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Part I

Fluid Mechanics






Chapter 1
Thermodynamics of Fluids

Thermodynamics is a branch of physics which studies the energy exchange of homoge-
neous materials at equilibrium. These materials can be gases, liquids, solids, plasma, met-
als, concrete, soil, and more. The properties of these materials are described by state vari-
ables. Homogeneity in materials refers to the absence of spatial variations at a macroscopic
scale. Examples of homogeneous materials are gases confined in a cylinder, parcels of flu-
ids, or pieces of metal. The energies considered include the internal energy of the systems,
mechanical work, heat, and so on.

1.1 The Thermodynamics of Gases

Goal: We will study the thermodynamics of single-component gases confined in a cylin-
der. The cylinder is equipped with a movable piston on one end, allowing for the exchange
of mechanical work with the external world (see Figure [3.1)). Additionally, we can intro-
duce or extract heat from the system. The theory of thermodynamics for gases aims to
describe the exchange of energy between heat, work, and the internal energy of the system.

Maveable
piston

Figure 1.1: Gas in a cylinder with piston. Copied from http://galileo.phys.
virginia.edu/classes/152.mfli.spring02/Boyle.htm
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1.1.1 Basic concepts

* Closed system: A closed system is defined as one that does not interchange energy
with the external environment.

* Macroscopic scales: The macroscopic scale refers to conditions where:

(1) The time scale dt is much larger than the time scale of particle motion 7, which
is typically defined as the “mean time of free particle motion.”

(i1) The spatial scales dx', dx?, and dx® are much larger than the “mean distance of
free particle motion.”

For example, on the Earth’s surface, the actual dx is approximately 68 nm for a
container with 2.7 x 10%° molecules per square meter and experiencing a pressure
of 759.8 Torr. Further information can be found in the Mean Free Path article on
Wikipedia. For the mean time of free motion, which is the inverse of collision fre-
quency, you can consult the Collision Frequency article on Wikipedia.

e Equilibrium: A thermodynamic system is considered to be in equilibrium if it re-
mains unchanged at the macroscopic scale.

* Thermodynamic parameters A simple thermodynamic system consists of gases
confined in a cylinder. Several measurable quantities characterize this system at equi-
librium, including:

(1) V (specific volume), representing the volume of gas per unit mass,

(i1) p (pressure),

(ii1)) T (temperature).

The volume is a geometric quantity, while pressure is a response of the system to
changes in volume. The term “thermodynamic parameters’ refers to these quantities.
More parameters such as entropy, internal energy, etc., will be introduced later.

* Equation of state The thermodynamic parameters 7, V, and V associated with
equilibrium are not independent. Experimental observations lead to an equation
f(T,p,V) =0, known as the equation of state. This relation is substance-dependent;
for ideal gases, f(T,p,V) = pV — RT. Generally, we postulate that such a thermody-
namic system has only 2 degrees of freedom. It forms a surface in the p-V-T space,
and its projection on the p-V plane is termed a p-V diagram. Isotherms, representing
curves with constant temperatures, can be observed on the p-V plane, see subfigure

(a) in Figure


https://en.wikipedia.org/wiki/Mean_free_path
https://en.wikipedia.org/wiki/Mean_free_path
https://en.wikipedia.org/wiki/Collision_frequency
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1.1.2 Works

1. Doing work to/by the system We can alter the state of the system through various
physical processes. Let us introduce the following terminologies.

* Quasi-Static Process: A quasi-static process is characterized by its slow occurrence,
ensuring the system remains in equilibrium at every instant during the process. In a
continuous quasi-static process, the system is represented by a curve on the p-V
plane.

» Adiabatic Process: An adiabatic process is a type of quasi-static process where there
is no exchange of energy with the external environment except for the work done.

* Adiabatically reachable: Two states (p1,V;) and (p;,V,) are considered adiabati-
cally reachable if there exists an adiabatic process connecting them. We denote the
work for such an adiabatic process moving from (py, V) to (p2,V2) asW(p1,Vi; p2, V).
Please refer to Figure

\ Adiabate
AT,V

q4, heat input
A

T

pressure, p

T, D) c
2 d b G S S,
a) Volume,V b) qs, heat output

Figure 1.2: Carnot cycle on the thermodynamic plane. The left figure represents the p-V
plane, while the right figure represents the 7'-S plane. Image source: https://www.tf.
uni-kiel.de/matwis/amat/td_kin_1i/kap_1/backbone/r_se3l.html

2. First Law of Thermodynamics The first law of thermodynamics states that the work
amount W (p1,Vy; p2,Va) satisfies the equation

W(p1,Vi;p2,Va) =W(p1,Vi; o', V) + W (p' V' pa, Va),

for any (p', V') that can be reached from (py,V1) through an adiabatic process.


https://www.tf.uni-kiel.de/matwis/amat/td_kin_i/kap_1/backbone/r_se31.html
https://www.tf.uni-kiel.de/matwis/amat/td_kin_i/kap_1/backbone/r_se31.html
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* Internal energy From the first law, we can infer that there exists a function U (p,V)
called the internal energy such that

U(p2,V2) =U(p1,V1) =W (p1,Vi;p2,V2)

for any pair of adiabatically reachable states (p;,V;) and (p2,V2). The function U
is well-defined up to a constant. Physically, it represents the sum of all energies in
the system, including translation energy, vibration energy, rotation energy, radiation
energy, etc. The internal energy can be measured through the work added from
outside through an adiabatic process.

* Unit of energy The SI unit of energy is joule (J):

2
1J= lkgni2 = 107ergs.
s

A practical unit is the calorie:

lcal =4.1858J.

* Kinetic equation of state We shall call the relation: U = U(p, V) the kinetic equa-
tion of state. An example is the ideal gas relation:

C
U(p,V)= EVpV,

where ¢, is the specific heat capacity at constant volume and R is the gas constant.

3. Stability assumption of the kinetic equation of state The stability assumption of the
internal energy is given by

U oU

$>0, Sy >0 (1.1)

* When p is fixed, an increase in V means that we have more particles with the same
momentum. As a result, the internal energy also increases, i.e., dU /dV > 0.

* When the size of the cylinder is fixed (i.e., the volume V is fixed), a higher pressure
indicates that the particles inside the cylinder have higher momentum. This results
in a higher internal energy U, implying dU /dp > 0.

* The assumption dU /dp > 0 allows us to invert the function U = U(p,V) to p =
p(U,V). This is another form of the kinetic equation of state.

* The ideal gas relation naturally satisfies the stability assumption.
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1.1.3 Characterizing adiabatic processes

In this subsection, we aim to characterize adiabatic processes by the level sets of a function
on the P-V plane.

Infinitesimal Work along an adiabatic process Let us consider a gas cylinder contain-
ing a unit mass of gases. The cylinder has a piston on one end, allowing its volume to
change by pushing or pulling the piston. The cylinder’s wall is assumed to be thermally
isolated, enabling the piston to move through an adiabatic process with no energy exchange
between the gases inside the cylinder and its environment except for the work done by the
piston.

For an infinitesimal pushing of the piston, the work done by the piston to the system
is dW = —pdV. Here, the volume change is —dV = —dx- A, where A is the area of the
cross-section of the cylinder. The term pA represents the force F' exerted on the piston
per unit area A by the gas particles, and —Fdx is the work done by the piston on the gas
particles in the cylinder. The first law of thermodynamics gives

dU = —pdV (1.2)

along an adiabatic process.

Existence of the entropy function We will now demonstrate that the relationship U =
U(p,V) and equation lead to the existence of a function called entropy, denoted by
o. This entropy is another thermodynamic parameter that characterizes various adiabatic
processes. In other words, the level sets of o represent adiabatic processes. This derivation,
attributed to Carathéodory, establishes the mathematical foundation of thermodynamics. EI
Here are the steps for the existence of an entropy function o:

1. Letus plug U =U(p,V) into (1.2) to get
Updp+ (Uy +p)dV =0.
This is called a Pfaffian equation. It is equivalent to the ODE:

dp _ Uy(p,V)+p

av. Upp,V) (4

Note that from (I.1I)), the right-hand side of (I.3) is always less than O in the region
(p >0,V >0). Thus, (1.3) is always solvable in this region.

ILionello Pogliani and Mario N. Berberan-Santos, “Constantin Carathéodory and the axiomatic thermo-
dynamics” (2000)
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2. A curve in the p-V plane is called an integral curve of (I.2)) (or (I.3)) if it satisfies
(1.2). A function o(p,V) is called an integral of (1.2) if its level set (c(p,V) =
constant) is an integral curve of (1.3)), that is:

do=0 < dU+pdV =0. (1.4)

The solutions of (1.3]) form a one-parameter family of curves: 6(p,V) = C, where C
is the parameter. Each curve o (p,V) = C represents a specific adiabatic process. An
integral of (1.2) is termed an entropy function of the system.

3. From (1.4), there exists a function p(p,V) # 0 (referred to as the integration factor)
such that
do = o,dp+oydV =p-(dU+ pdV). (1.5)

We shall choose p > 0. This gives 6, > 0 and oy > 0 in the region (p >0,V > 0).

4. The solutions of u and ¢ are not unique. In fact, suppose o is a solution, we can
easily construct a new integration factor fi := v(o)u, where v(o) is an arbitrary
chosen function. In fact, by multiplying (1.5 by v(o):

v(o)do =v(o)u-(dU + pdV),

we see that & with d6 = v(0)do is a new entropy function.

Characterizing heat

1. Entropy Function Discovery: From the preceding paragraph, we have
1
dU = —do — pdV.
u

This suggests that (o,V) is a natural independent variable for the internal energy.
For this purpose, we make a change of variable:

(p,V) = (0,V)

using the formula
c=o(p,V).

This inversion p = p(o,V) is always possible in the region (p > 0,V > 0) because
o, > 0 there. Using (o, V) as the new state variables, we express equation (1.5) as:

dU = 1do — pdV, (1.6)

where 7= 1/u = Us.
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2. Interpretation of Formula (I.6): This formula has a meaningful interpretation:
When do = 0 (i.e., adiabatic process), the change in internal energy is attributed
to the work exerted from outside, represented by —pdV. When dV =0 (i.e., no ex-
erted work), the change in U is due to Td o, denoting the heat added from outside to
the system.

3. Uniqueness of Integration Factor and Entropy Function: As previously men-
tioned, the integration factor 1/7 and the integral (entropy function) ¢ lack unique-
ness. Later on, we will introduce the concepts of intensive variables and extensive
variables. By selecting T as an intensive variable (termed the absolute temperature),
the corresponding ¢ becomes the physical entropy S.

1.1.4 Heats

Intensive and extensive variables There are two kinds of thermodynamic state variables,
the intensive and extensive variables. A variable is considered intensive if it is independent
of the system’s size. In other words, for the combined system of two subsystems I and /I,
an intensive variable x remains unchanged (x;y = x; = xj7), while an extensive variable x
adds up (x7+57 = x7 +x7). Examples of extensive variables include volume (V') and internal
energy (U), while temperature (7") and pressure (p) are intensive. Notably, if x and y are
extensive variables, then dy/dx is intensive.
In the first law of thermodynamics

dU = 1do — pdV

U, V are extensive, while p is intensive. Choosing 7 to be intensive makes o extensive.
A natural choice of 7 is the temperature, the corresponding ¢ becomes the entropy. The
temperature is further characterized below.

Equilibrium and empirical temperature

* Thermo equilibrium When two systems .#| and .#, are in contact, allowing energy
transfer but not with the outside, they reach a steady state on the macroscopic scale,
signifying thermo equilibrium (.} ~ .%3).

* The zeroth law of thermodynamics:
If & ~.% and .% ~ .93, then .| ~ .73.

This law establishes an equivalence relation among all states, represented by the
temperature.



12 CHAPTER 1. THERMODYNAMICS OF FLUIDS

* Ideal gas thermometer The ideal gas is postulated to satisfy pV = constant in an
equilibrium equivalent class. The temperature label for this class is

0 = pV/R,
where R is the gas constant.

* Heat bed and empirical temperature By merging a small system .7 into a heat bed
filled with ideal gases, we measure its temperature. The empirical temperature of the
heat bed represents the temperature of .#. Thus, each state of .(p,V) is associated
with an empirical temperature 6(p,V).

Caloric equation of state

» Existence Postulate The zeroth law of thermodynamics can be postulated by the
existence of a state function 0(p,V ), characterizing thermo equilibrium states. char-
acterizing thermo equilibrium states. Two states (p;,V;) and (pz,V2) are in thermo
equilibrium if 8(py, Vi) = 0(p2,V2).

* Stability assumption: The state function 6(p,V) is postulated to satisfy stability
conditions:

00 00
%>0, 5 >0 (1.7)

Absolute temperature 7 and the entropy S Let us revisit the solution of the Pfaffin
equation (1.2)). Let o be one of its solution and 1/7 be the corresponding integration factor.
We relate T and the empirical temperature 6 by the following steps.

1. We divide the system .# into two subsystems .#] and .%, which are in thermody-
namic equilibrium with a common empirical temperature 6.

2. We shall use (0,0) as our new state variables instead of (o,V). It can be verified
that 6 = 6(o,V) satisfies (3—8) # 0, allowing us to invert 6 and V in the formula
o
0 =06(c,V).
3. At thermodynamic equilibrium, . = (0,0), %1 = (01,0), %5 = (02,0), and by
adding heat to . without doing work, equation (1.6 gives:

7(60,0)do = 11(0,01)do) + 12(0,02)d0s. (1.8)

This implies that the entropy function ¢ of the combined system ./, originally a
function of (0,01, 07), is independent of 6.
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4. Therefore, 6 = 6(0,0,) and

W (29) s
»(0,0,) (do B
12'(6,02) = <‘902>c, = y(01,02),

are independent of 6.

5. This implies the existence of functions 7(0), vi(01), V2(02), v(0) such that

T1(9761) = T(@)Vl(Gl),
Tz(@,(fz) = T(G)Vz(Gz),
7(0,0)=T(0)v(0).
Equation becomes
Tv(o)do =Tv,(o1)do; +Tvy(02)dos. (1.9)

6. If we define
Y
Si(Gi) = / vi(Gi)dGi7 7i = 1727

then (1.9) implies
dS=dS|+dS. (1.10)

7. The function 7(6) defined above is called the absolute temperature of the system.
Note that 7 = 0. So, we choose

T > 0.

Choosing the integration factor u := 1/T implies that the corresponding entropy
function has the property (1.10). If . is divided into m subsystems, then

ds=Y ds;
=1

=

Since S can be determined uniquely up to an integration constant, we can choose S
so that

§=Y S (1.11)

i=1
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Measuring system’s entropy On the thermo p-V plan , we can draw isothermal curves
(Figure[I.2). Along an isothermal curve, the line integral

Sgd
Sz—Slz/ —Q
s; T

gives entropy the difference. This can be used to measure the entropy of a state (p,V).

Gibbs relation: The first law of thermodynamics now reads

dU = TdS — pdV.| (1.12)

The term dU represents the change in the internal energy of the system, the first term on
the right 7dS is the heat added to the system, and the second term —pdV is the mechanical
work done from outside to the system. Formula (1.12) is called the Gibbs relation.

Constitutive Law Using (S,V) as the independent variable, the internal energy can be
expressed as

U=U(S,V). (1.13)

This is called the constitutive law of the gas system. The temperature 7" and the pressure

p are derived parameters:
0 d
T = —U y p = — —U .
IS )v AV )

Summary: Complete characterization of the gas thermosystem The thermodynamics
of a gas system is completely characterized by the constitutive relation

U=U(S,V).
The first law of thermodynamics

dU = TdS — pdV,

r= (%Y __ (U
“\as), P \ov)y

Conversely, one can use the first law of thermodynamics together with two equations of
states:

leads to

* kinetic equation of state: U = U (p,V),

* caloric equation of state: T = 6(p,V),
to obtain the constitutive law U = U (S, V).
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1.1.5 Ideal Gases and Polytropic Gases

In a gas thermodynamic system, we deal with five thermodynamic variables (V, p,S,T,U),
with only two of them being independent. The first law of thermodynamics (11.3), and
two equations of states: kinetic and calorie, govern these variables, deriving from either
measurements or statistical mechanics. Here, we illustrate a specific examples of a gas
thermodynamic system, known as the ideal gases and the polytropic gases.

Ideal gas law

* Kinetic equation of state - Ideal gas law: The ideal gas law, representing Boyle’s
and Gay-Lussac’s laws, is given by:

pV =RT, (1.14)

where R is the universal gas constant (approximately 8.314462618 J-K~!.mol 1),
see Gas Constant, Wiki. Under a mild assumption (stated below), the ideal gas law
and the Gibbs relation imply that U is solely a function of 7.

» Theorem: Under a mild assumption ([I.16) below, the ideal gas law and the Gibbs
relation imply that U is only a function of T.
Derivation:

1. From the first law of thermodynamics (1.12)), treating (S,V) as the independent
variables, we obtain:

U U
P—‘(W)S and 1= (ﬁ)v'

Plugging these into the ideal gas law (I.14)), we get a partial differential equa-
tion (PDE) for U in (S,V):

aU aU

This linear first-order equation can be solved by the method of characteristics
as shown below.

2. Let us rewrite this equation as a directional differentiation:

d d
(Rﬁ+VW)U:0‘ (1.15)

2Courant and Friedrichs, Supersonic Flows and Shock Waves
3This derivation is referred to in Courant-Friedrichs’ book.


https://en.wikipedia.org/wiki/Gas_constant
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It means that U is unchanged along the direction: (dS,dV) || (R,V). The inte-
gral curves of these directions are the solutions of the differential equation

av v

dS R’
They are called the characteristic curves. This equation can be integrated as

dv  ds S c
7—7—0 = an_E_C = Vexp(—S/R)=¢e".

Here, C is an integration constant. Thus, (1.15) implies that U (V,S) is constant
whenever ¢ := Vexp(—S/R) is a constant. This means that U and ¢ are func-
tionally dependent, which implies that there exists a function i : R™ — R such
that

U = h(9).

. We claim that U is a function of 7 only. This can be derived by the following

arguments. First, we note that /' < 0 because

p=—(59)5 = —exp(~S/RIH (V exp(~S/R)) > 0.

Next, from
QU o (29N —ian (Y-SR — sy

we see that T is a function of ¢.

. We shall make an assumption that this function is invertible. That is, the deriva-

tive
(1 (9)¢)" > 0 for ¢ > 0. (1.16)
We get that T is a decreasing function of ¢. With this, we can invert the relation

between T and ¢ and treat ¢ as a decreasing function of 7. By inverting U and
¢, and T and ¢, we get that U is an increasing function of 7'

U=U(T).

We shall make this our second constitutive relation.



1.1. THE THERMODYNAMICS OF GASES 17

The heat capacities

* Specific heat capacities Let us denote by dQ = T'dS the heat added to the system.
From Gibbs’ relation, dQ = dU + pdV . Using RT = pV, we have
dQ =dU + pdV
=U'(T)dT + pdV
=U'(T)dT + RdT —Vdp.

The first and the third equalities lead to the following derived quantities:

_(90\ _ .,

cy = (8_T)V =U\(T),
_(92\ _.»

cpi= (aT)p_U(T)+R,

called the specific heat capacities at constant volume and constant pressure, respec-
tively. Since R > 0, we have ¢, > ¢,. Recall that c, is the amount of heat added to
a system per unit mass at constant pressure. When we heat the system at constant
pressure, the volume has to expand to maintain constant pressure, the extra amount
of work for expansion is supplied by the extra amount of heat, which is R per unit
mass.

* Heat capacity ratio y:=c,/c,
1. Let y be the ratio between ¢, and c,:

cp CyFR
Cy Cy .

This heat capacity ratio is also called the adiabatic index.

2. For a monatomic gas molecule (like helium or argon), there are three transla-
tional degrees of freedom. Every atom has an average kinetic energy of %kBT
in thermal equilibrium, where kp is the Boltzmann constant. For 1 mole of
gas, this becomes U = %RT. Thus, ¢, = U'(T) = %R. Note that the number 3
comes from the three translational degrees of freedom. Each degree of freedom
contribute RT /2 amount of energy.

3. For ideal gas with f degrees of freedom, U = %RT, and the corresponding

cy = ]ECR.


https://en.wikipedia.org/wiki/Heat_capacity_ratio
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This is a consequence of the equipartition theorem in statistical mechanics. For
a diatomic molecule (like oxygen or nitrogen), in addition to translational mo-
tion (in R3), there are two rotational degrees of freedom (in $2). This totals to
f =5 degrees of freedom.

4. Thus, we have

yo RS2 3 (1.17)
Cy f 3

for ideal gases. When ¥ is closer to 5/3, the gas is harder to compress because
all work input is reacted by the translation of the mono-atoms. On the other
hand, when 7 is closer to 1, the gas is easily compressed as the input energy is
transferred to other modes of molecular energies. For further discussion about
¥, we refer to wiki: Heat Capacity Ratio.

Polytropic gases

* Caloric equation of state: If U(T) = ¢,T, the energy we add to the system is
proportional to the temperature, we call such gases the polytropic gases. The ratio c,
is called the specific heat capacity at constant volume.

* Algebraic relations of the polytropic gases

1. We have five thermodynamic variables p,V,U,S, T, and three relations:

pV =RT
U =c¢T .
dU =TdS— pdV

2. Plugging the two constitutive relations

pV =RT and U = ¢,T (1.18)


https://en.wikipedia.org/wiki/Equipartition_theorem
https://en.wikipedia.org/wiki/Heat_capacity_ratio
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into the first law of thermodynamics (I.12]), we obtain
dU = TdS — pdV

Cy pv
—d(pV) = —dS— pdV
rAPV) =" p

V) _ 4o gt
pV |4

dS=dIn((pV)")+dIn (VF)
—dln (pCv ,Vc‘,+R)
S—So=1In(p= - VOHR)
oS50 — ( pV(CV—O—R) /cv> &
eS=S0)/ev — py(etR/e,

3. Define
y:=1+R/c,, A(S):=exp((S—Sp)/cy),

then, the algebraic relations of the thermodynamic variables in terms of (S,V)

are
p=A(S)VY
T = 48y -ril (1.19)

_ GAS) v —y+1
U = A8y -y,

Summary of algebraic relations of state variables For ideal gases, these two equations
of states are the ideal gas law: pV = RT and U = ¢, T. The algebraic relations of the state
variables are listed below.

* Interms of (p,U):
y—1
p=(r-1pu, T=""-uv.

R
— Sy = an
S—So — In(Up™"").

e In terms of (V,S):

U=(y—1)TAS)V T A(S) =exp (%(S— So)> :

1
p=AS\VY, T= EA(S)V*V“.
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* Interms of (p, p):
1 -1 7 -1

1
— Sy = -
S—3So0 y—lln(}/—lpp )

Homeworks

1. Prove that adiabats (lines of constant entropy) have a steeper slope than isotherms
(lines of constant temperature) for an ideal gas on a p-V diagram, where the pressure
p is the ordinate and the volume per unit mass V the abscissa. Again, carefully draw
a diagram of a Carnot cycle, and compute the slopes of the isotherms and adiabats in
terms of p and V.

2. Write a short report on Carnot cycle for an ideal gas.

1.2 Other energy forms, Legendre transform
1.2.1 Enthalpy, Helmholtz, Gibbs free energies
* Enthalpy: In the Gibbs relation
dU =TdS— pdV,

the system’s energy U can be varied by changing the volume at constant entropy, or
by adding heat at constant volume. The relative changes give

U U
= (5), = 7=(5),

respectively. We say that (S,V) are the natural independent variables for U.

Alternatively, we can analyze system’s energy change with respect to p at constant
entropy. This suggests the following change of variable:

oU
(S,V) (S, p) through —p = <W)s

By adding d(PV) in the Gibbs relation:

dU +d(pV) =TdS — pdV +d(pV) = TdS+Vdp,
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the natural independent variables become (S, p). The corresponding energy, H (S, p) :=
U + pV, is termed the enthalpy. Enthalpy comprises a system’s internal energy and
the work required to create the system by displacing its environment, establishing its
volume and pressure.

* Helmholtz Free Energy Using the change-variable formula:

aU
(S,V)— (T,V) throughT = | == | ,
S ) ;
and noting
dU —d(TS)=TdS — pdV —TdS — SdT,

we define the Helmholtz free energy ¥(7,V) :=U — TS, and get

d¥ = —SdT — pdV.

o (¥ _ (U
P=\ov ).~ \ov )y

meaning that the pressure can be obtained from the response of W to the volume
change at constant temperature, or the response of U to the volume change at constant
entropy.

Note that

* Gibbs Free Energy: At last, we consider the change-of-variable:

(8,V) = (T,p)

U U
= (), mr=(%),

Define the Gibbs free energy

through both

G(T,p):=U+pV —TS.

We have
dG=TdS—pdV +d(pV)—d(TS) = —SdT +Vdp.

¢ Process’s names with Fixed Thermo Variables:

Adiabatic: dS =0, Isochoric: dV =0,
Isothermal: dT =0, Isobaric: dp =0.
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1.2.2 Legendre Transformation

* The transformations from U to H, ¥, and G are called Legendre transformations. Let
us introduce it mathematically.

* Consider a convex function f : R — R. The differential

Let us introduce a new variable y = f’(x). Consider the change of variable

x>y =f(x). (1.20)

This mapping is invertible because f is convex and thus f” is an increasing function.
We then define

[1) =xy—f(x).
Here x is treated as a function of y from (1.20). We have
df*(y) = d(xy) — f'(x)dx = d(xy) — ydx = xdy,
x= (")
* Since f is a convex function, there is another equivalent expression for f*(y):

()= sgp[x-y—f(X)]-

The maximum occurs at y = f’(x). The pair (x,y) with y = f/(x) is called a conjugate
pair.

* Lemma. f* is convex.

* Lemma. If f is convex, then f**(x) = f(x).

e —H, —¥ and —G are the Legendre transformations of the internal energy U':
—H(S,p) = sgp[(—p)V —U(s,V)
—Y(T,V) = sgp[ST —-U(S,V)]

~G(T,p) = sgpsgp[(—p)V +ST -U(S,V)]
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Or equivalently,

H(S.p) = min[U(S,V) + pV]
Y(T,V) =min[U(S,V)—TS]

Q
&
I

I%/liél[U(S,V) +pV —TS]

To have a legitimate Legendre transformations, we require U to be convex in § and
V, respectively.

* Both (p,V) and (7, S) are conjugate pairs.

1.2.3 Maxwell relations

Thermo relations The thermo relations are expressed in terms of two independent thermo
variables.

* Using (S,V) as independent variables:

r— (VY _,_(%U
“\os ), P \ov)y

* Using (S, p) as independent variables:

aH) (8H>
T=(%2), v={(%),
(85 » ap /g

* Using (7,V) as independent variables:

s (9¥y (¥
—\or ), "= \ov),

* Using (T, p) as independent variables:

8G) (8G)
s=(ZZ), v=(ZZ
(3T » ap )
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Maxwell relations From

U _ U (W) (U
avas asav' \as), P \av)y

(), (a9),

In general, we have the following Maxwell relations:

2

(%)S _<§_§>V:(9855]V (1.21)
2

(%) :(é—‘;) 2595;, (1.22)

( ) ( ) aaTz;PV (1.23)

_( )T ( ) aTap (1.24)

1.3 Thermodynamic Stability

we get

Material properties can be characterized by its response to some external probs. For in-
stance, we can measure how much heat to add to the system in order to increase its tem-
perature by one degree. This is the heat capacity (dQ/dT). We can measure the volume
change under increase of pressure. This is the compressibility (dV /dp). We can measure
volume change under increase of temperature (dV /dT). This is the expansion rate.

Heat capacity Let us define dQ = TdS, the heat added to the system. Define heat capac-
ity to be the heat added to the system per unit temperature, with either V or p fixed. That

1s,
o do o do
“v=\ar v P =\ar »

dU =dQ — pdV, dH =dQ+Vdp,

o= (o), o= (&)
Y\ar )yt P \ar ),

From the Gibbs relations

we get



1.3. THERMODYNAMIC STABILITY 25

and
d 2S PR
(=(%) =1 (2) =1 — . (1.25)
ar ), oT v oT v
dQ) ( as> (82G
cp= (— =T|— | =-T 57 | - (1.26)
dT » oT » oT »
Compression rate The isentropic/isothermal compressibility rate are defined as
1 /oV 1 (9%H
—_ (2} — ([ 1.27
s V(&p)s V(aPZ>S7 (27
1 /oV 1 (9%G
N A Y i I 1.28
< V<3P)T V(apz)r (129

Expansion rate: The expansion rate is defined as

oo L[V _1(9Y (3G
Prvi\ar), v\ar),\dp/);

Proposition 1.1. The heat capacities and compressibility rates satisfy

kr(cp—c) =TVa, (1.29)

cp(kr —Kk5) =TV o, (1.30)
and
Cp_Kr
Cy N KS'

Thus, there are five parameters with two independent relations.

Proof. 1. Differentiate S(T,V (T, p)) in T with fixed p:

()~ (), (), (),

then multiply it by 7', we get

it (B) (2
e \ov ) \otr ),
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Multiply this by KT:—% (%)T,We get
erlerey (VY (35 (2
nemer =y \ap ), \av ), \ot ),
:_Z (ﬁ) <8_V) . chain rule
V\dp)r\dT/,
T (JV 2A%
:+V (8_T)p(_T)p s ((1.24
(1 <av) )2
=TV | ===
V\dT ),

2. Differentiate V(p,S(p,T)) in p with fixed T

(3),(5).(5),(3),

Multiply it by —1/V, we get

p
ey — L (5 (V) (%5
it =my\or ) \as) ,\ap ),

T(av) (85) )

= — — —_— - chain rule
VA\oT ) ,\dp /)y
T [0S 0S8

() (£ - (1.24
7(5), (5),

_T (v

v \arT ,
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Theorem 1.1. The following statements hold.

(i)Usatisﬁes(‘%{)VZO, <’92—U>S20 & kKg>0,¢,>20

(ii) H satisfies (%) >0, <‘92—H>S§0 & Ks=>0,¢,>0
p

i) W sati (92—“’> <0, (”—“’) >0 & kr>0,6>0
(iii) ¥ satisfies a7 ), S e T =20, ¢ 2

(iv) G satisfies (%) <0, (%‘g)T <0 & Kkr>0,¢,>0
)4

Proof. The second derivatives of U, h, A, B are respectively

<82U> _(8T) T T
(9_82 V_ a_S V_T(ﬁ) _C_v

O
From Proposition we only need three of the above four inequalities for stability.

Definition 1.1. A gas thermodynamic system is called thermodynamic stable if Uss > 0
and UVV 2 0.
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Note that (Uss > 0, Uyy > 0) is equivalent to any one of the following three:

* Hgs >0, Hp, <0,

* Wrr <0, %yy >0,

* Gr7 <0,Gp, <0.
That is, the energy is convex in extensive variable and concave in intensive variable[Callen].
Corollary 1.1. Assuming thermodynamic stability, then

cp 2 CV7 KT 2 KS'

Remarks

* This stability condition Uyy > 0 is equivalent to the condition of finite sound speed.
The sound speed is defined by

2o (VY (2 (LU _\a(2U
ap)s\av )\ av ) vz )

The positivity on the right-hand side of the above equation gives real value of sound
speed. This property leads to finite speed propagation of signal in rest gases. Namely,
the governing equation for the perturbed gas is

which is also

2
Uit = C Uxx,

where u = §p is the perturbed density. If initial data is ¢’**, then the solution has the
form e/ (*F@K)1) \where w(k) satisfies the dispersion relation: ®? = c2k?. If ¢ is not
real, then u will grow exponentially in time. This is unstable.

* For y-law gases, the stability (g—g)s > 0 is equivalent to y > 1.

¢ The Hessian of G is .
Grr GTp _ —Tp OCPV
GTp Gpp OCpV —Vkr

Its determinant v v
A= TKTCP — OC%VZ = TCVKT.

Here, we have used @]) The negative definiteness of the Hessian of G is referred
to a stronger thermodynamic stability. We refer this to Callen’s book.
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Homework.

1. Find the Hessian of U.
Hint: The transformation (S,V) — (T, p) is the Legendre transformation associated
with U. Its Jacobian is the Hessian of U. Its inverse map (7, p) — (S,V) is the
Legendre transformation associated with G.

Historial remarks
* The axiomatic approach in this chapter is mainly due to Gibbs and Carathéodory.

* Historical Note of Thermodynamics about Irreversibility and the Second Law of
Thermodynamics.


https://www.wolframscience.com/reference/notes/1019b
https://www.wolframscience.com/reference/notes/1019b

30

CHAPTER 1. THERMODYNAMICS OF FLUIDS



Bibliography

[1] Serrin J. ed., New Perspectives in Thermodynamics (1986).
[2] Courant and Friedrichs, Supersonic Flows and Shock Waves
[3] H.B. Callen, Thermodynamics And An Introduction to Thermostatistics, 2nd ed.

[4] Beris and Edwards, Thermodynamics of Flowing Systems with internal microstruc-
ture (1994).

[5] Kerson Huang, Statistical Mechanics (1963).

31



32

BIBLIOGRAPHY



Chapter 2

Dynamics of Fluid Flows

There are two formulations of fluid dynamics: Eulerian and Lagrangian. The former is
described from the observer’s frame of reference, while the latter is described from the
material frame (or reference frame), meaning that the fluid particles are initially labeled,
and the description is from each labeled particle’s point of view.

Suppose the fluid (the continuum object) occupies a region M initially and evolves to a
domain M, at time . We will refer to M, as the observer’s domain, while M is the material
(reference) domain.

* In the Lagrangian formulation, we assume M C R3, and the coordinate of the refer-
ence domain M is called the Lagrangian coordinate, material coordinate, reference
coordinate, or label coordinate. It will be denoted by X. Its components are de-
noted by X%, o = 1,2,3. The embedding M C R? induces a natural volume element
Q=dX =dX' NdX*NdX? in M.

¢ The coordinate of the observer’s domain M; is called the Eulerian coordinate or the
observer’s coordinate. It is denoted by x. Its components are denoted by x', i =1,2,3.
The domain M; C R? has a natural volume form W =dx = dx' Ndx* N dx3.

2.1 Dynamics of Fluid Flows in Eulerian Coordinates

The governing equations of fluid flows are derived based on three physical laws: conserva-
tion of mass, momentum, and energy. Initially derived by Leonhard Euler in 1755 without
accounting for viscous effects and the energy law, the flow is considered adiabatic. The
entropy equation was later added by Pierre-Simon Laplace in 1816. Subsequently, the ef-
fects of viscosity and thermal conductivity were introduced, and a theory was developed
by Claude-Louis Navier (1822) and George Gabriel Stokes (1842-1850).

33
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2.1.1 Conservation of mass, momentum and energy

The equations of fluid dynamics are derived based on three conservation laws: mass, mo-
mentum, and energy.

Conservation of mass Consider an arbitrary domain Q C M;. The change of mass per
unit time in Q is given by

d / dx

dt Qp ’

This quantity is equal to the mass flowing into Q through its boundary dQ per unit time.
To measure the mass flows through 9Q, the concept of mass flux is introduced. For a small
area dA on the surface dQ with an outer normal v, and flow velocity v in its vicinity, the
mass flux is defined as pv- (—v). ﬂ Here, —v represents the inner normal, indicating the
flow into Q from outside. The mass flux is integrated over dQ to obtain the total mass flow
into Q per unit time:
pv-(—Vv)dA.
2L9)
The conservation of mass is expressed as

d
dt/gpdx /agz[ pv-VidA /Q (pv)dx.

/Q (88—€+V-(pv)> dx 0.

This holds for arbitrary domain . This leads to the continuity equation:

or

ap B
Eﬁ—V-(pv)—O. (2.1

Conservation of Momentum The momentum change in Q is given by

d
E/ngdX'

This change results from:

(a) the momentum carried into Q through the boundary d€, given by (pv)[v- (—V)],

!'The mass in the parallelogram spanned by dA and the vector vAr will flow into Q through dA in the
period Ar. The volume of this parallelogram is (vAf - v)dA. The mass in this parallelogram is p (VAf - v)dA.
Thus the mass flows into Q through dA per unit time, per unit area is pv- (—V).
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(b) a surface force (per unit area) t on the boundary 92,

(c) abody force (per unit volume) f in Q.

Here, the surface force t comes from the impacts of particles on the surface. It is assumed
that
t=0-v,

where o is a rank-2 tensor: 6 = (0;;), termed the Cauchy stress tensor. E| Thus, there exists
arank 2 tensor o, such that t = ¢ - v. This leads to the momentum conservation equation:

%/vadx = /anV[v-(—v)]dA+

— / [V-(—pvv+ o) +f]dx.
Q

6~vdA+/ fdx
Q Q

This holds for arbitrary domain Q. Thus, we obtainE]

d(pv)
ot

+V.-(pvw)=V.-0o+f. (2.2)

For each velocity component v/, the momentum conservation equation is:
d . o . .
—/ pvidx = / [—pv’v1+a,~j]vfdA+/ Fldx
dt Jo Q Q

= /£z8j[—pvivj+6,~j]+fidx.

Inviscid assumption for gas flows In gas flows, the stress mainly comes from the impact
of gas particles on the surface, which gives a stress of the form

o = —pl,

where p is the pressure and / is the 3 x 3 identity matrix. The minus sign means that the
surface force o-v = —pvV is inward to Q. The stress has the form p/ meaning that the
gas is isotropic, i.e., the particle impacts at a point have no preference direction. Note that
particles can also collide with each other or experience a random force from thermo noise,

which is a secondary effect in gas flows. We will neglect it for the moment. With o = —pl,
the momentum equation now reads
d(pv

(apt )+V~(pVV):—Vp+f. (2.3)

This will be proven that t is a linear function of the outer normal v. See Cauchy’s stress in the later
chapter.
3The notation vv stands for a tensor: vv = (v\/), and V - (pvv) stands for a vector whose ith component

is d;(pviv/).
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Conservation of energy The total energy per unit volume is

1 2
pE = _p[v["+pU,

the sum of kinetic energy and internal energy. The energy change in a region  per unit
time is due to

(a) the energy carried in through the boundary dQ, which is pEV- (—V) (= —pEV'V'),
(b) the work done by the stress from the boundary, whichis v-c-v (=1'c;;v/),

(c) the work done by the body force in Q, whichis v-f (=),

(d) the heat transfer into Q through boundary, which is q- (—V). Here, q, is the heat flux.

The conservation of energy reads
d
—/ pde:/ [—pEv-v+6-v-v—q-v]dA+/ f-vdx.
dt Jo 2Q Q

By applying the divergence theorem, we obtain the energy equation: |Z_rl

d(pE)
ot

+V-[(pE1-0)-v+q]=V-f. (2.4)

Adiabatic assumption for gas flows We shall assume no heat conduction for inviscid
gas flows. This means that q = 0.

System (2.1),(2.3)),(2.4) is called the (compressible) Euler equations. There are 5 equa-
tions (momentum equation has 3 equations) for 5 unknowns (p,U,v!,v?,v?). The pressure
p is given as p(p,U) from the equation-of-state.

2.1.2 Initial conditions and boundary conditions

We consider the fluid flows in a fixed domain M = M = M,.

Initial conditions The Euler equation is first-order in time and thus requires initial con-
dition
p(O,X) :PO<X)7 U(O,X) :UO(X)7 V<07X> :V0<X)7 XxeM.

“The notation V - [v- o] is d;(vie').
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Boundary conditions Typically, we consider a closed system, implying that there are no
transported fluxes from outside the domain. In other words:

pv-v=0, pvw-v=0, pEv-v=0o0ndM.

This is equivalent to the following Neumann boundary condition:

lv-v=0o0ndM.| (2.5)

2.1.3 General conservation laws in Eulerian coordinate

The fluid dynamics can be expressed in the following abstract form:

QU+ Vy TF=R| (2.6)
p pv 0
U= |pv|, T= pvVvV—oO , R=1|f |.
pE v-(pEI—0)+q v-f

Here, F is an m x 3 matrix. It can be expressed as F = (F1,5,53). Vx-F :=d.F;. By
using the divergence theorem, the above equation can be expressed in the following integral
form:

/ odx+ [ F-vas, = / Rdx. Q2.7
Q

where Q C M; is an arbitrary subdomain and V is its outer normal.

2.2 Equations of Inviscid Fluid Flows in Lagrangian Co-
ordinates

2.2.1 Flow maps and velocity fields
Flow map and velocity field

* Fluid parcel: The fluid in a small box dX centered at X is a called a fluid parcel at
X. Let x(+,X) be the trajectory of the fluid parcel at X.

* Velocity: The time derivative X(7,X) is the parcel’s velocity, denoted by V. In the
Lagrangian coordinate system,

V(t,X) :=x(t,X).



38 CHAPTER 2. DYNAMICS OF FLUID FLOWS

In observer’s coordinate, we use v(¢,X) and it satisfies
v(t,x(t,X)) :=x(t,X).

Sometimes, we denote v(¢, -) by v, and treat it as a tangent vector in 7M;. Thus, given
a flow field v, € TM;, the trajectory x(z,X) is the solution of the ODE:

x(r) =v(t,x), x(0,X)=X.

+ Flow map: The mapping ¢, : M — M; which maps
X —x(1,X)

is called a flow map. Given a flow map ¢; is equivalent to giving a velocity field v;
on M;.

* Physical quantities can be represented in Eulerian coordinate f(¢,x) or in Lagrange
coordinate f(¢,X) := f(z,x(¢,X)) (we abuse notation by using the same notation in
both coordinates). The partial derivative d/dt means the partial derivative in time
with fixed x, while % or simply the dot, means the time derivative with fixed La-
grangian coordinate X.

2.2.2 Deformation Gradients

* The deformation gradient of a flow map ¢;(X) = x(z,X) is defined as

Ix . ox
F(t,X):= ﬁ(t,X), Fo=5va:

(2.8)

It is treated as a tensor that measures the deformation of a fluid parcel.

* Since fluid flows may have discontinuities (shocks, contact discontinuities), the ve-
locity field v(¢,x) is only piecewise smooth. Thus, the corresponding flow map ¢
can only be Lipschitz continuous, and the corresponding Lipschitz constant depends
on time. (%\Ievertheless, we fix ¢ in our analysis, and the corresponding deformation

X

gradient 55 is well-defined and bounded in a fixed finite time.

e We will need F7, F~! and F~7T in later sections. They are defined as
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* The Jacobian J(¢,X) := det(g—;;). It satisfies
dx(t,X)=J(t,X)dX.

It is required that
J(t,X)>0.

Thus, the flow map ¢ is invertible.

2.2.3 Euler-Lagrange Transformation Formula

We aim to express the Euler equation (2.6) in the Lagrangian coordinate system. This
transformation relies on the following two propositions.

Proposition 2.2 (Renolds transportation Theorem). Let v(t,X) be a vector field, and ¢,
be the flow map from M to M, generated by v. Suppose Q is a subdomain in M and
Q(t) := @ (Q). Then, for any function f(t,X), we have

d

0
E/Q(Z)fO,X)dx_/g([) Ef(ﬁX)dX—l—/asz(t)f(t,x)v-vdSt’ (2.9)

where V is the outer normal on dQ(t).

Proof. We have

1
txdx—/ txdx+hm—/ 1,x)dx
dt/ ! Ar—0 At (z—l—At)—Q(t)f( )
and
1 1
lim — t,x)dx = lim — t,x)(VAt) - vdS,
AIILnO At /Q(H-A)—Q(t) f( X) X= Atlglo At f( X) (V ) t
we get the result. =

Proposition 2.3. Let ¢; be the flow map from M to M;. Then the normal surface area
elements vdS; on dM; and ndSy on IM satisfy the following transformation formula

vdS; = JFTndsS,, (2.10)

where v and n are respectively the outer normals of OM; and OM, F = d¢,/dX, and
J=detF.
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Proof. Let dX; and dX; be a pair of two infinitesimal vectors such thatﬂ
IldSo = dX1 X dXz.
Suppose dX; is deformed to dx; at time 7, then

vdS; = dx; X dx;
= FdX1 X FdXz.

Multiplying both sides by F' gives
FT.vdS, = FT - FdX, x FdX,.
In coordinate form, it reads
. . , .
Fivids, = Fj (egFdaxirgaxf )
= & FiF4FSdX Xy
= JeyqpdXdX)
=Jn’dS,

Here, €;j; stands for Kronecker delta symbol, ﬁ and we have used the determinant expres-
sion:
& wFiF)FY = det(F) = J.

Thus, we get

FT.vdS, = (F")[vV'dS, = F}v'dS, = JnYdSy =JndS.

SWe can parameterize M by (u1,u;) through a map (uy,u) — X (uy,us). Then dX; = %dui, i=1,2.

2.4 2.4

X 00X our X our
dX; xdX, = <8u1 X (9142) dui Ndup = (M) Jduy ANduy; =ndSy, where J :=

ax | ox
8u1 8u2 ’

6

—1 if {i, j,k} has the opposite permutation as {1,2,3}

1 if {i, j,k} has the same permutation as {1,2,3}
Eijk =
0 if there is a repeated index.
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Remark. In the language of differential geometry, the term
vdS = xdx', ndSy=~dX®.
The pullback of vdS is . .
o (V' -xdx') = JxdX*
See (4.1), Appendix D.

Conservation laws in Lagrangian coordinates Recalling the integral form of the con-
servation laws (2.7)):

8,de+/ fTF VdSl = fRdX
2Q(1)

Q1) Q(1)

Here, we choose Q in (2.7) to be Q(z) := ¢;(Qq) for some fixed Qy C M. Using (2.9), we
obtain

i/ de:/ oUdx+ [ Uv-vds,.
dt Jor) Q) 0%,

This leads to the conservation laws becoming

i/ de+/ (F-Uv)-vds, = [ Rdx.
dt Jo(r) 2Q(t) Q1)

Next, pulling back the integral in the observer’s domain to the material domain by the
change of variable x — X, we get

i/ UJdX+/ (F—UV).JF T ondSo= [ RJdx. @2.11)
dt Jo(0) 29Q(0) Q(0)
Here,

4._9

dt = ot|y’

and we have used
vdS, = JF T .ndS,.

Thus, the system of conservation laws in the Lagrangian coordinate becomes

d
TWHVx-§=R, (2.12)

where
W=W, G:=(F-Uv)-JF 7T, (2.13)



42 CHAPTER 2. DYNAMICS OF FLUID FLOWS

Since pJ = py (see (2.19) in the next section), we get

0o 0 0 0
U= |pov|, F—-Uv= -0 , §= —P , Ri=| {J
poE —v-0+4q ~V-P+Q V-fJ

The stress term is transformed to

o-vdS;, = O'-JF_T-ndSo = P-ndSy,

@14

is called the first Piola stress. In component form, it readle]

where the tensor

‘ . . | ‘aX{X
P[-a _ JG[/(F )(/Z :./G[/<F )(/X — JG[:/ a\/ .
X%
Pia =] lJ —.
dx/

The work done by the stress is
v-0-vdS; =V-P-ndS).
And the heat flux Q in Lagrangian coordinates is
q-vdS; = (JqF ) -ndSy = Q-nds.

Thus,

Q=Jqr T, (2.15)

or
; oxX“
-7

Qu =Jq;(F~")}, :JCIjW-

7In the terminology of differential geometry (see Appendix), we have

P=P*(xdX®%), o =0/ (xdx').

o

o7 (sl = 72X

53 (xdX%).

Thus,
P =g/ (o).
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Remarks.
* The continuity equation is trivial (i.e., p(z,X) = po(X)).

* The momentum equation and the energy equation do not closed. The corresponding
Piola stress P and heat flux Q depend on the deformation gradient F, see (2.14),
(2.15). We need an evolution equation for F. It can be derived from

d d dx d dx 0

arfetX) = 5956 = oxa o1 = axa

i(t.X).
7 vi(t,X)

In tensor form:

dF(t,X) JV(t,X)
d X
This ODE together with (2.12)) closes the system with unknowns (V(¢,X),F (¢t,X),S(t,X)).
Note that if there is no heat conduction term ¢, the entropy satisﬁe

ds(t,X)

dt

We don’t need the energy equation. The unknowns are (V(¢,X),F(¢,X)). The equa-
tions are the momentum equation plus the ODE for F. In addition, the constitutive
equation is

(2.16)

p=p(S,V)=p(So,VoJ) = p(So,VodetF).

We will have more detailed discussion in subsection 4.1.11

* The Piola stress P = —pJF~T is much harder to handle than the Cauchy stress ¢ =
—pl, both analytically and numerically. In numerical simulations, we usually find
the stress in Eulerian coordinates.

2.3 Material Derivatives

2.3.1 Rate-of-changes of geometric variables

Rate-of-change of a scalar field For any scalar field f(z,x), we can track its evolution
along a flow path, denoted as f(¢,x(¢,X)) with X fixed. The derivative of this quantity is
referred to material derivative

d af af d

— LX(t,X)) = =—+x(t,X)=—= | = -V t,x(,X

G| roxex) = F x5 = (54v-9) s
We sometimes abbreviate % | y as % or simply use the dot notation.

8See the next section for the entropy equation.
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Rate-of-change of the deformation gradient The variation of the flow map x(z,X) with
respect to X is called the deformation gradient
ox!

ox ox
X

F(t,X):= 9

(t,X), or F.,:=
By differentiating

X(I,X) = V(I,X(Z,X))
w.r.t. X, we get the evolution equation for F':

d ox ax! ot B ovi dxk

dr oX® — 9X®  9xX®  gxk X«
We write it in tensor form:

B vt
~ oxk

F=(VV)F| or Fi Fk. (2.17)

where F := %. Vv is called deformation rate.

Rate-of-change of the Jacobian Let J = detF be the Jacobian of the flow map, which
measures rate-of-change of volume along the flow path. That is,

dx(t,X)=J(t,X)dX.
Then

J=tr(Vv)J = (V-v)J.

This follows from the Jacobi’s formula below.

Lemma 2.1 (Jacobi’s formula). (i) Let A be an n x n matrix, and J := detA. It holds

that 5
=J(AT),;. 2.18
aaij ( )lj ( )
(ii) Let A(€) be a smooth n x n matrix-valued function. Then
dJ _—
— =tr(AA”)J
1 =A™

Proof. 1. First, we recall the expansion formula (Laplace formula) of detA:

Y ajAji = (detA)§;j, or A(cofA)! = (detA)I =JI,
k

where cofA := (A;;), and A;; is the signed cofactor of A at (i, /), that is, A;; =
(—1)"*/x (determinant of the matrix which eliminates row i and column j from
A). We rewrite the above formula by

Aij=J(AT),;.


https://en.wikipedia.org/wiki/Jacobi%27s_formula
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2. We claim that d det(A)/da;; = A;;, To see that, we write detA as
det(A) = Za,-kA,-k,
k

and note that A;; does not involve g;; for all k. Thus,

ddetA B

8a,-j S
3. Nekxt,

j_ 9 daij

8aU de

= ZdijJ(A_T)ij = Jtr(AA_l).
i,j

= ) dijAij
iy

In the last step, we use Y, ;a;;b;; = tr(A" B) = tr(AB”).

2.3.2 Rate-of-changes of thermodynamic variables

Rate-of-change of the density A parcel of fluid centered at X is po(X)dX initially. At
time ¢, this parcel of fluid is

p(t,x(t,X))dx = p(t,x(¢,X))J (¢,X)dX,

which remains po(X)dX for all time by the conservation of mass. Thus,

d
p(t,x(t,X))J(t,X) = po(X) orequivalently = (pJ) =0. (2.19)
Indeed, this is equivalent to
. . (dp
pJ+pJ = E+Vp-v+pV-v J=0,

which is the same continuity equation in the Eulerian framework. Thus, the conservation
of mass in Lagrangian form is (2.19). The corresponding rate-of-change of density is

d
— V.-v=0. 2.20
dtP+P v ( )
This means that
vy P_V_J 2.21)
p VvV J

is the relative rate of change of specific volume. It is called the volumetric dilatation rate.
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Homework Show

Rate-of-change of the velocity The momentum equation in Eulerian coordinate is
3, (pv) + V- (pvv)+Vp =0.
We expand it to get

v dp
- .V V. Vp=0.
pa + 5 VPV VVAP(V-V)V+Vp =0

Using the continuity equation, we cancel the second and fourth terms to get

av Vp
bl Vy=——2. 2.22
5 +v-Vv P ( )
dv. Vp
i —7. (2.23)

Note that this expression is a mix of Lagrangian representation (dv/dt) and Eulerian rep-
resentation (Vp).

Rate-of-change of the kinetic energy We multiply (2.23) by pv to get

d (1 .,
(= — _v.Vp.
dt(zp\vr) V-V

It means that the rate-of-change of the kinetic energy in a parcel is due to the work done by
the pressure from outside.

Rate-of-change of the internal energy The energy equation is
p(GE+V-VE)+V-(pv) =0,

or

d (1 ,
p * lj — .
dt <2|V| ) (pv) =0

We can subtract the kinetic energy equation from the energy equation to obtain the motion

of internal energy:

du p
— +=V.v=0. 2.24
dt + p v ( )
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FromV.v= ‘l,‘il—‘t/, we get

dU | dv _
dar " Par T

This means that the change of internal energy is due to the volume-change of the fluid.

0 pV=L

Rate-of-change of the entropy The above dynamic equation for U together with Gibbs
relation
dU =TdS — pdV

lead to

ds
0
dt
This means that S is constant along particle path. That is, the flow is adiabatic, no heat
transfer between different fluid parcels.

(2.25)

Rate-of-change of the temperature From caloric equation of state U(7T) and the dy-
namic equation for internal energy, we obtain

dT av
"NT)y— =—p—.
U()dt pdt

This gives
dT p dV

Remark

* In viscous fluids, the entropy increases due to an interaction of fluid parcels with
different velocities. The entropy increases in fluid parcel. In particular, the entropy
increases as gases pass through a shock front. We shall discuss this in later chapter.

Homework:

1. Given a carolic relation U = U(T), derive a rate equation for T based on S = 0.

2.4 Lie Derivatives of Scalar Fields and Vector Fields

2.4.1 Basic Notions of Differential Manifolds

Differential Manifolds We shall consider a 3-dimensional differential manifold M.


https://en.wikipedia.org/wiki/Differentiable_manifold
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Differential Forms: The differential forms in a 3-D manifold M are:

* O-form: it is merely a scalar function f(x) on M. In particular, a coordinate function
x' is a function on M.

« 1-form: it looks like 1 = 1;(x)dx'. It is merely the line integral [ 7;dx’ without the
integral symbol |.

e 2-form: it looks like
©'dx Adx® + 0?dx’ Adx' + 0 dx Adx.
It appears in the following surface integral without the integral sign:

/a)ldxz/\dx3+a)2dx3/\dxl+a)3dx1/\dxzz/a)-vdS.
Y Y

where @ = (@', @?, ®?) is a vector, Vv is the outer normal of X.

¢ 3-form: it looks like
¢ =p(x)dx' Ndx® Ndx>.

The 3-form u = dx' Adx? Adx? is called the volume form.

* The set of k-forms on M is denoted by QK(M). For a 3-D manifold M, we define
Q* (M) = {0}.
The following lemma may give you some intuitions of differential forms.

Lemma 2.2. Given a surface S in R>, the normal surface element vdS can be expressed as
vdS = (dx* Ndx®,dx® Ndx' dx! Adx?).

Remark. From this lemma, we see that dx! A dx?, as applied to S, is the projection of the

vector area element vdS onto the x!-x? plane.

Proof. Let us locally parametrize the surface S by u = (u17u2). That is, the surface S is
locally given by {x(u)|u € %}. An area element on % is given by du' Adu®. The two
infinitesimal tangents on the surface generated by du; and du, are

ox 3 Ix
du! ur du?

The normal surface element is defined by

<§:d )(a ) axxaa; {‘

d2

8X ox
du! 8u

du' A du }: vdsS.



https://en.wikipedia.org/wiki/Differential_form
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On the other hand, from

a i
dx'(ul,u?) = a:fkduk
we get
aX 1 &X 2 8x' ax k
(Wdu ) X (Wdl/l ) _gl]k(a ld ) (Wdu )e
1 2 k
Z ANdu“e
Sljk_ a
= Z dx' A dx’ ek
8,'ij1
Here

d(x',x)  ox' dx’ B ox dx/
d(ul,u?) " Ju' du?  Ju? dul’

and we have used

j
dxi N = ngkgx du N du
uk dxt
_d(x,x)
—Wd /\du

because du® Adu' = —du' Adu? and du* Adu* =0 for k= 1,2.
Exterior Algebra and Wedge Product

Exterior Derivative:

* The exterior derivative d is defined as d : Q(M) — QM'(M), k=0, ...,

(a) d is linear;
(b) For k =0, define df := f.dx'.
(¢) For @ = wy(x)dx!, define d (w;(x)dx') := dw;(x) Adx'.

* Examples:

— For O-form: df = fadx' + fodx* + fadx’.
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— For 1-form:
d(Adx' + Agdx® + A3dx’) = (A} pdx® + A 3dx’) Ndx!

+ (Ay dx' + Ay 3dx) Ndx® + (Az gdx' + Az pdx®) Ndx®
= (A3,2 — Ay 3)dx> Adx + (A} o — Ay 0)dx Ndx' + (Ay 0 — A 2)dx' Adx®.

— For 2-form:

d(Bydx* Ndx® + Bodx® Ndx' + Bsdx' Ndx*) = (B) 1 +B, 2+ Bj 3)dx' Adx* Ndx.
— For 3-form: d(p (x)dx' Adx*> Adx®) = 0.

Flow Maps in Fluid Flows

 Material space and world space: Let M be the initial configuration space (also
called the reference space or the material space) and M; be the configuration space
at time ¢ (also called the world space). The volume form p = dx' A dx* Adx> in the
Eulerian space R3, where all M,, t > 0 are situated. The volume form u; of M; is
equal to u for all ¢.

* Flow Map: The flow map ¢; = x(¢,-) is a mapping from M to M,.

o Pullback: Functions or differential forms in M, can be transformed back to M
through the flow map. This is the pull-back operator. Here are some examples:

— The O-form f(z,x) is pulled back to ¢;(f)(,X) := f(t,x(¢,X)).
— The 1-form n = n;dx’ is pulled back to

oxi(t,X)

dea.

(Pt*(n)(tax) = ni(t7x(tvx))
— The volume form u is pulled back to ¢;'u = Ji, where J = det(d¢;).

Remarks

* Mass form It is assumed that there is a mass form m in the material space M, which
is a 3-form if M occupies a 3-dimensional manifold. In geometric formulation, we
can avoid the structure of volume form in the reference domain. We only need to
assign a mass form in the initial domain M.
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« Density and Specific Volume However, if we assign a volume form on M, i.e. fl, or
dX, then we can define initial density pg and the density p(z,x) through the following
argument. First, the relation between y, and fl is

0 (W) =J(LX)R, or dx=J(t,X)dX.

We define initial density to be

_ m(X)
The density at (z,x) is defined by
m(X)
[,X) = — ,
p(r.x) ¢/ (dx)

where @, !(x) = X. Both p and p are O-forms. They are related through

m :p()dX:@

P=orax) ~ Jax ~ J
That is,
po=Jp. (2.27)
* The specific volume is defined to be
oo L_erw
=5 -

V is a O-form, representing the volume occupied by fluid in a parcel with unit mass.

2.4.2 Fluid Dynamic Equations in terms of Lie derivatives

The advantages of the expressions below are

* We only need differential structure of M and M,, a mass form in M and a volume
form in M,.

* The expression uses exterior derivative ( a differential structure), and an inner product
structure in M; (to define the kinetic energy, or the momentum).

* Itis a coordinate free expression.
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Fluid Dynamic Equations In Lagrangian Coordinates

e Let d; denote for

d
dt = = .
dt |y
the time derivative with fixed X. We also use dot for time derivative in Lagrangian

coordinates.

* Mass conservation: the mass of a fluid parcel is conserved.

di (p1s) = 0.

* Equation of motion: We have seen that for inviscid flow, the equation of motion is

1
v=——Vp.
P

¢ The flow is adiabatic .

Take inner product with dx, we get
v-dx = —lVXp-dX = —ldp.
p p
Let 1 := v;dx' be the momentum 1-form. We have

: : 1
vidx' = d;(vidx") —vidv; = —Edp,

1 1
dn = o} (§d|v|2 — Edp) . (2.28)

Fluid Dynamic Equation in Eulerian coordinates

» The Lie derivative d; +.% in the Eulerian coordinate is defined to be
di = (0 +%4).

* We can rewrite the above equations in terms of the Lie derivatives in the Eulerian
coordinate system:
(0 +4) (ps) =0,
(0 +L)S=0, (2.29)
(9m +24n) = 7d|v]* — 5dp.

For details of Lie Derivatives, see the Appendix D.
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Viscous flows

* Viscous flows: the deviatoric stress 7 is a T*M-valued (n — 1)-form. Similar the way
we treat for the pressure, we define

T= T;- (dx") @ dx’

The equation of motion for viscous fluid flow is

1 1 1
dm =@} <§d|v|2 — Edp—i— E*dr) :

* Vorticity equation: The vorticity @ := dn is a two-form. By taking d operation on
the momentum equation, we obtain

diw = @ (—dV Ndp+d (V xdr)). (2.30)

» Expression in terms of Lie derivative. The Lie derivative is defined to be
d=¢ (d+24).
With this notation, we have

— Euler equation:
1 1
3;11 +$Vn = Ed|V|2 — Edp

— Navier-Stokes equation
an+2m = ravP— Lap+ L aar.
2 p p
— Viscous vorticity equation
00+ L0 =—dV ANdp+d(Vxdr).

For details, see appendix.
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Chapter 3
Flow Invariants

In the preceding chapter, we established that entropy S remains invariant along a fluid par-
cel’s trajectory. In this chapter, we explore additional invariants, focusing on energy-related
invariants and vorticity. The theories corresponding to these invariants are the Bernoulli
principle and circulation theory.

3.1 Barotropic Flows and Bernoulli Principle

3.1.1 Degenerate thermo relation

Recall that we have two independent thermal variables, say p and V, in fluid dynamics.
However, certain fluid flows satisfy VV x Vp = 0, indicating that the level sets of V co-
incide with those of pressure p. This implies a functional dependence between V and p,
where there exists only one independent thermodynamic variable. Such flows are termed
to have a “degenerate thermo relation.”

Examples of flows exhibiting a degenerate thermo relation include:

* Barotropic flows Barotropic fluids are fluids where pressure is solely a function of
density and vice versa. This frequently occurs in atmospheric flows, where density is
a function of pressure. It is important to note that this condition doesn’t imply con-
stancy for temperature 7' or entropy S. A fluid which is not barotropic is baroclinic.

* Isentropic flows A flow is termed isentropic if the entire flow possesses a single
constant entropy S. This approximation holds when the flows exhibit no shocks or
very weak shocks. In such cases, we can omit the energy equation, as there is only
one thermodynamic independent variable, typically density p, determined by the
continuity equation. For y-law gases, the pressure is given by p = Ap?, where A is a
constant.
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* Isothermal flows In flows where Yy = 1 for y-law gases, the flow is referred to as an
isothermal flow. In these scenarios, temperature 7' remains constant throughout the
entire flow due to the relation p = Ap and the ideal gas law pp~! = RT. This type of
flow characterizes highly compressible gases, where compressing such gases results
in the radiative dissipation of energy.

* Incompressible flows Incompressible flows satisfy % = 0, which is equivalent to
the condition V -v = 0. For these flows, the pressure p is treated as a Lagrangian
multiplier (see the variational approach for flow dynamics). This is also a case of
thermo degeneracy.

3.1.2 Bernoulli Principle

The Bernoulli principle pertains to the invariance of an energy-related quantity in steady
barotropic fluid flows subjected to a conservative body force.

The conservative (per unit mass) body force f is characterized by the existence of a
scalar potential function ® such that:

f(x) = —p(x)VO(x).
A classical example of such a force is the gravitational force.

Theorem 3.2 (Bernoulli Principle). For steady barotropic flows under conservative body
force £ = —pV®, the quantity

1
H:= §|V|2 +h(p) + P = constant (3.1)

remains constant along every streamline (i.e., the integral curves of the velocity v). Here,

hip):=J dppﬁ is the enthalpy.

Proof. With the conservative body force, the momentum equation takes the form:
hv+v-Vv+VVp = -V,

where V = 1/p is the specific volume. Utilizing the identity
v-Vv=V (%Mz) +oxv,

where @ := V X v, we obtain

1
v+ oxv+V (EMZ) +VVp=-Vo. (3.2)


https://en.wikipedia.org/wiki/Bernoulli%27s_principle
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For barotropic flows, VVp = Vi, where h = [ %p. The Euler equation simplifies to:

19v+0xV+VH=0, (3.3)
where 1
H= 5|v|2 +h(p) +P(x).
In the case of steady flows, the equation becomes:
o xv+VH =0. (3.4)

Taking the inner product of this equation with v, we obtain:

v-VH =0.
This means that the directional derivative of H in the direction v is zero, indicating that this
quantity remains constant along the integral curve of v, which is the streamline. [
Remarks

1. The Bernoulli theorem is an algebraic relation between kinematic variable v and
thermodynamic variables /(p), and the external conservative force.

2. That the Bernoulli principle derived from the momentum equation, is similar to the
conservation of total energy derived from momentum equation in classical mechan-

ics. [1
3. Formula (3.3) indicates that the acceleration is attributed to:

(i) arotation (@ X v), where v = —® X v represents a rotation of v. The term @ x v
is called the vorticity force.

(ii) a conservative force V(|v|>/2+h+ ®).

4. For barotropic flows, the pressure p is only a function of density. We express U as a
function of p as
1% 1 0
U:—/ p<—) dV:/ &’;)dp.
v P

h(p) :=U +pV

The enthalpy

'In classical mechanics, the momentum equation is mx = —V®(x), we multiply it by x to get
% (3m|v|*> +®(x)) = 0. This gives % (Am|v|> + ®(x)) = E along a particle trajectory.
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satisfies

Hip)=U'(p)+ (5) _ p’fj’ )

In particular, when p(p) = Ap?, where A is a constant, we have

Y P
h = ——=.
) —1p

. For steady barotropic flows, the equation becomes:

o xv+VH =0. (3.5)

We observe that H remains constant along the integral curve of v. Similarly, applying
the same procedure, we derive:
o-VH =0.

This implies that H also remains constant along the integral of w, referred to as the
vortex filament.

. In the case of w = 0, such a flow is termed an irrotational flow. For steady, irrota-

tional, and barotropic flows, we have VH = (. Consequently, we obtain:
H = constant

in every simply connected subdomain of the flow region.

. Another special case is: p = constant. In this case, the term VVp in 1} is V%.

Thus, 4 in (3.1)) is replaced by p/p. The Bernoulli principle for constant density case
reads:

1
H= §|V]2 + % +®(x) = constant

along a streamline.

Applications of Bernoulli Principle

1. Vortex center has low pressure:

* Typically, the center of a vortex exhibits higher speed, resulting in low pressure
at the center.

2. Effect of Strong Wind:

* In strong winds, the low pressure makes it more challenging to inhale and
breathe.
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Figure 3.1: Pitot Tube. Credit to Cmglee - Own work, CC BY-SA 4.0, https:
//commons.wikimedia.org/w/index.php?curid=74391265http:
//galileo.phys.virginia.edu/classes/152.mfli.spring02/Boyle.
htm

3. Pitot Tube, wiki, |Video

* The Pitot tube utilizes Bernoulli’s law to measure wind speed, employing the
equation:
Lo ps_p
2 p P
Here, p; is the total pressure or the stagnation pressure, p; the static pressure.
This yields the wind speed equation:

v 2 Pe=ps) _ [2Pmgh
p p

where p,, is the density of mercury, and p is the density of gas.

* For further applications such as the Venturi effect (for reducing fluid pressure by
increasing flow speed), flows through an aperture (Torricelli’s Theorem), etc.,
you can read a classical book: Milne-Thomson, Theoretical Hydrodynamics.

3.2 Vorticity and Circulation Theorem

3.2.1 Circulation Theorem for Barotropic Flows

Vorticity and circulation theory play important roles in fluid dynamics. For thermo degener-
ate fluid flows, the vorticity equation only involves kinematic variables, the thermodynamic
variables do not show up. On the other hand, one can recover the velocity from vorticity.
The thermodynamic variables are transported passively.
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Circulation and vorticity theory was developed by Cauchy, Hankel, Helmholtz, Kelvin
in 19 century. A good historical review article about vorticity and circulation is the article:
Uriel Frisch and Barbara Villone, Cauchy’s almost forgotten Lagrangian formulation of
the Euler equation for 3D incompressible flow (https://arxiv.org/pdf/1402.
4957 .pdf).

Definition 3.2. Given a closed curve C in the fluid region. We define the circulation of flow
field v along C to be
/ v-tds.
C

The circulation measures how fluid rotates. By the Stokes theorem,
[v-tas= [Vxv-vas (3.6)
C hy

where X is any surface with X = C. The quantity @ := V x v is called the vorticity. Thus,
this circulation is equal to the vorticity flux passing through the surface enclosed by C.

Theorem 3.3 (Circulation Theorem). In an inviscid fluid flow under a conservative body
force with degenerate thermo relation, the circulation is invariant under fluid flow. More
precisely, let Cy be a closed curve and C(t) := @,(Cy). Then

d
E/C(I)V(l‘)'tdst =0.

Proof. With the thermo degenerate relation, we can find & such that VA = Vp/p. Thus, the
Euler equation becomes

1
V:8,V—|—V-VV:—EVp—VCD:—V(h—l—CID), (3.7)
Let us parametrize the curve Cy by arc length s. That is Cp = {X(s)|0 < s < L} with

X(0) =X(L). The curve C(z) in the observer’s space is C(r) = {x(¢,X(s5))|0 < s < L}. Its
tangent is

Ix(1,X (s))
_ ds
Ix(1.X())
=5l
and the arc length is
ds; = ‘ 8X(t(,9)s((s)) H ds.
Let us write


https://arxiv.org/pdf/1402.4957.pdf
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Let us write the evolution of circulation in Lagrange coordinate:

L /
/C(l)v(t,x) tds, :/0 v(t,x(1,X(5)) - X (1, X (5)) ds.

We differentiate this equation in ¢ with fixed X (s).

%/C([)V(t,x) tds = di/LV(t,X(I,X(S)) X (t,X(s))ds

tJo
L

:/ v-xX'(s)+v-Xds
0

L d
= V(-®—h)-X'+v-(Vv-X)ds ¥ =—-—v=Vv-X
0 ds
L 1 2 /
= V[-DP—-h+=|v|7)-X'ds
0 2

Ld (1,
= (VP-4
0 ds(zM > ’

=0. *.C(0) is a closed curve.
]

Corollary 3.2. For fluid flows with degenerate thermo relation and under conservative
force field, its vorticity 2-form is invariant with the flow. In other words, if ¥ is a closed
surface and £(t) = @;(X), then

d
— w-vdS; =0. 3.8
dt /Z(z) t .5)

Proof. From the Stokes theorem,

d d
—/ V><V~VdSt:—/ v-tds =0.
dt Jx(r) dt Jox(r)

3.2.2 Vorticity Equation in Eulerian coordinate

In this subsection, we derive a vorticity equation, which can be thought of as a differential
form of the circulation theorem.
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. We assume the specific body force is conservative. The Euler equation reads

1
IV+wOXV+V (EMZ) +VVp=—-Vo,

By taking curl (i.e., Vx) on this equation, we can eliminate those gradient terms and
leave only kinematic variables:

G0+v-Vo—(0-V)v+o(V-v)=VpxVV. 3.9

This is the vorticity equation in the Eulerian coordinates. In the derivation, we have
used the identities from vector calculus

Vx(wxv)=(v-Vo—o-Vv+o(V-v)—v(V-0)
V-.o=V-Vxv=0
VX (VVp)=VV xVp4+VV x(Vp)=VV xVp.

. Note that from the first law of thermodynamics

VU = TVS— pVV.
We take curl on both sides, using V x (TVS) = VT x VS to get
0=VT xVS—-VpxVV.

Thus, the vorticity equation is equivalent to

0+v-Vo—(0-V)v+o(V-v)=VT x VS, (3.10)

. Each term in the vorticity has a name:

* v-Vo: the advection term
* (®-V)v the deformation (stretching or expansion) term

* @ (V-v) the source term.

. The circulation conservation is valid on the level set of entropy, where VS = 0. In

fact, it is valid on the level set of S, or T, or p, or V.

. For fluid flows with degenerate thermo relation and under conservative force field,

the thermo area element degenerate. The vorticity equation becomes

0+v-Vo—(ow-V)v+ o (V-v)=0. (3.11)

This gives the circulation theorem.
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Homeworks Let @ :=V x v, show the following identities in vector calculus:
L v-Vv=V (v} + o xv.
2. VX(oxv)=0(V-v)—v(V-0)+ (v-V)o—»-Vv
3. V.Vxv=0

4. Vx(VVp)=VV xVp+VVx(Vp)=VV xVp.

3.2.3 Vorticity equation in Lagrangian coordinate

1. There is a very good interpretation of the above vorticity equation in differential
geometry. Let us define the vorticity 2-form as

®=®-vdS = 01dx> Ndx> + odx> Ndx' + wydx! A\ dx.

In (3.8), let us change the integration back to initial time:

dt/ dt/ ¢ o /dt‘p’

The term @ @ is a 2-form at time 0, called the pullback of @ by the flow map ¢;:

o 0(t,X) := o' (1,x(2,X))dx*(t,X) Ndx> (1, X)
+ 0 (t,x(t,X))dx> (t,X) Ndx' (1, X)
+ 3 (t,x(2,X))dx' (£,X) A dx*(2,X).

2. Let d; be the abbreviation of d/dt, which is the partial derivative in ¢ with fixed X,
1.e. the material derivative.

diof o = (d;@")dx* Ndx® + (d;0?)dx® Ndx' + (d 0 )dx! A dx*
+ 0'd(dx* Ndx®) + @*d, (dx® Ndx) 4 o d; (dx! Adx?)
M N o’ ov! ;ov!

- —} dx* N dx®

=@y vl ol (75 T 0 s -0

(9\/ (9\13 38\/ 1aV
[(81+VV) +(J) (a 1+ﬁ)—w ax3 — &x1:|dx /\dx
vl oh? o3 v
) 3 o’ o! 1 2
+{(a,+v V)o +w(al+&2) EF i ax]dx Adx
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For each component, we have

, , o' vk o
dw' = d,0 +1 +0'———o
! ! Y dxk axk  Jxk

In vector calculus, we define w = (co1 , a)z, (o3)T. In vector form, it is

do=00+v-Vo+ oV -v—(Vv)o,

(3.12)
Thus, we get
dio =@ (dpNdV). (3.13)
3. Expression in terms of Lie derivative. The Lie derivative is defined to be
di =@ (d+.2).
With this notation, we have
0,0+ %y =dpANdV =dT NdS. (3.14)

The last equality is obtained from 0 = d?U = dT AdS —dp AdV.

3.2.4 Helmbholtz’s Vorticity Equation: Deformation of w/p

In the vorticity equation:

G0+v-Vo—(o-V)v+ o (V-v)=Vpx VV. (3.15)

Helmholtz derived another form of vorticity equation without the source term @ (V- v).
Recall the continuity equation:

OV +v-VV =V(V-v).

(3.16)
By V(3.15) +® (3.16), we can cancel the source term to get
o(Vo)+v-(Vo)— (Vo-V)v=VVpx VV. (3.17)

In terms of the density p := 1/V, it reads

d (o 0] 1
— —|=-V)v=—=Vp xVp. 1
dt(r)) (p )V p3 PP G189
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Remarks.
* The term (% . V) v(ie., %k%vi) can be expressed as (Vv)(w/p) (i.e., g—;,ia)k/p). It
is a deformation term. We may diagonalize Vv and observe how @/p changes along
the eigenvectors of Vv. In the expansion direction (the corresponding eigenvalue

of Vv is positive), the corresponding component of @/p increases exponentially,
whereas in the shrinking direction, the component of @/p decreases exponentially.

* The term on the right-hand side #Vp x Vp is called the buoyancy source.

* The compressible vortex @/p is transported like a vector.
In the case of thermo degeneracy where VV x Vp = 0, we have the following theorem.

Theorem 3.4. For fluid flows with degenerate thermo relation and under conservative force

field, we have
£2)-(5 )

and
20 =23220) .20
It means that % is transported like a tangent vector along a particle path.
Proof. 1. Formulae (3.19) is obtained from (3.18)) because of the degenerate thermo
relation.

2. Equation (3.19) in matrix form is

£(5)-o0(5)

This is identical to the perturbation equation of the flow map equation:

X =v(t,X),
which is J 5
v
—0x = —0X.
a’r T ot
Its solution is 5
X
ox(r) = ==x(0).
(1) = Zx(0)
This is because it satisfies the perturbation equation:

d d Jx av dv Jx
ESX(I) = EQ_XX«)) = 8_XX(0> = X8_XX<O) = (Vv)x(1),

and the solution is unique.
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3. Thus, we may think %(O) as a tangent vector at (r = 0,X), %(t) as a tangent vector

at (z,x(¢,X)). The tangent vector %(t) is transported along the flow trajectory.
[

Corollary 3.3. For fluid flows with degenerate thermo relation and under conservative
force field, if ® = 0 initially, then it stays @(t) = 0 for all later time. In other words, for
thermo degenerate fluids, if the flow is irrotational initially, it stays irrotational in all later
time.

Remarks In terms of the Language of differential geometry,

* an equivalent formulation of the above theorem is

. 1 .
0'(1) = S Fh0f.

* The push forward of the vorticity two form is
*x@(t) = F o .

The ratio of the two stars (x; and ) gives the J term.

® 9

* One can express ®/p as p oAl

Vortex filament

* Let us define the vortex filament to be the integral curve of the vorticity field w. Let
X (o) be a vortex filament at 7 = 0. That is,

dX o(X,0)

da  p(X,0)

Let us investigate this line following the flow x(z,X (a)). Its tangent is

ox dX
X da
X

= axpY

P
= —(1).
P

This shows that the vortex filament stays as a vortex filament. Thus, a vortex filament
flows with the fluid flow.

%m,x(a)) _
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* The vortex filaments through each point of a closed surface ¥ constitute a vortex tube
Q. Thus, a vortex filament is an infinitesimal vortex tube. The circulation theorem
implies that the vortex tube (filament) stays as a vortex tube (filament) as it flows
with the fluid.

3.2.5 Potential Vorticity

* Ertel (1942) derived another form of vorticity equation, which removed the buoyancy
term and the stretching term. It is useful in rotating fluid dynamics. The idea is to
introduce a free advected thermo parameter, called y. It has two properties:

- Vy-(VV xVp)=0
— v is freely advected by the flow:
oy+v-Vy=0.
* Examples of such function ¥ are

— Entropy §

— Potential temperature 0

R/c y-1/v
Q:ZT(@) ”:T(@)
V4 V4

where po is a standard reference pressure, usually 1,000/4Pa (1,000mb). (The
standard atmosphere (symbol: atm) is a unit of pressure defined as 1,013.25 hPa.)

* If we take the dot product of the vorticity equation (3.17) with Vy, then the right-
hand side disappears because there are only two independent thermo parameters.

* Potential Vorticity Define

gi— o-Vy V- (yo)
P p

It is called the potential vorticity associated with the advected quantity y.

(-V-0=0). (3.21)

* Ertel’s Theorem: The potential vorticity is freely advected:

Da_,

= (3.22)

That is, q is invariant along the parcel trajectory.
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Proof. 1. Let us rewrite the Helmholtz vorticity equation (3.17)) as
D
Eé —E-Vv=VVV x Vp. (3.23)

where & :=Vo=w/p.
2. We take V to the free advection equation of y:

0=V y+v-Vy)
= (V) +(Vv) - (Vy) +v-V(Vy)

= 2 (YY) + (V¥)- (V) (.24

3. We take
Vy-(3.23)+& - (3.24),

Using Vy - (VV x Vp) =0, we get

D D
Vy- Eg +§D—t(V‘lf) =0.

¢ Remarks.

1. The potential vorticity is a O-form.

2. The Ertel Theorem can also be derived from the relabeling symmetry (see
Salmon, 1988).

References
1. P.G. Saffman, Vortex Dynamics (1992)

2. Lamb, Hydrodynamics (1932).

3.3 Vortex Momentum

3.3.1 Vortex Momentum

Ref. Saffman, Vortex Dynamics, Chapter 3.
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3.3.2 Some Flow Conservative Quantities

The following statement is copied from Majda and Bertozzi, Vorticity and Incompress-
ible Flow (pp. 24) For incompressible inviscid flows which are vanishing at infinity, the
following quantities are conserved in time:

* total velocity: [vdx

* total vorticity: [ @wdx

total kinetic energy:

1
§/|V|2dx:/v-(xxa))dx.
/V-(DdX

1
= dx.
2/xxa)x

1
g/xx(xxw)dx.

Helicity:

Impulse:

Moment of fluid impulse:

We are interested in global mechanical properties expressed in terms of v and . For
instance, we can project the impulse to a direction a to get the impulse in the a direction:

/(x X 0(x),a)dx = /(a)(x) X a,X) dx
= /(Va(x,v) —(v,Vya—V,x) — Vi(a,v)) dx
:/((v,a>+(V-x)<a,v>) dx
:4/<v,a)dx.
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Chapter 4

Variational Principles for Fluid
Flows

The approach of variational principles in analytic mechanics has a long history. You can
see wiki page on the “the History of Variational Principles in Physics”. Below is a brief list
of historical developments:

* (1705) Gottfried Leibniz, least action principle
* (1744) Euler and Pierre Louis Maupertuis, Least action principle
* (1757) Euler: Euler equation (continuity equation and momentum equation)

* (1788) Lagrange formulated Lagrange mechanics and derived Euler equation based
on the variational principle in Lagrangian coordinates.

e (1809) Poisson introduced the Poisson bracket.
* (1833) Hamilton formulated Hamiltonian mechanics based on Lagrange mechanics

We shall derive the equations of fluid dynamics via the variational approach. There are
two approaches, one uses Lagrangian coordinates, the other uses Eulerian coordinates.

4.1 Lagrange’s Variational Approach

In 1788, Lagrange derived the Euler equation based on the variational principle in La-
grangian coordinates. Mimicking the variational approach in classical mechanics, we shall
take the variation of the action with respect to parcel paths x(z, X ), or equivalently, the flow
maps.

71
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* Action Given a flow map x(-,-), we define its action in the Lagrangian coordinates
to be

S| = Zx| - % [x] = /IO”/QO (%po(X)|X(t,X)|2—W(§—;>> dx dr.

Here, the first term is the kinetic energy, while the second term W (F) is the potential
energy, which is the energy stored in a fluid parcel through the deformation gradient

__ Jx
F_W'

* In the case of fluid mechanics, W (F (7,X)) = po(X)U(So(X),V) for a fluid parcel.

The specific volume V is
1 J  det(F)

:E:P_o_ Po

* Note that the specific entropy S is assumed as a constant along a parcel path. There-
fore, W = po(X)U (S,V) is a function of det(F') along a parcel path.

V:

We will derive the equation of motion in Lagrangian coordinates without the body force.
First, we work for compressible fluid flows. Next, we work out incompressible fluid flows.

4.1.1 Variation of Action w.r.t. Flow Maps for Compressible Flows
Equation of motion for the flow maps x(z,X)

1. Variation of flow maps We will study the variation of the action with respect to the
flow map x(-,-). Let us perturb the flow map by x¢(¢,X) with x°(¢,X) = x(z,X), the
original unperturbed flow map. We denote

d
6X(t7X) = $|820X8(I,X), 4.1)

as the variation of the flow map x(-,-). We represent the variation of x by §x. Since,
x¢(t,-) are flow maps, its variation Ox is an infinitesimal variation of position, can be
called a virtual displacement.

2. Variation of a functional The variation of a functional /[x] in the direction of dx

means that J
Ol[x] := Te le=ol [XF].

The derivative % is defined to be



4.1. LAGRANGE’S VARIATIONAL APPROACH 73

3. Variation of action with respective to flow maps We shall study the variation of
action w.r.t. flow maps. We choose those variations 8x satisfying dx(¢,X) = 0 for
t =tp and = 11 so that we can take integration by part for ¢ in the action integral, no
boundary terms appear.

5S[x] = /:/Qo(po ). 8% — W' (F)SF) dX di
_ /:/ﬂo( %po X))-6x— W(F)?XX) dx dt
_ /QO( po(X)K(t,X) - 8x — W(F)%‘l") dX dt
- /QO< po(X 6x—aiX ( '(F)5X)+<aiX-W/(F))-5X) dXdt

_ /t/go( po(X zx)+% W/ (F ))-SXdth.

Here, we have chosen those variations satisfying

d

[ (W(F)8x) dX:/ag W' (F)3x-ndSy = 0. 4.2)
0 0

4. Equation of motion for the flow map The least action principle states that

08
5x —I[x]=0 (4.3)
along a physical flow map x. That is
58 ox

Here, P = W/(F) is called the first Piola stress tensor. The component form of the
above equation is

P~a:a—W Fi Z:a—x (Vx-P)i a

P%
YO9FL YT 9Xy

~oxeli

This is the equation of motion in Lagrangian coordinates for the flow map x(7,X). It
is a second-order partial differential equations.

Equation (4.3) is called the Euler-Lagrange equation corresponding to the action 8.
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Equation of motion for (v, F)

1. Equation of motion for (v,F) Let us express this equation of motion in terms of v
and thermo variables in Lagrangian coordinate. First, the Euler-Lagrange equation
(4.4) can be rewritten as

pov = Vx - P.

Next, we express the first Piola stress in terms of thermo variables. Recall that
W(F) =po(X)U(So(X),V),

because the entropy S is constant along particle path. The first Piola stress P = W' (F)
becomes
I(po(X)U(So(X),V)) _ U IV
P=W(F)= L =
() IF POV oF
oV d(poV) aJ r
Popop =P =Py =P/

Here, we have used V = 1/p, pJ = pp and ddet(F)/dF = JF~T, which is (2.18).
Thus, the equation of motion is

v=Vyx P(F
{2 " @5)
- JX

where
P=—pJFT. (4.6)

The thermodynamic variable p is a function of (S,V). With fixed X, we have S(¢,X) =
So(X). The variable V =1/p =J/py = det(F)/po(X). Thus,

det(F)
ps.v)=p (5000, 500 )
Po(X)
is only a function of F and X. The system (4.5), is closed with unknowns v(z, X)

and F(t,X).

2. Compatibility condition The above derivation shows that if x(z,X) satisfies PDE
(4.4)), then its derivatives (v(¢,X),F(¢,X)) satisfies PDE (4.5)). In addition, from

2°x _ d2°x
oxXBoxe  gxagxh

and
0%x B 0%x
AtdX%  9X%ot’
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we see that necessarily F satisfies the following compatibilty conditions (or integra-

bility condition): .
JFL  OJFg
a_ __P @.7)
oxB  ox“
and Py
i V!
The second one is already appeared in our equation (4.5). So (.7) is an addition
condition.

Conversely, if a pair of functions (v(z,X),F(r,X)) satisfies PDE (4.5), does there
exist a function x(¢,X) satisfying x(¢,X) = v(7,X), g—; = F(t,X) and equation 1b ?
Certainly there is no guarantee that F satisfies (4.7). However, if F satisfies (4.7) at
t =0, we claim that F' satisfies for all later time. This is because

d <aFOQ 9F;§) o v

dt \ 9xB  9x% ) 9Bda  dadf
If v and F satisfy the compatibility conditions , , then we can find its integral
x(t,X) with x(#,X) = v(t,X) and 9% = F(t,X).
Equation of motion in Eulerian coordinates The equation of motion in Eulerian coor-
dinates is simpler. From (2.14) and (4.6), the Cauchy stress for fluids is
c=J"W(FF' =y 1pJFTFT = —pI.
Using the Euler-Lagrange transformation formula, we obtain
p(dv+v-Vyv)=—Vp.
Recall that the thermo variables p and S in Lagrangian frame satisfy
p(t,x(1,X))J(1,X) = po(X),  S(t,x(1,X)) = So(X). (4.9)

They are not needed in the equation of motion in Lagrangian formulation because we can
treat pressure p as a function of X and F based on the conservation of mass and adia-
baticity assumption. However, p and S are needed in the equation of motion in Eulerian
formulation. Thus, we need dynamical equations for p and S, which are

aip + Vx(pv) =0,

atS—l_V'sz — O-
They are obtained by differentiating (4.9)) in ¢.
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Boundary conditions In the above derivation of the Euler-Lagrange equation (#.4)), we
require the boundary condition (4.2)) for 6x. Express this in component form reads

P%ng8x'dSy =0 (4.10)
on the boundary d€. Note that P is a function of F', which is g—; For the fluid mechanics,
P = —pJF~T. This gives

0= pdx-JF TndSy = pdx-vdS,.
Thus, a natural boundary condition is
ox(t,X)-v(x(t,X)) =0 for X € Q.

The condition
v-v=0o0nd&;

implies 6x-v =0 on dQ,. E| This is called the natural boundary condition. This is also an
advantage of the variational approach, easier to find a natural boundary condition.

4.1.2 Variation of Action w.r.t. Flow Maps for Incompressible Flows

Incompressibility

* When the density of each fluid parcel is unchanged during its motion, such fluid is
called incompressible. That is

op+v-Vp=0. (4.11)

* Incompressibility is equivalent to
V.v=0. (4.12)
This follows from the definition of incompressibility and the continuity equation

op+v-Vp+pV-v=0

* Incompressibility is also equivalent to

J(t,X) :=detF = 1. (4.13)
where F' = % is the deformation gradient. This follows from
d d d
—(pJ)=0, ——p=0 = —J=0.
(dt (p7) =0, ar” ) dt

Since J(0,X) = 1, we get J(t,X) = 1 for all 7.

"When v - v, the flow is required to slip on the boundary. This means that §x(¢,X) | 9Q.
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Variation of action with incompressibility constraint
1. The incompressibility is equivalent to the constraint
detF(t,X) = 1.

Thus, in the above variation of action, we should add a constraint term with a La-
grange multiplier:

1
5S[x] + & l/p(t,X)(detF _1)dXdi =0.
fo

Here, p is the Lagrange multiplier.

2. The variation of $[x] gives
1]
58 — / (= po(X)X+ VxP| - 5xdX dt.
1

The Piola stress

~

oWV 9w 1 9

— 1w’ - i—
P=WiF)= oV OF 9V po(X) dF

0, -J=1

3. The variation
S(detF) =tr(F~T . (8F))detF =tr(F~T - (8F)).
where

q85xi
) ¢

tr(F~1-(8F)) = ) (F~1)#(8F ) = Y (F ")

i i

We take integration by part in the variation form below to get

t t
5 '/p(t,x)(detF—l)dXdz:/'/p(t,x)adethth
fo Iy

n déx 1 0 .
_ ~T)a _ Ty | 5y
-/ /pga(F )G dX di /m /1'2,05 {axa (pF 1) } SxldX di

—— /tot'/[vx -(pFT)]- 6xdX dt
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4. Euler-Lagrange equation in Lagrangian coordinate for the constrained flow
Combining the above two calculations, we obtain the following constraint-flow equa-
tion

ox
X=-Vy-(pF 1), detF=1, F:=—-——
PoxX X (p )7 € s oX

for the unknown x(z,X) and p(¢z,X). Here, the boundary terms appeared in the

integration-by-part is
5]
/ /ASX-(pF_T)-ndSOdt.
o oM

We choose those 8x to make this term to be zero.

We can express this second-order equation as a system of first-order equations:

pov=—Vx-(pF~T)

s ov(t,X)
F==x

X
detF(t,X) = 1.

The unknowns are (F, v, p).

Eulerian formulation Through the transformation formula, we get that the equation of
motion in Eulerian coordinate is

9, (pv)+ V- (pvv)+Vp =0.

We still need the continuity equation for p. The incompressibility constraint is expressed
as
V.v=0.

We summarize them as

ap+V-(pv)=0
o;/(pv)+V-(pvw)+Vp=0.
V-v=0

The unknowns are (p,v, p).

Equation of motion Consider incompressible simple fluids (i.e. no stress appears, fluid
particles have only free motion). The governing equations are

* Continuity equation
pi+V-(pv)=0.
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* Incompressibility

* Equation of motion

dv
—+Vp=+~f
pdtJr P

Here, we have (p, p,v) as our unknowns.

79

(4.14)

Remark For incompressible flows, the is only one thermo variable. Thus, we cannot
include the energy equation. The role of pressure p is a Lagrange multiplier from the

constraintdet F =1orV-v=0.

Boundary Conditions We impose the boundary condition

v-v=0, xe€dD.

It means that the fluid can not flow through the boundary dD.

Simple Flows When p =1, we have

dv
~4Vp=0, V-v=0.

This is called the simple flow. The unknown are (v, p).

(4.15)

Barotropic Flows Barotropic flow: the pressure is a function of p. In this case, we
can find a potential (the enthalpy) /4 such that /(p) = p’(p)/p. Then the barotropic flow

equation becomes

dv
— +Vh=0
dt + ’

The equation for p is still the continuity equation

dp
—+pV-v=0.
dt TPvey

4.2 Eulerian Variational Approach

There are several ways to derive the Euler equation via variational principle in Eulerian

coordinate. These include
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* Euler-Poincare-Hamel’s approach,
 Herivel-Lin’s approach approach.
The references are

1. R.L. Seliger and G.B. Whitham, F.R.S., Variational Principles in Continuum Me-
chanics, Proc. Roy. Soc. A 305, 1-25 (1968).

2. Rick Salmon, Hamiltonian Fluid Mechanics, Ann. Rev. Fluid Mech. 20, 225-256
(1988).

3. PJ. Morrison, Hamiltonian Fluid Mechanics, in Encyclopedia of Mathematical Physics,
vol. 2, (Elsevier, Amsterdam, 2006)

4. N. Padhye and P.J. Morrison, Relabeling Symmetries in Hydrodynamics and Mag-
netohydrodynamics, Plasma Physics Report (1996).

5. J. Serrin, Mathematical Principles of Classical Fluid Mechanics (1959).

6. Beris and Edwards, Thermodynamics of Flowing Systems (1994).

4.2.1 Euler-Poincare-Hamel’s Approach (Dynamically accessible vari-
ation)

1. Dynamically accessible flow maps Let x(7,X) be a flow map. Consider a variation
of x(¢,X): it is a one-parameter family of flow maps x*(¢,X) with x°(z,X) = x(¢,X).
It is called dynamically accessible if it satisfies the constraints that x(¢,X) satisfies.
That is, the density and entropy constraints:

p(t,x° (1, X)) (1,X) = po(X), J*(t,X) = det (g’;) (4.16)
S(,x°(1,X)) = So(X). 4.17)

2. Dynamically accessible flow variations w: We recall that the variation of the flow
map is defined as

Sx(1,X) 1= (5]s—0)xx* (1, X).

We now define the flow variation or the virtual velocity in Eulerian coordinate to be

w(t,x) := 8x(r, 9, (x)),
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where ¢,(X) = x(¢,X) is the flow map. The role of w is similar to v. Both of them
are defined in the Eulerian coordinates, and

v(t.x(t,X)) = (9)xx(t,X),  W(t,x(t,X)) = (]s—0)xx’(1,X)

Note that (¢,s) are independent in x*(z,X). This implies

(95)x (9)x X’ (1,X) = (h)x (Is)x X*(, X).

We also note that
(as)x = (85)X +w- Vg, (8,)X = (8,)X+V-VX. (4.18)

This gives
(ds)xV+W-Vv=0w+v-Vw. (4.19)

3. Dynamically Accessible Variations The dynamically accessible flow variation w
induces other dynamically accessible variations on v, p and S in Eulerian coordinate
as the follows:

Sv(r.x) — (ai S_o>x"<”"s<t’x”’

8p(t,x) := (% S_0>Xp<r,xs(t,X)),

55(1x) = (ai S_O)Xsc,xsa,x»,

with x = x(,X) fixed, where % is evaluated at s = 0. The right-hand sides are

evaluated at X = ¢, (x). We have the following lemma.

Lemma 4.3. The dynamically accessible variations dv, 0p and 8S satisfy

Oov+w-Vv=0w+v-Vw, (4.20)
Sp+V-(pw) =0, 4.21)
0S+w-VS=0. 4.22)

Here, the V denotes for Vy.

Proof. (a) (4.20) is the equation (4.19).
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(b) Next, we compute (Js|s—0)xJ: Using x*(z,X) being flow maps. We have
ox* d d _ dwox’

XX = o=

(D)x gy = gx (Pxx = Fowi(t,x) = 5%

() -w(3)

Its determinant det (%) = J¥ satisfies

Thus,

(Osls=0)xJ =0J+wW-VJ=(V-w)J.
(c) Recall that x*(z,X) satisfies the density and entropy constraints:
p(t,x*(t,X))J°(t,X) = po(X) (4.23)
S(t,x*(¢,X)) = So(X). (4.24)
Differentiating (4.23) in s fixing X, using (4.18), we get
0= (ds)x (p(1,x°(1,X))* (1, X)) = (ds)x (p(1,X"(1,X))) J* +p (95)x J*
=(6p+w-Vp)J+p(V-w)J=(5p+V-(pw))J.

This gives (4.21). Similarly, differentiating (4.24) in s with fixed X, we get
(@.22).

]

4. Variation of action w.r.t. the dynamically accessible variations The action is de-
fined to be

1 1
S[p,v, ] ::/[0 /Q(Ep|v|2—pU(p,S)> dxd. (4.25)

The variation of a functional 8§ w.r.t. p, S, v is

o 1 oU . U
58[p,v,S]—/to /Q[5p§\v| +pv-6v—(5p)U—p(%5p+ﬁ85)1dxdt

t
= 1/ l(le—U— £> 5p—pTSS—|—pv~5v} dxdt.
to Q 2 p

Here, pg—g = —%. The variations 8p, 6.5 and dv are induced by w. We now express
them in terms of w:

t
58:/1/ GMZ_U_%) (=V-(pw)) +pT(VS-W)+pv(Wi+v- VW —Vv-w) dxdi
ty JQ

I3
~ [ / [—(pv); =V -(pvv)—Vp|-w—p[VU — I%Vp —TVS]-wdxdt
ty JQ
(4.26)
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Here, we have performed integration by part and used w- v = 0 on the boundary.
Using the first law of thermodynamics

p
VU — ?Vp —TVS=0,

we get
n
/ /[—(pv)t—V~(pVV)—Vp]~dedt:0f0rall w.
ty JQ

This recovers Euler’s equation of motion.

4.2.2 Herivel-Lin’s Approach (Constrained Variation)

* Herivel-Lin treat the equations for thermodynamic variables p and S as two con-
straints:

9S+v-VS§=0

in the variational problem d8|v, p,S]. These give the unconstrained variational prob-
lem:

11 1
551v.p.5, 0.1 =5 dr/ﬂdx{imvﬁ—pU<p,s>+<p[pt+v-(pv)]—pn[sf+v-vs1}.
0

(4.27)
Here, ¢ and pn are the Lagrange multipliersﬂ
From
08
0=—=pv—pVeo—pnVs
Sv PY=pVO—=pNVy,
we get
v=Vop+nVSs. (4.28)

This is called a Clesch representation of v in terms of (p,S, ¢,n). We can plug (4.28)
into to eliminate v. The unstrained variational problem becomes

11 1
68[p,s,¢,n]:6[ dr/de{Ep\vrz—pzf(p,swcp[p,w-<pv>]—pn[st+v-vs1}
0
(4.29)

These are called conjugate variables. Note that p dx is an n-form. Its conjugate variable ¢ is a 0-form.
On the other hand, § is a 0-form, so its conjugate variable p7n dx is an n-form.
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with v given by (4.28). The variation of § w.r.t. p,S,¢,n give the following equa-
tions for these 4 unknowns:

1
08 :_|V|2_U_§_(Pt_V'V§D:0

sp 2

88

55 = P +V-(pnv) —pT =0
88

%—Pt—I—V-(pV)—O
§25;+VVS:0

on

It involves 4 unknowns (p,S,@,n) and 4 equations. However, the Euler equations
should have 5 independent variables. Thus, this representation can only form a subset
of solutions of the Euler equations. In fact, if § = constant, then v = V@, allowing
only potential flows. Furthermore, one can show that the corresponding fluid flows
always have zero helicity: [Graham and Henyey, 2000]

/v-vadx:O.

* Lin’s relabel symmetry It was noticed by C.C. Lin that there is another constraint,
the relabeling symmetry, which is crucial in the representation of velocity. Let X (7, X)
be the inversion of x(¢,X). Then X (¢,x) (which is ¢, 1) satisﬁe

3,X—|—V~VX:O

By introducing the Lagrange multiplier ¢, pn and py = p(y',¥%,7?), Lin considered
the following action

151 1
S[Vapa*g?Xv(p?na’}/]:/ dt/dX{—p|V|2—pU(p,S)
to Q 2

+@lp+ V- (pv)| —pn[S;+v-VS]—pv- [Xt+v-VX]}-

Taking the variation of the action w.r.t. the Lagrange multipliers (¢, pn,p7) lead to

3This is called the Lin constraints.
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4.2. EULERIAN VARIATIONAL APPROACH 85

the constraints. The variations of the action w.r.t. v, p, S, X are listed below.

08
5:pv—pV(p—anS—p}hVX:O
88 1, , p
— =y =-U— = — —v-Vo=0
op v p » Y
<=M+ V-(pnv)—pT =0
oS
08
<% = PV +V-(pyv) =0
X
These give
v =V@+nVS+y-VX,
y =Lllyl2_py_~P
g;%’v‘ U—1p (4.30)
v =0,

where the dot means the material derivative. Let us write v=V@+nVS+7y- VX =
Y« biVay. Applying the material derivative to v to get

Z (kaak + bk((?, +vj8j)Vak)
Z kaak+ka a[—FV]& )ak—kaak-Vv)
k
:Z biVag+ bV (dr+v;dj)a ) v-Vv
k
:Z kaak+kaak) ——V|V|2
k
. o1
:V(p+1'1VS+nVS+j/-VX+yVX—EVMZ
Lon :
_ P
=-V (U+E) +TVS

Vp
o

Here, we have used

1 . .
:§|V|2—U—§, N=T, $=0, ¥=0, X=0,
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and p
VU =TVS+ pr.

The formula v = —Vp/p is the Euler equation. This means that we can recover the
Euler equations through the representation:

v=Vo+nVS+y VX.

Can we have smaller number of constraints? Note that there are 10 unknowns in
this unconstrained variational problem:

o8[p,S,X,9,1m.,7l.

However, the Euler equations has only 5 unknowns. This suggests we can eliminate
some of Lin’s constraints. We need 2 labelling constraints at least. By adding just
one constraint:

a;+v-Va=0, 4.31)

where a is a scalar, the Clebsch representation of v is
v=Vo+nVS+{Va. (4.32)

which involves exactly 5 unknowns (¢, 1,5, &, a).

By eliminating v from the above unconstrained variational problem, we get

11 1
3sip.5.a.0m.£1=5 [ ar [ ax{ o~ pUp.5)
1o Q
+0lpi V- (o] - S, +v- V] - pLla+v-Val .
There are 6 unknowns (p,S,a, @, n,{). Their equations are

T p X
=V "=U—-~, =—pV-.v
¢ =5l 5 P=—P

n=T, $=0, a=0, (=0.

We have to make sure this Clebsch representation (4.32)) can cover arbitrary velocity
vector field v initially. This means that: given a vector field vg, (as well as Sp), can
we find scalar functions ¢y, 19, {y and ag such that

vo = Vo +noVSo+ §oVag?

The answer 1s YES. This is the Darboux Theorem.


https://en.wikipedia.org/wiki/Darboux%27s_theorem
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* Relation of the Clebsch representation of velocity and the vorticity By taking

curl of (4.32)), we get
0=VNxVS+V{xVa+VE x Vb. (4.33)

Taking the Lie derivative gives
0=V xVS+VNxVS+VExVa+VExVi+VExVb+VExVb=VT x V8.

The formula shows that the relabeling @ and b does not affect @ because they advect
along the flow.

* Connection between relabeling symmetry and the conservation of circulations
In the case of constant entropy or constant temperature, we have VT x VS = 0. Thus,

o =0.

Thus, the vorticity is invariant along the fluid flow.

The term a comes from the relabeling of the initial mass. The appearance a and its
conjugate ¢ allow us to construct any initial vorticity field:

o(t=0)=V{ xVa(t=0).

Thus, the relabeling, which corresponds to a perturbation of flow path, induces an in-
variant, the vorticity. “The vorticity laws arise from the particle-relabling symmetry”,
quoted from Salmon.

In general, the vorticity law holds on the constant entropy surfaces. For more concise
explanation, see

Padhye and Morrison, Relabeling Symmetries in Hydrodynamics and Magnetohy-
drodynamics (1996).

4Rick Salmon, Hamiltonian Fluid Mechanics (1998). In fact, Salmon derives the potential vorticity and
the vorticity equation (in Lagrangian coordinate) via variation of action with respect to the material variable
a (where da = p(X) dX) using the relabeling symmetry.
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Chapter 5

Hamiltonian Fluid Mechanics

5.1 Hamiltonian Fluid Mechanics in Lagrangian coordi-
nates

5.1.1 Hamiltonian Mechanics in Lagrangian Variables
1. Let us define the configuration space to be the space of all flow maps:
Q:={x:Qy— R?is 1-1, onto and Lipschitz continuous}.
Define the phase spaces
M:=T9={(x,v): Qo — R} xR},
M*:=T*Q = {(x,p) : Qo — R x R*}.

We call (x,p) the Lagrangian variables. Sometimes we use (q,p), because X is used
as a spatial variable, or the flow map function x(¢,X) in this note.

2. We assume: on the target space R?, there is a natural volume measure dx, while in
the material space Q, there is a mass measure po(X)dX. The density associate with
an x € Q is defined to be

pdx = podX,

and the specific volume V := 1/p. In addition, we assume there exists an entropy
function Sy : @ — R and an internal energy U (V,Sp).

3. Define Lagrangian density

X v 2
L (% gxv) = o0 M 000, v x0)

89
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The Lagrangian .2 : M — R is defined by

ox

Zx,v] = A L(X,ﬁ,v
0

)dX.

A path is a trajectory on M. That is (x,v) : [to,#;] — M. Associate with a path
(x(+),v(-)) we define the action to be

S[x] := / " I, k()] dr.

fo

. The Euler-Lagrange equation is governed by 68/8x = 0, which is

i%+6£—()
dt Ov ox
Here,
%[X X| = pox
6V Y _pO
0% _
X =V (pFT),
with 5
X
F = X’ J =det(F),
_ou . _J
pi= TR = o

Variations 0x, dv are 1-forms on M, while 6.2 /8x and 6. /v are tangent vectors
on M. Thus,

8L 6L
ov ’ 8x

) em

. The Hamiltonian .77 is defined on T*Q by

%[va] = <p,V> —g[X,V]
with v obtained from the relation:
p=90.2/6v[x,V|. 5.1

This relation gives v = p/pp. Thus,

_ X _ [ P
Alp)= [ HOCGEaxi= [ T pU(po/ So)dx. | (52)
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The variations (—Sf ; S(é_;f

equation of motion is

) is considered as a vector field on T*Q. The Hamilton’s

8
{ T (5.3)
P="""5
where
o p
ép  po
aU 8V ox
0N = / POSV aF (ﬁ) ax
:/ Vy - (pIFT)-8x.
Qg
This gives
0 T

Thus, p = 6 is the Euler equation in Lagrangian coordinate.

5.1.2 Poisson Bracket in Lagrangian Variables

1. Given two functionals .% and ¢4 on T7*Q, we define their Poisson bracket by

0% 09 69 o6
A —_— — — — . —
(F#,9} = o, ox p  ox op dX (5.4)

The Poisson bracket {-,-} is bilinear and satisfies

* non-degenerate: if {.#,%} = 0 for all 4, then .% = const.,
e antisymmetry: {F#,9} = —{¥,.7},
* Jacobi identity: ﬂ

(&, 7,9+ {{7.,9),6Y+{{9.6},F} =0.

2. The Hamilton’s equation of motion (5.3) is equivalent to

M — (7,4 (5.5)

I'The Jacobi identity is equivalent to the symplectic 2-form being closed, see Symplectic Manifold


https://en.wikipedia.org/wiki/Symplectic_manifold
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for any .% : 7*Q — R. To see this, let X’ be an arbitrary point in Q. We choose
F =x'8(X —X'), then (5.5) gives
JoH

9 (x(2),p(1))(X").

Similarly we can recover the momentum equation at X’ by choosing .% = p'8(X —
X'). This shows (5.5) = (5.3). Conversely, given a Hamiltonian flow (x(z),p(z))
satisfying (5.3) and for any .% : T*Q — R, we have

o
GFO)B0] = %0+ ()
A 3%” 0F O
T ox op 5p' ox
={F 7}

X, X") =

This shows (5.3) = (5.3).

5.2 Hamiltonian Fluid Mechanics in Eulerian Variables

5.2.1 Non-canonical Transformation

1. Change-of-variables from Lagrangian variables to Eulerian variables.

The Eulerian variables are p,m := pv and s := pS. Notice that there are 5 indepen-
dent Eulerian variables (p,m,s), while there are 6 independent Lagrangian variables

(q,p).

The mapping
®:(q,p) — (p,s,m)

is determined by the formulae:

p(x) = Jo,Po(X)d(x—q(X))dX
5(x) = Jo,50(X)6(x—q(X))dX (5.6)
m(x) = Jo,P(X)d(x—q(X))dX

Proof. Note that po(X) = p(q(X))J(X). Multiply this by §(x —q(X)) then integrate
in X, we get

/QOPO(X)5(X—q(X))dX /p(q(X))J(X)S(x—q(X))dX

—/p S(x—y)dy = p(x).
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In the last step, we change integration variable from X toy = q(X ) and use J(X ) dX =
dy. The proofs for s and m are similar. These formulae only hold for conservative
quantities. 0

2. The Jacobian matrix of the change-of-variables The variations of p, s and m can
be obtained by taking variation on the transformation formulae (5.6): We get

50 =~ [ po(X)Vxd(x—a(x) - dq(X)dx
&@%z—LstV&@—MX»6MXMX

om(x) = /QO [—p(X)Vx6(x—q(X))-8q(X) +5(x —q(X)) - 6p(X)] dX

These give

3. Chain rule formula
Given a function .# defined in (p,s,m), it induces a functional .# defined on (q,p)
by function composition:

Zq,p] = Z[®(q,p)].

Its variation can be represented as

0.7 07
0.F = (5(1 oq+ 5—5p)

5‘ ar
_/( &+5J&de
0s om
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In this expression, %; is a function of (p,m, s), hence a function of x.

07 807 8p 6% 65 6.7 6m
5_q<X)_/(5p 5q+55 5q+8m 8q)dx

:_/ (po(x)%ﬂo(x)éf p(X Sﬁ)VXS(X—q(X))dX

).
8.7 0.7
-/ (POV 87 1w ipv, 5m)6<x q(X)) dx

5F . [8F 5.F

o 0= [ gm0 a(x)dx= )

5.2.2 Poisson bracket in Eulerian Conservative Variables

1. Poisson bracket in Eulerian variables: We have defined Poisson bracket for func-
tionals defined in Lagrangian variables. This Poisson bracket induces a Poisson
bracket for functionals defined in Eulerian variables through the change-of-variable
®: (q,p) — (p,s,m). Let .#,9 are two functionals defined in Eulerian variables
(p,s,m). Let us call the pullback of them by the map Pby Fod=F,G0d=9.
We have a Poisson structure defined for functionals . and ¢. The Poisson structure
for .# and ¢ is defined as

(7.9} ={F,9}.

Let us compute the Poisson bracket formula of {.%,%} below. Using the chain-rule
formula in the last subsection, we have

(7,9 ={F.,9}
(5,/ 09 09 &QZ) IX

8.7 8.7 8.7\ 089

- Vool sV ol i p v o). 2
/Mo/ O(x—aqlX <p0 Sp 50 Vx 05 +p X5m) om

89 89 89\ 67

—5(x— Ve 4 80Vy o 4P Vyor | - e

o(x—q(X)) <po 5p +50 Se +p 5m> Sm dxdX

Using (5.6) and Lemma [5.4] below, we get the expression of the Poisson bracket

formula

_ 8.7 8.7 5.7\ 09
o — - -
{7.,9} = M(pVX 5p +5Vy 5o Tm- Vx 5m> Sm
89 89 89\ 87
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Here, _ ~ _
( 8G> oF ( d 5%) 07
m-Vy——vm 1 > =— 1=m;

om) am "\ 5 om; ) sy

2. In most cases, the functionals .%,% have the following expression:

95

Flp.sm] = [ F(p(x),5(9.m(x))dx, Flp,s.m] = [ Glp(x).s(x),m(x))dx,

In this case, the above functional variation has the following partial derivative form:

8% OF .
—— = —=—,elc.
6p dp’
The corresponding Poisson bracket has the following expression

_ oF oF oF\ 9G

0G oG oG\ OF

where

( 8(7) oF (8 8@) oF
m-VX— = m;

om) am ="\ G am; ) amy

The symplectic operator J is a linear in (p,s,m). Such Poisson bracket is called a

Lie-Poisson bracket.

Lemma 5.4.

/ 0 | sx—al)px)oxwa)dxdx = | p)o(w(x)dx.

Proof. Lety = q(X). Then the above integral is

[ [ 36— yimola ()9 wi)axs @ )y
= [ [ 6x-vpwomvaxdy = [ pxoEx)dx

3. The Poisson bracket {-,-} satisfies

¢ bilinear,
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e antisymmetry: {.#,9} = {9, %},
* Jacobi identity:
{6,727}, 9+ {{ 7,9}, 63+ {{9.6}, 7} =0.

4. Hamiltonian dynamics The Hamiltonian H[q, p] can be expressed in terms of (p, s, m)
as the pull-back of .7 by the map P:

H[p,s,m] := 7[q,p]

jm|* 5
= [ —+pU(p dx
/ p p)

Q
From this expression, we get

SA H P p

6[) _%:_T+U+E_TS

84 O0H

85 Js

84 OH

Sm om
By taking

p(xX)=Z[p,5,m] = /p (x' —x)

we get

(P(X), 2} ={F,727} = [ pH)Vxb(X' —x)-vdx = ~Vx- (p¥)(X).
This is the density equation. Similarly, we get the entropy equation:
{s(x), #} = /s(x)VXS(x’—x) -vdx = —Vyx - (sv),

and the momentum equation:
{m(x), 7} = /m-Vx5 (x—x')-v

2
- (pVX (—% +e+ I]; —TS) -I-SVXT-I-m-VXV) S(x—x)dx
2
— —Vy-(vm) — pVy (—'VT+U+§—TS) — VT

= —Vx-(vim) — Vp.
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Thus, we get the equation of the Hamiltonian flow

p= {pw%?}
5= {s,H}
m = {m.J7}

is the Euler equations.

5.2.3 Poisson bracket in terms of (p,S,v)

1. We change variables (p,s,m) to (p,S,v) by S=5/p andv=m/p. Letus use .# and
¢ for functionals defined on (p,S,v) and .%, ¢ for functionals defined on (p,s,m).
The chain-rules for this change of variable are

9, 9, S v a

o dp Y pas p oy
J_19
ds pas
2 _19
om pov
Plug this into the Poisson bracket
8.7 8.7 87\ 69
J\ f— —_— —_— . —_— - —
(7,9} = /Q (pVX 5, Vg, tm Vs 5m) o
89 89 89\ 67

Note that ‘g—f = ngl We have
1 1 1
[PVX (ap — % Oy — %85> F+pSVy <EaSF) +pv-Vy (_avp)} -2 0G

B |:pvx (8p o % '8V_ gas> G+pSVX (%&S'G) ‘|‘pV‘Vx (—8vG):| . —avF

We get that

—~

(F,9) = /Q [(Vu0pF) 4G — (VsdpG) - hF
-y

<

(IsFOyG — JsGOyF)

©

(8 iVj — 8xjvi)8viF8ij] dx

X

_|_

|~
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The last term can also be expressed as

1 i Vixv dF 0G
0V (0,iF9,;G — 9,:Go,;F) = — S

Thus, the Poisson bracket is

(Z.9} =[] (VxdpF) G — (Vx0pG)-O\F

_% - (dsF 9yG — dsGoyF) (5.7)
Vixv JF  9G
_% 5 X W] dax.

2. The Poisson bracket {.7,¥¢} satisfies

* Bilinear: {7 +.%,,9} ={%#1,9}+{%2,9},
 Antisymmetry: {#,9} =—{9Y,.7}
* Jacobi identity:

{6,709+ {{.7.9),8)+ {{9,6), 7} =0.

3. With H(p,5,v) := Sp |V +pU(p,S) and #[p,5,v] = [ H(p(x),5(x),(x)) dx, we
get
§A 1, ., o p SH _ SH
Thus,

{p(~—X’),%}=/(Vx5(X—X’))-(pV)dX=—Vx-(pV)(X’)-

VS . (5(x—X’)(PV)) dx = —v-VyS(x')

(S6—x). ) = [ =

(V(-—x), ) = / ~(VadpH) - (x X1+ = 3sH(x )

+% (9 — 9, v') 8(x —x)pv' dx

N LAWRET) i i)
= VX<2|V| —|—U—|—p)+ > (PT)+ (v —dv') v

Vxp

|
=—v/d v — EQxip =—v-Vyv—
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These are summarized as
ap ={p, '}t =—=Vx-(pv)
S ={S,}=—v-VsS

\Y
ov=Av,H} =—v-Vyv— pxp’

which are the Euler equations.

Homework For Burgers equation u; + uu, = 0, the corresponding Poisson bracket and
the Hamiltonian are

= ol 3], - [ e

1
H(u) = §u2.

5.2.4 Casimir and Conservation of Helicity

1. Casimirs There are 5 independent Eulerian variables (p,S,v), whereas there are 6
independent Lagrangian variables (q,p). Thus, the Poisson bracket {-,-} in Eule-
rian variables is expected to be singular. A function € (p,S,v) is called a Casimir
invariant of the Euler system if

{¥¢,.#} =0 for any function .% (p, S, v).

Using this definition, the Poisson bracket formula (5.7) gives the following equations
for €(p,S,v):

0¢ Vxv 0¢ VSO6¥
V—F— X ————=0
op p ov. p 68
2. Helicity. Let us suppose % depends only on v. Let w = %;f Then w satisfies
V.w=0, (Vxv)xw=0.
These two imply w = Const.V x v for some constant Const. The helicity

% (v) ::/V~V><vdx

satisfies 04'/0v =2V x v.
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3. Potential vorticity Let
Vxv

p
be the potential vorticity associated with the advected quantity S. Then

WA

q:

= [ pfa)dx

is a Casimir for any function f.

4. Thermodynamic Casimirs Suppose % only depends on the thermal variables, that
is,

“(p,S) = /C(p7S) dx.

Then the equation for C is
JdC VS§SIC

dp p IS
If, in addition, C is separable, then C = pf(S) for an arbitrary function f. The
solution ¥ is

“(p.5) = [ pr(S)ax.
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Chapter 6

Viscous Fluids

6.1 Viscosity

6.1.1 Stress

In fluid dynamics, stress is a surface force, composed with a hydrostatic part —pI and a
viscous part T:

o=—pl+r. 6.1)

The first term results from the direct impact of particles to the surface. It represents a ther-
modynamic force that exists even when the fluid velocity is zero or constant. Assuming the
fluid is isotropic (i.e. a property that has the same value in all directions), this thermody-
namic stress is —pl.

The second term 7 is termed the viscous stress tensor. It arises due to the resistance of
fluids to the fluid motions, occurring when different fluid parcels move at different veloci-
ties. Thus, T depends on Vv, or possibly VVv, and so on. It’s noteworthy that T = 0 when
v is constant. The hypothesis of Newtonian fluids posits that T is a linear function of Vv.

6.1.2 Strain Rate

Decomposition of train-rate tensor Recall the rat- of-change of the deformation (2.17))
1s

F=(Vv)F.
The term L := Vv measures the changing rate of material deformation and is called rate-

of-deformation. We can decompose Vv into two parts:

Vv = (Vv+(Vv)7) +%(Vv— (VW)7) =D+ w. (6.2)

1
2
101
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The symmetric part D can further be decomposition into
1

1
D;:=D~3Tr(D)I, Dy=3Tr(D).

Here, Dy is called the shear strain, describing the rate of shearing, Dy, is called the bulk
strain, the rate of expansion or shrinking, and @ is called the spin tensor, charactering the
rate of rotation. In summary, the strain rate L is decomposed into

L=Ds;+ D+ .
Examples Let us see two examples of Vv to understand how fluid responds to this defor-

mation rate.

* Rigid-body rotation For fluid flows which are undergoing a rigid-body rotation,
there is no observed resistance force. The rotation can be expressed as

v=axx, a=(a,0,03) isthe rotation vector.

This implies:
0 —03 (04)
Vv = o3 0 -0,
—0h (04] 0

which is an antisymmetric matrix, i.e.,
Vv+ (V)T =o0.

For this rotational flow, experimental observations show that the corresponding 7 = 0.
Thus, we should require T = 0 when Vv + (Vv)" = 0.

* Simple shear flow A simple shear flow is given by
vi =%ix2, =0, v3=0. (6.3)

Here, 75 is the shear rate, assumed to be a constant. The strain rate is

0 1 O
Vv=1|0 0 0
0O 0 O

Experimentally, for a wide class of fluids and over a broad range of shear rates, it is
found that the pressure p is independent of 5, and

T = Upi1

for some constant tt. This ratio u is called the shear viscosity.
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6.1.3 The stress and strain-rate relation for Newtonian fluids
Assumptions of isotropic Newtonian fluids

(1) The viscous stress tensor 7 is linear in strain rate Vv,

(2) 7 is isotropic

(3) 7 is symmetric
From the assumption that 7 is linear with respect to Vv, it can be expressed as:

vk

Tij :aijle

where a;j; are constants.
Considering the isotropy of 7, we can show that the constants a; j; have a specific form:

ajji; = 006;j O + B Ok ;1 + ¥6;10k (6.4)

for some constants a, 3, 7. |'| Further imposing the symmetry of 7, leading to the symmetry
of a;ji in i, j, we find that P = v, resulting in:

ajjir = 0088 + B (8xbj1 + 8ubji) - (6.5)
Thus, the viscous stress tensor (7) takes the form:
vk
Tij = ai S
vk

= (0088 + B (8 + 8udji) | BN

b AV VY Mk
=F (w*w) T

I'This is a theorem for isotropic tensor

'e’., where

* A rank 2 tensor Q = Qjje;e; ({e;} is an orthonormal basis) is called isotropic if Q = Q;je; i

e = R{-‘ek and Rf-‘ is a rotation matrix.
* A rank 4 tensor A = a;jieiejexe; is called isotropic if A = a,-jklege;-e;{e; for any e/ = Rfe; and RY is a
rotation matrix.
Lemma 6.5. (a) A rank-2 isotropic tensor has the form: Q = a6,~je,-e j for some scalar .

(b) A rank-4 isotropic tensor has the form: A = 0.0;; 6 + B 601 + Y8; 6ji for some scalars o, B, 7.



104 CHAPTER 6. VISCOUS FLUIDS

We write it as
T=2BD+ atr(D)I,
where {
D=~ (Vv+ (V)T 6.6
5 (Vv +(wv)7) 6.6)

is the rate of strain. Let us further decompose D into Dy, the rate of shear strain, and Dy,
the rate of bulk strain:

1 1
Dy :=D~3Tr(D)I, Dy=3Tr(D).

We can express 7 in terms of Dy and D), by

T =21Dy(v) + 2L Dy (v). 6.7)

The coefficient 1 is called the shear viscosity, while { the bulk viscosity. They satisfy

n>0, {>0. (6.8)

Homework Show that a rank-4 isotropic tensor has the form: A = a6;;6 + B d;; +
706 i for some scalars o, 3, y.

6.1.4 The Momentum Equation and Vorticity Equation for Viscous
Flows

Momentum Equation The viscous force is
r 2
Vit = V-|n(Vv+(Vv) —§V-VI +¢V-vi
_ 2 n

In the above calculation, we have used

3 | +ai— 2ank| = 007+ — 29,(30%)

J |9 J 3% A J 3 I\

o1
= 8]2v’+§&j(8kvk).

Thus, for compressible viscous flows, the momentum equation reads

P (v +VVV) +Vp = nv2v+(§+g)V(v.v). 6.9)
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Vorticity equation for compressible viscous flows From (3.2), the momentum equation
can also expressed as

(V;+0)XV+V(%|V|2)> +%:¥, (6.10)

By taking curl on this equation, we obtain the vorticity equation for incompressible viscous
flows:

V.
8ta)+v-Va)—(a)-V)v+a)(V-v):‘%VprerVx(TT). (6.11)

In the case of incompressible flows, we have
0+v-Vo—(0-V)v+o(V-v)=nA o. (6.12)

Note that the bulk viscosity does not effect the diffusion of the vortices.

Boundary condition For a fixed bundary, a natural boundary for viscous flow is

v=0 onboundary.

6.2 Heat Conduction and Energy Equation

The energy equation involves the rate-of-work done by the surface force and body force,
whichare 6-vandf-v.

When temperature is not uniform in a media, it generates a heat flux q due to random
motion of particles and causes energy transfer in fluid. This heat flux is a function of VT,
where T is the temperature. It should be zero when VT = 0. To the first order, we may

assume
w1

where Kk is a positive parameter, called heat conductivity. Formula (6.13) is called the
Fourier law.
With the above two sources of rate-of-energy, the new energy equation becomes

d(pE)
ot

+V.-(pEv—ov+q)=f-v, o=—-pl+. (6.14)

where E = %’V|2 + U 1is the total energy density per unit mass.
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Boundary condition Since the energy involves 2nd order derivatives of the temperature,
natural boundary conditions can be prescribed on 7', which is described below. Suppose
the boundary is I'. The boundary I" is decomposed into I'; UI', UI'g, where I'g has area 0.
We prescribe Dirichlet data 7 on I'; and Neumann data on I',,. That is

{ T(x) =Ty(x
VT -v(x) =

) xely
g(x) xel,.

6.3 Second Law of Thermodynamics for Viscous Fluid Flows

6.3.1 Dissipation of Kinetic Energy

To analyze the evolution of kinetic energy, as that in the classical mechanics, we take dot
product of the momentum equation with v, on the left-hand side, we get the time derivative
of the kinetic energy:

v v-TY) = 3 (%mvﬁ)+v-<pv>¥+v-<pv-w>

vlvl

1 .
= (3o ) 130

+vipvidp!
= 3 (3I) 9 Gl
2 2
The pressure gradient term in the momentum equation contributes the following work:
v-Vp=V.(pv)—pV-v.
The viscous force contributes the following work:
v (V-1)=V-(v-1)=Vv:71
=V.(v-T)— % (Vw+(Vv)T) 17 - 7issymmetric
=V.-(v-t)—1:D

Recall that
T:2nDs+2CDb, D =D+ D,

and note that Ds: D, = 0, we get

T:D = 2n|Dy|> +2¢|Dy|*. (6.15)

2The notation A : B for tensor A and Bis A:B = ):,»j a;jbij
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Finally, we get the following equation for the kinetic energy:
O (PEy)+V-[(PE+pl—7)-V]—pV-v=—1:D.
Here,
* pE; = p|v|?/2 is the kinetic energy density per unit volume;

e V.v=19 is the volume change rate; and pV - v is the energy rate change due to the

V di
work from volume change; If ‘il—‘t/ < 0, then the kinetic energy decreases and transfers

to internal energy.

* The term 21 |D;|? and 2{|Dy|? are the dissipation rate of due to viscous shear force
and viscous bulk force, respectively. They contribute the decay of the kinetic energy.
They are the heat sources generated by viscous terms.

In the case of incompressible flow where V - v =0, we get that the decay of the total kinetic
energy.

6.3.2 Entropy Production and the Clausius-Duhem Inequality

First, we subtract the kinetic energy from the energy equation
d(pE)+ div[(pE+p)v|=V-(T-v—q).

to get an equation for internal energy:

o(pU)+V-(pUv)=—pV-v—V.q+1:D.

pU is the internal energy per unit volume;

* —pV .vis the rate of change of the work exerted to the fluid parcel from surrounding
fluids;

* —V.q s the heat source from heat conduction;

7:D is the heat source generated from viscosity.

From continuity equation, the above equation can also be expressed as

dU
p—=—pV-v-V-q+1:D. (6.16)

From the first law of thermodynamics

dU = TdS — pdV,
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We get
dU ds dv
- — - - = _ V
dt pTdt det pdt py-v
Thus, we obtain
ds
T—=-V. D
i q+7
or
dS V.q 1
T __ 241D 6.17
dt T +TT ’ ©.17)

By Adding S(d;p + V- (pv)) = 0 to this equation and express Q V-(3)+ %q VT, we

get

d qy 1 1
1 1
9(pS)+ V- (vpS) + V- (%) = —54-VT +Z7:D. (6.18)

The integral form is

d 1
% .
0t Jo P +/ 4n s / ( VT + 5 D) dx (6.19)

¢ The terms %T:D > 0;

* When q satisfies the Fourier law: q = —xVT with k > 0, then the term

1 VT |?
——q~VT:K| |

= 2 >0.

Thus, the increase of entropy is due to the heat dissipation and heat generated from viscos-
ity. The terms D; and Dy, are called the entropy production source.

Clausius-Duhem Inequality The second law of thermodynamics states that

dt/ pS X+/ dS / —d >0, (6.20)

where r is the heat source, q the heat flux. This is called the Clausius-Duhem inequality.
Comparing (6.19) and (6.20), and use (6.15]), we see the heat source in gas system is
VTP

pr=rx 2(nIDs P+ L 1Dy ).

Thus, the second law of thermodynamics, expressed as (6.20)) if and only if
k>0, >0, £>0. (6.21)
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Homeworks

1. For viscous flows, the no-slip boundary condition on a solid boundary d€2 is defined
to be
v=0 ondQ,

the normal stress is defined to be Ty := 7-v. Show that for incompressible Newtonian
viscous flows with no-slip boundary condition, the normal stresses are zero at solid
boundary.

2. Derive the entropy production formula in Lagrangian coordinate

Remarks

1. For heat equation ¢,T; = V- (kVT), we divide it by T and integrate it over the whole
domain to get

T; 1

cv—tdx:/ =V (kVT)dx
o T oTl
K

:/Qﬁwnzdxx)

Thus, we can define entropy s = ¢, log T, then

d
— d 0.
dt/gsx>
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Chapter 7

Mathematical Theory of Fluid
Dynamics

7.1 Dimensional Analysis

The incompressible Navier-Stokes equation is given by
p(ov+v-Vv)=—-Vp+uAv+f V.v=0.

Let us assume p = constant. Thus, p and u are parameters. There are 7 dimensional
quantities: [t], [x],[v],[p], [f],p, . The equation should have equal dimensions for each
term. These give 4 relations (3 momentum equations and 1 continuity equation. Therefore,
there are only three independent fundamental dimensions. Let us choose them to be

x|=L, ,[t{]=T, ,[v]=U.
Comparing 4 Av and Vp gives

U
[p] = hr-
Comparing u A v and f gives ,
1=
Comparing 1 A v and the convection term pvVv, we get
u: v
PT = Hz-
Finally, comparing it /A v and the inertial term pd;v, we get
u U
Pr=HL

111
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Define dimensionless variables

L’ ulu
The incompressible Navier-Stokes equations read

Re (Stdpv* +v*-V*v) = =V p* 4+ A*v* 17,

V* vt =0.
where the dimensionless parameters
UL L
Re = p—, St = —.
u ur

are the Renolds and Strouhal numbers.

Special flows:
* Incompressibility: V-v =0
* Inviscid flows: Re = oo, or u = 0.
e Irrotational flows: V x v =0.
* Potential flows: there exist a scalar ¢ such that v= V¢.
e Harmonic flows: V.-v=0and V x v=0.

 Stokes flows: the convection term is neglected.

7.2 Vector Field Decomposition

7.2.1 Hodge-Morrey-Friedrichs Decomposition for Vector Fields

L
X'=—, V=v/U t'=t/T, p'=p—, [f=f—.

(7.1)
(7.2)

(7.3)

The Helmholtz decomposition states that any smooth and fast decay vector field in R3
can be decomposed into the sum of an irrotational (curl-free) vector field and a solenoidal
(divergence-free) vector field. It is a fundamental theorem in vector calculus and is impor-
tant in electromagnetism and fluid mechanics. It was published in (1858). Such decom-
position was generalized to differential forms by Hodge (1934), to general domains with
boundaries by Friedrichs and Morrey (1955,1956), respectively. The theories are termed
Helmholtz-Hodge decomposition (without boundaries), and the Hodge-Morrey-Friedrichs
decomposition (with boundaries). For details of this decomposition for dofferential forms,

we refer to


https://en.wikipedia.org/wiki/Helmholtz_decomposition
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* /Albert Chern’s Note on Discrete Differential Geometry.

* Giinter Schwarz, Hodge Decomposition—A Method for Solving Boundary Value
Problems, Lecture Notes in Mathematics, vol. 1607 (1995).

Helmholtz-Hodge-Morrey-Friedrichs Decomposition Let M be a 3D manifold with
boundary dM. Let v: M — R3 be a smooth vector field. Then v can be L?-orthogonally
decomposed into

v=Vo+Vxy+h, (7.4)

where
* @ : M — R (potential) satisfies

ANp=V-v, ¢@=0o0ndM, (7.5)

cY:M— R3 (vector potential) satisfies
Vx(Vxy)=Vxv, (7.6)
v L oM, (n’(y)=0) (7.7)
e h: M — R3 (harmonic vector field) satisfies

V.h=0, Vxh=0. (7.8)

Let V = {v: M — R3 smooth}, the above decomposition is expressed as
V = im(gradp) ® im(curly) ® 71 (M) (7.9)
where
A1 (M) ={h:M - R3V-h=0,V xh=0}. (7.10)
Remarks.

* Note that V¢ is curl-free, V x y is divergence-free, and h is both curl-free and
divergence-free. Thus, V x y carries the vorticity information, and V¢ carries the
expansion/contraction information.

* Such decomposition is not unique. We need to choose proper boundary conditions
and proper gauges to get a unique decomposition. This will be discussed later.


https://cseweb.ucsd.edu/~alchern/teaching/cse270_wi24/
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* More precise definition of V is
V:{V:M—>R3|/ |v]2<oo,/ Vv < oo).
M M

In mathematical terminology, it is the Sobolov space H'(M). However, I try to avoid
too may mathematical terminology. It is understood that when I say smooth, it means
that we can take differentiation and the resulting derivative is still meaningful when
we take integration.

divergence-free harmonic

curl-free

(coexact)
(exact)

Figure 7.1: Copied from Crane’s lecture note

The proof is based on the following Green’s theorem and subsequent decomposition.
1. Green’s Identity

(a) Letop: M >R, w: M — R3 be smooth. We have

/V(p~wdx:—/ (p(V-w)dx+/ ow-vdS, (7.11)
M M oM


https://en.wikipedia.org/wiki/Vector_calculus_identities

7.2. VECTOR FIELD DECOMPOSITION 115

(b) Letl//:M—)R3,w:M—>R3 be smooth. We have
/(ny/)-w-dX:/ y/-(wa)dx—/ (y xw)-vdsS. (7.12)
M M oM

Remark. In the second Green identity, the vector field y is interpreted as a flux
vector or a vector potential.

2. In order to apply the Green theorem for orthogonal decomposition, we need the fol-
lowing boundary restriction operators:

* Dirichlet and Neumann boundary restriction operators:
Let v be an unit outer normal on dM. For a vector field v, we can decompose
it into v, := (v-v)v and v :=Vv—v . We define respectively the following
Dirichlet and Neumann boundary restriction operators:

e t°0 = 0| on e1’p =ploy
oﬂ:lw:wH OIHIW:WJ_
ot’y =y, en’y =y,

¢ Kernels:

ker(t') = {wlw L oM}  ker(n') = {w|w | oM}
ker(t?) = {yly | oM} ker(m?) = {yly L oM}

3. Using the first Green identity, we have

im(gradp)* = ker(div) (7.13)
im(grad)* = (ker(div) ﬂker(ml)) (7.14)
Here, gradp is the gradient operator restricted to the zero Dirichlet scalar field. That

is,
gradp : {¢ : M — R smooth , ¢|y,, = 0}

To show this, we see from (1)) that
(Vo,w)=0 < V-w=0and ow-vdS
oM

The last term is zero either @|y, = 0 or w- v = 0. These two correspond to either
Vo € im(gradp) or w € ker(n') Nker(div).

Note that (7.13)) and (7.14) give the decompositions of V:

V =im(gradp) @ ker(div) (7.15)
= im(grad) & (ker(div) ﬂker(:[nl)) . (7.16)
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4. Using the second Green identity, we have

im(curly)* = ker(curl) (7.17)
im(curl)* = (ker(curl) ﬂker(ﬂ:l)) . (7.18)

Here, curly means the restriction of the curl operator to the space with Neumann
boundary condition:

curly : {y : M — R? smooth, n?(y) =0}.
Note that (7.17) and (7.18)) give the decompositions of V:

V =im(curly) @ ker(curl) (7.19)
= im(curl) ® (ker(curl) Nker(t')). (7.20)

5. We now successively decompose V' into

V =im(gradp) @ ker(div)
= im(gradp) @ [ker(div) N (im(curly) ® ker(curl))]
= im(gradp) @ (ker(div) Nim(curly)) @ (ker(div) Nker(curl))
= im(gradp) & im(curly) ® " (M)

In the last step, we have used im(curl) C ker(div).
Decomposition of the Harmonic Vectors The harmonic vector h can be further decom-

posed L?-orthogonally as:
h=V¢,+hy, V¢, =0, (7.21)

or
h=Vxy,+hp, Vx(Vxy,)=0, (7.22)

Here, hy is a harmonic vector satisfying the zero Neumann boundary condition:
hy-v=0o0ndM, ie hyl| dM, orn'(hy)=0, (7.23)
and hp is a harmonic vector satisfying the zero Dirichlet boundary condition:
hp | vondM, ie hp L oM, ort!(hp)=0. (7.24)
We write this decomposition as

AN (M) = (im(grad) N (M) ® A5} (M) (7.25)
AN (M) = (im(curl) N A (M)) ® A5 (M) (7.26)
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Proof. 1. The L? orthogonality of the decomposition (7.21) is
/ Vo, -hydx =0.
M
Taking integration by part and using hy being harmonic, we get
/ Vo) hydx = / dphy - vdS = 0.
M oM

The Neumann boundary condition (7.23) gives the L2-orthogonality of V¢y, and hy.

2. The L?-orthogonality of the decomposition (7.22) is
/ (Vxwy,) -hpdx=0.
M
Using Green’s theorem, we get
/ (Vx,) -hDdx:/ (, x hp) - vdS = 0.
M oM

Thus, the zero Dirichlet boundary condition (7.24)) gives the L? orthogonality of the
decomposition ((7.22).

]

Let us summarize the above decomposition as the follows.
V = im(gradp) ®im(curly) & (im(grad) ﬂ%l) © A, (7.27)
= im(gradp) ® im(curly) ® (im(curl) N %”1) ® A (7.28)
v=Vo+Vxy+Ve,+hy (7.29)
=Vo+Vxy+Vxy,+hp. (7.30)

Harmonic fields and Cohomology

Theorem 7.5. The spaces of the Dirichlet and Neumann harmonic vector fields are finite
dimensional. Indeed,

1. 74} = {B: M — R? harmonic | B|| OM} ~ H' (M)
2. ) ={E: M — R harmonic | E L OM} ~ H*(M)

where H (M) is the kth cohomology of M, which is finite dimensional.
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Remark

* We interpret E an electric field. dM consists of disjoint conductors. E | dM means
that these conductors are perfect conductors. The electric potentials are constants on
each conductors. There are finite many such conductors. The number of them minus
1 mcorresponds to the dimension of 7 (M).

* B is interpreted as a magnetic field. dM consists of tubes with constant electric
currents. The corresponding B outside these tubes satisfying B || dM. There are
finite many such tubes, which correspond to %} (M).

Proof. To show these two statement, we regroup the decomposition as

V =im(gradp) @ (im(grad) N %1) @A Dim(curlp)

im(grad)
ker(\c;trl)
Thus,
(M) ~ ker(curl) /im(grad).
The space

H' (M) := ker(curl) /im(grad)

is called the first cohomology of M. In the deRham theory, it is equal to a topological
quantity: the homology H;(M).
Similarly, we regroup the decomposition as

V = im(curly) ® (im(curl) ﬂ%l) ®.A5) (M) Dim(gradp)

J/

-~

im(curl)

~~

ker(div)

We get
58 (M) ~ ker(div)/im(curl) = H*(M).

7.2.2 Extract Each Component of the Decomposition

We need to choose proper boundary conditions and gauges to get a unique decomposition.

'One can normalize the potential on a specific conductor to be 0.
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Solving the scalar potential ¢ By taking div of the decomposition
v=Vp+Vxy+h

we get the governing equation for ¢:

(0057 ni a3
It is a standard Poisson problem. It has a unique solution.
Solving the vector potential y
1. By taking curl of the decomposition
v=Vo+Vxy+h
we get the governing equation for y:
Vx(Vxy)=w, where @=Vxyv, (7.32)
with boundary condition:
v 1 dM. (7.33)

2. The solution is not unique. Adding any Dirichlet closed vector £ (i.e. V x & =0 and
& || M, denoted by ker(curl) Nker(t?)) to w does not change V x w and v L OM.

Note that V can be decomposed orthogonally into
V = im(curl) & (ker(curl) ﬂker(fuz)) )
To get a unique solution, we should select
v L ker(curl) Nker(t?).

We also note that
ker(curl) = im(curl) ® 63(M).

These two lead to
V.y=0 inM (7.34)

(w,x) =0, forall x € 75 (M). (7.35)

Adding these two conditions is called fixing a gauge. There are many ways to fix a
gauge. The gauge we select is called the Coulomb gauge.
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3. The variational approach to (7.32) and is
1
min/ = (\V x y|? + ]V-y/|2> — (o, y)dx. (7.36)
v Jm?2

The admissible y satisfies the boundary conditions:

y 1l oMm (7.37)
V-y=0o0ndM, (7.38)

and the orthogonal condition:
(y,x) =0 forall y € #55(M). (7.39)

Note that the boundary condition comes from the null boundary condition in
the variation of [ |V - y|?dx:

5/M%|V'w|2dx:/M(—V(V~y/))-(81;/)dx+/aM(V~y/)6w'vdS.

We should require V- y) =0 on dM.
Note that the boundary condition (7.37) is

v =0. (7.40)
Because of this, the boundary condition is equivalent to
oyy, =0. (7.41)
Thus, the admissible class for the variational problem is

o ={y:M—R>| y satisfies (7.40) (7.41)) on dM and the orthogonal condition (7.39) }

4. One can show that the Euler-Lagrange equation the above variational problem is
equivalent to
—V(V-y)+Vx(Vxy)=0w inM
I//H:O, aVWJ_:O on dM
(y,x) =0 forall y € #32(M)
The the operator: —V(V - y)+V x (V x y) is called the Hodge-Laplacian opera-

tor, which has nice property (coerciveness) in the space 7. Standard Lax-Milgram
Theorem can be applied for existence and uniqueness.
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7.2.3 Hodge-Morrey-Friedrichs Decomposition for Differential Forms
Ref.

* This subsection is copied from Albert Chern’s Note on Discrete Differential Geome-
try, Chapter 11, UCSD.

* Giinter Schwarz, Hodge Decomposition—A Method for Solving Boundary Value
Problems, Lecture Notes in Mathematics, vol. 1607 (1995).

The purpose in this subsection is to orthogonally decompose a k-form ® into
w=da+&B+d o +hy
o=d" o+ 8B+ 8y +hp,

where d and 0 are the exterior derivative and codifferential for differential forms. d¢, oy,
hy and hp are harmonic differential forms. I will explain these notation below. I will also
make a correspondence between the notations in differential geometry and those in vector
calculus for the case dimM = 3.

1. Differential forms Let Q (M) be the space of differential k-forms on an n-dimensional
manifold M.

» QO(M) = {¢ € M — R}, the space of scalar potentials.

o QY(M) = {n =vidx' +vydx? +v3dx*}. This corresponds to the space of vector
fields {v: M — R3}. We write nf =v.

s Q?(M) = {0 = 61dx*> Ndx> + 62dx® Ndx' + o3dx' Adx*}. This corresponds
to the space of fluxes: {w: M — R3}. We write

*x0 = o1dx' + ordx® + G3dx3, W= (*G)ﬁ.

o Q*(M) = {m = pdx' Adx*> Adx}. Tt corresponds to the space of density
{p: M — R3}. We write xm = p.

2. Boundary restriction operators There are two kinds of boundary restriction oper-
ators we will use. Below, a vector v on the boundary, we can decompose it into v,
and v, the components parallel to the boundary and orthogonal to the boundary,
respectively. The differential forms below are in Q(M).

* Dirichlet and Neumann boundary restriction:

o 100 = ¢|oy o m’m = (5m)| gy
o t'n=(n") om n=(*n)§
o t26 = (x0)} e 0’6 = (x0)]
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e Kernels:

ker(t') = {n|n* LoM},  ker(n')={n[n*|| oM}
ker(t2) = {o|ot || oM}, ker(n?) = {o|ot L aM}

o QK (M) ={o € QX(M)|t*ac = 0 on IM}
« Ok(M) = {a € QX (M) m ot =0 on IM}

3. Differential 4 and Codifferential § This is the exterior derivative: Q*(M) — Q¥ 1(M).
The codifferential § is the dual of d:

dk71 dk
QM) —— QX(M) —— Q1(Mm)
Sk Sk+1

o d exterior derivative, d : Q% — QK1 We also write it as d¥.

e dp is the restriction of d on QF with zero Dirichlet boundary condition. That is,
dpy = d|er(st.

* dy is the restriction of d on Q* with zero Neumann boundary condition.
dy = dlger(amty-

o § is the co-differential, & : Q1 — QF,

* The correspondence are

e d’ «— grad e 83— —grad
od «+— curl ® 8%« curl
o d? +— div e8! «— —div
0 d’ 1 d! 2 a 3
QM) — 2 QM) —— QM) —— QM) ,
8! 52 83

4. Green’s identity: for o € Q! B € QF, we have
((da,B)) = (e, 6B)) +/8M(¢k_106) - (m*B).
Here, let o denote the vector corresponding to ¢o¢. The notation

(doB) = [ (do) A (xB) = [ (da)f- (xB)dx
| tanep)= [ caynwep) = [ tarsmp)= [ (o @p).

oM
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5. Decomposition via d
QK (M) = im(d5™) © ker(8%)
= im(d* o (ker(5k) N ker(:[nk)>
For k = 1, this is the decomposition of the vector field space V:

V = im(gradp) @ ker(div)
= im(grad) & (ker(div) Nker(n'))

where
ker(n') ={v:M - R3v, =0}

6. Decomposition via &
QF (M) = im(85Y) @ ker(d¥)
= im(§F ) @ (ker(dk) ﬂker(ttk))
For k = 1, this is the decomposition of the vector field space V:

V = im(curly) ® ker(curl)
= im(curl) & (ker(curl) Nker(t'))
where
ker(t!') ={v:M — ]R3|V|| =0}

7. There are many ways to further decompose QF orthogonally:

QX (M) = im(d%") @ ker(8%)
= im(dly ) @ im(8) @ (ker(d") N ker(8))

J/

-~

% harmonic

» im(dp): Dirichlet exact, im(8y) Neumann coexact, .7* harmonic.

8. The harmonic forms can be decomposed into Neumann harmonic and those in im(d),
or Dirichlet harmonic and those in im(J):

A = (im(d) m%") & A = (im(5) m%") @ A (7.42)
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where
KM = A5(M) Nker(nb),  S5(M) .= A5(M) Nker(t5).

Its proof is the follows. Using im(d) C ker(d) and (im(d))* = ker(8) Nker(n), we
have

ker(d) = im(d) @ (im(d)* Nker(d)) = im(d) ® (ker(8) Nker(n) Nker(d))
Thus,
X = ker(d) Nker(8) = [im(d) @ (ker(8) Nker(n) Nker(d))] Nker(8)
= [im(d) Nker(d)] N [A* Nker(n)].

9. We can regroup them as

QK (M) = im(dp) @ (im(d) N A#*) @ K @ im(Sy)

-

im(d) exact ker(8)Nker(n) Neumann coclosed
QK (M) = im(8y) @ (im(8)NA*) & 5 & im(dp)
) im(8) exact . ker(dmlosed
or
QK (M) = im(dp) & (im(d) N A*) & HE @ im(Sy)
) im(d;rexact .
ker(d%losed ’
QK (M) = im(8y) @ (im(8) NA*) @ A5 @ im(dp)
) im(8) exact ’
) ker(8) closed }
Thus, we get

ker(d") ker(8%) n—
%\]f = m = HcliceRham<M)7 '%ﬂDk = m - Hd@R]ilﬁHl(M).

They are called the (absolute ) cohomology of M. Note that both %’j\’f (M) and
t%’ﬁ(M ) are finite dimensional and

ffﬁz%ﬂg_k.
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7.2.4 Extraction of each component

Let ® € Q%(M). We will decompose  into either one of the following two:
o=d 'a+8""B+do+hy (7.43)

o=d o+ +Sy+hp, (7.44)

where
ac Qi (M), Bektim),

¢ € Q! with §d¢p =0, (".-d¢ is harmonic )
v e QM withdSy =0, (.- Sy is harmonic )
hy € H6KM), hp € H5M).

Extraction of o
1. We look for the inverse map of the Dirichlet differential
dit ol (v — oF ()
By taking 8% on (7.43)), we get an equation for o

k gk—1 . __ Sk :
{5(1 a=0w inM (7.45)

Fla =0 on oM

2. This equation is not unique. Adding any Dirichlet closed form ( ker(d) Nker(t)) to
o yields the same d . Therefore, we look for the least L? norm solution, which gives

o L [ker(d) Nker(t)] in Q1.

Note that
[ker(d) Nker(t)]* = im(§).
and
ker(8) = im(8) ® A5 (M),
we get

oo =0,
and (o, %)) =0, forall x € 751 (M).
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3. Solving
odoo=0w inM
oa=0 in M
t“la=0 on oM (7.46)
{a,x) =0,  forall y € 5 1 (M).
is equivalent to

—Aa=0w inM

ta=0, t(dax)=0 ondM (7.47)

(o, x)) =0, for all y € A4~ 1(M)

where —A := 6d +dé.
4. We denote ox = dg(a)), the pseudo inverse of dp. That is,
dpd;, = idor, djdp is a projection to im(dj)).
The image and kernel of d;) are
im(d}) = im(8) Nker(t), ker(d})) = ker(3).
The space im(d;)) is not closed. Indeed,

(im(d}S))* = ker(dp) = ker(d) Nker(t),

im(d}}) = (im(d}})) " = (ker(d) Nker(t))* = im(3).

We have
ker(8)  ker(8)  ker(dy)  ker(dy)
im(8) — im(8) Nker(t) — im(dy)  im(dy)

Extraction of 3

1. We look for the pseudo inverse of dy. By taking d on both sides of (7.43), we get
that 3 satisfies
dép=dw, P €ker(n).

2. The solution is not unique because adding any Neumann coclosed (k + 1)-form to
B results in the same 8B. Thus, we choose B € (ker(8) Nker(m))*. This is the
Coulomb gauge. Note that

ker(d)

(ker(8) Nker(n))* = im(d) = W
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Thus,
5B = do dSB_: do
np oy =0 < dﬁ_%ﬂ
B €im(d) B LH" (M)
IHB’&M =0

3. This is equivalent to the following Poisson problem:

—AB=dowo inM

nf =0 on oM

ndB =0 on oM

(B,x) =0 forall y € H\"'(M).

4. We denote the operator @ — 3 by 85 . We have

SNOy = idgye1 (ag). 8, 6y : projection operator onto im(8y ).

im(8y) = im(d) Nker(m), ker(8y) = ker(d).

7.3 Flow Field Decomposition

7.3.1 Velocity Field Decomposition

7.3.2 Force Field Decomposition

Ref.
¢ [Force/Moment Partition Method
* Force/Moment Partition in Experiment

Consider the potential ®;,i =1,2:

Aq)l‘ =0in dQ
~_J ni onbody
n-Vo; = { 0 elsewhere

The projections of V&, gives drag, VP, give lift:

/Vp~V<I>,-:/ (—=pvi— pv-VV+uV?v)  Vd;dx.
Q Q

127


https://arxiv.org/abs/2301.13373
https://cassyni.com/events/YZqmygLgxvhZyxpVZuy9Ro

128 CHAPTER 7. MATHEMATICAL THEORY OF FLUID DYNAMICS

7.4 2D Potential Flows

References

¢ Graebel, Advanced Fluid Mechanics

1. A flow is called a potential flow if there exists a scalar function ¢ such that v= V.
The function ¢ is called the velocity potential.

2. If a flow is irrotational (i.e., V x v = 0) and the domain is simply connected, then we
can find a scalar function ¢ such that

v=Vo

3. If, in addition, the flow is incompressible, i.e.,
V-v=0,

then we have
Ap =0. (7.48)

On the boundary, we should apply slip boundary condition, i.e.

Vo -v=0.

4. In this case, the potential theory can be adopted. In particular, complex variable
methods can be used for 2D potential flows.

7.4.1 Examples of 2D Potential Flows

Here are examples of 2D potential flows along with their mathematical formulations using
complex potential, where the complex potential w is related to the velocity potential ¢ by
w = @ + Y, where Y is the stream function.

1. Uniform Flow: Constant velocity U in one direction, representing a stream of fluid
with uniform flow. w = Ue'®.

2. Source Flow: Radial flow outward from a point source, representing fluid emanating
from a single point.
w=mlnz

m 1s the source strength, z = x + iy represents the coordinate.


https://en.wikipedia.org/wiki/Potential_flow
https://en.wikipedia.org/wiki/Potential_flow
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3. Sink Flow: Radial flow towards a point sink, representing fluid converging towards
a single point.
w= —mlnz.

4. Dipole Flow:

5. Doublet Flow: Combination of a source and a sink, resulting in a dipole-like flow

pattern.
m
w=—
Z

6. Jets
7. Potential flow around a circular cylinder: Uniform Flow + Doublet.

8. See more pictures on websites: Examples of 2D Potential Flows

7.4.2 Axisymmetric Potential Flows

In three-dimensional potential flows, the complex potential approach is extended to include
axial symmetry. Here are examples of 3D potential flows along with their mathematical
formulations using cylindrical coordinates:

1. Axisymmetric Source: Radial flow outward in three dimensions from an axisym-
metric source. m
w=—Inr+mz.
2

Here, r is the radial coordinate, and z is the axial coordinate.

2. Axisymmetric Sink: Radial flow towards an axisymmetric sink.

m
w=——Inr—mz.
2%

3. Axisymmetric Doublet: Combination of an axisymmetric source and sink, creating
an axisymmetric dipole.

4. Helical Flow: Combination of axial and azimuthal flows, resulting in a helical flow
pattern.

w= Uei9+ﬂlnr+im6 + mz.
27

Here, U is the axial velocity, m the azimuthal circulation, r radial coordinate, 0 the
azimuthal angle, z the axial coordinate.


https://en.wikipedia.org/wiki/Potential_flow_around_a_circular_cylinder
https://www.google.com/search?client=firefox-b-d&sca_esv=7b5d61ce588ede1b&q=potential+flows,&uds=AMwkrPs4mDHqV7QfY9nYaKRHgvE9kh23jKo4OXAqKbKMHVqVWGM6UlPyGXeJy6-jGgr1rFE9KS8blmHkpB9DtSpvK8t0rn7Yike9RUJ3EiW4xsgCFRpxmtChVRH84RcCoFwjwx4YRILb24tDEIqx1OXrgn10XwXFCAT331GiD5XiRacImwAYNdV3XmyM3SWQWe-Jm5BiGrD8TcJk2dMqvOGUZxcLgbXYPP6u1zQ3RWVWYh_GRZs4Qov_2tr7-uX5HhixKSqfXpkQ&udm=2&prmd=ivsnbmtz&sa=X&ved=2ahUKEwjl8MX5_qSFAxWanq8BHdIvB14QtKgLegQIEBAB&biw=1531&bih=874&dpr=1
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5. Dipole in 3D: Three-dimensional combination of a source and sink, producing a
dipole flow.

m 1s the dipole strength.

Here are ChatGPT’s answer to the examples of axisymmetric potential flows.

ChatGPT: Axisymmetric potential flows are those where the flow variables (velocity, pres-
sure, etc.) are independent of the azimuthal angle (6), meaning that the flow is symmetric
around an axis of rotation. Here are a few examples of axisymmetric potential flows:

Flow around a Sphere: In this case, the flow variables (velocity, pressure, etc.) re-
main the same as we rotate around the axis passing through the center of the sphere. This
symmetry is due to the geometric symmetry of the sphere.

Flow past a Blunt Body: When a fluid flows past a blunt body, such as a circular
cylinder with a rounded nose, the flow can be axisymmetric if the Reynolds number is low
and turbulence effects are negligible. The flow variables exhibit symmetry around the axis
of the cylinder.

Flow through a Pipe: In the case of laminar flow through a straight pipe, the flow can
be treated as axisymmetric. This is because the flow velocity and pressure distributions are
uniform along the cross-section of the pipe, and they do not vary with the azimuthal angle.

Flow past a Spheroid: A spheroid is a three-dimensional shape that is formed by rotat-
ing an ellipse about one of its principal axes. When a fluid flows past a spheroid with its
symmetry axis aligned with the flow direction, the resulting flow can be axisymmetric.

Flow around a Cone: In certain conditions, such as low Reynolds numbers or idealized
flow, the flow around a cone can be considered axisymmetric. This is particularly true for
symmetric cones where the flow variables remain invariant as we rotate around the axis of
symmetry.

In each of these examples, the flow variables can be described using cylindrical coordi-
nates (r, 0, z), and the governing equations, such as the Laplace equation for potential flow,
can be simplified due to the axisymmetric nature of the flow. These examples find appli-
cations in various fields such as aerodynamics, fluid mechanics, and engineering. These
formulations are based on cylindrical coordinates and the complex potential approach ex-
tended to three dimensions. They describe various types of 3D potential flows, including
source, sink, doublet, helical flow, dipole, and flow past a sphere.
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7.5 Incompressible Irrotational Flows in 3D

The velocity field of incompressible and irrotational flows are harmonic. It must be steady.
The governing equation is

Vxv=0 inM
V.v=0 inM (7.49)
v-v=0 on dM.

7.6 Compressible Irrotational Flows

7.6.1 Compressible Potential Flows

Potential flows are those flows whose velocity is determined by a potential function ¢:
v=Vo.

For irrotational flows in simply connected domain, such potential function exists.

1. With the assumption v = V¢, we have to abandon the energy equation. Thus, the
governing equations for compressible potential flow are the continuity equation, the
momentum equation, plus v = V¢. The pressure p is obtained from the Bernoulli
principle.

The unknowns are (p, ).

7.7 Incompressible Rotational flows

7.7.1 Examples of incompressible rotational flows

2D Cases Here is a link for 2D incompressible inviscid flow.

1. Single Point Vortex Flow: Circulation around a point without a radial flow, creating
a vortex.

w=—Inz.
2wt
I is the vortex strength.
2. Point vortex Dipole

3. Lamb-Chaplygin Dipole

4. Dynamics of point vortices


https://en.wikipedia.org/wiki/Potential_flow
https://farside.ph.utexas.edu/teaching/336L/Fluidhtml/node66.html
https://en.wikipedia.org/wiki/Vortex
https://en.wikipedia.org/wiki/Lamb%E2%80%93Chaplygin_dipole
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. Flow around a Circular Cylinder: Flow around a circular cylinder, producing a

combination of source and sink flows along with a vortex.
o K
w=Ue"®+—.
Z

where U is the uniform velocity, K the doublet strength, z = re’® the complex posi-
tion.

. Flow around the Joukowski Airfoil

von Karman Vortex Street

. Vortex Patches

Vortex Sheet

3D Cases

1.

Flow past a Sphere: Flow around a sphere exhibits a combination of radial and
circumferential flow.

R2
w=U <——|—z) +iU (R* +2%) cos 6.
Z

Here, U is the uniform velocity, R is the sphere radius, z is the axial coordinate, and
0 is the polar angle.

. Vortex filament and binormal equation
. Helical Vertex

. Vortex ring:

* Solitary waves on a vortex ring.
» Leap-flog motion of a pair of vortex rings,

* Impact of two vortex rings.

Vortex reconnection

. Vortex sheet


https://en.wikipedia.org/wiki/Potential_flow_around_a_circular_cylinder
https://complex-analysis.com/content/joukowsky_airfoil.html
https://en.wikipedia.org/wiki/K%C3%A1rm%C3%A1n_vortex_street
https://en.wikipedia.org/wiki/Vortex_sheet
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7.8 One Dimensional Compressible Flows

References

* Courant and Friedrichs, Supersonic Flow and Shock Wave.

7.8.1 Riemann problems for hyperbolic conservation laws

Hyperbolicity We consider the following systems of PDEs:

ur+ f(u)y =0, (7.50)
ui
uz
u=1.1, [f:R'—=R"
Up

The system is called hyperbolic if the n x n matrix f(u) can be diagonalized with
real eigenvalues A;(u) < A(u) < --- < A,(u) for all u under consideration. The system
is called strictly hyperbolic if A;(u) < Ax(u) < --- < A,(u) for all u. Let us denote cor-
responding left/right eigenvectors by ¢;(u)/r;(u), respectively. Let us normalize them by
requiring

@) =1, li(u)-rj(u) = 6.

Self-similar solutions It is important to notice that the system is Galilean invariant,
meaning that the equation is unchanged under the transformation:

t—At, x—Ax, VA >0.

This suggests that we can look for special solutions of the form u(%). Such a solution is
called a self-similar solution. Suppose u(7) is such a solution. Let us plug it into (7.50)
and yield

d () S =0
/ r_ Xy
= f(uwu = U
This means that there exists a field i such that ’ || r;(x) and § = A;(u(5)). Thus, to construct
such self-similar solution, we first construct the integral curve of r;(u). Let R;(uo,s) be the
integral curve of r;(u) passing through ug parameterized by its arc length. That is

d
%Ri@to;s) = ri(Ri(u()vs))v Ri(u()?()) = Up-
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Along R;, the speed A, has the variation:
d /
ali(Ri(uo,s)) =VAi-R;=VA;-ri.
We have the following definitions.
Definition 7.3. The i-th characteristic field is called
o genuinely nonlinear if VA;(u) - ri(u) # 0 Yu;
* linearly degenerate if VA;(u) - ri(u) = 0 Yu,
* non-genuinely nonlinear if VA;(u) - rj(u) = 0 on isolated hypersurface in R".

For scalar conservation laws, the genuine nonlinearity is equivalent to the convexity (or
concavity) of the flux f, linear degeneracy is f(u) = au, while non-genuine nonlinearity is
non-convexity of f.

Rarefaction Waves When the i-th field is genuinely nonlinear, we define the rarefaction
curve in the state space as

R (uo) = {u € Ri(uo)| Ai(u) > Ai(uo)}.

Now suppose u; € R} (up), we construct the centered rarefaction wave, denoted by (ug,uy),
as below:

up if ¥ < Ai(up)
(o) (5) = { it £ > )
u if Ai(up) <7 < Ai(ur) and A;(u) = 7.

It is easy to check that this is a solution. We call (ug,u;) an i-rarefaction wave.
Shock Waves The shock wave is expressed as:
u(x) _Jup fori <o
t/) | ur fori>o,
where o is the shock speed. Here, (ug,u;,0) need to satisfy the jump condition:

f(ur) = f(uo) = o(u1 — u). (7.51)

Lemma 7.6. (Local structure of shock curves)
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Nw =M A
i\U%o

Ug (5]

Figure 7.2: (Left) The rarefaction wave. (Right) The integral curve of u’ = r;(u).

1. The solution of for (u,0) consists of n algebraic curves passing through u
locally, named them by Si(ug),i=1,--- ,n.

2. Si(up) is tangent to R;(ug) up to second order. i.e., Sl(k)(uo) = Rl(k)(uo),k =0,1,2.
Here the derivatives are arclength derivatives.

3. oi(ug,u) — Ai(uo) as u — ug, and o} (uo,uo) = 3] (uo)
Proof. 1. Let S(ug) = {u|f(u) — f(up) = o(u—up) for some o € R}. We claim that
n
S(ug) = U Si(up), where each S;(ug) is a smooth curve passing through ug with
i=1

tangent r;(ug) at ug. When u is on S(ug), rewrite the jump condition as

1
fu) = flug) = {/0 f'(uo+1(u—uo)dt | (u—uo)

= A(uo,u)(u— up)

Thus,
u € S(ug) <= (u—up) is an eigenvector of A(ug,u).

Assuming A(u) = f’(u) has real and distinct eigenvalues A (u) < --- < A,(u), then,
from perturbation theory (or the implicit function theorem), for u ~ uo, A(up, u) also
has real and distinct eigenvalues A; (ug,u) < --- < A,(up,u) with left/right eigenvec-
tors ¢;(ug,u) and 7;(uo, u), respectively, and they converge to A;(ug), 4;(ug), ri(ug) as
u — ugp, respectively. We normalize theses eigenvectors by

7l =1, G = 8.
The vector which is parallel to 7; can be determined by the n — 1 equations:

O(ug,u)(u—ug) =0, k=1,---,n, k#i,
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Thus, we define

Si(ug) = {u | Ox(ug,u)(u—ug) =0, k=1,---,n, k#i}.

We claim that this is a smooth curve passing through ug. First, we choose the co-
ordinate frame ry(ug),- -+ ,r,(up). Differential the equation ;(ug,u)(u —up) =0 in
rj(up) direction to get

a - ~
or; (i (o, u) (e — uo)) = L (uo,uo) - (o) = Sjx.
J lu=uy

Thus, (g—fk) is a full rank matrix. By the implicit function theorem, S;(u) is a smooth
J ~

curve passing through ug. Since any u € S(ug) must satisfy ¢ (ug,u)(u —ug) =0

for k =1,...,n, k # i for some i. This means that u € S;(up) for some i. Hence,

S(u) = Ql Si(uo)-

. First, clearly we have R;(ug) = ug = Si(up) from construction. Next, we compute

first and second derivatives of S; at uy. We take arclength derivative along S;(ug):

f(u) = f(uo) = 0i(uo,u)(u—up) Vu € S;(up)

to get
f'(wu' = o} (u—ug) + o’ and u’ = S..

When u — ug
f'(u0)Si(uo) = 0i(uo, o) S;(uo)
= SH(up) = ri(up) and o;(ug, up) = Ai(up).
Now we compute the second derivative of the jump condition:
(f" ) o)+ f (" = 6! (u—uo) +20] - v/ + o’ .
Atu = ug, u' = S:(up) = Ri(uo) = ri(up) and u” = S/ (up). These imply
(f”rh ri) —l—f/S;/ = 26{1’,’ —+ Gl'S;/. (7.52)

On the other hand, we differentiate f/(u)r;(u) = A;(u)r;(u) along R;(up), then evalu-
ate at u = ug to get

(f"ri, I’i) -+ f/(VI”,' . I’i) = )Lill’l' -+ ?Lini -1, (7.53)
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where Vr;-r; = R!'. Comparing (7.52) and (7.53)), we get that

(f = A) (S —R!) = (26! — A})r; and 20] = A/ at u.
Since {ry(up)} are independent, we can express S/ —R! =Y axr(up). Plug this into
the above equation, we get ‘

Z()’k — li)akrk = (26{ — ll-/)r,-.
kEi
Since Ay # A; for k # i and {r;} are independent, we get
=0Vk #iand A/ =20/ at ug.

Hence (R” —S") || r; at ug. To show that R} = S/ at ug, we first notice that (R, R})

0 and (S7,S}) = 0 which can be derived by differentiate the equations (R!,R})
1,(S;,S}) = 1. From these and S’(uo) = R}(uo) = ri(uo), we get

(R —S!) L r;atug.

Hence R = S/ at uy.

O
Let S; (uo) = {u € Si(uo)|Ai(u) < Ai(uo)}. If uy € S—; (up), define
u() for =< G,(uo,ul)
u07u1 fOI‘ = > G,(Lt()ﬂ/tl)
(up,u1) is a weak solution. Let &; (ug) = {u € S;(uo)|Ai(u) < Ai(uo)}.
If u; € &; (up), define
. U for )t_c < Gi(uo7u1)
(u07u1) o { uy for )t_c > Gi(uo,ul)
R
up i %i
S;
: : S,
(ug,u; ) is a weak solution.
We propose the following entropy condition: (Lax entropy condition)
/l,‘(bt()) > Gi(u(),ul) > li(ul). (7.54)

If the i-th characteristic field is genuinely nonlinear, then for u; € S; (up), and u; ~ uo,
(7.54) is always valid. This follows easily from A; = 26} and o;(uo,up) = Ai(ug). For
ur € S; (up), we call the solution (ug,u;) i-shock.
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Contact Discontinuity (Linear Wave) If VA;(«)-r;(u) =0, we call the i-th characteristic
field linearly degenerate (f. dg.). In the case of scalar equation, this correspond f” = 0.
We claim

Ri(up) = Si(up) and o;(ug,u) = A;(up) for u € Si(up) or R;i(uo).
Indeed, along R;(u), we have
f(wu = X
and A;(u) is a constant A;(ug) from the linear degeneracy. We integrate the above equation
from ug to u along R;(u), we get
J ) = f(uo) = Aiuo) (u — up).
This gives the shock condition. Thus, S;(ug) = R;(uo) and o (u,up) = Ai(uo).

Homeworks ) ( )
uy 7 < 6iluo,uq

uo,u1) —
(10, 1) { uy 7> oi(ug,ur)

Riemann Problems Let T;(ug) = R (o) US; (up) be called the i-th wave curve. For
uy € Ti(up), (uo,uy ) is either a rarefaction wave, a shock, or a contact discontinuity.

Theorem 7.6. (Lax) For strictly hyperbolic system (7.50), if each field is either genuinely
nonlinear or linear degenerate, then for uy, ~ ug, the Riemann problem with two end states
(u;,ug) has unique self-similar solution which consists of n elementary waves. Namely,
there exist uy = ur,- -+ ,u, = ug such that (u;—1,u;) is an i-wave.

Proof. Given (ay,---,0,) € R", define u; inductively u; € T;(u;—1), and the arclength of
(u,-_l,ui) onT; = q;.

ui:f(u()vala"' 7ai>
We want to find o, - -, &, such that
UR :f(uL7(xl7"' 7an)'
Firstup = f(ur,0,---,0), as ug = ug,(ay, -+ ,0,) = (0,---,0) is a solution. When ug ~ ur
and {r;(uo)} are independent,
J >
5 f(uL707"'70):ri(u0) andeC
da o=0

By Inverse function theorem, for ug ~ uy, there exists unique a such that ug = f(ur, ).
Uniqueness leaves as an exercise. [
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7.8.2 Riemann Problems for Gas Dynamics
Reference This subsection mainly comes from Courant and Friedrichs’ book: Supersonic

Flow and Shock Waves.

Hyperbolicity of the equations of gas dynamics We use (p,u,S) as our unknown vari-
ables. The equations of gas dynamics can be expressed as

p u p 07 Tp
u+%u%u:0
\) 0 0 ull[S

t X

Here, P(p,S) =A(S)p?, y> 1, and ¢*> = 35 . This system is hyperbolic. The eigenvalues

and eigenvectors are

M=u—c, b=u AM=u+tc,

p —Py p
rn=,\|—¢f, = 0 ) r3=\|cf,
0 c? 0
Py
gl_[c7 [ ]7 62_[070 1] l3 [C pa?]

Note that

These show that the 1st and 3rd characteristic fields are genuinely nonlinear, while the 2nd
is linearly degenerate.

Rarefaction curves The rarefaction curve {R; is the integral curve of the vector field rq,
that is, (dp,du,dS)" || . Note that £, = 0, £3r; = 0. Thus, the differential equations for
R| are govern by

(dp,du,dS)-(0,0,1) =0
{ (dp,du,ds) - (c,p, ) =0.

dS=0
cdp +pdu+ds=0
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Thus, R can be expressed as

dS=0
’%dp—f—du:O

dS=0

%d p—du=0.
Since S = Sy, a constant, on P3| and A3, it is convenient to project the rarefaction curves
R and i3 onto the u-P plane. The rarefaction curves $R; and k3 are given by

Similarly, 2R3 is expressed as

Riu—uy=—L+4
%3!1/!—1/!():(—60.

where

UP.S) = /C(’;’S) dp.

Below, we express £ in terms of (P,S). From P = A(S)p?, ¢ = \/P, = /A(S)yp?~!, we
obtain
c 2 -1 2 YP
e::/—d =VYAS)——p 7T = |
5P 7()y_1p 1\ p

Pp T =A(S) = A(So) = Pop, -

Note that

We can express p in terms of P, Py, po:

3 3 P 1)y

2 P\ R
e \/”’(F) o =\ oy

2 1L - r-1
- _yﬁ'po 2130”(10@71 — Py ) := ypo(P).

Hence,

9%1 . u:MQ—lV()<P)
Ri: u= u0+l[/0(P).
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The contact discontinuity On R, (dp,du,dS) L ¢1,/¢3, which gives

c*dp + cpdu+ PsdS = 0
c*dp — cpdu+ PsdS = 0

dP+cpdu=0
- { dP — cpdu =0
Thus, R, is given by
dP =0
du=0

For any (u1,P;) € Ry, we have u; = ug, P, = Py, and ((uo,Po,So), (1o, Py, S1)) constitutes
a contact discontinuity.
Note that R; = G, because the 2-characteristic field is linearly degenerate.

Shock curves Let us consider a 1-shock (resp. 3-shock) with left state (resp. right state)
(0) := (po,uo,Py) and shock speed o. We want to find the shock curves S (resp. S3)
passing through the state (0). Indeed, we want to find the projection of &; (resp. &3) on
the u-P plane.

Let v :=u— o. The jump conditions are

[pv] =0
[pv? +P]=0
[(%pv2 +pe+P)v|=0.
Let
m:= pv.
From the first jump condition, we have
m = my.

The second jump condition is
pov(z) + Py = pv2 +P = mvog+Py=mv+P.

This gives
P—PF P—P
v—vg  mV—mVy’

where V = ll) is the specific volume. Note that m # 0.

m =

) P—P P—P
m-=— , V—yg=—
V-V m

The case m = 0 corresponds to the contact discontinuity.
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These give
(u—up)*> = (v—v0)* = —=(P—Ry)(V — V). (7.55)

The third jump condition is

1 1
(EPOV% + Poeo +Po) Vo = (Epvz +P€+P) V.

We want to remove the kinetic energy part and only remain an internal energy relation.
From pgvg = pv, we get

1 2 1 2
5V0+UO+POV0:§V +U+PV.

Byv(z)— 2V vV 2 — m2v2?, andmzz—‘lj I‘;O,wearrlveat
H(P,V) ::U—U0+P;PO(V—V0):O
UsingU = £ = 1,weget
PV RV, P+PO)(V—V0):O.

y—1 B y—1 ( 2
We use this equation to express V in terms of P, Py, Vp:

<P+Po> Vo + POVO
V=""mn

+ﬁ

then plug it into
(u— u0)2 =—(P—Py)(V—-W).

We get an expression of &; and &3 on the u-P plane:

61: u = I/t()—q)o(P)
S3: u = up+@o(P)
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Admissible rarefaction curves and shock curves On 93, only the portion where A, is
increasing is admissible, because the rarefaction fan requires the characteristic speed of the
left end of the fan should be smaller than that of the right end of the fan. Therefore, we
define the admissible rarefaction curves and shock curves for the left state (¢) as

R (0) = up — yo(P) for P < Ry
6;(5) =uy— (Po(P) for P > Py

and the admissible rarefaction curves and shock curves for the right state (r) as

R (r) =uo+ yo(P) for P < Py
S5 (r) = uo + ¢o(P) for P> P.

The admissible wave curves are defined to be

14 _
=% () ueT ()
T3(r) =R (UGS

—~
~
~—~

Solving Riemann problems Now we are ready to solve the Riemann Problem with initial
states (pr, P, ur) and (pg, Pg,ug). The solution to this Riemann problem consists of three
elementary waves:

1-wave :((pr,Pr,ur.), (pr, Pr,ur)),
2-wave :((p[,l)],ul), (p[]aPIhuH))7
3-wave :((pr, P, urr), (PR, PR, UR))-

Recall that the second wave is a contact discontinuity, on which [u] = 0, [P] = 0. Thus, we
have

Uy = uj = Uy,
P =Py = P..

Finding the mid states (u.,P.) Given a left state Uy := (pr,Pr,ur) and a right state
Ur := (pr, Pr,ug), we want to find two mid states U; and Uy such that (Ur,U;) forms
an 1-wave, and (Uy,Ug) forms a 3-wave and (U;,Uy) forms a 2-wave. From the jump
condition of the 2-wave, we have U; = (py, Ps,u,) and Uy = (py, Ps,us). With this, then
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pr and pyy can be determined the equation on Tl(é) (Ur) and T3(r) (Ugr), respectively. The mid

state (uy, Py) is the intersection of Tl(g) (Ur) and T3(r) (Ug) on the u-P plane.

Godunov gives a procedure to find the mid state (i, P,). The algorithm to find P is to

solve

up— fL(P) = ur=uyg=ug+ fr(P)

fo(P) = {q‘ifoo((llj)) i;ig 0=L, orR.

This is equivalent to
—Zi(ux—uy) = P.—P
ZR(M* —MR) = P* —PR,

where
e 3) ()
Vi \IL VR \ PR
and
A/ %lw—k %1 w > 1 (shock),
®w) = =1 l-w w < 1 (rarefaction)
Zﬂ/ l—wyz;y1 B .

System (7.56) is an equation for (u.,P.). It can be solved by Newton’s method.

The state pj; can be obtained from (pg, pr,ug) and (u., P.) by similar way.

Wave structures Given (pr, Pr,ur) and (pg, Pr,ug). Let us define

r=1
—_2 _(er)
e raref := 7TCL (1 <PL) >,

e nb o (Pe p
shk:=cr (PIZ ) \/y((71)+(7+1)';’2)’

e du:= UR —Ujg.

We have the following cases:

(1) (Pr < P) & (du > raref) or (pgr > Pp) & (du > shk) = R; +R3.
(2) (pr > P.) & (—shk < du < shk) = S + R;

(3) (pr < Pr) & (—shk < du < shk) = R + S

(4) (Pr < P) & (du < —raref) or (pgr > P) & (du < —shk) = S| + S.

(7.56)
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Note that the transition from (1) to (2) (i.e. R; + R3 to S| + R3 happens when the left state
(€) € Ry (r).

Once (uy, P,) is found, the full mid state can be obtained by the follows:

* If the 1-wave is a rarefaction wave, then py can be determined by

P.p; " =A(S) =A(SL) = Pp,”

In the region: A;(UL) < x/t < A1 (Uy), the state U = (p,u,Sr) is determined by

{ u—c=y
u—up = @(P).

o If the 1-wave is a shock, then 1/p; = V; can be determined by

(u* — ML>2 = —(P* —PL)(VI — VL).

The vacuum State The mid state should satisfy P, > 0. There are situations that the mid
state P, < 0. In such cases, we say the mid state contains a vacuum state. The intersections
of the admissible wave curves and the axis where P = 0 are the vacuum states. Usually,
this happens when the two sides of gases running in opposite directions too fast.

7.9 Viscous Flows

7.9.1 Stokes Flows

Shear flows
¢ Poiseuille Flow (Laminar flow in a tube)

* Stability/Instability of Shear Flows.

7.9.2 Bifurcation of fluid flows

* Flow past a cylinder
* Flow Separation
 Taylor-Couette flow

* Rayleigh-Bénard Convection


https://www.sciencedirect.com/topics/mathematics/poiseuille-flow
https://en.wikipedia.org/wiki/Taylor%E2%80%93Couette_flow
https://en.wikipedia.org/wiki/Rayleigh%E2%80%93B%C3%A9nard_convection
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2-wave
n-wave

1-wave

U1 U2

Up = UL

Figure 7.3: The integral curve of the rarefaction curves 93| and i3 on the u-P plane. Here
(ug, Py) is a left state. For any point (u1,P;) on R}, ((uo, By), (u1,P;)) forms a 1-rarefaction
wave. Note that the entropy S = Sy along a rarefaction curve.
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Figure 7.4: The admissible rarefaction curves and shock curves on the u-P plane with
left/right states.

i

pr, Pryur | po, Po,un

pL, Pr,ur PR, Pr,ur

Figure 7.5: The three elementary waves with the left state (pr,Pr,uz) and the right state
(PR, Pr,ur). The states (py, Pr,ur) and (py, Py, uyr) are called the mid states, which forms a
contact discontinuity.
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U pr, Pr,ur PR, Pr,ur

Figure 7.6: This is a solution of the Riemann problem with p; < pg. In this case, from the
left state (£), we follow & ; and from the right state (r), we follow 95 . Their intersection
gives the mid state (u,, Py).

Figure 7.7: The vacuum state appears when P, < 0.
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Chapter 8

Kinematics of Elasticity

Brief History of Elasticity The following historical notes are copied from Love’s book:
A Treatise on the Mathematical Theory of Elasticity (1926).

Galileo Galilei, Discorsi e Dimostrazioni matematiche, Leiden (1638)
Robert Hookes, De Potentia restitutiva, London (1678)
E. Mariotte, Traité du mouvement des eaux, Paris (1686)
Euler

Coulomb and Young

Navier

Fresnel

Cauchy, Poisson

Green

Kelvin

Saint-Venant

Kirchhoff

Clebsch
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Contents Solid mechanics includes elasticity, plasticity, viscoelasticity, visco-plasticity,
etc. The deformation of solid material is described by the flow map of the material. The
geometric change (deformation) of the material involves forces in the internal molecular
structure or from the external world. There are two kinds of forces: conservative and non-
conservative. The conservative force gives reversible physical process, while the physical
process is irreversible for nonconservative forces. In the first few chapters, we study me-
chanics of simple elasticity. Its content includes

* the geometry of the deformation (strain);
* the response of the material to the deformation (stress-strain relation);

* the dynamics of a simple elastic material.

8.1 Deformation and Strain

8.1.1 Flow Map and Deformation Gradient

Flow maps and velocity fields Let us imagine an elastic material deforms from a domain
My at time O to M; at time t. The domain M, is a manifold, called the configuration space
or the observor’s space. The initial region M is called the reference space or the material
space. We denote such a deformation or flow map byE]

O X —x(1,X).

'In later chapters, the flow map will also be denoted by x = ¢,(X) in differential geometry, and by x =
q(#,X) in Hamilton mechanics.
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That is, a position with coordinate X is deformed to a position x at time #. The coordinate X
is called the Lagrange coordinate (or the material coordinate, or the reference coordinate),
while x the Euler coordinate (or the world coordinate, or the observer’s coordinate). We
shall assume the flow map x(-,-) is Lipschitz continuous and the map ¢, : X — x(¢,X)
invertible for almost all 7. [| The velocity v(z,X) is defined to be

v(t,x(t,X)) =x(1,X).

Here, the dot is the differentiation in ¢ with fixed X. Conversely, given a vector field v :
Uss0{t} x M; — R3, one can obtain a flow map x(¢,X) by solving the ODE

x(t,X)=v(,x), x(0,X)=X.

Thus, the dynamics of the material is described by either the flow map x(¢,X) or the
velocity field v(z,x).

Deformation gradient The gradient

Ix

F(t,X):=Vxx(t,X) = 3

(t.X) 8.1)

is called the deformation gradient. | It is clear that F(0,X) = I. Its component expression

is
- ~ oxt

_ o._ o
dx' = FldX® = 50 dX*®.

Let us denote the Jacobian by
J(t,X) :=detF(t,X).

We require J(z,X) > 0 for all time from physical consideration. That means that the flow
map ¢ is orientation preserving.

Rate of deformation By differentiating the equation x(7,X) = v(¢,x(7,X)) in X, we get

Jx  ov Jv odx
8_X = a—X(t,X(l,X>) = ga—x
In component form, it is
0 . ovi dxk

oxe ot %) = S oxa

The flow map x(¢, -) may not be differentiable everywhere. dx/dX may have discontinuity.
3In differential geometry, we express F as d@;.
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Using commuting property of d; and dy, we obtain

d ox B ovi oxk
ot dX*  Jxk9axe’
or
F = (Vv)F = LF. (8.2)
The term
. V'
L = a—:k, or L=Vy

is called the rate-of-deformation. Ef]

8.1.2 Examples
1. Rigid body motion A trivial flow motion is the rigid-body motion defined by
x=xo(t)+0(t)X
where Q(t) is an orthogonal matrix, i.e. QQ7 = I. We have
_ T

X=0" (x—x¢(1)).

The deformation gradient F' = Q. From
V=% =5%(t) + ()X = %o(t) + 0(1)Q" (1) (x —x0(r))..

Thus,
Vv=0(n0" ().
Note that
W+ (VW) =00"+00" =0, --Q"0=1
Let us characterize the rigid-body motion without proof.

Proposition 8.4. Let ¢, : Q — R> be a flow map in R®. Then ¢,(X) is a rigid-body motion
if and only if FTF = I, where F := Vx@,.

*Note that (Vv)i := 9v'/dx*, which is different from the notation of ordinary tensor product. There,
(V®V); = duv/. In terms of the notation of tensor product, our Vv is the tensor product v V.
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2. Shear flow A simple shear flow is given by
vi="P1x2, =0, v3=0. (8.3)
Here, 751 is a constant, called the shear rate. The corresponding flow map is
x1=X1+pirXs, xn=X, x=X;.
The deformation gradient and rate-of-deformation are

L Pt 0 71
F = 1

3. Simple shearless flow E]is given by

1
v = ——é(l —f—b))q

2

1
V) = _Eé(l —Db)xp (8.4)
vy = €x3.

Here, 0 < b < 1 and € are two constants, called the elongation rates. We have

—1&(1+b)
Vv = —3&(1-b) |,
€
It satisfies
V.v=0.

Thus, this flow map is volume preserving. The flow map is given by

x! exp(—%é(l—l—b)t) X!

x| = exp(—%é(l —b)t) x?

o exp(ét)| | X3

Special cases are

« Elongational flow: b =0,& > 0. It elongates in x> direction and shrinks in x! and x*
cross-section plane.

« Bi-axial stretching flow: b =0,& < 0. It stretches in x> direction and expands in

x!-x? cross section plane.

1

* Planar elongational flow: b = 1. A flow with motion only in x'-x? plane.

SThis part of note mainly comes from Bird’s book, Vol. I, Chapter 3.
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4. Linear Deformation Consider an elastic motion satisfying Vv = constant. That is,

v =Ax, A isa constant matrix.
We can compute the corresponding flow map
x=v=Ax, x(0,X)=X.

The flow map is
x(t,X) = e"X.

The deformation gradient and rate of deformation are
F=¢4 Vv=A.
We see that
1. From det(e') = ¢'T7(), we get J (1) = detF(t) = 1 iff Tr(A) = 0.
2. If A is anti-symmetric, i.e. A+A” =0, then A can be expressed as

-3 W
A= 0)3 — )
—w o
and Q = ¢ satisfies[f]
007 = ¢4 JAT — gA+AT) _
That is, Q is a rotation. Thus, the flow is a rigid-body motion.

3. If A= Al then x(¢,X) = ¢4X is an isotropic expansion/shrinking.

4. Suppose A is symmetric and 7r(A) = 0. We can diagonalize A, say A = diag(A;,42,43)

with }'; 4; = 0. Then

el‘A — diag(el)tljetlz,ell3).

It expands in those directions where A; > 0 and shrinks in those where A; < 0.

Note that for any two constant square matrices A and B, we have exp(A) exp(B) = exp(A + B) if and only
if AB = BA. This can be proven by using Taylor expansion and mutual diagonalization. For antisymmetric

matrix A, we have AT = —A. Thus, AAT = —A2 = ATA.
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5. A symmetric matrix A can be expressed as

A=(A— %Tr(A)I) + %Tr(A)I

The first term is trace free and the second term is isotropic.

1
/A = et(A—gTr(A)I)eéTr(A)'

6. A general matrix A can be decomposed into
1 Ty, 1 T
A= E(A+A )+§(A—A )=S+Q.
Its exponential map ¢4 in a short period of time Az can be approximated by

M4 = MM 4 O((A1)?) = e 1 O((Ar)?)  for small time Ar.

The reason why this is only an approximation is because S and £ may not commute
to each other.

Homework LetA, B be two n X n matrices. Show that
eAt(A+B) — AANB + 0((At>2)

Hint: Use the definition ¢4 = ¥, 1 (tA)".

8.1.3 Geometric Meaning of Deformation Gradient

Singular Value Decomposition of F'.

Proposition 8.5. The deformation gradient F has the following representation:

F = 0,A0% (8.5)

where

A:diag(klvl%ﬂ'?ﬁ): )*i207

and
On = [ny,np,m|, ON = [N{,N,N3]

are two orthogonal matrices in the world space and material space, respectively.
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Remark The representation (8.5) is called the singular value decomposition of F; where
A; are the singular values of F. We can also express F as

F = Z?LknkN,{.
k

In component form, it reads
Fo =) MmN,
k
The matrix nkN,{ is a rank-1 matrix. It is a projectionon to ny.

Proof. 1. Consider the matrix FT F, which is symmetric and non-negative. It has eigen-
values/eigenvectors: lkz and N, k = 1,2,3. These eigenvectors are orthonormal.
That is,
(Nk,Ng) = O

We choose A; > 0. They are called the singular values of F. IZ]

2. For those k with A; # 0, we define ny := FN; /A4, then ||ng||> = 1. For
1 1,
(g mg) = o5 (FNi, FNi) = -5 (F7FNg Ny = (N Ng) = 1.
k k
If 4 # Ay, then (ng,ny) = 0. This is because

1 1
<nk,ng> = —(FNk,FNg> = —<FTFNk,Ng> = —<Nk,Ng> =0.

vy vy

3. If there are Ay = 0 for some /, then the set {ny| the corresponding A; # 0} can not
form a basis in R3. We extend the set {ny|A; # 0} to its orthogonal complement such
that the extended set {nk}i:1 constitutes an orthonormal basis in R3. That is,

<nk7n£>:6kf7 1 §k7€§3
The above construction of {n;} satisfies

FN; = Aang, k= 1,2,3. (8.6)

"The eigenvalues are nonnegative because

0 < (FN, FN) = (FTFNi, N = A2 (Ni, N) = AZ.
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4. Let On = [nl,nz,ng], ON = [N],Nz,N3] and A = diag(?L],/’Lz,lg). Then On and ON
are orthogonal matrices, and can be expressed as

F[N1,N2,N3] = [n1,mp,n3]diag(4;, 42, 43),

or in matrix form:
F = 0,A0%.

Remarks

1. Let {Eq := dxe|ax = 1,2,3} be the basis in the material space, and {e; := d,i|i =
1,2,3} be the basis in the observer’s space. The representations of Ox = [N,N;, N3]
and Op = [n],ny,n3) are

Nk:N]gEa, nk:n};ei.

2. Suppose we choose [N1,Nj, N3] as an orthonormal frame in material space and [nj,ny, n3]
an orthonormal frame in observer’s space. Let X’ be the coordinate of X in the frame
[N1,N2, N3], then we have dX’ = OLdX. Similarly, let X be the coordinate of X in
the frame [n;,ny,n3], we also have dx’ = O! dx. Under these two frames, the defor-
mation gradient F has the representation:

dx' = Oldx = Ol FdX = OF (0nAOL)dX = AdX'.

This means that in the coordinate systems X’ and X/, the deformation is an elonga-
tion/stretching.

3. Let us restate the above argument by investigating the deformation of a small ball.
Consider a small ball {|AX|? = £} in the tangent space of material space TM. Let us
represent the tangent AX in terms of N as AX = AX’ ka. The deformation gradient
F maps AX to Ax, which has the representation:

Ax = F(AX) = F(AX""Ny) = LAX 0.
On the other hand, Ax = Ax'*n;. Thus, the small ball [|AX||> = €2 is deformed to an

ellipsoid
y A4
A

k

with axes ny,n;, n3.
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Na

G-
NIJ "'nz‘

Tl = dea, 16133

Figure 8.1: Singular value decomposition of F. FN; = A;ny

Polar decomposition of F

1. Right polar decomposition
e LetF = 0,1/\01(I be the singular value decomposition of F'. Then
F = 0aA0k = (040%)(ONAOK) = 0S,,  Fi, = O3Sy,
0 := 0,08, S,:= O0yA0%.

This is called the right polar decomposition of F, where O is a rotation and S,
is a self-adjoint semi-positive definite operator.

* There is a geometric interpretation for the polar decomposition of a deformation
gradient. The rotation O is an isometry map (metric preserving) from material
space to the world space (an Eulerian space), while S, is a self-adjoint operator
from material space to itself. It is called right stretching tensor. The decomposi-
tion of an infinitesimal deformation F means that we perform an elongation or
stretching (i.e. S;) in the material space first, then map to the world space by an
isometry (i.e. O). We shall see in a later section that the isometry contributes
no energy. Thus, the internal energy W corresponding to the deformation gradi-
ent F' is only a function of §,, or equivalently, only a function of S% =C=FTF,
the right Cauchy-Green strain. We shall see this in the material response to the
deformation in the Chapter of Stress-Strain relation.

2. Left polar decomposition Alternatively, we can have left polar decomposition:
F = OnAOK = (OnAO])(0,0§) = S,07,  Fjy=S;,0%,

O =0n0N, S;:=OnAOL.
We notice that
S, =0"s,0.

Thus they have the same eigenvalues A;. The corresponding eigenvectors are N; for
S, and n; for §;.
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8.1.4 Deformation Tensors and Strain Tensors

There are many ways to measure the deformation of a material. The basic one is the de-
formation gradient F'. Others are various forms of F', which encode necessary information
of F needed in the stress-strain relation. They are tensors, called the strain tensors. These
deformation tensors and the strain tensors are dimensionless quantities.

Deformation Tensors

1. There are many ways to measure the deformation of a material. Some are naturally
defined in the material space M, some are naturally defined in the world space M;.
We shall assume both spaces are Euclidean. These deformation tensors are also
called the strain tensors.

e Strain tensors defined on M:
— Deformation gradient Fj,(t,X) = 83;;.

— Right Cauchy-Green deformation tensor: C = FT F, or C,, g=(F nep é =

FéF&. Note that C is symmetric.
— Right stretch tensor S, := (FTF)!/2.

¢ Strain tensors defined on M;:

— Inverse deformation gradient: (F~1)%*(,x) = %

— Left Cauchy-Green deformation tensor: B := FF', or BY = F\(F T);?‘ =
F&Fé. Note that B is also symmetric.
— Left stretch tensor S; := (FFT)!/2,

2. The right Cauchy-Green deformation tensor is also the first fundamental form of the
domain M;. The tangent vector gq := £(_Xa and the first fundamental form is defined
to be _ .
dx' Jdx/
Cop = (ga,g/g> = izjgijmm-

Here, (g;;) is the metric of the world space. Thus, C is the pullback of the metric
(ij)-

3. Deformation of an infinitesimal ellipsoid. =~ Suppose My has a metric go. (Let us
denote the corresponding inner product by (-,-)p.) Consider an infinitesimal sphere

8Some textbooks use the following names: Finger’s tensor (FF Ty, Cauchy (F TFy, Piola (F~1F~T), and
Almansi (F~TF~1)
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att = 0. It can be expressed as
(dX,dX)o=1.
At time ¢, it is deformed to
(dx,B~'dx) = (dX,dX)o = 1.

This is an infinitesimal ellipsoid with three axes nj,ny,n3 and length A;.

8.1.5 Advection of Strains
Let the dot represent d /dt := d; + v - Vy, the material derivative.

1. We have seen that
F=LF, L=Vyv.

a(oxy oot
dr \ X% ) oxkoxe

The term L = Vv is the rate of deformation.

In component form, it is

2. For F~!, we have

d .
EF_l = FYFF ' FlULFF'= _F7IL.

3. For the right Cauchy-Green tensor,

. d . .
C= E(FTF) =FTF4+FTEF=FT'LTF+FTLF

=FILTFTFTF+ FTFF'LF =RTC+CR,
where R = F~ILF.

4. For the left Cauchy-Green tensor,

. d : :
B= E(FFT) =FFT +FFT

—LFFT +FFTLT — LB+ BL".
That is,
B(y:=B—LB—BL" =0,

The notation By is called first-order upper-convected derivative for tensor B. We
will see this again in the theory of viscoelasticity.
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5. We can decompose L into symmetric part and antisymmetric part:
1 T 1 T
L=D+Q, D= 5 (Vv+(Vv)'), Q= 5 ((Vv)! = Vv).
Since B is symmetric, the upper-convected derivative can be re-expressed as
B(yy=B—LB—BL" = (B—QB+BQ)+ (DB +BD).

The part BY := B — QB+ BQ is also called Jaumann tensor derivative.

6. For C~!, we have

d .
Ec—‘ =—c!'¢cc!'=—c Y (CR+RTC)C™' =—RC ' —C'RT.

7. For B!, we have

d .
EB_l =B 'BB ' = B Y (LB+BL")B ' =—B 'L-LTB".

8.2 Infinitesimal Strain

Many material such as steel only performs small deformation. In this case, infinitesimal
strain theory| can be applied. Below, we shall assume both the material space and the world
space are the Euclidean space with Euclidean metric.

8.2.1 Displacement and Relative Strains

* Displacement: Instead of using the absolute flow map, we use the relative motion,
which is the displacement

u(t,X) :=x(1,X)—X.
In the Eulerian frame, we use
a(z,x) =x(1,X) — X, with x(¢,X) =x.
* Lagrangian (relative) strain tensor:

E = (C—I):%((I—i—qu)T(H—qu)—I).

| =


https://en.wikipedia.org/wiki/Infinitesimal_strain_theory
https://en.wikipedia.org/wiki/Infinitesimal_strain_theory
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¢ Eulerian strain tensor: |
e:=—(1 —B*1 .

Note that both E and e are symmetric.

+ Geometric Meaning Let ds® := dx - dx and dS?> = dX - dX be the Euclidean metric
in the world space and the material space, respectively. We have

dx-dx—dX -dX =dX -F'F.dX —dX -dX = dX - (2E) -dX
dx-dx—dX -dX =dx-dx—dx-(F"TF71).dx =dx-(2¢)-dx.
Sometimes, we write them as
ds* — ds? ds® —ds?
E=——""— e=—-—
2dS2 2ds?
8.2.2 Infinitesimal Strains

Lagrangian infinitesimal strain We can also express strains in terms of displacement
gradients. Note that
F =1+ Vxu.

Define the following infinitesimal Lagrangian strain tensor

e:= % (Vxu+Vxu') = %(FWLFT) —1.
That is, . .
1 /Jdu Ju
ejj= 5 (m—}— 8Xi) .
We have
E= % ((1+Vxw)" (I+Vxu) —1) = e+o(e). 8.7)

Eulerian infinitesimal strain We also define the infinitesimal Eulerian strain tensor

1
£ = (Vxii+ Vi),

Note that
a(z,x):=u(¢,X) whenx=x(t,X).

In terms of infinitesimal strain tensor, C and B can be expressed as

C=(I+Vxuw) (I+Vxu)=I+2e+ (Vxu) (Vxu)
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B=(I+Vya)(I+Vya) =I+2e+ (Vi) (Vi)

When the deformation variation is small (i.e. |Vyu| << 1), then we may treat
aX ~ ax, exE,

C~I+2e, B=I+2¢,

8--—1 8ui+8uj
YT \ox T oxi )

Symmetry Both e and € are symmetric.

with

Geometric meaning of infinitesimal strain. To understand the physical meaning of &1,
let us consider an infinitesimal vector dX; := (d/1,0,0)7. The vector is deformed to
ou' Ju* I’
L+ 551 3% 9y 1)
20.CRN). CRN’D.¢

dX1 :( ngl-

Its length square

ox!

Here, we have neglected the hight order terms. Thus,

~ / du! ou!
dl; ~ 1+2ﬁd€l =~ (1 + m) dly (8.8)

dly —dl

dty
Thus, the physical meaning of e is the relative change of d/ in the direction e;. Similarly,
to understand the physical meaning of ej,, we consider two infinitesimal vectors

1
(dl))? = (dx),dx;) = (1 +28i> (dfy)>.

That is

e =

dX, = (d¢;,0,0)T
dX, = (0,dl,0)T.

The corresponding deformed vectors are

du' du* 9’

_ T
Xm - (1+ aXluaXIJaXI) dzl
ou! ou* du’
— 1 Tae,.
dXZ (axzv + 8X2’ axz) d£2
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The inner product
ou'  u?
<dX1,dX2> ~ (W + 8X1) dgldgz

Hence, we get
dﬁldgz cosf = Zelzdgldfz

where 0 is the angle between dx; and dx,. Using (8.8) and neglecting higher order terms,
we get

1
ey = ECOSG.

Thus, the physical meaning of ej; is the half of the cosine of the relative angle between the
two deformed orthogonal vectors e; and e, directors.

8.3 Geometric View of Strain

8.3.1 Tensor Types of Strains

Let ¢ : My — M; C 8 be the flow map. We denote it by ¢;(X) = x(7,X). We will call M,
the material space and M, the world space.

» Let {X%*} be a coordinate in My. The material space has basis {dy«} in the tangent
space TM, and dual basis {dX*} in the cotangent space 7*My. The material space
needs not have a Riemannian metric.

* The world space is assumed to be a Riemannian manifold with metric g (which is a
non-degenerate symmetric type-(0,2) tensor. Let {d,;} be a basis in TM;. Let {dx'}
be its dual bass in the cotangent space T*M,. The metric g has the representation

g= gijdxi Qdx/,
where g;; = g ;. The metric g, induces a map (flar)
b TM, — T*M,, 53 = gijdx’.
The inverse map of b is called £ (the sharp operator).

t:T*M, — TM,, #d.;=g"Yd,, where (g")=(g;)"".
* The deformation gradient F' is d ¢;:

ox adX“ ® Oy (8.9)

do, =dx(t,X) = e
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We can say that the matrix (FJ (X)) is the matrix representation of d¢;(X) under the
bases {dx«} and {d,:}. In this section, we just write

F(X)=dg(X)=FL(X)dX*®d,.

* A tangent vector V = V%dya € TxyM, is mapped to a tangent vector v = V' d,i € TeM;

by F'
v=F(V)=FL(dX*VPoy)®d; = F,V*,.

We say that F is a TM;-valued 1-form in M, denoted by Q!(My,TM;). This is
equivalent to say F € I'(Hom(TM,, TM;)) is the space of all section maps from M to
Hom(TMy, TM;). Here, Hom(V, W) is the space of all linear maps from vector space
V to vector space W. Note that Hom(V,W) = V* @ W, see Appendix C2 . Thus,
F can be treated as a section map from M to T*"My®@ TM, with F (X) € Ty (My) @ TuM,;
and x = x(z,X). ﬂ

» Inverse deformation gradient F ~! maps a vector d,; in TM; to a vector (F ’1)?8Xa in
TMy. Thus,

(F~1)(x) € Hom(TuM;, TxMo) = TEM, @ Ty (Mo)  with x =x(t,X).

The coordinate representation of (F~!) is

a

(F)(x) = (F)%dx' © dye = 2 il @ dye.

oxi

* The adjoint map F'*: The mapping F : TMy — TM; induces a dual map
F*:T*M; — T*My, F*=F.dxa®dx'.
* The dual map (transpose) F': The transpose of F is F*b
FT.T™, 2 M, £ 7M.
In component form
FT(x) = (FT)%dx' @ dX* = g;iF4 dx' @ dX*.
* The map F~T := (FT)~!, which is the inverse of F7.

*\—1
FTormy s v, s

(04

i 0X
-T _ -1\ i —
F' =(F )jgfaxa®ax,_axj

°In Marsden & Hughes’s book, F is called a two-point tensor of type (0,1;1,0).

gijaxa ® d,i.
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« Right Cauchy-Green tensor: C = F! F: Then C : TMy — T*M, with coordinate rep-

resentation:

C(X) = CopdX“ @dXP = Fjg;jFodX* 0 dxP
Note that C is symmetric. C is the pullback metric of g by ¢, from M; to My. That is,
C=¢/(g)

* Left Cauchy-Green tensor B := FfF*b:

B:TM, 2 M, =5 70y 2 Téy &5 TM,.

Here, fjy operator is the sharp operatot in M. The coordinate representation of B
reads:

B(x) = B;jdx' @ dx/ = Fl(g")P Fﬁ/"gl/-kclx" ® dx’

Note that B is symmetric.

« BLTM, = TM, y
B~ (x)= (B9, ®0,.

* We summarize the tensor types of various forms of strains by

- Fe(T*My® TM,) =T (Hom(T My, TM;))
- F e I(T*"M; @ TMy) = T (Hom(TM,;, TxMy))
-Ce F(T*M()@T*MQ) = F(Hom(TM(),T*M()))

8.3.2 Advection of Strain in terms of Lie Derivatives

e Let us treat F as F = F.,dX® ® d,;.. The advection of F: the Lie derivative of F
(w.r.t. the second argument) is unchanged. That is,

See Appendix D3 #.4).

o If we write F~! as

(F)) = ()50 .

The advection of F~! is also the Lie derivative w.r.t. the second argument is un-
changed:

0+ %) (FH=o.

See Appendix D3 (#.5).
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 Left Cauchy-Green Strain: B = B; jdxi Qdx!

See Appendix D3 (#.6).
e Bl = (B_l)ijgxi ®8ij

(0 + %) (B H=o.

Homework. Check this.

8.4 Stress

The approach of stress in this section starts with the stress in the Eulerian coordinate sys-
tem, called the Cauchy stress. Then we pull it back to the Lagrangian coordinate system,
called the Piola-Kirchhoff stress. In the last subsection, we take the differential geometry
approach. We define the Piola-Kirchhoff stress as the variation of an energy functional
with respect to the deformation gradient. The Cauchy stress is the pull-back of the Piola-
Kirchhoff stress by the inverse of the flow map.

8.4.1 The Stress Tensor in Eulerian Coordinate — Cauchy Stress

The stress 1s a surface force. It is a restoration force in response to material deformation.
Imagine an elastic bar being stretched. You can measure a force on the cross-section oppo-
site to the direction of the stretching. This is the stress. It is the surface force measured per
unit area. The existence of the stress is based on the following Cauchy stress principle.

Axiom of Cauchy Stress Principle For an elastic material occupying €2; under a body
force f and surface force g, it holds that for any x € €, any small surface dS C €, with
normal Vv, there exists a surface force t(x,V) on dS such that t = g on the boundary 9€;.
We call t(x,Vv) the Cauchy stress vector, or a tensile force. The Cauchy stress vector is
characterized by the following Cauchy theorem.

Theorem 8.7 (Cauchy). Assuming the Cauchy stress principle.

* In addition, assuming Principle of linear momentum:

/dex:/ tdS—l—/fdx
G 0G G

for any domain G C ;. Then, there exists a tensor ¢ (X) such that

t(x,v) =0o(x)-v. (8.10)
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* In addition, assuming Principle of angular momentum:

d
/pxx—vdx:/ x><6~vdS+/x><fdx
G dt oG G

for any G C €, then
o (x) is symmetric. (8.11)

Proof. 1. To show (8.10), given v, we consider a plane with normal v. The plane
intersects the coordinate axes ej,e;,e3 at Aj,As, A3, respectively. Let us consider the
pyramid OA|A»A3, call it AG. The surface AjA>A3 is denoted by AS, and the three
sides of the pyramid are denoted by AS;. The conservation of linear momentum on
AG reads

d 3
p ™Y ax = / ¢(x,v)ds+ Y / t(x,—e)dS+ [ fdx.
AG  dt AS = as; AG

By dividing both sides by AS then take AS — 0, we can get

d
p—vdx—>0, fdx — 0
dt AG

because AG/AS — 0, and

3
t(x,v)=— Z vit(x, —e;)
i=1
because

VAS = (ASl,ASQ,AS3).

On the other hand, from Newton’s third law, we can get t(x,—e;) = —t(x,e;). We
conclude that t is linear in v.

2. The principle of moments (conservation of angular momentum) reads

/p(xxﬂ> dx:/ (xxo-v)dS—i—/xxfdx,
G dt G G

where the left-hand side is the change of the total angular momentum. The first term
on the right-hand side is the total surface torque, the second term is the total body
toque. In terms of differential equation, it reads:

pxxi—::VX-(xxc)—kxxf.
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On the other hand, from linear momentum equation:

dv
pE:VXO-—i_f?

we take cross product of it with x to get

pxxﬂ:xx (Vx-0)+xxf.
dt
This leads to
V- (xx0)=xx(Vx-0). (8.12)

The left-hand term in coordinate form is

j ki ikl j kl
al(Sijkij) = Eijk(SlJG -|-8,'jkxja16

= Sijkaj + Sijkxjalel

The right-hand term x X (Vx - 6) in coordinate form is &; jkxj d,6*!. Comparing both
sides of (8.12)), we get .
& kO ki = 0.
That is,
o'/ = o/l
]

Thus, by assuming the conservation of linear momentum, the conservation of angular
momentum is equivalent to the symmetry of the stress tensor.

Remarks

* If there is no internal torque, then the principle of moment is valid. In general, the
Cauchy stress is not necessarily symmetric for complex fluids. For instance, the
liquid crystal looks like fluids with rods. In equilibrium and below certain critical
temperature, the rods align with each other. The corresponding stress is symmetric.
However, in non-equilibrium, rods may not align to the same direction. There is an
internal torque try to align them to reach equilibrium. This internal torque is the
source of asymmetry of the Cauchy stress.

* The symmetry of the Cauchy is a property of equilibrium state. If the relaxation
time of the material response to the deformation is very short as compared with the
macroscopic time dt, we can treat the deformation process is in equilibrium at every
instance. In this case, we treat the Cauchy stress to be symmetric.



172 CHAPTER 8. KINEMATICS OF ELASTICITY

8.4.2 Geometric View of the Cauchy Stress Tensors

1. The tensor type of the Cauchy stress tensor We recall that the Cauchy stress tensor
o is a representation of the tensile force t(x, v) on the area dS with normal v:

o : Vv (tonvds)

¢ The force is treated as a covector, because for conservative force f = —dV for
some potential V. The type of f is a covector (i.e. it is in T*M,). Thus, we
express this tensile force as t = ¢;dx/.

e We claim that the tensor o is a covector-valued 2-form:

0 = o}(xdx') ®dx’. (8.13)

We recall that the tensor t(x, V) is a surface force on the area dS. In the Lan-
guage of differential geometry, vdS is the vector valued 2-form:

vdS = (dx* Ndx® ,dx* Ndx® dx® ANdxP).

This is also expressed as (xdx!, xdx?,xdx®), or xdx. It reads two two tangent
vector v,w € TxM; with output

*dX(V,W) =V X W,

which is a directed surface area. Its area is ||v x w||, and its direction is the
normal (v x w)/[|v x w||, which we denoted by v. Thus, the stress t on the
surface spanned by two vectors v, w is

t=o(v,w) = G}(*dxi)(v,w)dxj.
In other words,
o TiM, @ TeMy, — T'M;,  or o € Q2 (M) @ T*(M;).

* Note that Q?(M,) has basis dx* Adx>,dx> ANdx',dx' ANdx?. They are also ex-
pressed as xdx’, i = 1,2,3 by using the Hodge star operator. This shows that the
dual space of (Q!(M;))" is Q*(M;) by using the Hodge star operator. By using
Hodge star operator again, we get

(Q2(M))" = QY (M) =T*M,.
Thus, we can also treat

O c HOm(T*Mt, T*Mt)
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2. Change tensor type of the Cauchy stress Since we have a metric g in the world
space M;, we can change ¢ from covector valued two-form to a vector-valued two-
form:

0 =fo.
5' = g o,
Then
6 € Q*(M;) ® TM, = Hom(Q' (M,), TM,) = Hom(T*M;, TM,).

From the definition of the adjoint operation, 6* € Hom(T*M;, TM,). In this case, we
can argue that

6*=6, o&/=a".

Thus, the stress discussed in the last section is indeed G.

8.4.3 The Stress Tensor in Lagrangian Coordinate — Piola-Kirchhoff
Stress

The Cauchy stress is defined in the Eulerian coordinate system. We can pull it back to the
Lagrange coordinate system. The corresponding stress is called the Piola-Kirchhoff stress.
There are two kinds of Piola-Kirchhoff stress tensors:

* The first Piola-Kirchhoff stress P is the pullback of the Cauchy stress ¢ via ¢; only
in the first argument:

P = P*(dxa ® f1) @ dx’
= (97" (ol (Quon) wdx
=Jo! (F")%(dxe @ 1) ® dx’

joOX?
=Jo; o

(ax(x >\‘lfl) X c[Xl"

P=JoF T,

* The second Piola-Kirchhoff stress is the pullback of the first Piola-Kirchhoff stress P
via ¢ for the second argument:

> =Y (e @ f1) @dXP
= P*(Jye ® 1) ® (@ 1) (dx')
= P*(dye 0 ) @ (F ) dxP
= (F )PP (dye @ ) 0 dxP.
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which has range in material space, not in the world space. On the other hand, P has
its range in world space. Note that ¥ is the pullback of P for its second argument
(from world space to material space. That is

y=Flp

8.4.4 Geometric View of Stress

In this subsection, we shall assume that there is a stored energy density W which is a
function of the deformation gradient. The stress is a derived quantity.

1. From a vector v € TM; to an (n— 1)-form (flux): Let v € TMy, we define an
(n—1)-form by
V[ iy(fl)
iy : QK(M) — Q*~1(M) is called an interior product.
iv(l)[Vl, ...,kal] = (D[V,Vl, ...,Vk,l].

The (n— 1)-form iy(f1) is called a flux. Thus, with the help of [I, we have

TMy® A" (T*Mo) = A" (T*My).

2. The first Piola-Kirchhoff stress:

* Derivation of Piola stress from internal energy. Given a constitutive equation of
state (the internal energy or Helmholtz free energy):

%(F)= [ WP,

define

_Swu(F) _ oW A i pa._ W
P(F):= SF —8F&(8Xa®,u)®dx, P* .= T

Thus, the first Piola-Kirchhoff stress is derived from the variation of the energy
functional with respective to the deformation gradient.

* Tensor form of a Piola stress. The first Piola stress P is defined so that it is paired
with a deformation gradient and form an energy density. That is F A P(F) =
W (F)f1. Since we express F' = F3dX%* ® d,:;, P must have the form

X

P(F) = P*(F)(dxo ® fl) @ dx'. (8.14)
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This means that P € Q"1 (My) ® T*M, (i.e. a two-point tensor of type (0,2;0,1)),
or a covector-valued (n— 1)-form (i.e. Q%(My, T*M,)). Recall that F is a vector-
valued 1-form. The pairing of P and F is

W(F)ft := F NP = FLP®dX* A\ (Oxe @ 1)(dy]dx') = FLP¥Ql.  (8.15)

3. The second Piola-Kirchhoff stress X: The stress X is defined as

S%(C)  IW o« OW

Y= = (8 a®u)®dXB ¥ =
5C 9B P och

where C = FTF is the right Cauchy-Green strain. We shall see in the Chapter of
Stress-Strain relation, the stored energy density can be written as a function of C
(instead of F). Since C is symmetric, we conclude that X is also symmetric

4. Cauchy stress. The Cauchy stress has the form

c=0/(0;0u) ®dx.

1

It is a covector-valued (n — 1)-form (i.e. Q"~!(M,, T*M,)). It is the pullback of P by

(Pt_1

= ((Pt_l)* (P) :Pia ((Dz_l)* (aX“ ®[:L) ®dxi

ax’ ~

1 i

=P%J" axa(axj@)u)@dx,

dx/

ay—1
=P7J 8X°‘

Or equivalently, P is the pullback of ¢ with respective to its first argument:

9 (0) = 0/ ¢} (9 @ u) @ dx’
—GJJ( ) (dxa @ 1) @ dx’
= P%(dx« ®,LL)®dx
=P

5. o is also the pullback of X by (p,_1 with respective to its both argument.

10The symmetry of X is from the symmetry of C and the fact that W is a function of C. This is based on
the frame-indifference and isotropic assumption of the material. We will study this property in the chapter of
stress-strain relation.
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Or equivalently, X is the pull-back of o with respect to both arguments to My: That
is

S =@/ (0) =0/ (0y @ 1) ® @ (dx')
=clJ(F )4 (F 1 (e @ ) @ dXP

=X (dxa @ 1) @dXP.

Remark. The symmetry of o comes from te symmetry of X.
¥ is also the pullback of P with respect to the second argument:

y.=rlp

It is the Lagrangian covector-valued 2-form in Lagrangian coordinate.



Chapter 9

Stress-Strain Relation for
Elasticity

9.1 Constitutive Relation: Stress-Strain Relation

The stress is a surface force in response to material deformation. It can depend on the
deformation gradient F, or higher order derivatives of the deformation, or even the history
of F (i.e. {F(s)|s <t}). We first give some definitions for commonly used materials.

* Cauchy-elastic material The Cauchy-elastic materials are those materials (also called
rubber-like) whose stress tensor ¢ is only a function of the current deformation gra-
dient F. That is,

o(x) = T(X,F)

Such a relation is called a constitutive relation, and T is called a response function.
If T is independent of X, the material is called homogeneous.

* Hyper-elastic materials The hyper-elastic materials are materials whose mechani-
cal stresses are conservative. This means that the work done by the stress through a
closed-loop deformation is zero. This definition is equivalent to:
there exists a mechanical potential function W (F) such that the Piola stress is P =
W'(F). Note that the hyper-elastic material is a special case of Cauchy-elastic mate-
rial.

Below, we shall characterize the response functions of Cauchy-elastic materials and hyper-
elastic materials. The basic assumption for the response function 7 is the frame-indifference
assumption.

177
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9.1.1 Frame Indifference

1. Axiom of material frame-indifference for Cauchy-elastic materials The response
function T (F) for a Cauchy-elastic material should satisfy

T(OF) = OT (F)O! for any rotation O € O(3). 9.1)

The reason is the follows. The stress should be independent of the frame of reference
in the observer’s space. Suppose we have two frames in the observer’s space. Let x
be the coordinate of the original frame, and x* the coordinate in new frame, which
is a rotation of the old frame. That is, X* = Ox, and O is a rotation. Then, we have
F* := dx*/dX = OF. Note that the normal and the tensile vector in the old and new
frames are related by v* = Ov, t* = Ot. In terms of the response function, it reads

t° = T(OF)v'=T(OF)Ov
Ot = OT(F)v.

Hence, T(OF) = OT (F)O".

The above frame-indifference can be expressed in terms of the Piola stress P :=
JoF T Itreads

P(OF)=JT(OF)(OF) T =J(OT(F)O") O™ TF~T = 0JT(F)F~T = OP(F).

That is,

P(OF) = OP(F) for any rotation O € O(3). 9.2)

2. Axiom of material frame-indifference for hyper-elastic materials The potential
energy W remains the same when we change to a new frame through rotation. That
is

W(OF) = W(F) for any rotation O € O(3). 9.3)

This definition is equivalent to the above definition. Indeed, we differentiate P(F) =

%—V},/(F) in F to get

where

W (OF)

- Fy —w isiks . — Olw_. — 0!
T I W (O Fg) = WFé(OF)Oiﬁ Sop = O{WFé(OF) = O/P(OF)¢%.

Thus, P(OF) = OP(F) if and only if 2- (W(OF) — W (F)) =0.



9.1. CONSTITUTIVE RELATION: STRESS-STRAIN RELATION 179

9.1.2 Isotropic Materials

1. Definition A material is called isotropic if its stress tensor is identical in all direction
of the material. More precisely, suppose we have two identical materials. One has
material coordinate X, while the other is X* with X = OX™ and O being a rotation.
The corresponding deformation gradient F* = 8‘9;* = g—; gTX = FO. If these two ma-
terials deform in the same way and result in the same stresses, we call such material

isotropic. Mathematically, this means

T(FO)=T(F). (9.4)

This isotropic property can be expressed in terms of the Piola stress as the follows.
P(FO)=P(F)O for all rotation O. 9.5)
This follows from

P(FO)=JT(FO)(FO)" T =JT(F)F"TO=P(F)O.

2. Isotropic property for hyper-elastic materials A hyper-elastic material is isotropic

if and only if
W(FO)=W(F) forall O € O(3). (9.6)
This is because
P(F) ﬁW(F)—ﬁW(FO) 3(FO) 0" =P(FO)O".
where ‘
3. W(FIOPY=w_;(FO aFéOﬁ — PY8iis, 08 = PToY
F&(ﬁ y) = F}',’( )aF&_j apy — i Yy

Here, 13]7 = WF; (FO)= P(FO)}/. Thus, P(F)O = P(FO) is equivalent to % (W(FO)—W(F))=
0.

9.1.3 Representation of the Cauchy Stress

Some notations:

1. Let M™(3), S?, O(3) respectively be the set of all 3 x 3 matrices with positive deter-
minants, symmetric positive definite matrices and rotation matrices.
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2. Given a matrix A € M, its characteristic polynomial is defined as
p(A) :=det(A—AI) = —A° + yA%2 — A + 13,

where the coefficients 11,1,13 are called the principal invariants of A, which are
given in terms of eigenvalues A, A2, A3 of A as below:

W=trA=A+A+ 23 9.7)
= % ((trA)2 — tr(Az)) =1r(CofA) = LAz + LAz + 34 (9.8)
13 = detA = A 1 A3. 9.9)

The set of these principal invariants of A is denoted by 4.

Characterization of response functions

Proposition 9.6. The response function T (F) of an isotropic Cauchy material can be ex-
pressed as
T(F)=T(B), B=FFT

with T satisfying
T(0BOT) = 0T (B)OT foranyBe S, 0€0(3).

Proof. 1. For any F € M™(3), we can express it in polar form: F = S;0 with O € O(3)
and S; € S3. Then
B:=FFT =5,00"s, = 5.

From (9.4), we have

)

O
[T

T(F)=T(5,0) = 1(8)) = T(5?) = (B) = T (FFT).

2. Suppose B € S*. Then there exists S; such that B = S7. For any O € O(3), we have

T(0BO") = T(0s70") = T(0S,(08)") =T (0S;) =" 01 (S;)0" = 0T (B)O" .

]
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Representation of isotropic Cauchy stress

Theorem 9.8 (Rivlin-Ericksen representation Theorem for Cauchy stress). An isotropic
Cauchy stress (i.e. frame-indifference + isotropicity) has the following representation

T(B) = Bo(18)I + B1 (18)B + B2(18)B*,
for some smooth functions B;, i =0,1,2.
This theorem is a corollary of the following representation theorem.

Theorem 9.9 (Rivlin-Ericksen Representation Theorem). Suppose a function T : S* — S3

satisfying
T(000") = 0T(Q)0"  forall O € 0O(3),

then it has the representation:

T(Q) = Bo(Q)I + B1(Q)Q+ B2(0)0*

for some smooth scalar functions B;(Q), i =0,1,2.

Proof. 1. Let A; and p;, i = 1,2,3 be the eigenvalues and eigenvectors of Q. The proof
of this theorem is divided into three cases: (i) A; are distinct, (ii) A; # A, = A3, (iii)
all eigenvalues are equal.

2. Case 1, A; are distinct: We have

1= pipl +pap? + p3ph
0= Mp1pl +Napapl + A3ps3pt
Q% = AZpipT + A3 pap) + A3 pspl.

The condition A; being distinct leads to an inversion from (p) plT,pzpzT . D3 p3T) to
1,0,0%. Next, from T(0TQ0) = OTT(Q)0, we see that T(Q) can be diagonalized

by O = [p1, p2, p3]- That is
0T Q0 = diag(A;, A2, 43) = A,

7(Q) = 0T(0700)0" = 0T (A)O”
= ,u1p1p1T +sz2p§ +H3P3P§~

with y; are functions of A; only. By inverting (p; plT, P2 pg , D3 p3T )to1,0,07%, we get
that T(Q) can be expressed in terms of 7, Q, 0? with coefficients depending on Q.
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3. Case 2, A; # A, = A3: We have

I=pip] + (p2ph + p3p3)
Q = Mp1p! + Aa(papl + papl)

Since A # A2, we can invert (p1p?, p2pl + papl) to I, Q. Next, the spectral mapping
theorem gives

T(Q) = wp1p! + woprpl +uspsps.

We claim that y, = p3. From 7(07 Q0) = OTT(Q)O0 and taking O = [p1, p2, p3],
wee see that O can diagonalize Q as well as T(Q). Since in the subspace spanned
by p» and ps3, the matrix Q representation under the basis {py, p3} is A,1. Thus, the
same matrix representation for 7'(Q) also has the form pl. This shows py = 3. This
leads to

T(0) = Bo(Q)I + B1(Q)Q.

. Case 3, A1 = A, = A3: In this case, we have T(Q) = By (Q)I.

. It remains to show that 3;(Q) are indeed functions of the invariants of Q. For case

1, from the independence of I, Q, 0% and T(0QO0T) = OT (Q)OT, we can choose O
to diagonalize Q, then 3;(Q) = Bi(0QOT) = B;(diag(Q)). This leads to f3; are only
functions of the three principal invariants. The proofs for the other two cases are

similar.
O

Homework Show that the second Piola stress ¥ := F~!P has the following representa-

tion:

2(C) = w(1c)I + 11 (1c)C + 1 (1c)C?

where C = FTF, the right Cauchy-Green deformation tensor.

9.1.4 Representation of Isotropic Hyper-elastic Stress

The goal of this subsection is to have representation of Cauchy stress in terms of invariants
of F. Firs, we have an important property of the hyper-elastic materials.

Proposition 9.7. The Cauchy stress ¢ of hyper-elastic material is symmetric.

Proof.

1. The potential energy function W for a hyper-elastic material satisfies the
frame-indifference hypothesis: W(OF) = W(F) for all O € O(3). This implies the
potential W can be expressed in terms of F! F:

W(F)=W(0S,) =W(S,)=W(C), C=F'F=s
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2. The Cauchy stress can be expressed as

i —10W
o;j=J 'PLF,=1J laF&Fé
LW 3y oW AUE)
9Cp, dFi, * ° 9Cs, OF fe
oW /. . .
— 7 T (6785, Fr+ 8% 8, F) ) F)
acﬁy( poty ﬁ)
oW -
— g1 J i)
e (P +FF)
ow
=2J"' = —FiF]
! dCg, " P
1 W —~—FjF; =0
dCyp P

Here, we have used symmetry of C = FTF.
O]

Remark The symmetry of the Cauchy stress for hyper-elastic materials is a consequence
of hyper-elasticity and frame-indifference. The is to compare with the symmetry property
derived from the principle of conservation of angular momentum.

Proposition 9.8. For isotropic hyper-elastic material, o can also be represented in terms

of B:
o =2J""WgB. (9.10)
Proof. Recall B¥ = Fé‘Fg We have
. OW(FFT) . 9B . OFiF;
Py = Wi :—( . ) = Wpkt —— = Wpu BB
a OFL JFL dFy
_1 ik (| pkgit W ol v ok
— WBkl (6 6aﬁFﬁ + ﬁg 6aﬁ> - WBMFOC +WBk1Fa
= 2WBikF(IX{

Here, we have used symmetries of B = FF T and Wg. Thus,

6" = J T \PLF) = 20 W FAF) = 207 "W BY.
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Proposition 9.9. The stored energy W (F) of an isotropic hyper-elastic material satisfies

W(F)=W((FFT)).

Proof. 1. Recall isotropicity: W(FO) = W(F) for all O € O(3).
2. LetF = OnAOI{I be the singular value decomposition of F, then
W(F) = W(0nAOK) = W(A).
There is a 1-1 correspondence between {1(F)} and {1(FFT)}, thus we can express
W(F) =W (u(B),1a(B),13(B)),

where B=FFT.

Homework Check (11.7)).

Theorem 9.10 (Representation of stress). Let us denote the invariants 1(B) by Ii. The
Cauchy stress for an isotropic hyper-elastic material with restoration energy function W (11,1, 13)
is given by

2, _ _ _
o =—— (bWil+ Wy, +1LW,,)B—W,B?) 9.11)
Vi
Another Finger’s formula is
2 Ix7 Y17 Y37 Ix7 J—
6=—— (LW, +LWL)I+W,B—LEW,B"). 9.12)

vh
Proof. 1. We use 6 =2J " 'W;pB.

2. The formula W in terms of I,1», 15 is given by the second Finger’s formula below
with Q replaced by B.

O = 2J_1WBB
=2J! [(W]l +11W]2)I—W[ZB+[3WISB_1]B
= 2J Wi+ (W;, +1,W,)B—W,,B?

3. J = /Is because I; = det(FFT) = J2.
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4. The first Finger’s formula can be obtained from the second Finger’s formula and the

Caley-Hamilton formula
BB =B — B+l

]

Proposition 9.10 (Finger’s formula). Let W be a smooth function of 1, (Q), 12(Q) and 13(Q),
where Q is a 3 X 3 matrix. Then

Wo = [Wll +1 (Q)le + lZ(Q)WhV
- [le +l1(Q)Wl3]QT+WL3(QT)2' (913)

It can also be expressed as
Wo = [Wy, + 11 (Q)W, ]I =W, 0T +13(Q)W,, 0T (9.14)
Proof. 1. W(11(Q),12(2),13(Q))g = Yi_, W, [(Q)]o
2. [11(Q)]o =1. This is because 1| (Q) =1I:Q, where A:B:=Y; ;a;;b;;.

3. In general, we can show that [1;(Q")]p = n(QT)""!. To show this, let us check the
case of n = 2.

Su(Q*) =8 (1:0%) =21:(Q-60)=20:80=20":50".

4. By direct computation, we get

6. We arrive

Wo =W, [ (Q)]Q +W, [lZ(Q)]Q + W [13(Q)]Q
= Wi I+ Wy, [u(Q) = Q"]+ Wy [12(Q)] — u(Q)Q" + (7))
= [‘/Vh +1U (Q)le + lZ(Q)Wls]I - [le +1 (Q)W/l3]QT + Wls (QT)Z
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7. The second Finger’s formula can be obtained by

[13(Q)]o = (@) —1,1(Q)QT +(07)?
= (12(Q)0" ~u(Q)(@")?+(@")) (")
=u(0)(Q")"!

In the last step, we have used the Caley-Hamilton formula:

— 0+ 10* — L0+ 131 = 0.

]

Representation of the second Piola stress We can also have the representation of the
second Piola stress as the follows. Recall that the second Piola stress is defined as

r=JF 'oFT.
With the representation of o, we get
2 =2(yo(C)C " + i (O)T+ y2(C)C) . (9.15)

where B B B B
Yo = I3W137 Y = WI] +1 W127 Y = _WIQ' (916)

Note that 1(C) = 1(B). Using the Caley-Hamilton theorem, we have
B(C)C ' =C?—1,(C)C+1(C)I.
Plug this into the above representation formula and abbreviate 1, (C) by I;, we get

%(C2 —LC+DLI)+y I+ llsz)

I I
2 (l//1 +M) I+2 (1112— @) c2¥oc
I I I

=2(wl+7C+pC?). (9.17)

2:2(

The first Piola stress is represented as
P=FX% (9.18)

with X represented by (9.15)) or (9.17).
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9.1.5 Small Strain Limits

From frame-indifference and isotropic properties, we can treat the second Piola stress as a
function of C = FTF. That is £ = X(C). The small strain is to study X(C) for C ~ I.
Recall we have defined the following infinitesimal strains:

« E=3(C-1I),

e F=I+uy

o= (ux+uf).

We want to expand the stress X(C) and the stored energy function in E for E ~ 0.

Theorem 9.11. For an isotropic elastic material, by normalizing i([ ) =0, the second Piola
stress tensor has the following representation:

Y(C) = A(trE)I +2uE +o(E). (9.19)

Here, A and | are called the Lamé moduli, E = % (C—1). The potential W has the follow-
ing representation:
A
W(E) =7 (trE)* 4 utr(E*) + o(E?), (9.20)

or

_ A+2
W(E)=W(l,h,3) =p(l —3)+ =

(I —3)* - % (h—3)+0(EY).  (921)
where I are invariants of C.
Proof. 1. We want to expand ¥ in terms of E. Recall that
=2 (yoC '+ yil+ ().
The terms C and C~! are expanded in E as

C=I1+2E+o0(E), C'=I-2E.

2. The coefficients Yy, ¥1, ¥, can be expanded in E as
Yo = [3W13 = (1 —|—2tr(E))W13 —I—O(E)
Y = W[l +11W12 = W]l +W12(3 +2tr(E))+o(E)
Y = _WIZ-

Here, we have used the expansion of invariants /1, />, I3 in terms of E, which is shown
below.

I Cialet vol. I, pp. 155
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3. Expand the invariants:

L(C) =trC =3+ 2tr(E)

L(C) = ! ((tr€)* —trC?) =3+4tr(E) +o(E)

2
1 1 1
L(C) = g(trC)3 - 5errrC2 + §rrc3
=142tr(E)+o(E).

Here, we have used

trC=3+2tr(E)
1rC* =34 4tr(E) + o(E)
1trC3 =3461r(E) +o(E).

4. Thus,

2=2((1+2tr(E))Wp(I-2E)+ Wy, +Wy(3+2tr(E))) —Wp,(I+2E))
=2 [(Wh +2W12 +W13) + (W[z + 2W13) tr(E)] I—4(W12 +W13)E +o(E)

Since X(0) = 0 when there is no strain (i.e. E = 0), we get
Wi +2W, + Wy, =0, (9.22)

and
Y= [2 (le + 2W13) tr(E)] I—4(W12 —|—W13)E —|—0(E).

5. Let us call
2(W12—|—2W13) =2, —2<W[2—|—W[3) =Uu

or

we then get
L=A(trE)I+2uE+o(E).

6. Formula (9.20)) is obtained by integrating (9.19) in E.
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Remark In the linear elasticity theory, we use the infinitesimal strain

e: (ux + uX)

l\.)l>—‘

which satisfies
e=FE+o(E).

In the above stress-strain relation for infinitesimal strain, we can replace E by e.
O]

9.2 Hyperelastic Models

To establish mathematical models for hyperelastic materials, there are two requirements
that the stored energy W should satisfy:

e W —>wasJ—0,
* Wrr satisfies strong ellipticity condition.
These are the theme of this subsection. We start from the ellipticity condition, which is

equivalent to the hyperbolicity condition for the time-dependent elasticity equation.

9.2.1 Hyperbolicity for isotropic materials

Below, we want to find the condition on W (I}, I, I3) which is equivalent to the hyperbolicity
of W(F). let I, = 1(FTF), p=1,2,3 be the three invariants of F” F. The restored energy

W is a function of I, I,13. We have
81 dl, 9.23)
oF '

aZW 3
JFOF (2, 13) = Z( PaFaF

Recall I, has the following expression: let C = FTF,

L(C)=Tr(C),

« L(C) =% (Tr(C)?—Tr(C?)),

K(C) =det(C) = J? = L(TrC)* — 1(TrC) (TrC?) + H(TrC?).

J =det(F),
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Lemma 9.7. We have the following formulae for I,:

oI
—— =92F 24
oF s (9.24)
b _ =21 F., — 2F.FrFY, (9.25)
aFa BTB
813 2 —1\°
=272 (F 1) 9.26
2 ..
oh_ 28", (9.27)
IF4IF]
Oh__y 88,5 +AFLF] 2 (SU'FO’;Fg + 8upFiF] + Fl;'F&') (9.28)
8F[{ OF},
0°I
Nl (s I (LA YN U b P e (9.29)
&F&&Fé / J

Proof. 1. FromI,(C) = FLF}, we getI; p = 2F.

2. From 811 =2F, we get o aFé —25”5aﬁ

Tr(C?
3. b=l -3 25

9€ =2I,F —C(F +FT) = 2I}F — 2CF.

4. From Iz = J2, we get 5;3, 2Ja‘9FJ, 2J (F*I)l(.x. Here, we have used

We also have

2 F-1H)“
aj13 - = (F—l)ﬁ (F*1)7+2J2 ( j)z
8FﬁaFa aFﬁ
JFF
AP (FT (-2 (T ()]
B
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Separable case Let us assume W is separable. This means that

9*W
21,1,

=0, when p #gq.

Effect of I; Suppose W is only a function of ;. Let us call W by W ;. We have

*°W (L)

PTL) i, 508,448 4]
B o

B

The hyperbolicity condition for W reads

—
L) ..

) ALY v‘jl( giginans o

i,j,0.B aFﬁaF&

Using (9.30), this condition is

QW EPINP+4W] (' +E2+E) (' + 02+ 10P) > 0.

191

(9.30)

(9.31)

By choosing & # 0 but E! 4 E2 4 £3 = 0, then the second term is zero. Thus, a necessary

condition for (9.31]) is
W, > 0.

We note that
2 2
(§'+&2+8%) " <31EP, (n'+n*+n’) <3P
Then a necessary and sufficient condition for hyperbolicity (9.31]) is
W;>0 and W,—18W)|>0.
Examples of W:

e W, = %11. Wll = 171 > (. Thus, this model is hyperbolic.

(9.32)

(9.33)

e Wi =212 +pul. In this model, W) = AL + u; Wi = A. The hyperbolicity W; —

18|W | is equivalent to A1; + u — 184 > 0. Need Double Check.

Effect of , TO BE CONTINUED


HTTPS://EN.WIKIPEDIA.ORG/WIKI/HYPERELASTIC_MATERIAL

192 CHAPTER 9. STRESS-STRAIN RELATION FOR ELASTICITY

Effect of I3 Physically, we are not allowed to have p — oo. This is equivalent to the
specific volume V — 0, or equivalently, / — 0, or I3 — 0. This means that the stored
energy should satisfy

W — o as Iz — 0.

One example is the y-law:

Wal) = 11702 45,

ry—1

Another is the Log law:

d
W3(h) = clz3 — Elog(h)-

TO BE Continued for hyperbolicity in terms of /.

9.2.2 Linear materials

When FTF = I, then F is a rotation. In this situation, there is no elastic deformation
(stretching or shrinking). When F'F ~ I, then the material has small deformation, or
equivalently, the strain is small. Recall

F=uyxy+1,

1 1 1
E:= E(C_D =3 (ux+0)"(ux +1)—1) = > (ux +uy +ujuy).

The infinitesimal strain theory is to study elastic motions when |ux | is small. The infinites-
imal strain is defined to be

e:= % (ux +uy). (9.34)
The linear model has the Piola stress being linear in e.
Py = gg = (Ae)ix = ajjueji,
where
o*W
a;jkl = WU)-

The equation of motion is
3 92 uk

p()iil — l; laijkliaxjaxl .
j'/ 7:
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Property of a; i
Proposition 9.11. The coefficients a;ji; := %(1 ) has the following symmetries:

ot

Aijkl = Alijs  Qijkl = Qijik,  Gijkl = Qjikl, Pij = Pji.

B : IPW__ oW
Proof 1. aiju = awij is due o Frre = S

2. We note that L = FP = P+ o(e). Further, P(I) =0,
1
P(C) = 5A(C—D)+o(e)=Ae +o(e).
Here, C=FTF,e=4 (F+FT) -1 Thus,

@)
Aijkl =

Since C is symmetric, this shows a; i = a;j.

3. We have
Aijkl = Aklij = Akl ji = Ajikl-

This shows the third equality.

4. The last equality is due to the fact that P,;(C) = X;;(C) + o(e) and X is symmetric.

O]
Thus, the constitutive law for the linear elastic model is
W(e)= %(Ae,e>, P = Ae.
The total number of coefficients of a;j; are (6+1)-3=21. E|
2From a; 1 = a i1, we get number of independent (ij)’s is 6 (i.e. (ij) = (11),(21),(22),(31),(32),(33))

Similarly, from a;ji; = a;jix, we see possible independent (k/)’s are also (11),(21),(22),(31),(32),(33).
From a;ji; = ay;j, we get independent (i, kl) are

(11,11),(11,21),(11,22),(11,31),(11,32),(11,33),(21,21),(21,22), ..., (33,33).

The total number of these listis 6 +5+---+1=21.
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Linear isotropic material When a linear elastic material is also isotropic, that is FT F ~
I, then W has the expansion: (Theorem[9.11))

W(E) = %(TrE)2 +uTr(E?) +o(E?).
Note that

E = %(C—I) =~ (ux + (ux)") + (ux)” (ux) = e+ o(e)

SRR

and
P=FYX=X+o(e).

Thus, from Theorem[9.11] we have

W= %(Tr(e))z + uTr(e?), (9.35)
P= lTr(e)I—f— 2ue, Pj= l(e“ +ex —0—633)5ij + 2,ue,-j. (9.36)

That is,
aijig = A6 + 1 (8381 + 816 - (9.37)

There are only two physical parameters y and A in this expression. Let us study their
physical meaning. Consider a simple deformation: we stretch the material in X; direction,
it results in elongation in X direction and shrinking in X, and X3 directions. The strain in
X direction is ej. The ratio »
11

E =
el

(9.38)
is called the Young modulus. (Modulus means a ratio between stress and strain.) The
shrinking of the material can be measured by

yo— 9248 (9.39)
€11 €11

This parameter is called the Poisson ratio. From (9.36)), we get

Py =Ee; = A (811 —2\/611) +2u€11
Ppr=0= A (611 —2V611) —2‘LLV811.

We can express A and u in terms of E and v, and vice versa:

Ev E
T —2v) *T vy ©40)
~ H(3A+2u) A
E==5 Ve (9.41)
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We can express strain in terms of stress. The inversion of (9.36)) reads

1 A
¢ = b~ m” (P) 8. (©.42)

In terms of E and v, it reads

1

e11 = —= (P11 — V(P2 +P3))

E
1

exn = E(Pzz—V(P33 +Piy))
1

€33 = E(P33—V(P11+P22))
1 L,

eij = EPU, i # .

Another parameters are the shear modulus and bulk modulus. Let us decompose e into

1 1
e=(e— §Tr(e)l) + §Tr(e)l =eP 4e’,
Then P can be expressed as
P=2ue? + (31 +2u)es.
PP = 2,ueD
PS=(3A+2u)e’

We call u the shear modulus and K := A + % u the bulk modulus.
A Table of average values of these physical parameters for common materials can be
fund in [Cialet pp. 129].

Hookean model The Hookean law is
H . H
W(F)==Y|F.|> = =tr(FTF), H>DO.
( ) 2 §| OC| 2 r( )7
This gives P, = HF,. The equation of motion is
po(X)x=Vyx-P, or poi =dyaP}=dxaHdyex' =HY dfax’.
(04

This is the standard wave equation. This is equivalent to the above linear isotropic model
withy=Hand A = —H .
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9.2.3 St. Venant-Kirchhoff Model

The model is express as

Y= A(TrE)+2uE, E=~(C—1I).

| =

or
W= %(TrE)z +uTr(E?).

It is the simplest nonlinear elastic model. Its linearization, which replaces

(Vxu-+ (Vxu)? —|—VXuTVXu) by e= 1 (Vxu+ (qu)T) ,

1 T
E=-(FTF-I)=
3 ) 2

| =

is the linear isotropic model we have seen earlier. Note that the St. Venant-Kirchhoff model
is not polyconvex, which is a sufficient condition for existence and uniqueness for steady
state problems.

St. Venant-Kirchhoff model can be expressed in terms of the invariants I, = 1;(C) as

_ A y
W(l,b) = §112+% (7 —21 +25) -9 <§+ %) ,

9.2.4 Fluid-solid model

When W = W3(I3), this is a simple compressible fluid model. Recall I3 = det(FTF) = J>.
Given pg, we define p such that pJ = pg. Thus, we can view I3 as a function of p:

2
Po
L=(2) .
’ (p)

P
o=—=LWrl=—p(p)l

N/

A particular example is the y-law simple gas, where

The Cauchy stress is (T1.11)

W)= E iy,

o _ Y
p=—2VEW; =" = p (pﬂo) |
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9.2.5 Ogden hyperelastic models

Ogden proposed a class of models which are polyconvex and satisfies growth conditions.
Let y; are singular values of F', the Ogden model reads:

W:=W;+W, +W3,

M=

Wi=Y g (uf"‘+u§‘i+u§‘f—3)
i=1

o N

Wai= Y by (ko) (s P+ ()P~ 3)
i=1

W3 = W3([.L1/.12[,L3), W3(I3) —oaslzy > 0+.

Examples of W3 are

Wslls) =iy,

— d
Ws(l3) =cls — 51n13
Special cases are

* neo-Hookean model:

W2 3y e = Bl 3y L _r=l
W—2(11 3)+W3(I3)—2 (I 3)+k(l3 |, k= 7

Here, we normalize W so that W (3,3,1) = 0. The term /; gives the Hookean elastic
model, whereas W3 (I3) gives the compressible fluid model.

* Mooney-Rivlin compressible solid

W = 61(11 —3) +Cz(12—3) —|—W3([3).

¢ Knowles solid

For more models, see Drozdov (pp. 103-118).
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9.3 Appendix

Here, we review some notations in matrix theory. Let A = (g;;) be an n x n matrix in C".
We recall the following notations.

* Minor: the minor of A is defined to be (A;;), where A;; is the determinant of the
matrix which eliminate row i and column j from A;

* Cofactor: Cof (A) := ((—1)"*/A;;) is called the cofactor of A,
* Adjugate of A is defined to be adj(A) := (CofA)T,
* An important property of adjugate of A is

Aadj(A) = adj(A)A = det(A)1.

Thus,
adj(A) = det(A)A™!, Cof(A) =det(A)A™T

Theorem 9.12 (Caley-Hamilton). Let ps(A) := det(AI — A) be the characteristic polyno-
mial of A. Then ps(A) = 0.

Proof. 1. We use the adjugate matrix property. The adjugate matrix adj(M) of a matrix
M is defined to be the transpose of the cofactor matrix of M. The i-j entry of the
cofactor matrix M;; is the determinant of the (n— 1) x (n— 1) matrix which eliminate
the ith row and jth column of the matrix M. The adjugate matrix has the following

property:
adj(M)-M =M - adj(M) = det(M)I,

Applying this property to M = AI, — A, we get

(AL — A)-adj(AL— A) = det(AL, — A)L,

2. The right-hand side is
det(AL,—A)L, = Z?L’c,

3. Notice that the adjugate matrix adj(AI — A) can be expressed as polynomial in A of
degree (n—1):

adj(AI— Z B
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Thus, the left-hand side is

n—1
(AL, —A)-adj(AI-A) =} (AI-A)-B;A!
i=0
n—1

=A"B,_1 + Z )ui<Bi,1 — AB,) — ABqy.
i=1

4. By comparing both polynomials, we obtain

I,=B, |, c¢l,=B;_1—AB;,1<i<n-—1, col,=—AB.

5. Multiply the above ith equation by A’ them sum over i from 0 to n, we obtain

n—1

Y ciA'=A"B,_;+ ) A'(Bi_; —AB;) — AB; =0.
i=0 i=1
O

Spectral properties of a matrix In order to characterize the response function of an
isotropic material, we review some spectral properties of 3 x 3 matrices Let us denote the
set of all 3 x 3 matrices by M3.

* Given a matrix A € M3, its characteristic polynomial is defined as
p(A) :=det(A—AI) = —A3 + A2 — A +13,

where the coefficients 11, 1o, 13 are called the principal invariants of A, which are given
in terms of eigenvalues A1, A5, A3 of A as below:

W=trA=M+A+23 (9.43)
1
b= ((trA)? —tr(A%)) = tr(CofA) = 21 A2 + A3 + A3 (9.44)
13 = detA = A1 A 5. (9.45)
We denote the set of these principal invariants of A by 4.

* An important matrix theorem is the Caley-Hamilton Theorem, which states p(A) = 0.
That is,

—AP AP — LA+ 1T =0.
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* Consequently, the matrix power A?, with p € Z and p > 0, or with p € Z and p < —1
if A is invertible, has the following representation:

AP = 0o p(ta)] + 0t1,p(14)A + 02, (14)A%,
where oy , are functions of principal invariants.

» Spectral mapping theorem: If B is a self-adjoint operator with eigenvalues/eigenvec-
tors A; and p;, i = 1,2,3. Let B(A) be a smooth function, then

3

BB)=Y B(A)pip!.

i=1



Chapter 10
Dynamics of Simple Elasticity

Theory of simple elasticity studies mechanical dynamics of elastic materials, no heat trans-
fer is considered. The dynamics involving both mechanical energy and heat will be inves-
tigated in theory of thermo-elasticity in later Chapter.

10.1 Lagrangian Formulation for Simple Elasticity

10.1.1 Variational Approach for Compressible Simple Elasticity

Assumption We will derive equation of motion of simple elasticity without body forces
in Lagrange coordinate. Suppose we are given a material domain €y and a density function
Po on Q. The material is called hyper-elastic if there exists a stored energy function W (F)
such that the internal energy density of the material is given by U = W (F).

Action Given a flow map x(-,-), we define its action in the Lagrange coordinate as

/t/QO( Po(X) (2, X)* W(%))d)(dt

where the first term is the kinetic energy, the second term is the internal energy.

Admissible class We will look for extremal of §[x| for flow maps in an admissible class.
For different boundary conditions, there are different admissible class. Let us introduce the
simplest admissible class:

X := {x: Qy — R3|x is Lipschitz continuous,x(X) = xo(X),X € 9Qq} (10.1)

Here, x( is a given function on the boundary.

201
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D’Alembert least action principle The dynamics of a physical flow map X(t,-) is the
extremal of the action functional 8[x| among all admissible flow maps. Thus, we look for

x = arg min{§[x]|x € X}. (10.2)

Variation w.r.t. flow maps We shall study the variation of the action with respect to the
flow map x(+, -). Let us perturb the flow map by x, (7, X) with xo(z,X) = x(¢,X), the original
unperturbed one. We call

d
5X(t,X) = %Lg:()Xg(t,X),

the variation of the flow map x(-,-). We write the variation of x by Jx (or X). Since, for
small €, X¢ (¢, -) are flow maps, its variation

Xe — X0

ox(t,X) = lir% -
£—

is an infinitesimal variation of position, thus, is also called a pseudo-velocity. The derivative

d

de |e=08 [Xe]

is called the variation of the functional §[x| in direction dx. We denote it by

d
08[x]- 6x := %Lg:()S[Xg].

This means that the physical solution x(z,X) satisfies

08[x]-6x=0

for all possible variations 6x.
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Euler-Lagrange equation Let us compute 638:

d ox¢(t,X)
5[] 5x = - S_O/t /QO( X)[xe (1, X) 2 W( - ))dth

t

:/1/( )- 8% —W'(F)SF) dX dt
fo
gl d o0dx

_ /QO(E X)) 0x— W(F)aX)dXd

dox

= )-0x—W'(F dX dt
ZO/QO(PO x- W)
t

= 1/ ( po(X 5x+( o W’(F)) ~5X) dX dt—B.C.
to Q'O aX
| 0 aX

Here,
t
BC.— [ [ Vx (W(F)3x) ax ds
fo
/(9 F)*Ny8x'dX dr, N is the outer normal of 9
Qg

is the term coming from integration by part. From boundary condition of the admissible
class, we have dx(z,X) = 0 on the boundary dQg. Thus, B.C. = 0. The D’ Alembert least

action principle gives

1 0 ox
5x—// [ tX)—i—ﬁW (ax>]~5dedt:0,

for all 6x in the tangent space of X. This leads to the following Euler-Lagrange equation

Po(X)(t,X) =Vy - P <§—;) for X € Qq, (10.3)

Here, P := W/(F) is called the first Piola-Kirchhoff stress tensor, or just the Piola stress.

Its component form is

p,a:a_W Fi-:a_xi
") AN ) C
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This first Piola stress is the potential difference due to the small variation of Q Because

the variation of the deformation has the form %X , the corresponding force (potentlal dif-

ference) is a surface force aWF I

The above Euler—Lagrange equation (10.3)) is a second-order PDE for x(z,X). We need
to impose initial condition and boundary condition.

* Initial condition For the second-order equation (10.8)), we need to impose two initial
conditions:

x(0,X) =xp(X) and x(0,X)=vo(X), X e&Qy.

* Boundary conditions The boundary d€ is a disjoint union of dQy = 1—%’ UIj. The
boundary conditions on each are
— Dirichlet boundary condition
x(t,X) =xo(X) for X e ', (10.4)
— Neumann boundary condition:
W' (F)¥Ny = g; for X € T}, (10.5)

The function g = g;/x" is an applied traction.

External forces There are two kinds of external forces:

* body force: we assume it is conservative. f(x) = —VV(x) for some potential func-
tion V;

‘We define the admissible class to be
X = {x|x(7,X) = xo(X) for X € I'¢}

We also need to add the energies contributed from these two forces to our action functional:

Fl
S[x] : /to/ <p0 Jx(2,X) 2 = (anXX)))dth

/ V(x(t,X) )Jdth+/ g(X) - x(1,X) dSo. (10.6)
o

'If the potential W also depends on K := say W(F,K), then the corresponding Euler-Lagrange equa-

X2 ’
tion has an additional force of the form — ‘98;?]2’( . More boundary conditions are also needed.

2The tensor type of force is an 1-form, because this tensor type is consistent to that of a conservative force
f=4dv.

3The work is minus of force times displacement
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Here, JdX = dx. The last two terms are the potentials due to the body force and the traction.
We take variation of § with respective to x € X. This gives

o h . ad __,(dx
88[x]- 6x — /[0 /Q 0 {—pO(X)X(t,X)—l—ﬁW (a_x) —VXV(X)J] SxdX di
t
—/1/ (W'-N—g) - SxdSodr =0, (10.7)
o 8

The boundary term frg W’-N-8x = 0 because x = 0 on I'¢ for &x in the tangent space of
X. Thus, the corresponding Euler-Lagrange becomes

po(X)%(,X)=Vx-P (g—;;) +f(¢,x(7,X)) det (3—;) in Q. (10.8)
where f = —V4V(x) is the body force. The initial condition is the same. The boundary
conditions on 0Qy = Fg UTT; are casted as

* Dirichlet boundary condition on Fg:
x(t,X) =xo(X) for X € I'¢. (10.9)

* Neumann boundary condition on IT:
P*(F(£,X))Ng(X) = gi(X) for X € T'g. (10.10)

Remark The component form acceleration term poX should be

d d . d .
J— % = — 'la i) = — .i l_
g1 (PX) = 42 (Pox'd) = 7 potidx

The index has been moved down!

10.1.2 Equation of Motion as a First-order System

Let us introduce v(¢,X) := x(¢,X) and F(¢,X) = %(I,X ) and express the above second-
order equation as the following first order system:

T
X
poV ~ VxP(F) (10.11)

The unknowns are (F,v). There are 9+ 3 = 12 of them. The Piola stress P(F) is given as
a constitutive relation P(F) = W'(F).



206 CHAPTER 10. DYNAMICS OF SIMPLE ELASTICITY

Compatibility condition Since F is the gradient of the flow map x(z,X), it has to satisfy
the following condition:
axiaxjx = axjaxix

In terms of F, it reads

Vy xFT =0. (10.12)

This is called the compatibility condition for F. From F = g—;, we get

%VX X FT = VX X (va)T =0.
Thus, if Vy x FT = 0 initially, then it is zero for all later time. ‘

We have seen that if x(¢,x) is a solution of , then X = v and 3—; satisfy (10.11]) and
the compatibility condition. Conversely, if v and F satisfy and the compatibility
condition, then there exists a function x(z,X) such that X = v and 53 = F. The function x
is obtained by a line integral

. X)) [ . 30 .
X (t,X) :/ vidi+ ) FydX*
a=1

The line integral is independent path because the compatibility condition.
If there is a body force which depends on x(z,X), then we should add the equation for
x. The equation of motion becomes

X=V
F=9 (10.13)
pov = Vx - P(F) +£(z,x) det(F).

The unknowns are x, F,v. There are 3+ 9 + 3 = 15 unknowns and equations.

Initial condition For the first order system (10.13), we impose
v(0,X)=vo(X), F(0,X)=1I, Xe€Qy.

Boundary condition for the first-order system We need to translate the boundary con-
ditions (10.9) and (10.10) in terms of (v, F'). We differentiate these boundary conditions in
t and in X in the tangential direction of dQ to get

» Dirichlet: v(¢,X) =0 on I'¥.

e Neumann: E]
Pl-O‘(F(t,X))Na(X) =gi(X) forX € rg.

4References:
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Two examples:
1. One dimension: In one dimension, the deformation gradient is Fl1 = g—; Let u :=

Fl1 — 1 the strain, v := % the velocity. The Piola stress is a given function P(u)
satisfying P'(u) > 0. We assume po(X) = 1. The equation of motion is

o,v = dxP(u) (10.14)
oiu = dxv. (10.15)

Here, d, means %| x-. Such an equation is a 2 x 2 hyperbolic system. Namely, the
eigenvalues of
[0 P’(u)}

1 0

are ++/P’, which are real and the characteristic speeds of the system. Note that the
stress function P is in general non-convex. This leads to a special type of shock wave,
called contact shock, where a rarefaction wave is attached to a shock wave. A simple
model is P(u) = tanh(u), which gives so-called soft springs. The stress changes small
as the strain increases big.

2. Linear elasticity: In the Hookean case where W (F) = §|F |2, the stress is P(F) = kF,
where k is a constant called the stiffness. The equation of motion becomes

po(X)8tv:kVX-F (10.16)
oF = Vxv (10.17)

Eliminating F', we get
po(X)dv = kVv.

This is the wave equation.

10.1.3 Variational Approach for Incompressible Simple Elasticity

A flow map x(z,X) is called incompressible if

Jx
J(t,X) :=det (ﬁ(t’xo =detF =1.

1. Antman, Nonlinear Problems in Elasticity, pp. 424-426.

2. Cialet and Mardare, Boundary conditions in intrinsic nonlinear elasticity, J. Math Pure Appl. 2014.
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This means its volume is unchanged. Thus, in the above variation of action, we should add
a constraint term with a Lagrange multiplier:

t
5S[x] + 6 l/p(t,X)(detF _1)dXdi =0.
fo

Here, p is the Lagrange multiplier. The variation
5(detF)=tr(F T (8F))detF =tr(F T (SF)),

where .
(P (5F)) = L T)ESF Y, = LT

1,0 1,0

We take integration-by-part in the variation form below to get

t t
5/1/ P(I,X)(detF—l)dth:/l/p(t,X)S(detF—l)dth
fo L fo

= [ [rze zf{fﬁ = [ [ [ 0 a)  (gator ) o0 axar

t .
/ 1/ )1 5dedt+/ / (pFT)*8x'Ng dSdt.
PIo
We recall the variation of the action is (10.7):
1 d ox
— = v .
o8[x]- 6x = / / { )x(t,X)+ 8XW (8X> V(X)J} oxdX dt

1
—// (W' -N—g)-8xdSydt =0,
o 8

Combining these two, we obtain the constraint flow equation:
pok =Vyx-(P—pF~T)+1J.
with the natural boundary condition:
[(P—pFT).N—g]-6x=0. (10.18)

where N is the outer normal of dQy. We should impose a boundary condition to make this
term zero. The full set of equations are

pov = Vx-(P(F)—pF~T)+1J
F = VXv
detF = 1

The unknowns are (v, F, p).
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Boundary conditions for incompressible elasticity From (10.18]), we should decom-
pose dQ into disjoint two subsets Fg and I'j. We impose

ev=0 forXeld  (Thisleadsto §x=0.)

« (P—pF ') N=g, forXelY}.

10.2 Eulerian Formulation for Simple Elasticity

10.2.1 Formulation of Compressible Simple Elasticity in terms of F

We recall the transformation formulae of conservation laws between Lagrange and Euler

coordinate systems (2.12)), (2.6) and (2.13)):

GU+Vx-F=R (10.19)
d
EW+VX -G=RJ. (10.20)
where
R R
pv pvvV—oO f
W=W, G:=(F-Uv)-JF T, (10.21)
Here, the Cauchy stress
awW
_ 1% 7
o(F)=J 3F F',

where W is the material potential energy, F' is the deformation gradient, and J = det(F).
We still need an equation for F. By differentiating the equality

X(t,X) = v(t,x(2,X)),

in X, we get the equation for F' in Lagrangian coordinate:

i b
F,(1,X) = R

By changing variable from X to x, and treat F'(¢,x) to be F(¢,X(t,x)), we get the above
equation in Eulerian coordinate:

OF +v-VxF = (Vxv)F  in Q.



210 CHAPTER 10. DYNAMICS OF SIMPLE ELASTICITY

Note that the matrix F is a function of (z,x), but it has the same value of F(¢,X). Thus, we
shall use the notation F instead of F in this note. Thus, we write

OF +v-ViF = (Vxv)F  forx € Q (10.22)

with an understanding that F(¢,x) is (g—;) (1,X(z,x)). We list the equations for simple

elasticity as
3p+V-(pv) =0

p(Ov+v-Vv) = V.o+f

AF+v-VF — (Vy)F in Q. (10.23)

The unknowns for this system are p.v,F. The Cauchy stress is given by a constitutive
relation

c=T(F).

The function f is an external force. We also need the density constraint p det(F) = pg as a
compatibility condition.

Remarks

1. The continuity equation for p is indeed redundant. In the Lagrange formulation, it
is equivalent to %po(X ) = 0. In the Eulerian formulation, we define p = py/J. Or
equivalently, we define the specific volume V :=J/py and define the density p =
1/V. With this definition, p satisfies the continuity equation. Thus, the continuity
equation is equivalent to

J=(V-v)J.

But this equation is inherited in the equation
F = (VV)F,

because J = det(F) and %(det(F )) = (V-v)det(F). Therefore, we call the algebraic
equation
p(X(1,X))J(1,X) = po(X) (10.24)

the density constraint for the Euler equation of elasticity.
2. We need a compatibility condition in Eulerian coordinate for F, which is parallel to

the compatibility condition Vy x FT = 0 in the Lagrangian coordinate. It is easier to
express such condition in terms of F' —1 which will be discussed in the next section.
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Boundary conditions in Euler coordinate Let I'Y = x(¢,I'%) and I} = x(t,I'}) be the
Dirichlet and Neumann boundaries at time ¢. In the Eulerian coordinate, the above bound-
ary conditions read

* Dirichlet: v(t,x) = 0 for x € T'%;
* Neumann: 6(x)-v =g(F~!(t,x)) forx eI .
Homework Consider a flow map in 1-D as x> — X? =t with M = [0,00), M; = {x|x* >t}
and ¢ > 0. Check the following expressions
(i) vi=x= 45
(ii)) F:=0dx/dX =X/x
3

i e 0 __1_ X _ VX2t
(i) F:= g |xF = XL T o

(iv) Treat F as a function of (z,x). Check (9, +vdy)F = — Y2,

2x3

10.2.2 Formulation of Compressible Simple Elasticity in terms of F !

It is natural to use the quantity F~'(z,x) as a dependent variable because it is naturally
defined in Eulerian coordinate (¢,x). Furthermore, the compatibility condition for F~! has
a simple form. The evolution equation for F~! is

d .
— (FY=-F'F(F
dt|y
= —F Y (Vyw)F(F
= —(F~1)(Vxv).
d -« -ark k avk
E(F )i =—(F )L, Li:= IR
In the Eulerian coordinate, we have
GF N 4+v-Ve(F )= —(F (Vv (10.25)
The compatibility condition for F~! is just
Vex FT =0 i(F—T)i = i(F—T)f (10.26)
X T Oxj @ oxi @ '
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The advection equation for F~! can be written in conservation form:
o (F N +dq (F %) =0. (10.27)

This follows from (10.25) and (10.26):
H(F %40, ((F’l)?‘vj) = (F ) +1v/9;(F D - ;(FH*+9, ((F’l);?‘vj)
= —(F N%9uv —v/a(F 1)+ 0 (FH) =v/ (=0, (F "+ dua(F1)9) =0.

Thus, the full set of equations are

ap+9(v'p) =0 L
I (pv') + 9y (pVv/) = 9,507 + f’ (10.28)
H(F1)2+ 9 <(F_1);?‘vj> ~0.

Plus the density constraint: pJ = pp and the compatibility condition
Vex F~T =0. (10.29)

There are 149+ 3 = 13 unknowns (p,v,F~!) and equations.

Boundary conditions in Euler coordinate
* Dirichlet: v(t,x) = 0 for x € T'%;

+ Neumann: ¢(x)-v =g(F~'(t,x)) forx €I .

Remarks [l
* The continuity equation is redundant because it can be derived from pJ = py.

* The compatibility condition is satisfied if it holds initially. This is due to the fact that
(10.27)) preserves the property Vx x (F~1) = 0.

SReferences:

1. Trangenstein and Colella, A Higher-order Godunov method for modeling finite deformation in elastic-
plastic solids, Comm. Pure. Appl. Math (1991).

2. Miller & Colella, A high-order Eulerian Godunov method for elastic—plastic flow in solids, J. Comput.
Phys. (2001).

3. D.J. Hill, D. Pullin, M. Ortiz, D. Meiron, An Eulerian hybrid WENO centered-difference solver for
elastic—plastic solids, J. Comput. Phys. (2010)
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10.2.3 Formulation of Compressible Simple Elasticity in terms of B

We shall see in later chapter that the stress ¢ can be expressed as
o =2WsB,
where B = FFT is the left Cauchy-Green deformation tensor. It satisfies
B=FF' +FF" =LFF" + FF'L=LB+BL".

Here L = Vv and B means the material derivative. In terms of Eulerian coordinate, B
satisfies

9B .
B(y= - +V:VB—LB~BLT =0.

The term B is called the first order upper-convected derivative of B. In terms of Lie
derivative, this upper convected derivative is the Lie derivative for the tensor B = B;;dx' ®
dx/:

(d+ %4 )B=0.

In addition, B should satisfy the compatibility condition.
Thus, the equations are

ap+V-(pv) = 0
p(hv+v-Vv) = V.o+f in Q. (10.30)
dB+v-VB = (Vv)B+B(Vv)!

together with the density constraint pJ = pg. Here,
o = ZWBB .

An expression of o in terms of B is given by Theorem 0.10] The compatibility for B is
more complicated. It can be derived from the compatibility condition for C = FF. The
compatibility condition for C can be found in [Cialet, pp. 55] or [Antman, pp. 423-426].

10.2.4 Formulation of Incompressible Simple Elasticity

If v(z,x) is the velocity field which generates the flow map x(7,X), that is, x(#,X) =
v(t,x(t,X)), then the incompressibility of x(z,X) is equivalent to V- v(z,x) = 0. This comes
from the following formula

Sdet(A) =17 ((6A)A™T) det(A).
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and the formula

ox ox
8_X = (Vv)a_Xa
we get
J=tr(FF 1) J=tr(Vv)J = (V-V)J.
Thus,

J=0 ifandonlyif V-v=0.
Similarly, let x¢(7,X) be a perturbation of x(7,X) satisfying volume preserving property.
Let 8x(t,X) := 2 |e—oXe(t,X). Let w(t,x(t,X)) = 8x(1,X). Let Fp = Ix¢/dX. SF :=
% ISZOFS‘ Then
OF = (Vw)F.
Similarly,
oJ = (V-w)J.

Thus, the volume preserving of X, is equivalent to 6J = 0, and is also equivalentto V-w =
0.

Now, for the constraint V- w = 0, we introduce a Lagrange multiplier p. Then we have
the constrained variation

h Dv
0 = //(—p—-l—V-G)-w-l—p(V-w)dxdt
. Dt
1 D
= //(—p—V+V-G—Vp)-dedt
A Dt

This gives
Dv
—+Vp=V.o.
th +Vp

Here, o(F) = W/(F)FT. We still need an equation for F. From

) ox v  dvox
b= (ﬁ) =X axax _ VVF

we get

DF
— = (Vv)F.
Dt

Thus, the complete set of equations for incompressible inviscid elasticity are
Dp _

D 0

V.v = 0

p2Y = _Vp+V.o(F)
1% = (Vv)F.
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with the constitutive equation ¢ (F) = J~!W/(F)FT and the density constraint pJ = p.
The unknowns are (p, p,v,F). We notice that these equations can be written in conserva-
tion form
ap+V-(pv) = 0
V.v = 0
o (pv)+V-(pvw) = —Vp+V.o(F)
GFNH+V(F ) = o

The last equation in component form reads

o (F N +du (F ) =0.
10.3 Advection Equations and The Compatibility Condi-
tions
Sometimes, it is more convenient to use other types of strain tensors. In that case, the

corresponding compatibility conditions and advection equations are needed. We list some
of them.

10.3.1 Compatibility condition for the deformation gradients

e For F& = aaX—x;, we have

OF, 9% 9x  OJF
0XP  oXPoa  0X%IB X%

This is called the compatibility condition for . Sometimes, we write it as

Vy x FT =0.

* For (F _l)f‘ = % the corresponding compatibility condition reads

or
Vyx F T =0.

e For C:= FTF, which is the pullback of the metric in M;, we define

1 _
Loy =5 (9pCay— 9aCpy—Cap), T =(C"")ysTasp-
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And the corresponding compatibility condition for C reads

5Ty — 0,0 -+ 1%, 1P —T% %, =0.

The above expression states that the Riemann-Christoffel curvature tensor is zero.
See [Cialet, pp. 55], [Antman pp. 423-426].

Homework: Derive the compatibility condition for B = FFT.

10.4 Geometric Formulation of elasticity

The equations of elasticity consist of continuity equation, equation of motion (momentum
equation), energy equation (first law of thermodynamics), and an advection equation for
the deformation gradient. We will write them in the Language of differential forms. Recall
the following notations:

* Let p; denote for p(z,-) and y, be the volume form of M,. Sometimes, we neglect the
subscript 7.

» v =110, is the velocity. = v;dx' = bv is the momentum.
* 6 =0/ (xdx/) @ dx is the stress.

* ¢/ is the pull-back operator. d; is the time derivative with fixed material coordinate.
An important formula is

o =@ (d+24).

Continuity equation

(0 + &) (peits) = 0. (10.31)

Advection equation for deformation gradient F Recall that

ox!

oxa’ (10.32)

F(X)=F,(X)dX*®d,, F.:=
The advection equation for F is
OF +v-VF =(Vv)-F

In term of Lie derivative, it is

IF + L F =0.| (10.33)
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This follows from

OF + 4 F = % (FL(X)dX*®d,)

d : oxP

(alF’ + 1V QuFL, — FX 3vk> dX*®d,i

=0.

Note that the pull-back is only for d 4.

Advection of the left Cauchy-Green deformation tensor Define the left Cauchy-Green
tensor o
B(X) = FLF30,i ®0d,;,

which is a tensor of type

(2,0). The Lie derivative of a type (2,0) tensor A is given by
o d d d d v 0 d
LA = (XVA’J)E ® — + AN %, ( ) ® — +A’g—i ® % (—)

dx/ oxk )~ dxi dx oxt
N v v\ 9 d
_ ij k ij kj“>  4il
(8,14 +VduAY —A pp A EN, ) e ® 357

This is also known as the upper-convected derivative of the tensor A. Thus,
(0 +.%)B=(d:+v-V)B—LB—BL" =0.

Equation of motion Let 1 = v;dx’ be the momentum 1-form. The Piola stress has the
form

P(F) = P*(F)(%dX%*) @ dx'. (10.34)
This means that P € Q"' (M) ® T*M, or Q"~!(M,T*M). The pairing of P and F is

W(F)fL:=F AP =FLP*dX% A (xdX%*)(d|dx") = FLP*[i. (10.35)

The equation of motion is

(0 +L)n—d (%MZ) = %*dc. (10.36)

The connection between P and o is

*

P=¢/ 0.
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10.5 Hyperbolicity

10.5.1 Hyperbolicity for Simple Elasticity in the Lagrangian Coordi-
nate

The equation of motion for simple elasticity reads

ow
pox=Vx-P, P= 3F (10.37)
In component form, it reads
ow
o o o
poX; = dxaP?, P = 8Fl .

Let )
@B (p) = IWE)
/ 8F&8F1

For stability issue, we consider a linearized equation where the coefficient @/ [3 (Fp) is frozen
at a particular Fy. In this case, the linearized equation reads

X |
poti= Y aP(R)-o o i=1,23. (10.38)
j,a,ﬁ:]

We look for plane-wave solutions of the form x(¢,X) = /X141 It means that, given
a direction 7 € R3, we look for a plane wave with speed A (1) and amplitude & (1) € R3.
Plugging this expression into the linearized equation , eliminating ¢! XM=21) on both
sides, we get

3 3
poA’E = Y ,,ﬁéfnanﬁ Z( Y a,] nwm)
ja,p=1 a,f=1

In matrix form, it is
5 3
A(n)g = poA~S, A(n) ij = Z az] NaTp :
a,p=1 33

Thus, equation (10.38)) supports plane wave solution in direction 7 if A(71) has non-negative
eigenvalue pyA? with eigenvector &. E|

®We will see in the next subsection that there is no zero eigenvalue for matrix A.
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Proposition 10.12. Given a stored energy W (F), define aojﬁ agl ;VF 7. Then for any n €

R3, the matrix A(n);j := (Xap a?jﬁ NaTp) is symmetric.
Proof. This is due to

3 3 3 3
Ami= Y afnang= Y afngna= Y dfnang= Y aPnang=am);.
o,f=1 o,f=1 o,f=1 o,f=1
(10.39)
Here, the 2nd equality is due to 1g7g = NgNe. The 3rd equality is a change of indices.
The 4th equality uses aga ]IB , which is resulted in hyper-elasticity assumption:

a; j i aiji -
i BF’ JF) 8F&8F[§ /
O

To support plane-wave solutions, we need A(1) to be positive definite for 1 # 0. This

means
3

Y, afEiEingmg >0, forall & £0. (10.40)
i,j,0,B=1
This condition is called the strong ellipticity condition for the tensor a?jﬁ .
Definition 10.4. System (10.37) is called hyperbolic if
d°W (F)
OF} &F /

EEIN, ng >0, foreveryF €M7, & #0,n#0. (10.41)

10.5.2 Hyperbolicity for the first-order system in Lagrangian coordi-
nate

Equation of motion in Lagrangian coordinate The equations for elasticity include the
evolution equation for F:

ov/

Fﬁ xF 0, j,B=1,2,3, (10.42)
and the equation of motion:
JdP*
Povi — Z S =0, i=1,23, (10.43)
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where the first Piola stress P is given by

ow
P*=—  iaa=12,3. (10.44)
dF}
for some potential function W (F). Note that the deformation gradient F should satisfy the
compatibility condition _
oF, OJFg
axP — ox«
There are 12 equations (10.42)) (10.43)) for 12 unknowns (F,v). The compatibility condition
is automatically satisfied forz > 0 if it is satisfied at # = 0. Writing these equations in vector
form, they are

(10.45)

T
~ X 10.46
p()V:VX-P(F). ( )
The compatibility condition reads
VxFT =0. (10.47)

Hyperbolicity and characteristic modes Let us take pg = 1 for simplicity. It is not
hard to put them back in the theory below. The system can be rewritten in the following
conservation form

3
8,W—|— Z aX(xga - O,
a=1

where o o - o
F; vl 0 0
F? v? 0 0
F13 V3 0 0
F) 0 v! 0
F22 0 V2 0
. F23 1 0 2 V3 3 0
W= F31 ) 9 - 01 9 - 01 9 - Vl
F} 0 0 v
F; 0 0 V3
v! P P? P}
V2 P Py P
V3 ] P ] | P% | P ]
This system can be written as a quasi-linear form
3 dG%
IW BYxaW =0, B*=-—"-.
t + Z X I aw

a=1
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The matrix B* has the form

g _ | Ooxo E%ox3
A%9  03x3

where

1 0 0] 0 0 0] [0 0 0]
010 000 000
00 1 000 0 00
000 1 00 000

E'=10 0 0|, E>’=|0 1 0|, E’=|0 0 O],
0 00 001 000
0 00 000 1 00
000 000 010
0 0 0] 0 0 0] 0 0 1
al a2 o3

g |k hh O op_ OFF _PW(F)
AR &l YT 9pP  9FIgF
azy azp 433 3.9 J p=ro

We shall look for plane wave solution of the form

(F.v) = (81,65, £3.8",82,87) XA,

Plug this ansatz into the equation. Let us define the matrices

3
AW,n) =Y B g
a=1

and

[0 0 0 n O 0]
0 0 0O 0 n O
0 0 0 0 O n 09><9 C9><3

AW = — = —

W) ==1p, by bz 0 0 0 [ngg oaxg}’
byt by by 0 0 O
(b3t bz bz 0 0 Of,,

n
n=(m . by(n) = [Laal' e LaafNa Laafna, .

N3] 551

221
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The characteristic equation of the matrix A(W, 1) is:

Alyso C9><3} [119x9 Cox3
det(A — A(W, = det = det
et( (W.m)) © {B_o,xg Algy3 © 03%9 —,]TB3><9C9X3 + A3
o,p=1

Strong ellipticity and hyperbolicity
* There are 6 zero eigenvalues of A(W,n).

« The rest 6 eigenvalues are real provided (A(n)) is positive definite]

The strong ellipticity assumption for (alqjﬂ ) is equivalent the positive definite assumption

for A(B), and is equivalent to the existence of 6 real eigenvalues of A(W, ).

Eigenvectors corresponding to O eigenvalue Let us find the eigenvector corresponding
the 0 eigenvalue:

0 0 0 n o0 0]]J¢
0 0 0 0 1n 0 gz /

0 0 0 0 0 n||&] N

by by by 0 0 of |E1] =0 Wheregi= ? i=1,2,3.
b; by by 0 0 O 62 i

(bs; b3y bz 0 0 0] |&3]

The first 9 equations give .
nE=0, i=1.23

Since N # 0, we obtain &/ = 0 for i = 1,2,3. The last three equation are independent
from the strong ellipticity of (aijﬁ ). This gives three independent equations for 9 variables
¢, €R3, i=1,2,3. Thus, the dimension of the kernel of A(W,n) is 6. If we assume the
material is isotropic, we can just choose direction 1 = (1,0,0)7 to find the eigenvectors.
The eigenvecTtors corresponding to other direction 1) can be obtained by a rotation. When
n= (17070) >

bij=[a] af af], i,j=1.23. (10.48)

"Note that the 3 x 3 matrix

3
A(m)ij= Y, aﬁxjﬁnanﬁ
=

o 1

is symmetric from (10.12).
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The last three equations for {;, i = 1,2,3 read
3
Y bij¢;=0, i=1.23 (10.49)
j=1

There are 3 independent equations with 9 unknowns. Suppose the first three column vectors
are independent, we can set

X X

X X

X X

with one of X’s being 1 and the rests being 0’s. There are 6 of them. For each of them, we

plug into (10.49) to find the corresponding §. This gives 6 eigenvectors corresponding to
the zero eigenvalue.

(62,63) =

Eigenvectors corresponding to the nonzero eigenvalues We solve the eigen system

(A1 0 0 n 0 0] [¢
0 Al 0 0 n Of]¢,
0 0 AI 0 0 n| (&3]
by b bz 4 0 0] [&] =7 (10.50)
by by b3 0 A Of |&2
b3 b3z bz 0 0 A] [&°)
for A and [£,&]" with A # 0. The first 9 equations give
gk
Ck=—7n. (10.51)

3 3 3 i
Y ) (Z af‘jﬁna> (—%nﬁ> +AE =0, i=1,2,3.

Note that A is positive definite from strong ellipticity of (alqjﬁ ). We thus get +A are the
eigenvalues of (10.50). The corresponding eigenvectors are also obtained from the eigen-

vectors of A and (10.51]).
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Definition 10.5. System (10.37) is called hyperbolic if
*W(F) ... .
#éléfnanﬁ >0, forevery FeM], & +#0,n+#0. (10.52)
8F&8Fé

This hyperbolicity condition is a basic requirement for the restored energy W for the
well-posedness of system ((10.37).

10.5.3 Hyperbolicity for first-order system in Eulerian formulation

Let us denote

Gai= (F7)7.
The system can be rewritten in the following conservation form
3
atu + ijffa - 0,
j=1
where
_Gll_ [ Gnvl i i 0 1 i 0 T
G21 Gqu 0 0
G31 G13v3 0 0
G12 0 G21v1 0
Gy 0 Gzzvz 0
G3 0 G23v3 0
U= |Gi3|, F1= 0 . Fr= 0 . Fz=| Gyp!
G2 0 0 GnV?
G33 0 0 G33v3
pv' pvlvl — 011 pv2v' — 012 [)\13\/‘1 — 013
pv2 pvlvz — 071 pV2V2 — 022 pv3v2 — 023
pv3 pv1v3 — 03] pv2v3 — 032 pv3v3 — 033
L p | L '] | L

We look for solutions of the form

(F.v) = (£1,65,¢5,8",8%,8%) Tl (140,

One can use the eigen-decomposition for the Lagrangian system to get the eigen-decomposition
for the above Eulerian system. The correspondence are

Lagrangian Eulerian
A=0 A=v-m
+2,, v-nEi,p=17273
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The corresponding eigenvector can be obtained from the Lagrangian-Eulerian transforma-
tion formula. We leave the details to students to complete. You can also see Trangenstein
and Colella’s paper.

Reference

* Trangenstein and Colella, A Higher-order Godunov method for modeling finite de-
formation in elastic-plastic solids, Comm. Pure. Appl. Math (1991).
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Chapter 11
Thermo-elasticity

Reference
 Jacob Lubliner, Plasticity Theory.
* Silhavy, The Mechanics and Thermodynamics of Continuous Media, 1997.

* Li, Tatsien and Tiehu Qin, Physics and PDEs, Vol.II. ,STAM.

11.1 Constitutive law
11.1.1 First Law of Thermo-Elasticity
State variables

1. To describe a motion of an elastic material, we introduce the flow map ¢,, which
maps My to S.

2. The kinetic state variables are fields (¢(7,X), ¢(t,X),F(t,X)), or (x(¢,X),x(¢,X), g-;(t,X)).
3. In addition, there are thermo variables, which are (po(X),S(¢,X),T(¢,X)), which
are scalar fields. We should treat pp as a measure in the material space My and is

independent of time.

4. An adiabatic process is a motion ¢, which is so slow that no energy exchange occurs
internally or externally except the work done by the motion ¢;.

227
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Work and stored energy

1. Given a flow map x(X), consider a one-parameter family of flow map x*(X) with
x’(X) = x(X). The variation ‘szo x*(X) is called a variation of x(X). We denote
it by X (i.e. 0x). The variation X induces a variation in the deformation gradient F,
denoted by F (i.e. F = g—;). We summary these variations by
d . OX

X(X), F:

X: = ﬁ

ds|,_
2. When a material undergoes a deformation, a stress (called the first Piola stress) P is
induced in response to such a variation. The corresponding variation of work is

W="P:F.

3. A material is called hyper-elastic if the work done by the material is independent of
the path it deforms. We call such P conservative. This is equivalent to the existence
of a stored energy W (F) such that first Piola stress P is the derivative of W with
respective to F', and W can be obtained from F through integration:

ow oo
Here, 33
o XS
F=9xas

and x° is a path from the identity flow map (x(X) = X) to a given flow map x(X).
4. The specific internal energy U (F) is defined as
Po(X)U (F(X)) = W(F(X)).
Then the variation of internal energy is due to the variation of work, which is
poU =P:F. (11.1)
5. In Eulerian coordinate, we have
pU =o0c:&. (11.2)

Here,

Cii— 8_UF/<,. :l % %!
ij paF& alkj>  €ij ) (8xl’ + 8xi)
are the Cauchy stress and the pseudo-strain, respectively. Formula (11.2) is obtained
from (11.1) and the symmetry of G.
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Heat and the first law of thermo-elasticity

1. The energy exchange of the material internally or externally is characterized by a
scalar quantity Q, called heat. And the variation of internal energy is then character-
ized by

poU = poQ+P:F. (11.3)

This is called the Gibbs relation.
2. An adiabatic process is a process with O = 0. When the stress P is conservative,
then an adiabatic process stays in a hyper-surface in the space {(U,F)}. It also

means that there exists an additive field S(U, F), called the entropy, and a scalar field
T(U,F) > 0, called the absolute temperature, such that

o

O=TS.

The Gibbs relation is expressed as

poU = poTS+P:F. (11.4)

The local existence of § is a theorem, which can be derived from the assumption of
the existence of the restored energy W. EI Thus, the first law of thermo-elasticity
can be stated as: there exists an internal energy U (S, F) such that the Gibbs relation

(T1.4) holds.

3. The Gibbs relation can also be expressed in Eulerian coordinate. Let us still use
U (t,x) for the specific internal energy at (7,x). The Gibbs relation is

pU =pTS+o0:&. (11.5)

Representation of stresses in terms of internal energy

+ We will assume our world space is the Euclidean space R3. The metric is &; jdxi X dx/.

¢ We have used ' _ _
oi_H)%l_%axk_ai’k
O 9X0 T gxkgxe T gxk ¥

Oop9Upi_ 90U o o ox 1 /0% o¥
PY =PRI e T PR e gy T Tkgxk T U \ o T 9k

2This is due to Carathéodory’s theory of geometric thermodynamics.
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. We can invert the relation S <> U in the function relation S = S(U, F) and use (S, F)

as the independent state variables. A constitutive law is a function
U=U(S,F)

which characterizes the internal energy U in terms of the state variables (S, F).

. From the first law of thermodynamics (Gibbs relation), the constitutive law of two

thermo variables are derived:

* the stress is then given by P = py(Ur)s;

* the absolute temperature 7 = (Us)r.

. The function U should satisfy the frame indifference hypothesis U (S,O0F ) = U (S, F)

for all O € O(3). This implies that U is a function of C = FT F and the Cauchy stress
o =2(U¢)sC is symmetric.

. If in addition, the material is isotropic, then U satisfies the property: U(S,FO) =

U(S,F) for all O € O(3). The frame-indifference and isotropy imply that U is a
function of the invariants I, = ;(FT F), k = 1,2,3. That is,

U(S,F)=U(S,I,h,5).

. Using W = pgU, the Piola stress can be represented as

U
P =po <8_F) ;
N

. By using poJ ' = p and 6 = J~!PFT, the Cauchy stress can be represented as:

. U
o =pUrF", o =p=—Fj. (11.6)
F OF] a
_ ; _ U
oc=-p(F T)U(Ffl), o/ =—p(F l)gm_ (11.7)
J
_ ; U _
0 =—pUp-1)(F"), ol/:—pW(F he. (11.8)
o
o =2pBU i —2ppit Y =FFT
=2pBUp, 0;=2pB 5B’ where B=FF" . (11.9)
ol =2p ol FéFl{ (11.10)

ICop
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7. Using the representation formulae (9.11)) and (9.12)), the Cauchy stress for an isotropic
hyper-elastic material with internal energy function U (S,I;,L,13) is given by

o =2p [(KUL)I + (U, +1,04,)B — U}, B] (11.11)

or
c=2p [(12(_][2 +I3U]3)I-|— U]lB—Ig,U[zB_l} . (11.12)

8. Using (9.15)) and (9.17), the Piola stress can be represented as
P =2poF (yoC ™' +wil + yC)

with
vo=hLU,, wvi=U,+1U, w=-U,,
or
P =2poF (Wl +1nC+pC?)
with / /
YOZ‘I/H-WIL:, N ZWz—WIL;, Yzzl;/—:-
Summary

* The first law of thermo-elasticity: there exists an internal energy U (S, F) such that

polj :p()TS'—l—PZF'

where
U L poU

T := x, = 8_F

In Eulerian coordinate, it reads

pU =pTS+o0o:é&.

* Stability conditions

— Ufr is strongly elliptic, that is

iU .,
8F&8F[{§ &/Manp >0,

- Ugg >0

These conditions are necessary and sufficient to support stable plane-wave solutions.
These will be discussed in the linear stability analysis later.
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First law of thermo-elasticity in terms of Helmholtz free energy In elasticity, it is cus-
tomary to express constitutive law in terms of temperature 7" and strain. We thus introduce
the Helmholtz free energy

¥Y:=U-TS.

and treat (7, F) as the independent state variables. The first law of thermo-elasticity be-
comes: there exists a function (7, F) such that

po¥ = —poST + P:F. (11.13)

From this formula, we get

¥ ¥
S——<8T>F, P =po (8F>T (11.14)

We can also express this first law of thermodynamics in Eulerian coordinate:

p¥ = —pST+0:&. (11.15)

Representation of stresses in terms of the Helmholtz free energy

1. The free energy ¥ should satisfy the following condition: Frame indifference ¥(7, OF)

¥(T,F). This implies W is a function of C = FT F, and the Cauchy stress cis sym-
metric.

2. If in addition, the material is isotropic, then ¥ should satisty W(7,FO) = ¥(T,F)
for all O € O(3). This implies

¥ =Y(T,I,I,13), where I; = 1,(C).
3. The representation of stress is the same as that expressions in terms of internal energy
U. We only need to replace (g—g)s by (3—‘;’) .
Stability condition
* Wrr satisfies the strong ellipticity condition
e Wrr <0

These conditions are necessary and sufficient to support stable plane-wave solutions. These
will be discussed in the linear stability analysis later.
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11.1.2 Second Law of Thermo-elasticity

1. The second law of thermo-elasticity characterizes irreversible process of a deforma-
tion process. It postulates that there exists a heat flux Q(7, VT, F) and a heat source
r such that

: Q por
B L .
poS+ Vx (T) T 0. (11.16)

This is called the Clausius-Duhem inequality. The integral form of the Clausius-
Duhem inequality is

d QN por
thx>—/ QN s+ X
dl/Po()() e

The entropy production in € is greater than the heat per temperature passing through
dQ from outside plus the heat source per temperature produced inside.

2. The above Clausius-Duhem inequality can be expressed in Eulerian coordinate:

pS’+VX-(%)—p7rzo. (11.17)

Here, the Lagrangian heat flux Q and the Eulerian heat flux q are related by
q=J"'QF".

The integral form of the Clausius-Duhem inequality in Eulerian coordinate is

pr
—_— —dx > 0. .
dt/ deX+/ dS, /Q(t) T dx >0 (11.18)

Here, Q(t) = ¢:(Q0). The terms — [50 q'v dS; is the rate of entropy increase from
heat flux. The term fQ P is rate of entropy production from heat source.

11.1.3 Entropy Production

The constitutive law is postulated by: there exists a function U (S, F) such that the specific
internal energy U is given by the relation U = U (S, F). From the variational approach and
the Euler-Lagrange transformation formula, we can get the same equation of motion

a(pv)+V-(pvw)=V-o

with stress
oU j

Gij - pWFa
o
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Note that the Cauchy stress ¢ is symmetric. By multiplying the equation of motion by v

and using
(V-o)-v=V.-(ov)—0-Vv=V.(ov)—-0:¢,

we get an evolution equation for the kinetic energy density Ej; = %|V|21
8,(pEk) +V. [(pEkI— G) -V] =—0:¢.

Here, € = % (Vv+ (VV)T) is the rate of strain. The term o': € is the rate of work done by
the elastic material.
Next, the energy equation reads

d(pE)
ot

+V-[(pEI-06)-v]=-V-q. (11.19)

where the energy density E := %’V‘Z + U, and q is the heat flux. Subtracting the kinetic
energy equation from this energy equation, we get an equation for the internal energy

pU=0:£-V-q. (11.20)

Here, U := (9, + v+ V)U. This means that the increase of the internal energy is due to the
work done by the elastic material and the source from heat diffusion.

On the other hand, differentiate U = U (S, F') in time (with fixed X) and use the first law
of thermodynamics, we get

pU =pTS+o0:¢. (11.21)
Putting (11.20) and (11.21)) together, we get an equation for entropy
. V.q ) q q-VT
pS=—=1, or pS+V. <T> =1 (11.22)
Adding S(p; + V- (pv)) = 0, we get entropy production equation
1
%(pS) +V - (pSV) + V- (%) — 54 VT. (11.23)

Its integral form reads

d q-n 1
— de—l-/ —dS = —/ —q- VT dx. 11.24
dt /Q(t)p o) T Q1) 21 ( )

Thus, the Clausius-Duhem inequality (11.18)) with » = 0 is equivalent to

(129




11.2. LINEAR THERMO-ELASTICITY 235

It means that the heat can only flow from high temperature to low temperature.
We can also write entropy production in Lagrange coordinate as

. VxQ . Q Q-VxT
PoS = — ;{ ) or pPoS+Vx (?)z_ T2X )

where the Lagrangian heat flux Q is (2.15)
Q=Jqr T

The integral form of entropy production in Lagrangian coordinate is
d QN 1
< de+/ = s :—/ __Q-VTdX.
7 /QOPO ho, T 400 o T2Q

Summary

* The first law of thermo dynamics postulates there exists a function U (S, F') such that:
pU = pTS+ o: €. Then the following equations are equivalent:

Conservation of energy (11.19) < Internal energy equation (11.20) < Entropy equation (11.22)).

* The second law of thermodynamics postulates there exists a function Q(7,VxT,F)
(or q in Eulerian frame) such that

Clausius-Duhem inequality < q-VT <0< Q-VxT <0.
* The relations
U=U(SF), Q=Q(T,VT,F)

are called the kinematic constitutive law and the caloric constitutive law of the thermo-
elastic material. One can also use (7, F) as the state variables. In this circumstance,
the constitutive laws are given by

¥ =Y(T,F), Q=Q(T,VxT,F).

11.2 Linear Thermo-elasticity

The main reference of this Linear Thermo-elasticity Theory is

 Li, Tatsien and Tiehu Qin, Physics and PDEs, Vol.II. ,STAM.
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11.2.1 Constitutive laws

There are two constitutive laws: the kinematic constitutive law and the caloric constitutive
law.

Kinematic constitutive law Let us consider a linear elastic material which is at temper-
ature 7p in its natural steady state. This means that the stress satisfies

P(Ty,I) =0.
Let us expand YW near this natural state in 0 :=T — Ty and F —I:
W(T,F) =Y (Ty,])+¥r (F —1) +%‘PFF (F—I)(F—1)+Ypr (F—1I) 6+%‘PTT02+h.o.t.
where all Taylor coefficients are evaluated at (7p,7). Let us call
po¥rr(To. 1) = aijju,  Po¥rr(To.l) =G = (gij), pPo¥rr(To,I)=—a.
The term (F —1) ’J = % As we have seen in the theory of linear elasticity, a; j; satisfies
Ajjkl = Alij = Qijlk-

From these symmetries, the quadratic term becomes

du' du* B b 1 i oul
L iy gy Gumeneis where ey =3 { 535+ 5xi )
The second Piola stress is
¥
YijrPj= POﬁ = Zaijklekl +&ij0.
j k,l

From the symmetry of ¥, we obtain g;; is also symmetric, thus

ou'
Zgijm = Zgl'jeij =G:e.
L,J L,J

Dropping high-order terms, ¥ can be approximated as

1
PO = S (Ae.e) + (G:e) 0 — 392-

for ' ~ I. The kinematic constitutive laws are
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¢ The Piola stress:

3
P(6,e)=Ae+GO, Pj= Y ajuen+gib. (11.26)
k=1
* The entropy S:
¥ ¥
S=—po===—pPo== =—GC: 0. 11.27
Po PosT Po55 eta ( )

Caloric constitutive law  The caloric constitutive law is Q = Q(7, VxT,e). Let us expand
it around (7, VT,F) ~ (Tp,0,1):

Q=0Q(7,0,1) —KVxT +h.o.t.
When VxT = 0, there is no heat flux. EI Thus,
Q(T,0.1) =0,
and dropping h.o.t., we get a linear model, the Fourier law:
Q=—-KVyT. (11.28)
From the Clausius-Duhem inequality Q- VxT < 0, we obtain a condition for K:

K;;i®;0; > 0 for any vector ©® = (@i)?zl-

11.2.2 The full set of equations

Momentum equation The equation of motion is

duk 3 00

3
T— il ———— i—. 11.29
poli jkzlzlajklaX]aXl—i_j—Zlg]an ( )

Energy equation Recall the energy equation in terms of entropy and the heat flux as:

: \Y%
poS:—%Q. (11.30)
It can be approximated by
: VxQ
S=——7"—
Po T )

3This can be obtained from the second law. In fact, let f(A) := Q(T,AVxT,F). From hypothesis of the
second law, we get A (A1) <0 for all A € R. This implies £(0) = 0.
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Plug (11.27) and (11.28)) into this linear entropy equation, we get

) .1
poS=—-G:é+a6 = —Vx-(Vx0).
To
or
T()aé =Vx- (KVXQ) +TyG:é.
The energy equation for 6 is given by
1 26 %u'
0=— Kij
YT ”Z Y oX19XI Z 910X

(11.31)

The conditions for the coefficients are
® Qjjk] = Alij = Ajjiks
* 8ij = 8ji
s K+KT >0,
*a>0.

Energy dissipation Multiplying (11.29) by ', then integrating over the whole material
domain €, assuming no boundary contribution from integration-by-part, we get

d (1 - d%uk au 20 8u
=/ - N2 dx ;
dt /Qozpozi’(u) /szo,,zk’za”"laXJaXl ot / Zg’aXJ ar
duk 8214’ 20 Ju'
_ ou dx
Aoijzkla”“axl 2iax1“ / Zg”&XJ Jt
d du d6 8u
T dt o, 2. jZ,;la”kl (8Xl aXJ) dX+/ Zg’faXJ o ¢
Multiplying (IT.3T) by 6, integrating over Q, we get
/ 0%ax = [ oVx-KVx0dx+ [ ¥ I
dt Jo, 2 ~ X KVx Ol]gu Jroxi “t
Adding these two equations together, we get
d 1 |oul? ou' uk | 90 96
— [ = — e dX = — k
dt /QO 2 (Po ot +i;la”klaXJ axi T ) /QO TOZ Toxiox! axl

(11.32)
This shows energy dissipation law.
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11.2.3 Plane Waves and Linear Stability Analysis
¢ Plane Wave Solutions We look for solution of the form:
W' =Elexp(i(X -1 —A1)),i=1,2,3,
0 =0exp(i(X-n—At)).

The system is called stable if
Im(A) <0.

We would like to investigate the stability condition in terms of the coefficients a; 1/, K, G, a.
Plug these expressions into (11.29) and (11.31):

—poA*E = — Y aijklnjnl§k+2gijﬁnj@
Jik,d J

. 1 : .
—1aA® = —FO ZKﬂT’jT[l@ﬁ—)ngijnjé .
Jil

i,j

In matrix form, it is

T g ] [8]

The characteristic equation is

_[AM) =por*r  —iGn
0= det [ —AG)T LK) —iak
_ ge |AM —po2% —iGn
- 0 A(GM)T (A—por?) ™" (~iGn) + £K(n) — iak
This leads to
det (A(n) —poA®I) =0, (11.33)

or
- 1

det (A(Gn)T (A(n) - polzl) ! (—1Gn) + TK(T') - ﬁa?t) =0. (11.34)
0

The first set of equation leads to pure elastic waves. The second set of characteristic

equation corresponds to thermodynamic elastic waves which decay time asymptoti-
cally.
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* Pure Elastic Waves From hyperbolicity condition of a;;, the matrix A(n) is sym-

metric positive definite. Thus, it has the following eigenvalues and eigenvectors:

AME, =pory&,,  p=123
The corresponding solutions for thermo elasticity are pure elastic waves, which in-
clude

— forward waves (4, > 0): u = §pexp(i1(X-n —Mt)),0,=0,p=1,2,3
— backward waves (4, <0): u=§ ,exp(i(X -1 +4,t)),6,=0,p=1,2,3.

Thermodynamic Elastic Waves The other family of solutions are obtained by solv-
ing equation (11.34). Let (lg, &,)s p=1,2,3 be the eigen-expansion of A(). We
expand G in {G , | as

3
Gn = Z gp6, Whereg,=Gn-& .
p=1
The term

3
(Gm)T (A(m)—pod?T) " Gn =Y (po(A2—2%) "' &b,
p=1

Equation (11.34) becomes

3 2
pog K
@+ ()Lgo—l/)v) — i ;;7) (11.35)
p:

Here, K(1) =Y ; K;im;jm > 0. After rescaling, this equation is equivalent to

3
1 1
al+i+ ) b ( + ) =0,
where the coefficients b, 4, are positive.

Proposition 11.13. The root of the equation (11.35)) satisfies Im(A) < 0 if and only
ifa>0.

Proof. TO BE COMPLETED. [

With this A, we find the corresponding vector (§,®) by solving
(A(M) — poA?l) € —iGnO = 0.

We set © as a free parameter and find the solution &. This thermodynamic elastic
wave has negative Im(A4). Thus, the corresponding plane wave solution decays to
Zero ast — oo,
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Remarks

1. The condition
Yr1r <0 (11.36)

is called the thermal stability condition. Indeed,

?¥\  [dS\ 1(90
or2 ), \0T ), T\OT ),
Here, dQ = TdS is the heat added to the system. Thus, the physical meaning of

<3—g> is the specific heat capacity of the material at constant deformation. The
F
parameter a is

A 4
a:=—pPo 972
2. The thermal stability condition can also expressed in terms of U as
aT 1
(Uss)F =\ == = > 0. (11.37)
)" (@)

3. For polytropic gases,

A(S 5—5,
T = %V—”‘, U=cT, AS)=¢ o .
Thus,
S=So+c,In(RTV "),
¥=U-TS=c,T—T(So+c,In(RTV ")),
¥ IS
o =22,

aT? 9T T

See also (1.25).

11.3 Equations for Nonlinear Thermo-elasticity

11.3.1 Lagrangian formulation

The full set of equations are the equation of motion (10.46) + energy equation (I1.30):

pov = Vy - P (11.38)
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Here, po is a prescribed initial density field. The unknowns are (v,F,T). The energy
equation can also be expressed as

- av VxQ
p()STT——poSFﬁ— T

Since F is the differential of the flow map: F), = ;X—x;, it should satisfy the compatibility

condition
Vx xFT =0.

The constitutive laws are given by the two relations

¥ = (T, F),

From lP, the Piola stress and the thI'Opy are obtained:

¥ 0¥

P=pyos. s§=_-2°
PogE 5= a7

There are 9 equations for F, three equations for v and one equation for 7.

Hyperbolicity The system is called hyperbolic if

2
Po ‘iqu ¢/ nP >0, forall & = (&',&%,6")" £0and n = (n',1n%,n%)" £0.
OF40F; .
Thermo stability
PR 4

Second law of thermodynamics The heat flux should satisfy the requirement of the sec-
ond law of thermodynamics:
Q- VxT <O.

11.3.2 Eulerian formulation

In Eulerian formulation, we treat p as a new unknown and add the continuity equation.
However, this is redundant. So we add a constraint: pJ = pg. The full set of equations
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include 9 equations for F~!, three equations for v, one continuity equation for p and one
energy equation for 7.
9P + 9, (vip) =0 o
o (pv') + 9, (pv’vf) =00+ f
H(F 1%+, ((F*l)gv{) -0
o (pE)+ 9, (v/pE — V’G’]) +0d.q' =V'f!

(11.41)

where E is the specific total energy £ = %\V|2 +U. We need the density constraint: pJ = po
and the compatibility condition
Vex F7 T =0. (11.42)

The constitutive laws are either expressed in terms of (S, F') as
U=U(S,F), q=q(S,VxT,F),
or in terms of (T, F) as
Y=W(T,F), q=q(T,V«T,F),

where ¥ = U — ST is the Helmholtz energy. The unknowns are (v, F~ Lp, T).

Stability conditions The constitutive equations should satisfy

* Hyperbolicity

Y iie
Bgigj 3
——n“nPEE) >0, forall n,§ € R”\ {0},
IFgIF;

or

’U i
aF&aFén“nﬁé £/ >0, forall n,& € R*\ {0},

* Thermo stability W77 < 0 or Ugg > 0.

* Second law of thermodynamics q- V4T < 0.

11.4 Thermo-elastic Models

11.4.1 neo-Hookean models
1. Blatz-Ko rubber [Blatz Ko, 1962]

Ho |
U=—"(L+—-L%).
2P0(1+0‘3)
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2. Aluminum: a compressible neo-Hookean model for aluminum [Miller-Colella, 2001]

_ Ho (31 /” P(p’) .
U_2Po (I] o >+ po P a»

Y

where
2 p p ? p ’
=po~ 12, P :72(——1)+172<——1> +40(——1) .
P =P () Po Po Po
po=2.7x10%kg/m?, uy=24.8GPa.

3. Copper [Miller 2004] The internal energy is decomposed into hydrostatic (H), thermo
(T), and shear (S) energies:

U=Uy(B)+Ur(S,5)+Us(I1,h,5),

K (40 xp (5.

Ur=aoTo [CXP (S:SO) - 1} exp (7’0—77(13)> ,

G(I . _
2(;)(3)) VI |BhE P 4 (1= B)nr P 3]

Un = —

S_

where

o) = 50— 1) (+/0 1) 700 = poet,

G(x) =exp {—r (x, KG—(O;/)] 8(x),

g(x) = Go { {1 _r (xKG—(j)} 16 gr (x, Igj) (;G_,lfl> } .

Go




Chapter 12
Elastoplasticity
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12.1 Flow laws of elastoplasticity

12.1.1 Decomposition of Deformation

In the deformation of an elastoplastic material, the deformation gradient ' can be decom-
posed into elastic part and plastic part: (see Sec. 8.2.2 of Lubliner’s book)

F=FFP, Fi=(F)5(F")}.

The elastic part is reversible, while the plastic part, a result of dislocation of lattice, is
irreversible. The elastic part F¢ will relax to an equilibrium state, while F? follows a
dynamic flow law which depends on some internal variable &. This internal variable &
can be a scalar, a vector, or a tensor. It characterizes the restructure of the material, for

245
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instance, the work-hardening parameter. The dynamic law of F” and & are described by
the following ODEs

szK(l)aF?vaUag)?
{ ézh(vavaauvé)'

The functions K and /4 can be derived from the following postulates:
* A constitutive law for the internal energy: U = U(S,F*¢,¢&);

* Avyield surface f(o,x) =0, where ) := dU /d& is the internal force conjugate to the
internal variable &;

* The maximum plastic dissipation principle, which states that the flow rule of F” and
& are determined by maximizing the plastic dissipation.

The region
{(o,2)|f(0,x) <0}

is called elastic region, inside which, the material behaves purely elastically and F = F*.
As (0, x) reaches the boundary f(o,)) = 0, dislocation of lattice occurs and the material
behaves plastically. The system is irreversible. The increase of entropy S is characterized
by the power (rate) of plastic dissipation and power of thermal dissipation. The stress in this
plastic regime is obtained by the principle of maximal plastic dissipation. Let us explain
these in detail below.

12.1.2 Constitutive Law

The first hypothesis is: there exists a function U(S,F¢,&) such that the specific internal
energy satisfies

U =U(S,FE).

The reversible part of the internal energy depends only on F¢. The irreversible part of the
internal energy is characterized by the interval variables &.
There are three conjugate variables derived from U':

* temperature T := (%—g)F .

* stress 0 :=p (g-g)séFT,

* internal force y :=p <’9—g>s pe'
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An example of such internal energy is the following modified Mooney-Rivlin equation-of-
State:

pU(S,F¢ &) :@ (ln\/detCe)2 + @trCe

_,LL(S) e @ i —%¢&
5 In (detC )+190p (€+191€ ,

where C¢ := F¢(F¢)T is the elastic strain tensor, & is the work-hardening variable, and
U
x=pgg =t (1-¢ )

is the work-hardening modulus (or the internal force). Here, ¥, 1} are two positive con-
stants.

Below, we want to derive the dynamic equations for the thermodynamic variables: S,
F? and £. The equation for S is equivalent to the energy equation. The equations for F?
and & will be derived from the maximum plasticity dissipation law.

Derivation of equation for S We recall the energy equation reads,
d(pE)+V-((pE1I—0)v)=V-(kVT),

where £ = %|v]2 + U, the specific total energy. By multiplying momentum equation by v,
we can get the equation for the kinetic energy Ej := %|V‘2

o (PEL)+ V- [(pEd—0)-v]=—0:D,

where D = %(L+LT), L = Vv is the strain rate. By subtracting the kinetic energy equation
from the energy equation, we get the dynamic equation for the internal energy:

pU=0:D+V-(kVT). (12.1)

On the other hand, we can treat U as a function of (S, F,FP,&) through F¢ = F(FP)~!. By
differentiating such U = U(S,F,FP,£) in time with fixed material variable, and treating
Fe=F(FP)~' (i.e. U(S,F(FP)~1,&), we get[]

. 9U. U . U . U .
—_ _ . I ) 24 .
U aSS+aF.F+an.F +a5 E.

"We treat U as a function of F and F”, instead of F¢. The reason why we want to have dU /JF is to be
able to obtain the total stress, which is derived from F, not just from F¢, see Mandel.
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Multiplying this equation by p, we get

: . U . au . :
_ 7. i :
pU_pTS+paF.F+pan.F +x-&. (12.2)
Using 6 = pUrFT, F = LF and the symmetry property of o, the term
pg—g:F:p%:LF:pUFFT:L:G:L:G:D.
The term
U U IF, U\ .
P =p— =|p=—= | =— ((FOL(FP)}
8(F1’)g 8F;8(Fp)g ( 8F7£> B(Fp)g <( )l )7>
aU ; aU ;
— _ Fe 18(11,'8 — i Fe 1
<paFf>( )‘L’ By (po'?F[;)( )oc
oU i _
- (p aFé)Fy«FP) O
Thus,
au . U ; _ . oU i _ .
pm:w’:(p aFé>Fy<<Ff”> WL = (p@) Fi| [(Fr)y HhEn)g
Thus, 5
pa—Ii:Fp = pUpF:(FP) 'FP =% IP.
Here,

Y =pUrF, LF:=(FP)'FP.
Equating (12.1) and (I2.2)), we get an evolution equation for the thermo variables:
PTS+X:LP 4 x-E =V (kVT).

The entropy production is
A 1 . 1 1
§= = (TP &)+ V- (KVT) = —— (Pplast + Piterm
oT +X§+pT ( ) pT<pl‘t+ therm)

The term .
lelas =-—X:LF —X é
is called the power of plastic dissipation. The term

P := V- (KVT)

is called the power of thermo dissipation.
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12.1.3 Plastic yield surface

Our second postulate is: there exists a plastic yield function f(o, ) such that
o the material behaves elastically when f(o,x) <0,

+ the material behaves plastically when f(o,x) = 0.

Example The Mises-Huber constitute model is given by

f(o,%) = ||dev(o)]| —\/g(cy +2)- (12.3)

Here, dev(o) :== 0 — %(trcr)l is the deviatorial part of o, Oy is a constant yield stress pa-

rameter. During material deformation, when the deviatorial stress is greater than \/g (oy + %),

the material lattice is broken and the material undergoes a plastic deformation. The bro-
ken process is described by the internal variable £ and the plastic deformation F?P. Their
dynamics are determined by maximum plastic dissipation law below.

12.1.4 Maximum Plastic Dissipation Law

Our third postulate is that: the dynamics of the plastic variables F? and & are determined
by

Sup‘Ppast (27 %7 Lp7 g )
Xx

subject to the constraint
f(o(X),x) <0.
Recall
WY plast = —Z:Lp—xf.

By using the method of Lagrange multiplier, this is equivalent to the following uncon-
strained optimization problem:

supsup [¥pau (T, ) + Cf(0(X), )]
Yx ¢

Here, ( is the Lagrange multiplier. The corresponding Euler-Lagrange equation is

d

d
E (‘Pplast + Cf) =0, ﬁ (‘Pplast + Cf) =0.
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Recall L? := (FP)~!FP, the Euler-Lagrange equations are

. af
FP=CFP=s, (12.4)

- af
&= Cﬁ' (12.5)

The Lagrange multiplier {, X and y should satisfy the KKT condition

f=0, (12.6)
¢ >0, (12.7)
Cf=0. (12.8)

Its meaning are the follows: (i) f = 0 means that it is in plastic regime; (ii) { > 0 means
that it is in either plastic or elastic regimes; (iii) { f = 0 means that it can only be in plastic
regime (f = 0) or elastic regime (f > 0 but { = 0).
In addition, in the plastic regime (i.e. f =0, > 0), it should satisfy the consistency
condition
{f=0 when f=0. (12.9)

It means that the material stays in plastic mode during f = 0 and this gives f = 0 in this
regime.

References
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Chapter 13
*Hamiltonian Elasticity

Incomplete!
There are two formulations of Hamiltonian elasticity. One is in Lagrange frame of refer-
ence. The other is in Euler frame of reference. [

Let q(,X) be the flow map. The Lagrangian is defined to be

1
L(V7paS7F) = EP‘V|2_pU(SaF)

L= [ L4, 50

The momentum
0.7
p(X):= oy - Po(X)v(X).

The internal energy U depends on the conformation tensor
ij _ i g OB
¢/ = F&FBC0 .

Let us define

Then s and c¢ satisfy

ds+V-(vs) =0, Jc+Vx-(ve) = (V) —¢(VV) =0.

IReference: Beris and Edwards, Thermodynamics of Flowing Systems, pp. 113

251
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We recall the relations between other Eulerian variables (p,s,c,m) and the Lagrangian
variables (q, p) are

p(x)= [ polX)3(x—a(x))ax

s(x) = /Qoso(X)S(x—q(X))dX (13.1)
= [, pX)3(x—a(x))ax
And
() = [ S(x—y)e(y)dy

— [, 8- apla)e(5

dq
= %3@—MXM%@)%XWX

Wldx

A functional .% [q,p] can also be represented as a functional of [p,s, ¢, m] by

Fp,s,c,m] = F[q,p],
with variation

s (é%qﬁ_%p)
Q \ 0q )

8.7 8.7
/( 55+ o +6m5m)

In this expression, %‘; is a function of (p,s,c,m), hence a function of x. The variations of

p,s,c and m can be obtained by taking variations on the transformation formulae (13.1).
We get

o = —po(X)Vad(x - (X))

g_fl — 55(X) VxS (x — q(X))
(js_l:; — —p(X)Vy8(x—q(X))
om
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561 = [ ~3,5(x— a(x)3¢ po(X)el S) + 5(x— a(X))pu(x)8e dx.

0X

Recall that ¢/ = F’F[{ gﬁ aa;; %cgﬁ (X). With x = q(t,X), we have

Scl =

a6‘] ozﬁ a66] laﬁ afB ,ﬁa d k
sxapee + 5ypFach <5kF[§ &P+ 8/ Fjc >axa6q .

Thus,

A" N
I lj__
5qk axkg(x q( ))pOc

ox [6(X_q( ))pO(SkFJ ﬁ_|_6/ zﬁaﬂ

= b x—al)poct — 10 (30— a(X) polx) (8{FJes? + iyl ]
:—%6( a(X))poc —J aam [8(x—a(x))p (8" +8fc™)|.

Here, we have used

J i
gxo o = GumOm
The function .# maps (p,s,c,m) to R and .% = .% oq maps q to R. Therefore, %—‘f and

%; which are functions of X, can be expressed as

PL=J ol,=J 'P.FI.

m

OF o [ (3500, 088 07 b 0F o
oq “Jo,\ 8p 8q 85 8q  S¢c 8q Sm 8q
=I1+1.
8.7 8.7 8.7 8.7
I——/ <p0$+506—5—|—p()c5—c+p'5—)~VX5(X—q<X))dX
8.7 8.7 07
= [ (oo G oaw S e S 0.5 ) s(xax)
0.7 6c”
=" Josd 5q
8.7 0 S
— 1.mj J m
- [ S5 [a(x a(X))p <5kc +8lc )}dx
0F 8.7 8.7
5o ) = [ G (x—a)dx = 5 (a(x)

The Poisson bracket {.%,%} defined by

{%g}tz/ (SJ -6—g—8—g-5j)dx
Qg
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can be expressed in terms of (p,s,c,m) as

{7.9}={79}
—/QO/ d(x—q(X (poV %f+5ovx%+p0cvx%+p'vxg_f:) -%i
~5(x—q(x)) (povx‘;—f +sovx‘;—f+pocvx%—g+p-vxg—i) 7 ixax

om
SJ 0 N ;. %
o 1. mj J im e
/Qo/ dcii 8x’" 5 a(x))p <5kc ¢ )]dXSmkdX

5% d — > 0.7
i mj J im o7
/Qo/ Scii 8x’" 5X aX))p (5"6 + 3¢ >}dx5mkdx

We use (5.6) and a lemma below to get

8F 8.F SF\ 89
{%%}—/Q(pvxgﬂvxs—erm-VXﬁ).E

7 7 a

op 0s *Sm/) &m
+/ v, 07 8.7 6% XS% Sﬁdx
oc 6c Oom

0 867 i\ 09
mj J.im\ 9
+/ (8xm 6c’l> <6 + 9 ) Sdmk

() ) e

Here,

( 5%) ST ,-(8 6%_)532
m-Vy— |- =m' | — -

*Sm/) Sm ox/ Smi | Sm/

We need a lemma.

Lemma 13.8. It holds that

A O | 8x=a0))po(x)6 (x)w(a(X))dxdX = [ p(x)g(x)w(x)dx.

L Lo ~q(X)0(x))y(a(x))dxdX = - | Vug(x0()y(x)dx
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Proof. Lety = q(X). Then the above integral is

|| 86=v)po(a ) w(y)dxsa )y
= [ | sx=¥poy(y)dxay
= [ PEox)wx)dx.

L, L oIe)vaIs s —apnew]wlaw))axax = [ [ 0(Val8(x—y)0(]y(y)dxdy
—— [ [ Vo Is(x-y)olw(y)dxdy = - | Vio(x)8(xw(x)dx
QJQ Q

13.1 Poisson bracket formulation

Reference:

e Antony N. Beris and Brian J. Edwards, Poisson bracket formulation of viscoelastic
flow equations of differential type: A unified approach (1989).

* Miroslev Grmela, Hamiltonian Dynamics of Incompressible Elastic Fluids, Phys.
Lett A (1988).

Lagrangian formulation
1. The space we consider is

Q:={q:M — M is 1-1, onto and Lipschitz continuous. }

An element q € Q is called a flow map. Its gradient F := 1s called the deformation

gradient.
2. The Lagrangian L : TQ — R is defined by

dq
q, ﬁ?
where A is the Helmholtz energy per unit mass. It depends on 3—; through ¢, the
conformation tensor. A and c¢ are defined by

T
A(c) =E(c)—TS(¢), ¢:= §—§c (X) (%) = FeoFT.

8q)

—_ 2_
V)= plvl PA(5

L(
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Here, ¢o(X) is the initial conformation tensor. The function E is the internal energy
and S the entropy, both are per unit volume. They are modeled for different types of
materials. For example, in a simple dumbbell model,

E(¢) = 5nK(7r(c)

1
S(e) = EnkB Indet(c).

Here n is number density of polymer spring and K is the spring constant.

The action is defined as

Jq
S[q,aX,q /2 (q)la*dx - /A
= [ Spo(laPax— [ A(Feo")sax
Qo Q
=X[q] — |q,F]

Note that both ¢ and ¢y are symmetric. The variation of &/ w.r.t. q gives the stress
term:

8/ =8 | A(FeoFT)JdX
Q

o [A'(¢): ((8F)coF" + Feo(SFT))J+ASJT] dX

Let us assume the fluid is incompressible. We thus neglect 8J term. Since c¢ is

symmetric, A’(c) := a‘)A is also symmetric. Note that

(Feo(SFT)T = (8F)coFT .- ¢g is symmetric
We then get
A'(c): ((8F)eoF T +Feo(SFT)) =2A'(¢) : (8F)eoF .

S =2 / AL (8F) }CCSE(FT)ﬁJdX
—2/ Al]a - OF;JdX
-2 Z A’.. kEFjJ)5 idx
/Qo an ij€0 L'y q

d
=— —P-0qdX
Q, 0XK 4
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Here,
k. Al Kkl
P = 2A,-jco F;J
is the first Piola stress.

3. The variation of action gives
5l
08 = / (—pod+ VxP) - 6qdX dt
o 7
The corresponding Euler-Lagrange equation is
pod = VxP.
4. The corresponding Cauchy stress is
o=J"'PFT.
In component form, we get
' k k
Gij = Pl (F T) Jj
kl j
= 24"
=2A'c.
Note that both ¢, A" := a—*c‘ and o are symmetric. We have
o =2A"c=2cA.
In the case of viscosity, we add the rate-of-strain to the extra stress. Thus

o =2cA'+1, (Vv+(Vv)").

Hamiltonian Dynamics in Lagrangian coordinate

1. We can express the above Euler-Lagrange equation as a Hamiltonian equation. First,
let us take Legendre transform of ., which is equivalent to take Legendre transform
of L w.r.t. v. This defines the momentum

p(X) = 2% = po(X)v(x).

The Hamiltonian is then defined to be the Legendre transform of L. This gives

0 2
| ):ﬂ

H(qua_Xa 2p0

+A(c),

and 5 5
q . 9q
Hq, 8X’p] = /QOH(q, aX,p)dX.
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2. The Lagrangian dynamics is equivalent to the following Hamiltonian dynamics:

e
q__5p = Po
s

This equation can also be formulated in terms of Poisson bracket. Namely

qG=1{q, 70}, p={p, 1Y},

where the Poisson bracket is defined by

0F 09 09 dF
F Y= [ (5o Gs— 5 ) dX
{ } QO<8q8p aqf?p)

Hamiltonian dynamics in Eulerian variables

1. The Eulerian variables are (p,m,¢), where m = pv and ¢ = FegF 7 is the conforma-
tion tensor. The transformation between (q,p) and (p,m,c) is

p(x) = /Q PolX)3(x —a(x))ax

m(x) = | p(X)3(x—q(X))dX

Qg
dq dq .1
c(x) = ()G
Here, we have assumed that pg and ¢( are pregiven function on €.

2. Variations

Sp=— /Q PolX)VB(x—q(X))-Sa(X)dX

6m— [ (~pVx8(x—q(X)))- 8q+5(x~q(X))5pdX
Qo

For

its variation is
_ 984" 94 ¢, 94’ 94" 4
oxk oxt Xt axk

_a(éqm) ima_qj jma_qi kl
) ¢ ((6 axﬁ‘s axf)c

8¢ (q(X))
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Here, we have used CK = C**. Hence, for a functional .#[q,p] = .Z[p,m,¢] =
J F(p,m,c)dX, we have

0.7 0.
or
07 = (5<1(qur 5p>dX
/ ( +—5m+5i5c>
o
/ —po(X)Vy8(x— q(X)) - Sq(X) dX dx

Qo
G pVs3x - ax)) - Ba-+ 3(x - q(x))opax dx
JdF 9(6q™) (85q oq’ Ckg+85q g’ Cké) I

odc dxk \ oxk 9x! oX' oxk
JdF
:/ /(5(X—q(X))po(X)VXa_) dx- 8q(X)dX
Qo P
oF OF
+/QO/< Xam>'5‘l+a—m5(X—q(X))5pdde

OF dq’ 4, o (OF 3¢ o
/ {aX"<8c“J axt¢ J)+axf(acfa oxiC /)| 9a aX

57 OF JdF
e _/Qs(x—q(X)) {Po(X) <VX%> P (V EN -
9 ( OF dq’ o JF dq' c”‘])

Thus,

—9xk \ 9c%i 9x? dcie gx!
O = | S s dx = S
3. The inner product
o 66? fsf / [/ )(PO( )V 3—§+pVx§TI;> dx] g—st
_/QO aik (&aczj j)céjfckgj aa:a g;e )'aalfadx

JoF\ dG
_/( "a_) &md

ax’ 9c¢2i ¢ T 90 ) oma
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In the last step, we use the following lemma

Lemma 13.9.
JVXG = VXp,
where . .
c=J'PFT ol =J'PAF.
By setting
OF dq’
k. 99" ke
Fo = 5 eai gxt©
we get
: oF i . oF ..
_ Jpigkl
G& = WFZ Fle = acajclj

Thus, the last term in the inner product formula is
d (JdF ;; JF ;\ IG
— — J JUy. —_—
%= (acaf" T 5 ) Fme X
4. The Poisson bracket is

oF JdF\ G d (JdF ;; OJF .\ 0G
9’,%:/ Vi=— V——d—/—. Yol —clt ). d
(7.9 g<p op ™ Xam) om " Jo ox (acwc +ac/ac) omo ‘%

—/ (vaa—G+mvxa—G)a—Fdx+/ i (aG iy 90 ﬁ) oF 1x
Q Q

op om ) om i \acei® T 9cia” ) gme

Incomplete, some terms are missing.

Ref. Juan C. Simo, Jerrold E. Marsden and P.S. Krishnaprasad, The Hamiltonian struc-
ture of nonlinear elasticity: The material and convective representations of solids, rods, and
plates (1988)
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https://link.springer.com/article/10.1007/BF00251673
https://link.springer.com/article/10.1007/BF00251673

Chapter 14

Mathematical Theory for Simple
Elasticity

Simple elasticity only consider mechanical property of an elastic material, no thermody-
namics is under consideration. Mathematical theory for simple elasticity includes

* Initial boundary value problems: elastic wave theory

— Hyperbolicity and rank-1 convexity

— Linear elasticity

— Linear isotropic elasticity

— Nonlinear elasticity, hyperbolic conservation laws

» Steady state problems:

— non-uniqueness and uniqueness,

— poly-convexity, existence and uniqueness

* Stability and Bifurcation theory

References
1. Ciarlet, Mathematical Elasticity, Vol. I (1988)

2. Antman, Nonlinear Problems of Elasticity, 2nd edition (2005)

3. J. Ball, Mathematical Foundations of Elasticity Theory http://people.maths.
ox.ac.uk/ball/Teaching/Mathematical_Foundations_of Elasticity_
Theory.pdf

4. Li, Tatsien and Tiehu Qin, Physics and Partial Differential Equations, Vol. I, II.

261


http://people.maths.ox.ac.uk/ball/Teaching/Mathematical_Foundations_of_Elasticity_Theory.pdf
http://people.maths.ox.ac.uk/ball/Teaching/Mathematical_Foundations_of_Elasticity_Theory.pdf
http://people.maths.ox.ac.uk/ball/Teaching/Mathematical_Foundations_of_Elasticity_Theory.pdf

262 CHAPTER 14. MATHEMATICAL THEORY FOR SIMPLE ELASTICITY

14.1 Linear Elasticity

14.1.1 Dynamics of linear elasticity

In simple elasticity, as assuming the strain e = % (VXu + (qu)T) being small, the equation
of motion can be approximated by

a2k

: u
<ol o -

poil' = %a,,kzaxjax,, i=1,23, XeQ, (14.1)

where the coefficients 2 ( )

W(l
ajip] = ———— 14.2
il IFIOF, (14.2)

satisfies

Qjjkl = Qijik = Aglij= il - (14.3)

The first equality is due to C = FTF being symmetric. The second equality is from
IPW(I) _ I*W(I)

IFTAFE ~ FfaF; The third equality is a consequence of the first two equalities.

14.1.2 Hyperbolicity of linear elasticity

We look for plane wave solution for equation 1D We plug the ansatz u = ‘g’ei(”'x —A1)
into (14.1) to get

3
por’éi= Y aju&nim. (14.4)
jkiI=1

Thus, equation ((14.1)) supports plane wave solution in direction 1 if the 3 x 3 matrix
3
AMic ==Y, aijumm
Ji=1

has positive eigenvalue pyA? with eigenvector &.
Lemma 14.10. The matrix A(N)y. := Z;’ -1 aijklnjnl is symmetric.

This is due to a;j; = ay;; (hyper-elasticity) and

3 3 3 3
AMi=Y ajumim =Y, ajumni =Y, aunim =Y, ajunjm =AM)k-
Ji=1 ji=1 ji=1 Ji=1

Thus, A has real eigenvalues. To support plane wave solutions, we need A to be positive
definite. The definition of positivity of A is the follows.
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Definition 14.6 (Strong ellipticity). The 4-tensor (a;jx;) with symmetry property is
said to satisfy strong ellipticity condition if there exists a positive constant o such that for
any E € R3, n e R?,
Y aiju&i&enmi > el nl’. (14.5)
ijkl
From the above discussion, we have the following proposition.

Proposition 14.14. Strong ellipticity for the 4-tensor (a;ji;) is equivalent to the hyperbol-
icity of system (|14.1)).

Remarks

* Condition (I4.5)) is also called Legendre-Hadamard condition in Calculus of Varia-
tions.

Definition 14.7. Let Mi,, be the space of n X n matrices. Let W : Ml,, — R. Such function W
is called rank-one convex if it is convex along all directions spanned by matrices of rank 1.
That is,
W(AF+(1-21)G) <AW(F)+ (1-4)W(G),
for all
F.GeM,, rank(F—G)<]1.

Proposition 1. The matrix (§m;) ==& N’ is a rank-1 matrix. Indeed, all rank-1 matrix has
this form. W(F) := a; i F ]’Flk is rank-1 convex < a;ji is strongly elliptic.

14.1.3 Energy law

We want to study how energy changes in time. From the symmetry property of a;ji, we
have

oul duF
%aijklm = %‘,aijklm-

The dynamic equation can be written as

g1 ok au
poii' = 5;%8]‘01']']{1 (W + m) :

In vector form, it reads

poii = %V, [A (Vxu+ (Vxu)")] = Vx - Ae. (14.6)
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By multiplying by u then integrating in X, we get

d 1 . 1 .
z/go (5”0'“'2) = /Q 5 Vs [A(Vxu (Vxu)')] -adx

:_/Q %[A (Vxu+ (Vxu)")] - Vyuax

Note from a; j; = aji; we obtain

1 duyy duy \ du; B 1 du; duy dii; auj
EZaijkl(an‘f‘axl) an—ZiZal/kl<an+aX1 8Xj+(9Xi

ijkl ki

. d (1
= /Zaijklekléij = (Ae, &) = a7 <§(Ae,e)>

ijkl

The energy law reads
d 1 ’ d
— —~pPolu dx+— [ W(e)dx=0

W(e) i %(Ae,e}.

where

14.1.4 Dynamics of linear elasticity

Existence theory for linear elasticity with hyperbolicity condition The initial-boundary
value problem for linear elasticity is posed as the follows. The evolution equation is

2 k
. u
poii' =Y aiju=—ao7, i=1,2,3, X €Qo. 14.7)
I 0X/oXx!

The boundary conditions are

— D
{ u(X) =h(X) on oI} (148)

Y2 i i 2N = 1(X),i=1,2,3, on ITY

where Qg =TY U, N = (N!,N? N?) is the outer normal of I'). The initial conditions
are

u(0,X) =up(X), Jdu(0,X)=u;(X), XeQ. (14.9)
Standard semigroup theory gives L? existence theorem under the strong ellipticity condition
for (ai jkl)-
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Remarks

1. For the whole domain problem, one can write the equation as a first-order system

d |u 0 If|u i 9%uk
il =L of[d] o =Tewzom

The Fourier method gives a representation of the solution operator. From which,
one can perform [? estimate, or Strichartz estimates (LP-L9 estimates) to obtain L2
solution or a L? theory.

2. For bounded-domain problems, operator theory and Hilbert space method can be
applied.

14.1.5 Steady state problem for linear elasticity
Outline
* The steady state problem is the boundary value problem of
22k )
_jzk‘l,aijklm = po(X)bi(x(X)),i=1,2,3, X € Qq,
with boundary condition (14.§). Here b is the body force.

* Stability condition = existence and uniqueness of steady state problem.

* The key step is the Korn’s inequality and Lax-Milgram Theorem is used for exis-
tence.

* The uniqueness follows from the fact that the solution which minimizes [ W (e)dX
is the trivial solution. This again follows from Korn’s inequality.

Ref. Ciarlet

Definition 14.8 (Stability). The 4-tensor (a;ji;) is stable if there exists a positive constant
@ such that for any symmetric matrix (e;;), we have

Y aijueijen > @) e (14.10)
ijkl ki

Proposition 14.15. Assuming a; ;i satisfies
Ajjkl = Aklij = Qijik

then we have
Stability = Strong Ellipticity.
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Proof. Choose ey = (& + &) we get

aijrieijer = Zaz]kl &imj+&mi) (& + &)
ljkl
= Z a; &gk m

ijkl

=~
<

ij

Here, we used the symmetric property of a; j;:
Ajjkl = Ajikl = Aijik = Ajilk-

We also note that
1
Z|eij|2 = ZZ(émﬁéjm)z
ij
= _Zé +2§zn€jn1)

= S (PP +E )
1
SIER .

v

If (ajju) satisfies stability condition, then

a
Y ai&&nim =Y aijueijen > aY ey 5|§|2|77|2-

ijkl ijkl k,l

Thus, it also satisfies strong ellipticity condition. ]

Remark The stability condition (14.10) is that

Z ajjki€ijexl = Z

ijkl kl

holds for all matrix e € M,. The strong ellipticity condition is the same condition holds but
only for rank-1 matrices (i.e. En7).

Theorem 14.13 (Korn’s inequality). Let u : Q — R? and e = 1(du/dX + (du/oX)T). It

holds that )
aui 2 1
/inj <8Xj) dx§2/ Eij eijdx forall u € Hy(Q).
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Proof. We have that

2 1 8u,~ al/tj 2
le,eij - Z%.: (axf T ox
1 Ju; 2 du; auj

_Elzi:((axf) +8XJ'8X")

We integrate this equality over Q. Note that
du; du;  d ( 8u]) 82uj

oxioxi — axi\""axi ) "oxioxi
du; du;j 8 au j 0%u j
X 9x] — axi \"oxi "oXioXJ’
subtracting these two equations, we get
ui Oj e [ 9t 9y
o 0XJ oXi 00X dXJ

for all u € H} (Q). Thus,

fxae - 32 (() o) o
-z Gy (23
X () o

v

]

Existence theory with stability condition Stability condition gives existence and unique-
ness in H'!(Qg). Standard energy method can be applied to prove this result. The key step
is the Korn’s inequality.

14.2 Linear isotropic elasticity

14.2.1 Characteristic wave modes

For linear isotropic material

ajjk = A& + (661 + 81 0i), (14.11)
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the matrix A(n) is

AMi =Y aijumm = (A + p)nime+ |n|* .
ikl

The equation of motion reads
poii' = 1L Al + (A + )i (). (14.12)

To find the eigenvalues of A(7), using isotropy property, we may choose n = (0,0,1).
The eigenvalues of A(n) in direction 1 can be obtained by rotating (0,0,1) to . The
corresponding eigenvectors can be obtained by the same rotation. Now, for n = (0,0, 1),

0 00 1 00
A((0,0,1))=(A+u) {0 O Of+pn|0 I O
0 01 0 01
The eigenvalues are
PoAZ =W, i=1,2, poAs =A+2u. (14.13)

The eigenvectors are the Cartesian unit vectors E, E> and Ej3.
* Longitudinal wave is the eigen-mode
E; ei(x3ﬂ3r)

The material oscillates in the direction of wave propagation (i.e. 1 = (0,0,1) and
E3=(0,0,1)). It is also called the primary wave, or the P-wave:.

* Transverse wave is the eigenmode
(v 3
Epe! M) =12

The material oscillates orthogonal to the direction of wave propagation (i.e. N =
(0,0,1), whereas E; = (1,0,0), E; = (0,0, 1)). It is also called the secondary wave,
or the S-wave.

Proposition 14.16. For linear isotropic elastic material, the strong ellipticity of
ajjk1 = A&k + (6 Sj1 + 0;10 k)

is equivalent to

A+2u>0, u>0. (14.14)
In terms of the Young modulus E and Poisson ratio v, we have
1
(/I>O,u>0)<:>(0<v<§,E>O):>(/l+2u>0,u>0). (14.15)

Proof. 1. (14.14) follows from ((14.13]).
2. (14.13) follows from (9.40).
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14.2.2 Dynamics of linear isotropic elasticity

Equation (14.12) in vector form reads
podtu=pAu+(A+p)V(V-u).
Let us decompose the displacement u into
Uu=vV+Ww,

with
v=V¢p, V.-w=0.

Such decomposition is called Hodge decomposition. |1_-I With Hodge decomposition, the
equation becomes

P0dF(VO+W) =N (Vo+wW)+(A+u)V(V-VO) =pu A (Vo +w)+(A+u)VAP.

We get
PodF (VW) = (A +2u) Av+pAw.

Note that the Hodge decomposition is preserved under the operations A and d7. Thus, we
obtain

P0dAV = (A+2u) AV, podPw=ulw. (14.16)

Thus, the longitudinal waves and transverse waves are decoupled. To solve the initial value
problem
u(0,X)=up(X), du(0,X)=u(X), X eQo,

we perform Hodge decomposition for both uy and u; as
up =Vvo+Wp, u;=vV;+Wwj.

Then solve the initial value problems for both v and w separately.

Stability of linear isotropic material For linear isotropic material (14.11)),
(Ae,e) = A(Tre)* + e:e
The stability condition (I4.10) reads

(Ae,e) > le||z.

"When the domain is simply connected, we can have such decomposition. When the domain is multiple
connected, then u = v+ w -+ h The term h is a harmonic function, i.e. Ah = 0.
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For the off-diagonal component, it gives

pej; > aiey;.
For the diagonal part, it is

Alerr +exn+e33)* 4+ 2uer, > der,, k=1,2,3,
for some & > 0. Summing this equation over k = 1,2, 3, we get
30 (e +en+e33)’ +2u(ef) + 63, +€33) > Gle] + €3+ e33)

forany eyy,e2,e33. TOBE COMPLETED This is equivalent to

3A4+2u > 0.

Thus, the stability condition for linear isotropic material is

3A+2u>0, u>0. (14.17)

In terms of shear modulus ¢ and bulk modulus K = A + % U, stability condition reads
u>0, K>0. (14.18)
Let us summarize the stability and hyperbolicity conditions for linear isotropic materials

* Hyperbolicity: (A +2u >0, u >0) < u,K < E,v.

14.2.3 Steady state problem for linear isotropic material

Given a material in domain Q. Suppose the material has stored energy function W (X, F).
Let P = %—‘}/ be the first Piola stress. The boundary-value problem for such simple elasticity
is to find solution x(X) which satisfies

—VxP(X,x(X)) = po(X)b(x(X)), X € Qy,
x(X) =x0(X), X €T, (14.19)
P(X,x(X))-N(X) = to(X,x(X)), X €Ty.

Here, N is the outer normal of I'y, dQ¢ = I'p UTy, Xq is a prescribed Dirichlet and t is a
prescribed traction.
Cf. Cialet pp. 295

Theorem 14.14. Consider the boundary value problem for a linear isotropic material with
W(e) = ATr(e)? +2ue:e. We assume

u>0, A>0. (14.20)

Then for the body force b € L%3(Qq) and traction t € L*/3(Ty), there exists a unique
solution u in
V={veH (Q)):v=00nTp}
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14.3 Hyperbolic System of Nonlinear Elasticity in Lagrangian
Coordinate

14.4 Steady State Solutions of Nonlinear Elasticity

14.4.1 Displacement-traction problems

Given a material in domain Q. Suppose the material has stored energy function W (X, F).
Let P = ‘3—‘}/ be the first Piola stress. The boundary-value problem for such simple elasticity
is to find solution x(X) which satisfies

VP(X,X(X)) = po(X)b(x(X)), X € Do,
x(X) =x0(X), X €T, (14.21)
P(va(X))'N(X):tO(X7X(X>>7 X eln.

Here, N is the outer normal of I'y, dQ¢ = I'p Uy, X is a prescribed Dirichlet and t is a
prescribed traction.

Variation formulation of the steady-state problem See Cialet, Chapter 5.

14.4.2 Nonuniqueness

Ref. Cialet, Chapter 5.8.
* F. John’s example [John 1964]:
e Noll [1978]

* Buckling of a rod

14.4.3 Polyconvexity and uniqueness of steady state problems

Definition 14.9. Let M, be the space of all n x n matrices. A function W : M,;, — R is
called polyconvex if W (F) can be expressed as a convex function of the determinants of the
submatrices of F.

Theorem 14.15 (Ball). If u"—u in W'P(Q), then M"—~M in LP/"™(Q), where M is the
determinant of any m x m submatrix of du/ox.

Theorem 14.16. If W (e) = %(Ae,e) is polyconvex, then W is strongly elliptic.
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In general, we have the following results: 7?77
polyconvexity = quasi-convexity = rank-1 convexity <???Strong ellipticity

quasi-convexity < lower semi-continuity of the energy functional.

14.5 Stability of steady-state solution

TOBE CONTINUED

14.6 Incompressible elasticity

Consider incompressible linear simple elasticity

. dp %uk
2 f— .. —
Podi '+ S = ik G T
VX -u=0.
We look for solution of the form u' = Ele?XM=41) 1, — gel(XN—41)  Plyg these into the

equations, we obtain

&E-n=0.
Given 1 € R, we look for solutions (£,7) € C* x Cand A € C.

{ A(N)E = poA?E —imn

* Transverse wave: Given 11 € R\ {0}, we look for & € R? and £ L 7 such that
A(1)& = ApS. There are two such solutions, the transverse wave (§ ,,4,),p = 1,2.
The corresponding 7 = 0.

* Longitudinal wave goes to infinity.

TOBE CONTINUED



Chapter 15

Membrane and Shell

15.1 Membrane

15.1.1 Surface geometry

We assume X = (X', X?) be two dimensional and x = (x!,x?,x?) be three dimensional. The
deformation gradient F = dx/dX is a 3 x 2 matrix. The metric (dx,dx) in R? induces a
metric

Cov — Jx Ox
*f — oxe oxP
on the manifold £, = {x(z,-)}. That is,
(dx,dx) = (FdX,FdX) = (FTFdX,dX) =Y CopdX“dXP.
jk

The matrix C := FTF is called the first fundamental form of the surface X,. It is also the
Cauchy-Green tensor of the deformation x(X). The area spanned by the vectors dx/dX*
and 9x/0XP is

\/(9x/9X . ax/9X) (9x/0XP,dx/IXB) — (Ix/IX %, dx/IXP)? = \/det(FTF).

Thus, we define J = \/det(FTF). Then dS; = JdSy.

15.1.2 Energy law of membranes

We want to define an elastic energy W (F) on the manifold X,.

1. Frame-indifference and isotropicity conditions
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* Frame indifference condition reads
W(OF)=W(F), forallOe€ O(3).
* Isotropic condition is
W(FO;)=W(F), forall Oy € O(2).

2. Taking singular value decomposition of F, i.e. F = OaAOL, where Oy € O(3),
On € O(2) and A is a 3 x 2 matrix

A0
A= 0 A |,
0O O

we then have
W(F) = W(0nAOK) = W(A).

That is, W only depends on the singular values of F.

3. The singular values of F are the square roots of the eigenvalues of C := F! F. Thus,
the energy potential W can be expressed in terms of (F7 F);»:

W(C):=W(F)=W(), C=FTF.

4. The energy W can be expressed in terms of principal invariants of F7 F: We define
W(l,L)=W(C)=W(F)

where

Examples

¢ Hookean law:

_ H H H
W(F)=W(,L) := h= Etr (FTF) = 2

2 3
Z ) 1yl
a=li=1
where H > 0 is a constant. The corresponding Piola stress is

aw

Fo = JF},

—HF,,0=1,2,i=1,2,3.
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¢ Minimal surface

W(F):=o0hL = oc+/det(C) = oy/det(FTF) = oJ.

Here, o is a constant, called the surface tension. The energy is

W(F)dX:/ oJdX = | odS;

Qo Qo Q

¢ Fabric:
W(F):=a(l; —2)*+b(vL—1)? =a(tr(FTF) —2)> + b(y/det(FTF) — 1)2.

Note that when F =1 (i.e. the membrane is at rest), we have ¢r(I) = 2 and det] = 1.
Another fabric model is to decompose C = FTF into a trace part and a trace-free
part. That is,

C= %ZI’(C)I-F (C - %tr(C)I)

The first part is related to the expansion or shrinking of the surface, while the second
is related to the distortion of the surface. We can design the energy to be

2

W(F) =a(tr(C) —2)>+b HC— %tr(C)I (15.1)

F

The norm here is the Frobenius norm. E]
Exercise Express (15.1)) in terms of /; and /.

Piolastress P, =2L ;=123 a=1,.2.

T OFL’

Cauchy stress The Piola stress is convenient in the Lagrange coordinate system. In
Eulerian coordinate system, the corresponding stress is the Cauchy stress o.

c=J'pP.FT,

Since P32 - (FT)5x3, we have G353 matrix.

I'For membrane model, a reference book is: Statistical Mechanics of Membranes and Surfaces, 2nd edi-
tion, edited by D. Nelson, T. Piran and S. Weinberg (2004).
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15.1.3 Equation of Motion
Lagrange formulation

The action is
S[X]—/T L) ()2 —w (22 axar
~Jo Jy, 2P0 ! X

The variation of the action with respective to the membrane motion x(¢,X) gives the mo-
mentum equation. One can see the previous Euler-Lagrange equation is still the same:

ox
X)X(t,X)=Vx-P| ==
Pox)x(.X) = ViP5 )
where P =W'. Let v(z,X) := x(¢,X). The equation of motion becomes

{m@W@m = 5 Ph(F)

.. al
Fy = Gxe

Euler formulation

Let ¥, be the membrane at time #. We assume that there is an 1-1 and onto mapping x(z,X)
between X and X,. The Jacobian J # 0. The Cauchy stress o is pullback of the Piola stress
P by

03x3=J"'Pia- (F )ax3.

The equation of motion is
bv _ Vs, -0
p Dl, - Zt °

Here, Vy, - is the surface divergence on the surface X;.

Remarks

¢ If N is the normal of the membrane, we claim that - N = 0.

15.2 Shells

In membrane or fabric, the internal energy is only a function of F, which involves only
the first fundament form of the membrane. The stress only gives force in the tangential
directions of the membrane, which is intrinsic.

However, for shells, there is a bending energy, which gives a normal force. This in-
volves how the shell embedded into R3. This is extrinsic, which involves the second fun-
damental form of the surface. The plate is treated as a special case of shell.
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To see how this second fundamental form comes out, let us consider a shell with thick-
ness €. We extend the material domain to

i() =2y X (—8,8)

and
% = ¢i(Zo),
where
(ﬁt(X] ,XQ,X3) = f((X] ,XQ,X3) = X(Xl ,Xz) +X3N(X1 ,Xz),
Ix o Ox
N(Xl,Xz) X BXQ
155 < g1

The extended deformation gradient is

P Jx Jx 8XN+X8NX8N0
X~ \9x, 90Xy’ 70X P oxy
JdN JdN
= (F,N)+ [ X352, X3=—,0
X, 70Xy’
The Cauchy-Green tensor is
N 0 JdN 0 JdN JN JdN JN
o (FTF>2><2 0 <%7?}2> <%7?)§2> 0 ) <§7%> <%7%> 0
0 0 0 0 0

The term FTF = C is the first fundamental form of the surface X, while the matrix

is the second fundamental form of the surface ¥,. The eigenvalues/eigenvector of II with
respect to the first fundamental form are the principal curvatures and principal directions.
It is the eigenvalues of the shape operator

S:=cCc .

Let us denote them by k;, v;. The mean curvature H := (k] + k»)/2. The Gaussian cur-
vature is defined by K := Kk k3. An important fact found by Gauss is that K depends only
on the first fundamental form C. It is called an intrinsic quantity, while H depends how the
surface ¥, is embedded in R3. Tt is called an extrinsic quantity.
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Energy of a thin shell The energy W is a function of the invariants of F7 F. Let us write
the invariants of FT F by I, k = 1,2,3. One can show that

I = [ (FTF) 4+ X31,(S).
The energy can be decoupled into
W(F) = Wu(L(F'F), b(F'F)) + Wy (L (S), 12(5))-

The first one involves the stretching of the surface. It is called the membrane energy. The
second involves how the surface is embedded in the space. It is called the bending energy.

Models involves the second fundamental form
* Bending energy:
W= %/x%xgds
It can also be written as
W=2 / H* — %de

The Willmore energy is a penalized energy which is defined as

W:%/(KI—K2)2:2/(H2—K)

Since [ K =2my(X), the Gauss-Bonnet theorem, we have the energy is essential a
function of the mean curvature H.

¢ Vesicle model (Canham-Helfrich)

K

W(F) =2

(H —Hp)* + kK.

where H is the mean curvature and K the Gaussian curvature. In this formulation,
W depends on the second fundamental form of the surface, which, by the intrincit
property of surfaces, involves the derivative of F.
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Chapter 16

Viscoelasticity
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16.1 Physical Phenomena of Viscoelastic media

Newtonian fluid model works remarkable well for fluids consisting of small molecules.
Such fluid flow does not change the microstructure of its constituents. However, fluids
with long flexible polymers behave very differently. The flow can alter microstructure of
the fluid’s constituents and the Newtonian fluid model is no longer valid. They can exhibit
both viscous and elastic phenomena. Below, we introduce typical phenomena and give a
definition of viscoelasticity. The main issue in this chapter is to characterize how materials
response to the flow motions.

16.1.1 Basic phenomena of viscoelastic flows: Creep and Relaxation

Creep phenomenon Consider a rod-shape specimen (a viscoelastic material) in rest state
(stress-free). Att > 0, we apply a tensile force to its two ends thus provide a stress oy
uniformly in time. We investigate the dynamics of its strain £(¢). (See Youtube.) If the
specimen is an elastic material, we will see that the strain €(¢) is a constant function &j in
time. However, for viscoelastic material, it is found that the strain () has an additional
strain €(¢) > & which is an increasing function of 7. Such a phenomenon (growing of the
additional strain under a load uniformly in time) is called creep. See Figure The
materials are classified as asymptotic solids (resp. liquids) according to &€(eo) = O (resp.
£(o0) # 0). They are also classified as instantaneous elasticity (resp. liquid) based on
€(0+) # 0 (resp. €(0+) = 0).

Relaxation phenomenon Consider another experiment, the rod-shape specimen is stretched
to & at t = 0 then stays as & for all later time. We then measure the corresponding stress
o(t). If it is a purely elastic material, then o () = oy for all later time. However, for an
inelastic material, o(¢) decreases monotonically and tends to 0. Such a phenomenon is
called relaxation.

Viscoelastic materials are materials that exhibits both creep and relaxation phenomena.
Or equivalently, they exhibit both elastic and viscous response to flow motions.

16.1.2 Isothermal/Non-isothermal Viscoelasticity

Viscoelastic materials generally involve dissipation of energy, which leads to entropy pro-
duction. Therefore, strictly speaking, viscoelastic behavior is not adiabatic. Thus, in the
study of viscoelasticity, we usually classify it into isothermal case and non-isothermal case.
In the stress response models discussed below are usually based on the isothermal assump-
tion.


https://www.youtube.com/watch?v=V0tYMa-JhsA
https://www.google.com/search?client=firefox-b-d&sca_esv=41a5493a62e2aafe&q=creeping,+viscoelasticity&tbm=vid&source=lnms&prmd=isvnbmtz&sa=X&ved=2ahUKEwiKjbCT6feFAxXlafUHHeEzCdUQ0pQJegQICBAB&biw=1531&bih=874&dpr=1#fpstate=ive&vld=cid:231e8ecb,vid:rz7qUVdVAWs,st:0
https://www.youtube.com/watch?v=bm-BBdN1U5I
https://en.wikipedia.org/wiki/Stress_relaxation
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0 Cambridge U sity Press. (2009).
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Fig. 1.1 Creep and recovery. Stress s and strain e vs. time t.
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Lakes, R. 5., Viscoelastic Materials,
Cambridge University Press, (2009).
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Figure 16.1: Creeping and Relaxation Phenomena. Copied from http://silver.
neep.wisc.edu/~lakes/VEnotes.html

16.2 Phenomenological Models

16.2.1 Spring-dashpot models

The spring-dashpot model is based on the isothermal assumption. The elastic feature of
rheology is modeled by spring, while its viscous feature is modeled by dashpot. The mate-
rial response to the fluid motion reads

* 0 = Ge for elastic effect (the spring part),

* 0="né

for viscous effect (the dashpot part).

Here, o is the stress, €, the strain, £ the strain rate, G the shear modulus, and 7 the viscosity.

Two possible ways to combine these two effects: in series, or in parallel. The formal
leads to the Maxwell model. The latter gives the Kelvin-Voigat model. Below, let the
subscript s and d stand for spring and dashpot, respectively.

Maxwell Model

E=E,+ €&y,

0 =0,=0y.

The Maxwell model is a series connection of spring and dashpot. Thus,


http://silver.neep.wisc.edu/~lakes/VEnotes.html
http://silver.neep.wisc.edu/~lakes/VEnotes.html
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o

_ o 0;
RY €

€ R n,
M )
FL o

a
Figure 16.2: Spring-Dashpot models. Left: Maxwell model (solid-like liquids), right:
Kelvin-Voigat model (fluid-like solids). Copied from

https://www.researchgate.net/figure/Simple-two—element-spring-and-dashp
figl_ 234027378

This gives
PRSI S
— €5 d — G n
Thus, we get
n. .
— 0+ 0 =T1E.
gore=n

For short time, the first term on the LHS is more important, the material behaves elastically.
For long time, the second term is more important, the material behaves like a viscous liquid.
So it is used to model solid-like liquids. The ratio A := 1 /G is the relaxation time from
solid to fluid.

Kelvin-Voigat model The Kelvin-Voigat model is a parallel connection of spring and
dashpot. Thus,
E=€E=¢€;, O=0,+0y.

This gives
o =Ge+né.

For short time, the second term on RHS is more important. Thus, the material behaves like
a viscous liquid. For long time, the first term on the RHS is more important. The material
behaves like a solid. This model is used to model fluid-like solids.

16.2.2 Integral Models
16.3 Dumbbell Model (A Microscopic Model)

This part of note is mainly from:


https://www.researchgate.net/figure/Simple-two-element-spring-and-dashpot-models-of-linear-viscoelastic-solids-including_fig1_234027378
https://www.researchgate.net/figure/Simple-two-element-spring-and-dashpot-models-of-linear-viscoelastic-solids-including_fig1_234027378
https://www.youtube.com/watch?v=FrLh1GILomc
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Maxwell Kelvin

Straine
Strain €

Time Time

Figure 16.3: Spring-Dashpot models. Copied from https://polymerdatabase.
com/polymer$20physics/Maxwell-Kelvin.html

* Yn-Hwang Lin with some corrections, Polymer Viscoelasticity, 2nd ed. (2011).

Chapter 6.

* Doi and Edwards, The Theory of Polymer Dynamics (1988).

16.3.1 Model set up

1.

The fluids are composed of solvent and polymers. For melt polymer, it only consists
of polymers. Below, we shall discuss the latter case. But the theory can be extended
to fluids with polymer and solvent.

We assume the system is isothermal.

The microscopic analysis is a probability distribution analysis for polymer chains
inside a small box x+ dx. Inside the box, a polymer chain is modeled by a dumbbell,
which consists of two beads connected by a spring. The beads have mass m and
positions r; and rp. Here, r;, i = 1,2 represent relative position vectors inside the
box x + dx with respective to x. We call the configuration space of r at x a Fibre
space .Zy. In the present case, %y = R3.

We assume the microscopic fluid inside the box follows the macroscopic fluid. Thus,
the fluid velocity at r in .Zy is

v(t,x)+ Vv(t,x)r =v+Lr.

. The interaction between the two beads is governed by a spring potential ®(ry,r3),

which is assumed to be a central potential (i.e. ®(|r; —ry|)). For example, the
Hookean potential is


https://polymerdatabase.com/polymer%20physics/Maxwell-Kelvin.html
https://polymerdatabase.com/polymer%20physics/Maxwell-Kelvin.html
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where R? denotes the mean-square distance between the two beads. The forces on
bead 1 and bead 2 respectively are

oD oD

o " Tan

F.

. In addition, the beads are exerted by random forces from surroundings. Thus, r| and

rp are random variables. It is assumed that these two random forces are independent.

. Let E(¢,x,r],17) be the probability density function (pdf) of the dumbbells. Let r. :=

(ri+ry)/2 and r = (r, —ry)/2. Then the random variables r, and r are independent.
This implies that the probability density function X is separable, namely,

E(t,X,r1,1)drdry = ¢(1,x,1r.) f(1,X,1)2%dr. dr.

Here, ¢(z,x,r.) is the pdf of the centers of dumbbells, and f(z,x,r) is the pdf of
random variable r.

16.3.2 Micro Dynamics — the Smoluchowski Equation

1. Dynamics of the dumbbell. From the above two forces, the beads satisfy the

Langevin equation:

d

. . dB
o (m(Ei = Vi) + G —vi) =~V @+«

i
—, =12 16.1
7R (16.1)
Here, v; = v(t,x) + Lr; are the background flow velocity of the beads. B;(t) are two
independent Brownian motions. Assuming small inertia, we thus neglect the inertia

term and get the equation, called the damped Langevin equation

dB,;

C(l",'—V,') = —VriqD—f—OC dr s

i=1,2. (16.2)

Here, { is the damping coefficient, B; are two independent Brownian motions. By the
fluctuation-dissipation theory, the random force and the friction are balanced. This
gives

o =2CkgT,
where kp is the Boltzmann constant and 7 is the temperature. Note that in this

damped dynamics of the dumbbell, it only involves damping, a central forcing and a
random forcing.


https://en.wikipedia.org/wiki/Langevin_equation
https://en.wikipedia.org/wiki/Brownian_motion
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2. Relative vector and center of mass Let r := (r, —r;)/2 and r. := (r; +12)/2.
Assuming f and @ are functions of r = |r|, we then get that the above equation

(16.2)) for the two beads is equivalent to

P=Lr+§+,/ %7,

fe=v+Lr+ /2 e

(16.3)

where B and B, are two independent Brownian motions.

We shall assume the force is a central force, meaning ®(|r, —r|). The force
F(r) := V,®(|r|).

Note that the center of mass follows the fluid flow without the internal forcing be-
cause the central forces are cancelled at the center of mass.

3. Flux velocities With the diffusion term in (16.3)), the polymer particles will diffuse
from higher concentration region to lower concentration region. According to Fick’s

law, the diffusion velocity is
kgT V f

L

Thus, the flux velocities of r. and r are

(16.4)

{ fer:=v+Lr.— %ngj
T

iy:=Lr— v ®— &l

4. The pdf is separable From the conservation of polymer particles, the equation for
the pdf Z is governed by:

E+ 0 - (F1,2) 4 0, - (i2,,8) = 0.
By changing variables from (r,r;) to (rc,r), we get
E=—0 (F1 (&) — 0, (F2,/E)
= — 0, - (Fe,fE) — O - (7).
Recall E is separable: & = @(,x,r.) f(¢,X,r). We obtain

(9(re)f(r)) = =0k, - (b s @ (re) f(r)) — k- (Er (re) f(r))

IThe diffusion coefficient D = kT /{ can also be obtained from equilibrium state where the drift and
diffusion are balanced and the distribution f obey the Gibbs distribution.
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= Qf+0f =0k (tcsd)f — - (Erf)9.
= (¢4, (kc9)) f+ (+0c- (£1f)) 9 =0.

By separating the variables r. and r, we get

¢+ O, - (bc.r9) =0,
{ fA0-(tpf) =0. (16.5)

5. The governing equation for the pdf of center of mass ¢(7,x,r.) To derive the
equation for ¢, we plug (16.4) into the conservation laws (16.5) to get

(a5
ksT _,

=(Vx-v)o - Tarﬂ)-
Thus, from (16.5), the equation for ¢ is
(0 +v-Vx)o + (Vx-V) —%ar{_q) =0. (16.6)

This is the Smoluchowski equation for r.. Note that the time derivative “dot” is the
material derivative d; + v - Vy. Let us integrate this equation in r. over the whole F,
call [¢(z,x,r.)dr. by n(t,x), which is the number of polymer particles in x + dx.
Then the equation for n(t,x) is

on+v-Vyn+ (Vx-v)n=0.
This is the continuity equation for the polymer density p := mn(t,x).

6. The governing equation for the pdf of relative vector f(7,x,r) To derive an equa-

tion for f(¢,x,r), using (16.4), we get

F_ k
ar'(fj'f) =0 (er+ Zf_ ?Tarf) :

Plug it into (16.5), we arrive at

_F
4

Of+v-oxf+0-(Lrf) =0 ( f+l£arf> . (16.7)

9

This is called the Smoluchowski equation for r.

’If we define r = r, — ry, then we should get

8tf+V'axf+ar'(er) =0~ (_2;]6“"227‘%]() .
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16.3.3 Constitutive relation — Kramer’s formula

Constitutive Equation We shall derive a stress formula for the dumbbell model.

,,,,,,,,,,,,,,,,,,,,,,,,

Figure 16.4: Copied from the book by Yn-Hwang Lin, Polymer Viscoelasticity.

1. Let x € Q. We consider a small plane dA C € through x with normal v (n is Figure
[16.4) pointing from — side to + side. The polymer stress G, contains two parts:

* 0, V: the tensile force from spring-connector;

o Gg - v: bead momentum across the surface.

2. Stress from spring-connector: We consider a box x + dx which has n polymer
particles. Assuming they are uniformly distributed in the box. E| Then, the side
length of the cube is n~'/3 and the cross-section dA = n~2/3. The probability that
the dumbbell with direction r will cross the plane dA is

Projection of ralong v |v 1|
side length o3

If the distribution of configuration r is f(z,x,r), then the above probability should be

v-r|

mf(t, X, r)dr.

Now, suppose bead 2 is on (+) side. That is, r is on the same side of v. In this case,
|v-r| = v-r. The force on bead 2 is —F. The force exerted on the (+) side by the
spring is +F. Next, suppose bead 1 is on (4) side. That is, r is on the opposite side
of v. In this case, |v-r| = —v-r. The force on bead 1 is F. Thus, the force exerted

3This argument may not need. We can still use the pdf ¢ for the center-of-mass to argue the whole thing.
The pdf ¢ is a Gaussian distribution.
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on the (+) side from the spring is —F. In both cases, the force exerted on the (+)
side from dumbbell connectors is

n1/3/v -TFf(t,r)dr.
Dividing this by the area dA = n=23, we get the tensile force per unit area is
nv - /rFf(t,r) dr = n(rF).

Thus,

o), =n(rF).

. Stress from momenta of dumbbell beads: The number of bead 1 passing through

a surface dA with normal v per unit time and per unit area is
n(i‘ 1— Vl) %
The momenta that bead 1 carries is
n[(kt; —vy) - vim(k —vp).
The probability distribution of ¥; — vy is a Gaussian

exp (—m|¢, [ /24T)

=60 = Faxp(Cmlg,Pyakry =1 =07
because
. 2T dB,

where B is the Brownian motion. The expectation of momentum flux is

nm/[(l"l — V) (1= V1) - VIE() difr.

For the stress from momentum flux of bead 2, we can get similar formula. Thus, the
material responses to the momentum change is

o = —2n / m((£1 —v1)(F1 —v1)] (1) dE) = —2nkTT.

Kramer’s formula for polymeric stress: Combining the formulae of ¢}, and GZ,
we get

G, = —2nkT1+ n(rF). (16.8)

This is called the Kramer’s formula for the stress.
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5. Remark. In the next section, we shall derive the Kramer’s formula from micro dy-
namics. There, the Kramer’s formula reads 6, = —nkT I+ n(rF). The discrepancy is
due to the following reason. Here, Gg counts the randomness contribution from both
bead 1 and bead 2, equivalently, randomness of r and r,. In the next section, we treat
r as a random variable in an abstract configuration space .%x, and thus neglect the
contribution of randomness of the centra r.. In fact, we should put in the contribution
of momentum change from the center-of-mass, or treat such kinds of contribution in
abstract way.

The second moment or the conformation tensor For the Hookean potential, the force

1s
3kT

F:Fr,

the Kramer’s formula (16.8)) involves to compute (rr). This quantity is called the confor-
mation tensor. We shall use the Smoluchowski equation to derive an evolution equation for
the conformation tensor.

1. Define the conformation tensor ¢ to be the second moment (rr)
c(t,x) := (rr)(¢,x) := /rrf(t,x,r) dr.
2. Derive an evolution equation for the conformation tensor ¢. We multiply by

M := rr, then integrate it in r:

F kT

/rr[&tf+v-8xf+8r-(er)] dr:/rr {&- (—zf-i— C&J)} dr  (16.9)

We use the following calculations:

/rr&tfdr = g, (rr)
/I‘I’(V-fo)dl':V-Vx<l'l'>

/rrVr(er) dr = —L(rr) — (rr)L”

/ v, (%vrcp f) dr = —%«vrcp)m

/rrVr~ (kBTTVrf) dr = ZkgTI,
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where the third equation in component form is

/”irjark(Lfrlf) dr= —/ <5iker5<rlf‘|‘ 5k]”iL;<”lf> dr

= —/ (Lﬁrlrjf+L{rir1f> dr
Finally, equation (16.9) reads
3 (rr) +v- o (rr) — (Vv) - (rr) — (rr) - (Vv)T = %TT (I— %(rr)) .
In terms of the conformation tensor, it is
(1) =0dc+v-dke—(Vv)-e—c- (vl = %TT (I— %c) : (16.10)

Here, we abbreviate the left-hand side of by ¢(y), called the upper convected
derivative of the tensor ¢. Mathematically, it is the Lie derivative of the tensor ¢ which
has type (2,0) (i.e. vector tensor product vector). It is nothing but the time-derivative
of the tensor ¢ with fixed Lagrangian coordinate X. Thus, this evolution equation is
a relaxation equation for ¢. It will relax to %21 as t — oo, due to the damping, spring
forcing and random forcing.

. Kramer’s formula in terms of ¢. From (16.8), we can express 0, in terms of ¢:

3nkT
R2

0y = —2nkTI+ c. (16.11)

The first term is from the random forcing to the two beads. The second is from the
connecting force between the two beads, which is deterministic. We can also express

it as
3nkT
R2

op,=-—nklTl+71,, 7T,=-nkTI+ c.

The first term is from the random forcing to the center-of-mass of the dumbbell,
whereas the second term is from the spring, which is also random.

Pressure and extra stress Sometimes, we separate pressure from the total stress. The
pressure is the stress at equilibrium. The rest is called an extra stress. ﬁ

“It is not necessary to separate pressure from the stress. In fluids, the extra stress is only a function of
deviatoric strain. In that case, such decomposition is necessary. Such extra stress is also called the deviatoric
stress. In fluids, the trace of the deviatoric stress is zero.
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1. The polymer stress 6, can be decomposed into
Op=—ppl+71,,
where —p,[ is the stress at equilibrium, and 7, is the extra stress.

2. The equilibrium is the state where Vv = 0. At equilibrium, ¢(;) = 0, we obtain

R2
Coqg = —1. (16.12)
3
Thus,
3nkT
Opeqi= —Ppl = —20KTI+ =—cog = —nKT.
Hence,
pp = nkT.
And the polymeric extra stress is
3nkT
Ty =0+ ppl = —nkTI+ ’;2 c. (16.13)

This is the Kramer’s formula for the extra stress.

Evolution equation for the extra stress Let us take the upper convected derivative on

to get
B 3nkT

TP(]) R2 C(l)—l’lkTI(l) (16.14)

Note that

~Iy = (0 +v-V)(=D) + (VI +I(VV)" = Vv+ (Vy)" :=¢.

By eliminating ¢y from and using (16.10) (16.13), we get

S’Cp(l)—l—fp:npé, (1615)
where X
_ GR _
s = KT Np = nkT's. (16.16)

It means that the extra stress will relax to the strain rate £ with relaxation time s. Here, 1,
is the polymer viscosity. This is exactly the Maxwell model.
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16.4 Micro-Macro Model

16.4.1 Fibre bundle model for rheology

Fibre space We introduce a fibre space .7y which describes all possible micro configu-
rations at a position x. The element in the fiber space is denoted by r. It represents a micro
structure at x. For instance, it is the generalized coordinate of a polymer. In the dumbbell
model, the polymer is modeled by a dumbbell with two beads connected by a spring. And
r represents the end-to-end vector of the dumbbell. The fibre bundle Uy . #x forms the
configuration space.

Configuration Space and Fibre bundle Consider a region Q in R and a fiber bundle
with base space . The fiber represents some micro configuration. The micro variable is
denoted by r at time ¢ (Eulerian coordinate) and by R at time 0 (Lagrangian coordinate).

16.4.2 Homogeneous micro model

Ref. Doi and Edwards, Chapter 2, Brownian Motion.

Fibre Dynamics We associate r a potential function ®(r), representing interaction po-
tential of polymers. For instance,

3ksT
*r) = p

r|?

is the Hookean model, where R? is the mean square distance of the dumbbell. In this micro
configuration space, r satisfies the Langevin equation:

dB
mi+(r+ Vi ®=a—.
dt
Here, m is the mass, { is the damping coefficient, B is the Brownian motion, and « is the
strength of the random force. Assuming small inertia, we neglect the inertia term and get
the damped Langevin equation

dB
r+V,d=a—.
{i+Vr -
According to the fluctuation-dissipation theorem, the strength of the random force and the
friction are balanced. This gives

o® =20kgT, (16.17)
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where kp is the Boltzmann constant and 7 is the temperature. Thus, the damped Langevin
equation models the fiber dynamics. It is a stochastic differential equation is usually ex-

pressed as
1 |2ksT
dr = —EVrCI)(r)dt + g dB. (16.18)

Microscopic pdf and its dynamics The microscopic state is described by a probability

density function (pdf) f(z,r) of the random variable r(r) of (16.18). E| By applying Ito’s
formula to (16.18), the pdf f satisfies the Fokker-Planck equation:

F Ve [ (Ve0) ] = B . (16.19)

This is also known as the Kolmogorov forward equation. Its derivation is shown in the
Appendix of this Chapter. Note that | fdr = const. We also note that this equation can be
written as the following conservative transport equation

f+vr. (fo) =0, (16.20)
where
Vii= —% (VrCI)—HcBT%) = —%Vr (®+kpTInf). (16.21)

The terms on the right-hand side have the following interpretation:

* The first term —V® is called the drift velocity. It drive the fibers from high potential
to low potential.

e The second term —kgT =L is called the diffusion velocity. It moves the fibers from
high density area to low density area.

The dynamics of the particle is a competition between the drift and the diffusion.

Free energy Let us define the Helmholtz free energy density
A(f) = (I)f+kBTf1nf7
and the specific Helmholtz energy (per unit mass)
1f)= [A(f)ar.

3f(t,r)dr is the probability that r(¢) of (16.18)) lies in rdr.
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Here, U = ®f is the internal energy density. The term —kp fIn f is the entropy of the fiber.
the Helmholtz free energy density in the fiberis A = =TS+ U . The free energy of the fiber

is the integral of A(f).
From .27 [f], we define the chemical potential
0o
U= =Ar=kgT (Inf+1)+®.
of
Then the flux velocity v is
1 1
vyi= _Evr“ - —ZVrAf. (16.22)

Thus, v is small when the damping (friction) coefficient { is large.

Dissipation of free energy Multiplying the Fokker-Planck equation (16.20) by A

o (15 o)

integrating it in r over the whole fibre space, we get

.1
/Aff— ZAer- (fVeAf) dr =0.

Using integration-by-part, one can show that the dynamics (16.19) is a dissipation process:

d 1 2,1 2
E/A(f)dr_ C/f!VrAf! dr = C/f\u\ dr <0,

which means that the free energy decreases in time, and dissipates to 0 as t — oo,

Equilibrium distribution Ast — oo, o/[f(t)] — miny.2/[f]. Note that 7|f] is strictly
convex in f. The minimum of .<7[f] is unique. It is an equilibrium state. Let us denote it
by feq.- The dynamics of the Fokker-Planck equation f(¢) — foq ast — oo.

At equilibrium,

o0/
5_f [feq] =0.

That is
kgT feqIn foq +Pfey = 0.

Solving this equation, we get an explicit form of f,:

__exp(=P(r)/ksT)
Jea®) = o (= (r) /K T) dr

More precisely, we have the following theorem.

(16.23)
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Theorem 16.17. When @ is strictly convex and ®(r) — oo as ¥ — oo, then f(t) — foq as
t — oo exponentially fast.

At equilibrium, it is a state that the diffusion of r is balanced with the drift term V®.
The pdf f,, is called the Gibbs distribution.

Fluctuation-dissipation relation Recall that in (16.17), we make an assumption that ¢,
¢ and the fluctuation kgT are related by . In the derivation of dissipation limit,
we use the parameters § and kgT. The resulting equilibrium f,, is given by the Gibbs
distribution (16.23)). We can repeat the same procedure using the parameter § and o. The
resulting feq with kpT replaced by o?/(2¢). Thus, at equilibrium, the balance
between random force oidB and the friction V@ /{ gives the equilibrium state (fluctuation
is characterized in terms of kgT).

16.4.3 Microscopic Model — the Smoluchowski Equation

Deformation of micro configuration As the micro dynamics is embedded in a macro
flow, it is assumed that the dynamics of the micro configuration follows the macroscopic
deformation. That is,

r:FRzﬁ(t X)R*. (16.24)
7). G '
Here, R is the Lagrangian coordinate of the micro state variable. The volume form of the
microscopic space satisfies

dr = JdR.

Probability density function The dynamics of the micro structure is described by (16.18)).

2ksT dB
 dt

1
r=Lr— EVrCD(r) +

We assume that the microscopic random variable r is independent of the macroscopic vari-
able x. This implies that the probability distribution function (pdf) of the polymer at x4 dx
is

(16.25)

ny(t,x)dxf(t,x,r)dr,

where 7, is the number of polymers in X +dx and f(¢,X,r) is the microscopic probability
density function for r with | fdr = 1. The polymer density is

pp(t,X) =mny(t,x), mis the polymer mass.
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Smoluchowski equation The Fokker-Planck equation (or the Kolmogorov forward equa-
tion) for the p.d.f. f(z,x,r) corresponding to the dynamics (16.25) in the background flow
v(¢,x) is modified from (16.19) by replacing f by the material time-derivative 9, f +v- Vxf.
Itis

1

-E[(Vré)f—i-kBTVrf]. (16.26)
This equation is also called the Smoluchowski equation. This equation describes the dy-
namics of spatial dependent micro configuration. This micro dynamics depends on the
macro fluid dynamics, which will be derived by the variational approach below.

atf+V'fo+Vr'(er) =Vr

16.4.4 Stress formula — Lagrangian approach

The trajectory of a parcel of polymer with initial position (X,R) is (x(z,X),r(¢,X,R)),
where r(¢,X,R) = F(¢t,X)R. The equation of motion of polymers will be derived by taking
variation of action with respect to the path x. The action is defined to be

S[x] = —%[x,

//ptx )= |v(t,x)[*dxdt

x| = // p(t,x)A(f(t,x,r))drdxdt,
U x| :=TS[x|+ o [x ]

* We consider the isothermal case. In this case, we use Helmholtz free energy. The
temperature of fluid parcel remains constant during fluid motion.

¢ Note that
A =-TS+Y

From the Maxwell relation, the stress

p_ o\ (0%
“\6F ); \6F)
We take variation of § with respect to flow path x(-). We claim that the corresponding

Euler-Lagrange equation (i.e. 68[x] = 0) has the form
p(Av+V-VV) =Vy-o, (16.27)

where o is given by

ol =p / v/ (9Ay) fdr (16.28)

We show this result in the following calculations.
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1. We denote the variation of the flow map x by X. E] Since the fiber follows the macro
flow. We thus have
) o aX(x .

r=Fr

The variation of kinetic energy with respect to the flow path x is

0X x| = —/()T/po(X)i(X,t) -xdX dt.

Here, we have taken integration by part for the -integration and used X(0) = x(7') =

0.
2. Next, we compute f . Note that the variation of F is F , which is g—; From r = FR,
we get the variation of dynamic variable r(r) satisfying
t=FR=FF'r.
Conservation of micro particles reads
f+Ve-(Rf)=0. (16.29)

Combining these two formulae, the variation of f satisfies

f==Ve (FF'rf).
3. Let us compute the variation of the Helmholtz energy

x| = /OT/Q/RSp(t,x)A(f(t,X,r))drdxdt

T
:/ pO(X)/ A(f(t,x(t,X),r))drdX dr.
0 JQ R3

Here, we have used dx = JdX and pJ = py. We take variation of .o with respect to

Suppose x(-) is perturbed by a one-parameter family of path x¢(¢). Then X denotes the time derivative,
while x denotes the derivative with respective to €. In our earlier notation, X(¢) = 6x(¢).
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the flow map x(-):

§./[x] ://pO(X)a/A(f)drdXdz
://pO(X) (/Affdr) dx di
_ _/ po(X) (/Aer-(ﬁ‘Flrf)dr) dX dr
://pO(X) (/ (VrAf)-(ﬁFlrf)dr) dx di
= /[ potx) (/ (VrAf)-(g—;o;Flrf)dr) dX dt

:_// [VX- (po(x)/(VrAf)(Flrf)dr)] XdX dt

o
- =_Vy-
5X X P>

Thus,

where

P(t.X) 1= polX) [ (VeA )P~ xfdr = po(X) [ (VoA R JAR,

PP — py / dARP fIdR,

and f is evaluated at (¢,x(¢,X),F(¢,X)R). This is the Kramers formula for the Piola
stress.

4. The Euler-Lagrange equation is
po(X)X—Vx-P=0 (in Lagrangian coordinate)
pv—Vx-0 =0 (in Eulerian coordinate)
where

o :=J"'PFT = 'PPF]

=J'py / (A f)RP deRFg
=p / (9A f)Fl{Rﬁ fJdR

=p /(ariAf)rjfdr.
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ol=p / v (Buy) f dr (16.30)

This formula is called the Irving-Kirkwood formula or the Kramers formula for the
Cauchy stress.

Remarks
* WhenA(f) =®(r)f+kgT fInf,

Af = <I>+kBT(lnf—|— 1),

and
ol =p /rj8r,- [@(r) + Tkg(In f +1)] fdr

—p / (X f+ Thgr! £) dr

—p / (X, f — Thydiif) dr

= p((&ri<l>)rj> —kaB5ij
Thus,

o =p((V:®)®r) — pkpTl, (16.31)

where

(Vi®@r) = / (r/9.®(r)) £ (1) dr.

* The term —pkpTI is due to the term kgT f In f in the free energy A(f). It is the
energy from random motion of r(r). It creates this isotropic stress, which we may
classify it as a pressure.

* At equilibrium, that is, the right-hand side of is zero. In this case, we may
show that the resulting stress is isotropic. This is the static pressure term. However,
it is not necessary to decompose the polymeric stress into isotropic part and extra
stress, unless the latter depends only on the deviatoric strain.

e When ®(r) is a central-force potential, that is, ®(r) = ®(|r|), then o is symmetric.
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16.4.5 Stress formula — Eulerian approach

This variational approach is taken in the Eulerian frame of reference. The variations of
paths cause constraints on the density and the pdf f. Such constrained variation is called
dynamically accessible variation.

1. Let f(¢,x,r) be the p.d.f. of polymer particles per unit mass. p(¢,x)f(z,x,r) be the
p.d.f. of polymer particles per unit volume. Define the specific Helmholtz energy to
be

Alf)(e.x) = [A(f)dr. AF) = @(E)f (. x1) +kaTf n .

The term ®(r) f(¢,x,r) represents the internal energy. The term —kpT f Inf is the
energy due to the randomness of the polymer particles at temperature 7. The internal
energy is

U=A+TS[x].

2. Define the action

sip.svl= [ (ép\vrz—pﬁm) dxdr

77?7 Note that the variation of the term 7'S is zero under the adiabatic assumption
or isothermal assumption. Thus, we shall only consider the variation of the kinetic
energy and the Helmholtz energy.

3. Given a flow map x(¢,X), we consider a family of flow maps x*(¢,X) with x°(z,X) =
x(t,X). The two parameters (s,7) are independent. We have defined the velocity field
v as
v(t,x°(1,X)) = (0;)y X* (2, X).

Now, in the s-direction, we define
w(t,x(1,X)) = (8S|s:0)Xxs(t,X).

We call w a pseudo-velocity. It is a direction of perturbation of the flow map x(z,X).
Indeed, from (@.1)),

w(r,x) = 8x(1, ¢, (x)),
where @;(X) = x(t,X). The vector field w is not arbitrary. It comes from a family of
flow maps x°(t,X).

4. Let f%(¢,x,r) be defined such that its pullback by the flow x°(¢,-) is fo(X,R), where

x=x(1,X), %RI‘”



16.4. MICRO-MACRO MODEL 303

From conservations of polymer particles in macro and micro scales, p* and f* satisfy
osp° + Vx - (wp®) =0, (16.32)
Osf  +w-Viff + Vi ((Vxw)rf*) =0. (16.33)

The second equation is from
]3 + V- (Bf) =

andr = FR,
£ =FF 'r = Vywr.

The term J;|s—0p* and Jd;|s—of* are the dynamically accessible variations p and J f.

5. Now we take variation of .7 with respect to v in direction w with p and f satisfying

the constraints (16.32),(16.33).
5/p(t,x) (/A(f(t,x,r))dr) dx:/(5p)Adx+/p(5A)dx:1+n.

I:/ﬁpAdx: —/(VX-(pw))Adx:/pVXA-wdx.
zzz/p(aA)dx:/pg—?afdx
= [ [ Arl=w-Vuf = Ve (Vawrs) drdx

—/p{ /AfVder W—I-/ ViAyr) - (Vxw rfdr} dx

/pV </Adr) Wdx — /V { /VAf rfdr} - wdx
/ dxp / dr (—A 0 (Ow'r’)) / dxdy (p / dr(ar,-Af)rf'wi),

and the term

Here,

VA = VX/A(r,f(t,x,r))dr: /AfVder.

‘We obtain

S/IZI/pA[f]dxdt: —/t”/vx- {p/(VrAf)rfdr] -wdxd
—[tl/VX-G-wdxdt
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where
c=p /(VrAf)rfdr. (16.34)

6. Thus, the Euler-Lagrange equation is
p(d+v-Vv)=V.o
Formula (16.34) is called the Kramers formula, or the Irving-Kirkwood formula, or

the virial stress.

16.4.6 The full set of micro-macro equations

Compressible Viscoelastic flow The full set of micro-macro model for polymeric fluid
flow is a differential-integral equation. They include the macroscopic equations

a;p+Vx-(pv)=0. (16.35)
p (i v+vVyv) =Vy- 0, (16.36)
the microscopic equation
1
Of+v-Vyf+Vy-(Vvrf)=V,- E[(VrCD)f—l—kBTVrf]. (16.37)

and the coupling between micro and macro dynamics is through

G = —pkgTI+p(rVe®), where (1)) := /(-)fdr. (16.38)

Incompressible viscoelastic flow E]In this model, we assume the polymer is in a sol-
vent which is a Newtonian flow with viscosity 1. The incompressibility introduces the
Lagrangian multiplier p. The model reads

p(Av+v-Vv)+Vp=nAv+V.1

V.v=0
T =n,(—kTI+E[r; 2F(r;)]) (16.39)
dr,+v-Vyrdt = ((va)r, - %F(l’t)> dt+ M(TTth

Here n,, is the polymer concentration, which is constant in this model. The density is
assumed to be a constant. Otherwise, we should add the continuity and treat p as an
unknown.

"Ref. C. Le Bris, T. Leligvre, Micro-macro models for viscoelastic fluids: modelling, mathematics and
numerics.
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The non-dimensional model is

Re(dv+v-Vv)+Vp=(1—€)Av+V-71
V.v=0

T= i (—kTI+E[r;  F(r,)])

dr,+v-Vyrydt = ((Viv)r, — ﬁF(r,))dt—k\/LerdW,

(16.40)

The parameters are

PUL 2V,
L n

where Re is the Renolds number and We is the Weisenberg number,

Re =

e L= %T the characteristic length scale

A= % the relaxation time for polymer chain,

Np = npkT A the polymer viscosity

H the Hookean parameter with V = JH|r|?
* F(r) = r in non-dimensional Hookean model.

The stochastic equation is equivalent to the Fokker-Planck equation. Thus, alternative equa-
tions are

Re(v+Vv-Vv)+Vp=(1—€)Av+V.1

V.v=0

T =5 (=1 + [(r; ®F(r;)) fdr)
hf+v-Vyf+Vy-((VxV)rf) = Vy- <2W6F( )f)"‘zweA e

(16.41)

Energy dissipation The dissipation of energy is

jt/ { pv +(/ 7f1nf+d>fdr)]

—//3f|Vru|2drdx§0.
QJR

16.5 Macro Model - Moment Expansion

The above micro-macro model is still difficult to solve because f(z,x,r) involves 7 vari-
ables. Instead, a macroscopic average over the microscopic equation is introduced. To
compute the stress, we need to find (rV,®(r)). The simplest case is ® is quadratic. This
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leads to compute (rr), the second moment of the pdf f(z,x,r), called the conformation
tensor. We will discuss below. In general, we will have moment expansion for ® and result
in moment equations from the Smoluchowski equations. A closure problem is encountered
in general. We will leave such theory in the theory of liquid crystals in later chapter. ﬁ

Conformation tensor Let us define the conformation tensor as
c:= /rrf(t,x,r)dr = (rr).

It represents the second moment of the micro configuration of the polymeric structure. By

Taking [ rr(16.26) dr, we obtain

¢ +v-Vie—(Vv)-c—c- (Vv) = é [2kpTI —2((V ®)r)]. (16.42)

In the above formula, we have used the following calculations:
/rra,fdr = 0, (rr)
/rr(v -Vxf)dr =v-Vi(rr)

/rrV,r (Vyvrf)dr = —Vyev- (rr) — (rr) - (Vyv)?

[rve <%vrq> f) dr = —%<(vrq>)r>

/rrVr- (%Vﬁ‘) dr = ZkgTI.

In component form, the third equation is

/”irjark(Lfrlf) dr = —/ <5iker5<rlf‘|‘ 5k]”iL;<rlf) dr

= —/ <Lfrlrjf+L{rirlf) dr
=—Le—clL!.

8Wiki, Sir Sam Edwards, “Edwards worked in the theoretical study of complex materials, such as poly-
mers, gels, colloids and similar systems. His seminal paper[2] came in 1965 which ”in one stroke founded
the modern quantitative understanding of polymer matter.”[1] Pierre-Gilles de Gennes notably extended Ed-
wards’s 1965 seminal work, ultimately leading to de Gennes’s 1991 Nobel Prize in Physics. The Doi-Edwards
theory of polymer melt viscoelasticity originated from an initial publication of Edwards in 1967,[3] was ex-
panded upon by de Gennes in 1971, and was subsequently formalized through a series of publications between
Edwards and Masao Doi in the late 1970s”
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We abbreviate (16.42)) by

2T = 2
¢y = gl—z<(Vr<I>)r>. (16.43)

where the notation
cy:=¢+v-Vxe—(Vv)-c—ec- (vv)T,

is called the upper-convected derivative of the tensor c¢. It is indeed the Lie derivative of the
tensor c.

Hookean potential From ®(r) = 3kzT |r|?>/2R?, we obtain

(VeD)r) = 3%%

Plug this into (16.43) and (16.38]), we obtain the evolution equation of the conformation

tensor C:
2kgT 3
C(1) = N (1— ﬁ6> . (16.44)

The Kramer’s formula for the Hookean potential is

3kpT
Pe. (16.45)

0 = —pksTI+p=

We can eliminate ¢ to get an evolution equation for o

3kgT
(1) = —PksTl1) +p—p7—cq)
3kpT 2kgT 3
T B B
:pkBT(VV+(VV) )—I—p R2 T(I_ﬁc)
6kgT
T B

This is the evolution equation for o. It is precisely the Maxwell model.

16.6 Non-isothermal Viscoelasticity
The internal energy consists of heat and work:

dU = dQ+dW = @dS + dW,
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where O is the temperature and S the entropy. We assume the energy input from external

world is
dQ=cd®

Here, c is heat capacity. Then we have

OdS =cd®

S-S
@zexp( - 0).

Appendix: Kolmogorov forward equation

This leads to

Suppose X; is a time-dependent random variable satisfying
dXt = a(t,Xt)dt +b(t,Xt)dB

Here, B is a Brownian motion.



Chapter 17

Two-Phase Flows

17.1 Two-fluid model

17.1.1 Inviscid flows

1. Governing in the interiors Consider two simple incompressible fluids occupied re-
gion Q;, i = 1,2 connected by a dynamically moving interface I';. In Q;, the fluid is

governed by
Vvi=0 in Q;
p,(&,vi +v;- VV,') +Vpi=0 l.

Here, we assume that the density p; are constants.

2. Interface condition There are two conditions on the interface I';, corresponding the
divergence-free equation and the momentum equation.

* The divergence-free condition (V - v; = 0) leads to
[v]-v=0 onIy,

where [v] := v, —vj and v is the normal of I'; pointing from Q; to Q,. This im-
plies that the motion of the interface, which can be characterized by its normal
velocity v, = v, v, satifies

Vy =V -V=Vy-V.
* For force balancing on the interface, we have
[plv=0c-Vv

where o is the stress tensor of the interface. It is modeled as ¢ = cHV ® v.
Here, H is the mean curvature of the surface.
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3. Iterative solver
* Interior solver: Given v,, we can solve (v;, p;) in each domains Q; with bound-
ary conditions: v; - v = v, on the boundary 9d€;.

* Interface solver: On the interface I7, its normal velocity v, is determined by
the other interface condition: [p] = cH.

17.1.2 Viscous flows

1. Interior Equations We consider two incompressible viscous fluids occupying two
domains €;, connected by a dynamically moving interface I';. The governing equa-
tions in each region Q; are the Navier-Stokes equations

Vovi=0 in Q;
p,-(&,v,- +V;- VV,') + Vpi =V. ,LLI'VV,'. !

Here, y; is the fluid viscosity in region Q;.

2. Interface condition On the interface I';, due to viscous effect, we impose the condi-
tion
[v]=0.

This leads to
Vi =V =1V,

where v is the surface velocity. The surface force on I'; coming from the elastic
property of the interface is 6HV, o is the surface tension and H is the mean curvature
of the surface. Let 7; := ;Vv; — p;I be the stress tensor of the fluid i in region ;.
Then the force balance law on the interface is

[7]-v=0cHyv.

3. Iterative Solver If v is given, then the condition v; = v and Navier-Stokes equation
can determine the flow in ©;. On the other hand, there are three conditions in [t]- v =
oHv to determine the interfacial velocity v.

17.2 Phase field models based on labeled order parameter

17.2.1 Order Parameter and Free Energy

References:
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* Gurtin et. al. Two-Phase Binary Fluids and Immiscible Fluids Described by an Order
Parameter (1996).

e C. Liu, H. Wu, An Energetic Variational Approach for the Cahn—Hilliard Equation
with Dynamic Boundary Condition: Model Derivation and Mathematical Analysis,
ARMA (2019)

In some applications (immiscible two-phase flows), we may encounter two different fluids
in the same fluid system. For example, oil and water, water and gas, or a system with more
components.

We may use a label to indicate the type of phase of the fluid. Such a label is called an
order parameter. For instance, in a water-oil system, we may use ¢ (¢,x) = 1 for water and
¢(1,x) = —1 for oil at (z,x).

Types of Order Parameters There are two types of order parameters.

* Labeled order parameter: Let ¢ be a phase label of certain type of the fluids. It is
advected with the fluids. That is

8;¢+VV¢:O

This is equivalent to

(p(t,X(t,X)) = (P()(X)'

* Concentration order parameter: ¢ dx is a conservative measure. For instance, ¢ is
the density or concentration, etc. In this case, ¢ satisfies

%0+ V- (v) =0.

This is equivalent to

¢ (,x(,X))J (1,X) = ¢o(X).
Free energy One can associate ¢ with a free energy .% defined by

710]= [ 76.V0)ax= [ J[Vol*+W(9)ax.

The energy density W is called a bulk energy density. A natural choice of W is a double
well potential with minima at —1 and 1. For example, W(¢) = %((2)2 —1)2. The energy
IV¢|? is certain kind of kinetic energy. Its effect is to homogenize the fluids. The variation
of ¢ causes an energy penalty. When ¢ tends to an equilibrium with 1 and —1 on the two
sides of an interface, V¢ becomes the delta function on the interface and .7 [¢]| measures
the corresponding surface energy.
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Chemical potential The variation of free energy .# w.r.t. ¢ is called the chemical poten-
tial
07 af df
=—==—-V.—=— 4 —. 17.1
K=" Ve T a¢ (7.1

17.2.2 Labeled Two-Phase Inviscid Flows

Dynamically accessible variations Given a flow map x(7,X), we shall perturb it by a
vector field w(x). Since the flow satisfies the continuity equation and ¢ satisfies the advec-
tion equation. The perturbation w is required to be a dynamically accessible variation, see
Subsection

We define a perturbation of x in the direction w as the following flow maps

%xs(t,X) =w(x'(1,X)), x°(t,X)=x(t,X). (17.2)

The quantity

ox°(1,X)
ds

is called a variation of x, or a pseudo-velocity.
The Eulerian variable ¢ has a constraint

8x(1,X) := |s=0 = W(x(2,X))

99 +v-Vo=0.

That is,

¢ (t,x(t,X)) = ¢o(X).
Given an arbitrarily vector field w, we consider the perturbation of x(¢,-) in the direction
w. We define a one-parameter family of function ¢* by

¢°(2,x(£,X)) == ¢o(X).
Then the variation 5
8¢ = a\z,xqis(t,xs(t,X)) ats =0,

is called a dynamically accessible variation of ¢. It satisfies

8¢ +w-Vo =0.

Variation of free energy .# w.r.t. flow motion The variation of .%# at a flow map x along
the tangent direction w is a Frechet derivative of .# along x°:
0F W 0.7 0¢°
09 8¢5 ds

H(=w-Vo)=—-uve-w.
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Equation of Motion The action is defined to be

s=[ | Bmv(nx)ﬁ—f<¢<r,x>,v¢<z,x>> dxd.

The variation of action w.r.t. flow map in the direction w with incompressibility constraint
V.v =0 gives

// —p|v(t,x) > dxdr = // (pv); -(pvv) — Vp|-wdxdt

The variation of the bulk free energy .# with respect to x(¢, -) in the direction w is

50"

Thus, the variation of 8 with respect to x(z, -) in the direction w is
08[x] = / / (pv); -(pvv) = Vp|]-w+uVe -wdxdt (17.3)
This gives the Euler-Lagrange equation

(pV): +V - (pvv) +Vp =puVve.

where u is given by (17.1)
0.7 d d
09 avVe  d¢
The full set of equations are
%P +v-Vo =0,

dp+V-(pv) =0,
p(dv+VvVV)+Vp=uve
V.v=0

for (¢,p,v,p).

Conservation of energy We multiply momentum equation by v then integrate in x and ¢
to get
0¥ d7

d 1 2 . _ ___[9o7 _ a7
E/gP’Vl dx—/.UV Vodx = /Nar‘l)dx— 5¢ at(PdX— t

jt (/2 \V|2dx+/f¢V¢ dx)—O

This is the conservation of total energy. It also shows that the force uV¢ is the opposite
force for the advection of ¢.

That gives
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17.2.3 Labeled Two-Phase Viscous Flows

One can add viscous term in the momentum equation:

Dv
P v/ V.

where

2
T=V (VV+(VV)T—§V'VI) +AV v,

is the viscous stress.

Dissipation of order parameter — Allen-Cahn model The order parameter has a ten-
dency to relax to lowest free energy state. This is modeled by the Allen-Cahn model, it is
simply a relaxation model defined by

57 _

oP+v-Vo =— 5o = M

Dissipation of the velocity The dissipation of energy can be obtained by multiplying
momentum equation by v, multiplying advection equation by i, then adding them together:

D
(p3:~v—uV¢'V)+(u8r¢+qu¢) =v-V.r—p’.

This gives
d&

= = 1.Vv—uZ
dt vVoH

The viscous dissipation becomes

—7-Vv=—v|Vv+ (VWP —A|V-v]°.

17.3 Phase field models based on conservative order pa-
rameter — Cahn-Hilliard model

17.3.1 Variation of free energy w.r.t. pre-domain

For ¢ being a concentration such that ¢ dx is invariant along the fluid flow, we design
one-parameter flow maps x°(¢,X) such that

O°(t,x°(,X))J°(t,X) = o (X).



17.3. PHASE FIELD MODELS BASED ON CONSERVATIVE ORDER PARAMETER — CAHN-HILLIARD M
where J*(¢,X) = det (%
0x(t,X). Then by differentiate the above conservation formula ¢ (z,x°(#,X))J* = ¢o(X) in
s, we get

). As in the previous perturbation, we define w(z,x(7,X)) =

ds¢* + V- (wo*) =0.
The variation of .% w.r.t. X° is

0.F 0¢°
00 ds

— [ 1=V (ow))dx
= /¢Vu~wdx

O0F - w =

Conserved order parameter In the case
%9 +V-(pv) =0,

The force from the convection becomes
Dv
—+Vp=—-0Vu.
Py, HVP ovu
The full set of equations are

at¢+v(¢v):()>
ap+V-(pv)=0,
PB4 Vp=—gVp,
V.v=0.

for (¢)7p7v7p)'

Conservation of energy For the energy equation, we multiply the above equation by v,
take integration by part:

& [ spivPax=— [oVu-vax= [uv-(ov)ax

0.7 d¥
——/[Ja[(de—— Wa[(PdX——?

We also get same result of conservation of energy:

d 1
o 3PV £(9.V6)dx =0,
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Dissipation
1. Cahn-Hilliard defines the dissipation flux to be
—mVL,
where m is called the mobility. The evolution equation for ¢ is
P +V-(vo)=V-(mVp).
This is the Cahn-Hilliard equation. The total order parameter is conserved.

2. For Cahn-Hilliard equation, the energy dissipation is

d&
o= —T-Vv—m|Vul*.

17.4 Interface structure

17.4.1 Limiting behaviors of the interfacial layers

Interface energy In this section, we shall study the limit of various free energy. We are
particularly interested in the kinetic energy part, which is related to the geometry of the
interface.

719 = [ £(v6.9)dx

1. Let . {
f(Vo,9)= §’V¢|2+EW(‘P)CIX

where W is a double well potential. As € — 0, ¢ — 1. The interface energy tends
to

F (9] = oo[L(1)].
where oy is a constant.

2. Mean curvature:

2
n L, / 2
TliAg——w dx~ | H*ds.
/g(t)z( ¢ n? (¢>> ¥ I'(r)

3. Gaussian curvature:

|- / -
/Q(t) (n Do~ oW (¢)) W (¢)dx ~ /r(t)KdS.
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Bulk energy The bulk energy also has many choices.

1. Binary system: Consider a binary system with two components A and B with con-
centration uy and ug, where uyg +up = 1. The bulk energy is

W (up) = paua + tpup + RT (up Inuys + uplnup) + Quaup.

Here, 4, up are the chemical potential of components A and B, R the molar gas
constant, 7" the temperature, & the repulsion parameter between A and B.

2. Nernst-Plank-Poisson model: Consider binary charge system. Let p and n are re-
spectively the concentration of positive and negative charges. The bulk energy is

1
W(p,n) = /Qplogp+nlogn+ 5 (n=p)V[n—pldx

where V[n — p] is the potential induced by n— p, i.e. e AV =n—p.

17.4.2 Structure of one dimensional interface

Allen-Cahn interface The order parameter satisfies

60‘
b=~ = L0 -W()
where {
F = 5|V¢|2+W(¢)dx
1
W(g)=(9*—1)?

The interface is assumed to be steady, so ¢; = 0. Thus, we want to solve
N —W'(¢)=0.
Multiplying ¢ on both sides, we get
d (1
I (E‘PIZ - W(¢)) =0.
We look for ¢ which connecting the two equilibria 1 at x = F-o0 and with ¢’(4e0) = 0.
Thus, the interface we look for satisfies

1 » -
54’ ~W(¢9)=0.
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We can solve this ODE:
¢’ =\2W (17.4)
By separation of variable
d¢
——— =dx
2w (9)
When W (¢) = }‘((2)2 —1)?, we get
2d¢
1_—¢2 = +dx

Integrate this, we get

)C+C = /IT-l‘—d(P

1+¢
_ op|lte
1—¢
Thus, let & = ¢7C We have
1
ﬂzzi:é.
1-9¢
Or . |
p=5—1 orp=-2tL
E+1 —-&+1

For the first solution, we have ¢ (£e) = £1, whereas the second solution satisfies ¢ (+o0) =
F1. In general, ¢ can be expressed as A + Btanh(x+ C).
Let us put the scale back. We consider the energy to be

€ 1
= [ Z|VOEP+ W (o%)d
[EIver+ w(o%)dx
This gives the traveling wave equation
€ 1 / €
L9~ W(9°) =0.
Taking ¢¢(x) = ¢(x/€), we get the rescaled equation. Notice that in .#, the energy for the

traveling wave solution ¢¢ is
FE[9°] = Z[9] = on.

This is the interface energy in the normal direction of an interface. In multi-dimension, the
interface energy is the integration of this value over the whole surface.
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Remark. Let us consider a general double well potential W which has two stable equilibria
¢, and @,. Suppose W(¢@,) # W(¢,). In this case, we don’t have a standing interface.
Instead, we have a traveling wave ¢ ((x —ct)/¢€), where c is the speed of the traveling wave.
Plug this ansatz into equation 8.7 /6¢ = 0, we get

—c¢' — Ao+ W' () =0.

Cahn-Hilliard interface The Cahn-Hilliard equation is

0F
=-V.-(mV =——r.
Again, we look for steady interface. This leads to

m(¢)Vu=C,

or C
R )

We assume for the moment that the mobility is independent of ¢. Then we get
U = U for all x.

Or
—¢"+W'(9) = o.
We look for solution with ¢(d-c0) = +1 and ¢’(4e0) = 0. Multiplying this equation by ¢’,

we get
d

1 B
a<—§¢ +W(¢)—NO¢) =0.

Using the far field condition, we get

39 W(9) o =W (1) ~ o

Or

Thus,
1/2
0" =W ()= W(1)—po(9— 1)),
In order to have ¢’(do0) = 0, we see that F(1) = 0, we also need to require F(—1) = 0.

This leads to
W(=1)=W(1)— pio(=1— 1) =0,
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which implies
W(9a) —W ()

¢a - ¢b .
Here, ¢, and ¢, are the two equilibra of the double well potential W. Thus, the only
addimisible chemical potential connecting two equilibra is the relative energy difference
between them. With this choice of chemical potential, we see the interface equation is the
same as the Allen-Cahn interface equation. Thus, the structure is the same.

Ho=(W(1)=W(-1))/2=

Cahn-Hilliard Traveling wave with nonzero speed Suppose the speed is ¢, then we
look for traveling wave solution ¢ (x — ct). In this case, the

Combustion front In reaction-diffusion equation
u = Du+ f(u)

where f(u) has two equilibra u, and uy,.



Appendix A

Notations

Coordinates and flow map
* X Lagrange coordinate
* x Eulerian coordinate

* ¢(X)=x(t,X) the flow map

u = x — X displacement

* v=x(t,X) = u velocity

Strain
e F= g—;: Deformation gradient (for the use in Lagrangian coordinate)
» C = FTF: Left Cauchy-Green strain

o (F 1= %—’;: inverse deformation gradient (for the use in Eulerian coordinate)

B = FFT: Right Cauchy-Green strain
« E=1(F+F") —I: Green-St. Venant strain.
o (en) = % (g—;‘; + g—;(‘lk> Infinitesimal strain in Lagrangian coordinate.

€= % <% + %) : Infinitesimal strain in Eulerian coordinate.
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Strain-rate
e D=1 (Vv+(Vv)T): rate-of-strain, strain-rate tensor
* ¥=2D = ¢ : rate-of-strain
e S=1(Vv—(Vv)T): Spin tensor

s 0=2S=Vv—(Vv): vorticity tensor.

Stress
* P: First Piola stress
* X: Second Piola stress
e 0: Cauchy stress

e 7: deviatoric stress



Appendix B

Surface Theory

B.1 Maetric, area and first fundamental form

Deformation and parametrization Let X — x be a mapping from Xy C R? to a surface
¥ C R3. Let Fi, = dx' /0X* be its differential. For a vector field in TX with v =1v%d /X%,
the differential F maps it to w = Wia%‘ with

i_ i
w = F v,

We denote this by w = Fv.

First fundamental form. The image of £y by the map ¢; is in R?, which is called the
ambient space. The space R? has a Euclidean inner product structure (-, -). We also call it a
metric structure. The mapping x(-) and the metric (-, -) in the ambient space induce an inner
product on the tangent space of X (denoted by TX). Namely, given any vy,v, € TXo, we
define the inner product of v; and v, by

(vi,v2) := (Fv1,Fvy) = (FTFvy,vy).
Here, (-, -) is the inner product in the ambient Euclidean space. When we use the basis ag—a

in TX, the metric has the following representation:

(Vi,V2) = gapv{Vh

where

Jx Jx
8ap = <W’W) = (FTF)aﬁ,
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In the language of differential geometry, we express the metric (-,-) in the ambient Eu-
clidean space by . .
gE = 5,~jdx‘ ®dx’.
The metric g in X is
g = gopdX” 2dxP.

This metric g is called the first fundamental form for the X-coordinate system on X. It
is used to measure distance, angle and area on the surface X. The length of a vector v is
measured by (v, v), the angle between two unit vectors v; and v; is (vi,vz). Thus, a curve
{X(1)|0 <t <1} on Xy has length

/o1 \/gaﬁ (X ()X % (1) XP (t)dt.

This is indeed the arc length of the curve x(X(¢)) in R3.
The area spaned by two vectors vi and v; is

Vv - (v2,%2) = (v1,v2)2 = T [val.

Here, J = y/detg is the Jacobian of the map x(-). Thus, the area element on ¥ under the
metric g is
dA = JdX,dX,.

B.2 Second fundamental form and intrinsic properties

The normal of X is
ox Jx

__oxI X ox?
T d
I15%r < 2z
This normal N maps X to S2. Its differential dN maps TXg to the tangent of S2, which can
be identified to be TX. This is because
0= d(N,N)(v) = 2(dN(v),N),
that is, for v € TX(, we have dN(v) L N. Hence, we can identify dN(v) € TX. In particular,

AN(3/OX %) = i(—Na €T

We define the second fundamental form /I = (Lqp) of X to be

I JON Ox
b~ \oxa 9xB )
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One can immediately see that

Lo (N 2°x
b=\ oxagxh )
Given a curve C: x(X (1)), —€ <t < € on Xy, we parametrize C by its arc length s. We have
(N(s),x'(s)) = 0. Hence, (N(s),x"(s)) = —(N'(s),x(s)). Therefore,

H(X'(0)) = —LgpX'*(0)X"(0)

ON Jx
= (X0 5P 0)

= —(N'(0).X(0)) = (N(0).X"(0)) = (N.kn) = k.

Here, k is the curvature of the curve C and n is its normal. Thus, the second fundamental
measures the curvature of curves on the surface passing through at the same point. The
eigenvalue of /I w.r.t. the first fundamental form g is called the principal curvature of the
surface. If we define

W:=g Il

called Weingarten matrix, then the eigenvalues of W are the principal curvatures, its trace
is called the mean curvature H and its determinant is called the Gaussian curvature K.

B.2.1 Surface energy

e Membrane
e Plate

* Shell

Bending, twist, Willmott energy.

Reference

1. Elasticity of cell membranes

B.3 Vector, Co-vector and Tensor fields

Vector A vector on T has the form v =v%*d /dX%. Its image under x(-) is w = w'd / 9x’
with ' '
w' = Fv*.


https://en.wikipedia.org/wiki/Elasticity_of_cell_membranes
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That is, w = F'v.
For any w € TX, we can find a unique v € TX such that F'v = w. To find v in terms of
W, We use
i i i
Fgw' = FgFy,
In matrix form, it is
(FTF)v=FTw
Thus,
v=(FTF)"'FTw.
We denote F' = (FTF)~'FT, the pseudo-inverse of F. The mapping FF is the projection
from R to the tangent plane of TX.

Co-vector On T*Yj, we define dX% such that dX*(9/0XP) = 5[‘3". A co-vector v* =
v, dX % is defined on T*X. From Riesz representation theorem, there exists a unique v €
TX, such that

v(d/dX%*) = (v,0/dX%).

That is, vy, = gaﬁvﬁ. This leads to

va:gaﬁ *

Vﬁ s
where
g = (g7
A one-form ® = w;dx’ in T*X can be pull back by
ox!

@i 9xa

dX* = w;FldX*

or in matrix form, F! @.

Given a one-form @;dx’, the vector @ = (@) is a co-vector. In the two form vidx! dx¥,
the vecor (V;) is also treated as a covector. Therefore, we can pull back them by FTv.

If v is a unit covector in X and n be the normalized pull back of v under F, then

n=J'Fly.

Tensor A tensor P on Xy maps a co-vector n € T*X to a vector in R?. P can be rep-
resented as P'* and Pn = P"%nyd/dx' If n is the pullback (with normalization) of a unit
co-vector v € T*Y, then n = J 'FTv. Let T be the tensor which maps a co-vector vV to a
vector in TX. TV can be represented as T"/n;d /dx;. If

Tv = Pn,
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then we have the relation
T=J"'PF.
For hyper-elastic material, P = W'(F).
Alternatively, we can define the tensor P on Xy which maps n € T*X to TX and the
tensor P = FP. In this formulation,

FPFT —JT

In the case of hyper-elastic material, P = W/ (FTF).

B.4 Gradient and Divergence

Scalar field A scalar field ¢y defined on Xy can be push forward to a scalar field defined
on X by

0(x)=¢o(X) if x=x(X).

Alternatively, we can use delta function to express ¢:

000 = [ 90(X)3(x—x(x))dx

Physical quantities such as density is treated as a scalar field on X. The gradient of a scalar
field is defined by the differential of ¢y:
ddo=Vxo(X)-dX.

Thus, Vx@p is a co-vector. It is defined to be the co-vector such that it represents the
direction derivative:

dgo(v) = (Vxo,v).
Here, the meaning of (-, -) is the bilinear functional between vector and co-vector, which is
defined so that (dX%*,d/dXP) = 5[‘;‘. We can also define the gradient Vi ¢ to be

do(w) = (Vio,w)

for any vector w € TX. Since v=F Tw, we obtain
T
(Vx9.w) = (Vx90.F'w) = (F"" Vo, w)

Hence,

Vi = (F')"Vxgp.
This is the definition of Vx¢ on X. Since F (F')T = I, we then get

VXQ{)O = FTVX¢‘

Thus, the co-vector Vx ¢ is the pullback of Vx¢.
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Appendix C

Tensor Calculus

references

* S. Wang, M.S. Nabizadeh and A. Chern, Exterior Calculus in Graphics, Course Notes
for a SIGRAPH 2023 course (2023).

C.1 Vector Space and Dual Space
Vector space

* A vector space V over R is a set V with two operations: vector addition and scalar
multiplication. They satisfy: (1) (u+v)+w=u+(v+w); Q) v+w=w+V; (3)
30 € V such that v+ 0 =0+ v for all v e V; (4) for any v € V, 3(—v) € V such
that v+ (—v) = 0; (5) for any a,b € R, any v,w € V, it holds (a + b)v = av + bv,
a(v+w) =av+aw, (ab)v=a(bv); (6) lv=v.

* Dimension Let V be vector space over R. It is called an n dimensional space if it
can be spanned by n independent elements {ey,...,e, }. Such a set is called a basis of
V. Any two bases of V contains same number of elements. (why?) This number is
called the dimension of V. Any vector v € V can be represented uniquely as

n . .
V= Zv’ei = vlei.
i=1

Here, we will use upper index for the coefficient v' and lower index for the basis e;.
We use Einstein’s notation: whenever same upper index and lower index appear in
pair, it means that this is a summation over that index.
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Dual Space

* A linear functional on V is a linear function & : V — R. The dual space of V is
defined as
V*:={a:V — R linear}.

A linear functional is uniquely determined by its values on a basis {ej,...,e,}. Let

e € V* with
- - 1 i=j
! s ) = l =
¢'(ej) =9 { 0 otherwise.
Then {e',...,e"} are independent. For any & € V*, it can be represented uniquely as

a=oe, whereo;:= ofe;).

Thus, dim(V*) = dim(V). The basis {e',...,e"} is called the natural dual basis cor-
responding to {ej,...,e, }. Anelement of V is called a vector, while an element of V*
is called a co-vector.

* V** =V Any vector v € V can be viewed as an element of V** by v(a) := a(v) for
any o € V*. Thus, we have V C V**. Since dim(V**) = dim(V*) = dim(V), we get
V¥ =V.

* Remark. Sometimes, we express a(v) by (a|v).

Inner Product Space

1. An inner product is a bilinear structure on a vector space V. Namely, (-,-) : V xV —
R which satisfies

(a) (au+bv,w)=a(u,w)+b(v,w)
(b) (u,v) = (v,u)
(c) (w,u) >O0foralluecV. (u,u) =0 only when u=0.

A vector space equipped with an inner product structure is called an inner product
space.

2. Given an inner product space V. Let us choose a basis & = {ey,...,e,}. Then the
matrix

(gij)nxn = (<ei;ej>)n><n~

is called the matrix representation of the inner product under Z. For any two vectors

u= Zuiei, V:ZVjej
i J
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their inner product can be expressed as
; . P
<ll,V> = <Zu e,-,Zv]ej> = Zg,]u v,
i J i,

3. The matrix (g;j)nxn satisfies
* 8ij = 8ji
« Yigijv'v! > 0forallv=Y;Ve;.
* Y8y =0if and only if v =0.
Riesz representation and the music isomorphism
1. Music isomorphism

Theorem 3.18 (Riesz representation Theorem). Let V be an inner product space.
Then the inner product (-,-) induces a natural isomorphism betweenV and V*, called

music isomorphism:

(a) V 2 v¥: For any w €'V, it induces a natural linear functional v — (w,v). We
denote this linear functional by b(w) or w’. That is,

(bw|v) = (w,v).

(b) V* LV For any o € V*, there exists a unique vector w such that o.(v) = (w, V)
for all v e V. We denote w by tot or of. That is,

(ta,v) = (a]v).
(c) It holds b= =14,
Proof. (a) Proof of (b). We shall only prove (b), the rests are easy. Let us assume

that we can find an orthonormal basis in V, say {ey,...,e,}. Thenforany ve 'V,
it has the representation

-

v=) (v,e)e;.

N
I
_

Now, for any o € V*, we define

foo=o(ey)e; + -+ a(e,)e,.
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Then

i=1

(fa,v) = i ){e;, V) =« <i(v,e,~)e,~) = a(v).

Given a € V*, suppose both w; and w; satisfy
(wi,v) =0o(v), (wp,v)=a(v)forallveV.

Then, we have
(wy —wp,v) =0forallveV.

This leads to w; = wy. This shows the uniqueness.

(b) Proof of (¢): From (a) and (b), we get that for any w and v, we have
(tow,v) = (w[v) = (w,v)

This leads to
fow =w

for any w € V. Thus, #b = id.

2. Representation of b: Suppose % = {ey,...,e,} is a basis of V and #* = {e!,...,e"}
is its natural dual basis in V*. Let g;; = (e;,e;). Let us express

—vie. — y.el
v=vle; bv=v;e,

This means that the super index V' is lower down to a sub index v; in bv. (This is why
it is called the flat operator.) Then

vi = gijv.

3. Let V be an inner product space with the inner product (-,-)y. This inner product
induces an inner product (-,-)y+ in V*. Let a, € V*. Let § : V¥ — V be the sharp
operator induced by (-,-)y. We define

(o, B)v+ = (fa,iB)v.

Let us denote
(e',e/)y =gV.
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4. Let x € V*. Let us express o € V* and i € V by
a=oe, o=ale.
Then . -
a' =g'a;.
5. The relation between (g;;) and (g"/) is
i -1
(87 )nxn = (8if) -
This follows from #b = id: Given v = v'e;. We have
Ve =g, (H0V) = g*Ov)i = g g’
Since #b = id, we get o .
v = g% g/
for any v = v'e;. This gives ' .
g g1 = 8.

C.2 Tensor Algebra

* Tensor product and tensor spaces Tensor product of two vectors: Let U,V be two
vector spaces over R. Letu € U and v € V. The tensor product of them, denoted by
u ® v is defined as an operation satisfying linearity in both u and v, associativity, but
no commutativity. The tensor product of U and V is defined as

U®V :=Span{u®vjueU,veV}

An element in U ® V is called a tensor.

o If {uy,---,u,} and {vy,---,v,} are bases of U and V respectively, then {u; @ v;|i =
l,...,m,j =1,...,n} constitutes a basis of U ® V. Thus, dim(U ® V) = dim(U) -
dim(V).

* Tensor Type Let us introduce the notations:
RV =VR---QV
—_——
r times

An element 7 in
(®@V)2(@V)=V® - VeV '®- -V

-~ -~

r times s times

is called a tensor in V of type (r,s).



334

APPENDIX C. TENSOR CALCULUS

Tensor as a multilinear functional A tensor on V can also be viewed as a multi-
linear function on V. For instance, a bilinear function on V is a function

A:VxV =R,

which is linear in both arguments. We denote the set of all bilinear linear functions
onV by Z(V,V). We claim that

VERVEX L(V,V).

To check this claim, we first see that a tensor 7 € V* ® V* is a bilinear function on
V.If T = o ® B with at, B € V*, we define

a@p(u,v):=a(u)B(v)

forvectorsu,ve V. If T = Zﬁil a;o; @ Bi, we define

N
T(u,v):= ; a;o;(a)Bi(v).

Thus, a tensor 7 € V* ® V* is a bilinear function on V. Conversely, let {ey,...,e,}
and {e',...,e"} are a pair of dual bases in V and V* with €/(e;) = 6;. For any bilinear
function A, we can define a tensor T as

n n

Ty = Z ZA(ei,ej)ei®ej.

i=1j=1

Then one can check that
Ta(u,v) =A(u,v)

for any u,v € V. The mapping: A — Ty is linear. The two spaces .Z(V,V) and
V*®V* have the same dimension. Thus, Z(V,V) =V*@V*.

In general, let
LV, VIV, V)
——— ——
rtimes s times
be the space of all multilinear functions from V* x --- x V* xV x..- xV — R. Then

X(V*,---,V*,V,---,V)%V®---®V®Y*®---®V’i.

-~ -~

rtimes s times r times s times

An element T there is called a type (r,s) tensor. It can be expressed as

[yennsd i i
T = lel,...,jzeil Q- ®ei, ®e]1 Q- ®er
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For example, the metric tensor
g=gije el
is a type-(0,2) tensor.
* Space of linear maps as a tensor space Let V,W be two vector spaces. Let
Hom(V,W)={A:V — W linear map}.
Then
Hom(V.W) =V W = Z(V,WF). 3.1
For any A € Hom(W,W) we can identify it as a bilinear functional 7 in V x W* by
Ta(v,w") := w"(Av).
You can show that A — T} is linear, 1-1 and onto.
* Adjoint operator and symmetric operator: For A € Hom(V,W), we define its
adjoint A* € Hom(W*,V*) by
(A*w*v) := (W'|Av).

If A€ Hom(V,V*), we call A is symmetric if A* = A. For A € Hom(V,V*) which is
also .Z(V*,V*), we can represent A by

A :Al-jei®ej.
* Remark Let V be a vector space. We have
(1) Hom(V,V)=V*V = Z(V,V")
(2) Hom(V*,V) 2V V= Z(V*" V")
(3) Hom(V,V*) 2V *V* = L(V,V)
(4) Hom(V*,V ) Z2VV* = Z(V* V)

When we choose a basis %y and its natural dual bases %;;, the matrix representations
of the above tensors, say A, are

al, @)a7, (3)ay, (4) a’.

They look similar, but their tensor types are different!
* Two-point tensors. Let us consider the tensor space:
VR VRV @ -V oW - WeW ' ®---W*

' v~ ~~ g

r times s; times r, times s, times

We call its element a two-point tensor with type (r1,s1;r2,52).
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C.3 Some tensor notations

We shall use a matrix to represent rank 2 tensors and matrix algebra for tensor algebra.

A rank 1 tensor is a vector, such as the velocity field v, the outer normals v, n.
A rank 2 tensor is a matrix, for example, the stress tensor o, I.

Tensor product vw := viw/.

Scalar product v-w = viw!, 6V = O']’:Vj, A-B= A;Bi.

Scalar product of rank 2 tensors A:B = A;;B;;.

Nabla operator V: .
(Vv)) = %
v
V.vi= a—;j,
For an m x 3 matrix-valued function F = (F, 53, 53),
0F;
V-F.= a_xJJ

which is an m-vector.
VT 073 B 0F, 0T - 0F3 90> B 07
’ ox2  Ix37adx3  ox!oax!  9x? )’

which is again an m x 3 matrix-valued function.

Note that for v being a 3 x 1 vector, f a scalar function, we have
(v-V)f = (Vf)-v=Vaif
For w being an m x 1 vector, we have
(v-V)w = (Vw)-v=v;0,w'.
In the tensor community, V is treated as a column vector and Vv is defined to be

8xivj , which is different from us. Some people uses v ®.V to stand for d V. (e.g.
Vlado A. Lubarda). We will only use Vv to stand for d,;v' and V-F = 9,; 7.

Theorem 3.19 (Divergence theorem). Let F : Q(C R3) — R™ x R? be a vector field. Then

Here,

/ ?-vdS:/V-CFdx.
2Q Q

dQ denotes for the boundary of Q, dS is the surface element, and Vv is the outer

normal of Q.
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C.4 Tensors in Euler and Lagrange coordinates

C.4.1 Eulerian and Lagrangian coordinates

Let M be the initial configuration and M be the current configuration at time 7. X be the co-
ordinate on M and x be the coordinate on M C R". We first make a table of correspondence
of notations between vector calculus and differential geometry. The notation of vector
calculus we use is from the book: Aleksey Drozdov, Finite Elasticity and Viscoelasticity
(1996) and Mechanics of Viscoelastic Solids (1998).

Let x(¢,X) be the flow map. We also denote it by ¢; : M — M. We will neglect ¢ later in
the correspondence table when we have a fixed time ¢. The reference configuration space
M is indeed identical to M except they use different coordinate system. Thus, d/dX' is a
tangent vector on M, which is realized as dx/dX' in the Euclidean space. The metric of M
is induced by the imbedded metric in R".

Euler

Name

Vector Calculus

Differential Geometry

basis in tangent space (vectors)

metric in tangent space

basis in cotangent space (co-vectors)

metric in cotangent space

e; = 0x/ox'
(ei-ej) =1
e,eej= 61’-

gij —el.el = 8l

d/ox
g,'j = <8/&xi,8/8x1> = 5,‘_,‘
dx', (dx',0/9x7) = &
gV = (dx',dx')y = &Y

contravariant component (vector) v =1le v=1d/dx

covariant component (co-vector) n=nmne n = Nidx

Music notation Vi = glly; v=v =V

Tensor product V{V2 Vi ® V)

Lagrange

Name Vector Calculus | Differential Geometry

tangent basis

cotangent basis

duality

deformation gradient
metric in tangent space
metric in cotangent space
contravariant component
covariant component
Music notation

Tensor product

Zoq = Ix/IX®*
7% = 9X®/x
& g5 = 0
81,82,83] = F
(3a-gp) =F'F
gaﬁ — g .gﬁ
7d=9%8a
q:(h{ga

9% =g qq
9192

J/9X®

dx®

(ax®,0/9xP) = 8¢

do

gap :=(9/0X%,0/dXF)
g% = (dx®, axP)

g=q%d /X"
q= ‘]ocha
i=q =¢

g1 @ q2
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C.4.2 Coordinate systems and bases

* The configuration space M is in the Euclidean space. We use natural basis {e;} for
TM. We also treat T*M = TM and use {e'} as the basis in 7*M. In the language of
differential geometry,

b . .
e = ﬁ’ e' =dx'.
* In TM, we can have another frame, the Lagrangian frame:
o axt i
ga - — a)(—ael' = Faei.
In DG,

o 0
gOC - aX(X B

The inner product of g4 and gg is induced by the Euclidean space 7M. Thus
8a-8p = ZFfi(Fﬁéek ey = ZF&FE ‘= 8ap-
k k
 Similarly, in T*M, the corresponding Lagrangian frame is

&=
ox!

Since Fé = 5. we get )
(F )f =57
We have
8o ‘gﬁ - 55
and 5
0X% X
—(X. —ﬁ _ F—TF—I Otﬁ - P
g8 =( ) ; ST ok
In Differential Geometry,
g% =dx"“.
* Deformation gradient:
Fa=Fe=Ffa  (Fr=%
(FT)Y =Fy = $%a (F )= (FhHy

(FTF)aB - (FT)I?Fﬁk:FécCFﬁk:ga'gﬁ-
(FF")T = Fy(F")$ = FyFy
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C.4.3 Representation of vectors

* Euler coordinate For a vector in v € TM = T*M, we can represent it as

v=1le;, = v;e'.

* Lagrange coordinate We can also represent v in Lagrange coordinate system, we
call it the pull-back of v and denote it by p. It is still the same vector, but in different
coordinate system. Thus,

dx!
oXxk

V= vidxi = axk = vl-F,dek.

or its pull-back (same vector, but represented in Lagrange coordinate system)

p =g’

Thus,
Pr = viFy.
A vector p can be represented as
p= g =g
From
§=g"g;, 8&=usig,
we get

Pi — 8ijpi, Pi= gijpj~

* Inner product: Suppose the pull-back of v and w are p and g, respectively. The inner
product of v and w is a scalar

IO S R SU |
V-WI=Viw =VW;=pdg;=Ppiq .

We have

el..efzel..ej:el.ejzsif

gi-gi=gj &-&=5, §-§=5.
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C.4.4 Tensor
* The tensor product of p and g has the representation
pq=piq;8'g’
Note that pg # gp.
* In Eulerian coordinate, a tensor 7" can be represented as
T =Tlee;=Tje'e =Tleje! =Te'e;, Ty=T"=T =T/
Its pullback Q in the Lagrange coordinate system can be represented as
0=0g's =05 = 0'gig’ = 03's;.
The transformation of the coefficients is, for example,
K _ i Fik Fjé

obtained by using g; = Fl-kek.
One can also check that

Qij = O g e = Okgi = 0fg".
The transpose of Q the above tensor Q is defined as
o' = Qﬂgg =0 8i8) = 0lzig’ = 0'3'g;
=0,ig's =078/ == 08 = 0/g'z:.
* The inner product of tensor and vector is
Q-G=0ijg¢ -q"a = 0ud'?"
It can also be represented as
0-G=0/5% 4" = Olad

One can check that

0-G=g-0" and (P-Q)T=07.PT.

For the first one, we have

0-3=0ijg'd & = 0ud'd,
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g-0" =4d"'a-0ijg;8i =4 0ngi=0-q.
For the second one,
P-Q=P;g¢  Ojag’ = Px0j3'g".
Q'P" = Qjg'aPd’s = QiPug's = (P- Q)"
One can also define
Q*:=0-0, 0:=0-0°=0 Q,eic.
¢ Convolution o -
P:Q="P;g'g' 0" 515, :=P,;0".
e The unit tensor
[=¢el = eiej = e,-ej = e¢;e;j
=288 =83 =88 =¢"ag;
One can show that for any tensor Q,
Q-1=1-0=0.
e Atensor Q = Q,; jeiej is called isotropic if for every rotation R,
Q = Qij(Re")(Re’)

It can be shown that an isotropic 2-tensor has the form Q = /. Similarly, a rank n
tensor Q;, . ; e'' ---e" is called isotropic if

Q= 0i..i (Re)---(Re™)

for any rotation R.
Homework: Show that an isotropic rank n tensor depends only n parameters.

Connections V operator (Connection)

* We define the nabla operator as

We can think V is a vector. Its pullback is g’ a()}(i'
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* For a function f, its differential

df = —fd’—Vf~dx
B af ;i of ox' . df
~oxi X T oxigu ™ T oxif

Here, we treat dx as a vector: dx = dx'e;. The term V£ is a vector

8f z_ af =i
V= ox’ T~ oxit-

We can change the type of Vf as

of i_ 9 sij, _9f,
V=Gl T e = g

) )
=3 (G

« For a vector w = w'e; with pull-back 7 = ¢'g;,

Jd . aWj
Vw ﬁe’wje/: P e'e’
ddgfda =dx-Vw= (Vw) .d
w=dx e xre X-Vw W) -dx.
O o
* For the pull-back g of the vector w, we have
. d ; i (9q; dgk
Vi=g-—=(qig’)=¢ J .
1=85.4,8') =3 (ang gy |
The term 3}0 is a vector, it can be represented as
gt
aXl Fl]g

Here, the coefficients Fk are called the Christoffel symbol of second kind. We denote
0 dq;
VyiG = ——q / ¥
X q 8X’ < aXl — gk >
Thus,

aq aqj k) i
Vg= gaXz (aXz—qu,, gg.
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.o
dx-dxe,—dX %7 e,—dX gj.
Hence P P
q Kk 94 _
dx-Vg=dx*g dx —d
X-Vq=dX"g (8i5y;) =dX" 533 =dg

We also have
dj=dx-Vg=(Vg)!-dx.

Similarly, we have

0 dq’ 0
Vi=g5(a'8) = (af(lgﬂrq"af(ﬁ),

Differentiate g - g' = 5,f, we get

23" -
axi ki

_ dq s
Vg = (axr+q r; )g’gj-

Thus,

* Divergence: for a vector w and its pull-back g, the divergence

I e

For a tensor Q,

* Properties of V:
V(fif2) = V) Lo+ [1(V]2).
V(G1-32)=(Vq1) 2+ 41 - (V).
V(@9 =(V-0)-4+0: (Vg
For a symmetric tensor Q, we have
1
2

V(Q-q)=(V-0)-4+0:€q), €@ :=5(Va+(Vy)T).

For any tensor P and Q,

V. (P-Q)=0"-(V-P)+P":VQ.
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C.4.5 Frame invariant Derivatives

Let us consider two observers in our Eulerian space. The first one is fixed. The correspond-
ing coordinate system is denoted by x. The second one moves with translation and rotation.
The latter one’s coordinate system is denoted by x’. We have

x =x;(t) +x-0(1),

where x;, is the translation and O(¢) is the rotation.
The orthonormal bases in these two frames are related by

el=e;-0()=0"(1)-¢.
In Lagrange coordinate system,

ox’ ox
5 - Y = . — 0.

and
g=g o0@).

We are looking for those vectors and tensors that are invariant under this frame change.
Objective (Frame-invariant) tensors

* Objective vector: A vector v in the old frame becomes a new vector v from the
observer’s point of view. A vector v is called objective if v/ = O -v. Let us present
v and V' in coordinate system:

i / i/
v=ve, V =Ve

Then objectivity of v is equivalent to v/ = W
In the Lagrange coordinate system, let g be the pull-back of v and g be the pull-back
of v'. The Lagrange frame from the new observer is

§i=280=0"g

The objectivity of g is

which is equivalent to
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* Objective tensor: A tensor T is transformed to 7’ by the new observer. We want

TV =(T-v)
This means
T'-v-0=0"-(T-v).
Thus,
T"v=0"-T-v.o'=0"-T-0-v
This leads to

T'=0"-T-0.

One can show that this is equivalent to 7%/ = T/, For Lagrange frame, we have
similar result. Suppose Q is the pull-back of 7. Then Q is objective if

0=0"00
Or equivalently,

07 =g,
C.4.6 Frame-invariant derivatives
e Characterization of rotation O(t). Since O(t) - O (¢) = I, this leads to

do
—.0"+0-—=0.
dt - dt

Let us call O- % by Q(7). The above formulae are

do’ do
—=0.0", —Z=-0-Q, Q'=-Q
dt dt

e Jetv:= %’t‘ and v := %—’;/ be the velocities in the two frames, respectively. We have

Vv =0"-vv.0-Q, (VV)I=0"-w.o+Q.

Proof. We give proof in Eulerian coordinate system. You can try to prove it in La-
grangian coordinate system.

/
,  Ox

v :?:X0+V‘O—X'O'Q:X0+V'0—X/'Q.
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We use this to get

/ 8 -/ 8v
A ’
VV—elaxl.V elﬁ'O—Q
e,
—0" ¢ . 0-0=0"-Vv.0-Q
oxt
[l
* Define upper-convected derivative of a vector g as
d
_V _
‘= ——g-Vv.

q P q-Vvv

Then c]v is frame invariant, i.e.
q’v — o7 v
Proof. From § = O' g, we get
j=0"-G+0"-g=0"-4+Q-0"-g
g-Vv =3-0-(0" - Vv-0-Q)

=q-Vv-0—q-0-Q

=0T.g-vw—Qr.0".g
We get

q'=q§-q-vv
=0"-(§—q-Vv)

In the last step, we have used Q + QT =0. (]

» Upper convected derivative of a tensor. Let Q be an objective tensor. Define
0V:=0-0-Vv—-Wv .Q
Then QV is also objective. That is

Q/VZOTQV0~
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Proof. Differentiate Q' = OT - Q- O in t with fixed X, we get

0 =0"-0-0+0"-0-0+0"-Q-0
=Q.0".0.0+0"-0-0-0"-Q0-0-Q

The term Q' - V'V' is

Q-VvV=0"-0 (0"-Vv-0-Q)
viv'.Q' = (0" W0+ Q)

Here, we have used Q7 = —Q. Putting the above calculations together, we get

Q’V _ Q‘/iQ/_vlvlivlvlT.Ql
=0"-(0-0-Vv—Vv'-Q)-0
=0o".¢".o.

* In a similar way, we define lower-convected time derivative as
0% :=0+0-Vv+Vv .0
It is also objective if Q is objective.

» The upper-convected time derivative for contravariant component. Let Q = Q"¢;e je

Then , :
i IV Py
0" = (Q -0 -0 kaxk> e

« If I is the identity tensor, then IV = —.

 Let B=F - FT be the right Cauchy-Green strain tensor. Then BY = 0.
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Proof. We have

Taking transpose, we get
FT =FT . (vv)T.

Thus,

h(F-FI)=(9,F)-FT +F-(0,FT)=(Vv)-(F-FI)+(F-FT)-(vv)T.



Appendix D

Lie Derivatives

This subsection is mainly from
Albert Chern, Fluid Dynamics with Incompressible Schrodinger Flow, Doctoral Disserta-
tion, California Institute of Technology, 2017.

D.1 Basic notations
Manifolds, tangent space, and cotangent space

* Let M; be the region occupied by the fluid at time . We shall call it the configuration
space or configuration manifold. The initial manifold My will also be denoted by
M. The coordinate in M, denoted by X, is called Lagrangian coordinate, or the
material coordinate, while the coordinate in M;, denoted by X, is called the Eulerian
coordinate. Below, we shall use M for M, for some unspecified # and M for the initial
manifold.

* The tangent vector space of M at a point x € M is denoted by TxM. Its dual space
is called cotangent space, and is denoted by 7M. The sets TM := UxepTxM and
T*M := Uxem Ty M are called the tangent and cotangent bundles of M, respectively.

* The tangent space has a basis {¢;|i = 1,...,n}. We shall also denote ¢; by d,: or %

for reason explained later. Similarly, we shall use dy: or % for the basis in the initial

tangent space TM.

* A vector field is a map v : M — TM such that v(x) € TyM. A time-dependent vector
field v, is a vector field in TM;, which is also denoted as v(z,X).

349
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* Given a vector field v(z,x), its trajectories from an initial position X is x(¢,X) which
satisfies
x=v(t,x), x(0,X)=X.

A flow map @, : M — M, is a diffeomorphism with ¢,(X) := x(¢,X). The flow map
¢, satisfies

(1) Itis I-1 and onto;

(ii) It is Lipschitz continuous, so is its inverse. This means that dx/dX is well-
defined and bounded except on a low dimensional sub manifold.

Conversely, given such a flow map ¢;, we can define

v(t,x) = d(X), for x=¢(X).

* A tangent vector V; := v(t,-) 1= v;d; € TM;. In many situations, we will just write
V' instead v; if the parameter ¢ can be read from the text. That is,

Vy = Vlaxi.

Since we will fix 7, we will abbreviate v; by v in most of cases.

D.2 Pull-back and Push-forward Operators

Flow maps Let M be the initial configuration space (also called the reference space or the
material space) and M; be the configuration space at time ¢ (also called the world space).
Both have volume forms, which are fI and p, respectively. Let v(z,x) be a velocity field, or
a time-dependent vector field on a manifold M. Let x(z,X ) be the solution of the ODE:

x=v(,x), x(0,X)=X

We call ¢, (X) :=x(z,X) be the flow map generated by v. X is called the Lagrange coor-
dinate, while x the Eulerian coordinate. The flow map is a mapping from the Lagrangian
coordinate to the Eulerian coordinate.

Pullback Functions or differential forms in Eulerian coordinate can be transformed back
to the Lagrangian coordinate through the flow map. This is the pull-back operator. This is
to pullback a differential form from M; to M. Suppose we have an integral, say Je nidx’
on the manifold M, at time ¢., we want to pull it back to an integral at = 0 on M by the
change-of-variable x — X through the flow map ¢;. The answer is

ox!

. i_ a
Lmexax = [ 0 X(0,X)) S dX
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Here, Cy = ¢, | (C). We call
oxt
X))=—— dX®
n(x(t,X)) 555 d

the pullback of 7;(¢,x)dx’. Note that the time here is fixed. We merely discuss the pullback
the differential forms via the map ¢, with fixed z.

* f(t,x) is pulled back to @;(f)(#,X) := f(t,x(¢,X)).
» 11 = n;dx' is pulled back to

9x(t,X)

‘P:("?)(%X) = ni(tvx(t7X))(”(—aan.

* The volume form u = dx' A --- Adx". TIts pull back @i = J{i, where J = det(d¢,).

+ We want to compute the pullback of xdx’. Suppose @} (xdx/) is expressed by aff (xdX %),
we want to find the coefficient a?‘. Note that the two stars are different. One is in the

space of M the other is in M. Since dx/ A xdx/ = u = Jji and dXP A xdXP = f1, we

get
J,ﬂS; = (PZ*JLLSJI:
= @ (dx' A (%dx'))
=@ (dxi) Ao (*dxj)
= FJdX% nd) (xdXP)
= F&a?‘,u.
Thus, . .
Fpa$ =JS;.
This leads to Jx@
a;xzjaxi :‘](Fil)zqa a:‘IFHl’
We obtain
* j —1\J o X« o
QO (xdx!') = (JF™ " )q(xdX%) =J Ep (%dX?). 4.1
X
The general definition of pullback of a differential k-form o by a map ¢ is
O () (vi,...,vi) :i= ot (d@(vy), ..., dP(vg)). 4.2)

It has the following properties.
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@*(f) = fogfor f € QM)
¢ (aAB) = (¢ ) A (@*B).
¢ (da) =do*(a).
¢*(fo) = (9" f)g o

Push forward operator ¢, Push forward is to push vector fields in M to vector fields in
M; by d¢;. It is the dual operator of ¢;".

* The tangent ( 9 ) on TM can be pushed forward to TM; by

oXa
o\, o
P\ oxa ) T axa gxk

Note that & ,
0 0 ox
<(Pt*aXa ]dx ) = <3X°‘ O k‘d > oXa
On the other hand,
N 0 8)/ 8x£
We get that
<(Pf* 8X‘X |dX > <8X°‘ ‘(pt*dx >

for bases in TM and T*M. Thus, ¢, is the dual operator of ¢;*.

* We can also pull forward a tangent from M, to M by (pt_1
d X% 49 .0
~1 _ _(p-T
(o L(ﬁ) = o axa ~ ' agya

D.3 Lie Derivative for Differential Forms

1. Notations Let us use the following notations

d ) J
i=e=(5), (),
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2. Motivation: The Lie derivative is nothing but a generalization of material derivative
for differential forms. Let us consider the following example. Let ¢, be the flow map
from M to M;. Let us consider the integral

idx’
/C(z)n '

where C(t) is a closed curve defined by C(¢) = ¢;(C(0)). By changing variable from
x to X, the above integral is

X dx“.

[ et xn 2
c(0)

Let us investigate the change of this integral with fixed X:

d . ox . d( ox'(¢,X) o
- / MU X(1, X)) 5 X = /C o (n,(t,x(t,X)) g )dX
ox' oV o ; oV
_/ @ +v- V)M e 2 ax /()(8t+V-V)n,~dx + 2k
C(t

ax« oX* dxk
= [ @+ %
C)

3. The notation v; simply stands for a vector field in M; with ¢ fixed. The Lie derivative
o + %, for a general differential form o in M; w.r.t. a vector field v; is defined to be
the derivative of o with fixed X. That is,

g (@) = 9 (9 + L) | (4.3)

If both & and v are independent of ¢, then the Lie derivative .2y is defined as

o (L) :=diof ().

We remark that in the time-dependent case, the Lie derivative %5, only involves
v(t,x) with ¢ fixed, although we use the flow map ¢; in its definition. Thus, %, is
the Lie derivative of v, with ¢ fixed.

4. The Lie derivative %, depends only on the differential structure of M and the vec-
tor field v. Its concept does not involve with metric nor connection. However, the
covariance derivatives involves the concept of connection.
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List of Lie derivatives for differential forms
¢ Lie derivative for scalar function:
. d
(97 )(1,X) = -1 0x(0.X)) = f + 5
= (81 +V‘V)f = (at+$v;)f~

o'?fl

Therefore, £, f =v-Vf.

Lie derivative for dx’
Lo(dx') := dy (] (dx'))(t,X)

doxX(t,X) g, OV
=4 axe X = oxa
PAC). G
= 9xa o W = g

For 1-form 1 = n;dx’, we have
dip; (n) = di g (mi)] d' + m; [d, g (dx')]

. ov/
= (8tnk+v18xjnk) dxk+njﬁdx
= (dn+v-Vn+n-(Vv) )-dx
=@ (9 +-24,)n.

For volume form dx! A --- Adx", we have
di @ (dx' A+ N dx) de A (dy@r (dx)) - Adx"

ovi
p— 1 .. — l .. n
—zi:dx A (3xidx) Ndx

= (V-v) (dx" A--- Ndx™)

For n-form pdx! A --- Adx™:
i@y (pdx' N---Ndx") = (dp + (V-v)p)dx' A---Ndx" = (J, +.%,) (pdx' N-

- Adx")

For 2-form
(d,«p*dxf YAdx! +dx' A (d, @ dx)

dy@f (dx' Ndx)) =
oV v
= o (xd’“ )
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e Let
® = 0'dx® Ndx + 0%dx Ndx' + 03dx' AdxP.
We have

di oo = (d;@; 0")dx* Ndx® + (di @} @*)dx® Ndx + (dyof @ )dx! A dx?
+ 0'd@f (dx® Ndx) + 0*d, @) (dx® Ndx') + o3 d, @) (dx' N dx?)
M o 28\/ 3(9\/ ]

p— . 1 — PE— E— —_—
= [(@—i—v Vo' + o (a 2+8x3) 0] 33 dx* Ndx®
o' 33\/ lav
{8,+v V (ﬁ—*—ﬁ)—w ax3 l}dx /\dx
vl 2 o’ 8v3
V e YV N 43 1
{a,+v +w<81+82) w8x1 8x2 dx' A dx?
= (d+4,)o.
For each component, we have
, ‘ o0’ vk o
i_ i k i _ k
d;o' =0, +v Y + o B &ka

In vector calculus, we define ® = (a)1 L @2, (03)T. In vector form, it is
diow=00+v-Vo+oV-v—(Vv)o
Alternative, the vorticity @ has another representation
0 = o' (xdx").
One can use the Lie derivative for (xdx') to get the same formula.
* Pullback of a flux (an (n — 1)-form): Let
o= G}(*dxi) ®dx’
The pullback is only applied to the first part of 6. Thus,
g6 = (0, + %) (0)(xdx") @ dx’)

where . _ .
SOV Y dv . .
k k
20 = ( d kG + G]a ey +Géaxf) (xdx' @ dx’)
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D.4 Lie derivatives for vectors and tensors

The tangent and cotangent spaces are naturally dual to each other. We denote this dual
relation by (-|-). Thus, (dx' |%> = 5; The Lie derivative was defined for differential
forms, which is in the tensor spaces defined by the cotangent spaces. The Lie derivative for
tangent vectors is defined as the dual operator of the Lie derivative for cotangent vectors.

¢ Lie derivative for %:

— Method 1: Let % be a tangent vector of M; at X.

Bgzi=a (0.5

_y X% 9

T\ ox ox«
7y 0

= (P 50)

o
= (FTETE T
T
~ 9IxP oVt 9x* 9

~ Oxi 9XPB 9xl Jx©

B A

~ oxiox!

— Method 2: we use

B9\ _ iy 9 ip 0
0= L {dx'|5 =) = (Lldx')| 5 =) + (dx'| Ly 5 =)
to obtain
d i _ 0 T ) N
(B 5ldx) = —(55| L (dx)) = —(5 5|5 7dx") = — .

Hence,
9 W d

BT oo
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¢ Lie derivative for vector field A = A"%.

LA = (zA)i+A’<$ ( J )

ox! oxk
: , '\ 9
_ i k i k v
- (atA +V A A" — E: ) 35

* The deformation gradient

d
F: F’an®—

dx!
is a 2-point tensor (see Marsden and Hughes). Its Lie derivative with respective to
the second argument i is
OF + L F = ( OF, + Vo Fl — Fkav dxo‘®i (4.4)
t vl =\ Otl'g TV Ok o Jyk oxi ’

Thus, the evolution equation for F' is

(d+ L4 )F =

* The inverse deformation gradient

(F) = (F )55 wax.

P oxe
is a two-point tensor. Its Lie derivative w.r.t. the second argument is

N\ 0 ,
_ _ k _ - i
@+ L)E) = (E U+ PSS ) ez edd @)

The evolution equation for F~! is

(0 + %) (FH=o.
* Lie derivative for tensor of type (2,0). Let
d d
ij2 g
A=A o
Then the Lie derivative of A is
d d d d v 0 d
i Y o 9 kj . it ¥ _
(0 +L)A = ((d+Z4)A )a ®8 - +A 2 (8 k) ®8x1 +A axi@),?v ((9%)
vl 2OV d d
ij k ij kj“Y 4wV v - Y
(8’A oAl AT R A axﬂ) ox © 9w

This is also known as the upper-convected derivative of the tensor A.
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* Lie derivative for tensor of type (1,1). Let
B = Bljax; ®dx’.
Then the Lie derivative for both argument is

(0 +-%)B = (0 +-24)B}) 3y @ dxl + BS.Z, (0u) @ dx) + Bidy ® %, (dxf)

X

- <8tBj~+vk8ka’ — B4V + BLoyv )ai®dxf. (4.6)

D.5 Interior Product and Cartan magic formula

* Extrusion of a set: Let Xy be a k-dimensional submanifold. Define X(¢) by
Z(t) := ¢:(X0)
and Extrusion of X(z) by
Ey(t1,12) == Un <r<, (o)
The orientation of Ly(t1,;) is defined by
IZy(t1,12) = E(t2) —X(t1) — (9Z)v(t1,12).

* Interior product: For a k-form o, define

/t2<ivoc,S> — (o, Sy(11,12))

31

¢ When X is an n-dimensional submanifold:

dt/ f(t,x)d x—/ txd”x+/ f(t,x)v-ndx 4.7)

This result is called the Reynolds transportation theorem.

e When X is a k-dimensional submanifold, « is a k-form.

d 0
— o= —a+ Lo
dt /zm /zm o~
J :
:/ —a+zvdoc+/ IyQ
(1) Ot ox(t

0
= —o+ivdo+diya.
/Z(t)at ly ly

This shows Cartan’s magic formula

’.,iﬂvzivocl+d0iv.




	I Fluid Mechanics
	Thermodynamics of Fluids
	The Thermodynamics of Gases
	Basic concepts
	Works
	Characterizing adiabatic processes
	Heats
	Ideal Gases and Polytropic Gases

	Other energy forms, Legendre transform
	Enthalpy, Helmholtz, Gibbs free energies
	Legendre Transformation
	Maxwell relations

	Thermodynamic Stability

	Dynamics of Fluid Flows
	Dynamics of Fluid Flows in Eulerian Coordinates
	Conservation of mass, momentum and energy
	Initial conditions and boundary conditions
	General conservation laws in Eulerian coordinate

	Equations of Inviscid Fluid Flows in Lagrangian Coordinates
	Flow maps and velocity fields
	Deformation Gradients
	Euler-Lagrange Transformation Formula

	 Material Derivatives
	Rate-of-changes of geometric variables
	Rate-of-changes of thermodynamic variables

	Lie Derivatives of Scalar Fields and Vector Fields
	Basic Notions of Differential Manifolds
	Fluid Dynamic Equations in terms of Lie derivatives


	Flow Invariants
	Barotropic Flows and Bernoulli Principle
	Degenerate thermo relation
	Bernoulli Principle

	Vorticity and Circulation Theorem
	Circulation Theorem for Barotropic Flows
	Vorticity Equation in Eulerian coordinate
	Vorticity equation in Lagrangian coordinate
	Helmholtz's Vorticity Equation: Deformation of bold0mu mumu /
	Potential Vorticity

	Vortex Momentum
	Vortex Momentum
	Some Flow Conservative Quantities


	Variational Principles for Fluid Flows
	Lagrange's Variational Approach
	Variation of Action w.r.t. Flow Maps for Compressible Flows
	Variation of Action w.r.t. Flow Maps for Incompressible Flows

	Eulerian Variational Approach
	Euler-Poincarè-Hamel's Approach (Dynamically accessible variation)
	Herivel-Lin's Approach (Constrained Variation)


	Hamiltonian Fluid Mechanics
	Hamiltonian Fluid Mechanics in Lagrangian coordinates
	Hamiltonian Mechanics in Lagrangian Variables
	Poisson Bracket in Lagrangian Variables

	Hamiltonian Fluid Mechanics in Eulerian Variables
	Non-canonical Transformation
	Poisson bracket in Eulerian Conservative Variables
	Poisson bracket in terms of (,S,v)
	Casimir and Conservation of Helicity


	Viscous Fluids
	Viscosity
	Stress
	Strain Rate
	The stress and strain-rate relation for Newtonian fluids
	The Momentum Equation and Vorticity Equation for Viscous Flows

	Heat Conduction and Energy Equation
	Second Law of Thermodynamics for Viscous Fluid Flows
	Dissipation of Kinetic Energy
	Entropy Production and the Clausius-Duhem Inequality


	Mathematical Theory of Fluid Dynamics
	Dimensional Analysis
	Vector Field Decomposition
	Hodge-Morrey-Friedrichs Decomposition for Vector Fields
	Extract Each Component of the Decomposition
	Hodge-Morrey-Friedrichs Decomposition for Differential Forms
	Extraction of each component

	Flow Field Decomposition
	Velocity Field Decomposition
	Force Field Decomposition

	2D Potential Flows
	Examples of 2D Potential Flows
	Axisymmetric Potential Flows

	Incompressible Irrotational Flows in 3D
	Compressible Irrotational Flows
	Compressible Potential Flows

	Incompressible Rotational flows
	Examples of incompressible rotational flows

	One Dimensional Compressible Flows
	Riemann problems for hyperbolic conservation laws
	Riemann Problems for Gas Dynamics

	Viscous Flows
	Stokes Flows
	Bifurcation of fluid flows



	II Elasticity
	Kinematics of Elasticity
	Deformation and Strain
	Flow Map and Deformation Gradient
	Examples
	Geometric Meaning of Deformation Gradient
	Deformation Tensors and Strain Tensors
	Advection of Strains

	Infinitesimal Strain
	Displacement and Relative Strains
	Infinitesimal Strains

	Geometric View of Strain
	Tensor Types of Strains
	Advection of Strain in terms of Lie Derivatives

	Stress
	The Stress Tensor in Eulerian Coordinate – Cauchy Stress
	Geometric View of the Cauchy Stress Tensors 
	The Stress Tensor in Lagrangian Coordinate – Piola-Kirchhoff Stress
	Geometric View of Stress


	Stress-Strain Relation for Elasticity
	Constitutive Relation: Stress-Strain Relation
	Frame Indifference
	Isotropic Materials
	Representation of the Cauchy Stress
	Representation of Isotropic Hyper-elastic Stress
	Small Strain Limits

	Hyperelastic Models
	Hyperbolicity for isotropic materials
	Linear materials
	St. Venant-Kirchhoff Model
	 Fluid-solid model
	Ogden hyperelastic models

	Appendix

	Dynamics of Simple Elasticity
	Lagrangian Formulation for Simple Elasticity
	Variational Approach for Compressible Simple Elasticity
	Equation of Motion as a First-order System
	Variational Approach for Incompressible Simple Elasticity

	Eulerian Formulation for Simple Elasticity
	Formulation of Compressible Simple Elasticity in terms of F
	Formulation of Compressible Simple Elasticity in terms of F-1
	Formulation of Compressible Simple Elasticity in terms of B
	Formulation of Incompressible Simple Elasticity

	Advection Equations and The Compatibility Conditions
	Compatibility condition for the deformation gradients

	Geometric Formulation of elasticity
	Hyperbolicity
	Hyperbolicity for Simple Elasticity in the Lagrangian Coordinate
	Hyperbolicity for the first-order system in Lagrangian coordinate
	Hyperbolicity for first-order system in Eulerian formulation


	Thermo-elasticity
	Constitutive law
	First Law of Thermo-Elasticity
	Second Law of Thermo-elasticity
	Entropy Production

	Linear Thermo-elasticity
	Constitutive laws
	The full set of equations
	Plane Waves and Linear Stability Analysis

	Equations for Nonlinear Thermo-elasticity
	Lagrangian formulation
	Eulerian formulation

	Thermo-elastic Models
	neo-Hookean models


	Elastoplasticity
	Flow laws of elastoplasticity
	Decomposition of Deformation
	Constitutive Law
	Plastic yield surface
	Maximum Plastic Dissipation Law


	*Hamiltonian Elasticity
	Poisson bracket formulation

	Mathematical Theory for Simple Elasticity
	Linear Elasticity
	Dynamics of linear elasticity
	Hyperbolicity of linear elasticity
	Energy law
	Dynamics of linear elasticity
	Steady state problem for linear elasticity

	Linear isotropic elasticity
	Characteristic wave modes
	Dynamics of linear isotropic elasticity
	Steady state problem for linear isotropic material

	Hyperbolic System of Nonlinear Elasticity in Lagrangian Coordinate
	Steady State Solutions of Nonlinear Elasticity
	Displacement-traction problems
	Nonuniqueness
	Polyconvexity and uniqueness of steady state problems

	Stability of steady-state solution
	Incompressible elasticity

	Membrane and Shell
	Membrane
	Surface geometry
	Energy law of membranes
	Equation of Motion

	Shells


	III Complex Fluids
	Viscoelasticity
	Physical Phenomena of Viscoelastic media
	Basic phenomena of viscoelastic flows: Creep and Relaxation
	Isothermal/Non-isothermal Viscoelasticity

	Phenomenological Models
	Spring-dashpot models
	Integral Models

	Dumbbell Model (A Microscopic Model)
	Model set up
	Micro Dynamics – the Smoluchowski Equation
	Constitutive relation – Kramer's formula

	Micro-Macro Model 
	Fibre bundle model for rheology
	Homogeneous micro model
	Microscopic Model – the Smoluchowski Equation
	Stress formula – Lagrangian approach
	Stress formula – Eulerian approach
	The full set of micro-macro equations

	Macro Model – Moment Expansion
	Non-isothermal Viscoelasticity

	Two-Phase Flows
	Two-fluid model
	Inviscid flows
	Viscous flows

	Phase field models based on labeled order parameter
	Order Parameter and Free Energy
	Labeled Two-Phase Inviscid Flows
	Labeled Two-Phase Viscous Flows

	Phase field models based on conservative order parameter – Cahn-Hilliard model
	Variation of free energy w.r.t. pre-domain

	Interface structure
	Limiting behaviors of the interfacial layers
	Structure of one dimensional interface


	Notations
	Surface Theory
	Metric, area and first fundamental form
	Second fundamental form and intrinsic properties
	Surface energy

	Vector, Co-vector and Tensor fields
	Gradient and Divergence

	Tensor Calculus
	Vector Space and Dual Space
	Tensor Algebra
	Some tensor notations
	Tensors in Euler and Lagrange coordinates
	Eulerian and Lagrangian coordinates
	Coordinate systems and bases
	Representation of vectors
	Tensor
	Frame invariant Derivatives
	Frame-invariant derivatives


	Lie Derivatives
	Basic notations
	Pull-back and Push-forward Operators
	Lie Derivative for Differential Forms
	Lie derivatives for vectors and tensors
	Interior Product and Cartan magic formula



