CONVEX OPTIMIZATION

I-Liang Chern

Department of Mathematics National Taiwan University

Fall, 2017

Contents

1	Convex Analysis	
	1.1	Motivations: Convex optimization problems
1 2 3	1.2	Convex sets
	1.3	Convex functions
	1.4	Gradients of convex functions
	1.5	Strong convexity
	1.6	Subdifferential
	1.7	Proximal operator
	1.8	Conjugate of a convex function
	1.9	Method of Lagrange multiplier for constrained optimization problems 19
2	Minimizing $f(x)$	
	2.1	Gradient Descent Method
	2.2	Subgradient Descent Method
	2.3	Proximal point method
	2.4	Accelerated Proximal Point Method
	2.5	Mirror Descent Method
	2.6	Fixed point method
3	Minimizing $f(x) + g(x)$	
	3.1	Proximal gradient method
	3.2	Augmented Lagrangian Method
	3.3	Alternating direction method of multipliers (ADMM)
	3.4	Primal dual formulation

CONTENTS

Chapter 1

Convex Analysis

Main references:

- Vandenberghe (UCLA): EECS236C Optimization methods for large scale systems, http://www.seas.ucla.edu/~vandenbe/ee236c.html
- Y. Nesterov, Introductory Lectures on Convex Optimization, A Basic Course 1998.
- Parikh and Boyd, Proximal algorithms, slides and note. http://stanford.edu/~boyd/papers/prox_algs.html or Neal Parikh and Stephen Boyd, Proximal Algorithms, Foundations and Trend in Optimization Vol. 1, No. 3 (2013) 123?231.
- Boyd, ADMM http://stanford.edu/~boyd/admm.html
- Simon Foucart and Holger Rauhut, Appendix B.
- · Ahmad Bazzi's youtube on convex optimization

1.1 Motivations: Convex optimization problems

Some examples of optimization problems In applications, we encounter many constrained optimization problems. Examples are

• Basis pursuit: exact sparse recovery problem

min $\|\mathbf{x}\|_1$ subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$.

or robust recovery problem

min $\|\mathbf{x}\|_1$ subject to $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 \le \epsilon$.

• Image processing:

min
$$\|\nabla \mathbf{x}\|_1$$
 subject to $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|_2^2 \le \epsilon$.

• Sometimes, the constraint can be described as a convex set C. That is,

$$\min_{x} f_0(x) \text{ subject to } Ax \in \mathcal{C}.$$

Define the indicator function

$$\iota_{\mathcal{C}}(x) = \begin{cases} 0 & \text{if } x \in \mathcal{C} \\ +\infty & \text{otherwise} \end{cases}.$$

We can rewrite the constrained minimization problem as a unconstrained minimization problem:

$$\min_{x} f_0(x) + \iota_{\mathcal{C}}(Ax).$$

This can also be reformulated as

$$\min_{x,y} f_0(x) + \iota_{\mathcal{C}}(y) \text{ subject to } Ax = y.$$

• In abstract form, we encounter the optimization problem:

$$\min f(x) + g(Ax)$$

This can can also be expressed as

$$\min f(x) + g(y)$$
 subject to $Ax = y$.

• For more applications, see Boyd's book.

A general form of convex optimization problems A standard convex optimization problem can be formulated as

$$\min_{\mathbf{x} \in X} f_0(\mathbf{x})$$
subject to $\mathbf{A}\mathbf{x} = \mathbf{y}$
and $f_i(\mathbf{x}) \le b_i, \quad i = 1, ..., M$

Here, f_i 's are convex. The space X is a Hilbert space. Here, we just take $X = \mathbb{R}^N$.

1.2. CONVEX SETS

1.2 Convex sets

- Convex set A set K ⊂ ℝ^N is called convex if for any x, y ∈ K, the line segment (1 − t)x + ty ∈ K for any t ∈ [0, 1]. One can show that K is convex if and only if for any x₁, ..., x_n ∈ K, their convex combination ∑ⁿ_{i=1} t_ix_i ∈ K, where t_i ∈ [0, 1] and ∑_i t_i = 1.
- Convex hull Let $T \subset \mathbb{R}^N$. The convex hull conv(T) is defined to be the smallest convex set containing T. Indeed,

$$\operatorname{conv}(T) = \left\{ \sum_{i=1}^{n} t_i \mathbf{x}_i | \mathbf{x}_i \in T, \ t_i \in [0,1], \ \sum_i t_i = 1 \right\}$$

The convex hull of an open (closed) set is open (closed).

- Extreme points of a convex set: a point $p \in K$ is called an extreme point of K if it does lie in the interior of a segment of two points of K. Every compact convex set is the convex hull of its extreme points.
- Convex cone: A set $K \in \mathbb{R}^n$ is a cone if $\mathbf{x} \in K$ implies $t\mathbf{x} \in K$ for all $t \ge 0$. If K is a cone and a convex set, we call it convex cone.
- **Dual cone**: for a cone $K \subset \mathbb{R}^N$, its dual cone is defined as

$$K^* = \{ \mathbf{y} \in \mathbb{R}^N | \langle \mathbf{x}, \mathbf{y} \rangle \ge 0 \text{ for all } \mathbf{x} \in K \}.$$

- Examples:
 - 1. Second-order cone:

$$\mathcal{C} = \left\{ \mathbf{x} \in \mathbb{R}^{N+1} | \sqrt{\sum_{j=1}^{N} x_j^2} \le x_{N+1} \right\}$$

Hahn-Banach Theorem: Convex sets can be separated by hyperplanes. Given two convex sets K₁, K₂ ⊂ ℝ^N whose interiors have empty intersection. Then there exists w ∈ ℝ^N and λ ∈ ℝ such that

$$K_1 \subset \{ \mathbf{x} | \langle \mathbf{x}, \mathbf{w} \rangle \le \lambda \}$$
$$K_2 \subset \{ \mathbf{x} | \langle \mathbf{x}, \mathbf{w} \rangle \ge \lambda \}$$

- Let $K \subset \mathbb{R}^N$ be a convex set. A point $\mathbf{x} \in K$ is called an extreme point of K if $\mathbf{x} = t\mathbf{y} + (1-t)\mathbf{z}$ for $\mathbf{y}, \mathbf{z} \in K$, then $\mathbf{y} = \mathbf{z} = \mathbf{x}$.
- Any compact convex set is the convex hull of its extreme points.

1.3 Convex functions

Goal: We want to extend theory of smooth convex analysis to non-differentiable convex functions.

Let X be a separable Hilbert space, $f: X \to (-\infty, +\infty]$ be a function.

- Proper: f is called proper if f(x) < ∞ for at least one x. The domain of f is defined to be: domf = {x|f(x) < ∞}.
- Lower Semi-continuity: f is called lower semi-continuous (l.s.c.) if $\lim \inf_{x_n \to \bar{x}} f(x_n) \ge f(\bar{x})$. This definition is to guarantee that if $x_n \to \bar{x}$ and $f(x_n) \to \inf f(x)$, then \bar{x} is a minimum.
 - The set $epi f := \{(x, \eta) | f(x) \le \eta\}$ is called the epigraph of f.
 - Proposition: f is l.s.c. if and only if epif is closed. Sometimes, we call such f closed. (https://proofwiki.org/wiki/Characterization_of_Lower_Semicontinuity)
 - The indicator function $\iota_{\mathcal{C}}$ of a set \mathcal{C} is closed if and only if \mathcal{C} is closed.

• Convex function

- f is called convex if dom f is convex and Jensen's inequality holds: $f((1-\theta)x + \theta y) \le (1-\theta)f(x) + \theta f(y)$ for all $0 \le \theta \le 1$ and any $x, y \in X$.
- Proposition: f is convex if and only if epif is convex.
- First-order condition: for f ∈ C¹, epif being convex is equivalent to f(y) ≥ f(x) + ⟨∇f(x), y x⟩ for all x, y ∈ X.
 Proof. If epif is convex, then by Hahn-Banach theorem, epif lies on one side of the tangent plane {(y, z)|z f(x) ⟨∇f(x), y x⟩ = 0}. This leads to f(y) f(x) ⟨∇f(x), y x⟩ ≥ 0.
- Second-order condition: for $f \in C^2$, Jensen's inequality is equivalent to $\nabla^2 f(x) \succeq 0$.
- If f_{α} is a family of convex functions, then $\sup_{\alpha} f_{\alpha}$ is again a convex function.
- Strictly convex:
 - f is called strictly convex if the strict Jensen inequality holds: for $x \neq y$ and $t \in (0, 1)$,

$$f((1-t)x + ty) < (1-t)f(x) + tf(y).$$

- First-order condition: for $f \in C^1$, the strict Jensen inequality is equivalent to $f(y) > f(x) + \langle \nabla f(x), y - x \rangle$ for all $x, y \in X$.

1.3. CONVEX FUNCTIONS

- Second-order condition: for $f \in C^2$, $(\nabla^2 f(x) \succ 0) \Longrightarrow$ strict Jensen's inequality is equivalent to .
- Examples
 - $f(x) = |x|_p^p$, with $p \ge 1$. When p > 1, f is differentiable. However, $|x|_1$ is not differentiable at x = 0.
 - $f(x_1, x_2) = x_1^2$. The function is degenerate (minimum) at $\{(0, x_2) | x_2 \in \mathbb{R}\}$
 - Consider the underdetermined system:

$$Ax = b$$

where $A \in \mathbb{R}^{m \times n}$, $x \in \mathbb{R}^n$ and $b \in \mathbb{R}^m$. We assume m < n. The least square fit is to find x^{\dagger} which

$$\min f(x) := \frac{1}{2} ||Ax - b||^2.$$

The functional f(x) is a convex function. In particular, consider

$$f(x_1, x_2) = \frac{1}{2}(a_1x_1 + a_2x_2 - b)^2.$$

The minimizer is not unique.

– Let $\Omega \subset \mathbb{R}^n$. $H_0^1(\Omega)$ be the Sobolev space, the completion of $C_0^1(\Omega)$ under the norm

$$|u||_1^2 := \int |u(x)|^2 + |\nabla u(x)|^2 \, dx.$$

The Dirichlet integral

$$D[u] := \int_{\Omega} |\nabla u(x)|^2 - u(x)\rho(x) \, dx$$

is convex in $u \in H_0^1(\Omega)$.

- The Schmidt integral

$$\Phi[u] := \int k(x-y)u(x)u(y) \, dx \, dy$$

represents self-interaction of u with kernel k(x).

- Blurred image. Consider an observed image $z(x), x \in \Omega \subset \mathbb{R}^2$. Suppose the observed image is blurred. An image deblurred problem is to recover a "true

image" u(x) operator Consider u(x) from the blurred image z. An image model is

$$z = Ku + n$$

where

$$Ku(x) := \int k(x-y)u(y) \, dy.$$

is called a blur operator. Typical blur kernel is the Gaussian kernel

$$k(x) = \frac{1}{D}e^{-|x|^2/D}.$$

the function n is the Gaussian noise. $||n||_2^2 \le \epsilon$. The image deblur problem is to minimize

$$f(u) = \alpha \|\nabla u\|_1 + \|Ku - z\|^2.$$

- Radon transform is an integral operator K.
- In support vector machine, given training set $(x_i, y_i) \in \mathbb{R}^{n+1}$, i = 1, ..., N, where $y_i = \pm 1$, we want to train a classifier which is a function f(x) such that $f(x_i) \geq 1$ if $y_i = 1$ and $f(x_i) \leq -1$ if $y_i = -1$. It is used to classify a new incident x. The function f has the form

$$y = w^T x + b$$

The parameters $w = (w_1, ..., w_n)^T$ and $b \in \mathbb{R}$ are the training parameters to be found. The training problem is to solve

$$\min_{w} \|w\|, \quad \text{subject to } y_i(w^T x_i - b) \ge 1 \text{ for } i = 1, \dots, N.$$

The loss function is

$$\ell(w) := \sum_{i=1}^{l} \max\left(1 - y_i(w^T \phi(x_i) + b), 0\right).$$

This is a convex function.

- Let $\theta^* \in \mathbb{R}^p$ be a parameter to be estimated. The estimation is done by n independent measurements Y_i with outcomes y_i , i = 1, ..., n. It is modelled by the Poisson distribution:

$$\mathbb{P}(Y_i = y_i | \theta^*) = \frac{\exp(-\lambda_i)\lambda_i^{y_i}}{y_i!}, \quad \lambda_i = \exp(-\langle a_i, \theta^* \rangle).$$

1.4. GRADIENTS OF CONVEX FUNCTIONS

This means that $Y_1, ..., Y_n$ are independent random variables depending on $a_1, ..., a_n$ and parameter θ^* . Let $A = [a_1, ..., a_n]$ be a chosen measurement matrix. It can be deterministic or stochastic. Let us denote $(y_1, ..., y_n)^T = y$. Thus,

$$\mathbb{P}(Y = y|\theta) = \prod_{i} \mathbb{P}(Y_i = y_i|\theta) = C \exp\left(-f_n(\theta)\right),$$

where

$$f_n(\theta) = \frac{1}{n} \sum_{i=1}^n [y_i \langle a_i, \theta \rangle + \exp(-\langle a_i, \theta \rangle)],$$

which is the loss function. It is a convex function.

Proposition 1.1. A convex function $f : \mathbb{R}^N \to \mathbb{R}$ is continuous.

See google proof.

Proposition 1.2. Let $f : \mathbb{R}^N \to (-\infty, \infty]$ be convex. Then

- 1. a local minimizer of f is also a global minimizer;
- 2. the set of minimizers is convex;
- *3. if f is strictly convex, then the minimizer is unique.*

1.4 Gradients of convex functions

Definition 1.1. Let X be a separable Hilbert space. An operator $F : X \to X$ is called monotone if

$$\langle F(x) - F(y), x - y \rangle \ge 0, \quad \forall x, y \in X.$$

Proposition 1.3 (Monotonicity of $\nabla f(x)$). Suppose $f \in C^1$. Then f is convex if and only if dom f is convex and $\nabla f(x)$ is a monotone operator:

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge 0.$$

Remark This implies that the directional derivative of *f* is nonnegative.

Proof. 1. (\Rightarrow) From convexity

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle, \quad f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle.$$

Add these two, we get monotonicity of $\nabla f(x)$.

2. (\Leftarrow) Let g(t) = f(x + t(y - x)). Then $g'(t) = \langle \nabla f(x + t(y - x)), y - x \rangle \ge g'(0)$ by monotonicity (i.e. $\langle \nabla f(x + t(y - x)) - \nabla f(x), t(y - x) \rangle \ge 0$). Hence

$$f(y) = g(1) = g(0) + \int_0^1 g'(t) \, dt \ge g(0) + \int_0^1 g'(0) \, dt = f(x) + \langle \nabla f(x), y - x \rangle$$

Remark The *p*-Laplacian with $p \ge 1$ is the gradient of the convex function

$$D_p[u] := \int_{\Omega} |\nabla u(x)|^p \, dx$$

It is a monotone operator.

Definition 1.2. Let X be a Banach space. An operator $F : X \to X$ is called Lipschitz continuous with parameter L if

$$||F(x) - F(y)|| \le L||x - y||, \quad \forall x, y \in X.$$

Example

- Consider a blur operator K with $\max |K(x)| < \infty$. Then Ku is Lipschitz.
- Consider the function: $f(x) = \frac{1}{2} ||Ax b||^2$, where $A \in \mathbb{R}^{m \times n}$ with $m \leq n$. The gradient of f is $F(x) := \nabla f(x) = A^*(Ax b)$.

$$||F(x) - F(y)|| = ||A^*A(x - y)|| \le ||A^*A|| ||x - y||.$$

One can show that $||A^*A|| = \sigma_{\max}^2$, where σ_{\max} is the maximum of the singular value of A.

Proposition 1.4. Suppose f is convex and in C^1 . The following statements are equivalent.

(a) Lipschitz continuity of $\nabla f(x)$: there exists an L > 0 such that

$$\|\nabla f(x) - \nabla f(y)\| \le L \|x - y\| \quad \text{for all } x, y \in domf.$$

- (b) $g(x) := \frac{L}{2} ||x||^2 f(x)$ is convex.
- (c) Quadratic upper bound

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} \|y - x\|^2.$$

(d) Co-coercivity

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \frac{1}{L} \| \nabla f(x) - \nabla f(y) \|^2.$$

Proof. 1. (a)
$$\Rightarrow$$
 (b):
 $|\langle \nabla f(x) - \nabla f(y), x - y \rangle| \le ||\nabla f(x) - \nabla f(y)|| ||x - y|| \le L ||x - y||^2$
 $\Leftrightarrow \langle \nabla g(x) - \nabla g(y), x - y \rangle = \langle L(x - y) - (\nabla f(x) - \nabla f(y)), x - y \rangle \ge 0$

Therefore, $\nabla g(x)$ is monotonic and thus g is convex.

2. (b)
$$\Leftrightarrow$$
 (c):

$$\begin{split} g \text{ is convex} \\ \Leftrightarrow & g(y) \geq g(x) + \langle \nabla g(x), y - x \rangle \\ \Leftrightarrow & \frac{L}{2} \|y\|^2 - f(y) \geq \frac{L}{2} \|x\|^2 - f(x) + \langle Lx - \nabla f(x), y - x \rangle \\ \Leftrightarrow & f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} \|x - y\|^2. \end{split}$$

3. (b) \Rightarrow (d): From (b), $(L/2)||z||^2 - f(z)$ is convex, so is $(L/2)||z||^2 - f_x(z)$, where $f_x(z) := f(z) - f(x) - \langle \nabla f(x), z - x \rangle$ with minimum at z = x. Thus from the proposition below

$$f(y) - f(x) - \langle \nabla f(x), y - x \rangle = f_x(y) - f_x(x) \ge \frac{1}{2L} \|\nabla f_x(y)\|^2 = \frac{1}{2L} \|\nabla f(y) - \nabla f(x)\|^2$$

Similarly, z = y minimizes $f_y(z)$, we get

$$f(x) - f(y) - \langle \nabla f(y), x - y \rangle \ge \frac{1}{2L} \| \nabla f(y) - \nabla f(x) \|^2.$$

Adding these two together, we get the co-coercivity.

4. (d) \Rightarrow (a): by Cauchy inequality.

Proposition 1.5. Suppose f is convex and in C^1 with $\nabla f(x)$ being Lipschitz continuous with parameter L. Suppose x^* is a global minimum of f. Then

$$\frac{1}{2L} \|\nabla f(x)\|^2 \le f(x) - f(x^*) \le \frac{L}{2} \|x - x^*\|^2.$$

Proof. 1. Right-hand inequality follows from quadratic upper bound.

2. Left-hand inequality follows by minimizing quadratic upper bound

$$f(x^*) = \inf_{y} f(y) \le \inf_{y} \left(f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} \|y - x\|^2 \right) = f(x) - \frac{1}{2L} \|\nabla f(x)\|^2.$$

1.5 Strong convexity

f is called strongly convex if dom f is convex and the strong Jensen inequality holds: there exists a constant m > 0 such that for any $x, y \in dom f$ and $t \in [0, 1]$,

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y) - \frac{m}{2}t(1-t)||x-y||^2.$$

This definition is equivalent to the convexity of $g(x) := f(x) - \frac{m}{2} ||x||^2$. This comes from the calculation

$$(1-t)||x||^{2} + t||y||^{2} - ||(1-t)x + ty||^{2} = t(1-t)||x-y||^{2}$$

When $f \in C^2$, then strong convexity of f is equivalent to

$$\nabla^2 f(x) \succeq mI$$
 for any $x \in dom f$.

Proposition 1.6. Suppose $f \in C^1$. The following statements are equivalent:

- (a) f is strongly convex, i.e. $g(x) = f(x) \frac{m}{2} ||x||^2$ is convex,
- (b) for any $x, y \in dom f$, $\langle \nabla f(x) \nabla f(y), x y \rangle \ge m \|x y\|^2$.
- (c) (quadratic lower bound):

$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle + \frac{m}{2} \|x - y\|^2.$$

Proposition 1.7. If f is strongly convex, then f has a unique global minimizer x^* which satisfies

$$\frac{m}{2} \|x - x^*\|^2 \le f(x) - f(x^*) \le \frac{1}{2m} \|\nabla f(x)\|^2 \quad \text{for all } x \in domf.$$

Proof. 1. For lelf-hand inequality, we apply quadratic lower bound

$$f(x) \ge f(x^*) + \langle \nabla f(x^*), x - x^* \rangle + \frac{m}{2} ||x - x^*||^2 = \frac{m}{2} ||x - x^*||^2.$$

2. For right-hand inequality, quadratic lower bound gives

$$f(x^*) = \inf_{y} f(y) \ge \inf_{y} \left(f(x) + \langle \nabla f(x), y - x \rangle + \frac{m}{2} \|y - x\|^2 \right) \ge f(x) - \frac{1}{2m} \|\nabla f(x)\|^2$$

Here, we take infimum in y to get the left-hand inequality.

1.6. SUBDIFFERENTIAL

Proposition 1.8. Suppose f is both strongly convex with parameter m and $\nabla f(x)$ is Lipschitz continuous with parameter L. Then f satisfies stronger co-coercivity condition

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \frac{mL}{m+L} \|x - y\|^2 + \frac{1}{m+L} \|\nabla f(x) - \nabla f(y)\|^2.$$

Proof. 1. Consider $g(x) = f(x) - \frac{m}{2} ||x||^2$. From strong convexity of f, we get g(x) is convex.

- 2. From Lipschitz of f, we get g is also Lipschitz continuous with parameter L m.
- 3. We apply co-coercivity to g(x):

$$\begin{split} \langle \nabla g(x) - \nabla g(y), x - y \rangle &\geq \frac{1}{L - m} \| \nabla g(x) - \nabla g(y) \|^2 \\ \langle \nabla f(x) - \nabla f(y) - m(x - y), x - y \rangle &\geq \frac{1}{L - m} \| \nabla f(x) - \nabla f(y) - m(x - y) \|^2 \\ \left(1 + \frac{2m}{L - m} \right) \langle \nabla f(x) - \nabla f(y), x - y \rangle &\geq \frac{1}{L - m} \| \nabla f(x) - \nabla f(y) \|^2 + \left(\frac{m^2}{L - m} + m \right) \| x - y \|^2 \\ \Box \end{split}$$

1.6 Subdifferential

Definition 1.3. Let f be convex. The subdifferential of f at a point x is a set defined by

$$\partial f(x) = \{ u \in X | (\forall y \in X) f(x) + \langle u, y - x \rangle \le f(y) \}$$

 $\partial f(x)$ is also called subgradients of f at x.

Remark Geometrically, the hyperplane $f(y) = f(x) + \langle u, y - x \rangle$ is a supported hyperplane of epi f at x.

Proposition 1. (a) If f is convex and differentiable at x, then $\partial f(x) = \{\nabla f(x)\}$.

(b) If f is convex, then $\partial f(x)$ is a closed convex set.

Examples

- 1. Let f(x) = |x|. Then $\partial f(0) = [-1, 1]$.
- 2. Let \mathcal{C} be a closed convex set on \mathbb{R}^N . Then $\partial \mathcal{C}$ is locally rectifiable. Moreover,

 $\partial \iota_{\mathcal{C}}(x) = \{\lambda n \mid \lambda \ge 0, n \text{ is the unit outer normal of } \partial \mathcal{C} \text{ at } x\}.$

Proposition 1.9. Let $f : \mathbb{R}^n \to (-\infty, \infty]$ be convex and closed. Then x^* is a minimum of f if and only if $0 \in \partial f(x^*)$.

Proposition 1.10. The subdifferential of a convex function f is a set-valued monotone operator. That is, if $u \in \partial f(x)$, $v \in \partial f(y)$, then $\langle u - v, x - y \rangle \ge 0$.

Proof. From

$$f(y) \ge f(x) + \langle u, y - x \rangle, \quad f(x) \ge f(y) + \langle v, x - y \rangle,$$

Combining these two inequalities, we get monotonicity.

Proposition 1.11. *The following statements are equivalent.*

- (1) f is strongly convex (i.e. $f \frac{m}{2} ||x||^2$ is convex);
- (2) (quadratic lower bound)

$$f(y) \ge f(x) + \langle u, y - x \rangle + \frac{m}{2} ||x - y||^2 \quad \text{for any } x, y$$

where $u \in \partial f(x)$;

(3) (Strong monotonicity of ∂f):

 $\langle u-v, x-y\rangle \geq m\|x-y\|^2, \quad \text{for any } x, y \text{ with any } u \in \partial f(x), v \in \partial f(y).$

1.7 Proximal operator

Definition 1.4. *Given a convex function f, the proximal mapping of f is defined as*

$$\operatorname{prox}_f(x) := \operatorname{arg\,min}_u\left(f(u) + \frac{1}{2}\|u - x\|^2\right).$$

Since $f(u) + 1/2 ||u - x||^2$ is strongly convex in u, we get unique minimum. Thus, $\text{prox}_f(x)$ is well-defined.

Examples

• Let C be a convex set. Define indicator function $\iota_{\mathcal{C}}(x)$ as

$$\iota_C(x) = \begin{cases} 0 & \text{if } x \in C \\ \infty & \text{otherwise} \end{cases}$$

.

Then $\operatorname{prox}_{\iota_{\mathcal{C}}}(x)$ is the projection of x onto \mathcal{C} .

$$P_{\mathcal{C}}x \in \mathcal{C} \text{ and } (\forall z \in \mathcal{C}), \langle z - P_{\mathcal{C}}(x), x - P_{\mathcal{C}}(x) \rangle \leq 0.$$

• $f(x) = ||x||_1$: prox_f is the soft-thresholding:

$$\operatorname{prox}_{f}(x)_{i} = \begin{cases} x_{i} - 1 & \text{if } x_{i} \ge 1\\ 0 & \text{if } |x_{i}| \le 1\\ x_{i} + 1 & \text{if } x_{i} \le -1 \end{cases}$$

Properties Let *f* be convex function.

• Proximal operator prox_f is a resolvent operator:

$$\operatorname{prox}_f(x) = z = (I + \partial f)^{-1}(x).$$

Let

$$z = \operatorname{prox}_{f}(x) = \arg\min_{u} \left(f(u) + \frac{1}{2} \|u - x\|^{2} \right)$$

if and only if

$$0 \in \partial f(z) + z - x$$

or

$$x \in z + \partial f(z).$$

Sometimes, we express this as

$$\operatorname{prox}_{f}(x) = z = (I + \partial f)^{-1}(x).$$

• Co-coercivity:

$$\langle \operatorname{prox}_f(x) - \operatorname{prox}_f(y), x - y \rangle \ge \|\operatorname{prox}_f(x) - \operatorname{prox}_f(y)\|^2$$

Let $x^+ = \operatorname{prox}_f(x) := \arg \min_z f(z) + \frac{1}{2} ||z - x||^2$. We have $x - x^+ \in \partial f(x^+)$. Similarly, $y^+ := \operatorname{prox}_f(y)$ satisfies $y - y^+ \in \partial f(y^+)$. From monotonicity of ∂f , we get

$$\langle u - v, x^+ - y^+ \rangle \ge 0$$

for any $u \in \partial f(x^+)$, $v \in \partial f(y^+)$. Taking $u = x - x^+$ and $v = y - y^+$, we obtain co-coercivity.

• Non-expansive: The co-coercivity of prox_f implies that prox_f is 1-Lipschitz continuous, which is also called non-expansive.

$$|\operatorname{prox}_f(x) - \operatorname{prox}_f(y)||^2 \le |\langle x - y, \operatorname{prox}_f(x) - \operatorname{prox}_f(y)\rangle|$$

implies

$$\| \operatorname{prox}_{f}(x) - \operatorname{prox}_{f}(y) \| \le \| x - y \|$$

1.8 Conjugate of a convex function

- For a function $f:\mathbb{R}^N\to(-\infty,\infty],$ we define its conjugate f^* by

$$f^*(y) = \sup_{x} \left(\langle x, y \rangle - f(x) \right).$$

Examples

- 1. $f(x) = \langle a, x \rangle b$, $f^*(y) = \sup_x (\langle y, x \rangle \langle a, x \rangle + b) = \begin{cases} b & \text{if } y = a \\ \infty & \text{otherwise.} \end{cases}$ 2. $f(x) = \begin{cases} ax & \text{if } x < 0 \\ bx & \text{if } x > 0. \end{cases}$, a < 0 < b. $f^*(y) = \begin{cases} 0 & \text{if } a < y < b \\ \infty & \text{otherwise.} \end{cases}$
- 3. $f(x) = \frac{1}{2} \langle x, Ax \rangle + \langle b, x \rangle + c$, where A is symmetric and non-singular, then

$$f^*(y) = \frac{1}{2} \langle y - b, A^{-1}(y - b) \rangle - c.$$

In general, if $A \succeq 0$, then

$$f^*(y) = \frac{1}{2} \langle y - b, A^{\dagger}(y - b) \rangle - c, \quad A^{\dagger} := (A^*A)^{-1}A^*$$

and dom $f^* = \text{range } A + b$.

4. $f(x) = \frac{1}{p} ||x||^p$, $p \ge 1$, then $f^*(u) = \frac{1}{p^*} ||u||^{p^*}$, where $1/p + 1/p^* = 1$. 5. $f(x) = e^x$,

$$f^*(y) = \sup_x (xy - e^x) = \begin{cases} y \ln y - y & \text{if } y > 0\\ 0 & \text{if } y = 0\\ \infty & \text{if } y < 0 \end{cases}$$

6. $C = \{x | \langle Ax, x \rangle \leq 1\}$, where A is s symmetric positive definite matrix. $\iota_C^* = \sqrt{\langle A^{-1}u, u \rangle}$.

Properties

• f^* is convex and l.s.c.

Note that f^* is the supremum of linear functions. We have seen that supremum of a family of closed functions is closed; and supremum of a family of convex functions is also convex.

• Fenchel's inequality:

$$f(x) + f^*(y) \ge \langle x, y \rangle.$$

This follows directly from the definition of f^* :

$$f^*(y) = \sup_x \left(\langle x, y \rangle - f(x) \right) \ge \langle x, y \rangle - f(x).$$

This can be viewed as an extension of the Cauchy inequality

$$\frac{1}{2} \|x\|^2 + \frac{1}{2} \|y\|^2 \ge \langle x, y \rangle.$$

Proposition 1.12. (1) $f^{**}(x)$ is closed and convex.

- (2) $f^{**}(x) \le f(x)$.
- (3) $f^{**}(x) = f(x)$ if and only if f is closed and convex.

Proof. 1. From Fenchel's inequality

$$\langle x, y \rangle - f^*(y) \le f(x).$$

Taking sup in y gives $f^{**}(x) \leq f(x)$.

2. f^{**}(x) = f(x) if and only if epif^{**} = epif. We have seen f^{**} ≤ f. This leads to eps f ⊂ eps f^{**}. Suppose f is closed and convex and suppose (x, f^{**}(x)) ∉ epif. That is f^{**}(x) < f(x) and there is a strict separating hyperplane: {(z, s) : a(z - x) + b(s - f^{**}(x)) = 0} such that

$$\left\langle \left(\begin{array}{c} a\\ b\end{array}\right), \left(\begin{array}{c} z-x\\ s-f^{**}(x)\end{array}\right) \right\rangle \leq c < 0 \quad \text{for all } (z,s) \in \operatorname{epi} f$$

with $b \leq 0$.

3. If b < 0, we may normalize it such that (a, b) = (y, -1). Then we have

$$\langle y, z \rangle - s - \langle y, x \rangle + f^{**}(x) \le c < 0.$$

Taking supremum over $(z, s) \in epif$,

$$\sup_{(z,s)\in \operatorname{epi} f} \left(\langle y,z\rangle - s \right) = \sup_{z} \left(\langle y,z\rangle - f(z) \right) = f^*(y).$$

Thus, we get

$$f^*(y) - \langle y, x \rangle + f^{**}(x) \le c < 0$$

This contradicts to Fenchel's inequality.

4. If b = 0, choose $\hat{y} \in \text{dom } f^*$ and add $\epsilon(\hat{y}, -1)$ to (a, b), we can get

$$\left\langle \left(\begin{array}{c} a+\epsilon\hat{y}\\ -\epsilon \end{array}\right), \left(\begin{array}{c} z-x\\ s-f^{**}(x) \end{array}\right) \right\rangle \leq c_1 < 0$$

Now, we apply the argument for b < 0 and get contradiction.

5. If $f^{**} = f$, then f is closed and convex because f^{**} is closed and convex no matter what f is.

Remark. When f is closed and convex, $f(x) = \sup_y (-f^*(y) + \langle y, x \rangle)$, the supremum of its linear supporting functions.

Proposition 1.13. If f is closed and convex, then

$$y \in \partial f(x) \Leftrightarrow x \in \partial f^*(y) \Leftrightarrow \langle x, y \rangle = f(x) + f^*(y).$$

Proof. 1.

$$y \in \partial f(x) \Leftrightarrow f(z) \ge f(x) + \langle y, z - x \rangle$$

$$\Leftrightarrow \langle y, x \rangle - f(x) \ge \langle y, z \rangle - f(z) \text{ for all } z$$

$$\Leftrightarrow \langle y, x \rangle - f(x) = \sup_{z} \left(\langle y, z \rangle - f(z) \right)$$

$$\Leftrightarrow \langle y, x \rangle - f(x) = f^{*}(y)$$

2. For the equivalence of $x \in \partial f^*(x) \Leftrightarrow \langle x, y \rangle = f(x) + f^*(y)$, we use $f^{**}(x) = f(x)$ and apply the previous argument.

1.9 Method of Lagrange multiplier for constrained optimization problems

A standard convex optimization problem can be formulated as

$$\begin{split} & \inf_{x} f_0(x) \\ & \text{subject to} \quad f_i(x) \leq 0, \quad i=1,...,m \\ & \text{and} \qquad h_i(x)=0 \quad i=1,...,p. \end{split}$$

We assume the domain

$$D:=\bigcap_i \mathrm{dom} f_i \cap \bigcap_i \mathrm{dom} h_i$$

is a closed convex set in \mathbb{R}^n . A point $x \in D$ satisfying the constraints is called a *feasible* point. We assume $D \neq \emptyset$ and denote p^* the optimal value.

The method of Lagrange multiplier is to introduce augmented variables λ , μ and a Lagrangian so that the problem is transformed to a unconstrained optimization problem. Let us define the Lagrangian to be

$$L(x, \lambda, \mu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \mu_i h_i(x).$$

Here, λ and μ are the augmented variables, called the Lagrange multipliers or the dual variables.

Primal problem From this Lagrangian, we notice that

$$\sup_{\lambda \succeq 0} \left(\sum_{i=1}^{m} \lambda_i f_i(x) \right) = \iota_{\mathcal{C}_f}(x), \quad \mathcal{C}_f = \bigcap_i \{ x | f_i(x) \le 0 \}$$

and

$$\sup_{\mu} \left(\sum_{i=1}^{p} \mu_i h_i(x) \right) = \iota_{\mathcal{C}_h}(x), \quad \mathcal{C}_h = \bigcap_i \{ x | h_i(x) = 0 \}$$

Hence

$$\sup_{\lambda \ge 0,\mu} L(x,\lambda,\mu) = f_0(x) + \iota_{\mathcal{C}_f}(x) + \iota_{\mathcal{C}_h}(x)$$

Thus, the original optimization problem can be written as

$$p^* = \inf_{x \in D} \left(f_0(x) + \iota_{\mathcal{C}_f}(x) + \iota_{\mathcal{C}_h}(x) \right) = \inf_{x \in D} \sup_{\lambda \succeq 0, \mu} L(x, \lambda, \mu).$$

This problem is called the *primal problem*.

Dual problem From this Lagrangian, we define the dual function

$$g(\lambda,\mu) := \inf_{x \in D} L(x,\lambda,\mu).$$

This is an infimum of a family of concave closed functions in λ and μ , thus $g(\lambda, \mu)$ is a concave closed function. We assume that this minimization problem is much simpler than the original one. The dual problem is

$$d^* = \sup_{\lambda \succeq 0, \mu} g(\lambda, \mu).$$

This dual problem is the same as

$$\sup_{\lambda,\mu} g(\lambda,\mu) \quad \text{ subject to } \lambda \succeq 0.$$

We refer $(\lambda, \mu) \in \text{dom } g$ with $\lambda \succeq 0$ as dual feasible variables. The primal problem and dual problem are connected by the following duality property.

Weak Duality Property

Proposition 2. For any $\lambda \succeq 0$ and any μ , we have that

$$g(\lambda,\mu) \le p^*.$$

In other words,

$$d^* \le p^*$$

Proof. Suppose x is feasible point (i.e. $x \in D$ and $f_i(x) \leq 0$, $h_i(x) = 0$). Then for any $\lambda_i \geq 0$ and any μ_i , we have

$$\sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \mu_i h_i(x) \le 0.$$

This leads to

$$L(x, \lambda, \mu) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \mu_i h_i(x) \le f_0(x).$$

Hence for any feasible pair $\lambda \succeq 0, \mu$,

$$g(\lambda,\mu) := \inf_{x \in D} L(x,\lambda,\mu) \le f_0(x)$$
 for all feasible x .

Since $p^* = \inf\{f_0(x)|x \text{ feasible}\}$, we get

$$g(\lambda,\mu) \le p^*$$

for all feasible pair (λ, μ) . Taking supremum over all feasible pair (λ, μ) , we get $d^* \leq p^*$.

1.9. METHOD OF LAGRANGE MULTIPLIER FOR CONSTRAINED OPTIMIZATION PROBLEMS21

The property $d^* \leq p^*$ is called weak duality property. It can also be read as

$$\sup_{\lambda \succeq 0, \mu} \inf_{x \in D} L(x, \lambda, \mu) \leq \inf_{x \in D} \sup_{\lambda \succeq 0, \mu} L(x, \lambda, \mu).$$

Definition 1.5. (a) A point x^* is called a primal optimal if it minimizes $\sup_{\lambda \succeq 0,\mu} L(x, \lambda, \mu)$.

(b) A dual pair (λ^*, μ^*) with $\lambda^* \succeq 0$ is said to be a dual optimal if it maximizes $\inf_{x \in D} L(x, \lambda, \mu)$.

Strong duality

Definition 1.6. When $d^* = p^*$, we say the strong duality holds.

Counter-example that strong duality does not hold Consider

 $\min_{x,y>0} e^{-x} \text{ subject to } x^2/y \le 0.$

 $D = \{(x,y)|y > 0\}$. Both $f_0(x,y) = e^{-x}$ and $f(x,y) = x^2/y$ are convex in D. The Lagrangian $L(x,y,\lambda) = e^{-x} + \lambda x^2/y$. The dual function is

$$g(\lambda) = \inf_{(x,y)\in D} L(x,y,\lambda) = \begin{cases} 0 & \text{if } \lambda \ge 0\\ -\infty & \text{if } \lambda < 0 \end{cases}$$

We have $p^* = 1$ while $d^* = 0$.

Ref: https://inst.eecs.berkeley.edu/~ee227a/fa10/login/l_dual_ strong.html

Slater condition A sufficient condition for strong duality is the Slater condition: there exists a feasible x in relative interior of D° , $f_i(x) < 0$, i = 1, ..., m and $h_i(x) = 0$, i = 1, ..., p. Such a point x is called a strictly feasible point.

Theorem 1.1. Suppose $f_0, ..., f_m$ are convex, h(x) = Ax - b, and assume the Slater condition holds: there exists $x \in D^\circ$ with Ax - b = 0 and $f_i(x) < 0$ for all i = 1, ..., m. Then the strong duality

$$\sup_{\lambda \succeq 0,\mu} \inf_{x \in D} L(x,\lambda,\mu) = \inf_{x \in D} \sup_{\lambda \succeq 0,\mu} L(x,\lambda,\mu).$$

holds.

Proof. See pp. 234-236, Boyd's Convex Optimization.

Complementary slackness Suppose there exist x^* , $\lambda^* \succeq 0$ and μ^* such that x^* is the optimal primal point and (λ^*, μ^*) is the optimal dual point and the strong duality gap $p^* - d^* = 0$. In this case,

$$f_0(x^*) = p^* = d^* = g(\lambda^*, \mu^*)$$

= $\inf_x \left(f_0(x) + \sum_{i=1}^m \lambda_i^* f_i(x) + \sum_{i=1}^p \mu_i^* h_i(x) \right)$
 $\leq f_0(x^*) + \sum_{i=1}^m \lambda_i^* f_i(x^*) + \sum_{i=1}^p \mu_i^* h_i(x^*)$
 $\leq f_0(x^*).$

The last line follows from

$$\sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \mu_i h_i(x) \le 0.$$

for any feasible pair (x, λ, μ) . This leads to

$$\sum_{i=1}^{m} \lambda_i^* f_i(x^*) + \sum_{i=1}^{p} \mu_i^* h_i(x^*) = 0.$$

Since $h_i(x^*) = 0$ for i = 1, ..., p, $\lambda_i \ge 0$ and $f_i(x^*) \le 0$, we then get

$$\lambda_i^* f_i(x^*) = 0$$
 for all $i = 1, ..., m$.

This is called complementary slackness. It holds for any optimal solutions (x^*, λ^*, μ^*) .

KKT condition

Proposition 1.14. When f_0 , f_i and h_i are differentiable, then the optimal points x^* to the primal problem and (λ^*, μ^*) to the dual problem satisfy the Karush-Kuhn-Tucker (KKT) condition:

$$\begin{cases} f_i(x^*) \le 0, & i = 1, ..., m \\ \lambda_i^* \ge 0, & i = 1, ..., m, \\ \lambda_i^* f_i(x^*) = 0, & i = 1, ..., m \\ h_i(x^*) = 0, & i = 1, ..., p \end{cases}$$
$$\nabla f_0(x^*) + \sum_{i=1}^m \lambda_i^* \nabla f_i(x^*) + \sum_{i=1}^p \mu_i^* \nabla g_i(x^*) = 0.$$

Remark. If $f_0, f_i, i = 0, ..., m$ are closed and convex, but may not be differentiable, then the last KKT condition is replaced by

$$0 \in \partial f_0(x^*) + \sum_{i=1}^m \lambda_i^* \partial f_i(x^*) + \sum_{i=1}^p \mu_i^* \partial g_i(x^*).$$

We call the triple (x^*, λ^*, μ^*) satisfies the optimality condition.

Theorem 1.2. If f_0 , f_i are closed and convex and h are affine. Then the KKT condition is also a sufficient condition for optimal solutions. That is, if $(\hat{x}, \hat{\lambda}, \hat{\mu})$ satisfies KKT condition, then \hat{x} is primal optimal and $(\hat{\lambda}, \hat{\mu})$ is dual optimal, and there is zero duality gap.

Proof. 1. From $f_i(\hat{x}) \leq 0$ and $h(\hat{x}) = 0$, we get that \hat{x} is feasible.

2. From $\hat{\lambda}_i \ge 0$ and f_i being convex and h_i are linear, we get

$$L(x,\hat{\lambda},\hat{\mu}) = f_0(x) + \sum_i \hat{\lambda}_i f_i(x) + \sum_i \hat{\mu}_i h_i(x)$$

is also convex in x.

3. The last KKT condition states that \hat{x} minimizes $L(x, \hat{\lambda}, \hat{\mu})$. Thus

$$g(\hat{\lambda}, \hat{\mu}) = L(\hat{x}, \hat{\lambda}, \hat{\mu})$$

= $f_0(\hat{x}) + \sum_{i=1}^m \hat{\lambda}_i f_i(\hat{x}) + \sum_{i=1}^p \hat{\mu}_i h_i(\hat{x})$
= $f_0(\hat{x})$

This shows that \hat{x} and $(\hat{\lambda}, \hat{\mu})$ have zero duality gap and therefore are primal optimal and dual optimal, respectively.

CHAPTER 1. CONVEX ANALYSIS

Chapter 2

Minimizing f(x)

2.1 Gradient Descent Method

Cauchy, Polyak,

Assumptions

- $f \in C^1(\mathbb{R}^N)$ and convex
- $\nabla f(x)$ is Lipschitz continuous with parameter L
- Optimal value $f^* = \inf_x f(x)$ is finite and attained at x^* .

Gradient descent method

• Forward method:

$$x^k = x^{k-1} - t_k \nabla f(x^{k-1})$$

This is the forward Euler method to solve the ODE: $\dot{x} = -\nabla f(x)$.

- Fixed step size: if t_k is constant
- Backtracking line search: Choose $0 < \beta < 1$, initialize $t_k = 1$; take $t_k := \beta t_k$ until

$$f(x - t_k \nabla f(x)) < f(x) - \frac{1}{2} t_k \|\nabla f(x)\|^2$$

- Optimal line search:

$$t_k = \arg\min_t f(x - t\nabla f(x)).$$

Backward method

$$x^k = x^{k-1} - t_k \nabla f(x^k).$$

This is the backward Euler method to solve the ODE: $\dot{x} = -\nabla f(x)$.

• The forward gradient method can be expressed as

$$x^{k} = \arg\min_{x} \left(f(x^{k-1}) + \langle \nabla f(x^{k-1}), x - x^{k-1} \rangle + \frac{t^{k}}{2} \|x - x^{k-1}\|^{2} \right)$$

• The backward gradient method can be expressed as

$$x^k = \arg\min_x \left(f(x) + \frac{t^k}{2} \|x - x^{k-1}\|^2 \right)$$

Analysis for the fixed step size case

Proposition 2.15. Suppose $f \in C^1$, convex and ∇f is Lipschitz with constant L. Suppose the optimal value $f^* := \inf_x f(x)$ is finite and attained at x^* . Consider the fixed-step size gradient descent method. If the step size t satisfies $t \leq 1/L$, then the fixed-step size gradient descent method satisfies

$$f(x^k) - f(x^*) \le \frac{1}{2kt} ||x^0 - x^*||^2$$

Remarks

• If in addition f is strongly convex, then the sequence $\{x^k\}$ converges to the unique optimal solution x^* linearly.

Proof.

- 1. Let $x^+ := x t \nabla f(x)$.
- 2. From quadratic upper bound:

$$f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} \|y - x\|^2.$$

Choosing $y = x^+$ and t < 1/L, we get

$$f(x^{+}) \le f(x) + \left(-t + \frac{Lt^2}{2}\right) \|\nabla f(x)\|^2 \le f(x) - \frac{t}{2} \|\nabla f(x)\|^2.$$

2.1. GRADIENT DESCENT METHOD

3. From

$$f(x^*) \ge f(x) + \langle \nabla f(x), x^* - x \rangle$$

we get

$$f(x^{+}) \leq f(x) - \frac{t}{2} \|\nabla f(x)\|^{2}$$

$$\leq f^{*} + \langle \nabla f(x), x - x^{*} \rangle - \frac{t}{2} \|\nabla f(x)\|^{2}$$

$$= f^{*} + \frac{1}{2t} \left(\|x - x^{*}\|^{2} - \|x - x^{*} - t\nabla f(x)\|^{2} \right)$$

$$= f^{*} + \frac{1}{2t} \left(\|x - x^{*}\|^{2} - \|x^{+} - x^{*}\|^{2} \right).$$

4. Define $x^{i-1} = x$, $x^i = x^+$, sum this inequalities from i = 1, ..., k, we get

$$\sum_{i=1}^{k} \left(f(x^{i}) - f^{*} \right) \leq \frac{1}{2t} \sum_{i=1}^{k} \left(\|x^{i-1} - x^{*}\|^{2} - \|x^{i} - x^{*}\|^{2} \right)$$
$$= \frac{1}{2t} \left(\|x^{0} - x^{*}\|^{2} - \|x^{k} - x^{*}\|^{2} \right)$$
$$\leq \frac{1}{2t} \|x^{0} - x^{*}\|^{2}$$

5. Since $f(x^i) - f^*$ is a decreasing sequence, we then get

$$f(x^{k}) - f^{*} \leq \frac{1}{k} \sum_{i=1}^{k} \left(f(x^{i}) - f^{*} \right) \leq \frac{1}{2kt} \|x^{0} - x^{*}\|^{2}.$$

Proposition 2.16. Suppose $f \in C^1$ and convex. The fixed-step size backward gradient method satisfies

$$f(x^k) - f(x^*) \le \frac{1}{2kt} ||x^0 - x^*||^2.$$

Here, no assumption on Lipschitz continuity of $\nabla f(x)$ *is needed.*

Proof.

- 1. Define $x^+ = x t\nabla f(x^+)$.
- 2. For any z, we have

$$f(z) \ge f(x^{+}) + \langle \nabla f(x^{+}), z - x^{+} \rangle = f(x^{+}) + \langle \nabla f(x^{+}), z - x \rangle + t \| \nabla f(x^{+}) \|^{2}.$$

3. Take z = x, we get

$$f(x^{+}) \le f(x) - t \|\nabla f(x^{+})\|^{2}$$

Thus, $f(x^+) < f(x)$ unless $\nabla f(x^+) = 0.$

4. Take $z = x^*$, we obtain

$$\begin{split} f(x^{+}) &\leq f(x^{*}) + \langle \nabla f(x^{+}), x - x^{*} \rangle - t \| \nabla f(x^{+}) \|^{2} \\ &\leq f(x^{*}) + \langle \nabla f(x^{+}), x - x^{*} \rangle - \frac{t}{2} \| \nabla f(x^{+}) \|^{2} \\ &= f(x^{*}) - \frac{1}{2t} \| x - x^{*} - t \nabla f(x^{+}) \|^{2} + \frac{1}{2t} \| x - x^{*} \|^{2} \\ &= f(x^{*}) + \frac{1}{2t} \left(\| x - x^{*} \|^{2} - \| x^{+} - x^{*} \|^{2} \right). \end{split}$$

Proposition 2.17. Suppose f is strongly convex with parameter m and $\nabla f(x)$ is Lipschitz continuous with parameter L. Suppose the minimum of f is attended at x^* . Then the gradient method converges linearly, namely

$$\|x^{k} - x^{*}\|^{2} \le c^{k} \|x^{0} - x^{*}\|^{2}$$
$$f(x^{k}) - f(x^{*}) \le \frac{c^{k}L}{2} \|x^{0} - x^{*}\|^{2},$$

where

$$c = 1 - t \frac{2mL}{m+L} < 1 \text{ if the step size } t \le \frac{2}{m+L}.$$
For $0 < t \le 2/(m+L)$:

$$\begin{aligned} \text{Proof.} \quad & 1. \text{ For } 0 < t \leq 2/(m+L): \\ \|x^{+} - x^{*}\|^{2} &= \|x - t\nabla f(x) - x^{*}\|^{2} \\ &= \|x - x^{*}\|^{2} - 2t\langle \nabla f(x), x - x^{*} \rangle + t^{2} \|\nabla f(x)\|^{2} \\ &\leq \|x - x^{*}\|^{2} - 2t\left(\frac{mL}{m+L}\|x - x^{*}\|^{2} + \frac{1}{m+L}\|\nabla f(x)\|^{2}\right) + t^{2} \|\nabla f(x)\|^{2} \\ &= \left(1 - t\frac{2mL}{m+L}\right)\|x - x^{*}\|^{2} + t\left(t - \frac{2}{m+L}\right)\|\nabla f(x)\|^{2} \\ &\leq \left(1 - t\frac{2mL}{m+L}\right)\|x - x^{*}\|^{2} = c\|x - x^{*}\|^{2}. \end{aligned}$$

t is chosen so that c < 1. Thus, the sequence $x^k - x^*$ converges linearly with rate c.

2. From quadratic upper bound

$$f(x^k) - f(x^*) \le \frac{L}{2} \|x^k - x^*\|^2 \le \frac{c^k L}{2} \|x^0 - x^*\|^2$$

we get $f(x^k) - f(x^*)$ also converges to 0 with linear rate.

Example: least-squares method Let $A : \mathbb{R}^n \to \mathbb{R}^m$ be a linear map and $b \in \mathbb{R}^m$. We look for

$$\min \|Ax - b\|^2.$$

Suppose A^*A has eigenvalues $\sigma_1^2 \ge \sigma_2^2 \ge \cdots \ge \sigma_r^2 > 0$ with normalized eigenvectors v_i , i = 1, ..., r. Suppose the kernel N(A) is spanned by the orthonormal set $\{v_i | i = r+1, ..., n\}$. Then $\{v_1, ..., v_n\}$ form an orthonormal basis in \mathbb{R}^n . Let $u_i \in \mathbb{R}^m$ defined by $Av_i = \sigma_i u_i, i = 1, ..., r$. Then $\{u_1, ..., u_r\}$ is an orthonormal set in R(A). We expand them to $u_{r+1}, ..., u_m$ to form an orthonormal basis in \mathbb{R}^m . We have

• $Av_i = \sigma_i u_i, \quad i = 1, \dots r$

•
$$A^*u_i = \sigma_i v_i, \quad i = 1, \dots r$$

•
$$N(A) = \langle v_{r+1}, ..., v_n \rangle$$
, $R(A) = \langle u_1, ..., u_r \rangle$

• $N(A^*) = \langle u_{r+1}, ..., u_m \rangle$, $R(A^*) = \langle v_1, ..., v_r \rangle$.

The least-squares solution x^{\dagger} satisfies the normal equation

$$A^*Ax = A^*b$$

If $b = \sum_{i=1}^{m} b_i u_i$, then

$$x^{\dagger} = \sum_{i=1}^{r} \frac{b_i}{\sigma_i} v_i.$$

and

$$||Ax^{\dagger} - b||^2 = \sum_{i=r+1}^{m} |b_i|^2.$$

The gradient of the map $f(x) = \frac{1}{2} ||Ax - b||^2$ is

$$\nabla f(x) = A^*(Ax - b).$$

The gradient descent method gives

$$x^k = x^{k-1} - t\nabla f(x^{k-1}).$$

In terms of singular vectors, we have

$$x_i^k = x_i^{k-1} - t(\sigma_i^2 x_i^{k-1} - \sigma_i b_i), \quad i = 1, ..., r.$$
$$x_i^k = x_i^{k-1}, \quad i = r+1, ..., n,$$

where

$$x^k = \sum_{i=1}^n x_i^k v_i$$

These give

$$\begin{split} x_i^k &= x_i^0 \quad i = r+1,...,n. \\ x_i^k &\to \frac{b_i}{\sigma_i} \text{ as } k \to \infty, \quad i = 1,...r. \end{split}$$

Thus, $x^k \to x^*$, where

$$x^* = \sum_{i=1}^n x_i^* v_i = \sum_{i=1}^r \frac{b_i}{\sigma_i} v_i + \sum_{r+1}^n x_i^0 v_i.$$

We have

$$x_i^k - x_i^* = (1 - t\sigma_i^2)(x_i^{k-1} - x_i^*)v_i, \quad i = 1, \dots r,$$

which gives the convergence

$$||x^{k} - x^{*}||^{2} = \sum_{i=1}^{r} (1 - t\sigma_{i}^{2})^{2k} |x_{i}^{0} - x_{i}^{*}|^{2},$$

provided

$$0 < t < \frac{2}{\sigma_1^2} = \frac{2}{L}.$$

Here, L is the Lipschitz parameter corresponding to $\nabla f(x) = A^*(Ax - b)$, which is exactly σ_1^2 .

$$f(x^{k}) - f(x^{*}) = \frac{1}{2} ||Ax^{k} - Ax^{*}||^{2} = \sum_{i=1}^{r} \sigma_{i}^{2k} (1 - t\sigma_{i}^{2})^{2k} |x_{i}^{0} - x_{i}^{*}|^{2}.$$

2.2 Subgradient Descent Method

Assumptions

- *f* is closed and convex
- Optimal value $f^* = \inf_x f(x)$ is finite and attained at x^* .

Subgradient method

$$x^{k} = x^{k-1} - t_{k}v_{k-1}, \quad v_{k-1} \in \partial f(x^{k-1}).$$

 t_k is chosen so that $f(x^k) < f(x^{k-1})$.

- This is a forward (sub)gradient method.
- It may not converge.
- If it converges, the optimal rate is

$$f(x^k) - f(x^*) \le O(1/\sqrt{k}),$$

which is very slow.

2.3 Proximal point method

Assumptions

- *f* is closed and convex
- Optimal value $f^* = \inf_x f(x)$ is finite and attained at x^* .

Proximal point method:

$$x^{k} = \operatorname{prox}_{tf}(x^{k-1}) = x^{k-1} - tG_{t}(x^{k-1})$$

where

$$\operatorname{prox}_{tf}(x) := \arg\min_{z} \left(tf(z) + \frac{1}{2} \|z - x\|^2 \right)$$

Let $x^+ := \operatorname{prox}_{tf}(x) := x - tG_t(x)$. From the Euler-Lagrange equation, we get

$$G_t(x) \in \partial f(x^+).$$

Thus, we may view proximal point method is a backward subgradient method.

Proposition 2.18. Suppose f is closed and convex and suppose an ptimal solution x^* of min f is attainable. Then the proximal point method $x^k = prox_{tf}(x^{k-1})$ with t > 0 satisfies

$$f(x^k) - f(x^*) \le \frac{1}{2kt} ||x^0 - x^*||.$$

Convergence proof:

1. Given x, let $x^+ := \operatorname{prox}_{tf}(x)$. Let $G_t(x) := (x^+ - x)/t$. Then $G_t(x) \in \partial f(x^+)$. We then have, for any z,

$$f(z) \ge f(x^{+}) + \langle G_t(x), z - x^{+} \rangle = f(x^{+}) + \langle G_t(x), z - x \rangle + t \| G_t(x) \|^2.$$

2. Take z = x, we get

$$f(x^+) \le f(x) - t \|\nabla f(x^+)\|^2$$

Thus, $f(x^+) < f(x)$ unless $\nabla f(x^+) = 0$.

3. Take $z = x^*$, we obtain

$$f(x^{+}) \leq f(x^{*}) + \langle G_{t}(x), x - x^{*} \rangle - t \|G_{t}(x)\|^{2}$$

$$\leq f(x^{*}) + \langle G_{t}(x), x - x^{*} \rangle - \frac{t}{2} \|G_{t}(x)\|^{2}$$

$$= f(x^{*}) + \frac{1}{2t} \|x - x^{*} - tG_{t}(x)\|^{2} - \frac{1}{2t} \|x - x^{*}\|^{2}$$

$$= f(x^{*}) + \frac{1}{2t} \left(\|x^{+} - x^{*}\|^{2} - \|x - x^{*}\|^{2} \right).$$

4. Taking $x = x^{i-1}$, $x^+ = x^i$, sum over i = 1, ..., k, we get

$$\sum_{i=1}^{k} (f(x^{k}) - f(x^{*})) \le \frac{1}{2t} \left(\|x^{0} - x^{*}\| - \|x^{k} - x^{*}\| \right).$$

Since $f(x^k)$ is non-increasing, we get

$$k(f(x^k) - f(x^*)) \le \sum_{i=1}^k (f(x^k) - f(x^*)) \le \frac{1}{2t} ||x^0 - x^*||.$$

2.4 Accelerated Proximal Point Method

The proximal point method is a first order method. With a small modification, it can be accelerated to a second order method. This is the work of Nesterov (1984). It was shown to be the best algorithm (Nesterov). The idea is to use an extrapolation from x^{k-1} to x^k . The acceleration algorithm reads

$$y^{k} = (\theta_{k} - 1)x^{k-1} + (2 - \theta_{k})x^{k}, \quad x^{k+1} = \operatorname{prox}_{tf}(y^{k}),$$

 $x_{1} = x_{0}.$

Here, the parameters θ and t will be chosen properly so that the slow convergence term will be cancelled. In fact, there is no constraint on t. The parameter θ_k is chosen as

$$\theta_k = \frac{2}{k+1}.$$

Then we have the following theorem

Theorem 2.3. Assume f is closed and convex and the optimal value f^* is attainable. Then the above acceleration algorithm with $\theta_k = 2/(k+1)$ converges as

$$f(x^k) - f^* \le \frac{\theta_k^2}{2t} ||x^0 - x^*||^2$$

Proof. From the extrapolation formulation

$$y^{k} := (\theta_{k} - 1)x^{k-1} + (2 - \theta_{k})x^{k}$$

= $(1 - \theta_{k})x^{k} + (x^{k} + (\theta_{k} - 1)x^{k-1})$
= $(1 - \theta_{k})x^{k} + \theta_{k}v_{k}$

where

$$v^k := x^{k-1} + \frac{1}{\theta_{k-1}}(x^k - x^{k-1}).$$

Let us estimate the amount of decreasing of $f(x) - f^*$ in one step. Let us call x^k by x, x^{k+1} by x^+, v^k by v, v^{k+1} by v^+, y^k by y and θ_k by θ . We have

$$y = (1 - \theta)x + \theta v,$$

$$x^{+} = \operatorname{prox}_{tf}(y),$$

$$v^{+} = x + \frac{1}{\theta}(x^{+} - x).$$

Let $G_t(x) := (x^+ - y)/t$. Then from $x^+ = \operatorname{prox}_{tf}(y)$, we have $G_t(x) \in \partial f(x^+)$. Then for any z, we have

$$f(z) \ge f(x^+) + \langle G_t(x), z - x^+ \rangle = f(x^+) + \frac{1}{t} \langle x^+ - y, z - x^+ \rangle.$$

Thus,

$$f(x^{+}) \le f(z) + \frac{1}{t} \langle y - x^{+}, x^{+} - z \rangle$$

We take $z = x^*$ and z = x, make a convex combination of these two inequalities with weights θ and $(1 - \theta)$, we get

$$f(x^+) \le f^* + \frac{1}{t} \langle x^+ - y, x^* - x^+ \rangle$$

$$f(x^{+}) \leq \frac{1}{t} \langle x^{+} - y, x - x^{+} \rangle$$

$$f(x^{+}) - f^{*} - (1 - \theta)(f(x) - f^{*}) = \frac{1}{t} \langle x^{+} - y, \theta x^{*} + (1 - \theta)x - x^{+} \rangle$$

$$\leq \frac{1}{t} \langle x^{+} - y, \theta x^{*} + (1 - \theta)x - x^{+} \rangle + \frac{1}{2t} ||x^{+} - y||^{2}$$

$$= \frac{1}{2t} \left(||y - (1 - \theta)x - \theta x^{*}||^{2} - ||x^{+} - (1 - \theta)x - \theta x^{*}||^{2} \right)$$

$$= \frac{\theta^{2}}{2t} \left(||v - x^{*}||^{2} - ||v^{+} - x^{*}||^{2} \right).$$

Now, we take $\theta_k = 2/(k+1)$, it satisfies

$$\theta_1 = 1, \quad \frac{1 - \theta_k}{\theta_k^2} \le \frac{1}{\theta_{k-1}^2}, k \ge 2.$$

We have with $t_i = t$,

$$\frac{t_i}{\theta_i^2} \left(f(x^i) - f^* \right) + \frac{1}{2} \|v^i - x^*\|^2 \le \frac{(1 - \theta_i)t_i}{\theta_i^2} \left(f(x^{i-1}) - f^* \right) + \frac{1}{2} \|v^{i-1} - x^*\|^2$$

Using $(1-\theta_i)/\theta_i^2 \leq 1/\theta_{i-1}^2$, we obtain

$$\frac{t}{\theta_k^2} \left(f(x^k) - f^* \right) + \frac{1}{2} \| v^k - x^* \|^2 \le \frac{(1 - \theta_1)t}{\theta_1^2} \left(f(x^0) - f^* \right) + \frac{1}{2} \| v^0 - x^* \|^2 = \frac{1}{2} \| x^0 - x^* \|^2.$$

This shows

$$f(x^k) - f^* \le \frac{\theta_k^2}{2t} \|x^0 - x^*\|^2 \le \frac{2}{t(k+1)^2} \|x^0 - x^*\|^2.$$

2.5 Mirror Descent Method

Vector-Covector view

1. The convergence rate of a gradient descent method depends on the inner product. In the gradient descent flow:

$$\dot{x} = -\nabla f(x),$$

the decay of f is

$$\frac{d}{dt}f(x(t)) = \nabla f(x) \cdot \dot{x} = -\|\nabla f(x(t))\|^2.$$

The rate depends on the inner product. We can change another inner product to speed up the convergence as the follows.

2.5. MIRROR DESCENT METHOD

- Let us use the following notation: df_x(v) is the directional derivative of f at x in the direction v. We call v a tangent vector. The term df_x is called the differential of f at x. It is a linear functional on the tangent space at x. Let us call the tangent space V, its dual, the cotangent space V*. Thus, df_x ∈ V*. It is a co-vector.
- 3. We can associate V an inner product $\langle \cdot, \cdot \rangle$ (or a metric). In our case, $V = \mathbb{R}^n$ and the metric can be presented as $g_{ij} = \langle e_i, e_j \rangle$, where e_i is the unit vector in the x_i direction. In $V^* = \mathbb{R}^n$, we use $\{e^i\}$ as its dual basis. That is, $e^i(e_j) = \delta^i_j$.
- With the inner product structure, the Riesz representation theorem states that for any functional α ∈ V*, there is a unique α[#] ∈ V such that

$$\alpha(v) = \langle \alpha^{\#}, v \rangle$$

The operator $\alpha \mapsto \alpha^{\#}$ is 1-1,onto and linear. It is called the sharp operator, which maps a covector to a vector. Its inverse b, which maps V to V^* , is called a flat operator. Suppose $\alpha = \sum \alpha_i e^i$. Let us express $\alpha^{\#} = \alpha^{\#,i} e_i$. We want to find the expression of $\alpha^{\#,i}$. For any $v = \sum_i v^j e_j$, we have

$$\alpha(v) = \alpha_i v^j e^i(e_j) = \alpha_i v^i = \langle \alpha^{\#}, v \rangle = g_{ij} \alpha^{\#,i} v^j.$$

Let (g^{ij}) be the inverse matrix $(g_{ij})^{-1}$. We get

$$\alpha^{\#,i} = g^{ij}\alpha_j.$$

5. The gradient $\nabla f(x)$ is defined to be

$$\nabla f(x) := df_x^{\#}$$

Note that

$$\nabla f(x) = \sum_{i=1}^{n} g^{ij} \frac{\partial f(x)}{\partial x_j} e^i.$$

6. Using this metric, we have

$$\frac{d}{dt}f(x) = \sum_{i} \frac{\partial f(x)}{\partial x^{i}} \dot{x}^{i} = -\sum_{ij} g^{ij} \frac{\partial f(x)}{\partial x^{i}} \frac{\partial f(x)}{\partial x^{j}}.$$

Thus, the convergent rate of f(x) depends on the choice of the metric g^{ij} .

7. The metric (g^{ij}) can be designed as a preconditioner to speed up the convergent rate.

8. In the above discussion, we should distinguish vector and covector. The basis in V is $\{e_i\}$ and its dual basis is $\{e^i\}$ in V^* . The correct way to write ∇f is

$$\nabla f = df_x^{\#} = \sum_{i=1}^n g^{ij} \frac{\partial f(x)}{\partial x_j} e^i.$$

It is equal to $(f_{x^1}, ..., f_{x^n})$ only because we choose $g^{ij} = \delta^{ij}$.

9. Another example to modify the gradient is to use the inverse of a Hessian. This leads to the Newton's method.

Mirror map and mirror descent algorithm

- 1. In the above discussion, all we need is a sharp operator. We can design a nonlinear sharp operator, called a mirror map.
- 2. The mirror map is determined by a strongly convex function $h : V \to \mathbb{R}$ with constant α . The differential $dh : x \mapsto dh_x$ is a map $V \to V^*$, where V is the tangent space, V^* the cotangent space. Since h is strongly convex, dh is 1-1 and onto.
- 3. Examples:

•
$$h(x) = \frac{1}{2} ||x||^2$$
. $dh_x = x$.
• $h(x) = \sum_i (x_i \ln x_i - x_i)$. $dh_x = (\ln x_1, ..., \ln x_n)$.

4. The mirror descent algorithm is

•
$$y^k = dh_{x_k}$$

• $y^{k+1} = y^k - t_k d$

• $y^{k+1} = y^k - t_k df_{x^k}$ • $x^{k+1} = (dh)^{-1}(y^{k+1})$

Proximal point view The gradient descent

$$x^{k+1} = x^k - t_k \nabla f(x^k)$$

can be thought as

$$x^{k+1} = \arg\min_{x} \left(\langle \nabla f(x^k), x \rangle + \frac{1}{2} \|x - x^k\|^2 \right)$$

The last quadratic term is a regularization term. We can replace it by the Bregman divergence (distance): $D_h(x||x^k)$, where

$$D_h(y||x) := h(y) - h(x) - \langle \nabla h(x), y - x \rangle.$$

2.6. FIXED POINT METHOD

Then the proximal point method is

$$x^{k+1} = \arg \min_{x} \left(\langle \nabla f(x^k), x \rangle + D_h(x||x^k) \right)$$

Set the gradient to be zero at x^{k+1} , we get

$$t^k \nabla f(x^k) + \nabla h(x^{k+1}) - \nabla h(x^k) = 0$$

This gives

$$\nabla h(x^{k+1}) = \nabla h(x^k) - t^k \nabla f(x^k),$$

or

$$x^{k+1} = (\nabla h)^{-1} \left(\nabla h(x^k) - t^k \nabla f(x^k) \right).$$

2.6 Fixed point method

The goal of this section is to show that a minimal sequence of a fixed point method converges.

Definition 2.7. Let \mathcal{X} be a Hilbert space. A mapping $T : \mathcal{X} \to \mathcal{X}$ is called nonexpansive *if*

$$||Tx - Ty|| \le ||x - y||$$
, for any $x, y \in \mathcal{X}$.

It is called firmly nonexpansive if it satisfies one of the following two equivalent conditions:

$$||Tx - Ty||^{2} \le \langle Tx - Ty, x - y \rangle \text{ for any } x, y \in \mathcal{X},$$
$$||Tx - Ty||^{2} \le ||x - y||^{2} - ||(I - T)x - (I - T)y||^{2}.$$

Remark T is nonexpansive $\Leftrightarrow -T$ is nonexpansive. A firmly nonexpansive operator is also a nonexpansive operator.

Lemma 2.1. *T* is nonexpansive if and only if (F = (I + T)/2 is firmly nonexpansive) or (G := (I - T)/2 is firmly nonexpansive.)

Proof.

$$\begin{aligned} \|Tx - Ty\|^{2} &\leq \|x - y\|^{2} \\ \Leftrightarrow \frac{1}{4} \|x - y\|^{2} + \frac{1}{4} \|Tx - Ty\|^{2} &\leq \frac{1}{2} \|x - y\|^{2} \\ \Leftrightarrow \frac{1}{4} \|x - y\|^{2} + \frac{1}{4} \|Tx - Ty\|^{2} &\pm \frac{1}{2} \langle x - y, Tx - Ty \rangle \leq \frac{1}{2} \|x - y\|^{2} &\pm \frac{1}{2} \langle x - y, Tx - Ty \rangle \\ \Leftrightarrow \|\frac{1}{2} (I \pm T) x - \frac{1}{2} (I \pm T) y\|^{2} &\leq \langle \frac{1}{2} (I \pm T) x - \frac{1}{2} (I \pm T) y, x - y \rangle. \end{aligned}$$

Examples

1. $f : \mathcal{X} \to \mathbb{R}^*$ be a proper closed convex function and ∇f is Lipschitz continuous with Lipschitz constant *L*. Consider

$$F = I - t\nabla f.$$

Then F is nonexpansive provided $0 < t/L \leq 1$. In this case, the operator $G := (I - F)/2 = t/2\nabla f$ is a gradient operator.

2. Let $f : \mathcal{X} \to \mathbb{R}^*$ be a proper closed convex function. Let

$$F(x) := \operatorname{prox}_f(x), \quad G = I - F.$$

Then both F and G are firmly nonexpansive. Further, T = 2F - I is nonexpansive.

Proof. $x^+ = \text{prox}_f(x) = F(x), y^+ = \text{prox}_f(y) = F(y).$ $G(x) = x - x^+ \in \partial f(x^+).$ From monotonicity of ∂f , we have

$$\langle G(x) - G(y), x^+ - y^+ \rangle \ge 0.$$

This gives

$$\langle x^+ - y^+, x - y \rangle \ge ||x^+ - y^+||^2$$

That is

$$\langle F(x) - F(y), x - y \rangle \ge ||F(x) - F(y)||^2$$

The proof for G = I - F being firmly nonexpansive follows from the Lemma above.

3. Let $f : \mathcal{X} \to \mathbb{R}^*$ be closed convex and proper. We denote $\partial f = A$. Then A is a maximal monotone operator. Let

$$F_{tA} := I - tA$$
, $J_{tA} = \text{prox}_{tf} = (I + tA)^{-1}$.

Solving min f(x) can be obtained by finding the time asymptotic limit of the ODE

$$\dot{x} + Ax = 0.$$

The ODE can be discreted by

- Forward Euler: $x^{k+1} = x^k tA(x^k)$, that is $x^{k+1} = F_{tA}(x^k)$
- Backward Euler: $x^{k+1} = x^k tA(x^{k+1})$, that is $x^{k+1} = J_{tA}(x^k)$

• Crank-Nicholson: $x^{k+1} - x^k = \frac{t}{2} (Ax^k + Ax^{k+1})$. This is equivalent to

$$x^{k+1} = J_{tA/2} F_{tA/2} x^k.$$

We claim this is the same as the extraoplation (reflection):

$$x^{k+1} = R_{tA}x^k, \quad R_{tA} := 2J_{tA/2} - I$$

This is because

$$(I + \frac{t}{2}A)(x^{k+1} + x^k) = 2x^k \Leftrightarrow (I + \frac{t}{2}A)x^{k+1} = (I - \frac{t}{2}A)x^k$$

Algorithm Now, we are given a nonexpansive map $T : \mathcal{X} \to \mathcal{X}$. Our goal is to construct an algorithm and to show it generates a weakly convergent sequence to a fixed point of T find fixed point of T. We consider the algorithm:

$$x^{k} = \left(1 - \frac{t_{k}}{2}\right)x^{k-1} + \frac{t_{k}}{2}Tx^{k-1} = (1 - t_{k})x^{k-1} + t_{k}F(x^{k-1}) = x^{k-1} - t_{k}G(x^{k-1}).$$

Here, F = (I + T)/2 and G = (I - T)/2. G plays the role as a gradient. We may think this is a general gradient descent algorithm.

Theorem 2.4. Let \mathcal{X} be a Hilbert space, T be a nonexpansive operator on \mathcal{X} . Suppose a fixed point x^* of T exists. Consider the algorithm:

$$x^{k} := \left(1 - \frac{t_{k}}{2}\right) x^{k-1} + \frac{t_{k}}{2}T(x^{k-1}), \quad x^{0} \text{ arbitrary}$$

with

 $t_k \in [t_{min}, t_{max}], \quad 0 < t_{min} \le t_{max} < 2.$

Then $\{x^k\}$ converges weakly to a fixed point of T.

Proof. 1. Let F := (I + T)/2, G := (I - T)/2. The algorithm can also be written as

$$x^{k} = x^{k-1} - t_k G(x^{k-1}).$$

We have seen that both F and G are firmly non-expansive. Further, $(x^* \text{ is a fixed point of } T) \Leftrightarrow (x^* \text{ is a fixed point of } F) \Leftrightarrow (G(x^*) = 0).$

2. From firmly nonexpansive property of F and G, we get (with $x = x^{k-1}, x^+ = x^k$, $t = t_k$)

$$||x^{+} - x^{*}||^{2} - ||x - x^{*}||^{2} = ||x^{+} - x + x - x^{*}||^{2} - ||x - x^{*}||^{2}$$

= $2\langle x^{+} - x, x - x^{*} \rangle + ||x^{+} - x||^{2}$
= $2\langle -tG(x), x - x^{*} \rangle + t^{2}||G(x)||^{2}$
= $2\langle -t(G(x) - G(x^{*})), x - x^{*} \rangle + t^{2}||G(x)||^{2}$
 $\leq -2t||G(x) - G(x^{*})||^{2} + t^{2}||G(x)||^{2}$
= $-t(2 - t)||G(x)||^{2}$
 $\leq -M||G(x)||^{2} \leq 0,$

where $M = t_{min}(2 - t_{max})$. We get that $||x^k - x^*||$ is non-increasing; hence $\{x^k\}$ is bounded; and $||x^k - x^*|| \to C$ as $k \to \infty$.

3. Let us sum this inequality over k:

$$-\|x^{0} - x^{*}\|^{2} \leq \sum_{\ell=0}^{\infty} \left(\|x^{\ell+1} - x^{*}\|^{2} - \|x^{\ell} - x^{*}\|^{2}\right) \leq -M \sum_{\ell=0}^{\infty} \|G(x^{\ell})\|^{2} \leq 0.$$

$$\Rightarrow \quad M \sum_{\ell=0}^{\infty} \|G(x^{\ell})\|^{2} \leq \|x^{0} - x^{*}\|^{2}$$

This implies

$$||G(x^k)|| \to 0 \quad \text{as } k \to \infty,$$

4. Since the sequence $\{x^k\}$ is bounded, it is weakly precompact. Suppose \bar{x}^k be a subsequence of $\{x^k\}$ that converges to \bar{x} weakly. We have that $\bar{x}^k \rightharpoonup \bar{x}$ and $||G(\bar{x}^k)|| \rightarrow 0$. We claim that

$$G(\bar{x}) = 0.$$

This is a lemma due to Opial. Such property for G is called "demiclosedness."

Lemma 2.2. Let F be nonexpansive in a Hilbert space \mathcal{X} . Let G = I - F. Suppose $x^n \rightarrow x$ and $G(x^n) \rightarrow 0$. Then G(x) = 0.

From nonexpansion of F, we have

$$\begin{aligned} \|x^n - x\|^2 &\geq \|F(x^n) - F(x)\|^2 = \|-x^n + F(x^n) + x^n - F(x)\|^2 \\ &= \|G(x^n)\|^2 - 2\langle G(x^n), x^n - F(x)\rangle + \|x^n - F(x)\|^2. \end{aligned}$$

2.6. FIXED POINT METHOD

We take limit inf on both sides to get

$$\liminf ||x^{n} - x||^{2} \ge \liminf ||x^{n} - F(x)||^{2}.$$

The right-hand side can be expressed as

$$\|x^{n} - F(x)\|^{2} = \|x^{n} - x + x - F(x)\|^{2} = \|x^{n} - x\|^{2} + \|x - F(x)\|^{2} + 2\langle x^{n} - x, x - F(x) \rangle.$$

Take liminf both sides, we get

 $\liminf \|x^n - x\|^2 \ge \liminf \|x^n - F(x)\|^2 \ge \|x - F(x)\|^2 + \liminf \|x^n - x\|^2,$

This leads to F(x) = x, or equivalently G(x) = 0.

5. We claim that there is only one weak limiting point of {x^k}. Suppose y
₁ and y
₂ are two cluster points of {x^k}. Then by the previous argument, both sequences {||x^k - y
₁||} and {||x^k - y
₂||} are non-increasing and have limits. Since y
_i are limiting points, there exist subsequences {k_i¹} and {k_i²} such that x^{k_i¹} → y
₁ and x^{k_i²} → y
₂ as i → ∞. We can choose subsequences again so that we have

$$k_{i-1}^2 < k_i^1 < k_i^2 < k_{i+1}^1$$
 for all i

With this and the non-increasing of $||x^k - \bar{y}_1||$ and $||x^k - \bar{y}_2||$ we get

$$||x^{k_{i+1}^1} - \bar{y}_1|| \le ||x^{k_i^2} - \bar{y}_1|| \le ||x^{k_i^1} - \bar{y}_1|| \to 0 \text{ as } i \to \infty.$$

On the other hand, $x_i^{k_i^2} \to \bar{y}_2$. Therefore, we get $\bar{y}_1 = \bar{y}_2$. This shows that there is only one limiting point, say x^* , and $x^k \to x^*$.

Remark When $t_k = 1$, we get the proximal point method.

CHAPTER 2. MINIMIZING F(X)

Chapter 3

Minimizing f(x) + g(x)

Problem Minimize h(x) := f(x) + g(x).

Assumptions:

- $g \in C^1$ convex, $\nabla g(x)$ Lipschitz continuous with parameter L
- *f* is closed and convex

Monotone inclusion problem Let $Ax = \partial f(x)$ and $Bx = \partial g(x)$. They are monotone operators because both f and g are convex and closed. The minimization problem is to solve

$$0 \in Ax + Bx.$$

Gradient flow formulation We want to find the equilibrium of the gradient flow

$$\dot{x} = -Ax - Bx.$$

We can derive numerical method for the above gradient flow. The basic idea is operator splitting. The operators associating with f are

- forward gradient descent operator: $F_{tA} := I tA$,
- backward gradient descent operator $J_{tA} := (I + tA)^{-1}$.

Here, t is a small time-step size. In the case when f is an indicator function $f = \iota_C$, then

$$prox_{tf}(x) = arg \min_{u \in C} ||u - x||^2 = P_C(x),$$

where P_C is the projection onto C.

To reach the minimum of f(x) + g(x), we apply the above forward or backward operators for f and g alternatively. We have • Forward-forward method

$$x^{n+1} = F_{tA}F_{tB}x^n$$

• Forward-backward method (or called proximal gradient method)

$$x^{n+1} = J_{tA}F_{tB}x^n$$

• Backward-backward method

$$x^{n+1} = J_{tA}J_{tB}x^n$$

• Peaceman-Rachford algorithm: From J_A , we can define over-relaxation operator

$$R_A = 2J_A - I.$$

In the case when J_{tA} is a projection P_C , the operator $R_A x$ is a mirror image of x with respect to C. The Peaceman-Rachford algorithm is

$$x^{n+1} = R_A R_B(x^n)$$

• Douglas-Rachford algorithm

$$x^{n+1} = \frac{1}{2}(I + R_A R_B)(x^n)$$

The Douglas-Rachford method can also be written as

$$x^{n+1} = (I - J_A - J_B + 2J_A J_B)(x^n)$$

= $(J_A(2J_B - I) - J_B + I)(x^n)$

This can be written as

$$y^{n+1} = J_B x^n$$

$$z^{n+1} = J_A (2y^{n+1} - x^n)$$

$$x^{n+1} = x^n + z^{n+1} - y^{n+1}$$

We can start from updating z first, then

$$z^{n+1} = J_A(2y^n - x^n)$$

$$x^{n+1} = x^n + z^{n+1} - y^n$$

$$y^{n+1} = J_B x^{n+1}$$

44

By switching x- and y- updating, the above algorithm can also be written as

$$z^{n+1} = J_A(2y^n - x^n)$$

$$y^{n+1} = J_B(x^n + z^{n+1} - y^n)$$

$$x^{n+1} = x^n + z^{n+1} - y^n$$

In general, we have

$$T := (1 - \alpha)I + \alpha R_A R_B, \quad 0 < \alpha \le 1;$$

$$R_A := (1 - \alpha_A)I + \alpha_A J_{tA}, \quad 0 < \alpha_A \le 2,$$

$$R_B := (1 - \alpha_B)I + \alpha_B J_{tB}, \quad 0 < \alpha_B \le 2.$$

The Douglas-Rachford method can also be derived from the splitting of the ODE:

$$\dot{x} = -Ax - Bx.$$

In one step, it is approximated by

$$\frac{x^{k+1} - y^k}{t} = -Ax^{k+1} - By^k$$
$$\frac{y^{k+1} - x^{k+1}}{t} = -By^{k+1} + By^k$$

If we call $tBy^k = u^k$. Then we can rewrite Douglas-Rachford method as

$$\begin{aligned} x^{k+1} &= (I + tA)^{-1}(y^k - u^k) \\ y^{k+1} &= (I + tB)^{-1}(x^{k+1} + u^k) \\ u^{k+1} &= u^k + x^{k+1} - y^{k+1}. \end{aligned}$$

By comparing with earlier formula

$$z^{n+1} = J_A(y^n - (x^n - y^n))$$

$$y^{n+1} = J_B(z^{n+1} + (x^n - y^n))$$

$$x^{n+1} = x^n + z^{n+1} - y^n$$

The last equation is

$$(x^{n+1} - y^{n+1}) = (x^n - y^n) + z^{n+1} - y^{n+1}$$

We see these two formulations are identical with $u \leftrightarrow (x - y)$ and $x \leftrightarrow z$.

This method can be viewed as a gradient flow below. We consider

 $\min f(x) + g(y)$ subject to x = y.

The consider the Largrage method

$$L(x, y, u) := f(x) + g(y) + \langle u, x - y \rangle$$

The gradient flow is

$$\dot{x} = -Ax - u$$
$$\dot{y} = -By + u$$
$$\dot{u} = x - y.$$

3.1 Proximal gradient method

This is also known as the Forward-backward method

$$x^k = \operatorname{prox}_{tf}(x^{k-1} - t\nabla g(x^{k-1}))$$

We can express prox_{tf} as $(I + t\partial f)^{-1}$. Therefore the proximal gradient method can be expressed as

$$x^{k} = (I + t\partial f)^{-1}(I - t\nabla g)x^{k-1}$$

Thus, the proximal gradient method is also called the forward-backward method.

Theorem 3.5. *The forward-backward method converges provided* $Lt \leq 1$ *.*

Proof. 1. Given a point *x*, define

$$x' = x - t \nabla g(x), \quad x^+ = \operatorname{prox}_{tf}(x').$$

Then

$$-\frac{x'-x}{t} = \nabla g(x), \quad -\frac{x^+-x'}{t} \in \partial f(x^+).$$

Combining these two, we define a "gradient" $G_t(x) := -\frac{x^+ - x}{t}$. Then $G_t(x) - \nabla g(x) \in \partial f(x^+)$.

2. From the quadratic upper bound of g, we have

$$g(x^{+}) \leq g(x) + \langle \nabla g(x), x^{+} - x \rangle + \frac{L}{2} ||x^{+} - x||^{2}$$

= $g(x) + \langle \nabla g(x), x^{+} - x \rangle + \frac{Lt^{2}}{2} ||G_{t}(x)||^{2}$
 $\leq g(x) + \langle \nabla g(x), x^{+} - x \rangle + \frac{t}{2} ||G_{t}(x)||^{2},$

3.2. AUGMENTED LAGRANGIAN METHOD

The last inequality holds provided $Lt \leq 1$. Combining this with

$$g(x) \le g(z) + \langle \nabla g(x), x - z \rangle$$

we get

$$g(x^+) \le g(z) + \langle \nabla g(x), x^+ - z \rangle + \frac{t}{2} ||G_t(x)||^2.$$

3. From first-order condition at x^+ of f

$$f(z) \ge f(x^+) + \langle p, z - x^+ \rangle$$
 for all $p \in \partial f(x^+)$.

Choosing $p = G_t(x) - \nabla g(x)$, we get

$$f(x^+) \le f(z) + \langle G_t(x) - \nabla g(x), x^+ - z \rangle.$$

4. Adding the above two inequalities, we get

$$h(x^+) \le h(z) + \langle G_t(x), x^+ - z \rangle + \frac{t}{2} ||G_t(x)||^2$$

Taking z = x, we get

$$h(x^+) \le h(x) - \frac{t}{2} ||G_t(x)||^2.$$

Taking $z = x^*$, we get

$$h(x^{+}) - h(x^{*}) \leq \langle G_{t}(x), x^{+} - x^{*} \rangle + \frac{t}{2} ||G_{t}(x)||^{2}$$

= $\frac{1}{2t} (||x^{+} - x^{*} + tG_{t}(x)||^{2} - ||x^{+} - x^{*}||^{2})$
= $\frac{1}{2t} (||x - x^{*}||^{2} - ||x^{+} - x^{*}||^{2})$

3.2 Augmented Lagrangian Method

Problem

$$\min F_P(x) := f(x) + g(Ax)$$

Equivalent to the primal problem with constraint

$$\min f(x) + g(y)$$
 subject to $Ax = y$

Assumptions

• f and g are closed and convex.

Examples:

- $g(y) = \iota_{\{b\}}(y) = \begin{cases} 0 & \text{if } y = b \\ \infty & \text{otherwise} \end{cases}$ The corresponding $g^*(z) = \langle z, b \rangle$.
- $g(y) = \iota_{\mathcal{C}}(y)$

•
$$g(y) = ||y - b||^2$$
.

The Lagrangian is

$$L(x, y, z) := f(x) + g(y) + \langle z, Ax - y \rangle.$$

The primal function is

$$F_P(x) = \inf_y \sup_z L(x, y, z).$$

The primal problem is

$$\inf_{x} F_{P}(x) = \inf_{x} \inf_{y} \sup_{z} L(x, y, z)$$

The dual problem is

$$\sup_{z} \inf_{x,y} L(x, y, z) = \sup_{z} \left[\inf_{x} \left(f(x) + \langle z, Ax \rangle \right) + \inf_{y} \left(g(y) - \langle z, y \rangle \right) \right]$$
$$= \sup_{z} \left[-\sup_{x} \left(\langle -A^*z, x \rangle - f(x) \right) - \sup_{y} \left(\langle z, y \rangle - g(y) \right) \right]$$
$$= \sup_{z} \left(-f^*(-A^*z) - g^*(z) \right) = \sup_{z} \left(F_D(z) \right)$$

Thus, the dual function $F_D(z)$ is defined as

$$F_D(z) := \inf_{x,y} L(x, y, z) = - \left(f^*(-A^*z) + g^*(z) \right).$$

and the dual problem is

$$\sup_{\tilde{x}} F_D(z).$$

We shall solve this dual problem by proximal point method:

$$z^{k} = \operatorname{prox}_{tF_{D}}(z^{k-1}) = \arg \max_{u} \left[-f^{*}(-A^{T}u) - g^{*}(u) - \frac{1}{2t} \|u - z^{k-1}\|^{2} \right]$$

We have

$$\begin{split} \sup_{u} \left(-f^{*}(-A^{T}u) - g^{*}(u) - \frac{1}{2t} ||u - z||^{2} \right) \\ &= \sup_{u} \left(\inf_{x,y} L(x, y, u) - \frac{1}{2t} ||u - z||^{2} \right) \\ &= \sup_{u} \inf_{x,y} \left(f(x) + g(y) + \langle u, Ax - y \rangle - \frac{1}{2t} ||u - z||^{2} \right) \\ &= \inf_{x,y} \sup_{u} \left(f(x) + g(y) + \langle u, Ax - y \rangle - \frac{1}{2t} ||u - z||^{2} \right) \\ &= \inf_{x,y} \left(f(x) + g(y) + \langle z, Ax - y \rangle + \frac{t}{2} ||Ax - y||^{2} \right). \end{split}$$

Here, the maximum u = z + t(Ax - y). Thus, we define the augmented Lagrangian to be

$$L_t(x, y, z) := f(x) + g(y) + \langle z, Ax - y \rangle + \frac{t}{2} ||Ax - y||^2$$

The augmented Lagrangian method is

$$(x^k, y^k) = \arg \min_{x,y} L_t(x, y, z^{k-1})$$
$$z^k = z^{k-1} + t(Ax^k - y^k)$$

Thus, the Augmented Lagrangian method is equivalent to the proximal point method applied to the dual problem:

$$\sup_{z} \left(-f^*(-A^*z) - g^*(z) \right).$$

3.3 Alternating direction method of multipliers (ADMM)

Problem

$$\min f_1(x_1) + f_2(x_2)$$
 subject to $A_1x_1 + A_2x_2 - b = 0$.

Assumptions

• f_i are closed and convex.

Primal problem and dual problem Define the Lagrangian:

$$L(x_1, x_2, z) = f_1(x_1) + f_2(x_2) + \langle z, A_1x_1 + A_2x_2 - b \rangle.$$

The primal problem is

$$\inf_{x_1,x_2} \sup_{z} L(x_1,x_2,z).$$

The dual problem is

$$\sup_{z} \inf_{x_{1},x_{2}} L(x_{1},x_{2},z) = \sup_{z} \left[\inf_{x_{1}} (f_{1}(x_{1}) + \langle z, A_{1}x_{1} \rangle) + \inf_{x_{2}} (f_{2}(x_{2}) + \langle z, A_{2}x_{2} \rangle) - \langle z, b \rangle \right]$$

$$= \sup_{z} \left[(-f_{1}^{*}(A_{1}^{*}z) - \langle z, b \rangle) - f_{2}^{*}(A_{2}^{*}z) \right]$$

$$= \sup_{z} \left[-h_{1}(z) - h_{2}(z) \right].$$

Now we solve this dual problem by proximal point method:

$$z^{k} = \operatorname{prox}_{tF_{D}}(z^{k-1}) = \arg \max_{u} \left[-h_{1}(z) - h_{2}(z) - \frac{1}{2t} ||u - z^{k-1}||^{2} \right]$$

We have

$$\sup_{u} \left(-f_{1}^{*}(-A_{1}^{*}u) - f_{2}^{*}(A_{2}^{*}u) - \langle u, b \rangle - \frac{1}{2t} ||u - z||^{2} \right)$$

=
$$\sup_{u} \left(\inf_{x_{1},x_{2}} L(x_{1}, x_{2}, u) - \frac{1}{2t} ||u - z||^{2} \right)$$

=
$$\inf_{x_{1},x_{2}} \left(f_{1}(x_{1}) + f_{2}(x_{2}) + \langle z, A_{1}x_{1} + A_{2}x_{2} - b \rangle + \frac{t}{2} ||A_{1}x_{1} + A_{2}x_{2} - b||^{2} \right).$$

We thus define

$$L_t(x_1, x_2, z) := f_1(x_1) + f_2(x_2) + \langle z, A_1x_1 + A_2x_2 - b \rangle + \frac{t}{2} \|A_1x_1 + A_2x_2 - b\|^2.$$

ADMM:

$$\begin{aligned} x_1^k &= \arg\min_{x_1} L_t(x_1, x_2^{k-1}, z^{k-1}) \\ &= \arg\min_{x_1} \left(f_1(x_1) + \frac{t}{2} \|A_1 x_1 + A_2 x_2^{k-1} - b + \frac{1}{t} z^{k-1} \|^2 \right) \\ x_2^k &= \arg\min_{x_2} L_t(x_1^k, x_2, z^{k-1}) \\ &= \arg\min_{x_2} \left(f_2(x_2) + \frac{t}{2} \|A_1 x_1^k + A_2 x_2 - b + \frac{1}{t} z^{k-1} \|^2 \right) \\ z^k &= z^{k-1} + t(A_1 x_1^k + A_2 x_2^k - b) \end{aligned}$$

ADMM is the Douglas-Rachford method applied to the dual problem:

$$\max_{z} \left(-\langle b, z \rangle - f_1^*(-A_1^T z) \right) + \left(-f_2^*(-A_2^T z) \right) := -h_1(z) - h_2(z).$$

Douglas-Rachford method

$$\min h_1(z) + h_2(z)$$

$$\begin{split} z^k &= \mathrm{prox}_{h_1}(y^{k-1}) \\ y^k &= y^{k-1} + \mathrm{prox}_{h_2}(2z^k - y^{k-1}) - z^k \end{split}$$

If we call $(I + \partial h_1)^{-1} = P_1$ and $(I + \partial h_2)^{-1} = P_2$. These two operators are firmly nonexpansive. They are sort of projections in the case when h_i are indicator functions. We also define the reflection operators $R_i = 2P_i - I$. The Douglas-Rachford method is to find the fixed point of $y^k = Ty^{k-1}$.

$$T = I - P_1 + P_2(2P_1 - I) = \frac{1}{2}(I + R_2R_1).$$

3.4 Primal dual formulation

Consider

$$\inf_{x} \left(f(x) + g(Ax) \right)$$

Let

$$F_P(x) := f(x) + g(Ax)$$

Define y = Ax consider $\inf_{x,y} f(x) + g(y)$ subject to y = Ax. Now, introduce method of Lagrange multiplier: consider

$$L_P(x, y, z) = f(x) + g(y) + \langle z, Ax - y \rangle$$

Then

$$F_P(x) = \inf_y \sup_z L_P(x, y, z)$$

The problem is

$$\inf_{x} \inf_{y} \sup_{z} L_P(x, y, z)$$

The dual problem is

$$\sup_{z} \inf_{x,y} L_P(x,y,z)$$

We find that

$$\inf_{x,y} L_P(x, y, z) = -f^*(-A^*z) - g^*(z) := F_D(z)$$

By assuming optimality condition, we have

$$\sup_{z} \inf_{x,y} L_P(x,y,z) = \sup_{z} F_D(z).$$

If we take \inf_y first

$$\inf_{y} L_{P}(x, y, z) = \inf_{y} \left(f(x) + g(y) + \langle z, Ax - y \rangle \right) = f(x) + \langle z, Ax \rangle - g^{*}(z) := L_{PD}(x, z)$$

Then the problem is

$$\inf_{x} \sup_{z} L_{PD}(x, z).$$

On the other hand, we can start from $F_D(z) := -f^*(-A^*z) - g^*(z)$. Consider

$$L_D(z, w, x) = -f^*(w) - g^*(z) - \langle x, -A^*z - w \rangle$$

then we have

$$\sup_{w} \inf_{x} L_D(z, w, x) = F_D(z).$$

If instead, we exchange the order of inf and sup,

$$\sup_{z,w} L_D(z,w,x) = \sup_{z,w} \left(-f^*(w) - g^*(z) - \langle x, -A^*z - w \rangle \right) = f(x) + g(Ax) = F_P(x)$$

We can also take \sup_w first, then we get

$$\sup_{w} L_D(z, w, x) = \sup_{w} \left(-f^*(w) - g^*(z) - \langle x, -A^*z - w \rangle \right) = f(x) - g^*(z) + \langle Ax, z \rangle = L_{PD}(x, z).$$

Let us summarize

$$F_{P}(x) = f(x) + g(Ax)$$

$$F_{D}(z) = -f^{*}(-Az) - g^{*}(z)$$

$$L_{P}(x, y, z) := f(x) + g(y) + \langle z, Ax - y \rangle$$

$$L_{D}(z, w, x) := -f^{*}(w) - g^{*}(z) - \langle x, -A^{*}z - w \rangle$$

$$L_{PD}(x, z) := \inf_{y} L_{P}(x, y, z) = \sup_{w} L_{D}(z, w, x) = f(x) - g^{*}(z) + \langle z, Ax \rangle$$

$$F_{P}(x) = \sup_{z} L_{PD}(x, z)$$

$$F_{D}(z) = \inf_{x} L_{PD}(x, z)$$

By assuming optimality condition, we have

$$\inf_{x} \sup_{z} L_{PD}(x, z) = \sup_{z} \inf_{x} L_{P}(x, z).$$