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Chapter 1

Convex Analysis

Main references:

• Vandenberghe (UCLA): EECS236C - Optimization methods for large scale systems,
http://www.seas.ucla.edu/˜vandenbe/ee236c.html

• Y. Nesterov, Introductory Lectures on Convex Optimization, A Basic Course 1998.

• Parikh and Boyd, Proximal algorithms, slides and note.
http://stanford.edu/˜boyd/papers/prox_algs.html or
Neal Parikh and Stephen Boyd, Proximal Algorithms, Foundations and Trend in Op-
timization Vol. 1, No. 3 (2013) 123?231.

• Boyd, ADMM
http://stanford.edu/˜boyd/admm.html

• Simon Foucart and Holger Rauhut, Appendix B.

• Ahmad Bazzi’s youtube on convex optimization

1.1 Motivations: Convex optimization problems
Some examples of optimization problems In applications, we encounter many con-
strained optimization problems. Examples are

• Basis pursuit: exact sparse recovery problem

min ∥x∥1 subject to Ax = b.

or robust recovery problem

min ∥x∥1 subject to ∥Ax− b∥22 ≤ ϵ.
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4 CHAPTER 1. CONVEX ANALYSIS

• Image processing:

min ∥∇x∥1 subject to ∥Ax− b∥22 ≤ ϵ.

• Sometimes, the constraint can be described as a convex set C. That is,

min
x

f0(x) subject to Ax ∈ C.

Define the indicator function

ιC(x) =

{
0 if x ∈ C
+∞ otherwise .

We can rewrite the constrained minimization problem as a unconstrained minimiza-
tion problem:

min
x

f0(x) + ιC(Ax).

This can also be reformulated as

min
x,y

f0(x) + ιC(y) subject to Ax = y.

• In abstract form, we encounter the optimization problem:

min f(x) + g(Ax)

This can can also be expressed as

min f(x) + g(y) subject to Ax = y.

• For more applications, see Boyd’s book.

A general form of convex optimization problems A standard convex optimization prob-
lem can be formulated as

min
x∈X

f0(x)

subject to Ax = y

and fi(x) ≤ bi, i = 1, ...,M

Here, fi’s are convex. The space X is a Hilbert space. Here, we just take X = RN .
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1.2 Convex sets
• Convex set A set K ⊂ RN is called convex if for any x,y ∈ K, the line segment
(1 − t)x + ty ∈ K for any t ∈ [0, 1]. One can show that K is convex if and only if
for any x1, ...,xn ∈ K, their convex combination

∑n
i=1 tixi ∈ K, where ti ∈ [0, 1]

and
∑

i ti = 1.

• Convex hull Let T ⊂ RN . The convex hull conv(T ) is defined to be the smallest
convex set containing T . Indeed,

conv(T ) =

{
n∑

i=1

tixi|xi ∈ T, ti ∈ [0, 1],
∑
i

ti = 1

}
.

The convex hull of an open (closed) set is open (closed).

• Extreme points of a convex set: a point p ∈ K is called an extreme point of K if it
does lie in the interior of a segment of two points of K. Every compact convex set is
the convex hull of its extreme points.

• Convex cone: A set K ∈ Rn is a cone if x ∈ K implies tx ∈ K for all t ≥ 0. If K
is a cone and a convex set, we call it convex cone.

• Dual cone: for a cone K ⊂ RN , its dual cone is defined as

K∗ = {y ∈ RN |⟨x,y⟩ ≥ 0 for all x ∈ K}.

• Examples:

1. Second-order cone:

C =

x ∈ RN+1|

√√√√ N∑
j=1

x2
j ≤ xN+1


• Hahn-Banach Theorem: Convex sets can be separated by hyperplanes. Given two

convex sets K1, K2 ⊂ RN whose interiors have empty intersection. Then there exists
w ∈ RN and λ ∈ R such that

K1 ⊂ {x|⟨x,w⟩ ≤ λ}

K2 ⊂ {x|⟨x,w⟩ ≥ λ}

• Let K ⊂ RN be a convex set. A point x ∈ K is called an extreme point of K if
x = ty + (1− t)z for y, z ∈ K, then y = z = x.

• Any compact convex set is the convex hull of its extreme points.
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1.3 Convex functions
Goal: We want to extend theory of smooth convex analysis to non-differentiable convex
functions.
Let X be a separable Hilbert space, f : X → (−∞,+∞] be a function.

• Proper: f is called proper if f(x) < ∞ for at least one x. The domain of f is defined
to be: domf = {x|f(x) < ∞}.

• Lower Semi-continuity: f is called lower semi-continuous (l.s.c.) if lim infxn→x̄f(xn) ≥
f(x̄). This definition is to guarantee that if xn → x̄ and f(xn) → inf f(x), then x̄ is
a minimum.

– The set epif := {(x, η)|f(x) ≤ η} is called the epigraph of f .

– Proposition: f is l.s.c. if and only if epif is closed. Sometimes, we call such f
closed. (https://proofwiki.org/wiki/Characterization_of_
Lower_Semicontinuity)

– The indicator function ιC of a set C is closed if and only if C is closed.

• Convex function

– f is called convex if domf is convex and Jensen’s inequality holds:
f((1− θ)x+ θy) ≤ (1− θ)f(x) + θf(y) for all 0 ≤ θ ≤ 1 and any x, y ∈ X .

– Proposition: f is convex if and only if epif is convex.

– First-order condition: for f ∈ C1, epif being convex is equivalent to
f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ for all x, y ∈ X .
Proof. If epif is convex, then by Hahn-Banach theorem, epif lies on one side
of the tangent plane {(y, z)|z − f(x) − ⟨∇f(x), y − x⟩ = 0}. This leads to
f(y)− f(x)− ⟨∇f(x), y − x⟩ ≥ 0.

– Second-order condition: for f ∈ C2, Jensen’s inequality is equivalent to ∇2f(x) ⪰
0.

– If fα is a family of convex functions, then supα fα is again a convex function.

• Strictly convex:

– f is called strictly convex if the strict Jensen inequality holds: for x ̸= y and
t ∈ (0, 1),

f((1− t)x+ ty) < (1− t)f(x) + tf(y).

– First-order condition: for f ∈ C1, the strict Jensen inequality is equivalent to
f(y) > f(x) + ⟨∇f(x), y − x⟩ for all x, y ∈ X .

https://proofwiki.org/wiki/Characterization_of_Lower_Semicontinuity
https://proofwiki.org/wiki/Characterization_of_Lower_Semicontinuity
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– Second-order condition: for f ∈ C2, (∇2f(x) ≻ 0) =⇒ strict Jensen’s inequal-
ity is equivalent to .

• Examples

– f(x) = |x|pp, with p ≥ 1. When p > 1, f is differentiable. However, |x|1 is not
differentiable at x = 0.

– f(x1, x2) = x2
1. The function is degenerate (minimum) at {(0, x2)|x2 ∈ R}

– Consider the underdetermined system:

Ax = b

where A ∈ Rm×n, x ∈ Rn and b ∈ Rm. We assume m < n. The least square
fit is to find x† which

min f(x) :=
1

2
∥Ax− b∥2.

The functional f(x) is a convex function. In particular, consider

f(x1, x2) =
1

2
(a1x1 + a2x2 − b)2.

The minimizer is not unique.

– Let Ω ⊂ Rn. H1
0 (Ω) be the Sobolev space, the completion of C1

0(Ω) under the
norm

∥u∥21 :=
∫

|u(x)|2 + |∇u(x)|2 dx.

The Dirichlet integral

D[u] :=

∫
Ω

|∇u(x)|2 − u(x)ρ(x) dx

is convex in u ∈ H1
0 (Ω).

– The Schmidt integral

Φ[u] :=

∫
k(x− y)u(x)u(y) dx dy

represents self-interaction of u with kernel k(x).

– Blurred image. Consider an observed image z(x), x ∈ Ω ⊂ R2. Suppose the
observed image is blurred. An image deblurred problem is to recover a “true
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image” u(x) operator Consider u(x) from the blurred image z. An image model
is

z = Ku+ n

where
Ku(x) :=

∫
k(x− y)u(y) dy.

is called a blur operator. Typical blur kernel is the Gaussian kernel

k(x) =
1

D
e−|x|2/D.

the function n is the Gaussian noise. ∥n∥22 ≤ ϵ.
The image deblur problem is to minimize

f(u) = α∥∇u∥1 + ∥Ku− z∥2.

– Radon transform is an integral operator K.

– In support vector machine, given training set (xi, yi) ∈ Rn+1, i = 1, ..., N ,
where yi = ±1, we want to train a classifier which is a function f(x) such that
f(xi) ≥ 1 if yi = 1 and f(xi) ≤ −1 if yi = −1. It is used to classify a new
incident x. The function f has the form

y = wTx+ b

The parameters w = (w1, ..., wn)
T and b ∈ R are the training parameters to be

found. The training problem is to solve

min
w

∥w∥, subject to yi(w
Txi − b) ≥ 1 for i = 1, ..., N.

The loss function is

ℓ(w) :=
l∑

i=1

max
(
1− yi(w

Tϕ(xi) + b), 0
)
.

This is a convex function.

– Let θ∗ ∈ Rp be a parameter to be estimated. The estimation is done by n
independent measurements Yi with outcomes yi, i = 1, ..., n. It is modelled by
the Poisson distribution:

P(Yi = yi|θ∗) =
exp(−λi)λ

yi
i

yi!
, λi = exp(−⟨ai, θ∗⟩).
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This means that Y1, ..., Yn are independent random variables depending on a1, ..., an
and parameter θ∗. Let A = [a1, ..., an] be a chosen measurement matrix. It can
be deterministic or stochastic. Let us denote (y1, ..., yn)

T = y. Thus,

P(Y = y|θ) =
∏
i

P(Yi = yi|θ) = C exp (−fn(θ)) ,

where

fn(θ) =
1

n

n∑
i=1

[yi⟨ai, θ⟩+ exp(−⟨ai, θ⟩)],

which is the loss function. It is a convex function.

Proposition 1.1. A convex function f : RN → R is continuous.

See google proof.

Proposition 1.2. Let f : RN → (−∞,∞] be convex. Then

1. a local minimizer of f is also a global minimizer;

2. the set of minimizers is convex;

3. if f is strictly convex, then the minimizer is unique.

1.4 Gradients of convex functions
Definition 1.1. Let X be a separable Hilbert space. An operator F : X → X is called
monotone if

⟨F (x)− F (y), x− y⟩ ≥ 0, ∀x, y ∈ X.

Proposition 1.3 (Monotonicity of ∇f(x)). Suppose f ∈ C1. Then f is convex if and only
if domf is convex and ∇f(x) is a monotone operator:

⟨∇f(x)−∇f(y), x− y⟩ ≥ 0.

Remark This implies that the directional derivative of f is nonnegative.

Proof. 1. (⇒) From convexity

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩, f(x) ≥ f(y) + ⟨∇f(y), x− y⟩.

Add these two, we get monotonicity of ∇f(x).
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2. (⇐) Let g(t) = f(x + t(y − x)). Then g′(t) = ⟨∇f(x + t(y − x)), y − x⟩ ≥ g′(0)
by monotonicity (i.e. ⟨∇f(x+ t(y − x))−∇f(x), t(y − x)⟩ ≥ 0). Hence

f(y) = g(1) = g(0) +

∫ 1

0

g′(t) dt ≥ g(0) +

∫ 1

0

g′(0) dt = f(x) + ⟨∇f(x), y − x⟩

Remark The p-Laplacian with p ≥ 1 is the gradient of the convex function

Dp[u] :=

∫
Ω

|∇u(x)|p dx

It is a monotone operator.

Definition 1.2. Let X be a Banach space. An operator F : X → X is called Lipschitz
continuous with parameter L if

∥F (x)− F (y)∥ ≤ L∥x− y∥, ∀x, y ∈ X.

Example

• Consider a blur operator K with max |K(x)| < ∞. Then Ku is Lipschitz.

• Consider the function: f(x) = 1
2
∥Ax − b∥2, where A ∈ Rm×n with m ≤ n. The

gradient of f is F (x) := ∇f(x) = A∗(Ax− b).

∥F (x)− F (y)∥ = ∥A∗A(x− y)∥ ≤ ∥A∗A∥∥x− y∥.

One can show that ∥A∗A∥ = σ2
max, where σmax is the maximum of the singular value

of A.

Proposition 1.4. Suppose f is convex and in C1. The following statements are equivalent.

(a) Lipschitz continuity of ∇f(x): there exists an L > 0 such that

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ for all x, y ∈ domf.

(b) g(x) := L
2
∥x∥2 − f(x) is convex.

(c) Quadratic upper bound

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2.
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(d) Co-coercivity

⟨∇f(x)−∇f(y), x− y⟩ ≥ 1

L
∥∇f(x)−∇f(y)∥2.

Proof. 1. (a) ⇒ (b):

|⟨∇f(x)−∇f(y), x− y⟩| ≤ ∥∇f(x)−∇f(y)∥∥x− y∥ ≤ L∥x− y∥2

⇔ ⟨∇g(x)−∇g(y), x− y⟩ = ⟨L(x− y)− (∇f(x)−∇f(y)), x− y⟩ ≥ 0

Therefore, ∇g(x) is monotonic and thus g is convex.

2. (b) ⇔ (c):

g is convex
⇔ g(y) ≥ g(x) + ⟨∇g(x), y − x⟩

⇔ L

2
∥y∥2 − f(y) ≥ L

2
∥x∥2 − f(x) + ⟨Lx−∇f(x), y − x⟩

⇔ f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥x− y∥2.

3. (b) ⇒ (d): From (b), (L/2)∥z∥2 − f(z) is convex, so is (L/2)∥z∥2 − fx(z), where
fx(z) := f(z) − f(x) − ⟨∇f(x), z − x⟩ with minimum at z = x. Thus from the
proposition below

f(y)−f(x)−⟨∇f(x), y−x⟩ = fx(y)−fx(x) ≥
1

2L
∥∇fx(y)∥2 =

1

2L
∥∇f(y)−∇f(x)∥2.

Similarly, z = y minimizes fy(z), we get

f(x)− f(y)− ⟨∇f(y), x− y⟩ ≥ 1

2L
∥∇f(y)−∇f(x)∥2.

Adding these two together, we get the co-coercivity.

4. (d) ⇒ (a): by Cauchy inequality.

Proposition 1.5. Suppose f is convex and in C1 with ∇f(x) being Lipschitz continuous
with parameter L. Suppose x∗ is a global minimum of f . Then

1

2L
∥∇f(x)∥2 ≤ f(x)− f(x∗) ≤ L

2
∥x− x∗∥2.

Proof. 1. Right-hand inequality follows from quadratic upper bound.

2. Left-hand inequality follows by minimizing quadratic upper bound

f(x∗) = inf
y
f(y) ≤ inf

y

(
f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2

)
= f(x)− 1

2L
∥∇f(x)∥2.
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1.5 Strong convexity
f is called strongly convex if domf is convex and the strong Jensen inequality holds: there
exists a constant m > 0 such that for any x, y ∈ domf and t ∈ [0, 1],

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− m

2
t(1− t)∥x− y∥2.

This definition is equivalent to the convexity of g(x) := f(x) − m
2
∥x∥2. This comes from

the calculation

(1− t)∥x∥2 + t∥y∥2 − ∥(1− t)x+ ty∥2 = t(1− t)∥x− y∥2.

Whenf ∈ C2, then strong convexity of f is equivalent to

∇2f(x) ⪰ mI for any x ∈ domf.

Proposition 1.6. Suppose f ∈ C1. The following statements are equivalent:

(a) f is strongly convex, i.e. g(x) = f(x)− m
2
∥x∥2 is convex,

(b) for any x, y ∈ domf , ⟨∇f(x)−∇f(y), x− y⟩ ≥ m∥x− y∥2.

(c) (quadratic lower bound):

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩+ m

2
∥x− y∥2.

Proposition 1.7. If f is strongly convex, then f has a unique global minimizer x∗ which
satisfies

m

2
∥x− x∗∥2 ≤ f(x)− f(x∗) ≤ 1

2m
∥∇f(x)∥2 for all x ∈ domf.

Proof. 1. For lelf-hand inequality, we apply quadratic lower bound

f(x) ≥ f(x∗) + ⟨∇f(x∗), x− x∗⟩+ m

2
∥x− x∗∥2 = m

2
∥x− x∗∥2.

2. For right-hand inequality, quadratic lower bound gives

f(x∗) = inf
y
f(y) ≥ inf

y

(
f(x) + ⟨∇f(x), y − x⟩+ m

2
∥y − x∥2

)
≥ f(x)− 1

2m
∥∇f(x)∥2.

Here, we take infimum in y to get the left-hand inequality.
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Proposition 1.8. Suppose f is both strongly convex with parameter m and ∇f(x) is Lips-
chitz continuous with parameter L. Then f satisfies stronger co-coercivity condition

⟨∇f(x)−∇f(y), x− y⟩ ≥ mL

m+ L
∥x− y∥2 + 1

m+ L
∥∇f(x)−∇f(y)∥2.

Proof. 1. Consider g(x) = f(x)− m
2
∥x∥2. From strong convexity of f , we get g(x) is

convex.

2. From Lipschitz of f , we get g is also Lipschitz continuous with parameter L−m.

3. We apply co-coercivity to g(x):

⟨∇g(x)−∇g(y), x− y⟩ ≥ 1

L−m
∥∇g(x)−∇g(y)∥2

⟨∇f(x)−∇f(y)−m(x− y), x− y⟩ ≥ 1

L−m
∥∇f(x)−∇f(y)−m(x− y)∥2

(
1 +

2m

L−m

)
⟨∇f(x)−∇f(y), x−y⟩ ≥ 1

L−m
∥∇f(x)−∇f(y)∥2+

(
m2

L−m
+m

)
∥x−y∥2.

1.6 Subdifferential

Definition 1.3. Let f be convex. The subdifferential of f at a point x is a set defined by

∂f(x) = {u ∈ X|(∀y ∈ X) f(x) + ⟨u, y − x⟩ ≤ f(y)}

∂f(x) is also called subgradients of f at x.

Remark Geometrically, the hyperplane f(y) = f(x) + ⟨u, y − x⟩ is a supported hyper-
plane of epi f at x.

Proposition 1. (a) If f is convex and differentiable at x, then ∂f(x) = {∇f(x)}.

(b) If f is convex, then ∂f(x) is a closed convex set.
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Examples

1. Let f(x) = |x|. Then ∂f(0) = [−1, 1].

2. Let C be a closed convex set on RN . Then ∂C is locally rectifiable. Moreover,

∂ιC(x) = {λn | λ ≥ 0, n is the unit outer normal of ∂C at x}.

Proposition 1.9. Let f : Rn → (−∞,∞] be convex and closed. Then x∗ is a minimum of
f if and only if 0 ∈ ∂f(x∗).

Proposition 1.10. The subdifferential of a convex function f is a set-valued monotone
operator. That is, if u ∈ ∂f(x), v ∈ ∂f(y), then ⟨u− v, x− y⟩ ≥ 0.

Proof. From

f(y) ≥ f(x) + ⟨u, y − x⟩, f(x) ≥ f(y) + ⟨v, x− y⟩,

Combining these two inequalities, we get monotonicity.

Proposition 1.11. The following statements are equivalent.

(1) f is strongly convex (i.e. f − m
2
∥x∥2 is convex);

(2) (quadratic lower bound)

f(y) ≥ f(x) + ⟨u, y − x⟩+ m

2
∥x− y∥2 for any x, y

where u ∈ ∂f(x);

(3) (Strong monotonicity of ∂f ):

⟨u− v, x− y⟩ ≥ m∥x− y∥2, for any x, y with any u ∈ ∂f(x), v ∈ ∂f(y).

1.7 Proximal operator
Definition 1.4. Given a convex function f , the proximal mapping of f is defined as

proxf (x) := arg minu

(
f(u) +

1

2
∥u− x∥2

)
.

Since f(u)+1/2∥u−x∥2 is strongly convex in u, we get unique minimum. Thus, proxf (x)
is well-defined.
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Examples

• Let C be a convex set. Define indicator function ιC(x) as

ιC(x) =

{
0 if x ∈ C
∞ otherwise .

Then proxιC
(x) is the projection of x onto C.

PCx ∈ C and (∀z ∈ C), ⟨z − PC(x), x− PC(x)⟩ ≤ 0.

• f(x) = ∥x∥1: proxf is the soft-thresholding:

proxf (x)i =


xi − 1 if xi ≥ 1
0 if |xi| ≤ 1
xi + 1 if xi ≤ −1

Properties Let f be convex function.

• Proximal operator proxf is a resolvent operator:

proxf (x) = z = (I + ∂f)−1(x).

Let

z = proxf (x) = arg minu

(
f(u) +

1

2
∥u− x∥2

)
if and only if

0 ∈ ∂f(z) + z − x

or
x ∈ z + ∂f(z).

Sometimes, we express this as

proxf (x) = z = (I + ∂f)−1(x).

• Co-coercivity:

⟨proxf (x)− proxf (y), x− y⟩ ≥ ∥proxf (x)− proxf (y)∥2.

Let x+ = proxf (x) := arg minzf(z) +
1
2
∥z − x∥2. We have x − x+ ∈ ∂f(x+).

Similarly, y+ := proxf (y) satisfies y − y+ ∈ ∂f(y+). From monotonicity of ∂f , we
get

⟨u− v, x+ − y+⟩ ≥ 0

for any u ∈ ∂f(x+), v ∈ ∂f(y+). Taking u = x − x+ and v = y − y+, we obtain
co-coercivity.
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• Non-expansive: The co-coercivity of proxf implies that proxf is 1-Lipschitz contin-
uous, which is also called non-expansive.

∥proxf (x)− proxf (y)∥2 ≤ |⟨x− y, proxf (x)− proxf (y)⟩|

implies
∥proxf (x)− proxf (y)∥ ≤ ∥x− y∥.

1.8 Conjugate of a convex function
• For a function f : RN → (−∞,∞], we define its conjugate f ∗ by

f ∗(y) = sup
x

(⟨x, y⟩ − f(x)) .

Examples

1. f(x) = ⟨a, x⟩ − b, f ∗(y) = supx(⟨y, x⟩ − ⟨a, x⟩+ b) =

{
b if y = a
∞ otherwise.

2. f(x) =

{
ax if x < 0
bx if x > 0.

, a < 0 < b.

f ∗(y) =

{
0 if a < y < b
∞ otherwise.

3. f(x) = 1
2
⟨x,Ax⟩+ ⟨b, x⟩+ c, where A is symmteric and non-singular, then

f ∗(y) =
1

2
⟨y − b, A−1(y − b)⟩ − c.

In general, if A ⪰ 0, then

f ∗(y) =
1

2
⟨y − b, A†(y − b)⟩ − c, A† := (A∗A)−1A∗

and dom f ∗ = range A+ b.

4. f(x) = 1
p
∥x∥p, p ≥ 1, then f ∗(u) = 1

p∗
∥u∥p∗ , where 1/p+ 1/p∗ = 1.

5. f(x) = ex,

f ∗(y) = sup
x
(xy − ex) =


y ln y − y if y > 0
0 if y = 0
∞ if y < 0

6. C = {x|⟨Ax, x⟩ ≤ 1}, where A is s symmetric positive definite matrix. ι∗C =√
⟨A−1u, u⟩.



1.8. CONJUGATE OF A CONVEX FUNCTION 17

Properties

• f ∗ is convex and l.s.c.
Note that f ∗ is the supremum of linear functions. We have seen that supremum of a
family of closed functions is closed; and supremum of a family of convex functions
is also convex.

• Fenchel’s inequality:
f(x) + f ∗(y) ≥ ⟨x, y⟩.

This follows directly from the definition of f ∗:

f ∗(y) = sup
x

(⟨x, y⟩ − f(x)) ≥ ⟨x, y⟩ − f(x).

This can be viewed as an extension of the Cauchy inequality

1

2
∥x∥2 + 1

2
∥y∥2 ≥ ⟨x, y⟩.

Proposition 1.12. (1) f ∗∗(x) is closed and convex.

(2) f ∗∗(x) ≤ f(x).

(3) f ∗∗(x) = f(x) if and only if f is closed and convex.

Proof. 1. From Fenchel’s inequality

⟨x, y⟩ − f ∗(y) ≤ f(x).

Taking sup in y gives f ∗∗(x) ≤ f(x).

2. f ∗∗(x) = f(x) if and only if epif ∗∗ = epif . We have seen f ∗∗ ≤ f . This leads to
eps f ⊂ eps f ∗∗. Suppose f is closed and convex and suppose (x, f ∗∗(x)) ̸∈ epif .
That is f ∗∗(x) < f(x) and there is a strict separating hyperplane: {(z, s) : a(z −
x) + b(s− f ∗∗(x)) = 0} such that〈(

a
b

)
,

(
z − x

s− f ∗∗(x)

)〉
≤ c < 0 for all (z, s) ∈ epif

with b ≤ 0.

3. If b < 0, we may normalize it such that (a, b) = (y,−1). Then we have

⟨y, z⟩ − s− ⟨y, x⟩+ f ∗∗(x) ≤ c < 0.
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Taking supremum over (z, s) ∈ epif ,

sup
(z,s)∈epif

(⟨y, z⟩ − s) = sup
z

(⟨y, z⟩ − f(z)) = f ∗(y).

Thus, we get
f ∗(y)− ⟨y, x⟩+ f ∗∗(x) ≤ c < 0.

This contradicts to Fenchel’s inequality.

4. If b = 0, choose ŷ ∈ dom f ∗ and add ϵ(ŷ,−1) to (a, b), we can get〈(
a+ ϵŷ
−ϵ

)
,

(
z − x

s− f ∗∗(x)

)〉
≤ c1 < 0

Now, we apply the argument for b < 0 and get contradiction.

5. If f ∗∗ = f , then f is closed and convex because f ∗∗ is closed and convex no matter
what f is.

Remark. When f is closed and convex, f(x) = supy(−f ∗(y) + ⟨y, x⟩), the supremum
of its linear supporting functions.

Proposition 1.13. If f is closed and convex, then

y ∈ ∂f(x) ⇔ x ∈ ∂f ∗(y) ⇔ ⟨x, y⟩ = f(x) + f ∗(y).

Proof. 1.

y ∈ ∂f(x) ⇔ f(z) ≥ f(x) + ⟨y, z − x⟩
⇔ ⟨y, x⟩ − f(x) ≥ ⟨y, z⟩ − f(z) for all z
⇔ ⟨y, x⟩ − f(x) = sup

z
(⟨y, z⟩ − f(z))

⇔ ⟨y, x⟩ − f(x) = f ∗(y)

2. For the equivalence of x ∈ ∂f ∗(x) ⇔ ⟨x, y⟩ = f(x) + f ∗(y), we use f ∗∗(x) = f(x)
and apply the previous argument.
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1.9 Method of Lagrange multiplier for constrained opti-
mization problems

A standard convex optimization problem can be formulated as

inf
x
f0(x)

subject to fi(x) ≤ 0, i = 1, ...,m

and hi(x) = 0 i = 1, ..., p.

We assume the domain
D :=

⋂
i

domfi ∩
⋂
i

domhi

is a closed convex set in Rn. A point x ∈ D satisfying the constraints is called a feasible
point. We assume D ̸= ∅ and denote p∗ the optimal value.

The method of Lagrange multiplier is to introduce augmented variables λ, µ and a
Lagrangian so that the problem is transformed to a unconstrained optimization problem.
Let us define the Lagrangian to be

L(x, λ, µ) = f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

µihi(x).

Here, λ and µ are the augmented variables, called the Lagrange multipliers or the dual
variables.

Primal problem From this Lagrangian, we notice that

sup
λ⪰0

(
m∑
i=1

λifi(x)

)
= ιCf (x), Cf =

⋂
i

{x|fi(x) ≤ 0}

and

sup
µ

(
p∑

i=1

µihi(x)

)
= ιCh(x), Ch =

⋂
i

{x|hi(x) = 0}.

Hence
sup
λ⪰0,µ

L(x, λ, µ) = f0(x) + ιCf (x) + ιCh(x)

Thus, the original optimization problem can be written as

p∗ = inf
x∈D

(
f0(x) + ιCf (x) + ιCh(x)

)
= inf

x∈D
sup
λ⪰0,µ

L(x, λ, µ).

This problem is called the primal problem.
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Dual problem From this Lagrangian, we define the dual function

g(λ, µ) := inf
x∈D

L(x, λ, µ).

This is an infimum of a family of concave closed functions in λ and µ, thus g(λ, µ) is a
concave closed function. We assume that this minimization problem is much simpler than
the original one. The dual problem is

d∗ = sup
λ⪰0,µ

g(λ, µ).

This dual problem is the same as

sup
λ,µ

g(λ, µ) subject to λ ⪰ 0.

We refer (λ, µ) ∈ dom g with λ ⪰ 0 as dual feasible variables. The primal problem and
dual problem are connected by the following duality property.

Weak Duality Property

Proposition 2. For any λ ⪰ 0 and any µ, we have that

g(λ, µ) ≤ p∗.

In other words,
d∗ ≤ p∗

Proof. Suppose x is feasible point (i.e. x ∈ D and fi(x) ≤ 0, hi(x) = 0). Then for any
λi ≥ 0 and any µi, we have

m∑
i=1

λifi(x) +

p∑
i=1

µihi(x) ≤ 0.

This leads to

L(x, λ, µ) = f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

µihi(x) ≤ f0(x).

Hence for any feasible pair λ ⪰ 0, µ,

g(λ, µ) := inf
x∈D

L(x, λ, µ) ≤ f0(x) for all feasible x.

Since p∗ = inf{f0(x)|x feasible}, we get

g(λ, µ) ≤ p∗

for all feasible pair (λ, µ). Taking supremum over all feasible pair (λ, µ), we get d∗ ≤
p∗.
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The property d∗ ≤ p∗ is called weak duality property. It can also be read as

sup
λ⪰0,µ

inf
x∈D

L(x, λ, µ) ≤ inf
x∈D

sup
λ⪰0,µ

L(x, λ, µ).

Definition 1.5. (a) A point x∗ is called a primal optimal if it minimizes supλ⪰0,µ L(x, λ, µ).

(b) A dual pair (λ∗, µ∗) with λ∗ ⪰ 0 is said to be a dual optimal if it maximizes infx∈D L(x, λ, µ).

Strong duality

Definition 1.6. When d∗ = p∗, we say the strong duality holds.

Counter-example that strong duality does not hold Consider

min
x,y>0

e−x subject to x2/y ≤ 0.

D = {(x, y)|y > 0}. Both f0(x, y) = e−x and f(x, y) = x2/y are convex in D. The
Lagrangian L(x, y, λ) = e−x + λx2/y. The dual function is

g(λ) = inf
(x,y)∈D

L(x, y, λ) =

{
0 if λ ≥ 0
−∞ if λ < 0

We have p∗ = 1 while d∗ = 0.
Ref: https://inst.eecs.berkeley.edu/˜ee227a/fa10/login/l_dual_
strong.html

Slater condition A sufficient condition for strong duality is the Slater condition: there
exists a feasible x in relative interior of D◦, fi(x) < 0, i = 1, ...,m and hi(x) = 0,
i = 1, ..., p. Such a point x is called a strictly feasible point.

Theorem 1.1. Suppose f0, ..., fm are convex, h(x) = Ax − b, and assume the Slater con-
dition holds: there exists x ∈ D◦ with Ax− b = 0 and fi(x) < 0 for all i = 1, ...,m. Then
the strong duality

sup
λ⪰0,µ

inf
x∈D

L(x, λ, µ) = inf
x∈D

sup
λ⪰0,µ

L(x, λ, µ).

holds.

Proof. See pp. 234-236, Boyd’s Convex Optimization.

https://inst.eecs.berkeley.edu/~ee227a/fa10/login/l_dual_strong.html
https://inst.eecs.berkeley.edu/~ee227a/fa10/login/l_dual_strong.html
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Complementary slackness Suppose there exist x∗, λ∗ ⪰ 0 and µ∗ such that x∗ is the
optimal primal point and (λ∗, µ∗) is the optimal dual point and the strong duality gap p∗ −
d∗ = 0. In this case,

f0(x
∗) = p∗ = d∗ = g(λ∗, µ∗)

= inf
x

(
f0(x) +

m∑
i=1

λ∗
i fi(x) +

p∑
i=1

µ∗
ihi(x)

)

≤ f0(x
∗) +

m∑
i=1

λ∗
i fi(x

∗) +

p∑
i=1

µ∗
ihi(x

∗)

≤ f0(x
∗).

The last line follows from
m∑
i=1

λifi(x) +

p∑
i=1

µihi(x) ≤ 0.

for any feasible pair (x, λ, µ). This leads to

m∑
i=1

λ∗
i fi(x

∗) +

p∑
i=1

µ∗
ihi(x

∗) = 0.

Since hi(x
∗) = 0 for i = 1, ..., p, λi ≥ 0 and fi(x

∗) ≤ 0, we then get

λ∗
i fi(x

∗) = 0 for all i = 1, ...,m.

This is called complementary slackness. It holds for any optimal solutions (x∗, λ∗, µ∗).

KKT condition

Proposition 1.14. When f0, fi and hi are differentiable, then the optimal points x∗ to the
primal problem and (λ∗, µ∗) to the dual problem satisfy the Karush-Kuhn-Tucker (KKT)
condition: 

fi(x
∗) ≤ 0, i = 1, ...,m

λ∗
i ≥ 0, i = 1, ...,m,

λ∗
i fi(x

∗) = 0, i = 1, ...,m
hi(x

∗) = 0, i = 1, ..., p

∇f0(x
∗) +

m∑
i=1

λ∗
i∇fi(x

∗) +

p∑
i=1

µ∗
i∇gi(x

∗) = 0.
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Remark. If f0, fi, i = 0, ...,m are closed and convex, but may not be differentiable, then
the last KKT condition is replaced by

0 ∈ ∂f0(x
∗) +

m∑
i=1

λ∗
i∂fi(x

∗) +

p∑
i=1

µ∗
i∂gi(x

∗).

We call the triple (x∗, λ∗, µ∗) satisfies the optimality condition.

Theorem 1.2. If f0, fi are closed and convex and h are affine. Then the KKT condition is
also a sufficient condition for optimal solutions. That is, if (x̂, λ̂, µ̂) satisfies KKT condition,
then x̂ is primal optimal and (λ̂, µ̂) is dual optimal, and there is zero duality gap.

Proof. 1. From fi(x̂) ≤ 0 and h(x̂) = 0, we get that x̂ is feasible.

2. From λ̂i ≥ 0 and fi being convex and hi are linear, we get

L(x, λ̂, µ̂) = f0(x) +
∑
i

λ̂ifi(x) +
∑
i

µ̂ihi(x)

is also convex in x.

3. The last KKT condition states that x̂ minimizes L(x, λ̂, µ̂). Thus

g(λ̂, µ̂) = L(x̂, λ̂, µ̂)

= f0(x̂) +
m∑
i=1

λ̂ifi(x̂) +

p∑
i=1

µ̂ihi(x̂)

= f0(x̂)

This shows that x̂ and (λ̂, µ̂) have zero duality gap and therefore are primal optimal
and dual optimal, respectively.
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Chapter 2

Minimizing f (x)

2.1 Gradient Descent Method
Cauchy, Polyak,

Assumptions

• f ∈ C1(RN) and convex

• ∇f(x) is Lipschitz continuous with parameter L

• Optimal value f ∗ = infx f(x) is finite and attained at x∗.

Gradient descent method

• Forward method:
xk = xk−1 − tk∇f(xk−1)

This is the forward Euler method to solve the ODE: ẋ = −∇f(x).

– Fixed step size: if tk is constant

– Backtracking line search: Choose 0 < β < 1, initialize tk = 1; take tk := βtk
until

f(x− tk∇f(x)) < f(x)− 1

2
tk∥∇f(x)∥2

– Optimal line search:

tk = arg mintf(x− t∇f(x)).

25
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• Backward method
xk = xk−1 − tk∇f(xk).

This is the backward Euler method to solve the ODE: ẋ = −∇f(x).

• The forward gradient method can be expressed as

xk = arg minx

(
f(xk−1) + ⟨∇f(xk−1), x− xk−1⟩+ tk

2
∥x− xk−1∥2

)
• The backward gradient method can be expressed as

xk = arg minx

(
f(x) +

tk

2
∥x− xk−1∥2

)

Analysis for the fixed step size case

Proposition 2.15. Suppose f ∈ C1, convex and ∇f is Lipschitz with constant L. Suppose
the optimal value f ∗ := infx f(x) is finite and attained at x∗. Consider the fixed-step
size gradient descent method. If the step size t satisfies t ≤ 1/L, then the fixed-step size
gradient descent method satisfies

f(xk)− f(x∗) ≤ 1

2kt
∥x0 − x∗∥2

Remarks

• If in addition f is strongly convex, then the sequence {xk} converges to the unique
optimal solution x∗ linearly.

Proof.

1. Let x+ := x− t∇f(x).

2. From quadratic upper bound:

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥y − x∥2.

Choosing y = x+ and t < 1/L, we get

f(x+) ≤ f(x) +

(
−t+

Lt2

2

)
∥∇f(x)∥2 ≤ f(x)− t

2
∥∇f(x)∥2.
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3. From
f(x∗) ≥ f(x) + ⟨∇f(x), x∗ − x⟩

we get

f(x+) ≤ f(x)− t

2
∥∇f(x)∥2

≤ f ∗ + ⟨∇f(x), x− x∗⟩ − t

2
∥∇f(x)∥2

= f ∗ +
1

2t

(
∥x− x∗∥2 − ∥x− x∗ − t∇f(x)∥2

)
= f ∗ +

1

2t

(
∥x− x∗∥2 − ∥x+ − x∗∥2

)
.

4. Define xi−1 = x, xi = x+, sum this inequalities from i = 1, ..., k, we get

k∑
i=1

(
f(xi)− f ∗) ≤ 1

2t

k∑
i=1

(
∥xi−1 − x∗∥2 − ∥xi − x∗∥2

)
=

1

2t

(
∥x0 − x∗∥2 − ∥xk − x∗∥2

)
≤ 1

2t
∥x0 − x∗∥2

5. Since f(xi)− f ∗ is a decreasing sequence, we then get

f(xk)− f ∗ ≤ 1

k

k∑
i=1

(
f(xi)− f ∗) ≤ 1

2kt
∥x0 − x∗∥2.

Proposition 2.16. Suppose f ∈ C1 and convex. The fixed-step size backward gradient
method satisfies

f(xk)− f(x∗) ≤ 1

2kt
∥x0 − x∗∥2.

Here, no assumption on Lipschitz continuity of ∇f(x) is needed.

Proof.

1. Define x+ = x− t∇f(x+).

2. For any z, we have

f(z) ≥ f(x+) + ⟨∇f(x+), z − x+⟩ = f(x+) + ⟨∇f(x+), z − x⟩+ t∥∇f(x+)∥2.
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3. Take z = x, we get
f(x+) ≤ f(x)− t∥∇f(x+)∥2

Thus, f(x+) < f(x) unless ∇f(x+) = 0.

4. Take z = x∗, we obtain

f(x+) ≤ f(x∗) + ⟨∇f(x+), x− x∗⟩ − t∥∇f(x+)∥2

≤ f(x∗) + ⟨∇f(x+), x− x∗⟩ − t

2
∥∇f(x+)∥2

= f(x∗)− 1

2t
∥x− x∗ − t∇f(x+)∥2 + 1

2t
∥x− x∗∥2

= f(x∗) +
1

2t

(
∥x− x∗∥2 − ∥x+ − x∗∥2

)
.

Proposition 2.17. Suppose f is strongly convex with parameter m and ∇f(x) is Lipschitz
continuous with parameter L. Suppose the minimum of f is attended at x∗. Then the
gradient method converges linearly, namely

∥xk − x∗∥2 ≤ ck∥x0 − x∗∥2

f(xk)− f(x∗) ≤ ckL

2
∥x0 − x∗∥2,

where
c = 1− t

2mL

m+ L
< 1 if the step size t ≤ 2

m+ L
.

Proof. 1. For 0 < t ≤ 2/(m+ L):

∥x+ − x∗∥2 = ∥x− t∇f(x)− x∗∥2

= ∥x− x∗∥2 − 2t⟨∇f(x), x− x∗⟩+ t2∥∇f(x)∥2

≤ ∥x− x∗∥2 − 2t

(
mL

m+ L
∥x− x∗∥2 + 1

m+ L
∥∇f(x)∥2

)
+ t2∥∇f(x)∥2

=

(
1− t

2mL

m+ L

)
∥x− x∗∥2 + t

(
t− 2

m+ L

)
∥∇f(x)∥2

≤
(
1− t

2mL

m+ L

)
∥x− x∗∥2 = c∥x− x∗∥2.

t is chosen so that c < 1. Thus, the sequence xk − x∗ converges linearly with rate c.

2. From quadratic upper bound

f(xk)− f(x∗) ≤ L

2
∥xk − x∗∥2 ≤ ckL

2
∥x0 − x∗∥2.

we get f(xk)− f(x∗) also converges to 0 with linear rate.
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Example: least-squares method Let A : Rn → Rm be a linear map and b ∈ Rm. We
look for

min
x

∥Ax− b∥2.

Suppose A∗A has eigenvalues σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
r > 0 with normalized eigenvectors

vi, i = 1, ..., r. Suppose the kernel N(A) is spanned by the orthonormal set {vi|i =
r + 1, ..., n}. Then {v1, ..., vn} form an orthonormal basis in Rn. Let ui ∈ Rm defined by
Avi = σiui, i = 1, ..., r. Then {u1, ..., ur} is an orthonormal set in R(A). We expand them
to ur+1, ..., um to form an orthonormal basis in Rm. We have

• Avi = σiui, i = 1, ...r

• A∗ui = σivi, i = 1, ...r

• N(A) =< vr+1, ..., vn >, R(A) =< u1, ..., ur >

• N(A∗) =< ur+1, ..., um >, R(A∗) =< v1, ..., vr >.

The least-squares solution x† satisfies the normal equation

A∗Ax = A∗b

If b =
∑m

i=1 biui, then

x† =
r∑

i=1

bi
σi

vi.

and

∥Ax† − b∥2 =
m∑

i=r+1

|bi|2.

The gradient of the map f(x) = 1
2
∥Ax− b∥2 is

∇f(x) = A∗(Ax− b).

The gradient descent method gives

xk = xk−1 − t∇f(xk−1).

In terms of singular vectors, we have

xk
i = xk−1

i − t(σ2
i x

k−1
i − σibi), i = 1, ..., r.

xk
i = xk−1

i , i = r + 1, ..., n,
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where

xk =
n∑

i=1

xk
i vi.

These give
xk
i = x0

i i = r + 1, ..., n.

xk
i →

bi
σi

as k → ∞, i = 1, ...r.

Thus, xk → x∗, where

x∗ =
n∑

i=1

x∗
i vi =

r∑
i=1

bi
σi

vi +
n∑

r+1

x0
i vi.

We have
xk
i − x∗

i = (1− tσ2
i )(x

k−1
i − x∗

i )vi, i = 1, ...r,

which gives the convergence

∥xk − x∗∥2 =
r∑

i=1

(1− tσ2
i )

2k|x0
i − x∗

i |2,

provided

0 < t <
2

σ2
1

=
2

L
.

Here, L is the Lipschitz parameter corresponding to ∇f(x) = A∗(Ax−b), which is exactly
σ2
1 .

f(xk)− f(x∗) =
1

2
∥Axk − Ax∗∥2 =

r∑
i=1

σ2k
i (1− tσ2

i )
2k|x0

i − x∗
i |2.

2.2 Subgradient Descent Method

Assumptions

• f is closed and convex

• Optimal value f ∗ = infx f(x) is finite and attained at x∗.
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Subgradient method

xk = xk−1 − tkvk−1, vk−1 ∈ ∂f(xk−1).

tk is chosen so that f(xk) < f(xk−1).

• This is a forward (sub)gradient method.

• It may not converge.

• If it converges, the optimal rate is

f(xk)− f(x∗) ≤ O(1/
√
k),

which is very slow.

2.3 Proximal point method
Assumptions

• f is closed and convex

• Optimal value f ∗ = infx f(x) is finite and attained at x∗.

Proximal point method:

xk = proxtf (x
k−1) = xk−1 − tGt(x

k−1)

where

proxtf (x) := arg minz

(
tf(z) +

1

2
∥z − x∥2

)
Let x+ := proxtf (x) := x− tGt(x). From the Euler-Lagrange equation, we get

Gt(x) ∈ ∂f(x+).

Thus, we may view proximal point method is a backward subgradient method.

Proposition 2.18. Suppose f is closed and convex and suppose an ptimal solution x∗ of
min f is attainable. Then the proximal point method xk = proxtf (x

k−1) with t > 0 satisfies

f(xk)− f(x∗) ≤ 1

2kt
∥x0 − x∗∥.
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Convergence proof:

1. Given x, let x+ := proxtf (x). Let Gt(x) := (x+ − x)/t. Then Gt(x) ∈ ∂f(x+). We
then have, for any z,

f(z) ≥ f(x+) + ⟨Gt(x), z − x+⟩ = f(x+) + ⟨Gt(x), z − x⟩+ t∥Gt(x)∥2.

2. Take z = x, we get
f(x+) ≤ f(x)− t∥∇f(x+)∥2

Thus, f(x+) < f(x) unless ∇f(x+) = 0.

3. Take z = x∗, we obtain

f(x+) ≤ f(x∗) + ⟨Gt(x), x− x∗⟩ − t∥Gt(x)∥2

≤ f(x∗) + ⟨Gt(x), x− x∗⟩ − t

2
∥Gt(x)∥2

= f(x∗) +
1

2t
∥x− x∗ − tGt(x)∥2 −

1

2t
∥x− x∗∥2

= f(x∗) +
1

2t

(
∥x+ − x∗∥2 − ∥x− x∗∥2

)
.

4. Taking x = xi−1, x+ = xi, sum over i = 1, ..., k, we get

k∑
i=1

(f(xk)− f(x∗)) ≤ 1

2t

(
∥x0 − x∗∥ − ∥xk − x∗∥

)
.

Since f(xk) is non-increasing, we get

k(f(xk)− f(x∗)) ≤
k∑

i=1

(f(xk)− f(x∗)) ≤ 1

2t
∥x0 − x∗∥.

2.4 Accelerated Proximal Point Method
The proximal point method is a first order method. With a small modification, it can be
accelerated to a second order method. This is the work of Nesterov (1984). It was shown
to be the best algorithm (Nesterov). The idea is to use an extrapolation from xk−1 to xk.
The acceleration algorithm reads

yk = (θk − 1)xk−1 + (2− θk)x
k, xk+1 = proxtf (y

k),

x1 = x0.
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Here, the parameters θ and t will be chosen properly so that the slow convergence term will
be cancelled. In fact, there is no constraint on t. The parameter θk is chosen as

θk =
2

k + 1
.

Then we have the following theorem

Theorem 2.3. Assume f is closed and convex and the optimal value f ∗ is attainable. Then
the above acceleration algorithm with θk = 2/(k + 1) converges as

f(xk)− f ∗ ≤ θ2k
2t
∥x0 − x∗∥2.

Proof. From the extrapolation formulation

yk := (θk − 1)xk−1 + (2− θk)x
k

= (1− θk)x
k + (xk + (θk − 1)xk−1)

= (1− θk)x
k + θkvk

where
vk := xk−1 +

1

θk−1

(xk − xk−1).

Let us estimate the amount of decreasing of f(x)−f ∗ in one step. Let us call xk by x, xk+1

by x+, vk by v, vk+1 by v+, yk by y and θk by θ. We have

y = (1− θ)x+ θv,

x+ = proxtf (y),

v+ = x+
1

θ
(x+ − x).

Let Gt(x) := (x+ − y)/t. Then from x+ = proxtf (y), we have Gt(x) ∈ ∂f(x+). Then for
any z, we have

f(z) ≥ f(x+) + ⟨Gt(x), z − x+⟩ = f(x+) +
1

t
⟨x+ − y, z − x+⟩.

Thus,

f(x+) ≤ f(z) +
1

t
⟨y − x+, x+ − z⟩

We take z = x∗ and z = x, make a convex combination of these two inequalities with
weights θ and (1− θ), we get

f(x+) ≤ f ∗ +
1

t
⟨x+ − y, x∗ − x+⟩
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f(x+) ≤ 1

t
⟨x+ − y, x− x+⟩

f(x+)− f ∗ − (1− θ)(f(x)− f ∗) =
1

t
⟨x+ − y, θx∗ + (1− θ)x− x+⟩

≤ 1

t
⟨x+ − y, θx∗ + (1− θ)x− x+⟩+ 1

2t
∥x+ − y∥2

=
1

2t

(
∥y − (1− θ)x− θx∗∥2 − ∥x+ − (1− θ)x− θx∗∥2

)
=

θ2

2t

(
∥v − x∗∥2 − ∥v+ − x∗∥2

)
.

Now, we take θk = 2/(k + 1), it satisfies

θ1 = 1,
1− θk
θ2k

≤ 1

θ2k−1

, k ≥ 2.

We have with ti = t,

ti
θ2i

(
f(xi)− f ∗)+ 1

2
∥vi − x∗∥2 ≤ (1− θi)ti

θ2i

(
f(xi−1)− f ∗)+ 1

2
∥vi−1 − x∗∥2

Using (1− θi)/θ
2
i ≤ 1/θ2i−1, we obtain

t

θ2k

(
f(xk)− f ∗)+ 1

2
∥vk−x∗∥2 ≤ (1− θ1)t

θ21

(
f(x0)− f ∗)+ 1

2
∥v0−x∗∥2 = 1

2
∥x0−x∗∥2.

This shows

f(xk)− f ∗ ≤ θ2k
2t
∥x0 − x∗∥2 ≤ 2

t(k + 1)2
∥x0 − x∗∥2.

2.5 Mirror Descent Method
Vector-Covector view

1. The convergence rate of a gradient descent method depends on the inner product. In
the gradient descent flow:

ẋ = −∇f(x),

the decay of f is

d

dt
f(x(t)) = ∇f(x) · ẋ = −∥∇f(x(t))∥2.

The rate depends on the inner product. We can change another inner product to speed
up the convergence as the follows.
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2. Let us use the following notation: dfx(v) is the directional derivative of f at x in the
direction v. We call v a tangent vector. The term dfx is called the differential of f at
x. It is a linear functional on the tangent space at x. Let us call the tangent space V ,
its dual, the cotangent space V ∗. Thus, dfx ∈ V ∗. It is a co-vector.

3. We can associate V an inner product ⟨·, ·⟩ (or a metric). In our case, V = Rn and
the metric can be presented as gij = ⟨ei, ej⟩, where ei is the unit vector in the xi

direction. In V ∗ = Rn, we use {ei} as its dual basis. That is, ei(ej) = δij .

4. With the inner product structure, the Riesz representation theorem states that for any
functional α ∈ V ∗, there is a unique α# ∈ V such that

α(v) = ⟨α#, v⟩.

The operator α 7→ α# is 1-1,onto and linear. It is called the sharp operator, which
maps a covector to a vector. Its inverse ♭, which maps V to V ∗, is called a flat
operator. Suppose α =

∑
αie

i. Let us express α# = α#,iei. We want to find the
expression of α#,i. For any v =

∑
j v

jej , we have

α(v) = αiv
jei(ej) = αiv

i = ⟨α#, v⟩ = gijα
#,ivj.

Let (gij) be the inverse matrix (gij)
−1. We get

α#,i = gijαj.

5. The gradient ∇f(x) is defined to be

∇f(x) := df#
x

Note that

∇f(x) =
n∑

i=1

gij
∂f(x)

∂xj

ei.

6. Using this metric, we have

d

dt
f(x) =

∑
i

∂f(x)

∂xi
ẋi = −

∑
ij

gij
∂f(x)

∂xi

∂f(x)

∂xj
.

Thus, the convergent rate of f(x) depends on the choice of the metric gij .

7. The metric (gij) can be designed as a preconditioner to speed up the convergent rate.
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8. In the above discussion, we should distinguish vector and covector. The basis in V
is {ei} and its dual basis is {ei} in V ∗. The correct way to write ∇f is

∇f = df#
x =

n∑
i=1

gij
∂f(x)

∂xj

ei.

It is equal to (fx1 , ..., fxn) only because we choose gij = δij .

9. Another example to modify the gradient is to use the inverse of a Hessian. This leads
to the Newton’s method.

Mirror map and mirror descent algorithm

1. In the above discussion, all we need is a sharp operator. We can design a nonlinear
sharp operator, called a mirror map.

2. The mirror map is determined by a strongly convex function h : V → R with con-
stant α. The differential dh : x 7→ dhx is a map V → V ∗, where V is the tangent
space, V ∗ the cotangent space. Since h is strongly convex, dh is 1-1 and onto.

3. Examples:

• h(x) = 1
2
∥x∥2. dhx = x.

• h(x) =
∑

i(xi lnxi − xi). dhx = (lnx1, ..., lnxn).

4. The mirror descent algorithm is

• yk = dhxk

• yk+1 = yk − tkdfxk

• xk+1 = (dh)−1(yk+1)

Proximal point view The gradient descent

xk+1 = xk − tk∇f(xk)

can be thought as

xk+1 = arg minx

(
⟨∇f(xk), x⟩+ 1

2
∥x− xk∥2

)
The last quadratic term is a regularization term. We can replace it by the Bregman diver-
gence (distance): Dh(x||xk), where

Dh(y||x) := h(y)− h(x)− ⟨∇h(x), y − x⟩.
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Then the proximal point method is

xk+1 = arg minx

(
⟨∇f(xk), x⟩+Dh(x||xk)

)
Set the gradient to be zero at xk+1, we get

tk∇f(xk) +∇h(xk+1)−∇h(xk) = 0.

This gives
∇h(xk+1) = ∇h(xk)− tk∇f(xk),

or
xk+1 = (∇h)−1

(
∇h(xk)− tk∇f(xk)

)
.

2.6 Fixed point method
The goal of this section is to show that a minimal sequence of a fixed point method con-
verges.

Definition 2.7. Let X be a Hilbert space. A mapping T : X → X is called nonexpansive
if

∥Tx− Ty∥ ≤ ∥x− y∥, for any x, y ∈ X .

It is called firmly nonexpansive if it satisfies one of the following two equivalent conditions:

∥Tx− Ty∥2 ≤ ⟨Tx− Ty, x− y⟩ for any x, y ∈ X ,

∥Tx− Ty∥2 ≤ ∥x− y∥2 − ∥(I − T )x− (I − T )y∥2.

Remark T is nonexpansive ⇔ −T is nonexpansive. A firmly nonexpansive operator is
also a nonexpansive operator.

Lemma 2.1. T is nonexpansive if and only if (F = (I + T )/2 is firmly nonexpansive) or
(G := (I − T )/2 is firmly nonexpansive.)

Proof.

∥Tx− Ty∥2 ≤ ∥x− y∥2

⇔1

4
∥x− y∥2 + 1

4
∥Tx− Ty∥2 ≤ 1

2
∥x− y∥2

⇔1

4
∥x− y∥2 + 1

4
∥Tx− Ty∥2 ± 1

2
⟨x− y, Tx− Ty⟩ ≤ 1

2
∥x− y∥2 ± 1

2
⟨x− y, Tx− Ty⟩

⇔∥1
2
(I ± T )x− 1

2
(I ± T )y∥2 ≤ ⟨1

2
(I ± T )x− 1

2
(I ± T )y, x− y⟩.
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Examples

1. f : X → R∗ be a proper closed convex function and ∇f is Lipschitz continuous with
Lipschitz constant L. Consider

F = I − t∇f.

Then F is nonexpansive provided 0 < t/L ≤ 1. In this case, the operator G :=
(I − F )/2 = t/2∇f is a gradient operator.

2. Let f : X → R∗ be a proper closed convex function. Let

F (x) := proxf (x), G = I − F.

Then both F and G are firmly nonexpansive. Further, T = 2F − I is nonexpansive.

Proof. x+ = proxf (x) = F (x), y+ = proxf (y) = F (y). G(x) = x− x+ ∈ ∂f(x+).
From monotonicity of ∂f , we have

⟨G(x)−G(y), x+ − y+⟩ ≥ 0.

This gives
⟨x+ − y+, x− y⟩ ≥ ∥x+ − y+∥2.

That is
⟨F (x)− F (y), x− y⟩ ≥ ∥F (x)− F (y)∥2.

The proof for G = I−F being firmly nonexpansive follows from the Lemma above.

3. Let f : X → R∗ be closed convex and proper. We denote ∂f = A. Then A is a
maximal monotone operator. Let

FtA := I − tA, , JtA = proxtf = (I + tA)−1.

Solving min f(x) can be obtained by finding the time asymptotic limit of the ODE

ẋ+ Ax = 0.

The ODE can be discreted by

• Forward Euler: xk+1 = xk − tA(xk), that is xk+1 = FtA(x
k)

• Backward Euler: xk+1 = xk − tA(xk+1), that is xk+1 = JtA(x
k)
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• Crank-Nicholson: xk+1 − xk = t
2

(
Axk + Axk+1

)
. This is equivalent to

xk+1 = JtA/2FtA/2x
k.

We claim this is the same as the extraoplation (reflection):

xk+1 = RtAx
k, RtA := 2JtA/2 − I.

This is because

(I +
t

2
A)(xk+1 + xk) = 2xk ⇔ (I +

t

2
A)xk+1 = (I − t

2
A)xk

Algorithm Now, we are given a nonexpansive map T : X → X . Our goal is to construct
an algorithm and to show it generates a weakly convergent sequence to a fixed point of T
find fixed point of T . We consider the algorithm:

xk =

(
1− tk

2

)
xk−1 +

tk
2
Txk−1 = (1− tk)x

k−1 + tkF (xk−1) = xk−1 − tkG(xk−1).

Here, F = (I + T )/2 and G = (I − T )/2. G plays the role as a gradient. We may think
this is a general gradient descent algorithm.

Theorem 2.4. Let X be a Hilbert space, T be a nonexpansive operator on X . Suppose a
fixed point x∗ of T exists. Consider the algorithm:

xk :=

(
1− tk

2

)
xk−1 +

tk
2
T (xk−1), x0 arbitrary

with
tk ∈ [tmin, tmax], 0 < tmin ≤ tmax < 2.

Then {xk} converges weakly to a fixed point of T .

Proof. 1. Let F := (I + T )/2, G := (I − T )/2. The algorithm can also be written as

xk = xk−1 − tkG(xk−1).

We have seen that both F and G are firmly non-expansive. Further, (x∗ is a fixed
point of T ) ⇔ (x∗ is a fixed point of F ) ⇔ (G(x∗) = 0).
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2. From firmly nonexpansive property of F and G, we get (with x = xk−1, x+ = xk,
t = tk)

∥x+ − x∗∥2 − ∥x− x∗∥2 = ∥x+ − x+ x− x∗∥2 − ∥x− x∗∥2

= 2⟨x+ − x, x− x∗⟩+ ∥x+ − x∥2

= 2⟨−tG(x), x− x∗⟩+ t2∥G(x)∥2

= 2⟨−t(G(x)−G(x∗)), x− x∗⟩+ t2∥G(x)∥2

≤ −2t∥G(x)−G(x∗)∥2 + t2∥G(x)∥2

= −t(2− t)∥G(x)∥2

≤ −M∥G(x)∥2 ≤ 0,

where M = tmin(2− tmax). We get that ∥xk − x∗∥ is non-increasing; hence {xk} is
bounded; and ∥xk − x∗∥ → C as k → ∞.

3. Let us sum this inequality over k:

−∥x0 − x∗∥2 ≤
∞∑
ℓ=0

(
∥xℓ+1 − x∗∥2 − ∥xℓ − x∗∥2

)
≤ −M

∞∑
ℓ=0

∥G(xℓ)∥2 ≤ 0.

⇒ M
∞∑
ℓ=0

∥G(xℓ)∥2 ≤ ∥x0 − x∗∥2

This implies
∥G(xk)∥ → 0 as k → ∞,

4. Since the sequence {xk} is bounded, it is weakly precompact. Suppose x̄k be a subse-
quence of {xk} that converges to x̄ weakly. We have that x̄k ⇀ x̄ and ∥G(x̄k)∥ → 0.
We claim that

G(x̄) = 0.

This is a lemma due to Opial. Such property for G is called “demiclosedness.”

Lemma 2.2. Let F be nonexpansive in a Hilbert space X . Let G = I − F . Suppose
xn ⇀ x and G(xn) → 0. Then G(x) = 0.

From nonexpansion of F , we have

∥xn − x∥2 ≥ ∥F (xn)− F (x)∥2 = ∥ − xn + F (xn) + xn − F (x)∥2

= ∥G(xn)∥2 − 2⟨G(xn), xn − F (x)⟩+ ∥xn − F (x)∥2.
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We take limit inf on both sides to get

lim inf ∥xn − x∥2 ≥ lim inf ∥xn − F (x)∥2.

The right-hand side can be expressed as

∥xn−F (x)∥2 = ∥xn−x+x−F (x)∥2 = ∥xn−x∥2+∥x−F (x)∥2+2⟨xn−x, x−F (x)⟩.

Take liminf both sides, we get

lim inf ∥xn − x∥2 ≥ lim inf ∥xn − F (x)∥2 ≥ ∥x− F (x)∥2 + lim inf ∥xn − x∥2,

This leads to F (x) = x, or equivalently G(x) = 0.

5. We claim that there is only one weak limiting point of {xk}. Suppose ȳ1 and ȳ2 are
two cluster points of {xk}. Then by the previous argument, both sequences {∥xk −
ȳ1∥} and {∥xk−ȳ2∥} are non-increasing and have limits. Since ȳi are limiting points,
there exist subsequences {k1

i } and {k2
i } such that xk1i → ȳ1 and xk2i → ȳ2 as i → ∞.

We can choose subsequences again so that we have

k2
i−1 < k1

i < k2
i < k1

i+1 for all i

With this and the non-increasing of ∥xk − ȳ1∥ and ∥xk − ȳ2∥ we get

∥xk1i+1 − ȳ1∥ ≤ ∥xk2i − ȳ1∥ ≤ ∥xk1i − ȳ1∥ → 0 as i → ∞.

On the other hand, xk2i → ȳ2. Therefore, we get ȳ1 = ȳ2. This shows that there is
only one limiting point, say x∗, and xk → x∗.

Remark When tk = 1, we get the proximal point method.
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Chapter 3

Minimizing f (x) + g(x)

Problem Minimize h(x) := f(x) + g(x).

Assumptions:

• g ∈ C1 convex, ∇g(x) Lipschitz continuous with parameter L

• f is closed and convex

Monotone inclusion problem Let Ax = ∂f(x) and Bx = ∂g(x). They are monotone
operators because both f and g are convex and closed. The minimization problem is to
solve

0 ∈ Ax+Bx.

Gradient flow formulation We want to find the equilibrium of the gradient flow

ẋ = −Ax−Bx.

We can derive numerical method for the above gradient flow. The basic idea is operator
splitting. The operators associating with f are

• forward gradient descent operator: FtA := I − tA,

• backward gradient descent operator JtA := (I + tA)−1.

Here, t is a small time-step size. In the case when f is an indicator function f = ιC , then

proxtf (x) = arg minu∈C∥u− x∥2 = PC(x),

where PC is the projection onto C.
To reach the minimum of f(x) + g(x), we apply the above forward or backward oper-

ators for f and g alternatively. We have

43
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• Forward-forward method
xn+1 = FtAFtBx

n

• Forward-backward method (or called proximal gradient method)

xn+1 = JtAFtBx
n

• Backward-backward method

xn+1 = JtAJtBx
n

• Peaceman-Rachford algorithm: From JA, we can define over-relaxation operator

RA = 2JA − I.

In the case when JtA is a projection PC , the operator RAx is a mirror image of x with
respect to C. The Peaceman-Rachford algorithm is

xn+1 = RARB(x
n)

• Douglas-Rachford algorithm

xn+1 =
1

2
(I +RARB)(x

n)

The Douglas-Rachford method can also be written as

xn+1 = (I − JA − JB + 2JAJB)(x
n)

= (JA(2JB − I)− JB + I) (xn)

This can be written as

yn+1 = JBx
n

zn+1 = JA(2y
n+1 − xn)

xn+1 = xn + zn+1 − yn+1

We can start from updating z first, then

zn+1 = JA(2y
n − xn)

xn+1 = xn + zn+1 − yn

yn+1 = JBx
n+1
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By switching x- and y- updating, the above algorithm can also be written as

zn+1 = JA(2y
n − xn)

yn+1 = JB(x
n + zn+1 − yn)

xn+1 = xn + zn+1 − yn

In general, we have

T := (1− α)I + αRARB, 0 < α ≤ 1;

RA := (1− αA)I + αAJtA, 0 < αA ≤ 2,

RB := (1− αB)I + αBJtB, 0 < αB ≤ 2.

The Douglas-Rachford method can also be derived from the splitting of the ODE:

ẋ = −Ax−Bx.

In one step, it is approximated by

xk+1 − yk

t
= −Axk+1 −Byk

yk+1 − xk+1

t
= −Byk+1 +Byk

If we call tByk = uk. Then we can rewrite Douglas-Rachford method as

xk+1 = (I + tA)−1(yk − uk)

yk+1 = (I + tB)−1(xk+1 + uk)

uk+1 = uk + xk+1 − yk+1.

By comparing with earlier formula

zn+1 = JA(y
n − (xn − yn))

yn+1 = JB(z
n+1 + (xn − yn))

xn+1 = xn + zn+1 − yn

The last equation is

(xn+1 − yn+1) = (xn − yn) + zn+1 − yn+1

We see these two formulations are identical with u ↔ (x− y) and x ↔ z.
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This method can be viewed as a gradient flow below. We consider

min f(x) + g(y) subject to x = y.

The consider the Largrage method

L(x, y, u) := f(x) + g(y) + ⟨u, x− y⟩

The gradient flow is

ẋ = −Ax− u

ẏ = −By + u

u̇ = x− y.

3.1 Proximal gradient method
This is also known as the Forward-backward method

xk = proxtf (x
k−1 − t∇g(xk−1))

We can express proxtf as (I + t∂f)−1. Therefore the proximal gradient method can be
expressed as

xk = (I + t∂f)−1(I − t∇g)xk−1

Thus, the proximal gradient method is also called the forward-backward method.

Theorem 3.5. The forward-backward method converges provided Lt ≤ 1.

Proof. 1. Given a point x, define

x′ = x− t∇g(x), x+ = proxtf (x
′).

Then

−x′ − x

t
= ∇g(x), −x+ − x′

t
∈ ∂f(x+).

Combining these two, we define a “gradient” Gt(x) := −x+−x
t

. Then Gt(x) −
∇g(x) ∈ ∂f(x+).

2. From the quadratic upper bound of g, we have

g(x+) ≤ g(x) + ⟨∇g(x), x+ − x⟩+ L

2
∥x+ − x∥2

= g(x) + ⟨∇g(x), x+ − x⟩+ Lt2

2
∥Gt(x)∥2

≤ g(x) + ⟨∇g(x), x+ − x⟩+ t

2
∥Gt(x)∥2,



3.2. AUGMENTED LAGRANGIAN METHOD 47

The last inequality holds provided Lt ≤ 1. Combining this with

g(x) ≤ g(z) + ⟨∇g(x), x− z⟩

we get

g(x+) ≤ g(z) + ⟨∇g(x), x+ − z⟩+ t

2
∥Gt(x)∥2.

3. From first-order condition at x+ of f

f(z) ≥ f(x+) + ⟨p, z − x+⟩ for all p ∈ ∂f(x+).

Choosing p = Gt(x)−∇g(x), we get

f(x+) ≤ f(z) + ⟨Gt(x)−∇g(x), x+ − z⟩.

4. Adding the above two inequalities, we get

h(x+) ≤ h(z) + ⟨Gt(x), x
+ − z⟩+ t

2
∥Gt(x)∥2

Taking z = x, we get

h(x+) ≤ h(x)− t

2
∥Gt(x)∥2.

Taking z = x∗, we get

h(x+)− h(x∗) ≤ ⟨Gt(x), x
+ − x∗⟩+ t

2
∥Gt(x)∥2

=
1

2t

(
∥x+ − x∗ + tGt(x)∥2 − ∥x+ − x∗∥2

)
=

1

2t

(
∥x− x∗∥2 − ∥x+ − x∗∥2

)

3.2 Augmented Lagrangian Method
Problem

minFP (x) := f(x) + g(Ax)

Equivalent to the primal problem with constraint

min f(x) + g(y) subject to Ax = y



48 CHAPTER 3. MINIMIZING F (X) +G(X)

Assumptions

• f and g are closed and convex.

Examples:

• g(y) = ι{b}(y) =

{
0 if y = b
∞ otherwise

The corresponding g∗(z) = ⟨z, b⟩.

• g(y) = ιC(y)

• g(y) = ∥y − b∥2.

The Lagrangian is
L(x, y, z) := f(x) + g(y) + ⟨z, Ax− y⟩.

The primal function is
FP (x) = inf

y
sup
z

L(x, y, z).

The primal problem is
inf
x
FP (x) = inf

x
inf
y
sup
z

L(x, y, z).

The dual problem is

sup
z

inf
x,y

L(x, y, z) = sup
z

[
inf
x
(f(x) + ⟨z, Ax⟩) + inf

y
(g(y)− ⟨z, y⟩)

]
= sup

z

[
− sup

x
(⟨−A∗z, x⟩ − f(x))− sup

y
(⟨z, y⟩ − g(y))

]
= sup

z
(−f ∗(−A∗z)− g∗(z)) = sup

z
(FD(z))

Thus, the dual function FD(z) is defined as

FD(z) := inf
x,y

L(x, y, z) = − (f ∗(−A∗z) + g∗(z)) .

and the dual problem is
sup
z

FD(z).

We shall solve this dual problem by proximal point method:

zk = proxtFD
(zk−1) = arg maxu

[
−f ∗(−ATu)− g∗(u)− 1

2t
∥u− zk−1∥2

]
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We have

sup
u

(
−f ∗(−ATu)− g∗(u)− 1

2t
∥u− z∥2

)
= sup

u

(
inf
x,y

L(x, y, u)− 1

2t
∥u− z∥2

)
= sup

u
inf
x,y

(
f(x) + g(y) + ⟨u,Ax− y⟩ − 1

2t
∥u− z∥2

)
= inf

x,y
sup
u

(
f(x) + g(y) + ⟨u,Ax− y⟩ − 1

2t
∥u− z∥2

)
= inf

x,y

(
f(x) + g(y) + ⟨z, Ax− y⟩+ t

2
∥Ax− y∥2

)
.

Here, the maximum u = z + t(Ax− y). Thus, we define the augmented Lagrangian to be

Lt(x, y, z) := f(x) + g(y) + ⟨z, Ax− y⟩+ t

2
∥Ax− y∥2

The augmented Lagrangian method is

(xk, yk) = arg minx,yLt(x, y, z
k−1)

zk = zk−1 + t(Axk − yk)

Thus, the Augmented Lagrangian method is equivalent to the proximal point method ap-
plied to the dual problem:

sup
z

(−f ∗(−A∗z)− g∗(z)) .

3.3 Alternating direction method of multipliers (ADMM)
Problem

min f1(x1) + f2(x2) subject to A1x1 + A2x2 − b = 0.

Assumptions

• fi are closed and convex.

Primal problem and dual problem Define the Lagrangian:

L(x1, x2, z) = f1(x1) + f2(x2) + ⟨z, A1x1 + A2x2 − b⟩.
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The primal problem is
inf
x1,x2

sup
z

L(x1, x2, z).

The dual problem is

sup
z

inf
x1,x2

L(x1, x2, z) = sup
z

[
inf
x1

(f1(x1) + ⟨z, A1x1⟩) + inf
x2

(f2(x2) + ⟨z, A2x2⟩)− ⟨z, b⟩
]

= sup
z

[(−f ∗
1 (A

∗
1z)− ⟨z, b⟩)− f ∗

2 (A
∗
2z)]

= sup
z

[−h1(z)− h2(z)] .

Now we solve this dual problem by proximal point method:

zk = proxtFD
(zk−1) = arg maxu

[
−h1(z)− h2(z)−

1

2t
∥u− zk−1∥2

]
We have

sup
u

(
−f ∗

1 (−A∗
1u)− f ∗

2 (A
∗
2u)− ⟨u, b⟩ − 1

2t
∥u− z∥2

)
= sup

u

(
inf
x1,x2

L(x1, x2, u)−
1

2t
∥u− z∥2

)
= inf

x1,x2

(
f1(x1) + f2(x2) + ⟨z, A1x1 + A2x2 − b⟩+ t

2
∥A1x1 + A2x2 − b∥2

)
.

We thus define

Lt(x1, x2, z) := f1(x1) + f2(x2) + ⟨z, A1x1 + A2x2 − b⟩+ t

2
∥A1x1 + A2x2 − b∥2.

ADMM:

xk
1 = arg minx1

Lt(x1, x
k−1
2 , zk−1)

= arg minx1

(
f1(x1) +

t

2
∥A1x1 + A2x

k−1
2 − b+

1

t
zk−1∥2

)
xk
2 = arg minx2

Lt(x
k
1, x2, z

k−1)

= arg minx2

(
f2(x2) +

t

2
∥A1x

k
1 + A2x2 − b+

1

t
zk−1∥2

)
zk = zk−1 + t(A1x

k
1 + A2x

k
2 − b)

ADMM is the Douglas-Rachford method applied to the dual problem:

max
z

(
−⟨b, z⟩ − f ∗

1 (−AT
1 z)
)
+
(
−f ∗

2 (−AT
2 z)
)
:= −h1(z)− h2(z).
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Douglas-Rachford method
minh1(z) + h2(z)

zk = proxh1
(yk−1)

yk = yk−1 + proxh2
(2zk − yk−1)− zk.

If we call (I + ∂h1)
−1 = P1 and (I + ∂h2)

−1 = P2. These two operators are firmly
nonexpansive. They are sort of projections in the case when hi are indicator functions. We
also define the reflection operators Ri = 2Pi − I . The Douglas-Rachford method is to find
the fixed point of yk = Tyk−1.

T = I − P1 + P2(2P1 − I) =
1

2
(I +R2R1).

3.4 Primal dual formulation
Consider

inf
x
(f(x) + g(Ax))

Let
FP (x) := f(x) + g(Ax)

Define y = Ax consider infx,y f(x) + g(y) subject to y = Ax. Now, introduce method of
Lagrange multiplier: consider

LP (x, y, z) = f(x) + g(y) + ⟨z, Ax− y⟩

Then
FP (x) = inf

y
sup
z

LP (x, y, z)

The problem is
inf
x
inf
y
sup
z

LP (x, y, z)

The dual problem is
sup
z

inf
x,y

LP (x, y, z)

We find that
inf
x,y

LP (x, y, z) = −f ∗(−A∗z)− g∗(z). := FD(z)

By assuming optimality condition, we have

sup
z

inf
x,y

LP (x, y, z) = sup
z

FD(z).
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If we take infy first

inf
y
LP (x, y, z) = inf

y
(f(x) + g(y) + ⟨z, Ax− y⟩) = f(x)+⟨z, Ax⟩−g∗(z) := LPD(x, z).

Then the problem is
inf
x
sup
z

LPD(x, z).

On the other hand, we can start from FD(z) := −f ∗(−A∗z)− g∗(z). Consider

LD(z, w, x) = −f ∗(w)− g∗(z)− ⟨x,−A∗z − w⟩

then we have
sup
w

inf
x
LD(z, w, x) = FD(z).

If instead, we exchange the order of inf and sup,

sup
z,w

LD(z, w, x) = sup
z,w

(−f ∗(w)− g∗(z)− ⟨x,−A∗z − w⟩) = f(x) + g(Ax) = FP (x).

We can also take supw first, then we get

sup
w

LD(z, w, x) = sup
w

(−f ∗(w)− g∗(z)− ⟨x,−A∗z − w⟩) = f(x)−g∗(z)+⟨Ax, z⟩ = LPD(x, z).

Let us summarize

FP (x) = f(x) + g(Ax)

FD(z) = −f ∗(−Az)− g∗(z)

LP (x, y, z) := f(x) + g(y) + ⟨z, Ax− y⟩
LD(z, w, x) := −f ∗(w)− g∗(z)− ⟨x,−A∗z − w⟩
LPD(x, z) := inf

y
LP (x, y, z) = sup

w
LD(z, w, x) = f(x)− g∗(z) + ⟨z, Ax⟩

FP (x) = sup
z

LPD(x, z)

FD(z) = inf
x
LPD(x, z)

By assuming optimality condition, we have

inf
x
sup
z

LPD(x, z) = sup
z

inf
x
LP (x, z).
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