5)

where a 6= 0, b, c are constants. We should prescribe initial data:

y(0) = y0, y
′(0) = y1 (2.6)

for physical consideration. The uniqueness theorem also requires such condition. We may express
(2.5) in an operator form:

L(D)y = f, (2.7)

where

L(D) = aD2 + bD + c, D =
d

dt
.

The term f is called the source term.
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2.2.1 Homogeneous equations (complex case)

Equation (2.5) without source term is called a homogeneous equation:

L(D)y := ay′′ + by′ + cy = 0. (2.8)

We try a solution of the form y(t) = eλt (called an ansatz) for the homogeneous equation.

We note that

Deλt = λeλt, Dneλt = λneλt,

Thus, we have the formula

P (D)eλt = P (λ)eλt (2.9)

for any polynomial P . Let us plug the ansatz y = eλt into the homogeneous equation:

L(D)
(
eλt
)

= L(λ)eλt =
(
aλ2 + bλ+ c

)
eλt = 0.

This leads to

aλ2 + bλ+ c = 0.

This algebraic equation is called the characteristic equation of (2.5). Let λ1, λ2 be its two roots
(complex roots in general). There are two cases:

• Case 1: λ1 6= λ2 . In this case, we have found two solutions y1(t) = eλ1t and y2(t) = eλ2t.

• Case 2: λ1 = λ2. In this case, we can check y1(t) = eλ1t and y2(t) = teλ1t are two solutions.
Let me explain why teλ1t is a solution. Indeed, from λ1 being the double root of L(λ) = 0,
we have L(λ1) = 0, and L′(λ1) = 0. We differentiate the formula

L(D)eλt = L(λ)eλt

in λ to obtain

L(D)
(
teλt

)
= L(λ)

(
teλt

)
+ L′(λ)eλt. (2.10)

By plugging teλ1t into the equation (2.10), we obtain

L(D)
(
teλ1t

)
= L(λ1)

(
teλ1t

)
+ L′(λ1)

(
eλ1t

)
= 0.

This shows that teλ1t is a solution when λ1 is a double root of L(λ) = 0.

Another way to understand the appearance of the solution teλ1t is to see the difference of the
two solutions eλ2t and eλ1t under the limit: λ2 → λ1. The double root λ1 can be viewed as
the limit of two distinguishing roots λ2 and λ1 with λ2 → λ1. When λ2 6= λ1, the function
(eλ2t − eλ1t)/(λ2 − λ1) is a solution. As λ2 → λ1, the limit

lim
λ2→λ1

eλ2t − eλ1t

λ2 − λ1
= teλ1t

is also a solution of L(D)y = 0, with λ1 becoming a double root of L(λ) = 0.
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Fundamental solutions (complex case) The solutions

y1(t) = eλ1t

y2(t) =

{
eλ2t if λ2 6= λ1

teλ1t if λ2 = λ1

(2.11)

are called the fundamental solutions of (2.8). We claim that they have the following properties:

1. linearity: their linear combination C1y1 + C2y2 is a solution;

2. independence: y1 and y2 are linear independent;

3. any complex-valued solution of (2.8) can be expressed as C1y1 + C2y2 for some coefficients
C1, C2 ∈ C.

We call the solution set

S0 := {C1y1(·) + C2y2(·)|C1, C2 ∈ C} = Span(y1, y2)

the solution space of (2.8). It is a two-dimensional vector space over the complex field C.
Let us prove these claims below.

1. Linearity

L(D)(C1y1 + C2y2) = C1L(D)y1 + C2L(D)y2 = 0,

because the operator L(D) is linear.

2. Independence and Wronskian
We shall show that: if y(t) := C1y1(t) + C2y2(t) ≡ 0 for t ∈ R, then C1 = C2 = 0.

• First, we note that: if y(t) ≡ 0, then we have y(t0) = 0 and y′(t0) = 0 for at least at a
point t0.

• Next, we write the second order equation (2.8) as a 2×2 system of first-order equations:[
y
y′

]′
=

[
0 1

− c
a − b

a

] [
y
y′

]
(2.12)

From the existence and uniqueness theorem, any solution of (2.12) is uniquely determined
by (y(t0), y′(t0)). We have known that y(·) = C1y1(·) + C2y2(·) is a solution. Plug it
into the initial condition, we obtain two equations for C1 and C2:

y1(t0)C1 + y2(t0)C2 = y(t0) = 0

y′1(t0)C1 + y′2(t0)C2 = y′(t0) = 0

The two coefficients C1 and C2 can be uniquely determined by y(t0) and y′(t0) if and
only if the determinant

W (y1, y2)(t0) :=

∣∣∣∣y1(t0) y2(t0)
y′1(t0) y′2(t0)

∣∣∣∣ 6= 0 (2.13)
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This determinant is called the Wronskian of y1 and y2 at t0. Plug (2.11) into (2.13), we
get

W (y1, y2)(t0) =

{
(λ2 − λ1)e(λ1+λ2)t0 when λ1 6= λ2

e2λ1t0 when λ1 = λ2
(2.14)

We see that

W (y1, y2)(t0) 6= 0 for any t0 ∈ R. (2.15)

Hence C1 = 0 and C2 = 0. We conclude that y1(·) and y2(·) are linearly independent.

3. Solution representation Suppose ỹ is a solution, we claim that there are constants C1

and C2 such that ỹ = C1y1 + C2y2. In fact, the initial data (ỹ(0), ỹ′(0)) determines a unique
pair of C1 and C2 such that

y1(0)C1 + y2(0)C2 = ỹ(0)

y′1(0)C1 + y′2(0)C2 = ỹ′(0).

This is due to the fact that the Wronskian W (y1, y2)(0) 6= 0. With these C1, C2, the solutions
y(t) = C1y1(t) + C2y2(t) and ỹ(t) have identical data at t = 0. By the uniqueness theorem,
ỹ(·) = y(·) = C1y1(·) + C2y2(·).

2.2.2 Homogeneous equation (real case)

In many applications, the equation

L(D)y = ay′′ + by′ + c = 0 (2.16)

has real coefficients, i.e. a 6= 0, b, c ∈ R. Here, D denotes for d/dt. The above complex-value
theory is still applicable with small modification to produce real-valued solutions. Let us list two
basic facts.

1. If y(·) is a complex-valued solution of (2.16) with real coefficients, so are its real part yr(·)
and imaginary part yi(·). From linearity of L(D), we have

0 = L(D)y = L(D)(yr + iyi) = L(D)yr + iL(D)yi.

This leads to

L(D)yr = 0, L(D)yi = 0.

Here, we use the fact that a, b, c ∈ R. Thus, the functions yr and yi are real-valued solutions
of (2.16).

2. The roots of the characteristic equation L(λ) = 0 are complex conjugates. That is,

L(λ) = 0⇔ L(λ̄) = 0.

Below, we shall construct two independent real-valued solutions and show that the solution space
is a two-dimensional vector space over R. To show these, there are three cases.
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• Case 1. λ1 6= λ2 and real. A general solution for the homogeneous equation has the form

y(t) = C1y1(t) + C2y2(t),

where
y1(t) := eλ1t, y2(t) := eλ2t.

The constants C1 and C2 are determined by the initial condition (2.6):

C1 + C2 = y(0)

λ1C1 + λ2C2 = y′(0).

From λ1 6= λ2, we see that C1 and C2 can be solved uniquely.

• Case 2. λ1 6= λ2 and complex. In this case, the two roots are conjugate to each other.
For, if L(λ) = 0, then L(λ̄) = L(λ) = 0 because L has only real coefficients. Let us denote
λ1 = α+ iω and λ2 = α− iω. We have found two solutions

y1(t) = Re(eλ1t) = eαt cosωt

y2(t) = Im(eλ1t) = eαt sinωt

A general solution of the form

y(t) = C1y1(t) + C2y2(t),

satisfying the initial condition (2.6) leads to

y(0) = C1

y′(0) = C1α+ C2ω.

The constants C1 and C2 can be solved uniquely because we have ω 6= 0 in this case.

• Case 3. λ1 = λ2 ∈ R. In this case,

y1(t) := eλ1t and y2(t) := teλ1t

are two independent solutions. So, general solution has the form C1y1(t) + C2y2(t). The
constants C1 and C2 are determined by the initial data: to

C1 = y(0)

λ1C1 + C2 = y′(0).

In the above three cases, the functions {y1(·), y2(·)} form a basis of the solution space.

Homework 2.1. 1. Let λ = α+iω. Find the WronskiansW (eλt, eλ̄t), W (eαt cosωt, eαt sinωt)
and W (eλt, teλt).

2. Solve the initial value problem y′′ − y′ − 2y = 0 , y(0) = α, y′(0) = 2. Then find α so
that the solution approaches zero as t→∞.

3. Consider the ODE
y′′ − (2α− 1)y′ + α(α− 1)y = 0.
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(a) Determine the values of α for which all solutions tend to zero as t→∞.

(b) Determine the values of α for which all solutions become unbounded as t→∞.

2.3 Methods to solve Inhomogeneous equations

Now, let us study the inhomogeneous equation with a forcing term f :

ay′′ + by′ + cy = f(t).

We may abbreviate it by the operator notation:

L(D)[y] = f,

where L(s) = as2 + bs+ c. From the theory for homogeneous equations, we know that we can find
two independent solutions. Let y1(·) and y2(·) be a pair of such fundamental solutions:

L(D)[yi] = 0, i = 1, 2.

Suppose yp(·) is a special solution of (2.5). This means that

L(D)[yp] = f.

In this case, yp+C1y1 +C2y2 is also a special solution for any constants C1 and C2. This is because
the linearity of the equation. Namely,

L(D)[yp + C1y1 + C2y2] = L(D)[yp] + C1L(D)[y1] + L(D)[y2] = f + 0 + 0.

From the existence and uniqueness of ODEs, we know that the solution set depends on two pa-
rameters. We can conclude that the solution set S to (2.5) is S = yp + S0, where S0 is the solution
space corresponding to the homogeneous equation. In other words, the solution set of (2.5) is an
affine space. The choice of the special solution yp is not unique. If yq is another special solution,
then any solution represented by y = yp + z with z ∈ S0 can also be represented as y = yq +w with
w = yp − yq + z ∈ S0. Thus, it suffices to find just one special solution.

Below, we introduce two methods to find a special solution. In later chapter, we will further
introduce the method of Laplace transform to find special solutions.

2.3.1 Method of under-determined coefficients

Suppose λ1 and λ2 are the two roots of the characteristic equation L(λ) = 0. Suppose the source
term is of the form:

tkeλt.

Then we can use the following method of under-determined coefficient to find a special solution.
We use the following examples to explain.

• Case: λ 6= λ1 and λ 6= λ2. We try a special solution of the form

yp(t) = (akt
k + ak−1t

k−1 + · · ·+ a0)eλt.
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• Case: λ = λ1 or λ = λ2. This is the case that the source term eλt has the same characteristic
mode as that of the system. We try a special solution of the form

yp(t) = t(akt
k + ak−1t

k−1 + · · ·+ a0)eλt.

Plugging this special form into equation, we obtain a polynomial equations. Equating both sides
and we obtain k + 1 linear equations for k + 1 coefficients ak, ..., a0.

Examples

1. Let f(t) = t. We try yp = a1t+ a0. Plug it into the equation, that is, (aD2 + bD + c)yp = t.
We get

a · 0 + b · (a1) + c · (a1t+ a0) = t.

This yields

ca1 = 1

ba1 + ca0 = 0.

We get that yp = t/c− b/c2 is a special solution.

2. Find a special solution for y′′ − y = te2t. We choose yp(t) = (at + b)e2t. Plug this into the
equation, we get

4(at+ b)e2t + 4ae2t − (at+ b)e2t = te2t

This yields

3a = 1

4b+ 4a− b = 0.

Hence, a = 1/3 and b = −4/9.

3. Let us consider y′′−y = et as an example. The source eλt has λ = 1, which is a characteristic
mode of the system: y′′ − y = 0. Thus, we try yp = atet. We have

y′p = aet + (at)et

y′′p = 2aet + (at)et

The equation y′′ − y = et yields

(at)et + 2aet − (at)et = et.

This gives

a− a = 0

2a = 1

Hence, yp = 1
2 te

t is a special solution.
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4. f(t) = tkeαt cos(Ωt), or tkeαt sin(Ωt). In this case, we introduce a complex forcing term

f(t) = tkeλt, λ := α+ iΩ.

The real part of a solution to this complex forcing term is a special solution to the forcing
term tkeαt cos(Ωt). For this complex forcing term, it can be reduced to the previous case. For
instance, consider

y′′ + y = A cos(t).

We express the source as

A cos(t) = A
eit + e−it

2
.

Corresponding to the source Aeit, we try y1
p(t) = ateit. Plug it into the equation, we obtain

a = A
2i and y1

p(t) = A
2i te

it. Corresponding to the source Ae−it, we try y2
p(t) = ate−it. Plug it

into the equation, we obtain y2
p = −A

2i te
−it. Thus, for the source A cos(t), a special solution

is

yp(t) =
y1
p + y2

p

2
=
At

2

(
eit

2i
− e−it

2i

)
=
A

2
t sin(t).

Homework 2.2. Find a special solution for the following equations.

1. y′′ − y = tet.

2. y′′ − 2y′ + y = et.

3. y′′ − 2y′ + y = tet.

4. y′′ + 4y = teit.

5. y′′ + y = teit.

6. y′′ + 2y′ + 2y = sin t.

7. y′′ + 2y′ + 2y = e−t sin t.

2.3.2 Method of Variation-of-Constants

We will use variation-of-constants to solve the inhomogeneous equation (2.5). For notational sim-
plicity, we may assume the coefficient a of (2.5) is 1. We rewrite (2.5) in vector form as

y′(t) = Ay(t) + f , (2.17)

where

y(t) =

[
y(t)
y′(t)

]
, A =

[
0 1
−c −b

]
, f(t) =

[
0
f(t)

]
.
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Homogeneous equation Suppose y1(·) and y2(·) are two independent solutions of the homo-

geneous equation (2.8). Then the vector-valued function yi :=

[
yi(t)
y′i(t)

]
satisfy the homogeneous

equation:

y′i = Ayi, i = 1, 2.

Moreover, {y1(·),y2(·)} is independent, because the corresponding Wronskian

W (y1, y2)(t) =

∣∣∣∣y1(t) y2(t)
y′1(t) y′2(t)

∣∣∣∣ 6= 0 for all t.

A general solution for the homogeneous equation can be expressed as

y(t) = C1y1(t) + C2y2(t),

or [
y(t)
y′(t)

]
=

[
y1(t) y2(t)
y′1(t) y′2(t)

] [
C1

C2

]
,

or

y(t) = Φ(t)C,

where

Φ(t) :=

[
y1(t) y2(t)
y′1(t) y′2(t)

]
= [y1(t),y2(t)], (2.18)

called a fundamental solution, which satisfies

Φ′(t) = AΦ(t).

Inhomogeneous equations Let us assume a special solution of (2.17) of the form

y(t) = C1(t)y1(t) + C2(t)y2(t) = Φ(t)C(t), C(t) =

[
C1(t)
C2(t)

]
, (2.19)

where Ci(t) ∈ C are the coefficients to be determined. We plug this ansatz into (2.17):

Φ′(t)C(t) + Φ(t)C′(t) = AΦ(t)C(t) + f(t).

We get

Φ(t)C′(t) = f(t). (2.20)

This gives a first-order differential equation for C(t):

C′(t) = Φ−1(t)f(t) = Φ−1(t)

[
0
f(t)

]
. (2.21)

Here, we note that Φ(t) is invertible because its determinant, the Wronskian

det(Φ(t)) =

∣∣∣∣y1(t) y2(t)
y′1(t) y′2(t)

∣∣∣∣ = W (y1, y2)(t) 6= 0,
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see (2.15). By integrating (2.21) and choosing C(0) = 0, we obtain

C(t) =

ˆ t

0
Φ(s)−1

[
0

f(s)

]
ds

=

ˆ t

0

1

W (y1, y2)(s)

[
y′2(s) −y2(s)
−y′1(s) y1(s)

] [
0

f(s)

]
ds

=

[
C1(0)
C2(0)

]
+

ˆ t

0

1

W (y1, y2)(s)

[
−y2(s)f(s)
y1(s)f(s)

]
ds

This gives [
y(t)
y′(t)

]
=

[
y1(t) y2(t)
y′1(t) y′2(t)

]{[
C1(0)
C2(0)

]
+

ˆ t

0

1

W (y1, y2)(s)

[
−y2(s)f(s)
y1(s)f(s)

]
ds

}
.

The general solution is
y(t) = C1(0)y1(t) + C2(0)y2(t) + yp(t),

where C1(0) and C2(0) are constants, and yp(t) is a special solution:

yp(t) =

ˆ t

0

−1

W (y1, y2)(s)

∣∣∣∣y1(t) y2(t)
y1(s) y2(s)

∣∣∣∣ f(s) ds (2.22)

The initial condition that yp satisfies is
yp(0) = 0,

y′p(0) =
f(0)

W (y1, y2)(0)
(−y1(0)y2(0) + y2(0)y1(0)) = 0.

Examples

1. Solve the equation
y′′ − y = f(t)

with initial data
y(0) = 0, y′(0) = 0.

Answer. The homogeneous equation y′′ − y = 0 has fundamental solutions y1(t) = e−t and
y2(t) = et. The corresponding Wronskian

W (y1, y2)(t) =

∣∣∣∣ y1(t) y2(t)
y′1(t) y′2(t)

∣∣∣∣ =

∣∣∣∣ e−t et

−e−t et

∣∣∣∣ = 2.

Thus, the special solution

yp(t) = −e−t
ˆ t

0

esf(s)

2
ds+ et

ˆ t

0

e−sf(s)

2
ds

=

ˆ t

0

(
et−s − es−t

2

)
f(s) ds =

ˆ t

0
sinh(t− s)f(s) ds.

You may check that this special solution yp satisfies the initial conditions yp(0) = 0, y′p(0) = 0.

54



2. Find a particular solution of

y′′ + y = csc(t)

for t near π/2.

Answer. The fundamental solutions corresponding to the homogeneous equation is

y1(t) = cos t, y2(t) = sin t.

The Wronskian W (y1, y2)(t) = 1. A special solution is given by (starts from π/2)

yp(t) = −y1(t)

ˆ t

π/2

y2(s)f(s)

W (y1, y2)(s)
ds+ y2(t)

ˆ t

π/2

y1(s)f(s)

W (y1, y2)(s)
ds

= − cos t

ˆ t

π/2
sin(s) csc(s) ds+ sin t

ˆ t

π/2
cos(s) csc(s) ds

= −
(
t− π

2

)
cos t+ sin t · ln(sin t).

Homework 2.3. 1. Find the solution of y′′ − y = f with y(0) = y′(0) = 0.

2. Find the solution of y′′ + y = f with y(0) = y(π) = 0.

3. Find the solution of y′′ + 2y′ + y = f with y(0) = y′(0) = 0.

4. Find the solution of y′′ − 2αy′ + α2y + ω2y = f with y(0) = y′(0) = 0.

2.4 Linear oscillators

We will study the physical interpretation of solutions of linear oscillators. Three cases: (i) simple
harmonic oscillator, (ii) damping effect, (iii) forcing effect.

2.4.1 Harmonic oscillators

A simple harmonic oscillator (or free oscillator) is modeled by

L (D) y = a
d2y

dt2
+ cy = 0, a, c > 0. (2.23)

There is no damping nor forcing terms. The corresponding characteristic equation aλ2 + c = 0 has
two characteristic roots

λ1 = −i
√
c

a
, λ2 = i

√
c

a
,

which are pure imaginary due to both a, c > 0 in a harmonic oscillator. Let us denote

ω0 =

√
c

a
. (2.24)
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It is called the natural frequency of the harmonic oscillator. The general solution for (2.23) is

C1e
−iω0t + C2e

iω0t.

Its real part forms the real solution of (2.23). It has the form

y(t) = B1 cosω0t+B2 sinω0t,

where Bi are real. We may further simplify it as

y(t) = A cos(ω0t+ θ0) (2.25)

where

A =
√
B2

1 +B2
2 , cos(θ0) = B1/A, sin(θ0) = −B2/A,

A is called the amplitude and θ0 is the initial phase. They are related to the initial data y(0) and
y′(0) by

y(0) = A cos(θ0), y′(0) = ω0A cos(θ0).

This motion is called harmonic oscillation or free oscillation. It is the x-projection of a circular
motion of constant angular speed ω0.

• For spring-mass system

ω0 =

√
k

m

In the case when the spring is stiffer (k is larger), or the mass is lighter (m is small), the
frequency ω0 is larger. The mass is heavier, the oscillation frequency is smaller.

• For LC circuit,

ω0 =
1√
LC

.

See the animation on wiki. Simple Harmonic Motion.

2.4.2 Damping

In this subsection, we study equation (2.5) with damping term:

ay′′ + by′ + cy = 0.

The coefficient b > 0. We recall that the homogeneous equation has two independent solutions eλ1t

and eλ2t, where

λ1 =
−b+

√
b2 − 4ac

2a
, λ2 =

−b−
√
b2 − 4ac

2a
, (2.26)

are the two roots of the characteristic equation aλ2 + bλ + c = 0. We have the following cases:
∆ = b2 − 4ac < 0,= 0, or > 0.
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Case 1. damped free oscillation When b2 − 4ac < 0, we rewrite

λ1 = −α+ iω, λ2 = −α− iω,

where

α = b/2a > 0, ω =

√
c

a
− b2

4a2
> 0.

The two independent solutions are

y1(t) = e−αt cos(ωt), y2(t) = e−αt sin(ωt).

The general solution is
y(t) = c1y1(t) + c2y2(t).

Let us explain the behaviors of a general solution.

• Because of the term

ω =

√
c

a
− b2

4a2
> 0,

the solution oscillates. However, the frequency is smaller than its natural frequency ω0. In
the spring-mass system, a = m, b = γ, c = k. We have

ω =

√
k

m
− γ2

4m2
<

√
k

m
= ω0.

Thus, the damping slows down the oscillation frequency. The frequency ω is called the quasi-
frequency.

• Because of the term e−αt, the amplitudes damp to zero exponentially fast at rate α := b/2a.
The relaxation time is τ := 2a/b. Thus, the smaller b is (weeker damper), the longer the
relaxation time is. But, as long as b > 0, the solution decays to zero eventually.

In the example mass-spring system, you can investigate the behaviors of the function ω(m, γ, k)
and the relaxation time τ(m, γ) := 2m/γ.

Case 2. Critical damping When b2 − 4ac = 0, the eigenvalue λ1 = −b/2a is a double root. In
additional to the solution y1(t) = eλ1t, we can check

y2(t) = teλ1t

is another solution. You may check that this solution still decays to zero as t→∞ because λ1 < 0.
Certainly it is slower than y1(t). A concrete example is y′′ + 2y′ + y = 0.

Case 3. Overdamping When b2 − 4ac ≥ 0, λi are real and negative. The two independent
solutions

yi(t) = eλit → 0, as t→∞, i = 1, 2.

We call this system overdamping, the damper (i.e. γ) is too strong so that the solution has no
oscillation at all and decays to 0 faster. The decay rate is O(e−αt), where α = b/2a. The quantity
1/α is called the relaxation time. As a concrete example, consider y′′+ 3y′+ y = 0. One eigenvalue
is λ1 = −3/2 +

√
5/2. The other is λ2 = −3/2 −

√
5/2. We see the solution y1(t) = eλ1t decays

slower than y2(t) := eλ2t. Thus, the asymptotic behavior is dominated by the y1 component.
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Homework 2.4. 1. Consider the ODE my′′ + γy′ + ky = 0 with γ > 0. Show that the
energy defined by

E(t) :=
m

2
y′(t)

2
+

1

2
ky(t)2

satisfies E′(t) ≤ 0.

2. Consider the ODE my′′ + γy′ + ky = 0 with y(0) = y0, y′(0) = v, γ > 0. Express
the solution in the form y(t) = R exp(−γt/2m) cos(ωt− δ) and determine R in terms of
m, γ, k, y0 and v explicitly.

3. Consider the ODE y′′+αy′+ω2
0y = 0 with α, ω0 > 0. In the critical case (α = 2ω0), there

is a solution y∗(t) = te−ω0t. When α < 2ω0, construct a solution yα such that yα → y∗

as α→ 2ω0.

4. There are many interesting resonance phenomena in nature, search into websites with
key word “resonance”.

2.4.3 Forcing and Resonance

In this section, we study forced vibrations. We will study two cases: free vibration with periodic
forcing and damped vibration with periodic forcing.

Free vibration with periodic forcing Let us consider the free vibration with a periodic forcing

y′′ + ω2
0y =

F0

m
cos(Ωt).

We have two subcases.

Case 1. Ω 6= ω0 . It is reasonable to guess that there is a special solution which is synchronized
with the external periodic forcing. Thus, we try a special solution of the form C cos(Ωt). By
plugging it into the equation, we find the coefficient C = F0/(m(Ω2−ω2

0)). Thus, we find a special
solution

yp(t) =
F0

m(Ω2 − ω2
0)

cos(Ωt).

This solution is synchronized with the periodic forcing. Its amplitude increases as the forcing
frequency is closer to systems’ natural frequency. To compute the general solution, let us abbreviate
F0/(m(Ω2 − ω2

0)) by C. Let us introduce low frequency and high frequency respectively as

ωh =
ω0 + Ω

2
, ωl =

ω0 − Ω

2

Then the general solution can be expressed as

y(t) = C cos(Ωt) +A cos(ω0t) +B sin(ω0t)

= C cos((ωl − ωh)t) +A cos((ωl + ωh)t) +B sin((ωl + ωh)t)

= C (cos(ωlt) cos(ωht) + sin(ωlt) sin(ωht))
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+A (cos(ωlt) cos(ωht)− sin(ωlt) sin(ωht))

+B (sin(ωlt) cos(ωht) + cos(ωlt) sin(ωht))

= [(C +A) cos(ωlt) +B sin(ωlt)] cos(ωht)

+ [B cos(ωlt) + (C −A) sin(ωlt)] sin(ωht)

= Ã cos(ωlt− Ω1) cos(ωht) + B̃ cos(ωlt− Ω2) sin(ωht),

where
(C +A,B) = Ã(cos(Ω1), sin(Ω1)), (C −A,B) = B̃(cos(Ω2), sin(Ω2)).

Let us take the case when Ω ∼ ω0. In this case, C is very large, hence Ã and B̃ are very large. Let us
focus on the solution y(t) = Ã cos(ωlt−Ω1) cos(ωht). In this solution, we may view Ã cos(ωlt−Ω1)
as the amplitude of the high frequency wave cos(ωht). This amplitude itself is a low frequency
wave, which is the envelope of the solution y(t). We call it the modulation wave. This phenomenon
occurs in acoustics when two tuning forks of nearly equal frequency are sound simultaneously.

Case 2. Ω = ω0 (resonance) In this case, we try a special solution of this form:

yp = Ct cos(ω0t) +Dt sin(ω0t).

By plugging into the equation, we find a special solution

yp = Rt sin(ω0t), R :=
F0

2mω0
.

The general solution is
y(t) = R t sin(ω0t) +A cos(ω0t+ θ0) (2.27)

The amplitude of this solution increases linearly in time. Such a phenomenon is called resonance.

Damped vibrations with periodic forcing We consider a damped vibration system with
periodic forcing:

y′′ + γy′ + ω2
0y =

F0

m
cos(Ωt).

To find a special solution for the inhomogeneous equation, we try

yp = C cos(Ωt) +D sin(Ωt).

By plugging into the equation, we have

− Ω2(C cos(Ωt) +D sin(Ωt)) + γΩ(−C sin(Ωt) +D cos(Ωt))

+ ω2
0(C cos(Ωt) +D sin(Ωt)) =

F0

m
cos(Ωt).

This yields

−Ω2C + ω2
0C + γΩD =

F0

m
−γΩC − Ω2D + ω2

0D = 0,
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which gives C and D:

C =
(ω2

0 − Ω2)F0

m∆
, D =

γΩF0

m∆
,

where

∆ = (ω2
0 − Ω2)2 + γ2Ω2.

Note that ∆ 6= 0 whenever there is a damping. Let

A :=
√
C2 +D2 =

F0

m∆
, Ω0 = arctan

(
−γΩ

ω2
0 − Ω2

)
.

Then

yp = C cos(Ωt) +D sin(Ωt)

= A cos(Ω0) cos(Ωt)−A sin(Ω0) sin(Ωt)

= A cos(Ωt+ Ω0)

Thus, a special solution is again a cosine function with amplitude A and initial phase Ω0. The
general solution is

y(t) = A cos(Ωt+ Ω0) + C1y1(t) + C2y2(t).

Notice that y(t)→ A cos(Ωt+ Ω0) as t→∞ because both y1(t) and y2(t) tend to 0 as t→∞. We
call the solution A cos(Ωt+Ω0) the forced response solution. It is the solution which is synchronized
with the external periodic forcing.

Remarks.

• We notice that the amplitude A has maximum when Ω = ω0, that is, the external forcing has
the same period as the internal period ω0.

• We also notice that A → ∞ only when γ = 0 (no damping) and Ω2 = ω2
0. This is the

resonance case. Otherwise, there is no resonance. In other word, general solutions approach
the forced responsed solution, even in the case of resonance with damping.

Homework 2.5. Compute the general solution for the first three equations below..

1. y′′ + 4y = 3 cos 2t.

2. y′′ + 9y = sin t+ sin 2t+ sin 3t.

3. y′′ + 4y = cos2 t.

4. Solve the initial value problem y′′ + 4y = 3 cos 2t+ cos t, y(0) = 2, y′(0) = 1.

5. Consider the ODE y′′ + ω2
0y = cosωt with ω ∼ ω0, say ω = ω0 + ∆ω. For each ∆ω, find

a particular solution of this equation so that its limit approaches the resonant solution
as ∆ω → 0.
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2.5 2× 2 linear systems

In this section, we shall study general solutions of 2× 2 linear homogeneous equations

y′ = Ay (2.28)

where

y =

[
y1

y2

]
, A =

[
a11 a12

a21 a22

]
.

A second-order ODE can be reduced to a 2× 2 first-order system A general high-order
ODE is equivalent to a system of first-order equations by introducing high derivatives as new
unknowns. For instance, consider the linear second-order ODE

ay′′ + by′ + cy = f. (2.29)

We introduce new unknown v := y′. Then (2.29) can be rewritten as{
y′ = v
av′ = −bv − cy + f.

(2.30)

The equivalence of (2.29) and (2.30) can be argued as the follows.

1. Suppose (y, v) is a solution of this first-order system (2.30), then y ∈ C2 and satisfies (2.29).
In fact, from av′ = −bv − cy + f , we get v′ is continuous. From first equation, we have
y′′ = v′. Hence, y ∈ C2. Combining the two equations of (2.30), we conclude that y satisfies
ay′′ + by′ + cy = f .

2. Conversely, if y satisfies (2.29), then let v = y′ and (y, v) satisfies (2.30). In fact, if y satisfies
(2.29), then y ∈ C2. Let us name y′ = v. Then v′ = y′′. From (2.29), av′ + bv + cy = f .
Hence, these two equations are equivalent.

2.5.1 Independence and Wronskian

Solution space First we note that the solution space for (2.28)

S0 := {y|y′ = Ay} (2.31)

is a vector space, because the equation is linear in y.

To determine the dimension of this solution space, we note that all solutions are uniquely
determined by their initial data (from the existence and uniqueness theorem)

y(0) = y0 ∈ C2.

Thus, there is a 1-1 correspondence between C2 and the solution space S0 by the mapping: y(0) 7→
y(·). This is the theorem below.

Theorem 2.1. The solution space S0 for equation (2.28) is a two-dimensional vector space.
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Independence and Wronskian In the solution space S0, two solutions y1 and y2 are called
independent if C1y1(t) + C2y2(t) = 0 implies C1 = C2 = 0. This definition is for all t, but based
on the uniqueness theorem, we only need to check this independence condition at just one point.
We have the following theorem.

Theorem 2.2. Suppose y1 and y2 are solutions of (2.28). If y1(t0) and y2(t0) are independent in
R2 (or C2), then y1(t) and y2(t) are independent in R2 (or C2) for all t.

Proof. Let t1 be a point lying in the maximal interval of existence containing t0. Suppose y1(t1)
and y2(t1) are linearly dependent, then there exist constants C1 and C2 such that

C1y1(t1) + C2y2(t1) = 0.

Let y = C1y1 + C2y2. Notice that both y and the zero constant solution have the same value at
t1. By the uniqueness theorem, y ≡ 0 on the maximal interval of existence containing t1, hence,
containg t0. This contradicts to y1(t0) and y2(t0) being independent.

Definition 2.1. Given any two solutions y1 and y2, we define the Wronskian

W (y1,y2)(t) := det(y1(t),y2(t)) =

∣∣∣∣y1,1 y2,1

y1,2 y2,2

∣∣∣∣ . (2.32)

The Wronskian is used to test the independence of y1 and y2.

Theorem 2.3. Let y1 and y2 be two solutions of (2.28). Let us abbreviate the Wronskian W (y1,y2)(t)
by W (t). We have

(a)
dW

dt
= (trA)W,

(b) W (t0) 6= 0 for some t0 if and only if W (t) 6= 0 for all t.

(c) {y1,y2} is independent if and only if W (y1, y2)(t) 6= 0.

Proof. Let Y = [y1,y2]. We have

Y′ = AY.

The Wronskian W (t) is det Y(t). We differentiate W in t, We get

W ′ = y′1,1y2,2 − y′1,2y2,1 − y′2,1y1,2 + y′2,2y1,1

=
∑
k

(a1,kyk,1y2,2 − a1,kyk,2y2,1 − a2,kyk,1y1,2 + a2,kyk,2y1,1)

= (a1,1 + a2,2)(y1,1y2,2 − y1,2y2,1)

= tr(A)W

Since W (t) = W (t0) exp(tr(A)(t− t0)), we see that W (t0) 6= 0 if and only if W (t) 6= 0 for all t.
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Remark This theorem is also true for n × n system. Namely, if Y′(t) = AY(t), and W (t) =
det Y(t), then

W ′(t) = (trA)W (t).

You can try to prove this theorem by using the determinant formula

detY =
∑
i

yijCij ,
∑
k

ykjCij = 0 if i 6= k,

where Cij is called the cofactor of Y, which is (−1)i+jdet(Yij), and Yij is the (n − 1) × (n − 1)
matrix obtained by eliminating the ith row and jth column from Y.

2.5.2 Finding the fundamental solutions and Phase Portrait

In this subsection, we look for find two independent solutions for the homogeneous equation

y′(t) = Ay(t).

We try a solution of the form y(t) = eλtv, where v ∈ C2 is a constant vector. Plugging into (2.28),
we get

λveλt = Aveλt.

We find that y(t) = eλtv is a solution of (2.28) if and only if

Av = λv. (2.33)

That is, λ is the eigenvalue and v is the corresponding eigenvector. The eigenvalue λ satisfies the
following characteristic equation

det (λI−A) = 0.

In two dimensions, this is

λ2 − Tλ+D = 0,

where

T = a+ d, D = ad− bc

are the trace and determinant of A, respectively. The eigenvalues are

λ1 =
T +
√
T 2 − 4D

2
, λ2 =

T −
√
T 2 − 4D

2
.

There are three cases for the eigenvalues:

• Case 1: T 2 − 4D > 0. Then λ1 6= λ2 and are real.

• Case 2: T 2 − 4D < 0. Then λ1, λ2 and are complex conjugate.

• Case 3: T 2 − 4D = 0. Then λ1 is a double root.
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Case 1. Both λ1 and λ2 are real

Suppose the two corresponding real eigenvectors are v1 and v2.

1. Finding fundamental solutions The corresponding two independent solutions are

y1 = eλ1tv1, y2 = eλ2tv2.

A general solution has the form

y(t) = C1y1(t) + C2y2(t)

Let us denote the fundamental solutions by a matrix

Φ(t) = [y1(t),y2(t)],

and the solution y(·) can be expressed as

y(t) = Φ(t)C, C =

[
C1

C2

]
.

If the initial data is y0, then
y(0) = Φ(0)C = y0.

We get
C = Φ−1(0)y0.

Thus, general solution is

y(t) = Φ(t)Φ−1(0)y0 = C1e
λ1tv1 + C2e

λ2tv2. (2.34)

2. Phase Portrait In the solution expression (2.34), we may call

y(t) = η1(t)v1 + η2(t)v2,

where
η1(t) = C1e

λ1t, η2(t) = C2e
λ2t.

We want to plot the trajectory of y(·) on the plane spanned by v1 and v2. By taking ln
function on η1(t) and η2(t), we can eliminate t from η1 and η2 to get an implicit expression
for this trajectory:

1

λ1
ln |η1| =

1

λ2
ln |η2|+ C,

where C is a constant depending on C1, C2. Alternatively, we can also express them as

|η2|1/λ2 = C |η1|1/λ1

where C is another constant. From this, we can draw a family of solution trajectories. For
instant, if λ1 = −1, λ2 = 1, then the solution curves are

|η2| = C|η1|−1.

These are hyperbola. We will see more examples below. Figure
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3. Stability of the 0-state The 0-state is an equilibrium (i.e. a constant state solution). Its
behavior is determined by the sign of the eigenvalues λ1, λ2:

• λ1, λ2 < 0: all solutions tend to 0 as t → ∞. We call the 0-state a sink. It is a stable
equilibrium.

• λ1, λ2 > 0: all solutions tend to infinity as t → ∞. In fact, all solutions tend to the
0-state as t→ −∞. We call such 0-state a source. It is an unstable equilibrium.

• λ1 · λ2 < 0. Let us take λ1 < 0 and λ2 > 0 as an example for explanation. A general
solution has the form

y(t) = C1e
λ1tv1 + C2e

λ2tv2.

We have three cases:

– If y(0) ∈ Ms := {γv1, γ ∈ R}, then y(t) ∈ Ms for all t, and y(t) → 0 as t → ∞.
We call the line Ms a stable manifold.

– If y(0) ∈ Mu := {γv2, γ ∈ R}, then y(t) ∈ Mu for all t, and y(t)→ 0 as t→ −∞.
We call the line Mu an unstable manifold.

– For any other y0, the corresponding y(t) has the following asymptotics:

y(t)→ v1-axis, as t→ −∞,

y(t)→ v2-axis, as t→ +∞.

That is, all solutions approach the stable manifold as t → ∞ and the unstable
manifold as t→ −∞.

The 0 state is the intersection of the stable and unstable manifolds. It is called a saddle
point.

Figure

• λ1 = 0 and λ2 6= 0. In this case, a general solution has the form:

y(t) = C1v1 + C2e
λ2tv2.

The equilibrium {ȳ|Aȳ = 0} is a line: {C1v1|C1 ∈ R}.
– If λ2 < 0, then all solutions approach C1v1. This means that the line C1v1 is a

stable line.

– If λ2 > 0, then all solutions leave C1v1. This means that the line C1v1 is an unstable
line.

Figure You can try on the Phase Portrait on Wolfram.

Examples

1. Consider

y′ = Ay, A =

[
1 1
4 1

]
.

The corresponding characteristic equation is

det (λI−A) = (λ− 1)2 − 4 = 0.
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Hence, the two eigenvalues are
λ1 = 3, λ2 = −1.

The eigenvector v1 corresponding to λ1 = 3 satisfies

(A− λ1I)v1 = 0.

This gives

v1 =

[
1
2

]
.

Similarly, the eigenvector corresponding to λ2 = −1 is

v2 =

[
1
−2

]
.

A general solution has the form

y(t) = C1e
3tv1 + C2e

−tv2.

2. Consider

y′ = Ay, A =

[
8 −11
6 −9

]
.

The eigenvalues of A are roots of the characteristic equation det (λI −A) = 0. This yields
two eigenvalues λ1 = −3 and λ2 = 2. The corresponding eigenvectors satisfy (A− λi)vi = 0.
For v1, we have [

8 + 3 −11
6 −9 + 3

] [
x
y

]
=

[
0
0

]
.

This yields

v1 =

[
1
1

]
.

Similarly, we obtain

v2 =

[
11
6

]
.

The general solution is
y(t) = C1e

−3tv1 + C2e
2tv2.

The line in the direction of v1 is a stable manifold, whereas the line in v2 direction is a
unstable manifold. The origin is a saddle point.

3. Consider

y′ = Ay, A =

[
1 2
2 4

]
.

The eigenvalues of A are λ1 = 0 and λ2 = −5. The corresponding eigenvectors are

v1 =

[
2
−1

]
, v2 =

[
1
2

]
.

The general solutions are y(t) = C1v1 + C2e
−5tv2. All solutions approach the line C1v1.
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Case 2. λi are complex conjugate.

λ1 = α+ iω, λ2 = α− iω.

Since A is real-valued, the corresponding eigenvectors are also complex conjugate:

w1 = u + iv, w2 = u− iv.

We have two independent complex-valued solutions: z1 = eλ1tw1 and z2 = eλ2tw2.

1. Finding real fundamental solutions Since our equation (2.28) has real coefficients, its
real-valued solution can be obtained by taking the real part (or pure imaginary part ) of the
complex solution. In fact, suppose z(t) = x(t) + iy(t) is a complex solution of the real-value
ODE (2.28). Then

d

dt
(x(t) + iy(t)) = A (x(t) + iy(t)) .

By taking the real part and the imaginary part, using the fact that A is real, we obtain

dx

dt
= Ax(t),

dy

dt
= Ay(t)

Hence, both the real part and the imaginary part of z(t) satisfy the equation.

Now, let us take the real part and the imaginary part of one of the above solution:

z1(t) =
(
eαt(cosωt+ i sinωt)

)
(u + iv)

Its real part and imaginary part are respectively

y1(t) = eαt (cosωtu− sinωtv)

y2(t) = eαt (sinωtu + cosωtv) .

The other solution z2 is the complex conjugate of z1. We will get the same real solutions
from taking the real and imaginary parts of z2.

You may wonder now whether u and v are independent. Indeed, if v = cu for some c ∈ R,
then

A(u + iv) = λ1(u + iv)

gives

A(1 + ic)u = λ1(1 + ic)u

Au = λ1u = (α+ iω)u

This yields

Au = αu, and ωu = 0,

because A is real. This implies ω = 0 if u 6= 0. This contradicts to that the eigenvalue λ1

has nontrivial imaginary part. This shows that u and v are independent.

From the independence of u and v, we conclude that y1 and y2 are also independent, and
they constitute a basis in the solution space S0.
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2. Phase portrait A general solution is given by

y(t) = C1y1(t) + C2y2(t)

= C1e
αt (cosωtu− sinωtv) + C2e

αt (sinωtu + cosωtv)

= eαt ((C1 cosωt+ C2 sinωt)u + (C2 cosωt− C1 sinωt)v)

= Aeαt (cos(ωt− ω0)u + sin(ωt− ω0)v) ,

where (C1, C2) = A(cosω0, sinω0).

• When α = 0, these are circles (ellipses);

• When α 6= 0, the trajectories are spirals.

3. Stability of the 0-state. There are three cases for the structure of the solutions.

• α = 0: The eigenvalues are pure imaginary. All solutions are ellipses.

• α < 0: The solution are spirals and tend to 0 as t→∞. The 0 state is a spiral sink.

• α > 0: The solution are spirals and tend to 0 as t→ −∞. The 0 state is a spiral source.

Example

1. Consider the matrix

A =

[
2 1
−4 −1

]
,

The characteristic equation is det(λI−A) = λ2 − λ− 2 = 0. The roots are λ1 = (1 + i
√

7)/2
and λ2 = (1− i

√
7)/2. The corresponding eigenvectors are

v1 =

[
−2

3− i
√

7

]
:= u + iw, v2 =

[
−2

3 + i
√

7

]
:= u− iw.

u =

[
−2
3

]
, w =

[
0

−
√

7

]
.

We get two complex-valued solutions z1 = eλ1tv1 and z2 = eλ2tv2. The real solutions are
their real parts and imaginary parts. They are

y1 = et/2 (cos(ωt)u− sin(ωt)w) ,

y2 = et/2 (sin(ωt)u + cos(ωt)w) ,

where ω =
√

7/2. The general solutions are spirals leaving from 0. The 0 is an unstable state.

Case 3. λ1 = λ2 are real and there is only one eigenvector.

Let us see some examples first to get some intuition how to find fundamental solutions.
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Examples

1. Consider the ODE

y′ = Ay, A =

[
r 1
0 r

]
,

where r is a constant. The eigenvalue of A is r and the corresponding eigenvector is

e1 =

[
1
0

]
.

The y2 component satisfies the single equation

y′2 = ry2.

We obtain y2(t) = C2e
rt. By plugging this into the first equation

y′1 = ry1 + C2e
rt,

we find y1(t) = C2te
rt is a special solution. The general solution of y1 is

y1(t) = C2te
rt + C1e

rt.

We can express these general solutions in vector form:

y(t) = C1e
rt

[
1
0

]
+ C2

{
ert
[
0
1

]
+ tert

[
1
0

]}
= C1y1(t) + C2y2(t),

where
y1(t) = erte1, y2(t) = terte1 + erte2.

2. Consider the ODE

y′ = Ay, A =

[
1 −1
1 3

]
.

The characteristic equation

0 = det(λI−A) = (λ− 1)(λ− 3) + 1 = (λ− 2)2.

has a double root λ = 2. The corresponding eigenvector satisfies

(A− 2I)v = 0[
−1 −1
1 1

] [
v1

v2

]
=

[
0
0

]
.

This yields a solution, called v1:

v1 =

[
1
−1

]
.

This is the only eigenvector. The solution e2tv1 is a solution of the ODE. To find the other
independent solution, we expect that there is a resonant solution te2t in the direction of v1.
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Unfortunately, te2tv1 is not a solution unless v1 = 0. Therefore, let us try another kind of
solution

y(t) = te2tv1 + eµtv2,

for some unknown vector v2. We plug it into the equation y′ = Ay to find v2:

y′ = (e2t + 2te2t)v1 + µeµtv2,

we obtain

2v1te
2t + v1e

2t + µeµtv2 = A(v1te
2t + v2e

µt)

Using Av1 = 2v1, we get

v1e
2t + µeµtv2 = Av2e

µt

This should be valid for all t. Hence, we get µ = 2 and

(A− 2I)v2 = v1.

That is [
−1 −1
1 1

] [
v1

v2

]
=

[
1
−1

]
.

This gives v1 + v2 = −1. So,

v2 =

[
0
−1

]
.

is a solution.

Now, we find two solutions

y1 = e2tv1

y2 = te2tv1 + e2tv2.

Now, let us explain general theory.

1. Finding fundamental solutions The double root case can be thought as a limiting case of
two distinguished roots λ1 and λ2 with λ2 → λ1. In this limiting process,

1

λ2 − λ1

(
eλ2tv2(λ2)− eλ1tv1

)
is a solution for all λ1 and λ2. We fix λ1 and let λ2 → λ1. The eigenvector v2 depends on
λ2. This limiting process is equivalent to differentiate eλtv(λ) in λ at λ1, where v(λ) is the
eigenvector corresponding to λ. This derivative is

d

dλ

(
eλtv(λ)

)
= teλ1tv1 + eλ1t

∂v

∂λ
.

The new vector ∂v
∂λ is denoted by v2. By plugging teλ1tv1 + eλ1tv2 into the equation, we

conclude that v2 should satisfies

(A− λ1I)v2 = v1.
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The solvability of v2 comes from the follows. Let Nk be the kernel (null space) of (A−λ1I)k,
k = 1, 2. From the definition of Nk, we have the following mapping chain

N2
A−λ1I−→ N1

A−λ1I−→ {0}.

Since v1 is the only eigenvecto, we thus have N1 =< v1 >, the span of v1. In the map
A− λ1I : N2 → N1, the domain space is N2 = R2 from Caley-Hamilton theorem. ∗ We have
seen that the kernel is N1, which has dimension 1. Therefore the range space has dimension
1. Here, we use a theorem of linear map: the sum of the dimensions of range and kernel
spaces equals the dimension of the domain space. We conclude that the range (A − λ1I)N2

has to be N1. Therefore, there exists a v2 ∈ N2 such that

(A− λ1I)v2 = v1.

The matrix A, as represented in the basis v1 and v2, has the form

A[v1,v2] = [v1,v2]

[
λ1 1
0 λ1

]
This is called the Jordan canonical form of A. We can find two solutions from this form:

y1(t) = eλ1tv1,

y2(t) = teλ1tv1 + eλ1tv2

You can check the Wronskian W [y1,y2](t) 6= 0. Thus, y1 and y2 form a fundamental solution.
The general solution has the form

y(t) = C1y1(t) + C2y2(t).

2. Stability of 0 state The stability of the 0 state (called the critical state) relies on the sign
of λ1. We have

• λ1 < 0: the 0 state is a stable equilibrium.

• λ1 > 0: the 0 state is an unstable equilibrium.

• λ1 = 0: the general solution reads

y(t) = C2tv2 + C1v1,

which tends to ∞ as t→∞. Therefore, the 0 state is “unstable.”
∗The Caley-Hamilton theorem states that A satisfies the matrix equation:

p(A) = 0.

This can be seen from the following argument. Let Q(λ) be the adjugate matrix of A− λI, i.e.

Q(λ) =

[
d− λ −b
−c a− λ

]
=

[
d −b
−c a

]
− λI.

This adjugate matrix commutes with A (check by yourself). Further,

(A− λI)Q(λ) = Q(λ)(A− λI) = p(λ)I.

This is a polynomial in λ with matrix coefficients. The coefficients commute with A. When we plug λ = A, we
immediately get p(A) = 0.
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Summary of Equilibria We can plot a stability diagram on the plane of the two parameters T
and D, the trace and the determinant of A:

T = a+ d, D = ad− bc.

The eigenvalues of A are

λ1 =
T +
√
T 2 − 4D

2
, λ2 =

T −
√
T 2 − 4D

2
.

Let ∆ := T 2 − 4D. On the T -D plane, the parabola ∆ = 0, the line D = 0 and the line T = 0
partition the plane into the following regions. The status of the origin is as the follows.

• ∆ > 0, D < 0 (λ1λ2 < 0), the origin is a saddle point.

• ∆ > 0, D > 0, T > 0 (λ1, λ2 > 0), the origin is an unstable node (source).

• ∆ > 0, D > 0, T < 0 (λ1, λ2 < 0) , the origin is a stable node (sink).

• ∆ < 0, T < 0 (complex, Re(λ) < 0), the origin is a stable spiral point.

• ∆ < 0, T > 0 (complex, Re(λ) > 0), the origin is an unstable spiral point.

• ∆ < 0, T = 0 (complex, Re(λ) = 0), the origin is a stable center point.

• ∆ = 0, T < 0 (double root, λ < 0) , the origin is a stable node.

• ∆ = 0, T > 0 (double root, λ > 0), the origin is an unstable node.

• D = 0, T > 0 (λ1 = 0, λ2 > 0), Span(v1) is an unstable equilibrium line.

• D = 0, T > 0 (λ1 = 0, λ2 < 0), Span(v1) is a stable equilibrium line.

• ∆ = 0, T = 0 (λ1 = λ2 = 0), uniform motion.

Bifurcations

• The transition from D < 0 to D > 0, the eigenvalues change from opposite sign change to
same sign, the origin changes from a saddle to a node. Such transition is called a saddle-node
bifurcation.

• The transition from T < 0 to T > 0 in the region D > 0, the origin changes from stable
spiral to unstable spiral. At T = 0, the origin is a center. Such transition is called an
Andronov-Hopf bifurcation.

For detailed figure, see http://www.scholarpedia.org/article/Equilibrium#Non-hyperbolic_
Equilibria

Homework 2.6. 1. Consider A =

[
1 −2
3 −4

]
. Find the exact solution of y′ = Ay and

analyze the stability of 0.

2. Consider A =

[
3 6
−1 −2

]
. Find the exact solution of y′ = Ay and analyze the stability

72

http://www.scholarpedia.org/article/Equilibrium#Non-hyperbolic_Equilibria
http://www.scholarpedia.org/article/Equilibrium#Non-hyperbolic_Equilibria


detA

Poincaré Diagram: Classification of Phase Portraits in the (detA,TrA)-plane

TrA

∆=0 ∆=0: detA= 1
4 (TrA)2

saddle

sink source

spiral sink spiral source

center

line of stable fixed points line of unstable fixed points

degenerate sink degenerate source

uniform
motion

of 0.

3. Consider A =

[
1 i
−i 1

]
. Find the exact solution of y′ = Ay and analyze the stability of

0.

4. Solve the circuit system [
I
V

]′
=

[
−R1

L − 1
L

1
C − 1

CR2

] [
I
V

]
and analyze the stability of the 0 state.

73



74



Chapter 3

Linear Systems with Constant
Coefficients

3.1 Initial value problems for n× n linear systems

A general n× n linear system of differential equation is of the form

y′(t) = Ay(t) + f(t), (3.1)

where

y =


y1

y2

...
yn

 , A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann

 , f =


f1

f2

...
fn

 ,
Its initial value problem is to study (3.1) with initial condition:

y(0) = y0. (3.2)

3.2 Physical Models

3.2.1 Coupled spring-mass systems

Consider a spring-mass system which consists of n masses placed vertically between two walls. The
n masses and the two end walls are connected by n+ 1 springs. If all masses are zeros, the springs
are “at rest” states. When the masses are greater than zeros, the springs are elongated due to the
gravitation force. The mass mi moves down yi distance, called the displacement. The goal is to
determine the displacements yi of the masses mi, i = 1, ..., n.

Let us call the spring connecting mi−1 and mi by spring i, i = 1, ..., n+ 1. Suppose the spring
i has spring constant ki. Let us call the downward direction the positive direction.

1. Let me start from the simplest case: n = 1 and no bottom wall. The mass m1 elongates the
spring 1 by a displacement y1. The elongated spring has a restoration force −k1y1 acting on
m1.∗ Thus, we have

m1ÿ1 = −k1y1 + f1,

∗The minus sign is due to the direction of force is upward.
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u1 

m1 
m1 

-c1u1 

m1g 

-c1u1 

m1g 

-c2u1 

Figure 3.1: The left one is a spring without any mass. The middle one is a spring hanging a mass
m1 freely. The right one is a mass m1 with two springs fixed on the ceiling and floor.

where f1 = m1g, the gravitation force on m1, and g is the gravitation constant.

2. Next, let us consider the case where there is a bottom wall. In this case, both springs 1 and
2 exert forces upward to m1. The balance law becomes

m1ÿ1 = −k1y1 − k2y1 + f1.

3. Let us jump to a slightly more complicated case, say n = 3.

• The displacements
y0 = 0, y4 = 0,

due to the walls are fixed.

• The displacements y1, y2, y3 cause elongations of the springs:

ei = yi − yi−1, i = 1, 2, 3, 4.
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The restoration force of spring i is

wi = kiei.

• The force exerted to mi by spring i is −wi = −kiei. In fact, when ei < 0, the spring
is shortened and it pushes downward to mass mi (the sign is positive), hence the force
is −kiei > 0. On the other hand, when ei > 0, the spring is elongated and it pull mi

upward. We still get the force −wi = −kiei < 0.

• Similarly, the force exerted to mi by spring i + 1 is wi+1 = ki+1ei+1. When ei+1 > 0,
the spring i+ 1 is elongated and it pulls mi downward, the force is wi+1 = ki+1ei+1 > 0.
When ei+1 < 0, it pushes mi upward, and the force wi+1 = ki+1ei+1 < 0. In both cases,
the force exerted to mi by spring i+ 1 is wi+1.

• Thus, the equation of motion of mi is

miÿi = wi+1 − wi + fi = ki+1(yi+1 − yi)− ki(yi − yi−1) + fi, i = 1, 2, 3.

Let us express the above equations in matrix form. For n = 3, we get

Mÿ + Ky = f .

where

M =

m1 0 0
0 m2 0
0 0 m3

 , y =

y1

y2

y3

 ,
K :=

k1 + k2 −k2 0
−k2 k2 + k3 −k3

0 −k3 k3 + k4

 , f =

m1g
m2g
m3g


3.2.2 Coupled Circuit Systems

A circuit system consists of inductors, capacitors and resistors connected by wires. It can be
modeled by a graph G = (V,E), which consists of vertices V = {1, 2, ..., n} and edges E =
{(1, 2), (1, 3), ...}, say for example. An edge (i, j) ∈ E means that there is an edge connecting
vertices i and j. In the circuit model, the edges are the wires. On each wire, there is an electric
component. The vertices (or called nodes) are those wire junctions. The circuit theory assumes the
current is uniform on each edge, that is, independent of position. Thus, a current Ie is associated
with each edge e. On each edge, there is a potential drop across each component. The potential
drops of inductor, capacitor and resistor are respectively

• inductor: Vi = LdI/dt,

• capacitor: Vc = Q/C, or V ′c = I/C,

• resistor: Vr = IR,

where L, C and R are the inductance, capacitance and resistance. The circuit equations are derived
based on the Kirchhoff laws.

• Kirchhoff’s first law: at each junction, the sum of the currents flowing in is equal to the sum
of currents flowing out.

• Kirchhoff’s second law: the potential differences around any closed loop is zero.
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Example Suppose V = {1, 2, 3, 4}, E = {(1, 2), (2, 3), (3, 4), (4, 1), (2, 4)}. The component on
each edges are: R12, C34, L41, R24. There are 5 edges, thus, 5 unknowns. We choose the unknowns
to be I12, I23, I34, I41, I24.

The Kirchhoff’s first (charge) laws gives

at node 1 :I41 = I12,

at node 2 :I12 − I23 − I24 = 0,

at node 3 :I23 = I34,

at node 4 :I34 + I24 − I41 = 0.

We eliminate I23 and I41 right away from the charge law at node1 and 3. There is one redundant
equation because of the cyclic property of this graph. Thus, the only independent condition we
need is the charge law at node 4. Now, we have 3 unknowns: I12, I24 and I34 and one charge law
at node 4, which is

I34 + I24 − I12 = 0. (3.3)

The Kirchhoff’s second (voltage) law gives

cycle (1, 2, 4) :V12 + V24 + V41 = 0,

cycle (2, 3, 4) :V23 + V34 + V42 = 0.

The first one gives
R12I12 +R24I24 + L41I

′
12 = 0. (3.4)

The second one gives
Q34/C34 − I24R24 = 0.

We differentiate this equation and get

I34/C34 − I ′24R24 = 0. (3.5)

We can eliminate I34 and get the following two equations for I12 and I24.{
R12I12 +R24I24 + L41I

′
12 = 0

I12 − I24 − I ′24R24C34 = 0.
(3.6)

Alternatively, we can choose V34 and I12 as our unknowns. In cycle (2, 3, 4), we have

V34 −R24I24 = 0.

This can represent I24 in terms of V34. We use C34V
′

34 = I34 to eliminate I34. Finally, at node 4
and the cycle (1, 2, 4), we have {

C34V
′

34 + V34/R24 − I12 = 0
L41I

′
12 +R12I12 + V34 = 0.

(3.7)

Homework 3.1. 1. In the spring-mass system, suppose we have only two masses m1 and
m2. The mass m1 is hung on the ceiling, the mass m2 is connected to m1 on one end,
but is free on the other end. Write a mathematical model for this case.

2. Write down the two differential equations for the above circuit system.
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3. A parallel LRC circuit connects L, R and C in parallel way. Write a graph model and
ODE model for it.

4. B-D pp. 411: 25

5. B-D pp. 411: 26.

3.3 Linearity and solution space

We shall first study the homogeneous equation

y′ = Ay. (3.8)

Since the equation is linear in y, we can see the following linear property of the solutions. Namely,
if y1 and y2 are solutions of (3.8), so does their linear combination: α1y1 + α2y2, where α1, α2

are any two scalar numbers. Therefore, if S0 denotes the set of all solutions of (3.8), then S0 is a
vector space.

In the case of inhomogeneous equation (3.1), suppose we have already known a particular
solution yp, then so is yp + y for any y ∈ S0. On the other hand, suppose z is a solution of the
inhomogeneous equation:

z′ = Az + f

then z − yp satisfies the homogeneous equation (3.8). Hence, z − yp = y for some y ∈ S. We
conclude that the set of all solutions of the inhomogeneous equation (3.1) is the affine space

S = yp + S0.

To determine the dimension of the solution, we notice that all solutions are uniquely determined
by their initial data (the existence and uniqueness theorems),

y(0) = y0 ∈ Cn.

Hence, S0 is n dimensional. We conclude this argument by the following theorem.

Theorem 3.1. The solution space S0 for equation (3.8) is an n-dimensional vector space. The
solution space for equation (3.1) is the affine space yp + S0, where yp is a particular solution of
(3.1).

Fundamental solutions Our goal in this section is to construct a basis {y1, ...,yn} in S0. A
general solution in S0 can be represented as

y(t) =
n∑
i=1

Ciyi(t).

For an initial value problem with y(t0) = y0, the coefficients Ci are determined by the linear
equation

n∑
i=1

yi(t0)Ci = y0.
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or

Y(t0)C = y0

where

Y(t) = [y1(t),y2(t), · · · ,yn(t)], C = [C1, · · · , Cn]t.

If y1, · · · ,yn are independent, then Ci can be solved uniquely. Such a set of solutions {y1, · · · ,yn}
is called a fundamental solution of (3.8). So our main task is to find a set of fundamental solutions.

The basic idea is to try the decompose the system into smaller systems which can be solved
easily. We shall learn this through examples first, then develop general theory.

3.4 Decouping the systems

3.4.1 Linear systems in three dimensions

Consider the 3× 3 linear system

y′ = Ay,

where

y =

y1

y2

y3

 , A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 .
We look for three independent solutions of the form eλtv. By plugging this into the equation, we
find that λ and v have to be an eigenvalue and eigenvector of A:

Av = λv.

The eigenvalue satisfies the characteristic equation

det (λI−A) = 0.

This is a third order equation because we have a 3× 3 system. One of its roots must be real. The
other two roots can be both real or complex conjugate. We label the first one by λ3 and the other
two by λ1 and λ2. The corresponding eigenvectors are denoted by vi, i = 1, 2, 3. It is possible that
λ1 = λ2. In this case, v1 and v2 are the vectors to make A in Jordan block. That is

Av1 = λ1v1

Av2 = λ1v2 + v1

The general solution is

y(t) = C1y1(t) + C2y2(t) + C3y3(t).

The solution y1 and y2 are found exactly the same way as that in two dimension. The solution
y3(t) = eλ3tv3. If λ3 < 0, then the general solution tends to the plane spanned by v1 and v2. Let
us denote this plane by < v1,v2 >. On the other hand, if λ3 > 0, the solution leaves the plane
< v1,v2 >.
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Example.

Consider

A =

 0 0.1 0
0 0 0.2

0.4 0 0

 .
The characteristic equation is

λ3 − 0.008 = 0.

The roots are

λ3 = 0.2, λ1 = 0.2ei2π/3, λ2 = 0.2e−i2π/3.

The eigenvectors are

v3 =

1/2
1
1

 , v1 =

 −1 + i
√

3

−2− i2
√

3
4

 , v2 =

 −1− i
√

3

−2 + i2
√

3
4

 .
We denote v1 = u1 + iu2 and v2 = u1 − iu2. We also denote λ1 = α + iω, where α = −0.1 and
ω =
√

0.03. Then the fundamental solutions are

y1(t) = eαt(cos(ωt)u1 − sin(ωt)u2)

y2(t) = eαt(sin(ωt)u1 + cos(ωt)u2)

y3(t) = eλ3tv3

3.4.2 Rotation in three dimensions

An important example for 3 × 3 linear system is the rotation in three dimensions. The governing
equation is

y′(t) = Ω× y

=

 0 −ω3 −ω2

ω3 0 −ω1

ω2 ω1 0

y

We have many examples in the physical world represented with the same equation.

• Top motion in classical mechanics: y is the angular momentum and Ω× y is the torque.

• Dipole motion in a magnetic field: y is the angular momentum which is proportional to the
magnetic dipole

• A particle motion under Coriolis force: y is the velocity and −2Ω× y is the Coriolis force.

• Charge particle motion in magnetic field: y is the velocity. The term Ω×y is a force pointing
to the direction perpendicular to y and Ω. This is the Lorentz force in the motion of a charge
particle in magnetic field Ω.

• Spin motion in magnetic field: y is the spin and Ω is the magnetic field.
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We may normalize Ω = ωẑ. In this case, the equation becomes

y1′ = −ωy2

y2′ = ωy1

y3′ = 0

The solution reads:

y(t) = R(t)y(0),

cosωt − sinωt 0
sinωt cosωt 0

0 0 1


It is a rotation about the z axis with angular velocity ω.

Motion of a charge particle in constant electric magnetic field The force exerted by a
charged particle is known as the Lorentz force

F = q(E + v ×B)

The motion of the charged particle in this E-M field is governed by

mr̈ = F.

Suppose the EM field is constant with E only in z-direction and B in x-direction. Then the motion
is on y-z plane if it is so initially. We write the equation in each components:

mÿ = qBż, mz̈ = qE − qBẏ.

Let

ω :=
qB

m
,

the equations are rewritten as

ÿ = ωż, z̈ = ω

(
E

B
− ẏ
)
.

The particle started from zero vecolity has the trajectory

y(t) =
E

ωB
(ωt− sinωt), z(t) =

E

ωB
(1− cosωt).

This is a cycloid.

Homework 3.2. 1. Complete the above calculation for motion of charge particle in electro-
magnetic field.

2. Consider the equation

p

(
d

dt

)
y(t) = 0,

where y is scalar. Let us consider

p(s) = (s− 1)3.

Show that
y1(t) = et, y2(t) = tet, y3(t) = t2et.
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are three independent solutions.

3. Solve the system

y′ = Ay, A =

 1 1 1
2 1 −1
−3 2 4

 .
Ref. B-D pp. 429, problem 17.

3.4.3 Decoupling the spring-mass systems

Let us consider a spring-mass system which consists of 3 masses connected by 4 springs. We
assume the masses have equal mass m, the springs have equal spring constant k, and there is no
gravitational force. Let yj be the displacement of mass i. Then the resulting differential equation
is

Mÿ + Ky = 0.

where

M = mI, y =

y1

y2

y3

 , K := k

 2 −1 0
−1 2 −1
0 −1 2


The idea to solve this system is to decouple it. That is, we will try to diagonalize this system.
We find that the eigenvalues of K are λ1 = 2 −

√
2, λ2 = 2, λ3 = 2 +

√
2. The corresponding

eigenvectors are

v1 =

 1/2

1/
√

2
1/2

 , v2 =

 1/
√

2
0

−1/
√

2

 , v3 =

 1/2

−1/
√

2
1/2

 .
Let us take the ansatz

y(t) =

3∑
i=1

Ci(t)vi

Plug this ansatz to the equation, we get

m
3∑
i=1

C̈i(t)vi = kK(
3∑
i=1

Ci(t)vi) = k
3∑
i=1

λiCi(t)vi.

Since v1,v2,v3 are independent, we get

mC̈i(t) = kλiCi(t), i = 1, 2, 3.

The system is decoupled! Their solutions are

Ci(t) = Ai cos

(√
kλi
m
t

)
+Bi sin

(√
kλi
m
t

)
.

Thus, the general solutions can be expressed as

y(t) =
3∑
i=1

(
Ai cos

(√
kλi
m
t

)
+Bi sin

(√
kλi
m
t

))
vi.
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The coefficients Ai, Bi are determined by the initial conditions:

3∑
i=0

Aivi = y(0),

3∑
i=0

√
kλi
m
Bivi = y′(0).

Since v1, v2 and v3 are orthonormal, we can obtain the coefficients easily:

Ai = 〈y(0),vi〉, Bi =

√
kλi
m
〈y(0),vi〉.

Remark It is worth noting that vi can be expressed as

v1 =

 sin(π/4)
sin(π/2)
sin(3π/4)

 , v2 =

sin(2π/4)
sin(π)

sin(6π/4)

 , v3 =

sin(3π/4)
sin(6π/4)
sin(9π/4)

 .
Homework Let us consider a spring-mass system consisting of n − 1 masses connecting by n
springs with two ends fixed. We assume the masses have equal mass m, the springs have equal
spring constant k, and there is no gravitational force. Let yj be the displacement of mass i. Then
the resulting differential equation is

Mÿ + Ky = 0.

where

M = mI, y =


y1

y2
...

yn−1

 , K := k


2 −1 0
−1 2 −1

. . .
. . .

. . .

−1 2 −1
0 −1 2


(n−1)×(n−1)

Prove that K can be diagonalized by

v` =


sin(`π/n)
sin(2`π/n)

...
sin((n− 1)`π/n)

 , ` = 1, · · · , n− 1.

What are the corresponding eigenvalues? Find the explicit expression of general solutions.

3.5 Jordan canonical form

3.5.1 Jordan matrix

In the 2× 2 system y′ = Ay, we have seen that when A has multiple eigenvalue, it may be similar
to a special 2× 2 matrix

V−1AV = J =

[
λ 1
0 λ

]
.
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Such matrix is called a Jordan matrix. If we define z = V−1y, then

z′ = Jz,

which can be solved easily. For n × n system y′ = Ay, we also want to transform it to such kind
of system which we can solve easily.

A matrix J is called a Jordan normal form of a matrix A if we can find matrix V such that

AV = VJ,

where

J = Jk1 ⊗ · · · ⊗ Jks :=


Jk1

Jk2
. . .

Jks

 , V = [Vk1 ,Vk2 , · · · ,Vks ].

Jk(λk) =


λk 1

λk 1
. . .

. . .

λk 1
λk


k×k

, Vk = [v1
k, · · · ,vkk], k = k1, ..., ks,

s∑
i=1

ki = n.

Here, ki > 0, λki are the eigenvalues of A, vjk ∈ Cn are called the generalized eigenvectors of A, the
matrices Jk are called Jordan blocks of size k of A. The sequence (k1, ..., ks) is called the structure
of the Jordan form J. For instance, a 4-by-4 matrix A can have the following possible Jordan block
structures:

J1 ⊗ J1 ⊗ J1 ⊗ J1, J1 ⊗ J1 ⊗ J2, J1 ⊗ J3, J4.

In the case that all blocks are J1, the matrix is a diagonal matrix. The matrix Vk = [v1
k, · · · ,vkk]

is an n× k matrix. We can restrict A to Vk, k = k1, ..., ks as

AVk = A[v1
k, · · · ,vkk] = [v1

k, · · · ,vkk]Jk, k = k1, ..., ks.

For each generalized vector,

(A− λkI)v1
k = 0

(A− λkI)v2
k = v1

k

...

(A− λkI)vkk = vk−1
k , k = k1, ..., ks.

This implies

(A− λkI) v1
k = 0

(A− λkI)2v2
k = 0
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...

(A− λkI)kvkk = 0, k = k1, ..., ks.

We will see later from the construction that the set {vjki} form a basis in Cn. Therefore, V is
invertible, and

A = VJV−1.

We call A is similar to J, and is denoted by A ∼ J.

The matrix Nk := Jk − λkI is called a Nilpotent matrix, which has the form

Nk =


0 1

. . .
. . .

0 1
0


k×k

.

It is easy to check that

N2
k =


0 0 1

. . .
. . .

. . .

0 0 1
0 0

0


k×k

, · · · , ,Nk
k = 0.

Theorem 3.2. Any matrix A over C is similar to a Jordan normal form. The structure of this
Jordan normal form is unique.

Before we develop this general theory, let us study some examples first. These examples tell us

• how to find the structure of the Jordan matrix,

• how to find the generalized eigenvectors v1, ...,vn.

We shall consider the case where the characteristic polynomial pA(λ) := det(λI−A) has only one
eigenvalue with multiple multiplicity.

Example Suppose A is a 2 × 2 matrix with double eigenvalue λ. Let N1 = Ker(A − λI) and
N2 = Ker(A− λI)2.

• Determine the structure of the Jordan block. For 2 × 2 matrix, there are only two possible
structures: J1 ⊗ J1, or J2. This can be determined by the dimensions of N1. If dimN1 = 2,
then A must similar to λI (why?).

• Let us consider the other case: dimN1 = 1. We shall find generalized vectors and transform
A to a Jordan form J2.

1. First, by Caley-Hamilton theorem, dimN2 = 2. We have N1 ⊂ N2. Let us choose any
v2 ∈ N2 \ N1.
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2. We define v1 = (A − λI)v2. Then (A − λI)v1 = (A − λI)2v2 = 0. Thus, v1 ∈ N1 and
v2 ∈ N2 \ N1. We get that v1 and v2 are independent. Under [v1,v2], the matrix A is
transformed to J2(λ).

You may wonder whether the choice of v1 and v2 is unique? It is clear that the choice of v1 is
unique (up to scalar multiplication) (why? because dimN1 = 1.). How about the choice of v2? Let
us choose another one, say, v̄2 = v2 + βv1? This v̄2 ∈ N2 −N1. Define v̄1 = (A− λI)v̄2. We see
that (A−λI)v̄1 = (A−λI)2v̄2 = 0. Also, v̄1 and v̄2 are independent. Thus, both V = [v1,v2] and
V̄ = [v̄1, v̄2] can transform A to the same Jordan form. Thus, the choice of [v1,v2] is not unique.
You may check that the matrix

V̄ = [v1,v2 + βv1] = [v1,v2]S, S =

[
1 β
0 1

]
.

Then you can double check that
S−1J2S = J2.

From this 2 × 2 system, we conclude that the structure of Jordan is unique, but the choice of the
similarity transform V is not unique.

Example Suppose A is a 6× 6 matrix with only one eigenvalue λ which has multiplicity 6. We
have two tasks:

• Determine the structure of the Jordan form of A;

• Find generalized vectors to transform A to a Jordan form J.

Determine the structure There are many possible Jordan forms corresponding to A. For
instance, J6, J1 ⊗ J5, J2 ⊗ J4, J1 ⊗ J2 ⊗ J3, J3 ⊗ J3, J1 ⊗ J1 ⊗ J4, etc. Notice that if A ∼ J, then
A and J have the same Jordan block structure. But the structure of a Jordan form J(λ) can be
read easily from the dimensions of the Kernel of (J(λ)− λI)k. Let us call

Nk := Ker((J− λI)k), dk = dimNk.

We define N0 = {0} and d0 = 0. Let us investigate how dk reflects the structure of Jordan blocks.
The kernels Nk have have the following properties:

• Nk−1 ⊂ Nk.

• there exists a number d such that Nd−1 6= Nd but Nd = Nd+1.

• dk − dk−1 is the number of Jordan blocks of size at least k;

• the number of Jordan blocks of size k is mk := (dk − dk−1)− (dk+1 − dk).

Let us explain these statements by the following examples:

1. Suppose J = J1 ⊗ J5. That is

Je1 = λe1 Je2 = λe2

Je3 = λe3 + e2 Je4 = λe4 + e3
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Je5 = λe5 + e4 Je6 = λe6 + e5.

Thus,

N1 =< e1, e2 >, N2 =< e1, e2, e3 >

N3 =< e1, e2, e3, e4 >, N4 =< e1, e2, e3, e4, e5 >

N5 =< e1, e2, e3, e4, e5, e6 >= N6

Hence
d0 = 0, d1 = 2, d2 = 3, , d3 = 4, d4 = 5, d5 = d6 = 6.

The number of Jordan blocks of size k: mk = 2dk − dk+1 − dk−1:

m1 = 1, m2 = 0, m3 = 0, m4 = 0, m5 = 1.

2. Suppose J = J1 ⊗ J2 ⊗ J3. That is

Je1 = λe1 Je2 = λe2

Je3 = λe3 + e2 Je4 = λe4

Je5 = λe5 + e4 Je6 = λe6 + e5.

Thus,

N1 =< e1, e2, e4 >,

N2 =< e1, e2, e4, e3, e5 >

N3 =< e1, e2, e3, e4, e5, e6 > .

Hence
d0 = 0, d1 = 3, d2 = 5, d3 = d4 = 6.

The number of Jordan blocks of size k:

m1 = 1, m2 = 1, m3 = 1, m4 = 0.

3. Suppose J = J1 ⊗ J1 ⊗ J4. That is

Je1 = λe1 Je2 = λe2

Je3 = λe3 Je4 = λe4 + e3

Je5 = λe5 + e4 Je6 = λe6 + e5.

Thus,

N1 =< e1, e2, e3 >, N2 =< e1, e2, e3, e4 >

N3 =< e1, e2, e3, e4, e5 >, N4 =< e1, e2, e3, e4, e5, e6 >

Hence
d0 = 0, d1 = 3, d2 = 4, , d3 = 5, d4 = d5 = 6.

The number of Jordan blocks of size k:

m1 = 2, m2 = 0, m3 = 0, m4 = 1, m5 = 0.

Conclusion From the above examples, we can determine the Jordan block structure of A corre-
sponding the eigenvalue λ from

dk := dimNk, Nk := Ker (A− λI)k.
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Find generalized eigenvectors to transform A to J

1. Suppose d1 = 2, d2 = 3, ..., d5 = 6. This is equivalent to m1 = 1, m2 = · · · = m4 = 0 and
m5 = 1. That is A ∼ J1 ⊗ J5. To find generalized eigenvectors

(A− λI)v1 = 0 (A− λI)v2 = 0

(A− λI)v3 = v2 (A− λI)v4 = v3

(A− λI)v5 = v4 (A− λI)v6 = v5

we see that N1 =< v1,v2 >, N2 =< v1,v2,v3 >, ..., N5 =< v1, ...,v6 >.

(a) We choose v6 ∈ N5 \ N4,

(b) We set
vi = (A− λI)vi+1, i = 5, 4, 3, 2.

(c) You can check that v2 ∈ N1. Since dimN1 = 2, we can find another v1 ∈ N1 which is
independent of v2.

2. Suppose d1 = 3, d2 = 5 and d3 = 6. That is m1 = 2× 3− 0− 5 = 1, m2 = 2× 5− 3− 6 = 1
and m3 = 2× 6− 5− 6 = 1, or A ∼ J1 ⊗ J2 ⊗ J3. We want to find generalized eigenvectors
v1, ...,v6 satisfying

(A− λI)v1 = 0

(A− λI)v2 = 0

(A− λI)v3 = v2

(A− λI)v4 = 0

(A− λI)v5 = v4

(A− λI)v6 = v5

That is

N1 =< v1,v2,v4 >

N2 =< v1,v2,v4,v3,v5 >

N3 =< v1,v2,v4,v3,v5,v6 > .

(a) We start from N1 = Ker(A− λI). From dimN1 = 3, we find three independent vectors
v1,v2,v4 ∈ N1 by solving (A− λI)v = 0.

(b) Next we solve
(A− λI)2v = 0.

The dimension of this solution space N2 is 5 by our assumption. From N1 ⊂ N2, we
choose two independent vectors v3,v5 ∈ N2 \ N1 and reset v2 := (A − λI)v3. Finally,
the space N3 is the whole space C6. We choose v6 ∈ N3 \N2 and reset v5 = (A−λI)v6

and v4 = (A−λI)v5. With these choices of v1, ...,v6, A is transformed to J1⊗J2⊗J3.

As you can see from the construction, the choice of [v1, · · · ,v6] is not unique. But the
structure of the Jordan blocks A ∼ J1 ⊗ J2 ⊗ J3 is unique. (Why?)
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Homework 3.3. Find V to transform A to its Jordan normal form:

1. A =

 2 2 3
1 1 3
−1 −1 −2

 .
2. A =

 −1 2 −3
7 4 7
−1 −1 2

 .
3. A =

 −2 3 3
2 −2 2
−3 −3 −8

 .

4. A =


1 0 0 0 0
1 −1 0 0 −1
1 −1 0 0 −1
0 0 0 0 −1
−1 1 0 0 1

 .

5. A =



1 0 0 0 0 0
0 0 0 0 −1 1
−1 −1 1 1 −1 1
0 0 0 1 0 0
0 1 0 0 2 0
0 0 0 0 0 1

 .

3.5.2 Outline of Spectral Theory

We assume A is an n× n matrix in Cn.

Theorem 3.3 (Caley-Hamilton). Let pA(λ) := det(λI−A) be the characteristic polynomial of A.
Then pA(A) = 0.

Proof. 1. We use the adjugate matrix property. The adjugate maytrix adj(M) of a matrix M is
defined to be the transpose of the cofactor matrix of M . The i-j entry of the cofactor matrix
Mij is the determinant of the (n − 1) × (n − 1) matrix which eliminate the ith row and jth
column of the matrix M . The adjugate matrix has the following property:

adj(M) ·M = M · adj(M) = det(M)In.

Applying this property to M = λIn −A, we get

(λIn −A) · adj(λI−A) = det(λIn −A)In.

2. The right-hand side is

det(λIn −A)In =
n∑
i=0

λiciIn.
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3. Notice that the matrix adj(λI−A) can be expressed as polynomial in λ of degree (n− 1):

adj(λI−A) =

n−1∑
i=0

Biλ
i.

Thus, the left-hand side is

(λIn −A) · adj(λI−A) =
n−1∑
i=0

(λI−A) ·Biλ
i

= λnBn−1 +
n−1∑
i=1

λi(Bi−1 −ABi)−AB0.

4. By comparing both polynomials, we obtain

In = Bn−1, ciIn = Bi−1 −ABi, 1 ≤ i ≤ n− 1, c0In = −AB0.

5. Multiply the above ith equation by Ai them sum over i from 0 to n, we obtain

n∑
i=0

ciA
i = AnBn−1 +

n−1∑
i=1

Ai(Bi−1 −ABi)−AB0 = 0.

Theorem 3.4. There exists a minimal polynomial pm which is a factor of pA and pm(A) = 0.

Theorem 3.5 (Fundamental Theorem of Algebra). Any polynomial p(λ) over C of degree m can
be factorized as

p(λ) = a
m∏
i=1

(λ− λi)

for some constant a 6= 0 and λ1, ..., λm ∈ C. This factorization is unique.

Definition 3.1. Let A : Cn → Cn. A subspace V ⊂ Cn is called an invariant subspace of the linear
map A if AV ⊂ V.

Definition 3.2. A vector space V is said to be the direct sum of its two subspaces V1 and V2 if for
any v ∈ V there exist two unique vectors vi ∈ Vi, i = 1, 2 such that v = v1 + v2. We denote it by
V = V1 ⊕ V2.

Remark 3.6. We also use the notation V = V1 + V2 for the property: any v ∈ V can be written as
v = v1 + v2 for some vi ∈ Vi, i = 1, 2. Notice that V = V1 ⊕ V2 if and only if V = V1 + V2 and
V1 ∩ V2 = {0}.

Lemma 3.1. Suppose p and q are two polynomials over C and are relatively prime (i.e. no common
roots). Then there exist two other polynomials a and b such that

ap+ bq = 1.
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Lemma 3.2. Suppose p and q are two polynomials over C and are relatively prime (i.e. no common
roots). Let Np := Ker(p(A)), Nq := Ker(q(A)) and Npq := Ker(p(A)q(A)). Then

Npq = Np ⊕Nq.

Proof. From ap+ bq = 1 we get

a(A)p(A) + b(A)q(A) = I.

For any v ∈ Npq, acting the above operator formula to v, we get

v = a(A)p(A)v + b(A)q(A)v := v2 + v1.

We claim that v1 ∈ Np, whereas v2 ∈ Nq. This is because

p(A)v1 = p(A)b(A)q(A)v = b(A)p(A)q(A)v = 0.

Similar argument for proving v2 ∈ Nq. To see this is a direct sum, suppose v ∈ Np ∩Nq. Then

v = a(A)p(A)v + b(A)q(A)v = 0.

Hence Np ∩Nq = {0}.

Corollary 3.1. Suppose a polynomial p is factorized as p = p1 · · · ps with p1, ..., ps are relatively
prime (no common roots). Let Npi := Kerpi(A). Then

Np = Np1 ⊕ · · · ⊕ Nps .

Theorem 3.7 (Spectral Decomposition). Let pm be the minimal polynomial of A. Suppose pm can
be factorized as

pm(λ) =
s∏
i=1

pi(λ) =
s∏
i=1

(λ− λki)
mi

with λki 6= λkj for i 6= j. Let Nki = Ker(A− λkiI)mi. Then

• Nki is invariant under A,

• Cn = Nk1 ⊕ · · · ⊕ Nks.

Important application of spectral decomposition of a matrix is to compute etA, which will be
the fundamental solution of the ODE: y′ = Ay. It is easy to compute etA if A is a diagonal matrix
or a Jordan matrix. Through spectral decomposition, we can compute etA for general A.

3.6 Fundamental Matrices and exp(tA)

3.6.1 Fundamental matrices

We have seen that the general solution to the initial value problem:

y′(t) = Ay(t), y(0) = y0,
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can be express as y(t) = C1y1(t) + · · · + Cnyn, where y1, ..,yn are n independent solutions. The
matrix Y(t) = [y1(t), · · · ,yn(t)] is called a fundamental matrix. The solution y(t) is expressed as
y(t) = Y(t)C, where C = (C1, ..., Cn)t. By plugging y(t) = Y(t)C into the equation y′ = Ay, we
obtain

Y′C = AYC

This is valid for all C. We conclude that the fundamental matrix satisfies

Y′(t) = AY(t). (3.9)

From y(0) = Y(0)C, we obtain C = Y(0)−1y(0). Thus,

y(t) = Y(t)Y(0)−1y(0).

The matrix Φ(t) := Y(t)Y(0)−1 is still a fundamental matrix and satisfies Φ(0) = I. We shall see
that Φ(t) = exp(tA) in the next section.

Homework 3.4. 1. Consider an n× n matrix ODE

Y′(t) = AY(t)

Let W (t) = det Y(t). Show that

W ′(t) = tr(A)W (t)

where tr(A) :=
∑

i aii.
Hint: (det A)′ =

∑
i,j a

′
ijAij , where Aij is the cofactor of A.

3.6.2 Computing exp(A)

The exponential function is defined as a power series, which involves the concept of norm and limit
in the space of n× n matrices. Let Mn = {A|A is an n× n complex-valued matrix}. We define a
norm on Mn by

‖A‖ :=

∑
i,j

|aij |2
1/2

.

The norm ‖ · ‖ has the following properties:

• ‖A‖ ≥ 0 and ‖A‖ = 0 if and only if A = 0.

• ‖αA‖ = |α|‖A‖ for any α ∈ C.

• ‖A + B‖ ≤ ‖A‖+ ‖B‖.

In addition, the matrix space Mn is an algebra with the matrix multiplication. It satisfies

• ‖AB‖ ≤ ‖A‖‖B‖.
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The proof of the last assertion is the follows.

‖AB‖2 =
∑
i,j

|
∑
k

aikbkj |2

≤
∑
i,j

(
∑
k

|aik|2)(
∑
k

|bkj |2)

=
∑
i

(
∑
k

|aik|2)
∑
j

(
∑
k

|bkj |2)

= ‖A‖2‖B‖2

With this norm, we can talk about theory of convergence. The space Mn is equivalent to Cn2
.

Thus, it is complete. This means that every Cauchy sequence converges to a point in Mn.

Now we define the exponential function in Mn as the follows.

exp(A) :=

∞∑
n=0

1

n!
An. (3.10)

Theorem 3.8. The exponential function has the following properties:

• exp(A) is well-defined.

• The function exp(tA) is differentiable and d
dt exp(tA) = A exp(tA).

• exp(0) = I.

Proof. 1. This series converges because Mn is complete and this series is a Cauchy series:

‖
m∑
n

1

k!
Ak‖ ≤

m∑
n

1

k!
‖A‖k < ε,

if n < m are sufficiently enough.

2. Notice that the series

exp(tA) =

∞∑
n=0

1

n!
tnAn.

convergence uniformly for t in any bounded set in R. Further, the function exp(tA) is
differentiable in t. This is because the series obtained by the term-by-term differentiation

∞∑
n=1

1

(n− 1)!
tn−1An

converges uniformly for t in any bounded set in R. And the derivative of exp(tA) is the
term-by-term differentiation of the original series:

d

dt
exp(tA) =

∞∑
n=1

1

(n− 1)!
tn−1An
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=

∞∑
n=1

1

(n− 1)!
tn−1An−1A

= A exp(tA) = exp(tA)A.

We have seen that the fundamental solution Y(t) of the equation y′ = Ay satisfies Y′ = AY.
From the above theorem, we see that exp(tA) is a fundamental solution satisfying exp(0) = I.

Below, we compute exp(tA) for some special A.

1. A =

[
λ1 0
0 λ2

]
. In this case,

An =

[
λn1 0
0 λn2

]
and

exp(tA) =

[
etλ1 0

0 etλ2

]
.

If λ1 and λ2 are complex conjugate and λ1 = α+ iω, then

exp(tA) = eαt
[
cosωt+ i sinωt 0

0 cosωt− i sinωt

]
.

2. A =

[
0 −ω
ω 0

]
. In this case,

A2 =

[
−ω2 0

0 −ω2

]
A3 =

[
0 ω3

−ω3 0

]
A4 =

[
ω4 0
0 ω4

]
Hence,

exp(tA) =
∑
n

1

n!
tnAn =

[
cosωt − sinωt
sinωt cosωt

]

3. A =

[
λ 1
0 λ

]
. The matrix A = λI + N, where

N =

[
0 1
0 0

]
is called a nilponent matrix. N has the property

N2 = 0.
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Thus,
An = (λI + N)n = λnI + nλn−1N

With this,

exp(tA) =

∞∑
n=0

1

n!
tnAn

=
∞∑
n=0

1

n!
tn(λnI + nλn−1N)

= exp(λt)I +
∞∑
n=1

1

(n− 1)!
λn−1tnN

= exp(λt)I + t exp(tλ)N

=

[
eλt teλt

0 eλt

]
For general 2× 2 matrices A, we have seen that there exists a matrix V = [v1,v2] such that

AV = VΛ

where Λ is either diagonal matrix (case 1) or a Jordan matrix (Case 3). Notice that

An = (VΛV−1)n = VΛnV−1

Hence, the corresponding exponential function becomes

exp(tA) =

∞∑
n=0

1

n!
tnAn

=
∞∑
n=0

1

n!
tnVΛnV−1

= V(
∞∑
n=0

1

n!
tnΛn)V−1

= V exp(tΛ)V−1

Revisit fundamental matrix

1. We recall that a fundamental matrix of y′ = Ay is

Y = [y1, ...,yn],

where y1, ...,yn are independent solutions of y′ = Ay. The relation between Y(t) and
exp(tA) is

Y(t)Y(0)−1 = exp(tA).

This is because any solution can be expressed uniquely by

y(t) =

n∑
i=1

ciyi(t) = Yc.
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where c is given by
y(0) = Y(0)c, or c = Y(0)−1.

Thus, y(t) can be represented as

y(t) = Y(t)Y(0)−1y0.

We have also seen that
y(t) = exp(tA)y0.

This is valid for all y0. Thus, exp(tA) = Y(t)Y(0)−1.

2. The fundamental matrix is not unique. If both Y(t) and Z(t) are fundamental matrices of
y′ = Ay, there must be a constant matrix C such that Z(t) = Y(t)C. This follows from the
previous result:

Y(t) = Y(0)−1 = Z(t) = Z(0)−1 = exp(tA).

Thus, C = Y(o)−1Z(0). In particular, exp(tA) is a fundamental matrix.

3. A particular fundamental matrix is

Y(t) = V exp(tΛ).

This is because
V exp(tΛ) = exp(tA)V

and exp(tA) is a fundamental matrix. For 2 × 2 system, in the case of Jordan form, the
fundamental matrix Y(t) is given by

[y1(t),y2(t)] = Y(t) = [v1,v2] exp(tΛ)

= [v1,v2]

[
eλt teλt

0 eλt

]
= [eλtv1, te

λtv1 + eλtv2].

This is identical to the fundamental solution we obtained before.

Homework 3.5. 1. Find exp(tJk(λ)) for general k. Here, Jk(λ) is the Jordan matrix of
size k.

2. Compute exp(tA) with

A =

 0 −ω3 −ω2

ω3 0 −ω1

ω2 ω1 0


3. B-D, pp. 420: 3,18

4. B-D, pp. 428, 6,17,18

5. Show that if AB = BA, then exp(A+B) = exp(A) exp(B). In particular, use this result
to show exp((t− s)A) = exp(tA) exp(sA)−1.
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6. If A 6= B, show that exp(t(A + B))− exp(tA) exp(tB) = O(t2) for small t.

3.6.3 Linear Stability Analysis

Consider the n× n linear system with constant coefficients

y′ = Ay. (3.11)

The state 0 is an equilibrium state of this system.

Definition 3.3. The equilibrium 0 of (3.11) is called stable if for any ε > 0, there exists a δ > 0
such that any solution y(·,y0) starting from y0 with |y0| < δ, we have |y(t)| ≤ ε for all t > 0. It
is called asymptotically stable if it is stable, in addition, there exists a neighborhood |y| < δ such
that any solution y(·,y0) starting from y0 with |y0| < δ, then y(t)→ 0 as t→∞. If, in addition,
|y(t)| ≤ Ce−αt for some positive constantts C and α, we say y(t) converges to 0 at exponential
rate.

Remark. For 2× 2 linear system:

1. The centers are stable, but not asymptotic stable.

2. The sources, spiral sources and saddle points are unstable.

3. The sinks and the spiral sinks are asymptotic stable.

Theorem 3.9. Consider the linear system with constant coefficients:

y′ = Ay.

1. The state 0 is asymptotically stable if and only if all eigenvalues λ(A) satisfy Re(λ(A)) < 0.

2. The state 0 is stable if and only if all eigenvalues λ(A) are either (i) Re(λ(A)) < 0, or (ii)
Re(λ(A)) = 0 but it is simple.

Proof. 1. Let us decompose the space Cn (or Rn) into the invariant subspaces. The matrix A
is just a Jordan block as restricted to these invariant subspaces. The stability or asymptotic
stability of the state 0 in the whole space Cn (or Rn) is equivalent to that in all invariant
subspaces. Thus, we only need to discuss the case that A is a Jordan block J.

2. For a Jordan block J(λ) of size k, the corresponding fundamental solutions are

v1e
λt, (tv1 + v2)eλt, · · · ,

(
tk−1

(k − 1)!
v1 + · · ·+ vk

)
eλt

where vi are the generalized eigenvectors corresponding to J. If Re(λ) < 0, then tjeλt decays
exponentially fast to 0 for any j ≥ 0. Thus, 0 is asymptotic stable if Re(λ) < 0 for all
eigenvalues λ.

3. Conversely, suppose 0 is asymptotic stable. Since the solutions only have the form tjeλt with
j ≥ 0, and such solution can tend to 0 as t→∞ only when Re(λ) < 0. Thus 0 is asymptotic
stable only when all eigenvalues satisfy Re(λ) < 0.
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4. If there exists a λ such that Re(λ) > 0, then the solution eλtv→∞ as t→∞. The converse
is also true.

5. If there exists a λ such that Re(λ) = 0 and λ is simple, then the corresponding solution is
eλtv, where v is the corresponding eigenvector. Such solution stays bounded.

6. If Re(λ) = 0 and with multiplicity k > 1, then there is a solution of the form teλtv, where v
is a generalized eigenvector. This solution tends to infinity as t tends to infinity. Thus, 0 is
not stable.

3.7 Non-homogeneous Linear Systems

We consider the inhomogeneous linear systems:

y′(t) = Ay(t) + f(t), y(0) = y0. (3.12)

We use variation of parameters to solve this equation. Let Φ(t) = exp(tA) be the fundamental so-
lution for the homogeneous equation. To find a particular solution for the inhomogeneous equation,
we consider

y(t) = Φ(t)u(t).

We plug this into equation. We get

Φ′u + Φu′ = AΦu + f

Using Φ′ = AΦ, we get
Φu′ = f

Hence, a particular of u is

u(t) =

ˆ t

0
Φ(s)−1f(s) ds

Thus a particular solution yp(t) is

yp(t) = Φ(t)

ˆ t

0
Φ−1(s)f(s) ds =

ˆ t

0
Φ(t)Φ(s)−1f(s) ds

This special solution has 0 initial data. The solution for initial condition y(0) = y0 has the following
expression:

y(t) = Φ(t)y0 +

ˆ t

0
Φ(t)Φ(s)−1f(s) ds (3.13)

Notice that the matrix exponential function also satisfies the exponential laws. We can rewrite the
above expression as

y(t) = Φ(t)y0 +

ˆ t

0
Φ(t− s)f(s) ds. (3.14)
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Homework 3.6. 1. B-D pp. 439: 11, 12.

2. Consider the example of circuit system in subsection 3.2.2. Now, we add another node,
say 5 and edges (1, 5), (5, 2). On edge (1, 5), we add a power supply I(t). Derive the
equation, find its solution formula. (B-D 439, Figure 7.9.1, problem 13)

3. B-D pp. 422: 14.
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Chapter 4

Methods of Laplace Transforms

The method of Laplace transform converts a linear ordinary differential equation with constant
coefficients to an algebraic equation. The core of the this differential equation then lies in the
roots of the corresponding algebraic equation. In applications, the method of Laplace transform is
particular useful to handle general source terms for linear ODEs.

4.1 Laplace transform

For function f defined on [0,∞), we define its Laplace transformation by

Lf(s) = F (s) :=

ˆ ∞
0

f(t)e−st dt.

L is a linear transformation which maps f to F . For those functions f such that

|f(t)| ≤ Ceαt (4.1)

for some positive constants C and α, the above improper integral converges uniformly and absolutely
for complex number s lies in a compact set in {s ∈ C|Re(s) > α}:

ˆ ∞
0
|f(t)e−st| dt ≤ C

ˆ ∞
0

eαte−Re(s)t dt =
C

Re(s)− α
.

Here, we have used that

lim
t→∞

e−(Re(s)−α)t = 0

due to Re(s) > α. We call functions with this growth condition (4.1) admissible. Since the
integration allows f being discontinuous, the admissible functions include all piecewise continuous
functions. We summarize the class of these admissible functions are those f such that

1. f is bounded and piecewise continuous functions on [0,∞);

2. there exists an α ∈ R and a constant C > 0 such that |f(t)| ≤ Ceαt for all t ≥ 0.

The image space of the Laplace transform are those (analytic) function F (s) defined on s ∈ C with
Re(s) > α for some α.
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4.1.1 Examples

1. When f(t) ≡ 1, L(1) = 1/s.

L(1) =

ˆ ∞
0

e−st dt = −1

s
e−st

∣∣∞
0

=
1

s
.

2. L(eλt) = 1/(s− λ). This is because

L(eλt) =

ˆ ∞
0

eλte−st dt =

ˆ ∞
0

e−(s−λ)t dt =
1

s− λ
.

Indeed, this is valid for any complex number λ and s ∈ C with Re(s) > λ.

3. When f(t) = tn,

L(tn) =

ˆ ∞
0

tne−st dt =
−1

s

ˆ ∞
0

tn de−st

=
−1

s

(
tne−st

)∞
0

+
1

s

ˆ ∞
0

(
d

dt
tn
)
e−st dt

=
n

s
L(tn−1) =

n

s

(n− 1)

s
· · · 1

s
L(1) =

n!

sn+1
.

Alternatively,

L(tn) =

ˆ ∞
0

tne−st dt =

ˆ ∞
0

(− d

ds
)ne−st dt

= (− d

ds
)n
ˆ ∞

0
e−st dt = (− d

ds
)n

1

s
=

n!

sn+1

4. L(tneλt) = n!
(s−λ)n+1 .

L(tneλt) =

ˆ ∞
0

tneλte−st ds =

ˆ ∞
0

tne−(s−λ)t ds =
n!

(s− λ)n+1

5. L(cosωt) = s
s2+ω2 , L(sinωt) = ω

s2+ω2 .

L(cosωt) =
1

2
L(eiωt + e−iωt) =

1

2
(

1

s− iω
+

1

s+ iω
) =

s

s2 + ω2
.

6. The function

h(t) =

{
1 for t ≥ 0
0 for t < 0

is called the Heaviside function. It has a discontinuity at t = 0 with jump h(0+)−h(0−) = 1.
Its translation h(t− a) has jump at a. The corresponding Laplace transform is

L(h(t− a)) =

ˆ ∞
0

h(t− a)e−st dt =

ˆ ∞
a

e−st dt

=

ˆ ∞
0

e−(a+t)s dt = e−asL(1) =
e−as

s
,

for any a ≥ 0.
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7. We shall apply the method of Laplace transform to solve the initial value problem:

y′ + y = t, y(0) = y0.

We apply Laplace transform both sides.

L(y′) =

ˆ ∞
0

e−sty′(t) dt = −y(0) + s

ˆ ∞
0

e−sty(t) dt

Let us denote Ly = Y . We have

sY − y0 + Y =
1

s2

Hence

Y (s) =
1

s+ 1

(
y0 +

1

s2

)
=

y0

s+ 1
+

1

s2
− 1

s
+

1

s+ 1

Hence
y(t) = y0e

−t + t− 1 + e−t.

4.1.2 Properties of Laplace transform

Let us denote the Laplace transform of f by F . That is, F = Lf .

1. L is linear. This follows from the linearity of integration.

2. L is one-to-one, that is L(f) = 0 implies f = 0. Hence, L−1 exists.
This is indeed not so obvious to prove. I leave it in the homework.

3. Translation: Given f in the admissible class. The function h(t − a)f(t − a) is a translation
of f by a, where a ≥ 0. Then we have

L(h(t− a)f(t− a)) = e−asF (s).

L(h(t− a)f(t− a)) =

ˆ ∞
0

h(t− a)f(t− a)e−st dt

=

ˆ ∞
a

f(t− a)e−st dt =

ˆ ∞
0

f(t)e−s(t+a) dt

= e−as
ˆ ∞

0
f(t)e−st dt = e−asF (s).

Thus, the term e−as in the s-space represents a translation in the time domain.
On the other hand, a translation on the image space corresponds to a multiplication of an
exponential function:

L−1F (s+ λ) = e−λtf(t).

4. Dilation:

L(f(bt)) =
1

b
F
(s
b

)
, L−1F (bs) =

1

b
f

(
t

b

)
.
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5. Differentiation:
L(f ′(t)) = sF (s)− f(0), L−1F ′(s) = −tf(t). (4.2)

6. Integration:

L
(ˆ t

0
f(τ) dτ

)
=
F (s)

s
, L−1

(ˆ ∞
s

F (s1) ds1

)
=
f(t)

t
,

7. Convolution:
L(f ∗ g) = L(f) · L(g),

where

(f ∗ g)(t) =

ˆ t

0
f(τ)g(t− τ) dτ

Proof.

L(f ∗ g) =

ˆ ∞
0

e−st
ˆ t

0
f(τ)g(t− τ) dτ dt

=

ˆ ∞
0

ˆ t

0
e−sτf(τ)e−s(t−τ)g(t− τ) dτ dt

=

ˆ ∞
0

dτ

ˆ ∞
τ

dt
(
e−sτf(τ)e−s(t−τ)g(t− τ)

)
=

ˆ ∞
0

e−sτf(τ) dτ

ˆ ∞
0

e−stg(t) dt = L(f)L(g)

Homework 4.1. 1. B-D, pp. 313: 26,27.

2. Find the Laplace transforms of

(a) t sin(at) (ans. 2as/(s2 + a2)2).

(b) t cos(at), (ans. (s2 − a2)/(s2 + a2)2.)

3. Find the Laplace transforms of

(a) cosh(at) (ans. s/(s2 − a2)).

(b) sinh(at), (ans. a/(s2 − a2).)

(c) (−t)nf(t) (ans. F (n)(s).)

4. * Find the Laplace transforms of

(a) tp, p > −1 (ans. Γ(p+ 1)/sp+1).

(b)
√
t, (ans.

√
π/(2s3/2).)

5. B-D,pp. 331: 27.28

6. Find the Laplace transforms of

(a) B0(2t)−B0(2t− 1), where B0(t) = 1 for 0 ≤ t < 1 and B0(t) = 0 otherwise.
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(b) f(t) =
∑∞

k=0B(2t− k).

(c) Let f0(t) = t(1− t) for 0 ≤ t < 1 and f0(t) = 0 elsewhere. Let f(t) be the periodic
extension of f0 with period 1. Find Lf0, Lf , Lf ′0 and Lf ′..

7. Prove

L
(ˆ t

0
f(τ) dτ

)
=
F (s)

s
, L−1

(ˆ ∞
s

F (s1) ds1

)
=
f(t)

t
,

8. Let f(t) be a period function with period p. Let

f0 =

{
f(t) for 0 < t < p
0 elsewhere.

Let F (s) denote for Lf . Show that

Lf0 = Lf − e−psLf = (1− e−ps)F (s).

9. If g(u) is a continuous function on [0, 1] such that

ˆ 1

0
g(u)un du = 0 for all n ≥ 0,

show that g(u) ≡ 0.

10. If f is continuous function on [0,∞) and admissible, and Lf = 0. Show that f ≡ 0.
Hint: express s = s0 + n+ 1 and make a change of variable u = e−t in the integral of the
Laplace transform of f .

4.2 Laplace transform for differential equations

4.2.1 General linear equations with constant coefficients

A linear differential equations of order n with constant coefficients has the form:(
anD

n + an−1D
n−1 + · · ·+ a1D + a0

)
y = f(t), (4.3)

where D = d/dt. We may abbreviate this equation by

P (D)y = f.

For order n equations, we need to assume an 6= 0 and need impose n conditions. The initial value
problem imposes the following conditions:

y(0) = y0, y
′(0) = y1, · · · , y(n−1)(0) = yn−1. (4.4)

When the source term f(t) ≡ 0, the equation

P (D)y = 0 (4.5)

is called the homogeneous equation. The equation (4.3) is called the inhomogeneous equation.
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We shall accept that this initial value problem has a unique solution which exists for all time.
Such existence and uniqueness theory is the same as that for the 2× 2 systems of linear equations.
Therefore, we will not repeat here. Instead, we are interested in the cases where the source terms
have discontinuities or impulses. Such problems appear in circuit problems where a power supply
is only provided in certain period of time, or a hammer punches the mass of a mass-spring system
suddenly, or a sudden immigration of population in the population dynamics. For linear systems
with constant coefficients, the Laplace transform is a useful tool to get exact solution. The method
transfers the linear differential equations with constant coefficients to an algebraic equation, where
the source with discontinuities is easily expressed. The solution is found through solving the
algebraic equation and by the inverse Laplace transform.

4.2.2 Laplace transform applied to differential equations

Given linear differential equation with constant coefficients (4.3):

P (D)y = f,

we perform Laplace transform both sides:

L(P (D)y) = Lf.

We claim that
L(P (D)y) = P (s) · Y (s)− I(s) = F (s), (4.6)

where
Y (s) = (Ly)(s), F (s) = Lf(s),

I(s) =

n∑
i=1

n∑
k=i

aky
(k−i)(0)si−1.

In other words, the function Y (s) of the Laplace transform of y satisfies an algebraic equation.
To show this, we perform

L(Dky) =

ˆ ∞
0

Dkye−st dt =

ˆ ∞
0

e−st dy(k−1) = −y(k−1)(0) + sL(Dk−1y).

Thus,

L(Dky) = −y(k−1)(0) + sL(Dk−1y)

= −y(k−1)(0) + s
(
−y(k−2)(0) + sL(Dk−2y)

)
= (−y(k−1)(0)− sy(k−2)(0)− · · · − sk−1y(0)) + skLy.

Now, P (D) =
∑n

k=0 akD
k, we have

L(P (D)y) =
n∑
k=0

akL(Dky) = −
n∑
k=1

ak

k∑
i=1

y(k−i)(0)si−1 + P (s)Ly

= −I(s) + P (s)Ly
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The equation

P (s) · Y (s)− I(s) = F (s)

can be solved explicitly with

Y (s) =
F (s) + I(s)

P (s)
.

The function

G(t) = L−1

(
1

P (s)

)
(4.7)

is called the Green’s function. In the case of I(s) ≡ 0, we have

y(t) = L−1

(
1

P (s)
· F (s)

)
= (G ∗ f)(t).

Thus, the solution is the convolution of the Green’s function and the source term.

Examples

1. Solve y′′ + 4y′ + 4y = te−2t, y(0) = 1, y′(0) = 1.
Taking Laplace transform, we get

L(Dy) = −y(0) + sY (s)

L(D2y) = −y′(0) + sL(Dy) = −y′(0) + s(−y(0) + sY (s))

Hence,

L[(D2 + 4D + 4)y] = (s2 + 4s+ 4)Y (s)− [y′(0) + sy(0) + 4y(0)]

The Laplace transform of the source term is

L(te−2t) =
1

(s+ 2)2
.

Thus, we get

(s2 + 4s+ 4)Y (s)− [y′(0) + sy(0) + 4y(0)] =
1

(s+ 2)2
,

Y (s) =
1

(s+ 2)2

(
[y′(0) + sy(0) + 4y(0)] +

1

(s+ 2)2

)
=

y(0)

s+ 2
+
y′(0) + 2y(0)

(s+ 2)2
+

1

(s+ 2)4

Thus, its inverse Laplace transform is

y(t) = y(0)e−2t + (y′(0) + 2y(0))te−2t +
1

3!
t3e−2t.
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2. Solve y′′ − y = f(t), y(0) = y′(0) = 0, where

f(t) =

{
t, 0 ≤ t < 1
0, 1 ≤ t <∞

The Laplace transform of f is

F (s) = L(f) =

ˆ 1

0
te−st dt =

1

s2
(1− (s+ 1)e−s)

The Laplace transform of the equation gives

(s2 − 1)Y (s) = F (s).

Thus,

Y (s) =
F (s)

s2 − 1
= (

1

s2 − 1
) ·
(
−s+ 1

s2
e−s +

1

s2

)
=

(
− 1

(s− 1)s2

)
e−s +

1

s2(s2 − 1)

=

(
1

s2
+

1

s
− 1

s− 1

)
e−s +

1

2

(
1

s− 1
− 1

s+ 1

)
− 1

s2

The inverse Laplace transform of each term of Y is

L−1

(
1

s2
+

1

s
− 1

s− 1

)
= t+ 1− et

L−1

[(
1

s2
+

1

s
− 1

s− 1

)
e−s
]

= h(t− 1)
(

(t− 1) + 1− e(t−1)
)

L−1

[
1

2

(
1

s− 1
− 1

s+ 1

)
− 1

s2

]
=

1

2
(et − e−t)− t.

Here h(t) is the Heaviside function. Hence,

y(t) = h(t− 1)
(

(t− 1) + 1− e(t−1)
)

+
1

2
(et − e−t)− t.

Homework 4.2. 1. B-D,pp.322: 24,27,36,38.

2. B-D,pp. 338: 21,22

4.2.3 Generalized functions and Delta function

The delta function δ(t) is used to represent an impulse which is defined to be

δ(t) =

{
∞ for t = 0
0 otherwise.

and

ˆ ∞
−∞

δ(t) dt = 1.
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The δ-function can be viewed as the limit of the finite impulses

δ(t) = lim
ε→0+

1

ε
B0

(
t

ε

)
where B0(t) = 1 for 0 ≤ t < 1 and B0(t) = 0 otherwise. This limit is taken in the integral sense.
Namely, for any smooth function φ with finite support (i.e. the nonzero domain of φ is bounded),
the meaning of the integral:

ˆ
δ(t)φ(t) dt := lim

ε→0+

ˆ ∞
−∞

(
1

ε
B0

(
t

ε

))
φ(t) dt.

Since the latter is φ(0), we therefore define δ to be the generalized function such that

ˆ
δ(t)φ(t) dt = φ(0)

for any smooth function φ with finite support. The function φ here is called a test function.
Likewise, a generalized function is defined how it is used. Namely, it is defined how it acts on
smooth test functions. For instance, the Heaviside function is a generalized function in the sense
that ˆ

h(t)φ(t) dt :=

ˆ ∞
0

φ(t) dt.

The function f(t) := a1δ(t− t1) + a2δ(t− t2) is a generalized function. It is defined by

ˆ
f(t)φ(t) dt := a1φ(t1) + a2φ(t2).

All ordinary functions are generalized functions. In particular, all piecewise smooth functions are
generalized functions. For such a function f , it is un-important how f is defined at the jump points.
All it matters is the integral ˆ

f(t)φ(t) dt

with test function φ. For piecewise smooth function f , the jump point makes no contribution to
the integration.

One can differentiate a generalized function. The generalized derivative of a generalized function
is again a generalized function in the following sense:

ˆ
Dtf(t)φ(t) dt := −

ˆ
f(t)φ′(t) dt.

The right-hand side is well-defined because f is a generalized function. You can check that Dth(t) =
δ(t). If f is a piecewise smooth function having jump at t = a with jump height [f ]a defined by
[f ]a := limt→a+ f(t)− limt→a− f(t). Let f ′(t) be the ordinary derivative of f in the classical sense.
Thus, f ′(t) is defined everywhere except at the jump t = a. This f ′(t) is a piecewise smooth
function and hence it is a generalized function. From the definition of the generalized derivative,
we claim that

(Dtf)(t) = f ′(t) + [f ]aδ(t− a).
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To see this, ˆ
(Dtf)φdt := −

ˆ ∞
−∞

f(t)φ′(t) dt = −
(ˆ a

−∞
+

ˆ ∞
a

)
f(t)φ′(t) dt

These integrals are

−
ˆ a

−∞
f(t)φ′(t) dt = −f(a−)φ(a) +

ˆ a

−∞
f ′(t)φ(t) dt

−
ˆ ∞
a

f(t)φ′(t) dt = f(a+)φ(a) +

ˆ ∞
a

f ′(t)φ(t) dt

Hence,
ˆ

(Dtf)φdt = (f(a+)− f(a−))φ(a) +

ˆ ∞
−∞

f ′(t)φ(t) dt

=

ˆ (
[f ]aδ(t− a) + f ′(t)

)
φ(t) dt

You can check that Dtδ is a generalized function. It is defined by
ˆ

(Dtδ)(t)φ(t) dt := −φ′(0).

Let us abbreviate Dtδ by δ′(t) in later usage.
Similarly, one can take indefinite integral of a generalized function.

ˆ (ˆ t

−∞
f(τ) dτ

)
φ(t) dt :=

ˆ
f(τ)

(ˆ ∞
τ

φ(t) dt

)
dτ

for any test function φ such that
´
φ = 0. The Heaviside function h(t) can be viewed as the integral

of the delta function, namely,

h(t) =

ˆ t

0
δ(τ) dτ.

Laplace transform of the delta-functions It is easy to check that

1. Lδ =
´
δ(t)e−st dt = 1.

2. Lδ′ = s.

3. Lh = 1/s.

4.2.4 Green’s function

Let us go back to the differential equation:

P (D)y = f.

with initial data y(0), · · · , y(n−1)(0) prescribed. We recall that the Laplace transform of this equa-
tion gives

L(P (D)y) = P (s) · Y (s)− I(s) = F (s) (4.8)
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where Y (s) = (Ly)(s), F (s) = Lf(s) and

I(s) =

n∑
i=1

n∑
k=i

aky
(k−i)(0)si−1.

The Green’s function is defined to be

G = L−1

(
1

P (s)

)
. (4.9)

There are two situations that produce Green’s function as its solutions.

• Impulse source: I(s) ≡ 0 and F (s) ≡ 1: That is,

P (D)G(t) = δ(t), G(0) = G′(0) = · · · = G(n−1)(0) = 0.

Taking the Laplace transform on both sides, using

Lδ = 1,

we have P (s)LG = 1, or LG = 1/P (s), or

G = L−1

(
1

P (s)

)
.

The Green’s function corresponds to solution with impulse source and zero initial data.

• Initial impulse: I(s) = 1 and F (s) ≡ 0: That is

P (D)G(t) = 0 for t > 0, G(0) = G′(0) = · · · = 0, G(n−1)(0) =
1

an
.

Remark. Note that the Green’s functions obtained by the above two methods are identical.
Indeed, let us see the following simplest example. The function eat is the solution (Green’s function)
of both problems:

(i) y′ − ay = δ, y(0) = 0,

(ii) y′ − ay = 0, y(0) = 1.

Indeed, in the first problem, the equation should be realized for t ∈ R. The corresponding initial
data is y(0−) = 0. While in the second problem, the equation should be understood to be hold for
t > 0 and the initial data understood to be y(0+) = 1. This is classical sense. With this solution
eat, if we define

y(t) =

{
eat t ≥ 0
0 t < 0

then Dty − ay = δ. This means that this extended function is a solution of (i) and the derivative
in (i) should be interpreted as weak derivative.

111



Examples

1. Suppose P (D) = (D + 1)(D + 2). Then

1

P (s)
=

1

s+ 1
− 1

s+ 2

Hence,
G(t) = e−t − e−2t.

2. If P (D) = (D + 1)2, then

G(t) = L−1

(
1

(s+ 1)2

)
= L−1

((
− d

ds

)
1

(s+ 1)

)
= tL−1

(
1

s+ 1

)
= te−t.

3. Suppose P (D) = (D2 + ω2). Then

G(t) = L−1

(
1

s2 + ω2

)
=

sinωt

ω

In these examples, we notice that G(0) = 0 but G′(0+) = 1. This is consistent to G′(0−) = 0.
Indeed, G′ has a jump at t = 0 and the generalized derivative of G′ produces the delta function.

Explicit form of the Green’s function

Case 1. Suppose P (s) has n distinct roots λ1, ..., λn. Then

1

P (s)
=

n∑
k=1

Ak
s− λk

, where Ak =
1

P ′(λk)
.

The corresponding Green’s function is

G(t) =
n∑
k=1

Ake
λkt.

Case 2. When P (s) has multiple roots, say P (s) =
∏`
i=1(s− λi)ki . Then

1

P (s)
=
∑̀
i=1

ki∑
j=1

j−1∑
m=0

Ai,j,ms
m

(s− λi)j
,

Recall that

L−1

(
1

(s− λi)j

)
= L−1

(
1

j!
(− d

ds
)j
(

1

s− λi

))
=

1

j!
tjL−1

(
1

s− λi

)
=

1

j!
tjeλit.
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and (see (4.2))

L−1

(
sm

(s− λi)j

)
=

dm

dtm
L−1

(
1

(s− λi)j

)
for m < j.

Thus,

G(t) =
∑̀
i=1

ki∑
j=1

j−1∑
m=0

Ai,j,m
1

j!

dm

dtm

(
tjeλit

)

Representation of solutions in terms of Green’s function

1. Contribution from the source term With the Green’s function, using convolution, one can
express the solution of the equation P (D)y = f with zero initial condition by

y(t) = (G ∗ f)(t) =

ˆ t

0
G(t− τ)f(τ) dτ.

A physical interpretation of this is that the source term f(t) can be viewed as

f(t) =

ˆ t

0
f(τ)δ(t− τ) dτ

the superposition of delta source δ(t − τ) with weight f(τ). This delta source produces a
solution G(t − τ)f(τ). By the linearity of the equation, we have the solution is also the
superposition of these solution:

y(t) =

ˆ t

0
G(t− τ)f(τ) dτ.

2. Contribution from the initial data. Next, let us see the case when f ≡ 0 and the initial data
are not zero. We have seen that the contribution of the initial state is

Y (s) =
I(s)

P (s)
, where I(s) =

n∑
i=1

n∑
k=i

aky
(k−i)(0)si−1.

We have seen that L−1(si−1/P (s)) = Di−1L−1(1/P (s)) = Di−1G(t) (4.2). With this, we can
write the general solution as the follows.

Theorem 4.1. The solution to the initial value problem

P (D)y = f

with prescribed y(0), ..., y(n−1) has the following explicit expression:

y(t) = L−1

(
I(s)

P (s)
+
F (s)

P (s)

)
=

n∑
i=1

n∑
k=i

aky
(k−i)(0)G(i−1)(t) + (G ∗ f)(t)
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Homework 4.3. 1. B-D,pp. 344: 1, 10, 14,15,16

2. Prove L(δ(i)) = si.

3. Find the Green’s function for the differential operator P (D) = (D2 + ω2)m.

4. Find the Green’s function for the differential operator P (D) = (D2 − k2)m.

5. Suppose G = L−1(1/P (s)) is the Green’s function. Show that

L−1

(
si

P (s)

)
= Di

tG(t).

6. B-D, pp. 352: 13, 18,19,21,22,23
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Chapter 5

Nonlinear systems in two dimensions

5.1 Three kinds of physical models

We shall introduce three kinds of physical models which are 2× 2 nonlinear dynamical systems.

• Lotka-Velterra system

• Conservative mechanical system

• Dissipative mechanical system

5.1.1 Lotka-Volterra system

Predator-prey model

The populations of a predator and prey exhibit interesting periodic phenomenon. A simple example
is the fox-rabbit system. Let R(t) be the population of rabbit and F (t) the population of fox. The
model proposed by Lotka-Volterra reads{

Ṙ = αR− βRF
Ḟ = −γF + δRF.

(5.1)

Here,

• α the growth rate of rabbits,

• γ the death rate of foxes,

• RF the interaction rate of rabbits and foxes

• βRF the amount of rabbits being eaten

• δRF increasing rate of foxes from eating rabbits

Examples of numerical values of the parameters are: α = 2, β = 1.2, γ = 1, δ = 0.9.
If we take the environmental constraint into account, the model for the rabbits should be

changed to

Ṙ = αR

(
1− R

K

)
− βRF.
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SIR epidemic model

Compartmental models in epidemiology. The SIR model is a basic mathematical model for de-
scribing pandedemic. Let

• S: population of susceptibles,

• I: population of infectious,

• R: population of recovered,

• N = S + I +R: total population,

• β: the infection rate,

• γ: recover rate.

The model reads 
Ṡ = −β ISN
İ = −γI + β ISN
Ṙ = γI

(5.2)

The total population N(t) is unchanged in this model. Since the first two equations are already
closed, this SIR model is a special case of the predator-prey model (5.1) with α = 0.

An epidemic model

Consider the spread of a viral epidemic through an isolated population. Let x(t) denote the number
of susceptible people at time t, y(t) the number of infected people. The epidemic model reads

ẋ = 0.0003x− 0.005xy

ẏ = −0.1y + 0.005xy

The first equation means that the birth rate of susceptible people is 0.0003. Susceptible people
are infected through interaction and the infection rate is proportional to xy. The second equation
means that the death rate of infected people is 0.1. The infected rate is the same as that in the
first equation. This model is again a special case of the predator-prey model (5.1) with β = δ.

Competitive Lotka-Volterra equation

This is a model for population dynamics of two species that competing same resources. Let x1 and
x2 are the populations of two species. The model for each species follows the logistic equation. The
competing model includes a competition term −αix1x2. The model reads reads

ẋ1 = r1x1

(
1− x1

K1

)
− α1x1x2

ẋ2 = r2x2

(
1− x2

K2

)
− α2x1x2

The quantity x1x2 is the interaction rate. It causes decreasing of population of each species due
to competition. These decreasing rates are α1x1x2 and α2x1x2, respectively. Here α1 > 0, α2 > 0.
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As an example, we see two types of snails, the left-curling and the right-curling, compete the same
resource. Because they are the same kind of snail, they have the same growth rate and carrying
capacity. That is, r1 = r2 = 1 and K1 = K2 = 1. We take α1 = α2 = a. We will see later that the
structure of the solutions is very different between a < 1 and a > 1. For further study, see
https://en.wikipedia.org/wiki/Competitive_Lotka-Volterra_equations

http://www.scholarpedia.org/article/Predator-prey_model

5.1.2 Conservative mechanical systems

Our second class of nonlinear model comes from classical mechanics. Consider the motion of a
particle under a force field F . Suppose the particle position is x. The Newtonian mechanics reads

mẍ = F (x).

When the force F has the form
F = −V ′(x),

such mechanical system is called conservative. The function V is called the potential. Typical
examples are

• Spring-mass system: V (x) = 1
2kx

2;

• Gravitational system: V (x) = − G
|x| ;

• Simple pendulum: the unknown is θ, the equation is

mlθ̈ = −mg sin θ.

The potential V is V (θ) = −g
l cos θ.

• Duffing oscillator: the potential is

V (x) = −δ
2
x2 +

1

4
x4.

The dynamics is described by
ẍ = −V ′(x). (5.3)

The potential V has two minima when δ > 0. Such a potential is called a double-well
potential.

• Cubic potential: we consider the same equation (5.3) with

V (x) =
1

2
(−x2 + x3).

In these conservative systems, one can define the total energy as

E(x(t)) :=
1

2
mẋ(t)2 + V (x(t)).

One important property is that this total energy is conserved.

dE

dt
(x(t)) = mẍ(t)ẋ(t) + V ′(x(t))ẋ(t) = 0.
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This gives an algebraic constraint of ẋ and x. That is

1

2
mẋ2 + V (x) = E (constant)

We can integrate it directly. We will illustrate this in detail in the chapter of Hamilton system.

5.1.3 Dissipative systems

Physically, many conservative mechanical systems are too ideal. In real world, there are some
friction which dissipates energy. Newton classified forces into two classes: conservative forces and
frictional forces. Here are some examples.

• spring-mass system with damping:

ẍ = −γẋ− ω2x,

where γ > 0 is the damping coefficient. The term −ω2x is the conservative force, while −γẋ
the friction force.

• Damped pendulum:

mlθ̈ = −γθ̇ −mg sin θ,

where γ > 0 is the damping coefficient.

• Van der Pol oscillator:
This is a nonlinear LRC circuit, where the resistance is replaced by a vacuum tube (or a
semiconductor). The I-V relation of a resistance is V = IR. While for a vacuum tube, it is

V = α

(
I3

3
− I
)
.

Thus, the circuit equation is modified to

L
dI

dt
+
Q

C
+ α

(
I3

3
− I
)

= V (t).

In terms of I, we get

LÏ + α(I2 − 1)İ +
I

C
= f(t).

The term α(I2 − 1) is a friction term when |I| < 1 and becomes an amplification term when
|I| > 1. http://www.scholarpedia.org/article/Van_der_Pol_oscillator

• Duffing oscillator with damping:

ẍ+ γẋ− δx+ x3 = f(t).

https://en.wikipedia.org/wiki/Duffing_equation. http://www.scholarpedia.org/article/
Duffing_oscillator
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5.2 Autonomous systems

In the previous examples, all equations are of the following general form{
ẋ = f(x, y)
ẏ = g(x, y)

(5.4)

We shall study the initial value problem for this system with initial data (x(t0), y(t0)) = (x0, y0),
where t0 is the starting time. We may write this problem in vector form

ẏ = f(y) (5.5)

y(t0) = y0. (5.6)

First, we have the standard existence and uniqueness theorems.

Theorem 5.1. If f is continuously differentiable, then the initial value problem (5.5) and (5.6)
has a unique solution for t in some small interval (t0 − δ, t0 + δ).

Notice that the vector field f(y) we consider here is independent of t explicitly. Such systems
are called autonomous systems. For autonomous systems, we notice the following things.

• It is enough to study the initial value problems with t0 = 0. For if y(t) is the solution with
y(t0) = y0, then z(t) := y(t − t0) is the solution with z(0) = y0, and y(·) and z(·) trace
the same trajectory on the plane. We call such trajectories the orbits, the y-plane the phase
plane.

• Two orbits cannot intersect on the phase plane (state space, the space of y). This follows
from the uniqueness theorem.

• An orbit cannot end in finite region unless its maximal interval of existence goes to infinity.
This means that it is not possible to find a finite time T such that (i) y(·) exists in [0, T ), (ii)
y(·) can not be extended beyond T , and {y(t)|t ∈ [0, T )} stays in finite region. For the limit
limt→T− y(t) must exist and the existence theorem allows us to extend the solution beyond
T . Therefore, we can only have

either limt→T− |y(t)| =∞ for some finite T , or T =∞.

Our goal is to characterize the orbital structure on the phase plane. There are some special
orbits which play important roles in the characterization of the whole orbital structure. They are

(i) equilibria,

(ii) periodic orbits,

(iii) equilibria-connecting orbits: heteroclinic orbits, homoclinic orbits.
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5.3 Equilibria and linearization

Definition 5.1. A state ȳ is called an equilibrium of (5.5) if f(ȳ) = 0.

The constant function y(t) ≡ ȳ is a solution. We want to study the behaviors of solutions of
(5.5) which take values near ȳ. It is natural to take Taylor expansion of y about ȳ. We have

ẏ = f(y) = f(ȳ) +
∂f

∂y
(ȳ) (y − ȳ) +O(|y − ȳ|2).

Let u = y − ȳ. Then u(t) satisfies
u̇ = Au + g(u), (5.7)

where

A :=
∂f

∂y
(ȳ) ,

g(u) := f(ȳ + u)− f(ȳ)− ∂f

∂y
(ȳ) u = O(|u|2).

System (5.7) is called the linearized equation of (5.5) about ȳ. We have already known the structure
of the linear equation

v̇ = Av. (5.8)

Are the orbits of (5.7) and (5.8) “similar”?

5.3.1 Hyperbolic equilibria

Let us first study the following two examples to get feeling about perturbation.

First-order perturbation We consider the following system

v̇ = Av, A =

[
a b
c d

]
. (5.9)

and its perturbed system
v̇1 = A1v1, with A1 ∼ A. (5.10)

We ask when do the solutions of (5.10) and (5.9) look similar? The quantitative behaviors of
solutions of (5.9) are determined by the eigenvalues of A. Namely,

λ1 =
1

2

(
T +

√
T 2 − 4D

)
, λ2 =

1

2

(
T −

√
T 2 − 4D

)
.

where T = a+ d and D = ad− bc. It is clear that λi are continuous in T and D, hence in a, b, c, d,
or hence in A. Thus, if we vary A slightly, then the change of λi is also small on the complex plane.

Now suppose
Reλi(A) 6= 0, i = 1, 2. (5.11)

Then this property is still satisfied for those A1 sufficiently close to A.∗ The property (5.11)
corresponds to that the zero state is a (spiral) source, a (spiral) sink, or a saddle. We conclude
that sink, source and saddle are persistent under small linear perturbation.

∗The eigenvalues λi are continuous function in T and D, or equivalently, a, b, c, d. If Reλi 6= 0 for a specific
a, b, c, d, then a small perturbation of a, b, c, d still have nonzero Reλi.
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Homework 5.1. 1. Suppose Reλi(A) 6= 0, i = 1, 2. Let

A1 =

[
a1 b1
c1 d1

]
.

be a perturbation of A. Find the condition on A1 so that

Reλi(A1) 6= 0, i = 1, 2.

Second-order perturbation The above structure of trajectories near 0 is still valid for nonlinear
perturbation. Let us consider {

ẋ = r1x
ẏ = r2y + βx2.

(5.12)

The solution for x(t) is
x(t) = x0e

r1t. (5.13)

Plug this into the second equation, we get

ẏ = r2y + βx2
0e

2r1t.

Let us assume r2 6= 2r1 to avoid the resonance situation. Then the general solution for y(t) is

y(t) = Aer2t +Be2r1t.

We plug this into the y-equation and obtain

Ar2e
r2t + 2r1Be

2r1t = r2(Aer2t +Be2r1t) + βx2
0e

2r1t.

This yields
2r1B = r2B + βx2

0.

Thus, general solutions y(t) reads

y(t) = Aer2t +
βx2

0

2r1 − r2
e2r1t. (5.14)

If r2 = 2r1, then the general solution is

y(t) = Aer2t + βx2
0 te

2r1t. (5.15)

We see that the asymptotic behavior of (x(t), y(t)) is

• When r1 < 0 and r2 < 0, then (x(t), y(t))→ (0, 0) as t→∞. We call (0, 0) a sink.

• When r1 > 0 and r2 > 0, then (x(t), y(t))→ (0, 0) as t→ −∞. We call (0, 0) a source.

• When r1 > 0 and r2 < 0, we have two subcases:

– when x0 = 0, then (x(t), y(t))→ (0, 0) as t→∞,

– when A = 0, then (x(t), y(t))→ (0, 0) as t→ −∞,
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The orbit with x0 = 0 is called a stable manifold passing (0, 0). That is, Ms : x = 0. While
the orbit with A = 0 a unstable manifold. The equilibrium (0, 0) is the intersection of the
stable manifold and the unstable manifold. It is a saddle point. We can find the unstable
manifold explicitly. By eliminate t from (5.13) and (5.14), we can obtain the equation for Mu

as the follows.

Mu : y =
β

2r1 − r2
x2

• When r1 < 0 and r2 > 0, (0, 0) is a saddle point. The stable and unstable manifolds are

Mu : x = 0,

Ms : y =
β

2r1 − r2
x2.

General Theory for Hyperbolic Critical Points Let us go back to the general formulation
(5.5). We have the following definitions.

Definition 5.2. An equilibrium ȳ of (5.5) is called hyperbolic if all eigenvalues of the variation
matrix A := ∂f/∂y(ȳ) have only nonzero real parts.

Definition 5.3. An equilibrium ȳ of (5.5) is called

• a sink if y(t)→ ȳ as t→∞,

• a source if y(t)→ ȳ as t→ −∞,

where y(t) is any solution of (5.5) with y(0) ∼ ȳ.

Definition 5.4. 1. A curve Ms(ȳ) is called a stable manifold passing through the equilibrium
ȳ if y(t)→ ȳ as t→∞ for any solution y(t) with y(0) ∈Ms(ȳ).

2. A curve Mu(ȳ) is called a unstable manifold passing through the equilibrium ȳ if y(t) → ȳ
as t→ −∞ for any solution y(t) with y(0) ∈Mu(ȳ).

3. An equilibrium ȳ which is the intersection of a stable manifold and a unstable manifold is
called a saddle point.

Theorem 5.2. Consider the autonomous system (5.5) and its linearization (5.9) about an equilib-
rium. Suppose ȳ is hyperbolic. Then

ȳ is a


source
sink
saddle

 of the nonlinear equation

if and only if

0 is a


source
sink
saddle

 of the linearized equation

In other words, hyperbolicity is persistent under small perturbation.
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Remarks.

1. The proof of this theorem is beyond the scope of this note, you may read Arnold’s book for
the proof. But if you have learned the existence theorem, then it is a modification of the
existence theorem.

2. If an equilibrium ȳ is not hyperbolic, then the perturbation can break the local orbital
structure. Let us see the following example. Consider{

ẋ = y + γ (x2+y2)
2 x

ẏ = −x+ γ (x2+y2)
2 y

When γ = 0, the orbits are circles with center at the origin. To see the effect of perturbation,
we multiply the first equation by x and the second equation by y then add them together.
We obtain

xẋ+ yẏ =
γ

2
(x2 + y2)(x2 + y2),

ρ̇ = γρ2

where ρ = x2 + y2. The solution ρ(t) is

ρ(t) =
1

ρ(0)−1 − γt
.

When γ < 0, the solution tends to 0 as t → ∞. When γ > 0, the solution tends to zero as
t → −∞. Moreover, the solution ρ(t) → ∞ as t → ρ(0)−1/γ. Thus, the center becomes a
sink if γ < 0 and a source when γ > 0.

In fact, we can solve this equation in polar coordinate. Let ρ = x2 + y2, tan θ = y/x. We
have found the equation for ρ. The equation for θ is

θ̇ =
d

dt
tan−1

(y
x

)
=
xẏ − yẋ
x2 + y2

.

Plug the equation ẋ, ẏ into θ equation, we get

θ̇ = −1.

The solutions are spirals.

5.3.2 Predator-Prey system

Let x be the population of rabits (prey) and y the population of fox (predator. The equation for
this predator-prey system is

ẋ = ax− αxy := f(x, y)

ẏ = −by + βxy := g(x, y),

where the coefficients a, b, α, β > 0. The equilibria are those points such that f(x, y) = 0 and
g(x, y) = 0. There are two: E0 = (0, 0) and E∗ = (b/β, a/α). At E0 the linearized equation is

˙δy =
∂F

∂y
(0)δy
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The corresponding
∂F

∂y
(0) =

(
a 0
0 −b

)
Since one eigenvalue is positive and the other is negative, we get E0 is a saddle point. At E∗, the
linearized matrix is

∂F

∂y
(E∗) =

(
0 −αb/β

αb/β 0

)
The eigenvalues are pure imaginary. So E∗ is an elliptic equilibrium. Near E∗, the solution is
expected to be a closed trajectories ( a periodic solution). In fact, we can integrate the predator-
prey system as the follows. We notice that

dy

dx
=
y(−b+ βx)

x(a− αy)

is separable. It has the solution:

a ln y − αy + b lnx− βx = C.

When C is the integration constant. The trajectories are closed curves surrounding E∗. Thus, the
solutions are periodic solutions.

Homeworks.

1. * How does the period T depend on the coefficients?

5.3.3 The equilibria in the competition model

Competition model The two-species competition model reads

ẋ1 = r1x1

(
1− x1

K1

)
− α1x1x2 = f1(x1, x2),

ẋ2 = r2x2

(
1− x2

K2

)
− α2x1x2 = f2(x1, x2).

Equilibria We will study the stability of its equilibria, which are the zeros of

f1(x1, x2) = 0, f2(x1, x2) = 0.

The null lines of the vector field in the x-direction are

r1x1

(
1− x1

K1
− x2

L1

)
= 0,

where
L1 =

r1

α1
.

This yields

x1 = 0, 1− x1

K1
− x2

L1
= 0.

They are called the x1-nullclines. Similarly, the x2-nullclines are

x2 = 0, 1− x2

K2
− x1

L2
= 0,

where L2 = r2
α2

. The equilibria are the intersections of the x1-nullclines and x2-nullclines.
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Some biological relevant parameters

• K1 is the carrying capacity of species 1 from self-competition.

• L1 = r1/α1 measures the “competitive capacity” of species 2. If x2 > L1, then x1 decreases.
Large L1 or small α1 means that species 1 is less sensitive to the competition from species 2.

• Let us define

s1 =
L1

K2
, s2 =

L2

K1
.

On the x2-axis, s1 > 1 means that K2 < L1. Equivalently, the x2-nullcline lies below the x1-
nullcline, at least near x2-axis. Note that ,in this case, the vector field (f1, f2) points downward
on x1-nullcline and rightward on x2 nullcline in a neighborhood of x2-axis. Therefore, near
x1-nullcline, where ẋ1 ∼ 0, we have f2 < 0 (vector field (f1, f2) is downward). This means
that x2 decreases. It means that the x1 stays constant but x2 decreases, equivalently, x2 is
less competitive than x1. Similarly, on x2-nullcline, ẋ2 ∼ 0, but ẋ1 = f1 > 0. This means
that x2 stays nearly constant, but x1 increase. In both cases, s1 > 1 means species 1 is more
competitive than species 2, at lease in a neighbor of x1 ∼ 0.

• s2 < 1 means that specific 2 is less competitive to species 1, at least in a neighborhood of
x2 ∼ 0. In fact, s2 < 1 means that the x2-nullcline 1 − x2/K2 − x1/L2 = 0 lies below the
x1-nullcline 1− x1/K1 − x2/L1 = 0. Comparing the direction of the vector field (f1, f2), we
can see that in a neighbor of x2 ∼ 0, on x1-null cline, x2 decreases; while on x1-nullcline, x1

increases. Thus, x2 is less competitive than x1.

The intersection of a x1-nullcline and a x2-nullcline is an equilibrium. We are only interested in
those equilibria in the first quadrant because xi is the population of the i species which is non-
negative. There are four cases.

• Case 1: s1 > 1 and s2 < 1 (species 1 is more competitive)

• Case 2: s1 < 1 and s2 > 1 (species 2 is more competitive)

• Case 3: s1 < 1 and s2 < 1 (both species are not competitive)

• Case 4: s1 > 1 and s2 > 1 (both species are competitive)

In the first two cases, there are three equilibria in the first quadrant:

E0 = (0, 0), E1 = (K1, 0), E2 = (0,K2).

In the last two cases, there are four equilibria:

E0 = (0, 0), E1 = (K1, 0), E2 = (0,K2) and E∗ = (x∗1, x
∗
2),

x∗1 =
1

K2
− 1

L1
1

K1K2
− 1

L1L2

= L2(s1−1)
s1s2−1

x∗2 =
1

K1
− 1

L2
1

K1K2
− 1

L1L2

= L1(s2−1)
s1s2−1 .
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Stability The Jacobian matrix ∂f
∂x at (x1, x2) reads

∂f

∂x
(x1, x2) =

r1

(
1− 2x1

K1
− x2

L1

)
− r1x1

L1

− r2x2
L2

r2

(
1− 2x2

K2
− x1

L2

) .
We get

∂f

∂x
(0, 0) =

[
r1 0
0 r2

]
,

∂f

∂x
(K1, 0) =

[
−r1 −K1

K2

r1
s1

0 r2(1− 1
s2

)

]
,

∂f

∂x
(0,K2) =

[
r1(1− 1

s1
) 0

− r2K2
L2

−r2

]
,

In all cases, E0 is an unstable node because the eigenvalues of ∂f
∂x(0, 0) are positive.

After some computation, we can draw the following conclusion.

Theorem 5.3. In the two-species competition model, the equilibria and their stability are the fol-
lows.

• Case 1: s1 > 1 and s2 < 1: E1 is a stable sink. E2 is unstable saddle.

• Case 2: s1 < 1 and s2 > 1: E2 is a stable sink. E1 is unstable saddle.

• Case 3: s1 < 1 and s2 < 1: E1 and E2 are stable sinks and E∗ is a saddle.

• Case 4: s1 > 1 and s2 > 1: both E1 and E2 are saddles and E∗ is a stable node.

Ecologically, this theorem says that co-existence of two competing species can occur only when
both are competitive.

In the case of the competitive model for the left curling snails and right curling snails, both
have the same parameters r, K and α. Thus, both have the same competitive ratio:

s =
r

αK
.

If s > 1, both would be competitive and they would co-exist. But this is not the case we have found.
Instead, we find only one kind exists now in nature. To give an explanation, we notice that the
term −r/Kx2

1 represents the self competition, while the term −αx1x2 the cross competition. We
should expect that these two competition terms are about the same magnitude. That is, r/K ∼ α.
In this case, s ∼ 1. If the cross competition is slightly stronger than the self competition, we would
have s < 1. This would yield that only one species can survive in long time.

Homework 5.2. 1. Compute the eigenvalues of the variation matrix ∂f
∂x at E1 E2 and E∗,

and justify statements of this theorem 3.3.
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5.4 Phase plane analysis

In this section, we shall use Matlab to plot the vector field and to find orbits which connect nodes.
Here are some links to matlab codes or lectures for phase portrait for ODE.

• Phase Portrait on Plane

• Phase Portrait Plotter.

• Phase Portraits Youtube

Exercise 5.1. An example of a script m-file:

ode competition.m

clc;
clear;

% parameter setting
r1 = 3; K1 = 1; L1 = 2;
r2 = 2; K2 = 1; L2 = 0.8;
s1 = L1 / K2; s2 = L2 / K1;
xs = L2 * (s1 - 1) / (s1 * s2 -1);
ys = L1 * (s2 - 1) / (s1 * s2 -1);

% equation
f = @(x, y) r1 * x .* (1 - x / K1 - y/L1);
g = @(x, y) r2 * y .* (1 - y / K2- x/L2);

% solve system of DEs w/ I.C.s
% in system, x = y1, y = y2
system = @(t, y) [(r1 * y(1) .* (1 - y(1) / K1 - y(2)/ L1)); (r2 * y(2) .* (1 - y(2) / K2 - y(1)/L2))];
x10 = 3; y10 = 1; x20 = 3; y20 = 2.5; x30 = 0.5; y30 = 3; x40 = 0.1; y40 = 0.1;
[t, sol1] = ode45(system, [0, 20], [x10, y10]);
x1 = sol1(:,1); y1 = sol1(:, 2);
[t, sol2] = ode45(system, [0, 20], [x20, y20]);
x2 = sol2(:,1); y2 = sol2(:, 2);
[t, sol3] = ode45(system, [0, 20], [x30, y30]);
x3 = sol3(:,1); y3 = sol3(:, 2);
[t, sol4] = ode45(system, [0, 20], [x40, y40]);
x4 = sol4(:,1); y4 = sol4(:, 2);

% plot for f = 0 and g = 0
fimplicit(f, [-0.5 3 -0.5 3], 'Linewidth', 1);hold on
fimplicit(g, [-0.5 3 -0.5 3], 'Linewidth', 1);
% plot for the solutions
plot(x1, y1, x2, y2, x3, y3, x4, y4, 'Linewidth', 2);

% plot for the vector field
x1 = [-0.5:0.15:3]; x2 = [-0.5:0.15:3];
[X1,X2] = meshgrid(x1, x2);
dxdt = f(X1, X2); dydt = g(X1, X2);
u = dxdt ./ sqrt(dxdt.ˆ2 + dydt.ˆ2);
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v = dydt ./ sqrt(dxdt.ˆ2 + dydt.ˆ2);
quiver(X1, X2, u, v);

% panel setting
title(['s1 = ', num2str(s1), ' s2 = ',num2str(s2)])
legend('f(x, y) = 0', 'g(x, y) = 0', sprintf('x(0)=%f',x10), sprintf('y(0)=%f',y10),sprintf('x(0)=%f',x20), sprintf('y(0)=%f',y20),sprintf('x(0)=%f',x30), sprintf('y(0)=%f',y30),sprintf('x(0)=%f',x40), sprintf('y(0)=%f',y40),'Location', 'northeast');
xlabel('x'); ylabel('y');
xlim([-0.5 3]); ylim([-0.5 3]);
grid on; hold off
print('compt2008.jpg','-djpeg')

Run the script by typing the filename in the command window:

>> ode competition.m
>>

(a) s1 = 0.5, s2 = 0.5 (b) s1 = 2, s2 = 0.8

(c) s1 = 2, s2 = 1.5. (d) s1 = 2, s2 = 2

Homework 5.3. 1. B-D: pp. 525, 8, 9

2. B-D: pp. 527, 17

3. Plot phase portraits for the four cases in the competitive model in the last subsection.
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Chapter 6

Calculus of Variations

6.1 A short story about Calculus of Variations

The development of calculus of variations has a long history. It may goes back to the brachistochrone
problem proposed by Johann Bernoulli (1696). This is an ancient Greek problem, which is to find
a path (or a curve) connecting two points A and B with B lower than A such that it takes minimal
time for a ball to roll from A to B under gravity. Hohann Bernoulli used Fermat principle (light
travels path with shortest distance) to prove that the curve for solving the brachistochrone problem
is the cycloid.

Euler (1707-1783) and Lagrange (1736-1813) are two important persons in the development of
the theory of calculus of variations. I quote two paragraphs below from Wiki for you to know some
story of Euler and Lagrange.

“Lagrange was an Italian-French Mathematician and Astronomer. By the age of 18 he was
teaching geometry at the Rotal Artillery School of Turin, where he organized a discussion group
that became the Turin Academy of Sciences. In 1755, Lagrange sent Euler a letter in which he
discussed the Calculus of Variations. Euler was deeply impressed by Lagrange’s work, and he held
back his own work on the subject to let Lagrange publish first.”

“Although Euler and Lagrange never met, when Euler left Berlin for St. Petersburg in 1766,
he recommended that Lagrange succeed him as the director of the Berlin Academy. Over the course
of a long and celebrated career (he would be lionized by Marie Antoinette, and made a count by
Napoleon before his death), Lagrange published a systemization of mechanics using his calculus of
variations, and did significant work on the three-body problem and astronomical perturbations.”

6.2 Problems from Geometry

Geodesic curves Find the shortest path connecting two points A and B on the plane. Let y(x)
be a curve with (a, y(a)) = A and (b, y(b)) = B. The geodesic curve problem is to minimize

ˆ b

a

√
1 + y′(x)2 dx

among all paths y(·) connecting A to B.
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Isoperimetric problem This was an ancient Greek problem. It is to find a closed curve with a
given length enclosing the greatest area. Suppose the curve is described by (x(t), y(t)), 0 ≤ t ≤ T .
We may assume the total length is L. The isoperimetric inequality problem is to

max

{
1

2

ˆ T

0
(x(t)ẏ(t)− y(t)ẋ(t)) dt

}
,

subject to ˆ T

0

√
ẋ(t)2 + ẏ(t)2 dt = L.

Its solution is the circle with radius R = L/(2π). Since the circle has the maximal enclosed area
among all closed curves with arc length L, we then get so-called iso-perimetric inequality

4πA ≤ L2.

The equality holds for circles. A geometric proof was given by Steiner (1838). An analytic proof
was given by Weierstrass and by Edler. ∗ The proof by Hurwitz (1902) using Fourier method can
also be found in John Hunter and Bruno Nachtergaele’s book, Applied Analysis. In later section,
we shall give an ODE proof.

6.3 Euler-Lagrange Equation

Let us consider the following variational problem:

minJ [y] :=

ˆ b

a
F (x, y(x), y′(x)) dx,

subject to the boundary conditions

y(a) = ya, y(b) = yb.

The function F : R× R× R→ R is a smooth function. We call the set

A =
{
y : [a, b]→ R ∈ C1[a, b]|y(a) = ya, y(b) = yb

}
an admissible class. Here, C1[a, b] denotes the set of functions from [a, b] to R which are continuously
differentiable. An element y ∈ A is a path connecting (a, ya) to (b, yb). The mapping J : A → R
is called a functional. It measures the cost of a path. Given a path y ∈ A, we consider a variation
of this path in the direction of v by

y(x, ε) := y(x) + εv(x).

Here, v is a C1 function with v(a) = v(b) = 0 in order to have y(·, ε) ∈ A for small ε. Such v is
called a variation. Sometimes, it is denoted by δy. We can plug y(·, ε) into J . Suppose y is a local
minimum of J in A, then for any such variation v, J [y + εv] takes minimum at ε = 0. This leads
to a necessary condition:

d

dε

∣∣∣
ε=0
J [y + εv] = 0.

∗You can read a review article by Alan Siegel, A historical review of isoperimetric theorem in 2-D, and its place
in elementary plan geometry . For applications, you may find a book chapter from Fan in .

130

http://www.cs.nyu.edu/faculty/siegel/SCIAM.pdf
http://www.math.ucsd.edu/~fan/research/cb/ch2.pdf


Let us compute this derivative

d

dε

∣∣∣
ε=0
J [y + εv] =

d

dε

∣∣∣
ε=0

ˆ b

a
F (x, y(x) + εv(x), y′(x) + εv′(x)) dx

=

ˆ b

a

∂

∂ε

∣∣∣
ε=0

F (x, y(x) + εv(x), y′(x) + εv′(x)) dx

=

ˆ b

a
Fy(x, y(x), y′(x))v(x) + Fy′(x, y(x), y′(x))v′(x) dx

It is understood that Fy′ here means the partial derivative w.r.t. the third variable y′. For instance,

suppose F (y, y′) = y2

2 + y′2

2 , then Fy′ = y′.

Theorem 6.1 (Necessary Condition). A necessary condition for y ∈ A to be a local minimum of
J is ˆ b

a
Fy(x, y(x), y′(x))v(x) + Fy′(x, y(x), y′(x))v′(x) dx = 0 (6.1)

for all v ∈ C1[a, b] with v(a) = v(b) = 0.

If the solution y ∈ C2[a, b], then we can take integration by part on the second term to get

ˆ b

a
Fy′(x, y(x), y′(x))v′(x) dx = −

ˆ b

a

d

dx
Fy′(x, y(x), y′(x))v(x) dx.

Here, I have used v(a) = v(b) = 0. Thus, the necessary condition can be rewritten as

ˆ b

a

(
Fy(x, y(x), y′(x))− d

dx
Fy′(x, y(x), y′(x))

)
v(x) dx = 0

for all v ∈ C1[a, b] with v(a) = v(b) = 0. A fundamental theorem of calculus of variations is the
following theorem.

Theorem 6.2. If f ∈ C[a, b] satisfies

ˆ b

a
f(x)v(x) dx = 0

for all v ∈ C∞[a, b] with v(a) = v(b) = 0, then f ≡ 0.

Proof. If f(x0) 6= 0 for some x0 ∈ (a, b) (say f(x0) = C > 0), then there is small neighborhood
(x0 − ε, x0 + ε) such that f(x) > C/2. We can choose v to be a hump such that v(x) = 1 for
|x − x0| ≤ ε/2 and v(x) ≥ 0 and v(x) = 0 for |x − x0| ≥ ε. The test function still satisfies the
boundary constraint if ε is small enough. Using this v, we get

ˆ b

a
f(x)v(x) dx ≥ Cε

2
> 0.

This contradicts to our assumption. We conclude f(x0) = 0 for all x0 ∈ (a, b). Since f is continuous
on [a, b], we also have f(a) = f(b) = 0 by continuity of f .
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Thus, we obtain the following stronger necessary condition.

Theorem 6.3. A necessary condition for a local minimum y of J in A ∩ C2 is

δJ
δy

:= Fy(x, y(x), y′(x))− d

dx
Fy′(x, y(x), y′(x)) = 0. (6.2)

Equation 6.2 is called the Euler-Lagrange equation for the minimization problem minJ [y].

Example For the problem of minimizing arc length, the functional is

J [y] =

ˆ b

a

√
1 + y′2 dx,

where y(a) = ya, y(b) = yb. The corresponding Euler-Lagrange equation is

d

dx
Fy′ =

d

dx

(
y′√

1 + y′2

)
= 0.

This yields
y′√

1 + y′2
= Const.

Solving y′, we further get

y′ = C (a constant).

Hence y = Cx+D. Applying boundary condition, we get

C =
yb − ya
b− a

, D =
bya − ayb
b− a

.

Thus, the curves with minimal arc length on the plane are straight lines.

Homework

1. Compute δJ /δy of the following functionals. We will neglect boundary effects if there is any.

(a) J [y] =
´ b
a V (x)y(x) dx.

(b) J [y] =
´ b
a α(x)y′(x) dx.

(c) J [y] =
´ b
a (α(x)y′(x))2 dx.

(d) J [y] =
´ b
a

(
−y(x)2

2 + y(x)4

4

)
dx.

(e) J [y] = 1
p

´ b
a (y′(x))p dx, 1 < p <∞.

(f) J [y] =
´ b
a (y′′(x))2 dx.
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6.4 Problems from Mechanics

Least action principle In classical mechanics, the motion of a particle in R3 is described by

mẍ = −∇V (x) = F (x),

where, V (x) is called a potential and F is called a (conservative) force. This is called Newton’s
mechanics. Typical examples of potentials are the potential V (x) = gx with uniform force field, the

harmonic potential V (x) = k2

2 |x|
2 for a mass-spring system, the Newtonian potential V (x) = − G

|x|
for solar-planet system, etc. Here, k is the spring constant, G, the gravitation constant.

The Newton mechanics was reformulated by Lagrange (1788) in variational form and was orig-
inally motivated by describing particle motion under constraints. Let us explain this variational
formulation without constraint. First, let us introduce the concept of virtual displacement or vari-
ation of position. Given a path x(t), t0 ≤ t ≤ t1, consider a family of paths

xε(t) := x(t, ε) := x(t) + εη(t), t0 ≤ t ≤ t1,−ε0 < ε < ε0.

Here, η(t) is called a virtual displacement and xε(·) is called a small variation of the path x(·).
Sometimes, we denote v(·), the variation of xε(·), by δx. That is, δx := ∂ε|ε=0xε.

Now, Newton’s law of motion can be viewed as

δW = (F −mẍ) · η = 0 for any virtual displacement η.

The term δW is called the total virtual work in the direction η. The term F · η is the virtual
work done by the external force F , while mẍ · η is the virtual work done by the inertia force. The
d’Alembert principle of virtual work states that the total virtual work is always zero along physical
particle path in the direction of any virtual displacement η.

If we integrate it in time from t0 to t1 with fixed v(t0) = v(t1) = 0, then we get

0 =

ˆ t1

t0

−mẍ · η −∇V (x) · η dτ

=

ˆ t1

t0

mẋ · η̇ −∇V (x) · η dτ

=

ˆ t1

t0

∂ε|ε=0

(
1

2
m|ẋε|2 − V (xε)

)
dτ

=
d

dε

∣∣∣
ε=0

ˆ t1

t0

L(xε, ẋε) dτ = δS.

Here,

L(x, ẋ) :=
1

2
m|ẋ|2 − V (x),

is called the Lagrangian, and the integral

S[x] :=

ˆ t1

t0

L(x(τ), ẋ(τ)) dτ

is called the action. Thus, δS = 0 along a physical path. This is called the Hamilton principle or
the least action principle. You can show that the corresponding Euler-Language equation is exactly
the Newton’s law of motion.
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Theorem 6.4. The following formulations are equivalent:

• Newton’s equation of motion mẍ = −∇V (x);

• d’Alembert principle of virtual work:
´ t1
t0

(mẋ · η̇ −∇V (x) · η) dt = 0 for all virtual displace-
ment η;

• Hamilton’s least action principle: δ
´ t1
t0

(
m
2 |ẋ|

2 − V (x)
)
dt = 0.

Remarks

1. The meaning of the notation δ. In the path space, we vary x(·) by xε(·). This means
that they are a family of paths. We can express them as x(t, ε). A typical example is
x(t, ε) = x(t) + εv(t). The variation of the path xε simply means

δx(t) =
∂

∂ε
|ε=0x(t, ε).

For the case xε = x+εη, δx = η. Sometimes, we use prime to denote for ∂
∂ε , while dot denote

for ∂
∂t . The two differentiations commute. That is

δẋ = ẋ′ =
d

dt
δx.

2. When we consider a variation of path xε, the functional S[xε] becomes a function of ε as well:

S(ε) := S[xε] =

ˆ t1

t0

L(x(τ, ε), ẋ(τ, ε)) dτ.

We can take differentiation of S w.r.t. ε at ε = 0:

dS

dε
(0) =

d

dε
|ε=0

ˆ t1

t0

L(x(τ, ε), ẋ(τ, ε)) dτ

=

ˆ t1

t0

(
∂

∂ε
L(x(τ, ε), ẋ(τ, ε))

)
dτ

=

ˆ t1

t0

(
Lxx

′ + Lẋẋ
′) dτ

=

ˆ t1

t0

(
Lxδx−

d

dτ
Lẋδx

)
dτ

=

ˆ t1

t0

δS
δx

(τ)δx(τ) dτ.

Thus, the notation δS
δx is

δS
δx

(t) = Lx(x(t), ẋ(t))− d

dt
Lẋ(x(t), ẋ(t)).

is the variation of S w.r.t. the path x. Sometimes, we write

δS =
δS
δx
· δx.
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One advantage of variational formulation – existence of first integral One advantage of
this variational formulation is that it is easy to find some invariants (or so-called integrals) of the
system. One exmple is the existence of the first integral.

Theorem 6.5. When the Lagrangian L(x, ẋ) is independent of t, then the quantity (called the first
integral)

I(x, ẋ) := ẋ · ∂L
∂ẋ
− L(x, ẋ)

is independent of t along physical trajectories.

Proof. We differentiate I(x(·), ẋ(·)) along a physical trajectory x(·):

d

dt
[ẋLẋ − L] = ẍLẋ + ẋ

d

dt
Lẋ − Lxẋ− Lẋẍ

= ẋ

(
d

dt
Lẋ − Lx

)
= 0.

Remarks.

1. For the Newton mechanics where L(x, ẋ) = 1
2m|ẋ|

2 − V (x), this first integral is indeed the
total energy. Indeed, we obtain

I(x, ẋ) =
1

2
m|ẋ|2 + V (x).

2. In Newton’s equation:

mẍ = −∇V (x),

we multiply both sides by ẋ and obtain

mẍ · ẋ+∇V (x) · ẋ = 0.

This can be written as
d

dt

(
1

2
m|ẋ|2 + V (x)

)
= 0.

Thus,
1

2
m|ẋ|2 + V (x) = E.

for some constant E. This is another equivalent derivation, called energy method for Newton’s
mechanics with conservative force field.

3. If the particle motion is in one dimension, that is, x(·) ∈ R, then the first integral

m

2
ẋ2 + V (x) = E

determines trajectories on the phase plane. Let us see the following example.
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(a) Harmonic oscillator: V (x) = k
2x

2. The conservation of energy gives

m

2
ẋ2 +

k

2
x2 = E.

Each fixed E determines an ellipse on the phase plane (x, ẋ). Given an initial state
(x(0), ẋ(0)), it also determines a unique E0 = m

2 ẋ(0)2 + k
2x(0)2. This E0 determines a

trajectory from m
2 ẋ

2 + k
2x

2 = E, which is exactly the trajectory with the initial state
(x(0), ẋ(0)).

(b) Simple pendulum: A simple pendulum has a mass m hanging on a massless rod with
length `. The rod is fixed at one end and the mass m swings at the other end by the
gravitational force, which is mg. Let θ be the angle of the rod and the negative vertical
direction (0,−1). The locus the mass travels is on the circle centered at the fixed end of
the rod. Thus, we have

• mass position: `(sin θ,− cos θ),

• tangential direction of the motion: (cos θ, sin θ)

• tangential velocity: v = `θ̇,

• tangential acceleration: a = `θ̈,

• the gravitation force: F = mg(0,−1),

• the force in the tangential direction: −mg sin θ.

The Newton’s law of motion gives

m`θ̈ = −mg sin θ.

We eliminate m and get

θ̈ = −g
`

sin θ.

The conservation of energy reads

1

2
θ̇2 − g

`
cos θ = E.

Each E determines a trajectory on the phase plane (θ, θ̇). Here are some special trajec-
tories.

• The stable equilibria: θ = 2nπ, θ̇ = 0. The corresponding E0 = −g
` .

• The unstable equilibria: θ = (2n+ 1)π, θ̇ = 0. The corresponding energy is E1 = g
` .

• The heteroclinic orbit: it connects two neighboring unstable equilibria: it satisfies

1

2
θ̇2 − g

`
cos θ = E1,

but it is not an equilibrium state.

• For E0 < E < E1, the corresponding orbit is a closed curve. For E > E1, the
corresponding is an unbounded orbit.
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6.5 Method of Lagrange Multiplier

In variational problems, there are usually accompanied with some constraints. As we have seen that
the iso-perimetric problem. Lagrange introduced auxiliary variable, called the Lagrange multiplier,
to solve these kinds of problems. Below, we use the hanging rope problem to explain the method
of Lagrange multiplier.

Hanging rope problem A rope given by y(x), a ≤ x ≤ b hangs two end points (a, ya) and
(b, yb). Suppose the rope has length ` and density ρ(x). Suppose the rope is in equilibrium, then it
minimizes its potential energy, which is

J [y] =

ˆ `

0
ρgy ds =

ˆ b

a
ρgy

√
1 + y′2 dx.

The rope is subject to the length constraint

W[y] =

ˆ b

a

√
1 + y′2 dx = `.

Method of Lagrange multiplier In dealing with such problems, it is very much like the op-
timization problems in finite dimensions with constraints. Let us start with two dimensional ex-
amples. Suppose we want to minimize f(x, y) with constraint g(x, y) = 0. The method of La-
grange multiplier states that a necessary condition for (x0, y0) being such a solution is that, if
∇g(x0, y0) 6= 0, then ∇f(x0, y0) ‖ ∇g(x0, y0). This means that there exists a constant λ0 such
that ∇f(x0, y0) +λ0∇g(x0, y0) = 0. In other words, (x0, y0, λ0) is an extremum of the unconstraint
function F (x, y, λ) := f(x, y) + λg(x, y). That is, (x0, y0, λ0) solves

∂F

∂x
= 0,

∂F

∂y
= 0,

∂F

∂λ
= 0.

The first two is equivalent to ∇f(x0, y0) ‖ ∇g(x0, y0). The last one is equivalent to the constraint
g(x0, y0) = 0. The advantage is that the new formulation is an unconstrained minimization problem.

For constrained minimization problem in n dimensions, we have same result. Let y = (y1, ..., yn).
f : Rn → R and g : Rn → R. Consider

min f(y) subject to g(y) = 0.

A necessary condition for y0 being such a solution is that, if ∇g(y0) 6= 0, then there exists λ0 such
that (y0, λ0) is an extremum of the unconstraint function F (y, λ) := f(y)+λg(y). That is, (y0, λ0)
solves

∂F

∂y
(y0, λ0) = 0,

∂F

∂λ
(y0, λ0) = 0.

For variational problem, we have much the same. Let us consider a variational problem in an
abstract form:

minJ [y] subject to W[y] = 0

in some admissible class A = {y : [a, b] → R|y(a) = ya, y(b) = yb} in some function space. We
approximate this variational problem to a finite dimensional problem. For any large n, we partition
[a, b] into n even subintervals:

xi = a+ i
b− a
n

, i = 0, ..., n.
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We approximate y(·) ∈ A by piecewise linear continuous function ỹ with

ỹ(xi) = y(xi), i = 0, ..., n.

The function ỹ ∈ A has an one-to-one correspondence to y := (y1, ..., yn−1) ∈ Rn−1. We approxi-
mate J [y] by J(y) := J [ỹ], and W[y] by W (y) =W[ỹ]. Then the original constrained variational
problem is approximated by a constrained optimization problem in finite dimension. Suppose y0 is
such a solution. According to the method of Lagrange multiplier, if ∇W (y0) 6= 0, then there exists
a λ0 such that (y0, λ0) solves the variational problem: J(y) + λW (y).

Notice that the infinite dimensional gradient δW/δy can be approximated by the finite dimen-
sional gradient ∇W (y). That is

δW
δy

[y] ≈ δW
δy

[ỹ] =
∂W

∂y
= ∇W (y).

We summarize the above intuitive argument as the following theorem.

Theorem 6.6. If y0 is an extremum of J [·] subject to the constraint W[y] = 0, and if δW/δy 6= 0,
then there exists a constant λ0 such that (y0, λ0) is an extremum of the functional J [y] + λW[y]
with respect to (y, λ).

*Remark. A more serious proof is the follows.

1. We consider two-parameter variations

z(x) = y(x) + ε1h1(x) + ε2h2(x).

The variation hi should satisfy the boundary conditions: hi(a) = hi(b) = 0 in order to have
z satisfy the boundary conditions: z(a) = ya and z(b) = yb. For arbitrarily chosen such
variations hi, we should also require εi satisfying

W (ε1, ε2) =W[y + ε1h1 + ε2h2] = 0.

On the variational subspaces spanned by hi, i = 1, 2, the functional J becomes

J(ε1, ε2) := J [y + ε1h1 + ε2h2].

Thus the original problem is reduced to

min J(ε1, ε2) subject to W (ε1, ε2) = 0

on this variational subspace. By the method of Lagrange multiplier, there exists a λ such that
an extremum of the original problem solves the unconstraint optimization problem min J +
λW . This leads to three equations

0 =
∂

∂ε1
(J + λW ) =

(
δJ
δy

+ λ
δW
δy

)
· h1

0 =
∂

∂ε2
(J + λW ) =

(
δJ
δy

+ λ
δW
δy

)
· h2

0 =
∂

∂λ
(J + λW ) =W[y]
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2. Notice that the Lagrange multiplier λ so chosen, depends on h1 and h2. We want to show
that it is indeed a constant. This is proved below.

3. Since δW/δy(x) 6= 0, we choose x1 where δW/δy(x1) 6= 0. For any x2 ∈ (a, b), we consider
hi = δ(x − xi), i = 1, 2. Here, δ is the Dirac delta function. It has the property: for any
continuous function f , ˆ

f(x)δ(x− x0) dx = f(x0).

By choosing such hi, we obtain that there exists a λ12 such that

δJ
δy

(x1) + λ12
δW
δy

(x1) = 0

δJ
δy

(x2) + λ12
δW
δy

(x2) = 0

In other words, the constant

λ12 = −
δJ
δy (x1)

δW
δy (x1)

.

For any arbitrarily chosen x2, we get the same constant. Thus, λ12 is independent of x2. In
fact, the above formula shows

δJ
δy (x1)

δW
δy (x1)

=

δJ
δy (x2)

δW
δy (x2)

,

for any x2 6= x1. This means that there exists a constant λ such that

δJ
δy

(x) + λ
δW
δy

(x) = 0 for all x ∈ (a, b).

6.6 Examples

6.6.1 The hanging rope problem

Let us go back to investigate the hanging rope problem. By the method of Lagrange multiplier, we
consider the extremum problem of new Lagrangian

L(y, y′, λ) = ρgy

√
1 + y′2 + λ

√
1 + y′2.

The Lagrangian is independent of x, thus it admits the first integral L− y′Ly′ = C, or

(ρgy + λ)

(√
1 + y′2 − y′2√

1 + y′2

)
= C.

Solving for y′ gives

y′ = ± 1

C

√
(ρgy + λ)2 − C2.

Using method of separation of variable, we get

dy√
(ρgy + λ)2 − C2

= ±dx
C
.
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Change variable u = ρgy + λ, we get

1

ρg
cosh−1

( u
C

)
= ± x

C
+ C1.

Hence

y = − λ

ρg
+
C

ρg
cosh

(ρgx
C

+ C2

)
.

The constraints C, C2 and the Lagrange multiplier λ are then determined by the two boundary
conditions and the constraint. The shape of this hanging rope is called a catenary.

6.6.2 Isoperimetric inequality

We recall that the isoperimetric inequality is to find a closed curve with a given length enclosing
the greatest area. Suppose the curve is described by (x(t), y(t)), where t is a parameter on the
curve, 0 ≤ t ≤ T . The iso-perimetric problem is to maximize the area

A[x, y] :=
1

2

ˆ T

0
(x(s)ẏ(t)− y(t)ẋ(t)) dt

subject to

L[x, y] :=

ˆ T

0

√
ẋ(t)2 + ẏ(t)2 dt = 2π.

This is a constrained maximization problem. We use method of Lagrange multiplier, there exists a
constant λ such that the solution satisfies

δ(A− λL) =
1

2

ˆ T

0
ẏδx− yδẋ+ xδẏ − ẋδy dt− λ

ˆ T

0

ẋδẋ+ ẏδẏ√
ẋ2 + ẏ2

dt

=

ˆ T

0
ẏδx− ẋδy dt+ λ

ˆ T

0

d

dt

(
ẋ√

ẋ2 + ẏ2

)
δx+

d

dt

(
ẏ√

ẋ2 + ẏ2

)
δy dt

=

ˆ T

0

(
ẏ + λ

d

dt

(
ẋ√

ẋ2 + ẏ2

))
δx+

(
−ẋ+ λ

d

dt

(
ẏ√

ẋ2 + ẏ2

))
δy dt = 0.

This is valid for any δx and δy. Thus,

d

dt

(
ẋ√

ẋ2 + ẏ2

)
= − 1

λ
ẏ

d

dt

(
ẏ√

ẋ2 + ẏ2

)
=

1

λ
ẋ.

We claim that this means that the curve (x(·), y(·)) has constant curvature, and such curves must
be circles.

To see this, let us review some plane curve theory. On the curve (x(t), y(t)), we may parametrize
it by the arc length

s =

ˆ t

0

√
ẋ(τ)2 + ẏ(τ)2 dτ.
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Since we assume the total arc length is L, we have 0 ≤ s ≤ L. We have ds =
√
ẋ(t)2 + ẏ(t)2dt. Let

us denote the differentiation in s by prime. The tangent and normal of the curve are

t := (x′, y′) =

(
ẋ√

ẋ2 + ẏ2
,

ẏ√
ẋ2 + ẏ2

)
,

n := (−y′, x′) =

(
−ẏ√
ẋ2 + ẏ2

,
ẋ√

ẋ2 + ẏ2

)
.

It is clearly that t ⊥ n, t · t = 1, and n ·n = 1. Differentiate t · t = 1 in s, we get dt
ds ⊥ t = 0. Since

t ⊥ n, we have dt
ds ‖ n. The curvature of a curve K is defined by

dt

ds
= Kn.

This equation, as expressed in terms of the parameter t, reads

1√
ẋ2 + ẏ2

d

dt

(
ẋ√

ẋ2 + ẏ2

)
= K

−ẏ√
ẋ2 + ẏ2

,

1√
ẋ2 + ẏ2

d

dt

(
ẏ√

ẋ2 + ẏ2

)
= K

ẋ√
ẋ2 + ẏ2

.

Comparing this equation and the Euler-Lagrange equation corresponding iso-perimetric inequality
problem, we conclude that K = 1/λ is a constant. The quantity λ = 1/K is called the radius of
curvature.

Let us denote (x′, y′) by (ξ, η). The above equation is

ξ′ = −Kη
η′ = Kξ.

This gives ξ = − sin(Ks), η = cos(Ks). Here, I have normalized (ξ, η) = (0, 1) at s = 0. Notice
that (ξ, η) is a unit vector. From (x′, y′) = (− sin(Ks), cos(Ks)), we get

x(s) = x0 +
1

K
cos(Ks)

y(s) = y0 +
1

K
sin(Ks).

Since the total length of this curve is L, we get

L =
2π

K
.

The area enclosed by the circle is A∗ = π 1
K2 , which has the maximal area among all closed curves

with arc length L. Thus, for any closed curve with arc length L, the enclosed area satisfies

A ≤ A∗ =
1

4π
L2.

This is the iso-perimetric inequality.
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6.6.3 The Brachistochrone

The Brachistochrone problem is to find a curve on which a ball sliding down under gravitation
to a point A(0, 0) to another point B(xb, yb) takes least time. The word “brachistochrone” means
the “the shortest time delay” in Greek. It was one of the oldest problem in Calculus of Variation.
Its solution is a section of a cycloid. This was founded by Leibnitz, L’Hospital, Newton and two
Bernoullis.

Suppose the curve is given by (x(·), y(·)) starts from A = (0, 0). Let s be the arc length of the
curve. We can parametrize this curve by this arc length s, i.e. (x(s), y(s)). The gravitation force
is −mg(0, 1), where m is the mass of the ball and g is the gravitation constant. We project the
force to the tangential direction of the curve, which is (x′(s), y′(s)), and get the tangential force is
−mgy′(s). Thus, the equation of motion (in the tangential direction) is

ms̈ = −mgy′(s).

Here, dot means d/dt, whereas prime means d/ds. We multiply both sides by ṡ, we then find

ms̈ṡ+mgy′(s)ṡ = 0.

which is
d

dt

(
1

2
mṡ2 +mgy

)
= 0.

This gives the conservation of energy

1

2
mṡ2 +mgy(s) = E.

At point A(0, 0), we take s = 0, ṡ = 0 and y(0) = 0. With this normalization, E = 0. Thus, the
conservation of energy gives the speed

v = ṡ =
√
−2gy.

Notice that y ≤ 0 under our consideration. It is more convenient to work on positive y. Thus, we
change y to −y and the y stays positive. The traveling time from A to B is given by

TBA =

ˆ s

0

1

v
ds =

ˆ s

0

1√
2gy

ds,

where the distance s is not known yet. To find this curve(x(s), y(s)), we now parameterize it by x.
That is, we look for y(x), x ∈ (0, xb). The term ds =

√
dx2 + dy2 =

√
1 + y′(x)2dx. From now on,

the prime means d/dx. Now,

TBA =

ˆ s

0

ds√
2gy

=

ˆ xb

0

√
1 + y′(x)2

√
2gy

dx.

We may move the constant
√

2g to the left-hand side:

√
2gTBA =

ˆ xb

0
F (y, y′) dx :=

ˆ xb

0

√
1 + y′2

y
dx.
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The corresponding Euler-Lagrange equation is

d

dx
Fy′ − Fy = 0.

Since the Lagrangian F (y, y′) is independent of x, the first integral exists. We derive it again below.
We multiply this equation by y′, we arrive

0 = (Fy −
d

dx
Fy′)y

′

=

(
d

dx
F − Fy′y′′

)
−
(
d

dx
(Fy′y

′)− Fy′y′′
)

=
d

dx

(
F − Fy′y′

)
.

The quantity F − Fy′y′, the first integral, is a constant. That is,√
1 + y′2

y
− y′2√

y(1 + y′2)
= C.

This leads to

y(1 + y′2) =
1

C2
= A.

After rearrangement, we get

dy

dx
= ±

√
A− y
y

.

There are positive and negative branches. We can choose positive branch, because the other branch
can be obtained by replacing x by −x. Using separation of variable, we get

x =

ˆ √
y

A− y
dy.

Taking the substitution

y = A(1− cos θ) = 2A sin2(
θ

2
),

we get

x =

ˆ √
y

A− y
dy =

ˆ √
sin2 θ

2

1− sin2 θ
2

2A sin
θ

2
cos

θ

2
dθ

= 2A

ˆ
sin2 θ

2
dθ = A(θ − sin θ) +B.

Here, A, B are constants and can be determined from the boundary conditions. At (x, y) = (0, 0),
we get

0 = y(θa) = 2A sin2 θa ⇒ θa = 0,

0 = x(θa) = A(θ − sin θ) +B ⇒ B = 0.
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At (x, y) = (xb, yb), we solve θb and A from{
xb = A(θb − sin θb)
yb = A(1− cos θb).

Thus, the solution is a cycloid given in parametric form:

x = A(θ − sin θ)

y = A(1− cos θ).

6.6.4 Phase field model

A multi-phase material is a material consisting of more than one phase. For instance, steam water
can have liquid and gas phases. Alloy is made of two or more metallic elements. Two-phase material
can be modeled by so-called phase field model. It characterizes the material property by an order
parameter φ through minimizing an energy functional

E [φ] :=

ˆ b

−a

(
ε2

2
φ2
x(x) + F (φ(x))

)
dx.

Here, we assume the domain is [a, b]. The energy
´ b
a
ε2

2 φ
2
x(x) dx is called kinetic energy. It means

that the variation of φ causes higher energy. The quantity ε is a parameter which measures the
length of transition from one phase to another phase. The second energy

´ b
a F (φ(x)) dx is called

the bulk energy. One example of the bulk energy is

F (φ) = −δ
2
φ2 +

1

4
φ4.

The Euler-Lagrange equation is

− ε2φxx + F ′(φ) = −ε2φxx − φ+ φ3 = 0. (6.3)

In this phase field model, we are interested in the interface profile which connects the two equilibrium
phases: ±1. The interface profile satisfies (6.3) for x ∈ R with boundary condition

φ(±∞) = ±1, φ′(±∞) = 0.

On the phase-plane (φ, φ′), you can check that the two equilibria (±1, 0) are saddles. The interface
profile φ is a heteroclinic orbit connecting these two equilibria.

To find the heteroclinic orbit, we use energy method. First, we can rescale x by replacing it by
x′/ε. Then the equation becomes

φx′x′ + φ− φ3 = 0.

Let us denote φx′ by φ′. We multiply both sides by φ′ to get

φ′φ′′ + (φ− φ3)φ′ = 0.

This can be written as (
1

2
φ′

2
+
φ2

2
− φ4

4

)′
= 0.
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Thus,
1

2
φ′

2
+
φ2

2
− φ4

4
= C.

We plug the end conditions: φ(±∞) = ±1 and φ′(±∞) = 0, we get C = 1/4. This leads to

1

2
φ′

2
=

1

4
− φ2

2
+
φ4

4
.

φ′ = ±
√

1

2
− φ2 +

φ4

2
.

dφ

1− φ2
=

1√
2
dx′

We integrate it and get
1

2
ln

∣∣∣∣1 + φ

1− φ

∣∣∣∣ =
1√
2
x′ + C.

We look for φ satisfy −1 < φ < 1. Thus, we get

1 + φ

1− φ
= C1e

√
2x′ .

We can absorb C1 into exponential function:

C1e
√

2x′ = e
√

2(x′−x′0), x0 is a constant.

We solve φ and get

φ(x′) =
e
√

2(x′−x′0) − 1

e
√

2(x′−x′0) + 1
= tanh

(
x′ − x′0√

2

)
.

Or

φ(x) = tanh

(
x− x0√

2ε

)
.

This is the interface shape function connecting two equilibrium phases φ = −1 and φ = +1.

Homeworks

1. Determine the function y(x) which connects two points (x0, y0) and (x1, y1) and has minimum
surface of revolution rotating about the x-axis.

2. Solve the Euler-Lagrange corresponding to the functional

J [y] =

ˆ 2

1

√
1 + y′2

x
dx, y(1) = 0, y(2) = 1.

3. Find the general solutions of the Euler-Lagrange corresponding to the functional

J [y] =

ˆ b

a
f(x)

√
1 + y′2 dx.
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4. Find the extremal of the functional

J [y] =

ˆ √
x2 + y2

√
1 + y′2 dx.

5. Consider a water droplet on the table. We are interested in the shape of the droplet and
its contact angle to the table surface. Let us imagine the droplet is two dimensional. Thus,
the shape of the droplet is described by a curve y(x) 0 ≤ x ≤ a with y(0) = y(a) = 0
and y(x) ≥ 0 for 0 < x < a. We are interested to determine the shape function y(x), the
contact angles tan−1(y′(0)) and tan−1(y′(b)). These quantities are determined by minimizing
an energy functional to be described below. Let us denote the water phase by (1), the air
phase by (0), and the table phase by (2). The energy consists of three parts: the surface
energy between (0) and (1), (1) and (2), (0) and (2). Let us denote the energy per unit length
between two phases (i) and (j) by εij , where 0 ≤ i 6= j ≤ 2. The energy functional is

E = E0,1 + E1,2 + E0,2,

where

E0,1 =

ˆ a

0
ε01

√
1 + y′(x)2 dx,

E1,2 =

ˆ a

0
ε12 dx = ε12a

E0,2 = ε02(L− a).

Here, we assume the length of table is L and the droplet occupies the region (0, a). This
minimization also subject to an area (volume) constraint: the area of the droplet is fixed:

ˆ a

0
y(x) dx = A.

Here, ε01, ε02, ε12 are given physical parameters. A and L are also given. The unknowns are
y(·), a, and the contact angles.

(a) Find the Euler-Lagrange equation of this system.

(b) Prove that the shape function is a portion of a circle.

(c) Derive the formula that the contact angles should satisfy.
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Chapter 7

Hamiltonian Systems

There are rich classes of dynamical systems, even in two dimensions. We will introduce

• Hamiltonian systems

• Gradient systems

• Dissipative systems.

7.1 Hamiltonian systems

In classical mechanics, a physical state is described by (x, p), the position and the momentum, where
x ∈ Rn and p ∈ Rn. The space Rn formed by all possible positions x is called the configuration space,
while the space R2n formed by all possible states (x, p) is called the state space. A Hamiltonian
H : R2n → R is a smooth function. The ODE{

ẋ = Hp(x, p)
ṗ = −Hx(x, p),

(7.1)

is called a dynamical Hamiltonian system associated with the Hamiltonian H. Physically, H is the
energy of the system. Such system plays important role in physics.

The above equation can be rewritten as[
ẋ
ṗ

]
=

[
0 1
−1 0

] [
Hx

Hp

]
= J∇H(x, y). (7.2)

Here,

J :=

[
0 1
−1 0

]
is called a symplectic structure in R2n. Note that

J2 = −I.

Its role in R2n is similar to i in R2 = C.
We will study the following solutions:

• equilibria
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• periodic orbits (closed orbits)

• homoclinic orbits

• heteroclinic orbits.

Let us see some examples and some advantages of such formulation.

7.1.1 Examples of Hamiltonian systems

Classical mechanics A conservative Newtonian mechanics reads

mẍ = −∇V (x). (7.3)

Here, V is the potential and F = −∇V (x) is the conservative force. By multiplying this equation
by ẋ, we get

0 = mẍ · ẋ+∇V (x) · ẋ =
d

dt

(
1

2
m|ẋ|2 + V (x)

)
.

Integrate this equation in t, we get

1

2
m|ẋ|2 + V (x) = E. (7.4)

Here, E is an integration constant. This relation is called the conservation of total energy. It is an
algebraic relation in the state space. It implies that the number of degree of freedom (which is 2n)
can be reduced by one through this algebraic relation. This simplifies the problem. When x is a
scalar, the relation (7.4) gives algebraic relation of trajectories in the state space.

In the derivation above, the quantity H = 1
2m|ẋ|

2 + V (x) plays a key role. We can express H
in a more symmetric way. Define p = mẋ, called the momentum. Express

H(x, p) =
p2

2m
+ V (x).

Then Newton’s mechanics is equivalent to{
ẋ = Hp(x, p)
ṗ = −Hx(x, p).

(7.5)

An advantage to express the Newton mechanics in this form is that it is easier to find more invariants
of the flow.

Definition 7.1. A quantity f(x, p) is called an invariant of the Hamiltonian flow (7.5) if

d

dt
f(x(t), p(t)) = 0.

From the chain rule, we see that f is invariant under the Hamiltonian flow (7.5) if and only if

d

dt
f(x(t), p(t)) = fxHp − fpHx = 0.
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If H(x, p) is independent of t, then H(x(t), p(t)) is an invariant. is the Hamiltonian H itself.
That is, along any trajectory (x(t), p(t)) of (??), we have

d

dt
H(x(t), p(t)) = Hxẋ+Hpṗ = HxHp +Hp(−Hx) = 0.

Below are some common examples in classical mechanics: We define the momentum y = mv
and the total energy

H(x, y) =
y2

2m
+ V (x).

Here are some common examples:

1. Harmonic oscillator: H(x, y) = 1
2y

2 + k
2x

2.

2. Duffing oscillator: H(x, y) = 1
2y

2 − δ
2x

2 + x4

4 .

3. Cubic potential: H(x, y) = 1
2

(
y2 − x2 + x3

)
.

4. Simple pendulum: H(x, y) = 1
2y

2 − g
l cosx.

You can plot the level sets of H to see the trajectories. In particular, the critical points, the closed
orbits, the homoclinic and heteroclinic orbits are important orbits.

Two-dimensional incomplessible fluid flows Consider a steady fluid flow in a two-dimensional
domain Ω. The flow is represented as a vector field V : Ω → R2 as: V(x, y) = (u(x, y), v(x, y)).
The flow is called incompressible if it satisfies

∇ ·V = 0.

In component form, it reads
ux + vy = 0. (7.6)

This condition is also called a divergence free condition. From the divergence theorem, for simply
connected domain Ω, there exists a function, called the stream function ψ(x, y) : Ω→ R such that

u(x, y) = ψy(x, y), v(x, y) = −ψx(x, y).

Indeed, from this divergence free condition, we can define the stream function ψ(x, y) by the line
integral:

ψ(x, y) =

ˆ (x,y)

(x0,y0)
(−v(x, y)dx+ u(x, y)dy).

1. The starting point (x0, y0) of the line integral is not important. What is relevant is the
derivatives of ψ. We can choose any point as our starting point. The corresponding ψ is
defined up to a constant, which disappears after taking differentiation.

2. By the divergence theorem, the integral is independent of path in a simply connected domain.
Hence, ψ is well-defined on simply connected domain. You can check that ψy = u and
ψx = −v. If the domain is not simply connected, the steam function is a multiple-valued
function. For instance, the function Aug(x, y) is the angle of (x, y) and (1, 0) with respect
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to the origin. It is a multiple-valued function defined on R2 − {(0, 0)} which is not simply
connected. For such function, we can define its branches. The difference of two branches is
2πn at any given point. What we are interested is the derivatives of ψ. After differentiation
of ψ, the difference disappears. This is the theory of Riemann surface. However, We shall
not study such problem in this course. All you need to accept is that even for non-simply
connected domain, the theory below is still valid.

The particle trajectory (which flows with fluid flow) is governed by

ẋ = u(x, y) = ψy(x, y)
ẏ = v(x, y) = −ψx(x, y).

This is a Hamiltonian flow with Hamiltonian ψ(x, y).

There are special flows which are particularly important: the potential flows where (u, v) satisfies
addition property:

uy − vx = 0.

This condition is called a curl free condition. It means that

∇×V = 0

The flow is irrotational. An incompressible and irrotational flow is called a potential flow. The
stream function ψ satisfies

∂2ψ

∂x2
+
∂2ψ

∂y2
= 0.

This equation is called a potential equation.

The theory of potential flow can be analyzed by complex analysis. You can learn this from text
books of complex variable or elementary fluid mechanics. Here are two examples for the potential
flow: let z = x+ iy

1. ψ(z) = Im(z2) = 2xy,

2. ψ(z) = Im(z + 1/z) = y − y
x2+y2

.

The first one represent a jet. The second is a flow passing a circle.

Two-dimensional steady magnetic field The magnetic field B is divergence free: divB = 0.
For two-dimensional steady magnetic field B = (u, v), this reads

ux + vy = 0.

This condition gives existence of the stream function ψ on a simply connected domain with

ψx = −u, ψy = v.

The magnetic field lines are the integral curves of B. It satisfies

ẋ = u(x, y) = ψy(x, y)
ẏ = v(x, y) = −ψx(x, y).
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Example Linear hamiltonian flow. Let us consider

H(x, y) =
ax2

2
+ bxy +

cy2

2

the corresponding Hamiltonian system is[
ẋ
ẏ

]
=

[
b c
−a −b

] [
x
y

]
=

[
0 1
−1 0

] [
a b
b c

] [
x
y

]
(7.7)

7.1.2 Equilibria of a Hamiltonian system

In this subsection, we want to investigate the property of the equilibria of the Hamiltonian flows
in 2D: [

ẋ
ẏ

]
=

[
0 1
−1 0

] [
Hx

Hy

]
. (7.8)

Its equilibria are the critical points of the Hamiltonian H. That is,

Hx(x̄, ȳ) = 0, Hy(x̄, ȳ) = 0.

Definition 7.2. If ∇H(x̄, ȳ) = 0, then (x̄, ȳ) is called a critical point of H. Such a critical point is
said to be non-degenerate if the corresponding Hessian of H:[

Hxx Hxy

Hxy Hyy

]
is non-singular at (x̄, ȳ).

Since H is usually convex in y variable in mechanical problems, we may assume that

Hyy > 0 (7.9)

at the equilibrium. Notice that this assumption eliminates the possibility of any local maximum of
H.

To study the stability of an equilibrium (x̄, ȳ) of the Hamiltonian system (7.8), we linearize it
around (x̄, ȳ): Let x = x̄ + εx1, y = ȳ + εy1 be the solution of (7.8). Taking ε → 0, we get the
linearized equation [

ẋ1

ẏ1

]
=

[
0 1
−1 0

] [
Hxx Hxy

Hxy Hyy

]
(x̄,ȳ)

[
x1

y1

]
The stability of (x̄, ȳ) is completely determined by this linearized equation around (0, 0). Let us
rewrite this linearized equation as

u̇ = Au,

where

A =

[
Hyx Hyy

−Hxx −Hxy

]
(x̄,ȳ)

.

Since the trace part T of A is zero, its eigenvalues are

λi = ±1

2

√
H2
yx −HxxHyy|(x̄,ȳ), i = 1, 2.

We have the following possibilities.
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• H has minimum at (x̄, ȳ). This is equivalent to HxxHyy − H2
xy > 0 at (x̄, ȳ) because we

already have Hyy > 0 from our assumption. ∗ This is also equivalent to λi i = 1, 2 are pure
imaginary. Thus, (x̄, ȳ) is a center.

• H has a saddle at (x̄, ȳ). This is equivalent to HxxHyy−H2
xy < 0 at (x̄, ȳ). The corresponding

two eigenvalues are real and of opposite signs. Hence the equilibrium is a saddle.

• H cannot have a local maximum at (x̄, ȳ) because of the assumption Hyy > 0.

We summarize the above arguments by the following theorem.

Theorem 7.1. Assuming that (x̄, ȳ) is a non-degenerate critical point of a Hamiltonian H and
assuming Hyy(x̄, ȳ) > 0. Then

1. (x̄, ȳ) is a local minimum of H iff (x̄, ȳ) is a center of the corresponding Hamiltonian flow.

2. (x̄, ȳ) is a saddle of H iff (x̄, ȳ) is a saddle of the corresponding Hamiltonian flow..

The examples we have seen are

• Duffing oscillator: H(x, p) = 1
2p

2 − δ
2x

2 + x4

4 . The Hamilton system is{
ẋ = p
ṗ = δx− x3.

(7.10)

The critical points of H are
p = 0, δx− x3 = 0.

Thus, the equilibria are (0, 0) and (±
√
δ, 0). The Hessian of H is[

Hxx Hxy

Hxy Hyy

]
=

[
−δ + 3x2 0

0 1

]
Thus, the equilibria (±

√
δ, 0) are (local minimum of H) the centers, while (0, 0) (saddle of

H) is the saddle.

• Cubic potential: H(x, p) = 1
2

(
p2 − x2 + x3

)
. the Hamiltonian system reads{

ẋ = p
ṗ = x− 3

2x
2.

(7.11)

The state (0, 0) is a saddle, whereas (3/2, 0) is a center.

• Simple pendulum: H(x, p) = 1
2p

2 − g
l cosx. In the case of simple pendulum, (2nπ, 0) are the

centers, whereas (2(n+ 1)π, 0) are the saddles.

Below, we use Matlab to plot the contour curves the Hamiltonian. These contour curves are
the orbits.

∗H has a local minimum if ∇H(x̄, ȳ) = 0 and the Hessian ∇2H(x̄, ȳ) is positive definite. If we write ∇2H(x̄, ȳ) =

C :=

[
a b
b c

]
, then C is positive if and only if a > 0 and ac− b2 > 0, or c > 0 and ac− b2 > 0.
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Exercise 7.1. An example of a script m-file:

ode plot duffing.m

clc;
clear;

% parameter setting
delta = 1;
H = @(x, y) 1/2 * (y .ˆ2) + 1/4 * (x .ˆ4) - 1/2 * delta * (x .ˆ2);

% plot contour for the levels
x = [-2:0.01:2]; y = [-2:0.01:2];
[X,Y] = meshgrid(x, y);
contour(X, Y, H(X, Y), [-0.3,-0.2,-0.1,0,0.1,0.2,0.3], 'linewidth', 1.5);
grid on;
xlabel('s'); ylabel('s''');
title('\delta = 1');

Run the script by typing the filename in the command window:

>> ode plot duffing.m
>>

Exercise 7.2. An example of a script m-file:
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ode plot cubicp.m

clc;
clear;

% parameter setting
delta = 1;
H = @(x, y) 1/2 * (y .ˆ2) + 1/3 * (x .ˆ3) - 1/2 * delta * (x .ˆ2);

% plot contour for the levels
x = [-2:0.01:2]; y = [-2:0.01:2];
[X,Y] = meshgrid(x, y);
contour(X, Y, H(X, Y), [-0.3,-0.2,-0.1,0,0.1,0.2,0.3], 'linewidth', 1.5);
grid on;
xlabel('s'); ylabel('s''');
title('\delta = 1');

Run the script by typing the filename in the command window:

>> ode plot cubicp.m
>>

Exercise 7.3. An example of a script m-file:

ode plot pendulum.m

clc;
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clear;
% parameter setting
g=1; l = 1;
H = @(x, y) 1/2 * (y .ˆ2) - g/l * cos(x) ;
% plot contour for the levels
x = [-10:0.05:10]; y = [-5:0.05:5];
[X,Y] = meshgrid(x, y);
contour(X, Y, H(X, Y), [-0.999,-0.5,0,0.5,1,2,3,4,5,6], 'linewidth', 1.5);
grid on;
xlabel('s'); ylabel('s''');
title(' Pendulum');
print -dpng pendulum.png;

Run the script by typing the filename in the command window:

>> ode plot pendulum.m
>>

7.1.3 Heteroclinic and Homoclinic and orbits

Definition 7.3. An orbit connecting two equilibrium points is called a heteroclinic orbit. If the
starting and end equilibrium points are the same, the orbit is called a homoclinic orbit.

Homoclinic orbit Below, we shall find the homoclinic orbit for the conservative mechanics with
cubic potential

ẍ = −∇V (x), V (x) =
1

2

(
−x2 + x3

)
. (7.12)
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From conservation of energy, the energy

H(x, ẋ) :=
1

2
ẋ2 + V (x)

is unchanged along a given orbit. Along an orbit, the energy is a constant E0. The orbit on the
phase plane (x-ẋ plane) with this energy E0 is

1

2
ẋ2 +

1

2

(
−x2 + x3

)
= E0.

We are looking for the orbits which connect equilibria. Since (0, 0) is a saddle, the orbit which
connects (0, 0) to itself is called a homoclinic orbit. It satisfies

x(±∞) = 0, ẋ(±∞) = 0.

This leads to E0 = 0. Using separation of variable, we have

ẋ = ±
√
x2 − x3ˆ

dx

x
√

1− x
= ±(t+ C)

Since the system is autonomous, we may normalize C = 0. For plus sign, we use the substitution
u =
√

1− x, for minus, we use u = −
√

1− x. We getˆ
2u du

(1− u2)u
= t

ˆ (
1

1 + u
+

1

1− u

)
= t.

ln

∣∣∣∣1 + u

1− u

∣∣∣∣ = t.∣∣∣∣1 + u

1− u

∣∣∣∣ = et.

When (1 + u)/(1− u) ≥ 0, we obtain

u =
et − 1

et + 1
= tanh

(
t

2

)
.

This yields

x(t) = 1− u2 = sech2

(
t

2

)
.

When (1 + u)/(1− u) < 0, we have

u =
et + 1

et − 1
= coth

(
t

2

)
.

This yields

x(t) = 1− u2 = −csch2

(
t

2

)
.

This should be the solution on the left-half plane in the phase plane. From

ẋ(t) = sinh−3

(
t

2

)
cosh

(
t

2

){
> for t > 0
< for t < 0

Hence, the branch on the upper plane is the one with t ∈ (0,∞), while the lower branch, t ∈ (−∞, 0).
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Heteroclinic Orbits We consider the pendulum equation

ẍ = − sinx.

The equation can be written in the form

ẍ = −V ′(x), V (x) = − cosx.

The system has conservation of energy

d

dt

(
1

2
ẋ2 − cosx

)
= 0.

Thus,
1

2
ẋ2 − cosx = E

The system can also be written
ẋ = p, ṗ = − sinx.

On the phase plane (x, ẋ) or equivalently, (x, p), the critical points are (nπ, 0),n is odd. The orbit
connecting (−π, 0) to (π, 0) is a heteroclinic orbit. This orbit has energy

E =
1

2
ẋ2 − cosx = 0− cos(π) = 1.

Thus, this heteroclinic orbit on the phase plane (x, ẋ) is determined by

1

2
ẋ2 − cosx = 1.

We can integrate this equation

ẋ2 = 2(1 + cos) = 4 cos2
(x

2

)
.

ẋ = ±2 cos
(x

2

)
.

There are two branches, one is on the upper half plane: ẋ > 0, the other is on the lower half plane:
ẋ < 0. They are symmetric. We only need to find the upper one. Using separation of variable, we
get

dx

2 cos
(
x
2

) = dt

Call y = x/2, we get
dy

cos y
= dt.

Using polar stereographic projection:

u = tan
(y

2

)
,

dy

du
=

2

1 + u2
,

cos y =
1− u2

1 + u2
, sin y =

2u

1 + u2
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We obtain

dt =
dy

cos y
=

2du

1 + u2

1 + u2

1− u2
=

2du

1− u2
.

Integrate this, we get

t = ln

∣∣∣∣1− u1 + u

∣∣∣∣ .
We obtain the same formula as we did for the cubic potential case. You can fill in the rest of the
solution.

Homework 7.1. 1. Find the homoclinic orbits for the Duffing equation connecting (0, 0)
to (0, 0). The Duffing equation is

ẍ = −∇V (x), V (x) = −δ
2
x2 +

1

4
x4.

2. Soliton appears in many physical systems such as water wave, nonlinear optics, etc. In
shallow water, the soliton is a traveling of the so-called Korteweg and de Vries (KdV)
equation

ut + 6uux + uxxx = 0.

A traveling wave of this equation is a solution of the form φ(x − ct). You can plug this
φ into the KdV equation and obtain

−cφ′ + 6φφ′ + φ′′′ = 0.

We can integrate it once and obtain

−cφ+ 3φ2 + φ′′ = C

The constant C depends on the boundary conditions at ±∞. For (bright) soliton, which
are those traveling wave solutions decay fast at x = ±∞ and the corresponding constant
C = 0. Thus, we arrive the ODE

−cφ+ 3φ2 + φ′′ = 0.

with φ(−∞) = φ(∞) = 0. The soliton is a homoclinic orbit on the phase plane (φ, φ̇).
Find closed-form of φ.

3. The heteroclinic orbit also appears commonly on so-called interface shape function. An
interface shape function is which connect two states a and b by a shape function φ. It
satisfies

φ′′ − F ′(φ) = 0.

The function F (a) = F (b) = 0 and has no zero between them. The shape function
φ(−∞) = a and φ(∞) = b, and φ′(±∞) = 0. What kind of condition F should satisfies
in order to have a heteroclinic orbit connecting a to b? Can you integrate it for polynomial
type of F with degree less than 4?
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7.2 Simple pendulum

Motion on a given curve in a plane A curve (x(s), y(s)) in a plane can be parametrized by
its arc length s. If the curve is prescribed as we have in the case of simple pendulum, then the
motion is described by just a function s(t). By Newton’s law, the motion is governed by

ms̈ = f(s),

where f(s) is the force in the tangential direction of the curve. For instance, suppose the curve
is given by y = y(s), and suppose the force is the uniform garvitational force −mg(0, 1), then the
force in the tangential direction is

f(s) =

[dx
ds
dy
ds

]
·
[
0,−mg

]
= −mgdy

ds
.

Thus, the equation of motion is

s̈ = −gdy
ds
. (7.13)

For simple pendulum, s = lθ, (x(θ), y(θ)) = (l sin θ,−l cos θ), and

dy

ds
=
dy

dθ

dθ

ds
= g sin θ

Hence, the equation of motion is

mlθ̈ = −mg sin θ,

or in terms of s,

ms̈ = −mg sin
(s
l

)
.

7.2.1 global structure of phase plane

We are interested in all possible solutions as a function of its parameters E and t0. The constant
t0 is unimportant. For the system is autonomous, that is its right-hand side F (y) is independent
of t. This implies that if y(t) is a solution, so is y(t − t0) for any t0. The trajectories (y(t), ẏ(t))
and (y(t − t0), ẏ(t − t0)) are the same curve in the phase plane (i.e. y-ẏ plane). So, to study the
trajectory on the phase plane, the relevant parameter is E. We shall take the simple pendulum as
a concrete example for explanation. In this case, V (θ) = − cos(θ)g/l.

As we have seen that
θ̇2

2
+ V (θ) = E, (7.14)

the total conserved energy. We can plot the equal-energy curve on the phase plane.

CE := {(θ, θ̇) | θ̇
2

2
− g

l
cos θ = E} (7.15)

This is the trajectory with energy E. These trajectories can be classified into the follow categories.

1. No trajectory: For E < −g/l, the set {(θ, θ̇)| θ̇22 −
g
l cos θ = E} is empty. Thus, there is no

trajectory with such E.
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2. Equilibria: For E = −g/l, the trajectories are isolated points (2nπ, 0), n ∈ Z. These
correspond to equibria, namely they are constant state solutions

θ(t) = 2nπ, for all t.

The Hessian of the Hamiltonian is[
Hθθ Hθθ̇
Hθθ̇ Hθ̇θ̇

]
=

[g
l cos θ 0

0 1

]
. (7.16)

The Hessian is positive definite at (2nπ, 0). Thus, these equilibria are centers.

3. Bounded solutions. For −g/l < E < g/l, the trajectories are bounded closed orbits. Due
to periodicity of the cosine function, we see from (7.15) that (θ, θ̇) is on CE if and only if
(θ + 2nπ, θ̇) is on CE . We may concentrate on the branch of the trajectory lying between
(−π, π), since others are simply duplications of the one in (−π, π) through the mapping
(θ, θ̇) 7→ (θ + 2nπ, θ̇).

For θ ∈ (−π, π), we see that the condition

θ̇2

2
− g

l
cos θ = E

implies

E +
g

l
cos θ ≥ 0,

or

cos θ ≥ −El
g
.

This forces θ can only stay in [−θ1, θ1], where

θ1 = cos−1(−El/g).

The condition −g/l < E < g/l is equivalent to 0 < θ1 < π. The branch of the trajectory CE
in the region (−π, π) is a closed orbit:

θ̇ =


√

2(E + g
l cos θ) for θ̇ > 0,

−
√

2(E + g
l cos θ) for θ̇ < 0

The solution is bounded in [−θ1, θ1]. The two end states of this orbit are (±θ1, 0), where the
velocity θ̇ = 0 and the corresponding angle θ = θ1, the largest absolute value. The value θ1

is called the amplitude of the pendulum.

Below, we can find explicit solution θ(t). We integrate the upper branch of this closed orbit
by using the method of separation of variable:

ˆ θ

0

dθ√
2(E + g

l cos θ)
=

ˆ
dt = ±(t− t0)
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We may normalize t0 = 0 because the system is autonomous (that is, the right-hand side of
the differential equation is independent of t). Let us denote

t1 :=

ˆ θ1

0

dθ√
2(E + g

l cos θ)
.

Let us call

ψ(θ) :=

ˆ θ

0

dθ√
2(E + g

l cos θ)
.

Then ψ(θ) is defined for θ ∈ [−θ1, θ1] with range [−t1, t1]. The function ψ is monotonic
increasing (because ψ′(θ) > 0 for θ ∈ (−θ1, θ1)) Hence, its inversion θ(t) = φ(t) is well-
defined for t ∈ [−t1, t1]. This is the solution θ(t) in the upper branch of CE in (−π, π). We
notice that at the end point of this trajectory, θ̇(t1) = 0. Therefore, for t > t1, we can go to
the lower branch smoothly:

−
ˆ θ

θ1

dθ√
2(E + g

l cos θ)
= t− t1.

This yields

−
(ˆ 0

θ1

+

ˆ θ

0

)
dθ√

2(E + g
l cos θ)

= t− t1,

The first integral is t1, whereas the second integral is −ψ(θ). Thus,

ψ(θ) = 2t1 − t.

As θ varies from θ1 to −θ1, 2t1 − t varies from t1 to −t1, or equivalently, t varies from t1 to
3t1. Hence, the solution for t ∈ [t1, 3t1] is

θ(t) := φ(2t1 − t).

We notice that
θ(t) = φ(2t1 − t) = θ(2t1 − t) for t ∈ [2t1, 3t1]

At t = 3t1, θ(3t1) = −θ1 and θ̇(3t1) = 0. We can continue the time by integrating the upper
branch of CE again. This would give the same orbit. Therefore, we can extend θ periodically
with period T = 2t1 by:

θ(t) = θ(t− 2nT ) for 2nT ≤ t ≤ 2(n+ 1)T.

4. Another equilibria: For E = g/l, the set CE contains isolated equilibria:

{((2n+ 1)π, 0)|n ∈ Z} ⊂ CE = {(θ, θ̇) | θ̇
2

2
− g

l
cos θ = E}

From (7.16), these equilibria are saddle points of the Hamiltonian H, thus they are the saddle
points of the Hamiltonian system.
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5. Heteroclinic orbits: We can connect two neighboring saddle points (−π, 0) and (π, 0). For
E = g/l,

θ̇ = ±
√

2(1 + cos(θ))
g

l
= ±2

√
g

l
cos

(
θ

2

)
.

Using t′ =
√

g
l t, we have

dθ

2dt′
= cos

(
θ

2

)
.

Using the polar stereographic projection:

u = tan

(
θ

4

)
,

dθ

du
=

4

1 + u2
, cos

θ

2
=

1− u2

1 + u2
,

we obtain

dt′ =
2du

1 + u2

1 + u2

1− u2
=

2du

1− u2
.

Integrate this, we get

t′ = ln

∣∣∣∣1− u1 + u

∣∣∣∣ .
Here, we normalize a constant t′0 = 0, which is just a shift of time. It is nothing to do with
the orbit. Solve u, we obtain

u =
1− et′

1 + et′
= − tanh

(
t′

2

)
.

Since u = tan(θ/4), we get

θ = 4 tan−1

(
tanh

(√
g

4l
t

))
.

This is the orbit connecting (−π, 0) to (π, 0).

6. Unbounded solution: For E > g/l, there are two branches of CE , the upper one (θ̇ > 0)
and the lower one (θ̇ < 0). The upper branch: θ̇ =

√
2(E + cos(θ)g/l) > 0 is defined for all

θ ∈ R. By using the method of separation of variable, we get

ˆ θ

0

dθ√
2
(
E + g

l cos(θ)
) = t

Let us call the left-hand side of the above equation by ψ(θ). Notice that ψ(θ) is a monotonic
increasing function defined for θ ∈ (−∞,∞), because ψ′(θ) > 1

2(E−g/l) > 0. The range of ψ

is (−∞,∞). Its inversion φ(t) is the solution θ = φ(t). Let

T :=

ˆ 2π

0

dθ√
2
(
E + g

l cos(θ)
)
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From the periodicity of the cosine function, we have for 2nπ ≤ θ ≤ 2(n+ 1)π,

t = ψ(θ) =

(ˆ 2π

0
+ · · ·+

ˆ 2nπ

2(n−1)π
+

ˆ θ

2nπ

)
dθ√

2
(
E + g

l cos(θ)
)

This yields
t = nT + ψ(θ − 2nπ).

Or
θ(t) = 2nπ + φ(t− nT ), for t ∈ [nT, (n+ 1)T ].

7.2.2 Period

Let us compute the period for case 3 in the previous subsection. Recall that

T =

ˆ θ1

−θ1

dθ√
2
(
E + g

l cos(θ)
) =

√
l

2g

ˆ θ1

−θ1

dθ√
El
g + cos(θ)

=

√
l

2g

ˆ θ1

−θ1

dθ√
cos(θ)− cos(θ1)

=

√
l

g

ˆ θ1

−θ1

dθ√
sin2 θ1

2 − sin2 θ
2

where 0 < θ1 = arccos(−El/g) < π is the amptitude of the pendulum. By the substitution

u =
sin(θ/2)

sin(θ1/2)
,

the above integral becomes

T = 2

√
l

g

ˆ 1

−1

du√
(1− u2)(1− k2u2)

(7.17)

where k = sin(θ1/2). This integral is called an elliptic integral. This integral cannot be expressed
as an elementary function. But we can estimate the period by using

1 ≥ 1− k2u2 ≥ 1− k2

for −1 ≤ u ≤ 1 and using
´ 1
−1 1/

√
1− u2 du = π, the above elliptic integral becomes

2π

√
l

g
≤ T ≤ 2π

√
l

g

(
1

1− k2

)
(7.18)

Homework 7.2. Using Taylor expansion for (1− k2u2)−1/2, expand the elliptic integral

f(k) =

ˆ 1

−1

du√
(1− u2)(1− k2u2)

in Taylor series in k for k near 0. You may use Maple to do the integration.
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7.3 Cycloidal Pendulum – Tautochrone Problem

7.3.1 The Tautochrone problem

The period of a simple pendulum depends on its amptitude y1
†. A question is that can we design

a pendulum such that its period is independent of its amptitude. An ancient Greek problem called
tautochrone problem answers this question. The tautochrone problem is to find a curve down which
a bead placed anywhere will fall to the bottom in the same amount of time. Thus, such a curve
can provide a pendulum with period independent of its amptitude. The answer is the cycloid. The
cycloidal pendulum oscillates on a cycloid. The equation of a cycloid is{

x = l(θ + π + sin θ).
y = −l(1 + cos θ)

Its arc length is

s =

ˆ √
(dx/dθ)2 + (dy/dθ)2 dθ

= l

ˆ √
(1 + cos θ)2 + sin2 θ dθ

= 2l

ˆ
cos

(
θ

2

)
dθ

= 4l sin

(
θ

2

)
.

The force
dy

ds
=
dy

dθ

dθ

ds
=

l sin θ

2l cos
(
θ
2

) = sin

(
θ

2

)
=

s

4l
.

The equation of motion on cycloidal pendulum is

s̈ = − g
4l
s,

a linear equation! Its period is T = 2π
√
l/g, which is independent of the amplitude of the oscillation.

Which planar curves produce linear oscillators?

The equation of motion on a planar curve is

s̈ = −gdy
ds
.

The question is: what kind of curve produce linear oscillator. In other word, which curve gives
dy/ds = ks. This is an ODE for y(s). Its solution is

y(s) =
k

2
s2.

†Indeed, k = sin(y1/2)
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Since s is the arc length of the curve, we have

x′(s)2 + y′(s)2 = 1.

Hence, x′(s) = ±
√

1− k2s2. We use the substitution: s = sin(θ/2)/k. Then

y =
k

2
s2 =

1

2k
sin2

(
θ

2

)
=

1

4k
(1− cos θ).

x =

ˆ √
1− k2s2 ds =

1

2k

ˆ
cos2

(
θ

2

)
dθ =

1

4k

ˆ
(1 + cos θ) dθ =

1

4k
(θ + sin θ) .

Thus, the planar curve that produces linear restoration tangential force is a cycloid.
Ref. http://mathworld.wolfram.com

7.3.2 Construction of a cycloidal pendulum

To construct a cycloidal pendulum ‡ , we take l = 1 for explanation. We consider the evolute of
the cycloid

x = π + θ + sin θ, y = −1− cos θ. (7.19)

In geometry, the evolute E of a curve C is the set of all centers of curvature of that curve. On
the other hand, if E is the evolute of C, then C is the involute of E. An involute of a curve E can
be constructed by the following process. We first wrape E by a thread with finite length. One end
of the thread is fixed on E. We then unwrape the thread. The trajectory of the other end as you
unwrape the thread forms the involute of E. We shall show below that the evolute E of a cycloid
C is again a cycloid. With this, we can construct a cycloidal pendulum as follows. We let the mass
P is attached by a thread of length 4 to one of the cusps of the evolute E. Under the tension, the
thread is partly coincide with the evolute and lies along a tangent to E. The mass P then moves
on the cycloid C.

Next, we show that the motion of the mass P lies on the cycloid C. The proof consists of three
parts.

1. The evolute of a cycloid is again a cycloid. Suppose C is expressed by (x(θ), y(θ)). We
recall that the curvature of C at a particular point P = (x(θ), y(θ)) is defined by dα/ds, where
α = arctan(ẏ(θ)/ẋ(θ)) is the inclined angle of the tangent of C and ds =

√
ẋ2 + ẏ2 dθ is the

infinitesimal arc length. Thus, the curvature, as expressed by parameter θ, is given by

κ =
dα

ds
=
dα

dθ

dθ

ds
=

ẋÿ−ẍẏ
ẋ2

1 +
(
ẏ
ẋ

)2

1√
ẋ2 + ẏ2

=
ẋÿ − ẏẍ

(ẋ2 + ẏ2)3/2
.

The center of curvature of C at P = (x, y) is the center of the osculating circle that is tangent to
C at P . Suppose P ′ = (ξ, η) is its coordinate. Then PP ′ is normal to C (the normal (nx, ny) is

(−ẏ, ẋ)/
√
ẋ2 + ẏ2) and the radius of the osculating circle is 1/κ. Thus, the coordinate of the center

of curvature is

ξ = x+
1

κ
nx = x− ẏ ẋ

2 + ẏ2

ẋÿ − ẏẍ
,

‡Courant and John’s book, Vol. I, pp. 428.
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η = y +
1

κ
ny = y + ẋ

ẋ2 + ẏ2

ẋÿ − ẏẍ
.

When (x(θ), y(θ)) is given by the cycloid equation (7.19),

x = π + θ + sin θ, y = −1− cos θ, −π ≤ θ ≤ π,

we find that its evolute
ξ = π + θ − sin θ, η = 1 + cos θ, (7.20)

is also a cycloid.

2. The evolute of C is the envelope of its normals. We want to find the tangent of the
evolute E and show it is identical to the normal of C. To see this, we use arc length s as a parameter
on C. With this, the normal (nx, ny) = (−y′, x′) and the curvature κ = x′y′′ − y′x′′, where ′ is
d/ds. The evolute is

ξ = x− ρy′, η = y + ρx′, (7.21)

where ρ = 1/κ. Thus, the evolute E is also parametrized by s. Since x′2 + y′2 = 1, we differentiate
it in s to get x′x′′ + y′y′′ = 0. This together with κ = x′y′′ − y′x′′ yield

x′′ = −y′/ρ, = y′′ = x′/ρ.

Differentiating (7.21) in s, we can get the tangent of the evolute E:

ξ′ = x′ − ρy′′ − ρ′y′ = −ρ′y′, η′ = y′ + ρx′′ + ρ′x′ = ρ′x′, (7.22)

Therefore,
ξ′x′ + η′y′ = 0.

This means that the tangent (ξ′, η′) of the evolute at the center of curvature is parallel to the
normal direction (−y′, x′) of the curve C. Since both of them pass through (ξ, η), they are coincide.
In other words, the normal to the curve C is tangent to the evolute E at the center of curvature.

3. The end point of the thread P lies on the cycloid C. We show that the radius of
curvature plus the length of portion on E where the thread is attched to is 4. To see this, we denote
the acr length on the evolute E by σ. The evolute E, as parametrized by the arc length s of C is
given by (7.21). Its arc length σ satisfies(

dσ

ds

)2

= ξ′2 + η′2 = (−ρ′y′)2 + (ρ′x′)2 = ρ′2

Here, we have used (7.22). Hence, σ′2 = ρ′2. We take s = 0 at θ = π ((x, y) = (π,−2)). We choose
s > 0 when θ > π. We take σ(0) = 0 which corresponds to (ξ, η) = (π, 2). We call this point A
(the cusp of the cycloid E). We also choose σ(s) > 0 for s > 0. Notice that ρ′(s) < 0. From these
normalization, we have

σ′(s) = −ρ′(s).

Now, as the mass moves along C to a point P on C, the center of curvature of C at P is Q which
is on the evolute E. We claim that

length of the arc AQ on E + the length of the straight line PQ = 4.
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To see that, the first part above is

ˆ s

0
σ′ ds = −

ˆ s

0
ρ′ ds = ρ(0)− ρ(s).

The second part is simply the radius of curvature ρ(s). Hence the above sum is ρ(0) = 4.

Homework.

1. Given a family of curves Γλ : {(x(t, λ), y(t, λ))|t ∈ R}, a curve E is said to be the envelop of
Γλ if

(a) For each λ, Γλ is tangent to E. Let us denote the tangent point by Pλ¿

(b) The envelop E is made of Pλ with λ ∈ R.

Now consider the family of curves to be the normal of a cycliod C, namely

Γθ = (x(θ) + tnx(θ), y(θ) + tny(θ)),

where (x(θ), y(θ)) is given by (7.19) and (nx, ny) is its normal. Using this definition of envelop,
show that the envelop of Γθ is the cycloid given by (7.20).

7.4 The orbits of planets and stars

7.4.1 Centrally directed force and conservation of angular momentum

The motion of planets or stars can be viewed as a particle moving under a centrally directed field
of force:

F = F (r)êr,

where r is the distance from the star to the center, r is the position vector from the center to the
star and

êr =
r

r
,

is the unit director. The equation of motion of the star is

r̈ = F (r)êr.

Define the angular momentum L = r× ṙ. We find

dL

dt
= ṙ× ṙ + r× r̈ = F (r)r× êr = 0.

Hence , L is a constant. A function in the state space (r, ṙ) is called an integral if it is unchanged
along any orbits. The integrals can be used to reduce number of unknowns of the system. The
conservation of angular momentum provides us three integrals. Let us write L = Ln where L = |L|
and n is a unit vector. The position vector r and the velocity ṙ always lie on the plane which is
perpendicular to n. This plane is called the orbital plane. We use polar coordinates (r, θ) on this
plane. Thus, by using the integrals n, which has two parameters, we can reduce the number of
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unknowns from 6 to 4, that is, from (r, ṙ) to (r, θ, ṙ, θ̇). To find the equation of motion on this
plane, we express

r = rêr = r(cos θ, sin θ).

Define
êθ := (− sin θ, cos θ)

be the unit vector perpendicular to êr. Then a particle motion on a plane with trajectory r(t) has
the following velocity

ṙ = ṙêr + r ˙̂er = ṙêr + rθ̇êθ.

where ṙ is the radial speed and rθ̇ is the circular speed. Here, we have used

˙̂er =
d

dt
(cos θ, sin θ) = θ̇êθ.

The acceleration is

r̈ = r̈êr + ṙ ˙̂er + ṙθ̇êθ + rθ̈êθ + rθ̇ ˙̂eθ

= (r̈ − rθ̇2)êr + (2ṙθ̇ + rθ̈)êθ.

Here, we have used ˙̂eθ = −êr. In this formula, r̈ is the radial acceleration, and −rθ̇2 is the
centripetal acceleration. The term

r(2ṙθ̇ + rθ̈) =
d

dt
(r2θ̇)

is the change of angular momentum. Indeed, the angular momentum is

L = r× ṙ = rêr × (ṙêr + rθ̇êθ) = r2θ̇n.

The equation of motion r̈ = F (r)êr gives

r̈ − rθ̇2 = F (r), (7.23)

d

dt
(r2θ̇) = 0. (7.24)

These are the two second-order equations for the unknowns (r, θ, ṙ, θ̇). The θ equation (7.24) can
be integrated and gives the conservation of angular momentum

r2θ̇ = constant = L. (7.25)

If we prescribe an L, the trajectory lies on the set

{(r, θ, ṙ, θ̇) | θ̇ = L/r2}.

We may project this set to the (r, θ, ṙ)-space and our unknowns now are reduced to (r, θ, ṙ). The
equations of motion in this space are (7.23) and (7.25).

The integral L can be used to eliminate θ̇ from the first equation. We get

r̈ = F (r) +
L2

r3
, (7.26)
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where the second term on the right-hand side is the centrifugal force. Notice that this equation is
independent of θ. Thus, given initial data (r0, θ0, ṙ0) at time t = 0, we can find r(t) and ṙ(t) from
(7.26) by using (r0, ṙ0) only. We can then use r2θ̇ = L to find θ(t):

θ(t) = θ0 +

ˆ t

0

L

r(t)2
dt.

The equation (7.26) can be solved by the energy method. We multiply (7.26) by ṙ on both sides
to obtain

d

dt

(
1

2
ṙ2 + Φ(r) +

1

2

L2

r2

)
= 0,

where Φ with Φ′(r) = −F (r) is the potential. We obtain the law of conservation of energy:

1

2
ṙ2 + Φ(r) +

1

2

L2

r2
= constant = E. (7.27)

This energy is another integral. A prescribed energy E defines a surface in the (r, θ, ṙ)-space. Since

the energy 1
2 ṙ

2 + Φ(r) + 1
2
L2

r2
is independent of θ (a consequence of centrally forcing), this energy

surface is a cylinder CE × Rθ, where CE is the curve defined by (7.27) on the phase plane r-ṙ.

The equation of motion with a prescribed energy E is

dr

dt
= ±

√
2(E − Φ(r))− L2

r2
. (7.28)

It is symmetric about the r-axis. Let us suppose that r1 and r2 ( r1 < r2) are two roots of the
right-hand side of the above equation:

2(E − Φ(r))− L2

r2
= 0

and no other root in between. Then the curve defined by (7.28) is a closed curve connecting (r1, 0)
and (r2, 0). The radial period is defined to be the time the particle travels from (r1, 0) to (r2, 0)
and back. That is,

Tr = 2

ˆ r2

r1

dr√
2(E − Φ(r))− L2/r2

.

Next, we shall represent this orbit on the orbital plane (r, θ). From the conservation of angular
momentum

dθ

dt
=
L

r2
6= 0,

we can invert the function θ(t) and use θ as our independent variable instead of the time variable
t. The chain rule gives

d

dt
=
L

r2

d

dθ
.

The equation of motion now reads

L

r2

d

dθ

(
L

r2

dr

dθ

)
− L2

r3
= F (r). (7.29)
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The energy equation (7.28) becomes

dr

dθ
= ±r

2

L

√
2(E − Φ(r))− L2

r2
. (7.30)

We can integrate this equation by separation of variable to obtain the trajectory r = r(θ) in the
orbital plane. Sometimes, it is convinient to introduce u = 1/r to simplify the equation (7.29):

d2u

dθ2
+ u = −

F
(

1
u

)
L2u2

. (7.31)

Multiplying du/dθ on both sides, we get the conservation of energy in u variable:

1

2

(
du

dθ

)2

+
u2

2
+

Φ

L2
=

E

L2
. (7.32)

Next, we check the variation of θ as r changes for a radial period. The roots of the right-hand
side of (7.30) are equilibria. From (7.28) and (7.30), we see that dr/dθ = 0 if and only if dr/dt = 0.
Hence these roots are exactly r1 and r2 in (7.28). The orbit r = r(θ) defined by (7.28) must lie
between its two extremals where dr/dθ = 0. That is, the orbit r = r(θ) must lie between the inner
circle r ≡ r1 and the outer circle r ≡ r2. The inner radius r1 is called the pericenter distance,
whereas r2 the apocenter distance.

As the particle travels from pericenter to apocenter and back (i.e. one radial period Tr), the
azimuthal angle θ increases by an amount

∆θ = 2

ˆ r2

r1

dθ

dr
dr = 2

ˆ r2

r1

L

r2

dt

dr
dr

= 2L

ˆ r2

r1

dr

r2
√

2(E − Φ(r))− L2/r2
.

The azimuthal period is defined as the time that θ varies 2π:

Tθ :=
2π

∆θ
Tr.

In general, 2π/∆θ is not a rational number. Hence, the orbit may not be closed.
Below, we see some concrete examples. We shall find the trajectory of the motion r = r(θ).

Quadratic potential

The potential generated by a homogeneous sphere has the form Φ(r) = 1
2Ω2r2, where Ω is a

constant. The force in Cartesian coordinate is F = −Ω2(x, y). Hence the equation of motion is

ẍ = −Ω2x, ÿ = −Ω2y.

We notice that the x and y components are decoupled. Its solution is

x(t) = a cos(Ωt+ θx), y(t) = b cos(Ωt+ θy). (7.33)

where a, b and θx, θy are constants. The orbits are ellipses.

170



The energy equation is
1

2
ṙ2 +

Ω2

2
r2 +

1

2

L2

r2
= E.

Its contour curves are bounded and symmetric about r and ṙ axis. The solution is

ṙ = ±
√

2E − Ω2r2 − L2

r2
.

The trajectory intersect ṙ = 0 at r1 and r2, where ri satisfies 2E − Ω2r2 − L2

r2
. This yields

r2
i =

E ±
√
E2 − Ω2L2

Ω2

There are two real roots when E2 > Ω2L2. The above elliptical orbit moves between between r1

and r2. From the solution being an ellipse, we can also get that Tr = Tθ.

Homework.

1. Show that the trajectory defined by (7.33) is an ellipse.

2. * Find the integral

∆θ :=

ˆ r2

r1

2L

r2

dr√
2E − Ω2r2 − L2

r2

.

Kepler potential

The Kepler force is F (r) = −GM/r2, where M is the center mass, G the gravitational constant.
The potential is Φ(r) = −GM/r. From (7.31),

d2u

dθ2
+ u =

GM

L2
.

This yields

u = C cos(θ − θ0) +
GM

L2

where C and θ0 are constants. By plugging this solution into the energy equation (7.32), we obtain

1

2
C2 sin2(θ − θ0) +

1

2
C2 cos2(θ − θ0) + C cos(θ − θ0) · GM

L2
+
G2M2

2L4
− GM

L2
C cos(θ − θ0) =

E

L2
.

This yields

C =

√
2E −G2M2/L2

L
.

We may assume θ0 = 0. Define

e =
CL2

GM
, a =

L2

GM(1− e2)
,
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the eccentricity and the semi-major axis, respectively. The trajectory reads

r =
a(1− e2)

1 + e cos θ
. (7.34)

This is an ellipse. The pericenter distance r1 = a(1−e), whereas the apocenter distance r2 = a(1+e).
The periods are

Tr = Tθ = 2π

√
a3

GM
. (7.35)

Homework.

1. Prove (7.35).

A perturbation of Kepler potential

Let us consider the potential

Φ(r) = −GM
(

1

r
+
a

r2

)
.

This potential can be viewed as a perturbation of the Kepler potential. The far field is dominated
by the Kepler potential. However, in the near field, the force is attractive (but stronger) when
a > 0 and becomes repulsive when a < 0.

The equation for this potential in the r-θ plane is

d2u

dθ2
+

(
1− 2GMa

L2

)
u =

GM

L2
,

where u = 1/r. Its general solution is

1

r
= u = C cos

(
θ − θ0

K

)
+
GMK2

L2
,

where

K =

(
1− 2GMa

L2

)−1/2

.

The constant K > 1 for a > 0 and 0 < K < 1 for a < 0. The constant C is related to the energy
E by

E =
1

2

C2L2

K2
− 1

2

(
GMK

L

)2

.

The pericenter and apocenter distances are respectively

r1 =

(
GMK2

L2
+ C

)−1

, r2 =

(
GMK2

L2
− C

)−1

.

The trajectory in u-θ plane is

u =
u1 + u2

2
+

(
u1 − u2

2

)
cos

(
θ − θ0

K

)
.

Here, u1 = 1/r1 and u2 = 1/r2. To plot the trajectory on u-θ plane, we may assume θ0 = 0. If
K is rational, then the orbit is closed. For instance, when K = 1, the trajectory is an ellipse.
When K = 3/2, the particle starts from (u1, 0), travels to (u2, 3/2π), then back to (u1, 3π), then
to (u2, (3 + 3/2)π), finally return to (r1, 6π).
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Reference. James Binney and Scott Tremaine, Galactic Dynamics, Princeton University Press,
1987.

Homeworks

1. Consider the Duffing’s equation

s̈ = −y′(s), y(s) = −δs2/2 + s4/4.

(a) Find the equilibria.

(b) Plot the level curve of the energy E on the phase plane s-s′.

(c) Find the period T as a function of E and δ.

(d) Analyze the stability of the equilibria.

2. Consider the equation

ẍ = −V ′(x), V (x) = −x
2

2
+
x3

3
.

(a) Find the equilibria.

(b) Plot the level curve of the energy E on the phase plane s-s′.

(c) Find the period T as a function of E.

(d) Analyze the stability of the equilibria.

(e) There is a special orbit, called the homoclinic orbit, which starts from the orgin, goes
around a circle, then comes back to the orgin. Find this orbit on the phase plane and
try to find its analytic form.

3. Consider the Kepler problem.

(a) Plot the level curve of E on the phase plane r-ṙ.

(b) Plot the level curve of E on the r-r′ plane, where r′ denotes for dr/dθ.

7.5 General Hamiltonian flows

The above Hamiltonian formulation holds for quite general Lagrange mechanics. Consider the
action

S =

ˆ
L(x, ẋ) dt,

where L : Rn × Rn → R. The least action principle gives the Euler-Lagrange equation:

d

dt
Lv(x, ẋ) = Lx(x, ẋ).

In mechanical application, L(x,v) is usually a convex function in v. We define the map

p = Lv(x,v)
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from Rn → Rn. This mapping is 1-1 and has a unique inverse due to the convexity of L(x, ·). We
multiply the Euler-Lagrange equation by ẋ,

0 = (
d

dt
Lv) · ẋ− Lx · ẋ

=
d

dt
(Lv · ẋ− L)

Therefore, we define
H(x,p) = Lv(x,v) · v − L(x,v), (7.36)

where v := v(x,p) is the inverse function of p = Lv(x,v). This inversion can be expressed in
terms of H. Namely,

v = Hp(x,p).

To see this, we express
H(x,p) = p · v(x,p)− L(x,v(x,p)).

We differentiate it in p and get

Hp = v + p · vp − Lvvp = v.

We can also compute Hx:

Hx = p · vx(x,p)− Lx(x,v(x,p))− Lv(x,v(x,p))vx(x,p) = −Lx(x,v).

Thus, the Euler-Lagrange equation
d

dt
Lv = Lx (7.37)

now can be expressed as
ṗ = −Hx.

Let us summary the above discussion below.

From Euler-Lagrange equation to Hamiltonian equation We start from the minimal action
principle to get the Euler-Lagrange equation

d

dt
Lv(x, ẋ) = Lx(x, ẋ).

From this, we define the mapping

p := Lv(x,v) and its inverse mapping v = v(x,p),

and the Hamiltonian
H(x,p) := p · v(x,p)− L(x,v(x,p)).

We then get
v(x,p) = Hp(x,p) and ṗ = Hx(x,p).

Now, we claim that if x(·) is a solution of (7.37) then{
ẋ = Hp(x,p)
ṗ = −Hx(x,p)

(7.38)

with p(t) := Lv(x(t), ẋ(t)).
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From Hamiltonian equation to Euler-Lagrange equation If (x(t),p(t)) satisfies (7.38),
then define

v = Hp(x,p) and its inverse map p(x,v),

and the Lagrangian
L(x,v) = v · p(x,v)−H(x,p(x,v)),

Then x(·) satisfies the Euler-Lagrange equation (7.37).

7.5.1 Noether Theorem

Project

1. Write a model for double pendulum. Solve it numerically, analyze it.

7.6 Gradient Flows

In many applications, we look for a strategy to find a minimum of some energy function or entropy
function. This minimal energy state is called the ground state. One efficient way is to start from
any state then follow the negative gradient direction of the energy function. Such a method is
called the steepest descent method. The corresponding flow is called a (negative ) gradient flow.
To be precise, let us consider an energy function ψ(x, y). We consider the ODE system:{

ẋ = −ψx(x, y)
ẏ = −ψy(x, y).

(7.39)

Along any of such a flow (x(t), y(t)), we have

dψ

dt
(x(t), y(t)) = ψxẋ+ ψyẏ = −(ψ2

x + ψ2
y) < 0,

unless the flow reaches a minimum of ψ.
The gradient flow of ψ is always orthogonal to the Hamiltonian flow of ψ. For if{

ẋ = ψy(x, y)
ẏ = −ψx(x, y)

{
ξ̇ = −ψx(ξ, η)
η̇ = −ψy(ξ, η)

then
ẋ(t) · ξ̇(t) + ẏ(t) · η̇(t) = 0.

Thus, the two flows are orthogonal to each other. We have seen that ψ is an integral of the
Hamiltonian flow. Suppose φ is an integral of the gradient flow (7.39) (that is, the gradient flows
are the level sets of φ), then the level sets of ψ and φ are orthogonal to each other.

Example 1. Let ψ = (x2 − y2)/2. Then the gradient flow satisfies{
ẋ = −x
ẏ = +y.

Its solutions are given by x = x0e
−t and y = y0e

t. We can eliminate t to obtain that the function
φ(x, y) := 2xy is an integral. If we view these functions on the complex plane: z = x + iy, we see
that ψ(z) + iφ(z) = z2.
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Example 2. Let ψ(x, y) = (x2 + y2)/2. The gradient flows are given by{
ẋ = −x
ẏ = −y.

Its solutions are given by x = x0e
−t and y = y0e

−t. An integral is φ = tan−1(y/x). On the other
hand, the Hamiltonian flow is given by {

ẋ = ψy = y
ẏ = −ψx = −x

Its solutions are given by x = A sin(t + t0), y = A cos(t + t0). The integral is ψ = (x2 + y2)/2.
In fact, 1

2 ln(x2 + y2) is also an integral of the Hamiltonian flow. The complex valued function
ψ + iφ = ln z.

Example 3. In general, the hamiltonian

ψ(x, y) =
ax2

2
+ bxy +

cy2

2

the corresponding Hamiltonian system is[
ẋ
ẏ

]
=

[
b c
−a −b

] [
x
y

]
The gradient flow is [

ẋ
ẏ

]
= −

[
a b
b c

] [
x
y

]
Find the corresponding integral φ of the gradient flow by yourself.

Example 4. Let

ψ(x, y) =
y2

2
− x2

2
+
x4

4
.

The gradient flow is {
ẋ = −ψx = x− x3

ẏ = −ψy = −y
The trajectory satisfies

dy

dx
=

dy
dt
dx
dt

=
y

−x+ x3

By the separation of variable
dy

y
=

dx

−x+ x3
,

we get

ln y =

ˆ
dx

−x+ x3
= − ln |x|+ 1

2
ln |1− x|+ 1

2
ln |1 + x|+ C.

Hence, the solutions are given by

φ(x, y) :=
x2y2

1− x2
= C1.

Remarks.
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• We notice that if ψ is an integral of an ODE system, so is the composition function h(ψ(x, y))
for any function h. This is because

d

dt
h(ψ(x(t), y(t)) = h′(ψ)

d

dt
ψ(x(t), y(t)) = 0.

• If (0, 0) is the center of ψ, then (0, 0) is a sink of the corresponding gradient flow.

• If (0, 0) is a saddle of ψ, it is also a saddle of φ.

The properties of a gradient system are shown in the next theorem.

Theorem 7.2. Consider the gradient system{
ẋ = −ψx(x, y)
ẏ = −ψy(x, y)

Assume that the critical points of ψ are isolated and non-degenerate. Then the system has the
following properties.

• The equilibrium is either a souce, a sink, or a saddle. It is impossible to have spiral structure.

• If (x̄, ȳ) is an isolated minimum of ψ, then (x̄, ȳ) is a sink.

• If (x̄, ȳ) is an isolated maximum of ψ, then (x̄, ȳ) is a source.

• If (x̄, ȳ) is an isolated saddle of ψ, then (x̄, ȳ) is a saddle.

To show these, we see that the Jacobian of the linearized equation at (x̄, ȳ) is the Hessian of
the function ψ at (x̄, ȳ): is

−
[
ψxx ψxy
ψxy ψyy

]
Its eigenvalues λi, i = 1, 2 are

−1

2

(
T ±

√
T 2 − 4D

)
,

where T = ψxx + ψyy, D = ψxxψyy − ψ2
xy. From

T 2 − 4D = (ψxx − ψyy)2 + 4ψ2
xy ≥ 0

we have that the imaginary part of the eigenvalues λi are 0. Hence the equilibrium can only be a
sink, a source or a saddle.

Recall from Calculus that whether the critical point (x̄, ȳ) of ψ is a local maximum, a local
minimum, or a saddle, is completed determined by λ1, λ2 < 0, λ1, λ2 > 0, or λ1λ2 < 0, respectively.
On the other hand, whether the equilibrium (x̄, ȳ) of (7.39) is a source, a sink, or a saddle, is also
completed determined by the same conditions.

Homework 7.3. 1. Consider a linear ODE[
ẋ
ẏ

]
=

[
a b
c d

] [
x
y

]
(a) Show that the system is a hamiltonian system if and only if a + d = 0. Find the

corresponding hamiltonian.
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(b) Show that the system is a gradient system if and only if b = c, i,e. the matrix is
symmetric.
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Chapter 8

Existence Theory for ODE in Rn

8.1 Well-postness

8.1.1 Local existence

In this section, we develop general theory for the initial value problem

y′(t) = f(t,y(t)), (8.1)

y(t0) = y0. (8.2)

This includes, the existence, uniqueness, continuous dependence of the initial data. In the next
section, we will develop the general stability theory. This includes the linear stability analysis and
method of Lyapunov function.

We assume that f : R × Rn → Rn is continuous. We are interested in existence of solutions
in a neighborhood of (t0,y0). Let us choose such a neighborhood, say J = [t0 − τ0, t0 + τ0] and
V = {y||y − y0| ≤ R}. Let us denote max{|f(s,y)||(s,y) ∈ J × V } by M .

Definition 8.1. We say that f(s,y) is Lipschitz continuous in y in a neighborhood J × V if there
exists a constant L such that

|f(s,y1)− f(s,y2)| ≤ L|y1 − y2|

for any y1,y2 ∈ V and any s ∈ J .

If f(s,y) is continuously differentiable in y on J ×V , then by the mean value theorem, it is also
Lipschitz continuous in y.

Theorem 8.1 (Local Existence, Cauchy-Peano theory). Consider the initial value problem (8.1),
(8.2). Suppose f(t,y) is continuous in (t,y) and Lipschitz continuous in y in a neighborhood of
(t0,y0), then the initial value problem (8.1) and (8.2) has a solution y(·) in [t0− δ, t0 + δ] for some
δ > 0.

Proof. We partition the existence proof into following steps.

1. Convert (8.1) (8.2) into an equivalent integral equation. We can integrate (8.1) in t and
obtain

y(t) = y0 +

ˆ t

t0

f(s,y(s)) ds. (8.3)
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This is an integral equation for y(·). We claim that the initial value problem (8.1) (8.2) is
equivalent to the integral equation (8.3).
We have seen the derivation from (8.1) and (8.2) to (8.3). Conversely, if y(·) is continuous
and satisfies (8.3), then f(·,y(·)) is continuous. Hence,

´ t
t0

f(s,y(s)) ds is differentiable. By
the Fundamental Theorem of Calculus, we get y′(t) = f(t,y(t)). Hence, y(·) is differentiable
and satisfies (8.1). At t = t0, the integral part of (8.3) is zero. Hence y(t0) = y0.

2. We shall use method of contraction map to solve this integral equation in the function space
C(I), the space of all continuous functions on interval I. First, let me introduce the function
space C(I):

C(I) := {y|y : I → Rn is continuous}.

Here, I = [t0− δ, t0 + δ] is an interval of existence. The parameter δ ≤ τ0 will be chosen later.
In C(I), we define a norm

‖y‖ = max
t∈I
|y(t)|.

It is a fact that, with this norm, every Cauchy sequence {yn} in C(I) converges to y ∈ C(I).

3. We perform Picard iteration to generate approximate solutions: define

y0(t) ≡ y0

yn+1(t) = Φ(yn)(t) := y0 +

ˆ t

t0

f(s,yn(s)) ds, n ≥ 1. (8.4)

We will show that {yn} is a Cauchy in C(I). But, first, we need to show that Φ(y)(t) stay
in V for |t− t0| small enough so that the Lipschitz condition of f can be applied.

4. Let us consider the closed ball

X := {y ∈ C(I)|‖y − y0‖ ≤ R} ⊂ C(I).

We claim that if y ∈ X, then Φ(y) ∈ X, provided δ ≤ R
M . This is because

‖Φ(y)− y0‖ =

∣∣∣∣ˆ t

0
f(s,y(s)) ds

∣∣∣∣ ≤ ˆ t

0
|f(s,y(s))| ds ≤Mt ≤ δ.

5. We claim that the sequence {yn} is a Cauchy sequence in C(I), provided δ is small enough.
From (8.4), we have

‖yn+1 − yn‖ = ‖Φ(yn)−Φ(yn−1)‖ ≤
ˆ t

t0

|f(s,yn(s))− f(s,yn−1(s))| ds

≤
ˆ t

t0

L|yn(s)− yn−1(s)| ds ≤ τL‖yn − yn−1‖

Here, L is the Lipschitz constant of f in J × U . We choose a constant ρ < 1 and choose δ
such that

δ = min{ ρ
L
,
R

M
}. (8.5)
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With this δ, yn ∈ X and

‖ym − yn‖ ≤
m−1∑
k=n

‖yk+1 − yk‖ ≤
m−1∑
n

ρk < ε,

provided n < m are large enough.

6. By the completeness of C(I), yn converges to a function y ∈ C(I). This convergence above
is called uniform convergence. It means

lim
n→∞

max
s∈I
|yn(s)− y(s)| = 0.

This implies that yn(s) → y(s) for every s ∈ I. This also yields that, for every s ∈ I,
limn→∞ f(s,yn(s)) = f(s,y(s)), because f is continuous in y. By the continuity of integration,
we then get ˆ t

t0

f(s,yn(s)) ds→
ˆ t

t0

f(s,y(s)) ds

for any t ∈ I. By taking limit n→∞ in (8.4), we get that y(·) satisfies the integral equation
(8.3).

8.1.2 Uniqueness

Theorem 8.2. If f(s,y) is Lipschitz continuous in y in a neighborhood of (t0,y0), then the initial
value problem

y′(t) = f(t,y(t)), y(0) = y0

has a unique solution in the region where the solution exists.

Proof. Suppose y1(·) and y2(·) are two solutions. Then Let η(t) := |y2(t)− y1(t)|. ∗ We have

η′(t) ≤ |(y2(t)− y1(t))′| ≤ |f(t,y2(t))− f(t,y1(t))|
≤ L|y2(t)− y1(t)| = Lη(t)

We get the following differential inequality

η′(t)− Lη(t) ≤ 0.

Multiplying e−Lt on both sides, we get (
e−Ltη(t)

)′ ≤ 0.

Hence
e−Ltη(t) ≤ η(0).

But η(0) = 0 (because y1(0) = y2(0) = y0) and η(t) = |y1(t) − y2(t)| ≥ 0, we conclude that
η(t) ≡ 0.

∗The norm here can be any norm in Rn. What we need is the triangle inequality which gives

|y1(t)− y2(t)|′ ≤ |y′1(t)− y′2(t)|.

The |y|2 =
√
y21 + · · ·+ y2n has this property.
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If f does not satisfies the Lipschitz condition, then a counter example does exist. Typical
counter example is

y′(t) = 2
√
y, y(0) = 0.

Any function has the form

y(t) =

{
0 t < c
(t− c)2 t ≥ c

with arbitrary c ≥ 0 is a solution.

Homework Let |y| :=
√
y2

1 + · · ·+ y2
n. Let y : R→ Rn be a smooth function. Show that

|y|′ ≤ |y′|.

8.1.3 Continuous dependence on initial data

Let us denote the solution to the ODE

y′ = f(t,y), y(t0) = ξ

by y(t, ξ). We shall show that the solution continuously depends on its initial data ξ. If f is twice
differentiable in y, then y(·, ξ) is also differentiable in ξ.

Theorem 8.3. Under the same assumption of f in the local existence theorem above, the solution
y(t; ξ) of the ODE: y′ = f(t,y), y(t0, ξ) = ξ is a continuous function in ξ in a neighborhood of y0.
That is, the solution y(·, ξ) continuously depends on its initial data ξ.

Proof. The proof is a simple modification of the proof of the local existence theorem.

1. Let us define I = [t0 − δ, t0 + δ] (δ is to be determined later), U = BR/2(y0) and consider

C(I × U) := {y(·)|y : I × U → Rn is continuous},

with the norm
‖y1 − y2‖ := max

(t,ξ)∈I×U
|y1(t, ξ)− y2(t, ξ)|

X = {y ∈ C(I × U)|‖y − y0‖ ≤ R/2}.

Here, y0 denotes for both the constant and the constant function in t with value y0.

2. We define the Picard iteration to be:

yn+1(t, ξ) := Φ(yn)(t, ξ) := ξ +

ˆ t

t0

f(s,yn(s, ξ)) ds,

y0(t, ξ) ≡ ξ,

for (t, ξ) ∈ I × U .

3. We claim that if y ∈ X, then |Φ(y)(t, ξ)− y0| ≤ R. This is because

|Φ(y)− y0| ≤ |ξ − y0|+
ˆ t

t0

|f(s,y(s, ξ))| ds ≤ R

2
+Mδ ≤ R

provided δ ≤ R/(2M).

182



4. The sequence {yn} is a Cauchy sequence in C(I × U) provided δ is small. From (8.4), we
have

‖yn+1 − yn‖ = ‖Φ(yn)−Φ(yn−1)‖ ≤
ˆ t

t0

|f(s,yn(s))− f(s,yn−1(s))| ds

≤
ˆ t

t0

L|yn(s)− yn−1(s)| ds ≤ τL‖yn − yn−1‖

We choose a constant ρ < 1 and choose δ such that

δ = min{ ρ
L
,
R

2M
}. (8.6)

With this δ, yn ∈ X and

‖ym − yn‖ ≤
m−1∑
k=n

‖yk+1 − yk‖ ≤
m−1∑
n

ρk < ε,

provided n < m are large enough.

5. The sequence {yn} converges to a function y ∈ C(I × U) and satisfies

y(t, ξ) = ξ +

ˆ t

t0

f(s,y(s, ξ)) ds

which solves the ODE: y′ = f(t,y), y(t0, ξ) = ξ. Furthermore, y(t, ξ) is continuous in ξ.

Remark. Given a function y ∈ C(I × U). For each fixed ξ ∈ U , y(·, ξ) ∈ C(I) for every ξ ∈ U .
Thus, y can be viewed as a function z : U → C(I) defined by z(ξ) = y(·, ξ) ∈ C(I). This function
is indeed a continuous function from U to C(I). This means that if we define

C(U,C(I)) := {w : U → C(I) is continuous.}

equipped with the norm
‖w‖ := max

ξ∈U
‖w(ξ)‖,

then z ∈ C(U,C(I)). This can be proven by the following arguments. Because y ∈ C(I × U), we
have for any ε > 0 small, there exists δ1 > 0 such that

|y(t, ξ1)− y(t, ξ2)| < ε

for all t ∈ I and ξ1, ξ2 ∈ U with |ξ1 − ξ2| < δ1. This δ1 is independent of t because of the uniform
continuity of y on I × U . We can take maximum in t ∈ I, then obtain

‖z(ξ1)− z(ξ2)‖ = ‖y(·, ξ1)− y(·, ξ2)‖ := max
t∈I
|y(t, ξ1)− y(t, ξ2)| ≤ ε.

Thus, z ∈ C(U,C(I)).
Conversely, given a function z ∈ C(U,C(I)), z(ξ) ∈ C(I) for any ξ ∈ U . Thus, we can associate

it with a function y : I × U → Rn defined by y(t, ξ) := z(ξ)(t). This function is indeed uniformly
continuous on I × U . Thus, C(I × U) is the same as the space C(U,C(I)).
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Homework 8.1. 1. Let I be closed interval and U ∈ Rn be a closed ball. Prove that if
z ∈ C(U,C(I)), then the function y(t, ξ) := z(ξ)(t) is uniformly continuous on I × U .

2. *The continuity of y(t, ξ) in ξ can become differentiable if the Jacobian [∂f/∂y](t,y) is
Lipschitz continuous in y. Prove such a result and show that along a solution y(·, ξ), the
Jacobian [∂y(·, ξ)/∂ξ], which is an n× n matrix, satisfies the matrix ODE:

d

dt

[
∂y

∂ξ
(t, ξ)

]
=

[
∂f

∂y
(t,y(t, ξ))

] [
∂y

∂ξ

]
.

3. Show that det
[
∂y
∂ξ (t, ξ)

]
6= 0 if det

[
∂y
∂ξ (0, ξ)

]
6= 0

8.1.4 A priori estimate and global existence

The global existence results are usually followed from so-called a priori estimate plus the local
existence result. Let us recall the a priori estimate for scalar equations.

Examples of a priori estimates

1. In logistic equation y′ = ry(1 − y/K), if a solution y(·) with 0 < y(0) < K exists, then it
always satisfies 0 < y(t) < K for all t. This is because y(t) ≡ 0 and y(t) ≡ K are two
equilibrium solutions and no solution can cross equilibrium (uniqueness theorem). Such kind
of estimate is called an a priori estimate.

2. In spring-mass model mẍ− kx = 0, if the solution exists, then it always satisfies

1

2
ẋ2 + kx2 = E

for some constant E > 0. This automatically gives boundedness of (x(t), ẋ(t)), as long as it
exists. The estimate is called a priori estimate.

Global existence theorem

Theorem 8.4. Consider y′ = f(t,y). If a solution y(t) stays bounded as long as it exists, then
such a solution exists for all t ∈ R.

Proof. Suppose a solution exists in [0, T ) and cannot be extended. By the assumption of bounded-
ness, the limit y(T−) exists. This is because y(·) is bounded, hence y′(t) = f(t,y(t)) is bounded
and continuous for t ∈ [0, T ). Hence the limit

y(T−) = lim
t→T−

y(0) +

ˆ t

0
y′(s) ds

exists. We can extend y(·) from T with the y(T+) = y(T−). By the local existence theorem, the
solution can be extended for a short time. Now, we have a solution on two sides of T with the
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same data y(T−), we still need to show that it satisfies the equation at t = T . To see this, on the
right-hand side

lim
t→T+

y′(t) = lim
t→T+

f(t,y(t)) = f(T,y(T−)).

On the left-hand side, we also have

lim
t→T−

y′(t) = lim
t→T−

f(t,y(t)) = f(T,y(T−)).

Therefore y′(t) is continuous at T and y′(T ) = f(T,y(T )). Hence we get the extended solution
also satisfies the equation at T . This is a contradiction.

Below, we give several examples of a priori estimates.

Example 1 A vector field f(t,y) is said to grow at most linearly as |y| → ∞ if there exist some
positive constants a, b such that

|f(t,y)| ≤ a|y|+ b (8.7)

whenever |y| is large enough.

Theorem 8.5. If f(t,y) is smooth and grows at most linearly as |y| → ∞, then all solutions of
ODE y′ = f(t,y) can be extended to t =∞.

Proof. Suppose a solution exists in [0, T ), we give a priori estimate for this solution. From the grow
condition of f , we have

|y(t)|′ ≤ |y′(t)| ≤ a|y(t)|+ b.

Multiplying e−at on both sides, we get(
e−at|y(t)|

)′ ≤ e−atb.
Integrating t from 0 to T , we obtain

e−aT |y(T )| − |y(0)| ≤
ˆ T

0
e−atb dt =

b

a

(
1− eaT

)
.

Hence

|y(T )| ≤ |y(0)|eaT +
b

a
eaT .

Such an estimate is called a priori estimate of solutions. It means that as long as solution exists,
it satisfies the above estimate.

Remarks.

1. We can replace the growth condition by

|f(t,y)| ≤ a(t)|y|+ b(t) (8.8)

where a(t) and b(t) are two positive functions and locally integrable, which means
ˆ
I
a(t) dt,

ˆ
I
b(t) dt <∞

for any bounded interval I.
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2. In the proofs of the uniqueness theorem and the global existence theorem, we use so called
the Gronwall inequality, which is important in the estimate of solutions of ODE.

Lemma 8.1 (Gronwall inequality). If

η′(t) ≤ a(t)η(t) + b(t) (8.9)

then

η(t) ≤ e
´ t
0 a(s) dsη(0) +

ˆ t

0
e
´ t
s a(τ) dτ b(s) ds (8.10)

Proof. Let A(t) =
´ t

0 a(s) ds. We multiply (8.9) by the integration factor e−A(t) to get

e−A(t)η′(t)− a(t)e−A(t)η(t) ≤ e−A(t)b(t).

This gives (
e−A(t)η(t)

)′
≤ e−A(t)b(t).

We rename the independent variable as s then integrate this inequality in s from 0 to t. We get

e−A(t)η(t) ≤ η(0) +

ˆ t

0
e−A(s)b(s) ds.

Multiply both sides by eA(t), we get (8.10).

Gronwall inequality can also be used to show that the continuous dependence of solution to its
initial data.

Homework

1. Gronwall inequality in integral form Suppose η(t) satisfies

η(t) ≤ η(0) +

ˆ t

0
Lη(s) + b(s) ds

Show that eta(t) satisfies

e−Ltη(t) ≤ η(0) +

ˆ t

0
e−L(t−s)b(s) ds.

Hint: Let ζ(t) :=
´ t

0 η(s) ds. Then ζ(t) satisfies

ζ ′ = ζ ′(0) + Lζ +B(t), B(t) =

ˆ t

0
b(s) ds.

Use the differential form of the Gronwall inequality.

2. Generalize the above Gronwall inequality to

η(t) ≤ η(0) +

ˆ t

0
a(s)η(s) + b(s) ds.
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Example 2: Lyapunov functional and a priori estimate

Theorem 8.6. Consider the ODE in Rn:

y′ = f(y), y(0) = y0.

Suppose there exists a function Φ such that

(i) ∇Φ(y) · f(y) ≤ 0, and

(ii) Φ(y)→∞ as |y| → ∞.

Then the solution exists on [0,∞).

Proof. Consider Φ(y(t)). It is a non-increasing function because

d

dt
Φ(y(t)) = ∇Φ(y(t)) · f(y(t)) ≤ 0

Thus,
Φ(y(t)) ≤ Φ(y(0))

Since Φ(y)→∞ as y→∞, the set

{y|Φ(y) ≤ Φ(y0)}

is a bounded set. If the maximal existence of interval is [0, T ) with T < ∞, then y(·) is bounded
in [0, T ) and can be extended to T . By the local existence of ODE, we can always extend y(·) to
T + ε. This is a contradiction. Hence T =∞.

As an example, let us consider a damping system

ẍ + γẋ = −V ′(x)

where V is a trap potential, which means that V (x) → ∞ as |x| → ∞. By multiplying ẋ both
sides, we obtain

dE

dt
= −γ|ẋ|2 ≤ 0

Here,

E(t) :=
1

2
|ẋ|2 + V (x)

is the energy. The term γ|ẋ|2 is called the energy dissipation rate. We integrate the above equation
from 0 to t, drop the dissipation term to get

E(t) ≤ E(0), for all t > 0.

This gives a priori estimate of solution

1

2
|ẋ(t)|2 + V (x(t)) ≤ E(0).

This implies both ẋ(t) and x(t) are bounded, because of the property of V .
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Homeworks

1. Suppose η(·) satisfies

η′ ≤ aη + bη2, η ≥ 0,

where a, b are two positive constants. Show that η(t) is bounded for t ≥ 0 if η(0) is small
enough.

2. Consider the equation

y′ = Ay + B(y,y), y(0) = y0.

Here, y ∈ Rn, A is an n× n matrix, B : Rn ×Rn → Rn is a bilinear function. Show that the
solution y(t) exists for all t ≥ 0 if |y(0)| is small enough.

8.2 Supplementary

8.2.1 Uniform continuity

Pointwise continuity. The concept of continuity is a local concept. Namely, y is continuous at
t0 means that for any ε > 0 there exists δ > 0 such that |y(t) − y(t0)| < ε as |t − t0| < δ. The
continuity property of y at t0 is measured by the relation δ(ε). The locality here means that δ also
depends on t0. This can be read by the example y = 1/t for t0 ∼ 0. For any ε, in order to have
|1/t− 1/t0| < ε, we can choose δ ≈ εt20 (Check by yourself). Thus, the continuity property of y(t)
for t0 near 0 and 1 is different. The ratio ε/δ is of the same magnitude of y′(t0), in the case when
y(·) is differentiable.

Uniform continuity

Theorem 8.7. When a function y is continuous on a bounded closed interval I, the above local
continuity becomes uniform. Namely, for any ε > 0, there exists a δ > 0 such that |y(t1)−y(t2)| < ε
whenever |t1 − t2| < δ.

Proof. For any ε > 0, any s ∈ I, there exists δ(ε, s) > 0 such that |y(t) − y(s)| < ε whenever
|t − s| < δ(ε, s). Let us consider the open intervals U(s, δ(ε, s)) := (s − δ(ε, s), s + δ(ε, s)). The
union ∪s∈IU(s, δ(ε, s)) contain I. Since I is closed and bounded, by so called the finite covering
lemma, there exist finite many U(si, δ(ε, si)), i = 1, ..., n such that I ⊂ ∪ni=1U(si, δ(ε, si)). Then we
choose

δ :=
n

min
i=1

δ(ε, si)

then the distances between any pair si and sj must be less than δ. For any t1, t2 ∈ I with |t1−t2| < δ,
Suppose t1 ∈ U(sk, δ(ε, sk)) and t2 ∈ U(sl, δ(ε, sl)), then we must have |sk − sl| < δ.

|y(t1)− y(t2)| ≤ |y(t1)− y(sk)|+ |y(sk)− y(sl)|+ |y(sl)− y(t2)| < 3ε.

This completes the proof.

The key of the proof is the finite covering lemma. It says that a local property can be uniform
through out the whole interval I. This is a key step from local to global.
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8.2.2 C(I) is a normed linear space

If this distance is zero, it implies y1 ≡ y2 in I. Also,

‖ay‖ = |a|‖y‖

for any scalar a. Moreover, we have

‖y1 + y2‖ ≤ ‖y1‖+ ‖y2‖.

If we replace y2 by −y2, it says that the distance between the two functions is less than ‖y1‖ and
‖y2‖. This is exactly the triangular inequality. To show this inequality, we notice that

|y1(t)| ≤ ‖y1‖, |y2(t)| ≤ ‖y2‖, for all t ∈ I

Hence,
|y1(t) + y2(t)| ≤ |y1(t)|+ |y2(t)| ≤ ‖y1‖+ ‖y2‖.

By taking maximal value on the left-hand side for t ∈ I, we obtain

‖y1 + y2‖ ≤ ‖y1‖+ ‖y2‖.

The function space C(I) with the norm ‖ · ‖ is an example of normed linear space.

8.2.3 C(I) is a complete space

A complete normed linear space is called a Banach space.

Definition 8.2. A sequence {yn} is called a Cauchy sequence if for any ε > 0, there exists an N
such that for any m,n ≥ N , we have

‖yn − ym‖ < ε.

Theorem 8.8. Let {yn} be a Cauchy sequence in C(I). Then there exist y ∈ C(I) such that

‖yn − y‖ → 0 as n→∞.

To prove this theorem, we notice that for each t ∈ I, {yn(t)} is a Cauchy sequence in R. Hence,
the limit limn→∞ yn(t) exists. We define

y(t) = lim
n→∞

yn(t) for each t ∈ I.

We need to show that y is continuous and ‖yn − y‖ → 0. To see y is continuous, let t1, t2 ∈ I.
At these two points, limn yn(ti) = y(ti), i = 1, 2. This means that for any ε > 0, there exists an
N > 0 such that

|yn(ti)− y(ti)| < ε, i = 1, 2, for all n ≥ N.

With this, we can estimate |y(t1)− y(t2)| through the help of yn with n ≥ N . Namely,

|y(t1)− y(t2)| ≤ |y(t1)− yn(t1)|+ |yn(t1)− yn(t2)|+ |yn(t2)− y(t2)|
≤ 2ε+ |yn(t1)− yn(t2)| ≤ 3ε
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In the last step, we have used the uniform continuity of yn on I. Hence, y is continuous in I.
Also, from the Cauchy property of yn in C(I), we have for any ε > 0, there exists an N > 0

such that for all n,m > N , we have
‖yn − ym‖ < ε

But this implies that for all t ∈ I, we have

|yn(t)− ym(t)| < ε

Now, we fix n and let m→∞. This yields

|yn(t)− y(t)| ≤ ε

and this holds for n > N . Now we take maximum in t ∈ I. This yields

‖yn − y‖ ≤ ε

Thus, we have shown lim yn = y in C(I).
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Chapter 9

Numerical Methods for Ordinary
Differential Equations

9.1 Design of numerical schemes

We shall solve the initial value problem

y′ = f(t, y), y(0) = y0. (9.1)

numerically. It is to to approximate the solution y(·) by discrete values yn ∼ y(tn) at discrete times
t0 = 0 < t1 < · · · tn]. For simplicity, we take uniform step size h and define tk = kh. At time t, we
expect that as the mesh size h→ 0, the discrete value yn tends to y(t), where nh = t.

A numerical scheme is to produce the discrete values yn from the initial data y0. It is usually
designed as an iterative procedure. Namely, given yn, we want to find yn+1 which is an approxima-
tion of y(tn+1). Such design procedure can be based on approximation of integration, or on Taylor
expansion. Let us explain below.

Integral Approximation Approach By integrating the ODE from tn to tn+1, we get

y(tn+1) = y(tn) +

ˆ tn+1

tn
f(t, y(t)) dt

So the strategy is to approximate the integral by a numerical integral

hFh(tn, yn) ≈
ˆ tn+1

tn
f(t, y(t)) dt.

Below, we give several popular schemes

• Forward Euler method

yn+1 = yn + hf(tn, yn).

• Backward Euler method,

yn+1 = yn + hf(tn+1, yn+1).
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• Runge-Kutta method, based on mid point rule

yn+1 = yn + hf(tn+1/2, yn +
h

2
f(tn, yn))

Here, we approximate

ˆ tn+1

tn
f(t, y(t)) dt ≈ hf(tn+1/2, y(tn+1/2))

then approximate

y(tn+1/2) ≈ y(tn) +
h

2
f(tn, y(tn))

• Second-order Runge-Kutta method (RK2): based on trapezoidal rule

y1 = yn + hf(tn, yn),

yn+1 = yn +
1

2
h(f(tn, yn) + f(tn+1, y1))

=
1

2
(y1 + (yn + hf(tn+1, y1))

Finite Difference Approach Alternatively, we can also approximate the ODE by finite differ-
ence methods

• Forward Euler: we approximate y′(tn) by forward finite differencing:

y′(tn) ≈ y(tn+1)− y(tn)

h
.

Then y′(tn) = f(tn, y(tn)) is approximated by

yn+1 − yn

h
= f(tn, yn).

• Backward Euler method: we approximate y′(tn+1) by forward finite differencing:

y′(tn+1) ≈ y(tn+1)− y(tn)

h

in the equation y′(tn+1) = f(tn+1, y(tn+1))

• Mid point method. We approximate

y′(tn+1/2) = f(tn+1/2, y(tn+1/2))

by
yn+1 − yn

h
= f(tn+1/2, yn+1/2)

where

yn+1/2 = yn +
h

2
f(tn, yn).
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• RK2: We approximate

y′(tn+1/2) = f(tn+1/2, y(tn+1/2))

by
yn+1 − yn

h
=

1

2

(
f(tn, yn) + f(tn+1, ȳn+1)

)
where

ȳn+1 = yn + hf(tn, yn).

9.2 Truncation error and order of accuracy

Truncation error We would like to estimate the error en, which is defined to be

en = y(tn)− yn.

In order to find the equation that en satisfies, we plug the true solution into the finite difference
equation

y(tn+1)− y(tn) = hFh(tn, y(tn)) + hτ(h). (9.2)

The remaining term τ(h) is called the truncation error.

Definition 9.1. The truncation error for the numerical scheme

yn+1 − yn

h
− Fh(tn, yn) = 0 (9.3)

is defined to be

τ(h) :=
y(tn+1)− y(tn)

h
− Fh(tn, y(tn))

where y(t) is a smooth true solution for y′ = f(t, y).

• Forward Euler: For instance, in the forward Euler method, by Taylor expansion,

τ(h) :=
y(tn+1)− y(tn)

h
− f(tn, yn) =

y(tn+1)− y(tn)

h
− y′(tn) = O(h).

• RK2: We use trapezoidal rule

ˆ tn+1

tn
f(s, y(s)) ds =

1

2
h(f(tn, y(tn)) + f(tn+1, y(tn+1)) +O(h3).

We do not have y(tn+1), yet we can use y1 obtained by the forward Euler to approximate
y(tn+1). That is, y1 = y(tn) + hf(tn, y(tn)). From (9.2), |y1 − y(tn+1)| = O(h2). Hence,

f(tn+1, y1) = f(tn+1, y(tn+1)) +O(h2).

This yields

y(tn+1) = y(tn) +
1

2
h(f(tn, yn) + f(tn+1, y1)) +O(h3).
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Alternatively, we can use Taylor expansion. The numerical field of RK2 is

Fh(t, y) =
1

2
(f(t, y) + f(t+ h, y + hf(t, y))) .

The truncation error is defined to be

τ(h) :=
y(tn+1)− y(tn)

h
− Fh(tn, y(tn)).

We expand the above equation about tn: (we abbreviate y(tn) by yn in the calculation)

y(tn+1)− y(tn)

h
= y′(tn) +

1

2
hy′′(tn) +O(h2).

Fh(tn, y(tn)) :=
1

2
(f(tn, yn) + f(tn + h, yn + hf(tn, yn)))

= f(tn, yn) +
h

2
(ft(t

n, yn) + fy(y
n)f(tn, yn)) +O(h2)

= f(tn, yn) +
h

2

(
ft(t

n, yn) + fy(y
n)y′(tn)

)
+O(h2)

= f(tn, yn) +
h

2
y′′(tn) +O(h2)

By subtracting these two equations, we get τ(h) = O(h2).

Order of accuracy

Definition 9.2. The numerical scheme (9.3) for (9.1) is said of order p if any smooth solution y(·)
of (9.1) satisfies

τ(h) = O(hp) (9.4)

Thus, forward Euler is first order while RK2 is second order. The quantity

εn(h) := y(tn+1)− y(tn)− hFh(tn, y(tn))

is called the truncation error of the scheme (9.3).
We can estimate the true error |y(tn)− yn| in terms of truncation errors. From

y(tn+1) = y(tn) + hFh(tn, y(tn)) + εn

yn+1 = yn + hFh(tn, yn)

Subtracting two equations, we get

y(tn+1)− yn+1 = (y(tn)− yn) + h(F (tn, y(tn))− F (tn, yn)) + εn

Let us denote the true error by en := |y(tn)− yn| It satisfies

en+1 ≤ en + hLen + |εn| ≤ en + hLen +Mhp+1.

Here we have used the assumption
|en| ≤Mhp+1
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for order p schemes. This is a finite difference inequality. We can derive a discrete Gronwall
inequality as below. We have

en ≤ (1 + hL)en−1 +Mhp+1

≤ (1 + hL)2en−2 + ((1 + hL) + 1)Mhp+1

...

≤ (1 + hL)ne0 +

(
n−1∑
k=0

(1 + hL)k

)
Mhp+1

≤ (1 + hL)ne0 +
(1 + hL)n

hL
Mhp+1

≤ (1 + hL)ne0 +
(1 + hL)n

L
Mhp

Now, we fix nh = t, this means that we want to find the true error at t as h→ 0. With t fixed, we
have

(1 + nh)n =
(

(1 + hL)1/hL
)Lt
≤ eLt.

Since the initial error e0 = 0, the true error at t is

en ≤MeLthp.

We conclude this analysis by the following theorem.

Theorem 9.1. If the numerical scheme (9.3) is of order p, then the true error at a fixed time is
of order O(hp).

9.3 High-order schemes

We list a fourth order Runge-Kutta method (RK4). Basically, we use Simpson rule for integration

ˆ tn+1

tn
f(t, y(t)) dt ≈ h

(
f(tn, y(tn)) + 4f(tn+1/2, y(tn+1/2)) + f(tn+1, y(tn+1)

)
.

The RK4 can be expressed as

k1 = f(t, y)

k2 = f(t+ h/2, y + hk1/2)

k3 = f(t+ h/2, y + hk2/2)

k4 = f(t+ h, y + hk3)

and

F (t, y) =
k1 + 2(k2 + k3) + k4

6
.

One can check that the truncation error by Taylor expansion is O(h5). Hence the RK4 is a fourth
order scheme.
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Chapter 10

Dissipative Systems and Stability
Analysis

10.1 Introduction

In dynamical systems, there are important special solutions such as equilibria, periodic solutions,
etc. In this chapter, we shall discuss their stability. The theory consists of local theory and global
theory. It includes

• Local stability theory of equilibria

• Global stability theory – Lyapunov theory

• Stability of periodic orbits on the plane.

Let us introduce some definitions and examples to guide us to develop the stability theory.

Definition 10.1. An equilibrium ȳ of the ODE

ẏ = f(y)

is said to be

(a) stable if for any ε > 0, there exists a δ > 0 such that for any solution y(·) with |y(0)− ȳ| < δ,
we have |y(t)− ȳ| < ε.

(b) asymptotically stable if it is stable, and in addition, there exists a δ > 0 such that any solution
y(·) with |y(0)− ȳ| < δ satisfies y(t)→ ȳ as t→∞.

(c) exponentially stable if there exist an α > 0 and a δ > 0 such that any solution y(·) with
|y(0)− ȳ| < δ satisfies y(t)− ȳ = O(e−αt) as t→∞.

Examples.

• For linear systems, centers are stable whereas sinks and spiral sinks are asymptotically stable.

• For hamiltonian system, the minimum of a hamiltonian H is a stable center. The saddles are
unstable.

• For gradient systems, the sinks are stable while the sources are unstable.

We shall discuss dissipative systems below.
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10.2 Dissipative systems

In this section, we consider dissipative nonlinear oscillators. The dissipation is due to friction (or
damping). The model reads

ÿ = −V ′(y) + b(ẏ). (10.1)

Here, y is the position, ẏ is the velocity. The potential V is assumed to have a minimum ȳ. Without
loss of generality, we may assume ȳ = 0. The friction force b((̇y)) is assumed to have the property:

b(ẏ) · ẏ < 0 and b(0) = 0. (10.2)

It means that the direction of the frictional force is in the opposite direction of the velocity and
the friction force is zero if the particle is at rest. Here are some concrete examples of damping.

• Simple pendulum with linear damping reads

mlθ̈ = −mg sin θ − βθ̇. (10.3)

• An active shock absorber: In the mass-spring model, the friction force may depend on the
velocity nonlinearly, say β(v) = v4. Then the corresponding oscillation is nonlinear:

mÿ = −ky + b(ẏ), b(v) = −βv3, β > 0, (10.4)

The following theorem give a sufficient condition for global stability of the equilibrium.

Theorem 10.1. Consider the system (10.1). Suppose V (y) → ∞ as |y| → ∞ and V (y) has only
one minimum ȳ. Then any solution y of (10.1) satisfies

y(t)→ ȳ and ẏ(t)→ 0 as t→∞.

Proof. Without loss of generality, we may also assume ȳ = 0 and V (0) = 0. Otherwise, we may
just replace y by y − ȳ and V (y) by V (y) − V (ȳ), which does not alter the force −V ′(y) in the
original problem.

We use energy method: multiplying ẏ on both sides of (10.1), we obtain

ẏÿ = −V ′(y)ẏ + b(ẏ)ẏ

Then, by assumption (10.2), we have

dE

dt
= b(ẏ)ẏ < 0, (10.5)

where

E(y, ẏ) :=
ẏ2

2
+ V (y). (10.6)

The strategy is to prove: (i) E(y(t), ẏ(t)) → 0 as t → 0, and (ii) E(y, ẏ) = 0 if and only if
(y, ẏ) = (0, 0), and (iii) (y(t), ẏ(t))→ (0, 0). We divide the proof into the following steps.

Step 1. From (10.5), E(t) := E(y(t), ẏ(t)) is a decreasing function along any trajectort (y(t), ẏ(t)).
Further, it has lower bound, namely, E(y, ẏ) ≥ 0. we get E(t)↘ α as t→∞ for some number α.
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Step 2. Let us call the limiting set of (y(t), ẏ(t)) by Ω+. That is

Ω+ = {(y, ẏ)| ∃ tn, tn →∞ s.t. (y(tn), ẏ(tn))→ (y, ẏ)}.

Such a set is called an ω-limit set. We claim that any trajectory (ỹ(·), ˙̃y(·)) with initial data
(ỹ(0), ˙̃y(0)) ∈ Ω+ lies on Ω+ forever. The proof of this claim relies on the continuity theorem
on the initial data. Namely, the solution of an ODE depends on its initial data continuously.
Let us accept this fact. Suppose (ỹ(0), ˙̃y(0)) ∈ Ω+, we want to prove that for any fixed s > 0,
(ỹ(s), ˙̃y(s)) ∈ Ω+. Given fixed s > 0, by the continuous dependence of initial data, we have for
any ε > 0, there exists a δ > 0 such that if |(y1, ẏ1)− (ỹ(0), ˙̃y(0))| < δ, then the solution y(·) with
initial data (y1, ẏ1) is in an ε neighborhood of ỹ(s). Now, since (ỹ(0), ˙̃y(0)) ∈ Ω+, with this δ > 0,
there exist tn such that |(y(tn), ẏ(tn)) − (ỹ(0), ˙̃y(0))| < δ. Let us consider two solutions, one has
initial data (y(tn), ẏ(tn)), the other has initial data (ỹ(0), ˙̃y(0)). By the continuity dependence of
the initial data, we get (y(tn+ s), ẏ(tn+ s))− (ỹ(s), ˙̃y(s))| < ε. This yields that ∀ε > 0, there exists
an n such that |(y(tn + s), ẏ(tn + s))− (ỹ(s), ˙̃y(s))| < ε. Thus, (ỹ(s), ˙̃y(s)) ∈ Ω+.

Step 3. We claim that, for any (ỹ(·), ˙̃y(·)) in Ω+, the corresponding energy E(ỹ(s), ˙̃y(s)) = α for
any s ≥ 0. This is because (1) for any fixed s, there exist tn → ∞ such that (y(tn + s), ẏ(tn +
s)) → (ỹ(s), ˙̃y(s)) as n → ∞, and (2), from step 1, E(y(t), ẏ(t))↘α as t → ∞. Thus, we get
E(y(tn + s), ẏ(tn + s))→ α for any s. This implies

d

ds
E(ỹ(s), ˙̃y(s)) = 0.

On the other hand, d
dsE(ỹ(s), ˙̃y(s)) = − ˙̃y2(s). Hence, we get ˙̃y(s) ≡ 0. This again implies ỹ(s) ≡ ŷ

for some constant ŷ. Thus, (ŷ, 0) is an equilibrium state of the damping oscillation system (10.1).
However, the only equilibrium state for (10.1) is (0, 0) because V has a unique minimum and thus
the only zero of F := −V ′ is 0. This implies

E(ỹ(s), ˙̃y(s)) = α = 0.

We conclude that
E(y(t), ẏ(t))→ α = 0 as t→∞.

Step 4. From step 3,

E(y(t), ẏ(t)) =
1

2
ẏ(t)2 + V (y(t))→ 0 as t→∞.

and V (y) ≥ 0, we get
ẏ(t)→ 0 and V (y(t))→ 0, as t→∞.

Since 0 is the unique minimum of V , we get that V (y)→ 0 forces y → 0.

Remarks.

• The above method to show global stability is called the Lyapunov method. The energy
function E above is called a Lyapunov function. Thus, the effect of damping (dissipation) is
a loss of energy.
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• In the active shock absorber:

mÿ = −β(ẏ)ẏ − ky, β(v) = v4,

the equilibrium state is (0, 0). From Lyapunov method, we see that this equilibrium is globally
stable.

• For the simple pendulum, we see that V (θ) = −g/l cos θ has infinite many minima: θ = 2nπ.
The function E(y, ẏ) has local minima (2nπ, 0). The local minimum (2nπ, 0) sits inside the
basin

Bn = {(y, ẏ) |E(y, ẏ) < g/l}.

The equilibrium (2nπ, 0) is the only minimum of E in the basin Bn. Suppose a solution
starts from a state (y(0), ẏ(0)) ∈ Bn, then by using the Lyapunov method, we see that
(y(t), ẏ(t))→ (2nπ, 0) as t→∞.

What will happen if E(0) ≥ g/l initially? From the loss of energy we have E(t) will eventually
go below g/l. Thus, the trajectory will fall into some basin Bn for some n and finally goes to
(2nπ, 0) as t→∞.

Homework 10.1. 1. Plot the phase portrait for the damped simple pendulum (10.3).

2. Consider a simple pendulum of length l with mass m at one end and the other end is
attached to a vibrator. The motion of the vibrator is given by (x0(t), y0(t)). Let the
angle of the pendulum to the verticle axis (in counterclockwise direction) is θ(t).

(a) Show that the position of the massm at time t is (x(t), y(t)) = (x0(t)+l sin θ(t), y0(t)−
cos θ(t)).

(b) Find the velocity and acceleration of m.

(c) Suppose the mass is in the uniform gravitational field (0,−mg). Use the Newton’s
law to derive the equation of motion for m.

(d) Suppose (x0(t), y0(t)) is given by (0, α sin(ω0t)). Can you solve this equation?

3. B-D, pp. 502: 22

10.3 Local stability

Theorem 10.2. Consider the nonlinear equation

y′ = f(y)

Suppose ȳ is an equilibrium of the nonlinear equation, i.e. f(ȳ) = 0. If ȳ is an exponentially stable
equilibrium for the linearized ODE:

y′ = f ′(ȳ)(y − ȳ),

that is
Re(λ(f ′(ȳ))) < 0.

then ȳ is also an exponentially stable equilibrium of the nonlinear squation.
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Proof. 1. We start from
u′ = Au + g(u),

We want to show that u(t) → 0 at rate O(e−α
′t) for any 0 < α′ < α. Let us define v(t) =

eα
′tu(t). We want to show that v(t) remains bounded for all t ≥ 0. To show this a priori

estimate, let T be any positive number, assume that v(t) exists on [0, T ]. Let us define

M(T ) := max
t∈[0,T ]

|v(t)|

We want to show that M(T ) remains bounded by a constant induependent of T . If so, then
we can always extend v beyond T (so does u), then the solution v(t) exists for all t ≥ 0 and
remains bounded. The boundedness of v gives the exponential convergence of u(·).

2. Let us denote A + α′I by A′. The function v satisfies

v̇ = (A + α′I)v + eα
′tg(e−αtv)

= A′v + e(α−2α)tO(|v|2)

The eigenvalues of A′ satisfy

Re(λ(A′)) = Re(λ(A)) + α′ < 0.

We write this perturbed equation in integral form:

v(t) = eA
′tv(0) +

ˆ t

0
eA
′(t−s)e(α′−2α)sO(|v(s)|2) ds

Taking maximal on the right-hand side, we get

|v(t)| ≤ |v(0)|+
ˆ t

0
e−ε(t−s)e−αsM(T )2 ds

≤ |v(0)|+ C

ε
M(T )2.

Here, we have used O(|v|2) ≤ C|v|2 for v in a bounded set. Taking maximum in t on the left
hand side, we get

M(T ) ≤ |v(0)|+ C

ε
M(T )2.

Thus, there exists a δ > 0 such that if |v(0)| ≤ δ, then the above inequality always holds.
This completes the proof.

10.4 Lyapunov function

We recall that when the perturbation of a hamiltonian system is dissipative, we observe that the
hamiltonian H decreases along any trajectory and eventually reaches a minimum of H. If there is
only one minimum of H, then this minimum must be globally asymptotically stable. That is, every
trajectory tends to this minimum as t→∞. So, the key idea here is that the globally asymptotic
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stability of an equilibrium is resulted from the the decreasing of H. This idea can be generalized to
general systems. The dissipation is measured by so called the Liapunov function Φ, which decreases
along trajectories. More precisely, let consider the general system{

ẋ = f(x, y)
ẏ = g(x, y)

(10.7)

Suppose (0, 0) is an equilibrium of this system. We have the following definition.

Definition 10.2. A C1-function Φ(x, y) is called a Liapunov function for (10.7) if

(i) Φ(0, 0) = 0, Φ(x, y) > 0 for (x, y) 6= (0, 0).

(ii) Φ(x, y)→∞ as |(x, y)| → ∞.

(iii) Φ̇ := Φx(x, y)f(x, y) + Φy(x, y)g(x, y) < 0 for (x, y) 6= (0, 0).

Remark

• Condition (i) says that (0, 0) is the only isolated minimum of Φ.

• Condition (ii) says that the region Φ(x, y) ≤ E is always bounded.

• Condition (iii) implies that along any trajectory

dΦ(x(t), y(t))

dt
< 0, (10.8)

unless it reaches the equilibrium (0, 0). Thus, Φ(x(t), y(t)) is a decreasing function.

Theorem 10.3. Consider the system (10.7). Suppose (0, 0) is its equilibrium. Suppose the system
possesses a Liapunov function Φ, then (0, 0) is globally and asymptotically stable. That is, for any
trajectory, we have

lim
t→∞

(x(t), y(t)) = (0, 0).

Proof. We shall use the extremal value theorem to prove this theorem. The extremal value theorem
states that
a continuous function in a bounded and closed domain in Rn attains its extremal value.
Along any trajectory (x(t), y(t)), we have that Φ(x(t), y(t)) is decreasing (condition (iii)) and
bounded below (condition (i)). Hence it has a limit as t tends to infinity. Suppose limt→∞Φ(x(t), y(t)) =
m > 0. Then the orbit (x(t), y(t)), t ∈ (0,∞) is confined in the region S := {(x, y)|m ≤ Φ(x, y) ≤
Φ(x(0), y(0))}. From condition (ii), this region is bounded and closed. Hence dΦ(x(t), y(t))/dt can
attain a maximum in this region (by the extremal value theorem). Let us call it α. From (10.8),
we have α < 0. But this implies

Φ(x(t), y(t)) =

ˆ t

0

dΦ(x(t), y(t))

dt
dt ≤ αt→ −∞ as t→∞.

This is a contradiction. Hence limt→∞Φ(x(t), y(t)) = 0.
Next, we show (x(t), y(t)) → (0, 0) as t → ∞. Let ρ(t) = x(t)2 + y(t)2. Suppose ρ(t) does not

tend to 0. This means that there exists a sequence tn with tn →∞ such that ρ(tn) ≥ ρ0 > 0. Then
the region

R := {(x, y)|x2 + y2 ≥ ρ0 and Φ(x, y) ≤ Φ(x(0), y(0))}
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is bounded and closed. Hence, by the extremal value theorem again that Φ attains a minimum in
this region. Since Φ > 0 in this region, we have

min
R

Φ(x, y) ≥ β > 0.

and because (x(tn), y(tn)) ∈ R, we obtain

min
tn

Φ(x(tn), y(tn)) ≥ β > 0.

This contradicts to limt→∞Φ(x(t), y(t)) = 0. Hence, x2(t) + y2(t)→ 0 as t→∞. Thus, we obtain
that the global minimum (0, 0) is asymptotically stable.

If the Lyapunov function Φ satisfies additional conditions:

(iv) The condition (iii) is replaced by Φ̇(x, y) ≤ −αΦ(x, y) for some positive constant α for all
(x, y),

(v) Φ ∈ C2 and Φ(x, y) ≥ c(x2 + y2) in a neighborhood of (0, 0).

Theorem 10.4. Under the assumptions (i),(ii),(iv), (v), the state (0, 0) is asymptotically stable
and any solution |(x(t), y(t))| = O(e−αt) as t→∞.

If the Lyapunov only satisfies the following weaker condition, then we can only have stability
result, not asymptotic stability.

Definition 10.3. A C1-function Φ(x, y) is called a (weak) Liapunov function for (10.7) if

(i) Φ(0, 0) = 0, Φ(x, y) ≥ 0 for (x, y) 6= (0, 0).

(ii) Φ(x, y)→∞ as |(x, y)| → ∞.

(iii) Φx(x, y)f(x, y) + Φy(x, y)g(x, y) ≤ 0 for (x, y) 6= (0, 0).

Theorem 10.5. Consider the system (10.7). Suppose (0, 0) is its equilibrium. Suppose the system
possesses a weak Liapunov function Φ, then (0, 0) is stable.

Example. Damped simple pendulum.

θ̈ =
g

l
sin θ − bθ̇

Here, b > 0 is the damping coefficient. In the form of first order equation, it reads{
ẋ = y
ẏ = g

l sinx− by

We take

Φ(x, y) =
1

2
y2 +

g

l
(1− cosx).

Then

Φ̇ := Φxf + Φyg =
g

l
sin(x)y + y(

g

l
sinx− by) = −by2 < 0.
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We see that Φ̇(x, y) = 0 if and only if y = 0. This is weaker than Φ̇(x, y) = 0 if and only if
(x, y) = (0, 0). So, it only satisfies condition of the weak Lyapunov function. Thus, we can only
get a stability result, not asymptotic stability result. However, suppose we consider the linear
problem, say the spring-mass system with a linear damper. We know the solutions decay to (0, 0)
state exponentially fast from explicit solution formula. Such result cannot be obtained via the weak
Lyapunov function. There are two ways to solve this. One is we modify the Lyapunov function.
The other is we provide another linear stability theory based on perturbation theory.

* Lyapunov function for Linear Stable System Consider the linear system

ẋ = Ax.

Suppose A is a stable matrix. That is, Re(λ(A)) ≤ −α for some α > 0. We want to construct a
Lyapunov function of the form Φ(x) = xTPx such that (i) P > 0 and (ii) Φ̇ < 0. We have

Φ̇ = ẋTPx + xTPẋ = xTATPx + xTPAx = xT (ATP + PA)x.

This means that

ATP + PA = −Q < 0.

Theorem 10.6. Suppose Re(λ(A)) ≤ −α for some α > 0. For any Q > 0, there exists a P > 0
such that

ATP + PA = −Q < 0.

Proof. Define

P =

ˆ ∞
0

eA
T tQeAt dt.

Then

ATP + PA =

ˆ ∞
0

AT eA
T tQeAt + eA

T tQeAtA dt

=

ˆ ∞
0

d

dt

(
eA

T tQeAt
)
dt = −Q.

Remark. We claim that when Re(λ(A)) ≤ −α, then there exists a Q such that

xTQx ≥ αxTPx.

This is equivalent to

Φ̇ ≤ −αΦ,

and leads to

Φ(x(t)) ≤ Φ(x(0))e−αy.

This gives exponential convergence of all solutions to (0, 0). We leave its proof as an exercise.
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Homework For the damped spring-mass system

mÿ + γẏ + ky = 0.

Find a Lyapunov function Φ that gives exponential convergence result.

Project Study the damper of Taipei 101.

10.5 Poincaré-Bendixson Theorem

We consider the two-dimensional system

y′ = f(y), y(0) = y0 (10.9)

where y ∈ R2. In this section, we shall see the case that the solution may go to a periodic
solution. In other words, the solution goes to another separatrix. The van de Pol oscillator and
the predator-prey system are two important examples.

Basic notions of dynamical systems Let us introduce some basic notions.

• Positive orbits and negative orbits. Let us denote by φ(t,y0) the solution to the problem
(10.9). We denote by γ+(y) = {φ(t,y)|t ≥ 0} the positive orbit through y. Similarly,
γ−(y) = {φ(t,y)|t ≤ 0} and γ(y) = {φ(t,y)| − ∞ < t < ∞} are the negative orbit and the
orbit through y.

• Periodic orbits If φ(T,y) = y and φ(t,y) 6= y for all 0 < t < T , we say {φ(t,y)|0 ≤ t < T}
a periodic orbit with period T .

• ω-limit sets A point p is called an ω (resp. α) point of y if there exists a sequence {tn},
tn → ∞ (resp. −∞ ) such that p = limn→∞ φ(tn,y). The collection of all ω (resp. α) limit
point of y is called the ω (resp. α) limit set of y and is denoted by ω(y) (resp. α(y)). One
can show that

ω(y) =
⋂
t≥0

⋃
s≥t

φ(s,y)

Thus, ω(y) represents where the positive γ+(y) ends up.

• Invariant sets A set S is called positive (resp. negative) invariant under φ if φ(t, S) ⊂ S for
all t ≥ 0 (resp. t ≤ 0). A set S is called invariant if S is both positive invariant and negative
invariant. It is easy to see that equilibria and periodic orbits are invariant set. The closure
of an invariant set is invariant.

Theorem 10.7. The sets ω(y) and α(y) are invariant.

Proof. The proof is based on the continuous dependence of the initial data. Suppose p ∈ ω(y).
Thus, there exists tn → ∞ such that p = limn→∞ φ(tn,y). Consider two solutions: φ(s, p) and
φ(s + tn,y) = φ(s, φ(tn,y)), for any s > 0. The initial data are closed to each other when n
is enough. Thus, by the continuous dependence of the initial data, we get φ(s, p) is closed to
φ(s+ tn,y). This shows that φ(s, p) ∈ ω(y) for any s > 0. Thus, ω(y) is an invariant set.

Here are some examples of ω-limit sets and periodic solutions.
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Example 1 Consider {
ẋ = x+ y − x(x2 + y2)
ẏ = −x+ y − y(x2 + y2).

(10.10)

1. The state (0, 0) is a spiral source. The (0, 0) state is an equilibrium state. The corresponding
linearized equation near (0, 0) is {

ẋ = x+ y
ẏ = −x+ y

whose characteristic roots are λ = 1± i. Thus, (0, 0) is a spiral source.

2. We express this equation in polar coordinate: x = r cos θ, y = r sin θ. We multiply the first
equation by x, the second equation by y, then add, we get

xẋ+ yẏ = x2 + y2 − (x2 + y2)2.

That is
ṙ = r − r3.

3. If we multiply the first equation by y, the second equation by x, then subtract, we get

yẋ− xẏ = x2 + y2.

In polar coordinate, this is
θ̇ = −1.

4. The solution with initial data (r(0), θ(0)) = (r0, θ0) is

r =
1

1 + ((1/r2
0)− 1)e−2t

θ = −t+ θ0.

We see that

• Solutions with 0 < r0 < 1 converge to r = 1.

• Solutions with r0 > 1 also converge to r = 1.

• r = 1 is an ω-limit set. It is a periodic solution.

Theorem 10.8 (Poincaré-Bendixson). If γ+(y) is contained in a bounded closed subset in R2 and
ω(y) 6= ∅ and does not contain any critical points (i.e. where f(y) = 0), then ω(y) is a periodic
orbit.

Theorem 10.9. The Poincaré-Bendixson theorem states that: if γ+(y) remains bounded, then one
of the follows must be true

• ω(y) is a periodic orbit,

• ω(y) is a critical point.

• ω(y) consists of one or more critical points joined by solution paths (i.e. homoclinic or hete-
roclinic orbits).

In all these cases, the ω(y)-limit set is stable in the sense that γ+(y)→ ω(y).

206



Example 2 Consider the Hamiltonian system

ẋ = Hy

ẏ = −Hx

H(x, y) =
1

2
y2 − 1

2
x2 +

1

4
x4.

The orbits
{(x, y)|H(x, y) = 0}

consists of a critical critical point (0, 0) and two homoclinic orbits.
Now, consider a perturbation of this system by

ẋ = Hy − µHHx

ẏ = −Hx − µHHy

Multiplying first equation by Hx, second equation by Hy, then add. We get

Ḣ = Hxẋ+Hyẏ = −µH(H2
x +H2

y ).

In the case µ > 0, we see that H(x(t), y(t))→ 0 along any path. Thus, the set Ω = {(x, y)|H(x, y) =
0} is the ω-limit set.

Homework Plot the orbits for this perturbed Hamiltonian systems.

Example 3. van der Pol oscillator Recall the van der Pol equation for triode oscillator is:

L
d2I

dt2
+ µ(I2 − 1)

dI

dt
+
I

C
= 0. (10.11)

where µ > 0, I is the current. Let us rewrite it as a 2× 2 system{
ẋ = y
ẏ = −x+ µ(1− x2)y.

(10.12)

Here, x = I, y = İ. We have normalize LC = 1. We shall show this system has a periodic orbit for
any µ.

1. When µ = 0, the orbits are circles. They are periodic orbits. The case µ < 0 can be
transformed to the case of µ > 0 by reverting t to −t. Thus, we shall only consider the case
µ > 0.

2. The state (0, 0) is the only equilibrium of this system. Near (0, 0), the linearized equation is

ẋ = y

ẏ = −x+ µy.

The eigenvalues of this linearized system is λ = (µ ±
√
µ2 − 1)/2, which has positive real

part. Therefore, (0, 0) is unstable. It can not lie in the ω-limit set.

207



3. We shall construct a Jordan curve (i.e. a simple closed curve) C on the plane encircle (0, 0)
such that no orbit can leave C. Then by the Poincaré-Bendixson theorem, there exists a
periodic orbit in the interior of the Jordan curve C. I shall refer the proof to a Note of F.
Bonetto, which proof was originally from [Yeh 86]. The idea is that C is composed of piecewise
arcs. Each arc is the orbit of a simple ODE. On which, it is easy to show (by taking the cross
product of two vector fields) that the flow of (10.12) goes inward.

Liénard equation The Liénard equation has the form

ẍ+ f(x)ẋ+ g(x) = 0,

where g is an odd function and f is an even function. It can be changed to a 2 system through the
transform

x = x, y = ẋ+ F (x), F (x) =

ˆ x

0
f(x) dx.

The new system becomes {
ẋ = y − F (x)
ẏ = −g(x).

(10.13)

called the Liénard system. The van der Pol oscillator ẍ + µ(x2 − 1)ẋ + x = 0 is a special case of
the Lienard equation. The corresponding Liénard system is{

ẋ = y − µ(1
3x

3 − x)
ẏ = −x.

The Liénard equation possess a periodic solution under the following assumptions

• g is odd and F is odd;

• g(x) > 0 for x > 0;

• F (x)→∞ as x→∞;

• F (x) has exactly one positive p, F (x) < 0 for 0 < x < p and F (x) > 0 and monotone for
x > p.

The proof of such result is left for a project to you to complete.

Homework 10.2. 1. B-D pp. 556, 13, 15, 16, 17.
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Chapter 11

Appendix: Sample Projects for ODE
course

References for mathematical modeling via ODE

• Clifford Henry Taubes, Modeling Differential Equations in Biology

• K.K. Tung, Topics in Mathematical Modeling

• James Binney and Scott Tremaine, Galactic Dynamics, Chapter 3, The orbits of stars.

Sample Topics

1. Collect important historical examples in Calculus of Variations

2. Kepler’s discovery

3. Story of Euler, Lagrange, Jacob, Hamilton

4. Story of Noether, Symmetry and Invariance.

5. Coupled spring-mass systems, 1d, 2d

6. Limiting process from a discrete spring-mass system to a continuum elasticity

7. Find physical examples of linear systems that have non-trivial Jordan form.

8. Damper of Taipei 101

9. Building damper design

10. Study resonance, general (ref. Resonance, wiki)

11. Study resonance and music https://www.youtube.com/watch?v=1yaqUI4b974, https://

www.youtube.com/watch?v=wvJAgrUBF4w

12. Study resonance in Tacoma narrows bridge http://www.wsdot.wa.gov/TNBhistory/Machine/
machine3.htm

13. The surprising secret of syncronization
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14. Find applications of ODE in economy

15. A complete study of two-body problem

16. Double pendulum (Compound pendulum)

17. Motion of a top.

18. Planetary motion

19. Galactic dynamics

20. Drug dynamics

21. Power system at home. Each electric device has its peak current, regular current, power and
voltage. Understand it and write an ODE system for it.

22. Power system of the elevator system.

23. Bloch equation in Magnetic resonant imaging.

24. Lorenz strange attractor
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