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1 Mathematical modeling — discrete versus contin-

uous models

Physical systems are usually modeled by disrete systems or continuous systems. For

instance, one kind of discrete system consist of nodes connected by bonds (or edges)

representing interactions among nodes. A spring-mass system is one of such discrete

systems. The masses are the nodes, whereas the springs are the bonds. In the solid me-

chanics, we may also image the atoms are the nodes and the chemical bonds connecting

them are the bonds. Continuous systems can be viewed as continuous limits of discrete

systems. Solid mechanics, fluid mechanics are such systems.

If the systems do not vary in time, we call them in equilibria. In this situation,

discrete systems are usually modeled by algebraic equations, whereas continuous systems

are usually formulated by differential equations.

Below, I shall use the spring-mass system and elastic bar to explain how to do

mathematical modeling for discrete and continuous systems.

1.1 Modeling spring-mass systems

Consider a spring-mass system which consists of n masses placed vertically between

two walls. The n masses and the two end walls are connected by n + 1 springs. If all

masses are zeros, the springs are “at rest” states. When the masses are greater than

zeros, the springs are elongated due to the gravitation force. The mass mi moves down

ui distance, called the displacement. The goal is to find the discplacements ui of the

masses mi, i = 1, ..., n.

In this model, the nodes are the masses mi. We may treat the end walls are the

fixed masses, and call them m0 and mn+1, respectively. The edges (or the bonds)

are the springs. Let us call the spring connecting mi and mi+1 by edge (or spring) i,

i = 1, ..., n + 1. Suppose the spring i has spring constant ci. Let us call the downward

direction the positive direction.

Let me start from the simplest case: n = 1 and no bottom wall. The mass m1

elongates the spring 1 by a displacement u1. The elongated spring has a restoration

force −c1u1 acting on m1.
3 This force must be balanced with the gravitational force on

3The minus sign is due to the direction of force is upward.
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m1.
4 Thus, we have

−c1u1 + f1 = 0,

where f1 = m1g, the gravitation force on m1, and g is the gravitation constant. From

this, we get

u1 =
f1

c1
.

Next, let us consider the case where there is a bottom wall. In this case, both springs 1

and 2 exert forces upward to m1. The balance law becomes

−c1u1 − c2u1 + f1 = 0.

This results u1 = f1/(c1 + c2).

Let us jump to a slightly more complicated case, say n = 3. The displacements

u0 = 0, u4 = 0, (1.1)

due to the walls are fixed. The displacements u1, u2, u3 cause elongations of the springs:

ei = ui − ui−1, i = 1, 2, 3, 4. (1.2)

The restoration force of spring i is

wi = ciei. (1.3)

The force exerted to mi by spring i is −wi = −ciei. In fact, when ei < 0, the spring

is shortened and it pushes downward to mass mi (the sign is positive), hence the force

is −ciei > 0. On the other hand, when ei > 0, the spring is elongated and it pull mi

upward. We still get the force −wi = −ciei < 0. Similarly, the force exerted to mi by

spring i+ 1 is wi+1 = ci+1ei+1. When ei+1 > 0, the spring i+ 1 is elongated and it pulls

mi downward, the force is wi+1 = ci+1ei+1 > 0. When ei+1 < 0, it pushes mi upward,

and the force wi+1 = ci+1ei+1 < 0. In both cases, the force exterted to mi by spring i+1

is wi+1.

Thus, the force balance law on mi is

wi+1 − wi + fi = 0, i = 1, 2, 3. (1.4)

There are three algebraic equations for three unknowns u1, u2, u3. In principle, we can

solve it.

4The mass m1 is in equilibrium.
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Let us express the above equations in matrix form. First, the elongation:

e = Au, or


e1

e2

e3

e4

 =


1

−1 1

−1 1

−1


 u1

u2

u3


the restoration force:

w = Ce, or


w1

w2

w3

w4

 =


c1

c2

c3

c4




e1

e2

e3

e4


the force balance laws:

Atw = f, or

 1 −1

1 −1

1 −1




w1

w2

w3

w4

 =

 f1

f2

f3


where At is the transpose of A.

We can write the above equations in block matrix form as(
C−1 A

At 0

)(
−w
u

)
=

(
0

−f

)
. (1.5)

This kind of block matrix appears commonly in many other physical systems, for in-

stance, network flows, fluid flows. In fact, any optimization system with constraint can

be written in this form. Here, the constraint part is the second equation. We shall come

back to this point in the next section.

One way to solve the above block matrix system is to eliminate the variable w and

get

Ku := AtCAu = f. (1.6)

The matrix K := AtCA is a symmetric positive definite matrix. It is called the stiffness

matrix. For n = 4, we get

K := AtCA =

 c1 + c2 −c2 0

−c2 c2 + c3 −c3
0 −c3 c3 + c4


Below, we use the Gaussian elimination method to solve this system.
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1.2 Solving the spring-mass system — Gaussian elimination

In this subsection, we shall solve Ax = b by the Gaussian elimination method This

method is equivalent to factor A into LU , a product of a lower triangular matrix and an

upper triangular matrix, where L is normalied with unity diagonal entries. The problem

of solving Ax = b is decomposed into two steps:

Lc = b, Ux = c.

The former can be solved by forward substitution, whereas the latter can be solved

by backward substitution. We give detail discription below. In the case when K is

sysmetric, we can factor A into A = LDLt, where D is a diagonal matrix. The equation

Ax = b can be splitted into

Ld = c, Dd = c, Ltx = d.

They can be solved by forward substitution, direct inversion and backward substitution,

respectively.

1.2.1 Gaussian elimination

Consider solving the system of equations of the following form

Ax = b ,

where A is a non-singular n× n matrix and b ∈ Rn is a vector.

First, let us review some basic properties of lower triangular matrices.

Properties of lower triangular matrices.

• Understanding row operation by a lower triangular matrix:

L2A ≡


1 0 0 0

0 1 0 0

0 l32 1 0

0 l42 0 1



a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44



=


a11 a12 a13 a14

a21 a22 a23 a24

a31 + l32a21 a32 + l32a22 a33 + l32a23 a34 + l32a24

a41 + l42a21 a42 + l42a22 a43 + l42a23 a44 + l42a24

 .
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If you look at the above operations carefully, you will come to the conclusion:

the actions of adding row 2 multiplied by l32 and l42 respectively to row 3 and row

4 respectively, are equal to the operation L2A.

• The product of two elementary lower triangular matrices Now consider

the following two matrices:

L1 =


1 0 0 0

l21 1 0 0

l31 0 1 0

l41 0 0 1

 , L2 =


1 0 0 0

0 1 0 0

0 l32 1 0

0 l42 0 1

 ,

we can directly check

L1L2 =


1 0 0 0

l21 1 0 0

l31 l32 1 0

l41 l42 0 1

 .

Please check the product L2L1 !

You may also define

L3 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 l43 1

 ,

Find the products, L2L1 and L1L2L3.

• A lower triangular system can be solved by forward substitution. Con-

sider the linear equation

c1 = b1

l21c1 + c2 = b2,

l31c1 + l32c2 + c3 = b3,

l41c1 + l42c2 + l43c3 + c4 = b4

You can solve c1 first, then substitute into the second equation to get c2 and so
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on. This is called method of forward substitution. You can check that

L−1
1 =


1 0 0 0

−l21 1 0 0

−l31 0 1 0

−l41 0 0 1

 .

Similar results are true for other Li matrices and any n× n matrix A.

Gaussian elimination and LU factorization Gaussian elimination is a process to

reduce a full n× n system of equations

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

· · · · · ·
an1x1 + an2x2 + · · ·+ annxn = bn

into a upper diagonal system of equations

a11x1 + a12x2 + · · ·+ a1nxn = b1

0 x1 + ã22x2 + · · ·+ ã2nxn = b̃2

· · · · · ·
0 x1 + 0 x2 + · · ·+ ãnnxn = b̃n .

This is equivalent to a process of reducing the full matrix

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · ·
an1 an2 · · · ann


into a upper triangular matrix

Ã =


a11 a12 · · · a1n

0 ã22 · · · ã2n

· · · · · ·
0 0 · · · ãnn

 .
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Next, we will explain the Gaussian elimination and the LU factorization for two

simple examples: one is a 2× 2 system of equations, the other is a 3× 3 system. If you

can understand these two simple examples, then you may easily carry out the Gaussian

elimination and LU factorization for more general n× n systems.

• Gaussian elimination for a 2× 2 matrix

Consider the following 2× 2 system:

Ax ≡

[
2 4

4 11

] [
x1

x2

]
=

[
2

1

]
≡ b . (1.7)

Eliminating x1 in the 2nd equation needs to add row 1 multiplied by -2 to row 2,

that equals

L̃A ≡

[
1 0

−2 1

] [
2 4

4 11

]
=

[
2 4

0 3

]
≡ U.

Using the property of the matrix L̃, the above equation gives

A =

[
2 4

4 11

]
=

[
1 0

2 1

] [
2 4

0 3

]
≡ LU.

This implies a LU factorization of A.

Using the above factorization, solving the system

Ax = b

is equivalent to solving the system

LUx = b,

which can be done as follows:

L c = b, U x = c.

Applying this process to equation (1.7), we have

L c = b ⇐⇒

[
1 0

2 1

] [
c1

c2

]
=

[
2

1

]
,

which gives [
c1

c2

]
=

[
2

−3

]
.
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Then

U x = c ⇐⇒

[
2 4

0 3

] [
x1

x2

]
=

[
2

−3

]
,

which gives the solution of equation (1.7):[
x1

x2

]
=

[
3

−1

]
.

• Gaussian elimination for a 3× 3 matrix

Let us consider one more simple example for the Gaussian elimination:

Ax ≡

 1 1 1

3 6 4

1 2 1


 x1

x2

x3

 =

 0

2

−1/3

 ≡ b . (1.8)

Eliminating x1 in the 2nd equation needs to add row 1 multiplied by -3 to row 2,

and eliminating x1 in the 3rd equation needs to add row 1 multiplied by -1 to row

3, that equals

L̃1A ≡

 1 0 0

−3 1 0

−1 0 1


 1 1 1

3 6 4

1 2 1

 =

 1 1 1

0 3 1

0 1 0

 ≡ U1.

Now eliminating x2 in the 3rd equation needs to add row 2 multiplied by −1/3 to

row 3, that equals

L̃2L̃1A ≡

 1 0 0

0 1 0

0 −1/3 1


 1 0 0

−3 1 0

−1 0 1


 1 1 1

3 6 4

1 2 1

 =

 1 1 1

0 3 1

0 0 −1/3

 ≡ U.

Using the property of the matrix L̃1 and L̃2, the above equation gives

A =

 1 1 1

3 6 4

1 2 1


=

 1 0 0

3 1 0

1 0 1


 1 0 0

0 1 0

0 1/3 1


 1 1 1

0 3 1

0 0 −1/3


=

 1 0 0

3 1 0

1 1/3 1


 1 1 1

0 3 1

0 0 −1/3


≡ LU.
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This completes a LU factorization of A.

Using this factorization, solving the system

Ax = b

is equivalent to solving the system

LUx = b,

which can be done as follows:

L c = b, U x = c.

Applying this process to equation (1.8), we have

L c = b ⇐⇒

 1 0 0

3 1 0

1 1/3 1


 c1

c2

c3

 =

 0

2

−1/3

 ,
which gives  c1

c2

c3

 =

 0

2

−1

 .

Then

U x = c ⇐⇒

 1 1 1

0 3 1

0 0 −1/3


 x1

x2

x3

 =

 0

2

−1

 ,
which gives the solution of equation (1.8): x1

x2

x3

 =

 −8/3

−1/3

3

 .

1.2.2 LU factorization for a n× n matrix

The previous LU factorization can be carried out for more general n × n matrices. In

general, if all the main submatrices of A is non-singular, then we have

A = LU
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where L is a lower triangular matrix with 1 as its diagonal entries, and U is a upper

triangular matrix. Let

D = diag(U),

then we can further factorize A as follows:

A = LDU

where L and U are lower and upper triangular matrices respectively, both matrices with

1 as their diagonal entries, and D is a diagonal matrix.

Remark 1.1. Please refer to the Tutorial Notes and Assignments for more details about

how to find the factorization of the form A = LDU .

1.2.3 LU factorization of a symmetric positive definite matrix

Let A be a symmetric and positive definite matrix. A has a unique decomposition:

A = LDU .

Since A is symmetric, so

A = LDU = UT DLT .

By the uniqueness, we have U = LT , that is,

A = LDLT .

If we write

D1/2 = diag(
√
dii),

then

A = (LD1/2) (LD1/2)T .

This indicates that for any symmetric and positive definite matrix A, we have the fac-

torization of the form

A = L̃ L̃T

where L̃ is a lower triangular matrix. This is called the Cholesky factorization of a

positive definite matrix.

Note that the diagonal entries of L in the Cholesky factorization is not necessary to

be 1, not like the entries of L in the LU factorization.

Remark 1.2. Please check the Tutorial Notes for more details about how to find the

factorization of the form A = LLT .
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1.2.4 Solving the spring-mass system

Now, we go back to the spring-mass system:

Ku = AtCAu = f (1.9)

Due to the symmetry of our matrix K, we can indeed factor K into

K = LDLt

where L is a lower triangular matrix

L =

 1

l21 1

0 l32 1


and D = diag(λ1, λ2, λ3) is a diagonal matrix. Solving Ku = f is now decomposed into

three steps:

Ly = f, Dw = y, Ltu = w.

Each of them can be solved by substitution.

To find the matrices L and D, we multiply LDLt and get the entry terms as

LDLt =

 λ1 λ1l21 0

λ1l21 λ1l
2
21 + λ2 λ2l32

0 λ2l32 λ2l
2
32 + λ3


By comparing the entries of A and LDLt, we get

λ1 = c1 + c2

λ1l21 = −c2
λ1l

2
21 + λ2 = c2 + c3

λ2l32 = −c3
λ2l

2
32 + λ3 = c3 + c4

We can solve λ1, l21, λ2, l32, λ3 successively from the above equations.

Remarks. The above material is mainly from pp. 40-44.

Homeworks
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1. Find the matrix AtCA for general case n.

2. pp. 46, 1.4.11,

3. pp. 46, 1.4.12.

1.3 Modeling an elastic bar

1.3.1 Strain and Stress

Consider a continuous elastic bar5 of length 1, which is hanged vertically. (it is displaced

up and down due to gravity). Set up an x-axis along the bar, so that its positive direction

pointing downwards and its origin is located at the top of the elastic bar. Consider any

point at x along the bar (the position is at x if no external force present), it is displaced

down to x+ u(x) because of the action of the external force of gravity6. Function u(x)

is called the displacement. The stretching at any point is measured by the derivative

e = du/dx, called the strain. If u is a constant, the elastic bar is unstretched. Otherwise

the stretching of the bar produces an internal force called stress (one can experience this

force easily by pulling the two ends of an elastic bar). By experiments, people find this

internal force is proportional to the strain in the bar, i.e.

(internal force) w(x) = c(x)
du

dx
,

where c(x) is a constant determined by the elastic material, or a function if the material

is inhomogeneous.

To set up the model, we take a small piece of the bar [x, x + 4x], its equilibrium

requires all forces acted on it to be balanced. We have(
ac(x)

du

dx

)
x+4x

−
(
ac(x)

du

dx

)
x

+ (ρ4xa)g = 0, (1.10)

where g is the gravitational constant, a the cross-sectional area, and ρ(x) the density at

position x.

Dividing both sides of equation (1.10) by a4x, then taking ∆x→ 0, we get

− d

dx
(c(x)

du

dx
) = f(x) (1.11)

5You may pull back and forth an elastic bar and its length is much bigger than its size of cross-section.
6Some other external force may be considered.
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where f(x) = g ρ(x), external force per unit length.

The equation (1.11) must come with appropriate physical boundary conditions to

ensure it is well-posed.

1.3.2 Boundary conditions

(a) Both ends of the elastic bar are fixed, so no displacements:

u(0) = 0, u(1) = 0.

This is called Dirichlet boundary conditions.

(b) Top end of the elastic bar is fixed (no displacement), the other end is free (no

internal force since it is in the air):

u(0) = 0, w
∣∣
x=1

= c(x)
du

dx

∣∣
x=1

= 0 .

The first is called a Dirichlet boundary condition, the second is called a Neumann

boundary condition. The boundary conditions

u(0) = 0, or u(1) = 0

or

c(x)
du

dx

∣∣
x=1

= 0

are all called homogeneous boundary conditions, while the boundary conditions

u(0) = 1, or u(1) = −2,

or

c(x)
du

dx

∣∣
x=1

= −3

are all called non-homogeneous boundary conditions.

So the complete model for an elastic bar is :

− d

dx
(c(x)

du

dx
) = f(x), 0 < x < 1

with boundary conditions

u(0) = 0, u(1) = 0

or

u(0) = 0, c(x)
du

dx

∣∣
x=1

= 0 .

This differential equation is called a two-point boundary value problem7.

7Think about why we need two boundary conditions.
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1.4 Solutions of the elastic bar model

We now try to find the solution of the following boundary value problem{
− d

dx

(
c(x)du

dx

)
= f(x), 0 < x < 1

u(0) = 0, c(x)du
dx

∣∣
x=1

= 0 .
(1.12)

Solution. Integrating the equation (1.12) over (x, 1), we obtain

−c(x)du
dx

∣∣1
x

=

∫ 1

x

f(t) dt ,

using the boundary conditions, we have

c(x)u′(x) =

∫ 1

x

f(t)dt ,

or

u′(x) =
1

c(x)

∫ 1

x

f(t)dt .

Integrating over (0, x) gives

u(x) =

∫ x

0

1

c(x)

∫ 1

x

f(t)dtdx, (1.13)

this is the required exact solution of the problem (1.12). ]

Example 1.1. Find the exact solution of the problem{
−d2u

dx2 = x2, 0 < x < 1

u(0) = 0, du
dx

∣∣
x=1

= 0 .
(1.14)

Solution. Integrating the equation (1.14) over (x, 1), we obtain

−du
dx

∣∣1
x

=

∫ 1

x

t2 dt ,

using the boundary conditions, we have

u′(x) =

∫ 1

x

t2dt =
1

3
− 1

3
x3.

Integrating over (0, x) gives

u(x) =

∫ x

0

(
1

3
− 1

3
t3)dt =

1

3
x− 1

12
x4 . (1.15)

It is easy to verify that this u(x) is really the solution of the system (1.14). ]
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Example 1.2. Find the exact solution of the following problem

− d

dx

(
c(x)

du

dx

)
= f(x), 0 < x < 1

with the boundary conditions

u(0) = −1, u(1) = 1 .

Solution. Write the equation as

−(c(x)u′(x))′ = f(x),

then integrating over (x, 1), we get

c(x)u′(x) = C0 −
∫ 1

x

f(t) dt,

where C0 is an integration constant. This implies

u′(x) =
C0

c(x)
− 1

c(x)

∫ 1

x

f(t) dt .

Now integrating over (0, x) gives

u(x) = −1 + C0

∫ x

0

1

c(t)
dt−

∫ x

0

1

c(x)

∫ 1

x

f(t) dt .

Using the boundary condition u(1) = 1, we can find the integration constant C0. ]

1.5 Connection between continuous model and discrete model

The analogy between the continuous model and the discrete model. We make

a table to show the analogy between the spring-mass model and the elastic bar model.

We should explain why the conjugate of the operator d/dx is −d/dx. To see this, we

consider the following spaces:

C1(0, 1) = {u : [0, 1] → R|u is continuously differentiable. }
C1

0(0, 1) = {u : [0, 1] → R|u is continuously differentiable and u(0) = u(1) = 0}

These are vector spaces. We can define inner product

(u, v) =

∫ 1

0

u(x)v(x)dx
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variables and relations spring-mass elastic bar

displacement ui u(x)

elongation (strain) ej e(x)

restoration force (stress) wj w(x)

gravitation force fi f(x)

connection relation e = Au e = d
dx
u

Hook’s law w = Ce w(x) = c(x)e(x)

Force balance law Atw = f − d
dx
w = f

We may think the differential operator d/dx maps C[0, 1] into C[0, 1]. The formula of

integration by parts gives∫ 1

0

du

dx
vdx = −

∫ 1

0

u
dv

dx
dx+ [uv]

∣∣∣x=1

x=0
.

When u, v ∈ C1
0 [0, 1], we get

(
d

dx
u, v) = (u,− d

dx
v).

This is why the conjugate of d/dx is −d/dx.

Elastic bar model is a continuous limit of the spring-mass system. In the

continuous model (1.11), we divide the domain [0, 1] into n + 1 subintervals uniformly,

each has length ∆x = 1/(n+ 1). We label grid points i∆x by xi. We imagine there are

masses mi at xi with springs connecting them consecutively. Each spring has length ∆x

while it is at rest. According to the spring-mass model, we have

ci(ui − ui−1)− ci+1(ui+1 − ui) = mig. (1.16)

where ci is the spring constant of the spring connecting xi to xi+1. As ∆x ≈ 0 with

xi ≈ x, we have

mi ≈ ρ(xi)∆x, ci ≈ c(xi−1/2)/∆x.

Here, ρ is the density. Why the spring constant is prportitional to 1/∆x? Think about

the problem: Let us connect n springs with the same spring constant, what is the

resulting spring constant?

Now, we this approximation, we get that for small ∆x, the spring-mass system

becomes
1

∆x

(
c(xi−1/2)(ui − ui−1)− c(xi+1/2)(ui+1 − ui)

)
= ρ(xi)∆x. (1.17)
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As we take ∆x→ 0, we get the equation for the elastic bar:

− d

dx

(
c(x)

d

dx
u(x)

)
= f(x),

where f = gρ.

Notice that the end displacements u0 and un+1 satisfy the fix-end boundary conditions

u0 = 0, un+1 = 0.

which correspond to the boundary condition of u(·) in the elastic bar model:

u(0) = 0, u(1) = 0.

Remark. This part comes from pp. 153–162.

Homeworks.

• pp. 164, 3.1.2,

• pp. 164, 3.1.4,

• pp. 164, 3.1.6,

• pp. 165, 3.1.15,

• pp. 165, 3.1.16
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2 Equilibrium Equations and Variation Principles

In previous section, we have formulated the spring-mass system and an elastic bar model

based on force balance laws. This is indeed the Newtonian mechanics. In solving con-

strained motion problem, Lagrange reformulate the Newtonian mechanics in variation

form. This formulation solves not only the constrained problem, but has its own gen-

erality and becomes a fundation of mechanics. This section is devoted to the variation

formulation of the spring-mass system and elastic bar problem.

In previous section, we have formulated the spring-mass system in equilibrium as

algebraic equations. We have formulated in two ways:

• the displacement-force form

Ku := AtCAu = f. (2.1)

where

u =

 u1

...

un

 , A =


1

−1 1
. . . . . .

−1 1

−1

 , C =


c1

c2
. . .

cn+1


• the stress-displacement form:

(
C−1 A

At 0

)(
−w
u

)
=

(
0

−f

)
, w =

 w1

...

wn+1

 . (2.2)

The first formulation is equivalent to a minimizational problem:

Minu P (u) :=
1

2
(Ku, u)− (f, u).

The physical meaning of this quantity is the total potential energy. The first term is

the potential energy stored in the springs. The second term is the gravitation potential

energy of the masses. Thus, the equilibrium solution is the minimal energy solution.

The second formulation will be reformulated as a constrained minimization problem:

Minw Q(w) :=
1

2
(C−1w,w)

23



with constraint Atw = f.

We shall show the two variational formulations are equivalent.

We will also derive the same variational formulations for the equilibrium elastic bar

system.

2.1 Variation formulation for the spring-mass system

2.1.1 Mimimum principle

Consider the functional

P (u) :=
1

2
(Ku, u)− (f, u),

where K is a symmetric positive definite matrix in Rn. The directional derivative of P

at u in the direction v is defined as

P ′(u)v =
d

dt

∣∣∣∣
t=0

P (u+ tv)

P ′(u) is called the gradient (or the first variation) of P at u. We can compute this

gradient: 8

P ′(u)v =
d

dt

∣∣∣∣
t=0

1

2
(K(u+ tv), u+ tv)− (f, u+ tv)

=
1

2

(
(Kv, u) + (Ku, v)

)
− (f, v)

= (Ku− f, v).

Here, we have used K being symmetric. Thus,

P ′(u) = Ku− f.

The second derivative is the Hessian. It is

P ′′(u) = K.

If u∗ is a minimum of P (v), then P ′(u∗) = 0. This is called the Euler-Lagrange equation

of P .

8Here, I use the following properties: (f, g)′ = (f ′, g) + (f, g′). This is because (f, g) =
∑

i figi and

(f, g)′ =
∑

i

(
f ′igi + fi, g

′
i

)
= (f ′, g) + (f, g′).
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Conversely, If u∗ satisfies the Euler-Lagrange equation Ku∗ = f , then u∗ is the

minimum of P (v). In fact, for any v, we compute P (v)− P (u∗). We claim

P (v)− P (u∗) =
1

2
(K(v − u∗), v − u∗).

To see this, since P (v) is a quadratic function of v, we can complete the squares:

P (v)− P (u∗) =
1

2
(Kv, v)− (f, v)− 1

2
(Ku∗, u∗) + (f, u∗)

=
1

2
(Kv, v)− 1

2
(Ku∗, u∗)− (f, v − u∗)

=
1

2
(Kv, v)− 1

2
(Ku∗, u∗)− (Ku∗, v − u∗)

=
1

2
(Kv, v) +

1

2
(Ku∗, u∗)− (Ku∗, v)

=
1

2
(K(v − u∗), v − u∗) ≥ 0.

Hence we get that u∗ is a minimum. In fact, u∗ is the only minimum because P (v) =

P (u∗) if and only if (K(v−u∗), v−u∗) = 0. Since K is positive definite, we get v−u∗ = 0.

We conclude the above discussion as the follows.

Let P (u) := 1
2
(Ku, u) − (f, u) and K is symmetric positive definite.

The vector u∗ which minimizes P (v) must satisfy the Euler-Lagrange

equation P ′(u∗) = Ku∗ − f = 0. The converse is also true.

The physical meaning of P is the total potential energy of the spring-mass system.

Indeed,
1

2
(CAu,Au) =

n∑
i=1

1

2
ci(ui − ui−1)

2

is the sum of the potential energy stored in the spring, whereas the term

(f, u) =
n∑

i=1

fiui

is the sum of the works done by the mass mi with displacement ui for i = 1, ..., n. The

term −(f, u) is the gravitational potential due to the masses mi with displacements ui.

2.1.2 Constrained Minimization

Next, let us study a minimization problem with constraint. We recall an important

technique to solve constrained optimization problem is the technique of Lagrange multi-

plier. It converts a constrained optimization problem to an optimization problem without
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constraint. Consider

Minf(x, y, z) subject to g(x, y, z) = 0. (2.3)

This problem is equivalent to a variation problem without constraint: Consider

L(x, y, z, λ) := f(x, y, z) + λg(x, y, z) (2.4)

The critical solution of (2.3) is also a critical solution of (2.4), and vice versa. The

critical solution of (2.4) satisfies

∂L

∂x
= 0,

∂L

∂y
= 0,

∂L

∂z
= 0,

∂L

∂λ
= 0.

There are four equations for four unknowns (x, y, z, λ), we can solve it in principle. The

last equation simply means that the gradient of f is parallel to the gradient of g.

If there are two constraints, say

g1(x, y, z) = 0, g2(x, y, z) = 0,

then we simply add one more Lagrange multiplier, namely, define L = f + λ1g1 + λ2g2

and look for critical solution of L:

∂L

∂x
= 0,

∂L

∂y
= 0,

∂L

∂z
= 0,

∂L

∂λ1

= 0,
∂L

∂λ2

= 0.

The last two equations means that ∇f is a linear combination of ∇g1 and ∇g2.

Next, for the spring-mass system, we consider the following variational problem with

constraint:

Min Q(w) :=
1

2
(C−1w,w), subject to Atw = f. (2.5)

The minimization problem of the equilibrium spring-mass system states that the stress

w is determined by minimizing the potential energy it determines under a force balance

constraint Atw = f . 9

9We have learned that the physical meaning of w is the stress, or the restoration force, or the internal
force in the spring. Notice that w is a vector (w1, ..., wn+1). So, its component wj is the stress of the
spring j. The quantity c−1

1 w1 is the elongation of the spring 1. When we vary w1 from 0 to w1, the
potential energy stored in the spring 1 is∫ w1

0

c−1
1 w1 dw1 =

1
2
c−1
1 w2

1.

After we sum these potential energies over all springs, we get that Q(w) = 1
2 (C−1w,w) the total

potential energy stored in all springs due to the stress w.
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Since The constraint equation Atu − f = 0 is in Rn, there should be n Lagrange

multipliers, say, u1, ..., un, or, in short, the Lagrange multiplier u ∈ Rn. Consider

L(u,w) :=
1

2
(C−1w,w)− (u,Atw − f). (2.6)

The Euler-Lagrange equation for this unconstrained variation problem is

∂L

∂w
= C−1w − Au = 0

∂L

∂u
= −Atw + f = 0,

which is precisely the equation (2.2). In the Lagrange formulation, he introduced

the Lagrange multiplier u, which is indeed the displacements of the masses, and from

∂L/∂w = 0, we get that they are related to the stress w by w = CAu.

So far, we have seen that if w∗ satisfies the constrained minimization problem, then

there exists u∗ such that (u∗, w∗) is a critical point (unconstrained) of L(u,w).

Conversely, if (u∗, w∗) is a critical point of L(u,w), we want to show that Q(w) ≥
Q(w∗) for all w satisfying the constraint Atw = f . To see this, since Q is a quadratic

function, we have

Q(w)−Q(w∗) =
1

2
(C−1w,w)− 1

2
(C−1w∗, w∗)

= (C−1w∗, w − w∗) +
1

2
(C−1(w − w∗), w − w∗)

We claim the first term is zero. To see this, since both w and w∗ satisfy the constraint

Atw = f , we get At(w − w∗) = 0. Next, from ∂L/∂w = 0, C−1w∗ = Au∗. Hence,

(C−1w∗, w − w∗) = (Au∗, w − w∗) = (u∗, At(w − w∗)) = 0.

Thus, we get

Q(w)−Q(w∗) =
1

2
(C−1(w − w∗), w − w∗) ≥ 0.

Further, w∗ is the unique minimum among all w satisfies the constraint.

We conclude this discussion as the follows.
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The constrained minimization problem:

Min Q(w) :=
1

2
(C−1w,w), subject to Atw = f

is equivalent to the unconstrained variational problem:

Find the critical points of L(u,w) :=
1

2
(C−1w,w)− (u,Atw − f)

whose solution should satisfy the Euler-Lagrange equation:

∂L

∂w
= C−1w − Au = 0

∂L

∂u
= −Atw + f = 0.

Remark. The critical point (u∗, w∗) is indeed a saddle point. You may think about

the case u ∈ R and w ∈ R. In this case, C is a scalar, say c and A is also a scalar, say a.

The corresponding L(u,w) = 1
2
c−1w2 − auw + uf . One can readily see that the critical

point of this function L is a saddle point.

Below, we give a more detail description about this saddle point. We shall establish

the following equivalence table:

(1) P ′(u) = Ku− f = 0, where K = AtCA (2)

{
∂L
∂w

= C−1w − Au = 0
∂L
∂u

= −Atw + f = 0

L(u,w) := 1
2
(C−1w,w)− (u,Atw − f)

(3) Maxu(−P (u)) := 1
2
(CAu,Au)− (f, u) (4) Min Q(w) := 1

2
(C−1w,w), subject to Atw = f

(5) Maxu MinwL(u,w) (6) Minw MaxuL(u,w)

We have established the equivalences: (1)⇔(2), (1)⇔(3), (2)⇔(4). Next, we show
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(4)⇔(6). In fact,

MaxuL(u,w) = MaxuQ(w)− (u,Atw − f) =

{
Q(w) if Atw − f = 0,

+∞ if Atw − f 6= 0

Thus, solving (6) is equivalent to (4).

Next, we show (3)⇔(5). For each fixed u, we solve MinwL(u,w). If w̄(u) is the

minimum of L(u, ·) then w̄(u) satisfies

∂L

∂w
= 0,

which gives C−1w̄ − Au = 0, or w̄ = CAu. We plug this into L(u,w) to get

L(u, w̄(u)) =
1

2
(CAu,Au)− (u,AtCAu) + (u, f)

= −1

2
(AtCAu, u) + (u, f)

= −P (u).

The critical point w̄(u) is indeed a minimum. In fact,

L(u,w)− L(u, w̄(u)) =
1

2
(C−1w,w)− (u,Atw − f)− 1

2
(C−1w̄(u), w̄(u)) + (u,Atw̄(u)− f)

=
1

2
(C−1w,w)− 1

2
(C−1w̄(u)− (u,At(w − w̄(u)))

=
1

2
(C−1w,w)− 1

2
(C−1w̄(u)− (Au,w − w̄(u))

=
1

2
(C−1w,w)− 1

2
(C−1w̄(u)− (C−1w̄(u), w − w̄(u))

=
1

2
(C−1w,w) +

1

2
(C−1w̄(u)− (C−1w̄(u), w)

= (C−1(w − w̄(u)), w − w̄(u)) ≥ 0.

Thus,

MinwL(u,w) = −P (u).

This shows (3)⇔(5).

We call the minimization problem (4) the primal problem:

Primal Problem: Min Q(w) :=
1

2
(C−1w,w), subject to Atw = f.

and the maximization problem (3) the dual problem.

Dual Problem: Max(−P (u)) :=
1

2
(CAu,Au)− (f, u) (2.7)
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The equivalence between the primal and dual problems can be stated as the following

theorem.

1. The primal problem (2.5) and the dual problem (2.7) are equiv-

alent. This means that if w∗ and u∗ are respectively the solutions

of (2.5), (2.7), then they are related through

C−1w∗ = Au∗.

2. The solution pair (u∗, w∗) is a saddle point of L and it satisfies

P (u∗) +Q(w∗) = 0. (2.8)

Or equivalently

Maxu MinwL(u,w) = Minw MaxuL(u,w) = L(u∗, w∗) (2.9)

Remark. The equivalence (2.9) is called the MiniMax principle. For a general L, we

always

Maxu MinwL(u,w) ≤ Minw MaxuL(u,w)

To see this, we have for any u1 and w,

L(u1, w) ≤ MaxuL(u,w)

We then take minimum over w. This gives

MinwL(u1, w) ≤ Minw MaxuL(u,w)

The right-hand side is a number. We then take maximum over u1. This gives

Maxu1 MinwL(u1, w) ≤ Minw MaxuL(u,w).

2.2 A general framework for applications

In the spring-mass system, we have masses mi connected by springs. In general, we

consider a network consisting of n nodes and m directed edges. These masses mj are

the nodes, whereas the springs are the directed edges. The direction means that the
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positive direction is from mj−1 to mj. At each node, we associate it with a displacement

uj, called the nodal variable. At each spring, we associate it with an elongation of the

spring ei and a restoration force wi, called the edge variable. They are related by the

Hook’s law: w = Ce. We then use connectivity relation and force balance laws to derive

equations for the nodal and edge variables.

Such an approach can be quite general. Let us use the following electricsl network

to understand general framework.

Electrical network. Consider an electrical network which consists of wires with re-

sistors, batteries. The nodes are those points where two wires meet. The directed edges

are the wires and the direction indicates the direction of the current. Suppose there are

n nodes and m directed edges. At each node, a potential xj is associated with. This is

the nodal variable. On each edge, the variable ei (with sign), i = 1, ...,m denotes the

potential drop on edge i. The connectivity of the nodes and edges can be characterized

by the following matrix A0: its column represents the nodes, and its row represent the

edges; its entries are defined by

ai,j =


1 means that edge i enters node j

−1 means that edge i leaves node j

0 means that edge i does not connect to node j

(2.10)

This matrix A0 is called connectivity matrix. Notice that the sum of each row of A0 is

zero because for each directed edge i, its starting node has coefficient −1 and end node

has coefficient +1. This means that only the difference of xj and xk is mattered. Hence,

we can normalize a particular node so that its nodal value xj = 0. Such a xj is called

grounded. By eliminating this xj, we call the reulting nodal variable x and the resulting

matrix A. Notice that the remaining xj are independent now. Notice that The column

vector aj records the the connection of edges to node xj. The independence of xj means

that the column vectors a1, ..., an of A are independent. This is equivalent to say that

the matrix AtA = ((ai, aj))n×n are symmetric positive definite matrix. This is our basic

assumption on A. The node-edge relation is denoted by

e = −Ax.

If there is a battery connected to that edge, there is an additional potential drop or

increase, depending on the connected direction of the battery. So in general we have

e = b− Ax,
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where b represents the battery potential drop.

On each edge, we associate it with a current yj, called the edge variables. The

relation between e and y is defined by the Ohm’s law: e = Ry, where R is the resistent:

R =


R1

R2

. . .

Rm

 .

Finally, at each node, there is a Kirchhoff’s current law, which requiring that the net

flow at node i equals an appled source fi. That is

Aty = f.

General framework Consider a directed network which consists of N nodes and m

directed edges. At each node, we associate it with a nodal variable xi, i = 1, ..., N .

At each edge, we associate with three edge variables ej, bj and yj, j = 1, ...,m. The

nodal variable x and the edge variable e are connected by the connectivity matrix A

with possible extra input b. That is,

e = b− Ax

where A is defined by (2.10). The edge variable y and e are related by some physical

law:

y = Ce.

At each node, a Kirchhoff current law should be satisfied

Aty = f.

Or in matrix form: (
C−1 A

At 0

)(
y

x

)
=

(
b

f

)
(2.11)

These are called the fundamental equilibrium equations for the directed network.

We list the table of the discrete models that we have studied.

For general directed graph case, the corresponding variations are the follows. We

define

Q(y) =
1

2
(C−1y, y)− (b, y),
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Directed graph spring-mass electrical network

nodal variable: xj displacements: uj potential xj

nodal source: fj gravitational force fj current inject fj

edge variables: ei elongation ei potential drop ei

edge variables: yi restoration force wi current yi

edge sources: bi battery bi

egde relation: y = Ce w = Ce y = Ce

node-edge connection: e = b− Ax e = Au e = b− Ax

edge-node connection: Aty = f Atw = f Aty = f

The constraint is

Aty = f.

The Lagragian L becomes

L(x, y) = Q(y) + (x,Aty − f).

The dual function P is defined to be

P (x) := − MinyL(x, y) =
1

2
(C(b− Ax), b− Ax) + (x, f)

We have the same equivalence table.

(1) P ′(x) = AtC(Ax− b) + f = 0 (2)

{
∂L
∂y

= C−1y + Ax− b = 0
∂L
∂x

= Aty − f = 0

L(x, y) := 1
2
(C−1y, y)− (b, y)− (x,Aty − f)

(3) Maxx(−P (x)) (4) Min Q(y) subject to Aty = f

(5) Maxx MinyL(x, y) (6) Miny MaxxL(x, y)
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A geometric intepretation To give a geometric intepretation, we first assume C = I.

This assumption does not hurt because we can make a change of variable y′ = C−1/2y.

Then we use y′ instead of y. Next, we can replace

Q(y) =
1

2
(y, y)− (y, b)

by

Q(y) =
1

2
‖y − b‖2.

because their minimization in y differes only by a constant ‖b‖2/2. Thirdly, we may

assume either f = 0 or b = 0.

1. For the first case, we first find y0 such that Aty0 = f . With this, the constraint

becomes

At(y − y0) = 0,

We then replace y − y0 by y and b− y0 by b. With this substitution, the function Q(y)

remains unchange. But, can we find such a y0? The answer is positive. For we can solve

AtAx0 = f

because AtA is symmetric positive definite. Then we choose y0 = Ax0.

2. For the second case, we replace y − b by y. Then the constraint becomes

At(y + b) = f

We then replace f − Atb by f .

Let us study geometric intepretation for the first case. The second case is the same

through a translation of y.

Our primal problem is

Miny
1

2
‖y − b‖2 subject to Aty = 0.

Here, y, b ∈ Rm. A is a m × n matrix with column vectors a1, ..., an. That is, A =

(a1, ..., an). Let us first characterize the constraint Aty = 0. Let

Waj
= {y|(y, aj) = 0}.

It is a hyperplane in Rm with normal aj. Let

W = {y| Aty = 0} = {y|(y, aj) = 0, j = 1, ..., n}
= Wa1 ∩ · · · ∩Wan
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Thus, the constraint Aty = 0 means that y ∈ W and the primal problem is to find

the shortest distance from b to W . This is nothing but the orthogonal projection of b

onto W . Let us call this projection y∗. For instance, let us take m = 3 and n = 2.

A = (a1, a2) with

a1 =

 1

−1

0

 , a2 =

 0

1

0

 .

The constraint space W is the z-axis. If b = (1, 2, 3)t, then y∗ = (0, 0, 3)t.

In general, it is not easy to find y∗ directly. So we will find it through the help of

the dual problem. This will explain below.

Next, let us study the the Lagragian.

L(x, y) =
1

2
‖y − b‖2 + (x,Aty) =

1

2
‖y − b‖2 + (Ax, y)

We notice that Ax = x1a1 + · · ·+ xnan ∈ Rm. Let

V = {a = x1a1 + · · ·+ xnan|x ∈ Rn} = Span{a1, ..., an}

It is important to notice that Rm = V
⊕

W . This means that V ⊥ W and Rm = V +W .

To see V ⊥ W , we know that any a ∈ V is a linear combination of ai, i = 1, ..., n, and

any y ∈ W is perpendicular to ai, i = 1, ..., n. Hence a ⊥ y. To see Rm = V + W , let

b ∈ Rm, we project b onto V by finding a∗ =
∑

j x
∗
jaj such that

(b− a∗, ai) = 0, i = 1, ..., n.

This leads to the equations

n∑
j=1

(ai, aj)x
∗
j = (b, ai), i = 1, ..., n

Or in matrix form

AtAx∗ = g

where gi = (b, ai). We have known this is solvable because AtA is symmetric positive

definite. With this projection a∗, the vector b is decomposed into

b = a∗ + (b− a∗)

with a∗ in V and (b− a∗) ∈ W .
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Each x ∈ Rn can be identify a vector a =
∑n

i=1 xiai ∈ V and vice versa. So we write

L(x, y) as

L(a, y) =
1

2
‖b− y‖2 + (a, y).

The minimum over y gives

−P (a) = MinyL(a, y).

This minimum occurs at
∂L

∂y
= 0.

That is

ȳ − b+ a = 0.

Hence

−P (a) = L(x, ȳ(x)) =
1

2
‖a‖2 + (a, b− a)

= −1

2
‖a− b‖2 +

1

2
‖b‖2.

Thus, the dual problem

Maxa∈V (−P (a)) := −1

2
‖a− b‖2 +

1

2
‖b‖2

is equivalent to find

Mina∈V
1

2
‖b− a‖2.

We can simply project orthogonally b onto V . Let us call this projection a∗, or a∗ =∑n
j=1 x

∗
jaj.

Now, y∗ is the orthogonal projection of b onW whereas a∗ is the orthogonal projection

of b onto W . From Rm = V
⊕

W , we get y∗ = b− a∗. By the pythagoras’ law

‖b‖2 = ‖a∗‖2 + ‖y∗‖2.

But this is precisely the duality theorem. It says

−P (a∗) = max
a∈V

min
y∈Rm

L(a, y) = min
y∈Rm

max
a∈V

L(a, y) = min
y∈W

Q(y) = Q(y∗)

We have seen that −P (a∗) = −1
2
‖a∗− b‖2 + 1

2
‖b‖2, whereas Q(y∗) = 1

2
‖b− y∗‖2. So, the

duality theorem −P (x∗) +Q(y∗) = 0 is nothing but the Pythagoras’ law.

Next, let us give another geometric picture. Let us rewrite L as

L(λa, y) =
1

2
‖b− y‖2 + λ(a, y)
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with a ∈ V and ‖a‖ = 1, λ ∈ R. The primal problem is

min
y∈Rm

max
x∈Rn

L(x, y) = min
y∈Rm

max
a∈V

L(a, y) = min
y∈Rm

max
a∈V,‖a‖=1

max
λ∈R

L(λa, y).

We want to convert it to

min
y∈Rm

max
a∈V,‖a‖=1

max
λ∈R

L(λa, y) = max
a∈V,‖a‖=1

min
y∈Rm

max
λ∈R

L(λa, y).

It is easy to see that

max
λ∈R

L(λa, y) =

{
1
2
‖b− y‖2 if (a, y) = 0

+∞ otherwise.

Thus,

min
y∈Rm

max
λ∈R

L(λa, y) = min
y∈Wa

1

2
‖y − b‖2.

This is equivalent to find the minimal distance to the hyperlane Wa. We notice that

a ∈ V if and only if Wa passes through W (prove in homework). The answer to this

minimal distance problem is simple. The minimum occurs at

ȳ(a) = b− λa, (a, ȳ) = 0.

This gives

ȳ(a) = b− (a, b)a.

Here, we have used ‖a‖ = 1. The minimum distance is

−P̃ (a) =
1

2
‖b− ȳ‖2 =

1

2
|(a, b)|2.

The maximum of |(a, b)|2 over all a ∈ V with ‖a‖ = 1 occurs at a∗/‖a∗‖. This is because

the orthogonal decomposition:

b = a∗ + y∗

with a∗ ∈ V and y∗ ∈ W . Hence (a, b)2 = (a, a∗)2 with maximum occurs when a =

a∗/‖a∗‖. The maximum distance is ‖a∗‖. This means that −P (x∗) = −P̃ (a∗) is the

maximum of the distance of b to all hyperplanes passing through W .

Remark. Read pp. 87-114.
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Homeworks.

• pp. 94, 2.1.8

• pp. 95, 2.1.9

• pp. 95, 2.1.10

• Show that

− MinyL(x, y) =
1

2
(C(b− Ax), b− Ax) + (x, f)

• Let P (x) := 1
2
(C(b−Ax), b−Ax)+(x, f), show that P ′(x) = AtC(Ax−b)+f = 0.

• pp. 107, 2.2.3 (a), (b)

• pp. 107, 2.2.5

• pp. 108, 2.2.7

• pp. 108, 2.2.10

• If Rm = V
⊕

W , where V = span{a1, ..., an}, then hyperplane Wa containing W

if and only if a ∈ V .

2.3 Variational formulations for differential equations

In previous section, we have formulated the elastic bar problem by a differential equation.

We can solve it analytically. However, this analytic method does not work in general,

not for high dimensional problems, not even for a slightly general problems in one space

dimension, the Sturm-Liouville system:

− d

dx

(
c(x)

du

dx

)
+ q(x)u(x) = f(x), 0 < x < 1 (2.12)

with boundary conditions

u(0) = 0, c(x)
du

dx

∣∣
x=1

= 0 (2.13)

• Remark. The Sturm-Liouville system, with homogeneous or non-homogeneous

boundary conditions have many physical applications. For instance,

(a) in the quantum theory, the equation is called the Schrödinger’s equation.
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(b) For modeling the oscillations of a drum, it is called the Bessel’s equation.

One important method to study the properties of the solutions to the equations (2.12)-

(2.13) is to use the integral form, often called the variational formulation.

We shall discuss how to derive the variational formulation for the differential equa-

tion (2.12)-(2.13). The same methodology can be applied to any other second order

differential equations.

The derivation is standard and simple. To do so, we multiply both sides of equation

(2.12) by an arbitrary test function v satisfying v(0) = 0 to obtain

− d

dx
(c(x)

du

dx
)v + q(x)uv = f(x)v ,

then integrating over (0, 1) gives∫ 1

0

(
− d

dx

(
c(x)

du

dx

)
v + q(x)uv

)
dx =

∫ 1

0

f(x)vdx . (2.14)

Now by integration by parts and the boundary conditions (2.13), we have∫ 1

0

(
c(x)

du

dx

dv

dx
+ q(x)uv

)
dx =

∫ 1

0

f(x)v dx.

This leads to the variational formulation for the equations (2.12)-(2.13):

Find the solution u such that u(0) = 0 and

a(u, v) = g(v) for any v satisfying v(0) = 0 (2.15)

where a(·, ·) and g(·) are given by

a(u, v) =

∫ 1

0

(
c(x)

du

dx

dv

dx
+ q(x)uv

)
dx ,

g(v) =

∫ 1

0

f(x)v dx .

Remark. The advantage of this formulation is that it involves only first order deriva-

tives of u, not second derivatives in the original differential equation formulation. Thus,

it has less regularity constraint on the solution u.

One can check that a(·, ·) is linear with respect to each variable, and is symmetric,

i.e., for any u and v,

a(u, v) = a(v, u) .
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Furthermore, we know that a(·, ·) is also positive, i.e.,

a(v, v) > 0 ∀ v 6= 0 .

Equivalence between boundary value and variational problems

In the following, we shall verify that

The boundary value problem (2.12)-(2.13) is equivalent to the vari-

ational problem (2.15).

First, we know already that the solution u of the boundary value problem (2.12)-

(2.13) is also a solution to the variational equation (2.15). Next, we will confirm that

any solution u of (2.15) is also a solution of the boundary value problem (2.12)-(2.13).

In fact, since u satisfies (2.15), we have∫ 1

0

(
c(x)

du

dx

dv

dx
+ q(x)uv

)
dx =

∫ 1

0

f(x)v dx ∀ v with v(0) = 0 .

Using integration by parts, we obtain∫ 1

0

(
− d

dx

(
c(x)

du

dx

)
v + q(x)uv

)
dx+ c(x)

du

dx
v
∣∣x=1

x=0
=

∫ 1

0

f(x)v dx . (2.16)

As the test function v is arbitrary, we can take v to be arbitrary but satisfying the

boundary conditions v(0) = v(1) = 0, then (2.16) becomes∫ 1

0

{
− d

dx

(
c(x)

du

dx

)
+ q(x)u− f

}
v dx = 0 for any v with v(0) = v(1) = 0 ,

this implies

− d

dx

(
c(x)

du

dx

)
+ q(x)u = f, 0 < x < 1. (2.17)

Substituting this into (2.16), we have

c(1)ux(1)v(1) = 0 for any v with v(0) = 0 ,

this indicates that u also satisfies the condition

c(x)
du

dx

∣∣
x=1

= 0 . (2.18)

(2.17) and (2.18) tell us that u is a solution of the boundary value problem (2.12)-(2.13).

]
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2.3.1 Minimum principle for differential equation

Now we investigate the relation between the boundary value problem (2.12)-(2.13) and

the following potential energy functional

P (u) =
1

2

∫ 1

0

(
c(x)

(du
dx

)2
+ q(x)u2

)
dx−

∫ 1

0

f(x)u(x) dx,

we are going to verify the following relations:

The function u that minimizes P (v) over all v satisfying v(0) = 0 must

be the solution of the system (2.12)-(2.13), that is, it satisfies the

differential equation

− d

dx

(
c(x)

du

dx

)
+ q(x)u = f(x), 0 < x < 1

with the boundary conditions

u(0) = 0 and c
du

dx

∣∣
x=1

= 0 .

The converse is also true.

To see this, let u minimize P (u), so we have

P (u) ≤ P (v) ∀ v with v(0) = 0 . (2.19)

Consider a real function

F (t) = P (u+ tv) .

Using (2.19) we know

F (0) ≤ F (t) ∀ t ∈ R1 ,

that is, t = 0 is a minimizer of F (t). This implies

F ′(0) = 0 . (2.20)

Now by definition,

F (t)− F (0) =P (u+ tv)− P (u)

=
1

2

{∫ 1

0

(
c(x)(ux + tvx)

2 + q(x)(u+ tv)2
)
dx−

∫ 1

0

f(u+ tv)dx
}

− 1

2

{∫ 1

0

(
c(x)u2

x + q(x)u2
)
dx−

∫ 1

0

fu dx
}

=t
{∫ 1

0

(c(x)uxvx + q(x)uv)dx−
∫ 1

0

fv dx
}

+
1

2
t2
∫ 1

0

c(x)v2
xdx ,
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which gives

F ′(0) =

∫ 1

0

(c(x)uxvx + q(x)uv)dx−
∫ 1

0

fvdx

=

∫ 1

0

(c(x)uxv)x − (c(x)ux)xv + q(x)uv) dx−
∫ 1

0

fvdx

=

∫ 1

0

(c(x)uxv)x − (c(x)ux)xv + q(x)uv) dx−
∫ 1

0

fvdx+ (c(x)ux(x)v(x))
x=1
x=0

=

∫ 1

0

[−(c(x)ux)x + q(x)u− f(x)] v dx+ c(1)ux(1)v(1)

for any v with v(0) = 0. This with (2.20) yields∫ 1

0

c(x)

(
du

dx

dv

dx
+ q(x)uv

)
dx =

∫ 1

0

fvdx for any v with v(0) = 0 ,

namely, u is a solution of the variational problem (2.15), so it is also a solution of the

boundary value problem (2.12)-(2.13).

To see the converse part, for any v such that v(0) = 0 we can calculate

P (v)− P (u) =
{1

2
(c vx, vx) + (q v, v)− (f, v)

}
−
{1

2
(c ux, ux) + (q u, u)− (f, u)

}
=

{1

2

(
c (v − u)x, (v − u)x

)
+ (q (v − u), v − u)

}
+
{(
c ux, (v − u)x

)
+ (q u, v − u)− (f, v − u)

}
.

Using this relation and the equivalence between the boundary value problem (2.12)-

(2.13) and the variational problem (2.15), one can easily see that if u is a solution to the

boundary value problem (2.12)-(2.13), then it must a minimizer of P (v). ]

2.3.2 Variational formulation for more general boundary conditions

We now consider a bit more general boundary condition problem:

− d

dx

(
c(x)

du

dx

)
+ q(x)u(x) = f(x), a < x < b (2.21)

with boundary conditions

c(x)
du

dx

∣∣
x=a

= α, u(b) = β (2.22)
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Same as we did in the last subsection, we can derive the variational formulation for

the system (2.21)-(2.22).

To do so, we multiply both sides of equation (2.21) by an arbitrary test function v

satisfying v(b) = 0, then integrate over (a, b) to obtain∫ b

a

(
− d

dx

(
c(x)

du

dx

)
v + q(x)uv

)
dx =

∫ b

a

f(x)vdx . (2.23)

Now using integration by parts and the boundary conditions (2.22), we deduce∫ b

a

(
c(x)

du

dx

dv

dx
+ q(x)uv

)
dx =

∫ b

a

f(x)v dx− α v(a).

This leads to the variational formulation for the equations (2.21)-(2.22):

Find the solution u such that u(b) = β and

a(u, v) = g(v) for any v satisfying v(b) = 0 (2.24)

where a(·, ·) and g(·) are given by

a(u, v) =

∫ b

a

(
c(x)

du

dx

dv

dx
+ q(x)uv

)
dx ,

g(v) =

∫ b

a

f(x)v dx− α v(a) .

Equivalence between boundary value and variational problems

The same as we did in the last subsection, we can verify that

The boundary value problem (2.21)-(2.22) is equivalent to the vari-

ational problem (2.24).

First, we know already by the derivation of the variational problem (2.24) that the

solution u of the boundary value problem (2.21)-(2.22) is also a solution to the variational

equation (2.24). Next, we will confirm that any solution u of (2.24) is also a solution of

the boundary value problem (2.21)-(2.22).

In fact, since u satisfies (2.24), we obtain by using integration by parts that for any

v satisfying v(b) = 0,∫ b

a

(
− d

dx

(
c(x)

du

dx

)
v + q(x)uv

)
dx+ c(x)

du

dx
v
∣∣x=b

x=a
=

∫ b

a

f(x)v dx− α v(a) . (2.25)
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Now taking all the test functions v which satisfy the boundary conditions v(a) = v(b) =

0, then (2.25) becomes∫ b

a

{
− d

dx

(
c(x)

du

dx

)
+ q(x)u− f

}
v dx = 0 for any v with v(a) = v(b) = 0 ,

this implies

− d

dx

(
c(x)

du

dx

)
+ q(x)u = f, a < x < b. (2.26)

Substituting this into (2.25), we have

−c(a)ux(a)v(a) = −α v(a) for any v with v(b) = 0 ,

this indicates that u also satisfies the condition

c(x)
du

dx

∣∣
x=a

= α . (2.27)

(2.26) and (2.27) tell us that u is a solution of the boundary value problem (2.21)-(2.22).

]

Equivalence between boundary value and minimization problem

Now we investigate the relation between the boundary value problem (2.21)-(2.22)

and the following potential energy functional

P (u) =
1

2

∫ a

b

(
c(x)

(du
dx

)2
+ q(x)u2

)
dx−

{∫ b

a

f(x)u(x) dx− α v(a)
}
,

we are going to verify the following relations:

The function u that minimizes P (v) over all v satisfying v(b) = β must

be the solution of the system (2.21)-(2.22), that is, it satisfies the

differential equation

− d

dx

(
c(x)

du

dx

)
+ q(x)u = f(x), a < x < b

with the boundary conditions

c
du

dx

∣∣
x=a

= α , u(b) = β .

The converse is also true.

The proof of this equivalence is basically the same as we did in the last subsection.

So we omit it here.
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2.3.3 Complementary minimum principle for the internal force

We know from the previous discussions that the displacement u of an elastic bar satisfies

the boundary value problem:

− d

dx

(
c(x)

du

dx

)
= f(x) , 0 < x < 1 (2.28)

and the boundary conditions

u(0) = 0, c(x)
du

dx

∣∣
x=1

= 0 .

Moreover, u also solves the equivalent variational problem∫ 1

0

c(x)
du

dx

dv

dx
dx =

∫ 1

0

f(x)v dx ∀ v with v(0) = 0

and minimizes the potential energy functional

P (u) =
1

2

∫ 1

0

c(x)
(du
dx

)2

dx−
∫ 1

0

f(x)u dx .

Below, we shall discuss some similar results for the internal force w(x) = c(x)du
dx

.

From (2.28) we know w satisfies

−dw
dx

= f(x), 0 < x < 1 (2.29)

and the boundary condition

w(1) = 0 . (2.30)

Corresponding to the problem (2.29)-(2.30), we define a new energy functional

Q(w) =
1

2

∫ 1

0

1

c(x)
w2(x)dx

and consider the minimization problem

min
w
Q(w) subject to − dw

dx
= f(x), w(1) = 0 (2.31)

This is a constrained optimization problem.

To transform the constrained problem into a unconstrained problem, we introduce a

Lagrangian functional

L(u,w) = Q(w) +

∫ 1

0

u
(dw
dx

+ f
)
dx

=
1

2

∫ 1

0

1

c(x)
w2(x)dx+

∫ 1

0

u
(dw
dx

+ f
)
dx ,
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where u is called a Lagrange multiplier. With the help of Lagrange multiplier, we

can convert the constrained variation problem to a non-constrained variation problem.

Namely, if w∗ satisfies (2.31), then it is also a critical solution of L, i.e.

∂L

∂u
= 0,

∂L

∂w
= 0.

Before showing this, let us define ∂L/∂u as(
∂L

∂u
(u,w), η

)
:=

d

dt

∣∣∣∣
t=0

L(u+ tη, w)

for all η with η(0) = 0. We find

L(u+ tη, w) = Q(w) + (u+ tη, wx + f)

Therefore,
d

dt
L(u+ tη, w) = (η, wx + f).

Hence,
∂L

∂u
= wx + f.

We find that the condition ∂L/∂u = 0 recovers the constraint condition.

The partial derivative ∂L/∂w can be computed similarly. For any v with v(1) = 0,

we have

L(u,w + tv) = Q(w + tv) + (u, (w + tv)x + f)

= Q(w) + t(
w

c
, v) + t2Q(v)− t(ux, v) + (u,wx + f)

Here, I have used (uv)x=1
x=0 = 0 due to u(0) = 0 and v(1) = 0. As we differentiate

L(u, t+ w + tv) in t, we get(
∂L

∂w
(u,w), v

)
:=

d

dt

∣∣∣∣
t=0

L(u,w + tv) =
(w
c
− ux, v

)
.

Hence,
∂L

∂w
(u,w) =

(w
c
− ux, v

)
.

The condition
∂L

∂w
(u,w) = 0

gives the Hook’s law: w = cux.
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(1)

{
− d

dx

(
c(x)du

dx

)
= f(x) , 0 < x < 1

u(0) = 0, c(x)du
dx

∣∣
x=1

= 0
(2)


w − c(x)du

dx
= 0

−dw
dx

+ f = 0

u(0) = 0, w(1) = 0.

L(u,w) := 1
2

∫ 1

0
1

c(x)
w2(x)dx+

∫ 1

0
u
(

dw
dx

+ f
)
dx

(3) Maxu(−P (u)) with u(0) = 0 (4) MinwQ(w) subject to − dw
dx

= f, w(1) = 0

(5) Maxu MinwL(u,w), u(0) = 0, w(1) = 0 (6) Minw MaxuL(u,w), u(0) = 0, w(1) = 0

We shall establish the equivalence table.

We have seen (1)⇔(2), (1)⇔(3).

Now, we show (3)⇔(5). This is equivalent to say that

−P (u) = MinwL(u,w) subject to u(0) = 0, w(1) = 0

For each fixed u with u(0) = 0, if w̄(u) is a minimum, then it is a critical point of L

with respect to w. That is
∂L

∂w
= 0.

The partial derivative can be obtained from

d

dt

∣∣∣∣
t=0

L(u,w + tv) = (
∂L

∂w
, v).

for v with v(1) = 0. This gives
∂L

∂w
=
w

c
− ux.

Thus, the critical point w̄ = cux. We plug it into L to get

L(u, w̄(u)) =
1

2

∫ 1

0

1

c(x)
w̄2(x)dx+

∫ 1

0

u
(dw̄
dx

+ f
)
dx

=
1

2

∫ 1

0

cu2
x dx+

∫ 1

0

(−(uxw) + fu) dx

=
1

2

∫ 1

0

cu2
x dx+

∫ 1

0

(−(uxcux) + fu) dx

= −P (u)
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Here, we have used u(0) = 0 and w(1) = 0 in the integration by part. Using the

technique of completing square, this critical point must be a minimum. I leave you to

prove it.

Next, we show (4)⇔(6). This is due to

Max u

u(0) = 0

Q(w) + (u,wx + f) =

{
Q(w) if wx + f = 0

+∞ otherwise

For (2)⇒(4), it is the same as we had before for the spring-mass case. We leave this

proof to students.

To show (5)⇔(6), we use an intermediate step: we show that

if w∗ and u∗ are functions such that w∗(1) = 0, u∗(0) = 0, and are the

minimizer and the maximizer of the following problems:

L(u∗, w∗) = min
w
L(u∗, w) , L(u∗, w∗) = max

u
L(u,w∗) , (2.32)

then (u∗, w∗) satisfies

L(u∗, w∗) = Maxu MinwL(u,w) = Minw MaxuL(u,w) with u(0) = 0, w(1) = 0.

Let u,w satisfy u(0) = 0, w(1) = 0 and (u∗, w∗) satisfies (2.32), We have

L(u∗, w∗) = min
w
L(u∗, w) ≤ max

u
(min

w
L(u,w)).

On the other hand,

L(u∗, w∗) = max
u

L(u,w∗) ≥ min
w

max
u

L(u,w)

Thus, we get

min
w

max
u

L(u,w) ≤ max
u

(min
w
L(u,w).

The reverse inequality is easy to show. Because for any u1,

L(u1, w) ≤ max
u

L(u,w)

We take minimum over w to get

min
w
L(u1, w) ≤ min

w
max

u
L(u,w)
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The left-hand side nw is a constant. We then take maximum over u1, then we get

max
u1

min
w
L(u1, w) ≤ min

w
max

u
L(u,w).

Conversely, if (u∗, w∗) is the saddle point of L such that

L(u∗, w∗) = max
u

min
w
L(u,w) = min

w
max

u
L(u,w)

we show that it satisfies (2.32). We have

L(u∗, w∗) = max
u

min
w
L(u,w) ≤ min

w
L(u∗, w) ≤ min

w
max

u
L(u,w) = L(u∗, w∗)

Similarly,

Finally, we are going to show that (u∗, w∗) satisfies (2.32) then w∗ and u∗ satisfy (2),

i.e.

w∗ = c(x)u∗x , −w∗
x = f . (2.33)

And the converse is also true.

We first show that if w∗ and u∗ are functions such that w∗(1) = 0, u∗(0) = 0, and are

the solutions to (2.33), then they are also the solutions to the optimization problems in

(2.32). In fact, for any v, we have

L(u∗, v)− L(u∗, w∗) =
1

2
(c−1v, v) + (u∗, vx + f)− 1

2
(c−1w∗, w∗)− (u∗, w∗

x + f)

=
1

2
(c−1(v − w∗), v − w∗) + (c−1(v − w∗), w∗) + (u∗, (v − w∗)x)

=
1

2
(c−1(v − w∗), v − w∗) + (v − w∗, u∗x) + (u∗, (v − w∗)x)

=
1

2
(c−1(v − w∗), v − w∗) ≥ 0 .

On the other hand, for any u such that u(0) = 0, we have

L(u,w∗) =
1

2
(c−1w∗, w∗) + (u,w∗

x + f) =
1

2
(c−1w∗, w∗) ,

so we know that L(u,w∗) is constant with respect to u. This proves both w∗ and u∗ are

the desired solutions to the optimization problems in (2.32).

Next we show that if w∗ and u∗ are functions such that w∗(1) = 0, u(0) = 0, and are

the minimizer and the maximizer of the optimization problems in (2.32), then they are

also the solutions to (2.33).
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To do so, we define (for simplicity we drop the index ∗ in u∗ and w∗)

F (t) = L(u,w + tv) for any v .

As w is the minimizer of L(u,w), we know

F (t) = L(u,w + tv) ≥ L(u,w) = F (0) ∀ t ∈ R1,

so t = 0 is a minimizer for F (t), thus

F ′(0) = 0 .

Now by definition,

F (t)− F (0) =L(u,w + tv)− L(u,w)

=
1

2

∫ 1

0

1

c
(w + tv)2dx+

∫ 1

0

u
(d(w + tv)

dx
+ f
)
dx

−
{1

2

∫ 1

0

1

c
w2dx+

∫ 1

0

u
(dw
dx

+ f
)}
dx ,

or

F (t)− F (0) = t

∫ 1

0

( 1

c(x)
wv + u

dv

dx

)
dx+

1

2
t2
∫ 1

0

1

c(x)
v2dx,

therefore

0 = F ′(0) =

∫ 1

0

( 1

c(x)
wv + u

dv

dx

)
dx .

Integration by parts gives∫ 1

0

( 1

c(x)
w − du

dx

)
vdx+ uv(x)

∣∣∣x=1

x=0
= 0 ∀v

which implies
1

c(x)
w =

du

dx
or w = c(x)

du

dx
. (2.34)

Thus we get back the original physical law w = c(x)du
dx

.

On the other hand, we can find the maximizer of u, that gives the condition:

−dw
dx

= f(x) . (2.35)

This proves the desired results.

From the equations (2.34)-(2.35, we see that u satisfies

− d

dx

(
c(x)

du

dx

)
= f(x) , 0 < x < 1.

This means that the Lagrange multiplier u is actually the displacement function.
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Remark. Read pp. 166-172.

Homeworks.

• pp. 180, 3.2.2

• pp. 180, 3.2.3

• pp. 180, 3.2.4

• pp. 180, 3.2.7

• pp. 180, 3.2.8

• pp. 180, 3.2.9
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3 Numerical methods for differential equations

In this section, we shall introduce several popular numerical methods for solving differ-

ential equations. The first class is the finite difference methods. The second class is the

finite element method.

3.1 Finite Difference Approximation

Consider the Sturm-Liouville equation

−(c(x)u′)′ + q(x)u = f, x ∈ (a, b), (3.1)

u(a) = 0, u(b) = 0. (3.2)

The finite difference method treat the approximate solution defined on grid points: x0 <

· · · < xn+1. For simplicity, we choose uniform grids. That is, we define the mesh size

h = (b − a)/n+ 1 and defind xi = a + ih, i = 0, ..., n + 1. The derivative of u can be

approximated by

• forward differencing: u′(x) = (u(x+ h)− u(x))/h+O(h)

• backward differencing: u′(x) = (u(x)− u(x− h))/h+O(h)

• centered differencing: u′(x) = (u(x+ h)− u(x− h))/2h+O(h2)

These can be proved by Taylor expansion. With this, we approximate (3.1) first by the

centered differencing at xi by using data at xi+1/2 and xi−1/2: If u is a solution of (3.1),

then

1

h

(
c(xi−1/2)u

′(xi−1/2)− c(xi+1/2)u
′(xi+1/2)

)
+ q(xi)u(xi) = f(xi) +O(h2).

Here xi+1/2 := a+ (i+ 1/2)h. Next, we approximate

u′(xi+1/2) =
1

h

(
u(xi+1)− u(xi)

)
+O(h2).

Then the solution of (3.1) can be approximated by

1

h2

(
c(xi−1/2)(u(xi)−u(xi−1))− c(xi+1/2)(u(xi+1)−u(xi))

)
+ q(xi)u(xi) = f(xi)+O(h2).

(3.3)
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The finite difference approximation to (3.1) and (3.2) is use grid function Ui to approx-

imate the solution u(xi), i = 0, ..., n+ 1 with U satisfying

1

h2

(
c(xi−1/2)(Ui − Ui−1))− c(xi+1/2)(Ui+1 − Ui)

)
+ q(xi)Ui = f(xi), i = 1, ..., n (3.4)

U0 = 0, un+1 = 0. (3.5)

There are n equations for the n unknowns U1, ..., Un. As we have seen in the spring-mass

system, this equation has the form

KU +QU = F

where K is the stiffness matrix and Q is a diagonal matrix. In principle, we can solve

this linear equation by Gaussian elimination.

Homeworks.

• Suppose we discretize the domain [0, 1] by by {xi}n
i=0. They are not necessary

uniform. Let hi = xi − xi−1. Given a function u ∈ C4 and let ui = u(xi). We can

approximate u by the following finite difference method:

u′′(xi) ∼
ui+1−ui

hi+1
− ui−ui−1

hi

hi+hi+1

2

What is the error of this finite difference approximation? (Exress in terms of hi

and hi+1.) What is the error if the grid is uniform?

3.2 Finite Element Methods—Galerkin’s approach

In the above finite difference approach, we have assumed u and the coefficient c are

smooth. In some applications, the coefficient may not be smooth and the corresponding

solution may not be in C2. In this case, a weak formulation is favored. It required less

regularity of u and the coefficients.

To solve a given differential equation, the Galerkin method starts with the variational

formulation of the differential equation, then construct the finite dimensional space, and

finally solve the discrete problem.
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3.2.1 Weak formulation

Let us take the following two-point boundary value problem as an example:{
−
(
c(x)u′(x)

)′
+ q(x)u(x) = f(x), a < x < b ,

c(x)u′(x)|x=a = α , u(b) = β
(3.6)

Derive the variational problem. Multiply (3.6) by a test function v(x) satisfying the

conditions v(b) = 0 (why ?), then integrate over (a, b) to obtain the following variational

formulation of the system (3.6):{
Find u(x) such that u(b) = β and

a(u, v) = g(v) ∀ v(x) satisfying v(b) = 0
(3.7)

where a(u, v) and g(v) are two integrals given by

a(u, v) =

∫ b

a

(
a(x)u′ v′ + c(x)uv

)
dx,

g(v) =

∫ b

a

f(x) v(x)dx− α v(a).

3.2.2 Approximation of functions—Trial functions

We want to approximate solution u by some basis functions called trial functions. That

is,

u ≈ uh :=
∑

i

uiφi(x).

The functions φi are the basis functions. They are finite many. Then the problem of

differential equation is reduced to find ui, a finite dimensional problem.

A simple basis functions is the follows.

We divide the interval [a, b] into N subintervals using the grid points

T h : a = x0 < x1 < · · · < xN−1 < xN = b .

|
x0

|
x1

|
x2

· · · |
xN−1

|
xN

The points x0, x1, · · · , xN are called the nodal points or grid points. We shall denote

the length of the subinterval [xi−1, xi] by hi.
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Then we can construct one basis function φi(x) at each grid point xi , i = 0, 1, 2, · · · , N
such that

φi(xj) = δij =

1 , j = i

0 , j 6= i
. (3.27)

This generates the finite element space

Vh = span {φ0, φ1, · · · , φN}.

There are many choices for the piecewise polynomial basis functions φk which satisfy

the conditions (3.27). Next, we discuss the simplest case with piecewise linear basis

functions.

Piecewise linear finite element spaces. At each interior grid point x = xi,

i = 1, 2, · · · , N − 1, we construct a basis function as follows:

φi(x) =


x−xi−1

hi
, x ∈ [xi−1, xi]

xi+1−x
hi+1

, x ∈ [xi, xi+1]

0 , x 6∈ [xi−i, xi+1]

At the boundary grid point x = x0:

φ0(x) =

x1−x
h1

, x ∈ [x0, x1]

0 , x 6 ∈[x0, x1]
,

while at the boundary point x = xN :

φN(x) =


x−xN−1

hN
, x ∈ [xN−1, xN ]

0 , x 6 ∈[xN−1, xN ]
.

Clearly, it is easy to see that the above constructed basis functions {φi}N
i=0 satisfy

the conditions (3.27). And these basis functions define a piecewise linear finite element

space:

Vh = span {φ0, φ1, · · · , φN} .

And for any v ∈ Vh, we can prove that

v(x) =
N∑

i=0

v(xi)φi(x) for a ≤ x ≤ b.
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3.2.3 Projection of the equation—test functions

Galerkin’s approach . Suppose there are a set of basis functions given by

Vh =
{
φ0(x), φ1(x), · · · , φN(x)

}
,

then we can approximate the variational formulation (3.7) as follows:Find uh ∈ Vh such that uh(b) = β and

a(uh, vh) = g(vh) ∀uh ∈ V 0
h

(3.28)

where

V 0
h =

{
vh ∈ Vh; vh(b) = 0

}
.

These vh rae called test functions. In the Galerkin’s approach, the trial functions and

the test functions are identical. This is natural because it will result in the number of

unknowns equals the number of equations.

System of linear algebraic equations. Let us see how to solve the Galerkin problem

(3.28). For convenience, we will construct the basis functions such that

φ0(b) = φ1(b) = · · · = φN−1(b) = 0 , φN(b) = 1 .

As uh ∈ Vh, we can express it as follows:

uh(x) =
N∑

i=0

uiφi(x) = β φN(x) +
N−1∑
i=0

uiφi(x) with ui ∈ R1 .

Using (3.28), we know

a(uh, φj) = g(φj), j = 0, 1, 2, · · · , N − 1 (3.29)

Substituting uh into (3.29) gives

N−1∑
i=0

uia(φi, φj) = g(φj)− β a(φN , φj) , j = 0, 1, 2, · · · , N − 1 ,

which can be written as

A u = b (3.30)
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where

u =


u0

u1

...

uN−1

 , A =


a00 a01 · · · a0,N−1

a10 a11 · · · a1,N−1

· · · · · · · · · · · ·
aN−1,0 aN−1,1 · · · aN−1,N−1

 , b =


b0

b1
...

bN−1


where aij and bj are given by

aij = a(φj, φi), bj = g(φj)− β a(φN , φj) .

The system of algebraic equations (3.30) can be solved either by the Gauss elimination

or by some iterative methods, such as Jacobi method and Gauss-Seidel method.

Remarks. Read 428-433.

Homeworks.

• Find the matrix A for the equation −u′′ = f with φi being the linear nodal

functions at grids xi.

• Verify that the matrix A in (3.30) is symmetric positive definite.

• Derive the finite element method for solving the following boundary value prob-

lems: {
−
(
a(x)u′(x)

)′
+ c(x)u(x) = f(x), 1 < x < 3 ,

u(1) = 1 , u(3) = −1
(3.31)

{
−
(
a(x)u′(x)

)′
+ c(x)u(x) = f(x), −1 < x < 2 ,

u(−1) = 1 , u′(2) = −1
(3.32)

{
−
(
a(x)u′(x)

)′
+ c(x)u(x) = f(x), −2 < x < 1 ,

a(−2)u′(−2) = 10 , u(1) = −10
(3.33)
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4 Vector calculus in Euclidean space R3 with Appli-

cations

In this section, I shall first review some basic concepts about the vector calculus, which

are widely used in engineering, physics and other areas requiring mathematics. Then

I shall derive some important models in two or three dimensions including the heat

conduction model, the potential flow, electrostatics, and the Maxwell equations for the

elecromagnetism.

Consider the Euclidean space Rn, with a rectangular coordinate system formed by the

x1-, x2-, · · · and xn-coordinate axes. The vector calculus is about some basic operations

of a vector-valued function in Rn. We shall consider n = 2 or n = 3.

4.1 Review of Vector Calculus

4.1.1 Some differential operators for scalar and vector fields

Scalar field and vector field

• scalar field. A scalar field u is a real-valued function in Rn. Concrete examples

are gravitational potential u(x) = −1/r, where r = |x|.

• vector field. A vector field v is a vector-valued function v(x) in Rn with n

components, we shall write v(x) as

v(x) = (v1(x), v2(x), · · · , vn(x))T with x = (x1, x2, · · · , xn)T .

I list some concrete examples of vecor fields: wind field, heat flux, electrical field,

magnetic field, gravitational force field, displacement vector field of an elastic ma-

terial.

Some differential operators

• Gradient. Given a scalar function u(x) in Rn, define

grad u = ∇u :=
( ∂u
∂x1

,
∂u

∂x2

, · · · , ∂u
∂xn

)T
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• Curl. For a vector field in R3, define

curl v ≡ ∇× v =

∣∣∣∣∣∣∣
i j k

∂x1 ∂x2 ∂x3

v1 v2 v3

∣∣∣∣∣∣∣ =


∂v3

∂x2
− ∂v2

∂x3
∂v1

∂x3
− ∂v3

∂x1
∂v2

∂x1
− ∂v1

∂x2


In the two dimensional case, the vector field is expressed as v(x, y) = (0, 0, ψ(x, y))

for some scalar field ψ(x, y), the curl of v becomes

∇× v = (∂yψ,−∂xψ, 0)T .

Sometimes, we denote

curlψ = ∇⊥ψ = (
∂ψ

∂y
,−∂ψ

∂x
)T .

Notice that ∇ and ∇⊥ are orthogonal in the sense that

∇ψ · ∇⊥ψ = 0 .

One can also define another curl operation in two dimensions. For any vector-

valued function v(x, y), we define

curlv =
∂v2

∂x
− ∂v1

∂y
.

This maps a vector-valued function into a scalar function.

• Divergence. Given a vector field vinRn, define

div v =≡ ∇ · v :=
∂v1

∂x1

+
∂v2

∂x2

+ · · ·+ ∂vn

∂xn

• Laplacian. For a scalar field u, define

4u = div grad u = ∇ · ∇u = ∇2u =
∂2u

∂x2
1

+
∂2u

∂x2
2

+ · · ·+ ∂2u

∂x2
n

.

The operator 4 is called the Laplacian operator.
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Examples

1. Find the gradient of u for u(x1, x2, x3) = −1/r, where r =
√
x2

1 + x2
2 + x2

3.

2. In two dimensions, find the gradient of θ := tan−1(y, x).

3. In two dimensions, let the vector field v = (−y, x), find its curl. This is a rigid

body rotation.

4. In two dimensions, find the divergence and curl of v = (−x, y). This velocity is

called a jet.

Homeworks.

• In two dimensions, find the gradient of u(x, y) = − log r, where r =
√
x2 + y2.

• Show that ∇×∇u = 0 for any scalar function u.

• Show that ∇ · (∇× v) = 0 for any vector field v in R3.

• Verify the following relation

∇× (∇× v) = ∇(∇ · v)−∆v .

for any vector field v in R3.

• For a scalar field u and a vector field v in Rn, show

∇ · (uv) = ∇u · v + u(∇ · v).

• Let v = (x, y, z)/r3, where r =
√
x2 + y2 + z2. Let Σ be a closed surface enclose

the origin. Find the integral
∫

Σ
v · n dS.

4.1.2 Fundamental Theorems of Vector Calculus

Theorem 4.1. Let u be a scalar field in Rn. Then the path integral of ∇u equals

u(x1)− u(x0), where x0 and x1 are the initial and final positions of the path C:∫
C

∇u ds = u(x1)− u(x0).
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Theorem 4.2 (Stokes Theorem). Let v be a vector field in R3 and Σ be a surface in R3

with boundary C which is a closed simple curve. Then∫
Σ

∇× v · n dS =

∫
C

v · ds

Theorem 4.3 (Divergence Theorem). Let v be a vector field in R3 and Ω be a volume

in R3 with boundary Σ which is a closed simple surface. Then∫
Ω

∇ · v dx =

∫
Σ

v · n dS.

I shall give an intuitive proof of the divergence theorem. Let us consider Ω =

(a, b)× (c, d)× (e, f), a box. The six faces of the box and their outer normals are

Σ1 = {a} × (c, d)× (e, f), outer normal: (−1, 0, 0)

Σ2 = {b} × (c, d)× (e, f), outer normal: (1, 0, 0)

Σ3 = (a, b)× {c} × (e, f), outer normal: (0,−1, 0)

Σ4 = (a, b)× {d} × (e, f), outer normal: (0, 1, 0)

Σ5 = (a, b)× (c, d)× {e}, outer normal: (0, 0,−1)

Σ6 = (a, b)× (c, d)× {f}, outer normal: (0, 0, 1)

Suppose the vector field v = (P,Q,R). The flux passes through Σ1 is∫
Σ1

v · n dS =

∫ d

c

∫ f

e

−P (a, y, z) dy dz.

The flux passes through Σ2 is∫
Σ2

v · n dS =

∫ d

c

∫ f

e

P (b, y, z) dy dz.

Hence,∫
Σ1∪Σ2

v · n dS =

∫ d

c

∫ f

e

P (b, y, z)− P (a, y, z) dy dz =

∫ d

c

∫ f

e

∫ b

a

Px(x, y, z) dx dy dz

Similarly, the flux passes through Σ3 and Σ4 are∫
Σ3

v · n dS =

∫ b

a

∫ f

e

−Q(x, c, z) dx dz.

∫
Σ4

v · n dS =

∫ b

a

∫ f

e

Q(x, d, z) dx dz.
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and we get∫
Σ3∪Σ4

v · n dS =

∫ b

a

∫ f

e

Q(x, d, z)−Q(x, c, z) dx dz =

∫ b

a

∫ f

e

∫ d

c

Qy(x, y, z) dy dx dz

Similarly, we get∫
Σ5∪Σ6

v · n dS =

∫ b

a

∫ d

c

R(x, y, f)−R(x, y, e) dx dy =

∫ b

a

∫ d

c

∫ f

e

Rz(x, y, z) dz dy dx

We sum the integrals over these six faces, then we get the divergence theorem for the

box case. For general domain, we cut the domain into small boxes, apply the divergence

theorem on each small boxes. Notice that the surface integrals on two adjacent boxes

are cancelled (the outer normals have opposite signs). The remaining surface integral is

the surface of the domain Ω. This gives the divergence for general domain.

Remark. From the Stokes and divergence theorems, we can get the physical meaning

of the curl and div as the follows.

• ∇ · v(x) = lim|Ω|→0
1
|Ω|

∫
Σ
v · n dS, where Ω is a small volume containing x and |Ω|

is its volume. The surface integral measure the flux flows outward from V through

Σ.

• [∇×v(x)] ·n = lim|Σ|→0
1
Σ

∫
C

v ·ds, where Σ is a small piece of surface containing x

and is perpendicular to n. |Σ| is the area of Σ and C is its boundary. The integral

measure the circulation of v along a curve C. Thus, the direction of ∇×v is the

direction with the strongest circulation, and its magnitude is this circulation.

We have seen that ∇×∇u = 0 for any scalar field u in R3. The converse is also true.

Theorem 4.4. Let v be a vector field in R3. Then v = ∇u for some scalar field u if

and only if ∇× v = 0.

Sketch Proof. The function u is defined by

u(x) =

∫ x

0

v · ds

where the above line integral is allowed to follow any path connecting 0 to x. This line

integral is independent of path. The reason is that any two such paths forms a surface in
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R3. We can apply the Stokes theorem and using ∇×v = 0 to see that it is independent

of path. Once u is defined, it is not difficult to see that its gradient is v.

Next, we have also seen that ∇ · (∇ × w) = 0 for any vector field w in R3. Its

converse is also true in R3.

Theorem 4.5. If a vector field v(x) in R3 is divergence-free, that is, ∇ · v = 0, then

there exists a vector-valued function w(x) such that

v(x) = ∇×w(x) .

Sketch idea of proof. To find w, we apply curl to v = ∇×w:

∇× (∇×w) = ∇× v.

We use the identity ∇× (∇× v) = ∇(∇ · v)−4v, and use ∇ · v = 0, then we get

−4w = ∇× v.

We then solve this partial differential equation component by component. In the whole

R3 space, this is not difficult to solve. Indeed, there is an exact solution formula for

−4u = f.

It is

u(x) =

∫
1

4π|x− y|
f(y) dy.

4.1.3 Green’s Theorems

Finally, the theorem corresponding to the technique of integration-by-part is called the

Green’s theorem. which is frequently used in the variational formulations for various

partial differential equations. Their proofs are based on the divergence theorem.

1. For two scalar functions u and v, we have∫
Ω

uxi
v dx = −

∫
Ω

u vxi
dx +

∫
∂Ω

u v ni dS

where Ω ⊂ Rk, n = (n1, n2, · · · , nk)
T is the unit outward normal direction to the

boundary ∂Ω of Ω.
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2. For a vector-valued function u and a scalar function v, we have∫
Ω

(∇ · u) v dx = −
∫

Ω

(u · ∇v) dx +

∫
∂Ω

(u · n) v dS.

3. For two vector-valued functions u and v, we have∫
Ω

(∇× u) · v dx =

∫
Ω

u · ∇ × v dx +

∫
∂Ω

(u× v) · n dS .

Proofs. We first prove 2. We use the vector field identity

∇ · (uv) = ∇ · uv + u · ∇v.

We integrate this identity over a domain Ω, then apply the divergence theorem.

Case 1 is a special case of case 2 with u = (0, .., u, 0..), only the ith component is

nontrial.

For the third statement, we use the vector identity:

∇ · (u× v) = (∇× u) · v − u · (∇× v).

We then integrate it over a domain and then apply the divergence theorem.

Homeworks.

• pp. 217, 3.4.8

• pp. 218, 3.4.15

• pp. 218, 3.4.16

• pp. 218, 3.4.17

• pp. 219, 3.4.33

• pp. 217, 3.4.13

• pp. 219, 3.4.34
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4.1.4 Vector Calculus in special coordinate systems

In this and next subsections, we introduce three most frequently used coordinate systems.

In the standard rectangular coordinate system, each point is uniquely determined by

three real numbers x, y and z, called the coordinates of the point, often denoted as the

triple (x, y, z). Many partial differential equations can be conveniently written in this

standard rectangular coordinate system.

For example, the Poisson equation in the orthogonal coordinate system takes the

form

uxx + uyy + uzz = f(x, y, z)

or equivalently

∆u ≡ ∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
= f(x, y, z). (4.1)

This Poisson equation will have a different form in a different coordinate system.

Cylindrical coordinate system (r, θ, z) Consider the following transformation

x = r cos θ,

y = r sin θ,

z = z

where r and θ change in the following ranges

0 ≤ θ ≤ 2π, 0 ≤ r <∞.

Note that we always have

x2 + y2 = r2 .

Using this transformation, any point in the standard rectangular coordinate (x, y, z) can

also be uniquely determined by the triple (r, θ, z), and the coordinate system (r, θ, z) is

called the cylindrical coordinate system. In this system, the Poisson equation takes the

following form
1

r

∂

∂r
(r
∂w

∂r
) +

1

r2

∂2w

∂θ2
+
∂2w

∂z2
= F (r, θ, z) (4.2)

where w and F are related to u and f in the equation (4.1) by the relations:

u(x, y, z) = u(r cos θ, r sin θ, z) ≡ w(r, θ, z), (4.3)

f(x, y, z) = f(r cos θ, r sin θ, z) ≡ F (r, θ, z). (4.4)
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• To get some feelings about the above transformations, one may see what are the

functions w(r, θ, z) when

u(x, y, z) = x+ y + z, u(x, y, z) = x2 + y2 + z2 .

To derive the equation (4.2) from the equation (4.1), we need to use the following

relations:

ux = wr
∂r

∂x
+ wθ

∂θ

∂x
,

uy = wr
∂r

∂y
+ wθ

∂θ

∂y
,

then from these we can compute the second order derivatives. But for the above com-

putings, we need to first find the derivatives ∂r
∂x

, ∂θ
∂x

, ∂r
∂y

and ∂θ
∂y

. How to compute these

partial derivatives ?

Note that the following relation is not always true:

∂r

∂x
=

(
∂x

∂r

)−1

.

This holds only for the case with one variable: x = x(r). In fact, we have

1 =
dx

dx
=
dx

dr

dr

dx
.

But for our current case, we always have the following Jacobi relation

∂(x, y)

∂(r, θ)
=

(
∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ

)
=
[ ∂(r, θ)

∂(x, y)

]−1

.

This comes by writting

x = φ(r, θ) = φ(r(x, y), θ(x, y)), y = ψ(r, θ) = ψ(r(x, y), θ(x, y))

and directly checking
∂(x, y)

∂(r, θ)

∂(r, θ)

∂(x, y)
= I .

Thus we have

∂(r, θ)

∂(x, y)
=

(
∂(x, y)

∂(r, θ)

)−1

=

(
cos θ −r sin θ

sin θ r cos θ

)−1

=

(
cos θ sin θ

− sin θ
r

cos θ
r

)
.
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One can also derive this formula directly. To do this, using

x = r cos θ, y = r sin θ,

we obtain

1 =
∂x

∂x
=
∂r

∂x
cos θ + r(− sin θ)

∂θ

∂x
,

0 =
∂y

∂x
=
∂r

∂x
sin θ + r cos θ

∂θ

∂x
.

From this we have

∂r

∂x
=

∣∣∣ 1 −r sin θ

0 r cos θ

∣∣∣
∣∣∣ cos θ −r sin θ

sin θ r cos θ

∣∣∣ =
r cos θ

r
= cos θ ,

∂θ

∂x
=

∣∣∣ cos θ 1

sin θ 0

∣∣∣
∣∣∣ cos θ −r sin θ

sin θ r cos θ

∣∣∣ =
− sin θ

r
.

Similarly, using the transformation

x = r cos θ, y = r sin θ

again, we obtain

0 =
∂x

∂y
=
∂r

∂y
cos θ + r(− sin θ)

∂θ

∂y
,

1 =
∂y

∂y
=
∂r

∂y
sin θ + r cos θ

∂θ

∂y
.

From this we have

∂r

∂y
=

∣∣∣ 0 −r sin θ

1 r cos θ

∣∣∣
∣∣∣ cos θ −r sin θ

sin θ r cos θ

∣∣∣ =
r sin θ

r
= sin θ ,

∂θ

∂y
=

∣∣∣ cos θ 0

sin θ 1

∣∣∣
∣∣∣ cos θ −r sin θ

sin θ r cos θ

∣∣∣ =
cos θ

r
.
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Now, we can compute as follows:

ux = wr
∂r

∂x
+ wθ

∂θ

∂x
= wr cos θ − wθ

sin θ

r
,

uy = wr
∂r

∂y
+ wθ

∂θ

∂y
= wr sin θ + wθ

cos θ

r
,

uxx = (wr)x cos θ + (wr)(cos θ)x − (wθ)x
sin θ

r
− wθ

(
sin θ

r

)
x

... ...

Please complete the remaining computations to derive (4.2).

Spherical coordinate system (r, θ, ϕ) Consider the following transformation

x = r cos θ sinϕ ,

y = r sin θ sinϕ ,

z = r cosϕ

where r, θ and ϕ change in their ranges

0 ≤ r <∞, 0 ≤ θ ≤ 2π , 0 ≤ ϕ ≤ π .

Note that we always have

x2 + y2 + z2 = r2 .

Using this transformation, any point in the standard rectangular coordinate (x, y, z) can

be also uniquely determined by the triple (r, θ, ϕ), and the coordinate system (r, θ, ϕ)

is called the spherical coordinate system. In this system, the Poisson equation takes the

following form

1

r2

∂

∂r

(
r2∂w

∂r

)
+

1

r2 sin2 ϕ

∂2w

∂θ2
+

1

r2 sinϕ

∂

∂ϕ

(
sinϕ

∂w

∂ϕ

)
= F (r, θ, ϕ) (4.5)

where w and F are related to u and f in the equation (4.1) by the relations:

u(x, y, z) = u(r cos θ sinϕ, r sin θ sinϕ, r cosϕ) ≡ w(r, θ, ϕ),

f(x, y, z) = f(r cos θ sinϕ, r sin θ sinϕ, r cosϕ) ≡ F (r, θ, ϕ).

• To get some feelings about this transfrmation, one may find out the functions w(r, θ, ϕ)

when u(x, y, z) is of the following two simple functions:

u(x, y, z) = x+ y + x, u(x, y, z) = x2 + y2 + z2 .
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Similarly as in the cylindrical coordinate system, we may use the following relation

to derive the equation (4.5):

∂(x, y, z)

∂(r, θ, ϕ)
=


∂x
∂r

∂x
∂θ

∂x
∂ϕ

∂y
∂r

∂y
∂θ

∂y
∂ϕ

∂z
∂r

∂z
∂θ

∂z
∂ϕ

 =

(
∂(r, θ, ϕ)

∂(x, y, z)

)−1

.

The Jacobi matrix on the left hand is easy to compute, so we can get the Jacobi matrix

on the right.

Remark 4.1. It would be an excellent test for students to derive the equation (4.5)

from the equation (4.1).

4.2 Modeling heat conduction

4.2.1 The heat equation

We want to model heat conduction process in a domain D ∈ R3. The conduction process

is described by a temperature function u(x, t). The variation of temperature in space

generate heat flux q. It flows from high temperature to low temperature. Fourier gave

an emperical law of the heat flux:

q = −κ∇u, (4.6)

where κ > 0 is called the heat conductivity. It is a material dependent parameter. This

emperical law is called the Fourier law.

It is known the heat is indeed a form of energy and the energy density is linearly

proportitional to temperature:

h = cvu,

where cv is called the specific heat. The heat conduction model is based on conservation

of energy described below. Let us consider an arbitrary domain Ω ∈ R3. The energy in

Ω is
∫

Ω
cvu(x, t) dx. Its rate of change in t is

d

dt

∫
Ω

cvu(x, t) dx.

The increase of energy in Ω must be the same as the heat transported into Ω through

the boundary ∂Ω per unit time. Its is given by the following surface integral:∫
∂Ω

q · (−n) dS.
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Here, n is the unit outer normal of ∂Ω, and q · (−n)dS is the net heat transported into

Ω through dS per unit time. Thus, the conservation of energy states that

d

dt

∫
Ω

cvu(x, t) dx =

∫
∂Ω

q · (−n) dS.

The left-hand side equals

d

dt

∫
Ω

cvu(x, t) dx =

∫
Ω

cvut(x, t) dx,

whereas the right-hand side, by apply the divergence theorem, is∫
∂Ω

q · (−n) dS = −
∫

Ω

∇ · q dx

This is valid for any arbitrary domain Ω. Hence, we get

cvut +∇ · q = 0. (4.7)

According to the Fourier law, q = −κ∇u, we get

ut = k∇2u = k4u. (4.8)

Here, k = κ/cv > 0 is the temperature conductivity.

4.2.2 Boundary condition

There are three kinds of boundary conditions for heat conduction model:

• Dirichlet: u(x, t) = g(x), x ∈ ∂D. This means that the domain D is attached to

an environment (a heat bed) whose temperature is given by g(x) on ∂Ω.

• Neumann: ∇u(x) · n = 0, x ∈ ∂D. This means that there is no heat flux on

the boundary. In other word, the domain is insulated. We may also impose

∇u(x) · n = h(x), x ∈ ∂D, for some function h. This means that we inject energy

into Ω with rate h.

• Robin: ∇u(x) · n = λ(g(x)− u(x, t)). Here, λ > 0 is a constant. This means that

the difference of u and its surrouding temperature g generates a heat flux with rate

linearly proportitional to this difference. This is called the Newton’s conduction

law. The sign λ > 0 means that if u(x, t) on the boundary is greater than its

surroundary temperature g(x), then the heat flux = −κ∇u projected onto the

outer normal direction n, which is −κ∇u ·n is positive. This means the heat flows

outward. This is consistent with the second law of thermodynamics, the heat flows

from high temperature to low temperature.
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Initial Condition. At time t = 0, the distribution of temperature u0(x) is given.

That is

u(x, 0) = u0(x),x ∈ D. (4.9)

This is called the initial condition.

Initial boundary value problem. The mathematical problem for heat conduction

is to find solution u(x, t) which satisfis (4.8), one of the above boundary condition and

the initial condition (4.9).

4.3 Modeling electrostatics

4.3.1 The integral and differential forms of electrostatics

Electrostatics study the electric field in an environment containing conductors and

charges. There are two basic physical laws:

• Gauss’s law: the total electric flux over a closed surface is proportional to the total

enclosed chages. In mathematical form:∫
∂Ω

E · n dS =
1

ε0

∫
Ω

ρ(x) dx. (4.10)

where ε0 is a constant.

• The line integral of E over any closed loop is zero.∫
C

E · ds = 0. (4.11)

This is a version of Farady’s law.

These two equations are called the integral form of the electrostatics.

Using the divergence theorem and the Stokes theorem, we can get the differential

form of the eletrostatics.

ε0∇ · E = ρ, (4.12)

and

∇× E = 0. (4.13)
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The second equation implies that there exists a potential u such that E = ∇u. Plug

this into the first equation. We get an equation for u:

4u(x) = f(x). (4.14)

where f = ρ/ε0. This is called the Poisson equation.

In the region where there is no charge, f(x) = 0 in that region. In this case, the

equation becomes

4u(x) = 0.

This is called the Laplace equation. This problem appears when the space contains

conductors, and there is no charges outside conductor surfaces.

4.3.2 Boundary conditions

If the boundary is a perfect conductor, the tangent component of E must be zero. Oth-

erwise the nonzero tangential electric field will drive charge motion on conductor, which

violates the assumption of statics (no charge motion). In mathematical formulation, it

reads

E · t = 0 on surfaces of conductors. (4.15)

In terms of potential u, we get

∇u · t = 0 on surfaces of conductors.

This leads to

u(x) = const. on surfaces of conductors.

If we have two conductors, we need to impose two constants for potential on the two

surfaces. This kind of boundary condition is the Dirichlet boundary condition.

More general Dirichlet boundary condition reads

u(x) = g(x) for x ∈ ∂D. (4.16)

4.4 *Modeling Fluid Flows

4.4.1 Flux and Continuity equation

Let consider a gas flow in three dimensions. Let ρ(x) and v(x) be density and velocity

of this flow at x. Here, I mean “at x” means the averages of the quantity in a small
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vicinity of x. Let us consider a region Ω ∈ R3. We want to study the variation of mass

in Ω per unit time. That is
d

dt

∫
Ω

ρ(x, t) dx.

The mass increases in Ω must come from those flow into Ω throught its boundary ∂Ω

in a unit small time ∆t. To see how much amount of mass flows in, we consider a small

piece of surface element dS with unit outer normal n. Consider the parallel volume with

base dS and v ·∆t as its one side. The gas in this parallel volume will flow into Ω in ∆t

through dS. And only this gas flows into Ω through dS in this period ∆t. The volume

of this parallel volume is v∆t · ndS. Thhe mass in this vlume is ρv∆t · ndS. Thus, the

total amount of masses flow into Ω in ∆t is

−
∫

∂Ω

ρv∆t · n dS

The minus sign indicates the amount of gas flows in and notice that n is the outer

normal. The quantity ρv is called the mass flux. Thus, the amount of gas flows into Ω

per unit time is

−
∫

∂Ω

ρv · n dS

Thus, we have
d

dt

∫
Ω

ρ(x, t) dx = −
∫

∂Ω

ρv · n dS

The left-hand side equals

d

dt

∫
Ω

ρ(x, t) dx =

∫
Ω

∂

∂t
ρ(x, t) dx

By the divergence theorem, the right-hand side is

−
∫

∂Ω

ρv · n dS = −
∫

Ω

∇ · (ρv) dx.

Thus, we get ∫
Ω

ρt +∇ · (ρv) dx = 0.

This is valid for any domain Ω. Thus, we conclude

ρt +∇ · (ρv) = 0. (4.17)

This is called the continuity equation, or the conservation law of masses. It is the most

fundamental equation in continuum mechanics.
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4.4.2 Material derivative

Given a velocity field v(x, t), we can define the particle path x(·,X) to be the solution

of the ordinary differential equation with initial position X:

ẋ = v(x, t),x(0,X) = X.

The initial position X is usually called the material coordinate or the Lagrange coordinate

of the flow. Given a flow qantity, say f(x, t), we can study how it changes along a particle

path. This means we should fix the material coordinate and differentiate in t. That is(
d

dt

)
X

f(x(t,X), t) =
∂

∂t
f +∇xf ·

d

dt
x(t,X)

=
( ∂
∂t

+ v · ∇x

)
f

:=
D

Dt
f.

The derivative D/Dt is called the material derivative.

If Dρ/Dt = 0, the fluid is called incompressible. By the continuity equation

0 = ρt +∇ · (ρv) = ρt + v · ∇ρ+ ρ∇ · v

We get that the incompressibility is equivalent to

∇ · v = 0. (4.18)

4.4.3 Momentum equation

Now, let us study the momentum change in an arbitrary domain Ω. According to

Newton’s force law, the change of momentum is due to the force it is exterted. There

are two kinds of forces, (i) surface force T , and a body force f . The surface force is

called the stress. It is a 3 × 3 matrix T = (Tij)3×3. We shall explain more later. The

change of momentum in Ω is
d

dt

∫
Ω

ρv dx.

There are three terms cause this change:

• the momentum flows into Ω through ∂Ω: −
∫

∂Ω
(ρv)(v · n) dS

• the surface force on ∂Ω:
∫

∂Ω
T · n dS
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• the body force in Ω:
∫

Ω
ρf dx.

Thus, we get

d

dt

∫
Ω

ρv dx = −
∫

∂Ω

(ρv)(v · n) dS +

∫
∂Ω

T · n dS +

∫
Ω

ρf dx.

By applying the divergence theorem, we get(
ρv
)

t
+∇ ·

(
ρvv

)
= ∇ · T + ρf.

We should be careful about the term ∇ · ρvv. It means that vv is a matrix with entry

vivj. The ith component of ∇ · (ρvv) is
∑

j ∂j(ρvivj).

One can show by using the continuity equation to get that(
ρv
)

t
+∇ ·

(
ρvv

)
= ρ

Dv

Dt

So sometimes, the momentum equation is expressed as

ρ
Dv

Dt
= ∇ · T + ρf.

Stress There are two kinds of fluid we consider.

• perfact fluid: T = −pI, no viscosity,

• viscous fluid: T = −pI + σ,

where p is the pressure, which is a function of ρ from theory of thermodynamics. And

σ = µ(∇v + (∇v)T ) + λ∇ · v

is called the shear stress. The quantity 1
2
(∇v + (∇v)T )) is called the strain e. That is

eij =
1

2

( ∂vi

∂xj

+
∂vj

∂xi

)
The above relation between shear stress and strain is a generalized Hook’s law.
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Euler equation. For perfect fluid, we get the Euler equation{
ρt +∇ · (ρv) = 0

ρDv
Dt

+∇p = ρf.
(4.19)

There are 4 equations with 4 unknowns ρ,v. The pressure is a given function of ρ. In

the second equation, we can rewrite it as

vt + v · ∇v +
∇p
ρ

= f

We can define a function P (ρ) (called entherpy or potential) such that

P ′(ρ) =
p′(ρ)

ρ

Then the momentum equation becomes

vt + v · ∇v +∇P = f

In the case of incompressible flow, the continuity equation becomes

∇ · v = 0.

The unknowns become P and v.

Navier-Stokes equation. For incompressible and viscous fluid, we get the Navier-

Stokes equation {
∇ · v = 0.

ρDv
Dt

+∇p = ρf + µ∇2v.
(4.20)

Remarks.

• For fluid mechanics, you may read pp. 227-231.

• If you want to have a better understanding on the strain and stress, read pp.

220-225, or you can read first few pages of the andau-Lipschitz’s book on Fluid

Mechanics.
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4.4.4 Boundary Conditions

For viscous flows, the usual boundary condition is so called non-slip boundary condition

v = 0 on ∂Ω

This means that the particles is attached to the boundary due to viscosity. However, if

the flow is inviscid, we usually impose the following boundary condition

v · n = 0.

This means that the fluid cannot flow into or out of the boundary.

4.4.5 Potential flows

An important quantity to study fluid dynamics is the vorticity. Physically, the vorticity

is mainly generated from the friction of fluid with the bundary, or with surounding fluid.

For perfect fluid under a conservative force f = ∇Φ, we claim if there is no vorticity

initially, then there is no vorticity in all later time. To see this, we derive the vorticity

for the perfect fluid. Define

ω := ∇× v,

Take curl on the Euler equation for incompressible flow:

∇×
(
vt + v · ∇v +∇P −∇Φ

)
= 0.

The conservative force terms ∇× (∇P −∇Φ) disappear. We get

Dω

Dt
= (ω · ∇)v

If v is given, this is a linear ODE for ω. If ω = 0 initially, then ω ≡ 0 in all later time.

Such kind of flows are called irrotational flows. An incompressible and irrotational flow

satisfies {
∇ · v = 0

∇× v = 0.
(4.21)

Since v is curl free, there exist a potential φ such that

v = ∇φ.
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Thus, an irrotational flow is called a potential flow. The incompressibility ∇ · v = 0

yields

4φ = 0. (4.22)

Thus, the potential φ of a potential flow satisfies Laplace equation. On the boundary,

we impose non-slip boundary condition

∇φ · n = 0.

Alternatively, we can use v being divergence free in two dimensions, there exists a

function ψ such that

v = ψ⊥ := (ψy,−ψx).

The level set of ψ is tangent to ψ⊥, hence to v. This means that v is tangent to the

level set of ψ. So, ψ = const. are the stream lines of the flow. From ∇× v = 0, we get

∇× v = ∇× (ψy,−ψx, 0) = (0, 0,−4ψ) = 0.

we get

4ψ = 0.

The non-slip boundary condition now reads

0 = v · n = (ψy,−ψx) · n = (ψx, ψy) · t.

where t is the tangent of the boundary. That is, the tangential derivative of ψ along the

boundary is zero. Hence, ψ is a constant along the boundary.

Homeworks.

• Below, we can view two dimensional potential flows are defined on complex plane.

Verify the following function are the potentials of a potential flow. Plot their

stream lines.

1. φ = Re(z2) = x2 − y2

2. φ = Re(log z) = log(
√
x2 + y2)

3. φ = Re(−i log z) = θ(x, y) = tan−1(y/x)
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4.4.6 Stokes flows

In the incompressible viscous flows, if the flow moves slowly, then the acceleration term

Dv/Dt is usually relatively small. In this case, we can ignor it. The resulting equation

is

∇ · v = 0

−µ∇2v +∇p = f.

with boundary condition:

v = 0 on boundary.

We may write them in matrix form:[
C−1 A

AT 0

][
v

p

]
=

[
f

0

]

where C−1 = −µ∇2, A = ∇, the gradient operator, and AT = −∇· is the minus

divergence operator.

Homework.

• Show that ∫
Ω

∇p · v dx =

∫
Ω

p∇ · v dx

for any scalar field p and any vector field v with v = 0 on ∂Ω.

4.5 *Equilibruim of Elastic Material

The deformation of an elastic material is characteristized by the disciplacement u(x). If

there is no deformation, u(x) = 0. If the orginal position of a small piece of material is

x and it is deformed to ξ, then the discplacement is defined to be u(x) := ξ − x. The

Jacobian J = ∂u/∂x characterizes the local change of the material. If the material is

expanding uniforming, then ξ = λx with λ > 1. The corresponding u = (λ − 1)x, and

the Jacobian J = (λ − 1)I. According to Hook’s law, we should expect a restoration

force σ which should point to the center at every point. Thus, expansion or shrinking

of material causes a restoration force formed inside the material. In three dimensions,

the material can stretch in x and y directions and dilate in the z-direction. Or in
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general, it can stretch (or dilate) in one direction and dilate (or stretch) on its orthogonal

plane. This will introduces restoration force inside the material. It is a surface force.

However, rotation of a material will introduce no restoration force inside the material.

The infinitesimal deformation of is described by the Jacobian J . The anti-symmetric

part of J corresponds to the rotation of the material. The symmetric part corresponds

to the expansion or shrinking (non-isometric) of the material. This symmetric part is

called the strain of the material. That is,

eij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
The divergence of J is responsible for the isometric expansion or shrinking of the mate-

rial.

The generalized Hook’s law is

σi,j = 2µeij + λ(e11 + e22 + e33)δij

σ is called the stress tensor. The parameters λ and µ are called Lamé constants. On a

small piece of surface with normal n, the surface force due to this stress is σn, which is

a vector. It is the restoration force on this small piece of surface.

Consider any domain Ω in the material. The force balance law in Ω reads∫
∂Ω

σ · n dS +

∫
Ω

f dx

Apply the divergence theorem, we get∫
Ω

(∇ · σ + f) dx

for any domain Ω. We then get the force balance equilibrium equation

∇ · σ(x) + f(x) = 0, x ∈ D (4.23)

The boundary condition can be classified into two, one is Dirichlet, the other is Neumann.

Namely, ∂D = ΓD ∪ ΓN . On which, the following boundary conditions are imposed:{
u(x) = 0 x ∈ ΓD

(σ · n)(x) = g(x) x ∈ ΓN

(4.24)
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4.6 *Applications to Maxwell equations

We now apply the knowledge on vector calculus we learnt in the previous few subsections

to simplify the important Maxwell systems. The Maxwell system is a system of first-

order partial differential equations which can describe most electromagnetic phenomena

and are given by the system in three dimensions:

ε
∂E

∂t
−∇×H = −J (Ampere′s law) (4.25)

µ
∂H

∂t
+∇× E = 0 (Faraday′s law) (4.26)

∇ · (εE) = ρ (Gaussian laws) (4.27)

∇ · (µH) = 0 (Gaussian laws) (4.28)

where E and H are the electric and magnetic field of the involved physical medium, ε(x)

and µ(x) are the electric permittivity and magnetic permeability of the medium.

Steady-state Maxwell system. In the steady-state case, the Maxwell system can

be decoupled as follows:

−∇×H = −J , ∇ · (µH) = 0 (4.29)

∇× E = 0 , ∇ · (εE) = ρ (4.30)

The first order system may not be so easy to solve. So we would like to find a better

system for both E and H.

First consider E. Using the first equation in (4.30), we can write E = ∇u for some

scalar u. Substituting it into the second equation in (4.30), we get a nice equation for

u:

∇ · (ε∇u) = ρ .

After u is available, we can calculate E using the relation E = ∇u.

Then we consider H. Using the second equation in (4.29), we can write µH = ∇×A

for some vector-valued function A. Substituting it into the first equation in (4.29), we

get a nice equation for A:

∇× (µ−1∇×A) = J , ∇ ·A = 0 .

where the second equation is added to ensure the uniqueness of the solutions. After A

is available, we can calculate H using the relation µH = ∇×A.
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Time-dependent Maxwell system. It is easy to see that the two unknown func-

tions E and H are coupled together in the time-dependent Maxwell system (4.25)-(4.28).

Usually it is very difficult and expensive to solve this coupled system. A simple approach

is to decouple the two unknown functions. To do so, we first take the time derivative of

the Ampere’s equation to get

ε(x)
∂2E

∂t2
−∇× ∂H

∂t
= −∂J

∂t
,

then using the Faraday’s equation we derive an equation for E:

ε(x)
∂2E

∂t2
+∇×

(
µ(x)−1∇× E

)
= −∂J

∂t
.

Similarly, by taking the time derivative of the Faraday’s equation, we get

µ
∂2H

∂t2
+∇× ∂E

∂t
= 0 ,

then using the Ampere’s equation we derive an equation for H:

µ
∂2H

∂t2
+∇×

(
ε(x)−1∇×H

)
= ∇× (ε(x)−1J) .

4.7 Variation Formulation

We shall reformulate the Poisson equation

−4u(x) = f(x), x ∈ D (4.31)

with Dirichlet boundary condition

u(x) = 0,x ∈ ∂D (4.32)

as a minimization problem. Consider the functional

P (u) =
1

2

∫
D

|∇u|2 dx−
∫

D

f(x)u(x) dx (4.33)

This functional is called the Dirichlet integral. It is defined for all function u in C1 So

let us consider the following minimization problem:

min
u
P (u) with u(x) = 0 on ∂D. (4.34)
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The minimum occurs at P ′(u∗) = 0. To compute P ′(u), we perform the following direc-

tional derivative. Let v be a function in C1 which is a variation of u. Since u is fixed

on ∂D, we should consider v(x) = 0 for x ∈ ∂D. Consider dP (u+ tv)/dt at t = 0. This

is the change of P at u in the direction v, or the directional derivative of P at u in the

direction v.

P (u+ tv) =

∫
D

(
1

2
|∇(u+ tv)|2 − f(u+ tv)

)
dx

= P (u) + t

∫
D

(∇u · ∇v − fv) dx +
t2

2

∫
D

|∇v|2 dx

Hence,
d

dt

∣∣∣∣
t=0

P (u+ tv) =

∫
D

(∇u · ∇v − fv) dx

By applying the Green’s theorem, we get∫
D

∇u · ∇v dx = −
∫

D

∇ · (∇u)v dx +

∫
∂D

v∇u · n dS

From the condition v(x) = 0 for x ∈ ∂D, we get the boundary term is 0. Hence, we get

(P ′(u), v) :=
d

dt

∣∣∣∣
t=0

P (u+ tv) =

∫
D

(−∇2u− f)v dx (4.35)

P ′(u) is the gradient of P at u. It is

P ′(u) = −∇2u− f (4.36)

We find that P ′(u) = 0 is exactly the equation (4.31). The equation P ′(u) = 0 is called

the Euler-Lagrange equation of the minimization problem (4.34).

Conversely, if u∗ satisfies (4.31) with boundary condition (4.32), we claim it is the

minimum of P among all function u satisfying the same boundary condition. Let u be

any function in C1 satisfies the same boundary condition. Let v = u−u∗. Then v(x) = 0
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for x ∈ ∂D. We compare P (u) and P (u∗):

P (u)− P (u∗) = P (u∗ + v)− P (u∗)

=

∫
D

(
1

2
|∇(u∗ + v)|2 − 1

2
|∇u∗|2 − fv

)
dx

=

∫
D

(∇u · ∇v)− fv dx+
1

2

∫
D

|∇v|2 dx

=

∫
D

((−∇ · ∇u∗)v − fv) dx+

∫
∂D

v∇u · n dS +
1

2

∫
D

|∇v|2 dx

=

∫
D

((−∇ · ∇u∗)v − fv) dx+
1

2

∫
D

|∇v|2 dx

=
1

2

∫
D

|∇v|2 dx ≥ 0.

This shows u∗ is the minimum.

In general, we consider the following Dirichlet integral

P (u) :=

∫
D

(
c(x)

2
|∇u(x)|2 − f(x)u(x)

)
dx (4.37)

where c(x) is a strictly positive function, i.e. c(x) ≥ c0 > 0 for all x ∈ D. The Dirichlet

principle states

The function u∗ which minimizes P (u) with u(x) = g(x) for x ∈ ∂D must satisfies

the Euler-Lagrange equation

−∇ · (c(x)∇u) = f (4.38)

with boundary condition

u(x) = g(x), x ∈ ∂D. (4.39)

The converse is also true.

Next, we express the Euler-Lagrange equation in variation form. Let us define

a(u, v) :=

∫
D

c(x)∇u(x) · ∇v(x) dx

and

(f, v) =

∫
D

f(x)v(x) dx

We have the following weak form:
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The function u∗ with boundary condition (4.39) satisfies the Euler-Lagrange

equation (4.38) if and only if it satisfies the following variation equation:

a(u∗, v) = (f, v) for all v with v(x) = 0 on ∂D. (4.40)

This variation formulation will be used in the finite element method for (4.38) (4.39).

Homework

• Prove the above general Dirichlet principle.
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5 Analytical methods

5.1 Motivation of Fourier series: Solving heat equation on a

circle

In this section, we are going to present one of the most powerful analytical methods

– Fourier series. We start from Fourier’s original approach, solving heat equation on

a circle as our motivation. We then explain the theory of Fourier series and with an

application to solve Laplace equation on a disk. Finally, we extend the Fourier series to

Fourier transform and its application to solving some differential equation on line.

We consider the heat equation on a circle:

ut = uxx, x ∈ [0, 2π]

with periodic boundary condition

u(0, t) = u(2π, t),

and initial condition

u(x, 0) = f(x).

The reason why we consider periodic boundary condition is for simlicity. The method

can also be extended to arbitrary finite interval with Dirichlet boundary condition or

Neumann boundary condition.

Fourier had two important observations for this equation:

• If we differentiate cos kx twice, we get the same cos kx:

d2

dx2
cos kx = −k2 cos kx.

Here, k is an integer. In modern language, cos kx is an eigenvector of the differential

operator with eigenvalue −k2. Thus, we can guess a solution looks like

u(x, t) = a(t) cos kx.

Using this ansatz, we plug it into equation, we get

ȧ(t) cos kx = −k2a(t) cos kx.
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We eliminate cos kx and find that a(t) satisfies

ȧ(t) = −k2a(t).

This can be solved immediately. Namely

a(t) = a(0)e−k2t.

Thus,

u(x, t) = a(0)e−k2t cos kx

is a solution of the heat equation. Same property also happens on sin kx. We also

have solution looks like

u(x, t) = b(0)e−k2t sin kx

for any positive integer k.

• If we know two solutions u1 and u2, then their linear combination is also a solution.

This is because the equation is linear.

Combining these two observations, we immediately get that all functions

u(x, t) =
N∑

k=0

(
ak cos kx+ bk sin kx

)
e−k2t.

are solutions of the heat equation on circle. The corresponding initial data is

u(x, 0) =
N∑

k=0

ak cos kx+ bk sin kx

The function
∑N

k=0 ak cos kx+bk sin kx is called a trigonometric polynomial. Just like the

case of Taylor series: a nice general function can be approximated by polynomial with

infinite terms, we would also like to approximate any 2π-periodic function by Fourier

series. So

Question 1. Can any 2π-periodic function f(x) be represented as a trigonometric

series?

That is

f(x) =
∞∑

k=0

(
ak cos kx+ bk sin kx

)
for some coefficients ak and bk. How to find these coefficients?
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Question 2. Does the function

u(x, t) =
∞∑

k=0

(
ak cos kx+ bk sin kx

)
e−k2t (5.1)

solve the heat equation with the initial condition u(x, 0) = f(x)?

This is a motivation to develop the theory of Fourier series.

Notice that we have the following orthogonality of cos kx and sin kx:

∫ 2π

0

cos kx cosmxdx =


2π if k = m = 0

π if k = m 6= 0

0 if k 6= m

Same property for sin kx. Further, sin kx is always orthogonal to cosmx for any integers

k,m: ∫ 2π

0

sin kx cosmxdx = 0.

To find the coefficient am, we multiply (5.1) by cosmx) and integrate from 0 to 2π.

Using the orthogonality of cos kx and sin kx, we get all terms are disappeared except

the term am: ∫ 2π

0

f(x) cosmxdx = πam,m > 0.

This is for the case m 6= 0. When m = 0, we get∫ 2π

0

f(x) dx = 2πa0

For bm, we have ∫ 2π

0

f(x) sinmxdx = πbm,m > 0.

The above procedure is at least formally true. In fact, the exploration of Fourier

series opened the door of modern analysis.

Before we formally introduce Fourier theory, let us make the Fourier remarks on

theessential keys of this theory. According to Euler, the two key roles cos kx and sin kx

can be put together into one as

eikx = cos kx+ i sin kx.

The very essential keys of Fourier series are
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1. The function eikx is an eigenvector of the differential operator d/dx. In other

words, eikx can be used to diagonalize differential operators.

2. The functions eikx are oscillatory and wiggle more and more as k increase. They

can be ued to approximate any function with oscillation at any scale.

3. The functions eikx are orthogonal! That is∫ 2π

0

eikxeimx dx = 2πδkm,

where

δkm =

{
1 if k = m,

0 if k 6= m.

5.2 Fourier Series

5.2.1 Inner product function spaces

Let us learn some basic teminology about periodic functions.

Definition 5.1 (Periodic functions). A function f(x) is called a periodic function with

period d if

f(x+ d) = f(x) ∀x .

For example, eikx, cos kx and sin kx are all periodic functions with period 2π. But

cos 2kx, sin 2kx

are periodic functions with period 2π and also π. Because of the periodicity, we can

consider any interval of length 2π for the Fourier expansions (5.9) and (5.2). We often

take [−π, π] or [0, 2π]. In our subsequent discussions, we will always use the interval

[−π, π].

Now suppose f(x) is a function with period 2π, i.e., f(x + 2π) = f(x) ∀x . In this

case, the graph of f(x) in any interval of length 2π will be repeated in its neighboring

interval of length 2π.

Let us denote all real-valued 2π-periodic functions by V . It is a vector space over R.

In V , we define the inner product

(f, g) =

∫ π

−π

f(x)g(x) dx.

One can show that it satisfies
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1. (f, f) ≥ 0 and (f, f) = 0 if and only if f = 0

2. (f, g) = (g, f)

3. (f1 + f2, g) = (f1, g) + (f2, g)

4. (αf, g) = α(f, g)

We can define the norm

‖f‖ =
√

(f, f).

We can see that the inner product satisfies the following Cauchy’s inequality:

|(f, g)| ≤ ‖f‖ ‖g‖

This is because

0 ≤ (f + tg, f + tg) = ‖f‖2 + 2t(f, g) + t2‖g‖2

for any t ∈ R. Therefore, we have

(f, g)2 − ‖f‖2‖g‖2 ≤ 0.

From this Cauchy’s inequality, it is natural to define the angle θ between two vectors f

and g by

cos θ =
(f, g)

‖f‖ ‖g‖

Definition 5.2 (Orthogonal functions). Two real-valued functions f(x) and g(x) are

said to be orthogonal on the interval [a, b] if the following holds

(f, g) :=

∫ b

a

f(x)g(x)dx = 0.

Similarly one can verify that the following three sequences

{cos kx}∞k=0, {sin kx}∞k=0, {cos kx, sin kx}∞k=0

are all orthogonal sequences of functions on [−π, π] or [0, 2π].
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5.2.2 Real Fourier series

We first discuss how to find the Fourier series

f(x) =
∞∑

k=0

(ak cos kx+ bk sin kx). (5.2)

We need to find all the coefficients {ak} and {bk}. Notice that for k = 0, sin kx ≡ 0, so

we don’t need the coefficent b0. Recall that {cos kx, sin kx} are orthogonal on [−π, π],

namely for any k 6= l, ∫ π

−π

cos kx cos lxdx = 0, (5.3)∫ π

−π

cos kx sin lxdx = 0, (5.4)∫ π

−π

sin kx sin lxdx = 0 . (5.5)

Find the coefficient ak in (5.2). Multiply both sides of (5.2) by cos kx, integrate

then over [−π, π] and use the orthogonality (5.3)-(5.5). We have∫ π

−π

f(x) cos kxdx =

∫ π

−π

ak cos kx cos kxdx.

From this we obtain

ak =
1

π

∫ π

−π

f(x) cos kxdx (5.6)

since ∫ π

−π

cos2 kxdx =

∫ π

−π

1 + cos 2kx

2
dx = π .

Find the coefficient bk in (5.2). Multiply both sides of (5.2) by sin kx, integrate then

over [−π, π] and use the orthogonality (5.3)-(5.5). We have∫ π

−π

f(x) sin kxdx =

∫ π

−π

bk sin kx sin kxdx.

From this we obtain

bk =
1

π

∫ π

−π

f(x) sin kxdx . (5.7)

Find the coefficient a0 in (5.2). Multiply both sides of (5.2) by the constant 1, then

integrate over [−π, π] to obtain ∫ π

−π

f(x)dx =

∫ π

−π

a0dx,
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therefore,

a0 =
1

2π

∫ π

−π

f(x)dx , (5.8)

that is, the first coefficient a0 is the average of f(x) on [−π, π].

In summary, we can expand f(x) as follows:

f(x) = a0 + a1 cosx+ b1 sin x+ a2 cos 2x+ b2 sin 2x+ · · ·

where all the coefficients are given by

a0 =
1

2π

∫ π

−π

f(x)dx ,

ak =
1

π

∫ π

−π

f(x) cos kxdx ,

bk =
1

π

∫ π

−π

f(x) sin kxdx .

5.2.3 Complex Fourier series

First let us consider class of all complex-valued 2π-periodic functions W . It is a vector

spaces over C. We define the following inner product:

(f, g) :=

∫ π

−π

f(x) g(x) dx.

One can show that it satisfies

1. (f, f) ≥ 0 and (f, f) = 0 if and only if f = 0

2. (f, g) = (g, f)

3. (f1 + f2, g) = (f1, g) + (f2, g)

4. (αf, g) = α(f, g)

We can define the norm

‖f‖ =
√

(f, f).

Through

0 ≤ (f + tg, f + tg) = ‖f‖2 + 2Re(f, g)t+ t2‖g‖2

for any real t, we get that

Re(f, g) ≤ ‖f‖ ‖g‖
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If we replace g by g1 := g(f, g)/|(f, g)|, then we get

|(f, g)| = Re(f, g1) ≤ ‖f‖ ‖g1‖ = ‖f‖ ‖g‖.

This leads to the Cauchy’s inequality

|(f, g)| ≤ ‖f‖ ‖g‖.

Definition 5.3 (Orthogonal functions). Two complex functions f(x) and g(x) are said

to be orthogonal on the interval [a, b] if the following holds

(f, g) :=

∫ b

a

f(x)g(x)dx = 0

where g(x) is the conjugate of g(x). For example, {eikx}∞k=−∞ is an orthogonal sequence

of functions on [−π, π] or [0, 2π], since

(eikx, eilx) =

∫ 2π

0

eikxeilxdx = 0 ∀ l 6= k

In fact, ∫ 2π

0

eikxeilxdx =

∫ 2π

0

eikxe−ilxdx =
1

i(k − l)
ei(k−l)x

∣∣∣2π

0
= 0 .

Now we shall discuss how to expand a complex-valued function f interms of {eikx}k∈Z:

f(x) =
∞∑

k=−∞

cke
ikx (5.9)

We need to find all the coefficients {ck}. We know that {eikx} are orthogonal on [−π, π],

namely for any k 6= l,

(eikx, eilx) =

∫ π

−π

eikxe−ilxdx = 0 ∀ k 6= l.

Thus multiply both sides of (??) by e−ikx and use the orthogonality of {eikx}, we obtain∫ π

−π

f(x)e−ikxdx =

∫ π

−π

cke
ikxe−ikxdx ,

or

ck =
1

2π

∫ π

−π

f(x)e−ikxdx . (5.10)

That is, the Fourier series is

f(x) = c0 + c1e
ix + c−1e

−ix + c2e
2ix + c−2e

−2ix + · · · (5.11)

with coefficients ck defined by (5.10).
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Remark 5.1. Note that in the Fourier series (5.11), the function f(x) can be a real

function. For a real function, one can choose the real Fourier expansion (5.2) or the

complex form (5.11).

Think about why we can choose the complex form (5.11) for a real function. Any

contradiction ?

5.2.4 Relation between the real and complex Fourier series

There are close relations between the real and complex Fourier series.

(a) The coefficients ck in the complex form (5.11) can be derived from the coefficients

ak and bk in the real form (5.2). In fact, we know

eikx = cos kx+ i sin kx, e−ikx = cos kx− i sin kx. (5.12)

Multiply both sides of the second equation by f(x) and integrate over [−π, π]. We

obtain ∫ π

−π

f(x)e−ikxdx =

∫ π

−π

f(x) cos kxdx− i

∫ π

−π

f(x) sin kxdx ,

That implies

2ck = ak − i bk . (5.13)

This can be written as

ck =
1

2
ak −

i

2
bk .

Similarly, we can derive from the first equation of (5.12):

c−k =
1

2
ak +

i

2
bk .

(b) The coefficients ak and bk in (5.2) can be recovered from the complex coefficients

ck in (5.11). Using the formula

cos kx =
1

2

(
eikx + e−ikx

)
, sin kx =

1

2i

(
eikx − e−ikx

)
.

Therefore

ak =
1

π

∫ π

−π

f(x) cos kxdx = ck + c−k ,

bk =
1

π

∫ π

−π

f(x) sin kxdx =
1

i
(c−k − ck).
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c If f is real-valued, it is easy to check that the follows are equivalent:

• f is real-valued

• ak and bk are real for all k

• ck = c−k

5.3 Examples of Fourier series

We now give some examples to illustrate the calculations of the Fourier series.

Example 5.1. Find the Fourier series of f(x) = cos2 x.

Solution. By definition, we have

a0 =
1

2π

∫ π

−π

f(x)dx =
1

2π

∫ π

−π

1 + cos 2x

2
dx =

1

2
,

ak =
1

π

∫ π

−π

f(x) cos kxdx =
1

2π

∫ π

−π

(1 + cos 2x) cos kxdx =

0 , k 6= 2

1
2
, k = 2 ,

bk =
1

π

∫ π

−π

f(x) sin kxdx =
1

2π

∫ π

−π

(1 + cos 2x) sin kxdx = 0 .

Therefore the Fourier series of f(x) is

f(x) =
1

2
+

1

2
cos 2x .

This is a well-known formula. ]

• Try the Fourier expansions of the functions sin2 x, cos 2x, sinx+ cosx.

• Try the Fourier expansions of the functions

1. f(x) =

{
−1 −π < x < 0

1 0 < x < π,

2. f(x) =

{
x+ π −π < x < 0

π − x 0 < x < π,

3. f(x) = (π − x)(x+ π)
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Example 5.2. Find the Fourier series of f(x) = δ(x) on [−π, π]. This function is

called a delta function and it is one of the most important functions used in physics and

engineering. The delta function has the following properties∫ π

−π

g(x)δ(x)dx = g(0) ∀ g ∈ C [−π, π]

and

δ(x) = 0 for any x 6= 0.

Solution. By definition, the Fourier coefficients are

a0 =
1

2π

∫ π

−π

δ(x)dx =
1

2π
,

ak =
1

π

∫ π

−π

δ(x) cos kxdx =
1

π
cos 0 =

1

π
,

bk =
1

π

∫ π

−π

δ(x) sin kxdx = 0 ,

therefore

δ(x) =
1

2π
+

1

π

∞∑
k=1

cos kx , x ∈ [−π, π] (5.14)

In the complex case,

ck =
1

2π

∫ π

−π

f(x)e−ikxdx =
1

2π
,

so we have

δ(x) =
1

2π

∞∑
k=−∞

eikx , x ∈ [−π, π] . (5.15)

We have from (5.15) that

δ(x) =
1

2π
+

1

2π

∞∑
k=1

(
eikx + e−ikx

)
=

1

2π
+

1

π

∞∑
k=1

cos kx ,

this is the same as (5.14).
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5.3.1 Sine series and cosine series

Odd and even functions. A function f(x) is called an even function if it satisfies

f(−x) = f(x), ∀x .

And it is called an odd function if it satisfies

f(−x) = −f(x), ∀x .

It is easy to check the following properties:

For any odd function f(x) on [−π, π], we have∫ π

−π

f(x)dx = 0 .

For any even function f(x) on [−π, π], we have∫ π

−π

f(x)dx = 2

∫ π

0

f(x)dx .

Example 5.3. Find the Fourier series of the odd function

f(x) = x , x ∈ [−π, π] .

Solution. The Fourier coefficients are

a0 =
1

2π

∫ π

−π

f(x)dx = 0 (why ?)

ak =
1

π

∫ π

−π

f(x) cos kxdx = 0 (why ?)

Finally for the coefficients bk, we have

bk =
1

π

∫ π

−π

f(x) sin kxdx =
2

π

∫ π

0

x sin kxdx

By integration by parts, we obtain

bk =
2

kπ

∫ π

0

cos kxdx− 2

πk
x cos kx

∣∣∣π
0

= −2 cos kπ

k
,
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that is,

b1 = 2, b2 = −2

2
, b3 =

2

3
, · · · , bk = (−1)k+1 2

k
,

so the required Fourier series is

x = b1 sin x+ b2 sin 2x+ · · · = 2(sinx− sin 2x

2
+

sin 3x

3
− · · · ), −π < x < π .

Remark 5.2. Note that the Fourier series above does not converge at x = −π, π, as the

series is 0 at x = −π and π.

A very important observation:

The Fourier series of an even function has only cosine terms, since

bk =
1

π

∫ π

−π

f(x) sin kxdx = 0 .

The Fourier series of an odd function has only sine terms, since

ak =
1

π

∫ π

−π

f(x) cos kxdx = 0 .

Every function f(x) can be written as a sum of an even and an odd function, i.e.,

f(x) = fe(x) + fo(x),

with

fe(x) =
f(x) + f(−x)

2
, fo(x) =

f(x)− f(−x)
2

.

On the other hand, every function f on (0, π) can have two ways of extension to

(−π, π):

• even extension: define f(x) = f(−x) for x ∈ (−π, 0),

• odd extension: define f(x) = −f(−x) for x ∈ (−π, 0).

Example 5.4. The function f(x) = 1 is known on the half-period 0 < x < π. Find its

Fourier series when

(a) f(x) is extended to (−π, π) as an even function;

98



(b) f(x) is extended to (−π, π) as an odd function.

Solution. By definition of even and odd functions, we have

(a) Extend f(x) as an even function,

a0 =
1

2π

∫ π

−π

f(x)dx =
1

π

∫ π

0

1dx = 1 ,

ak =
1

π

∫ π

−π

f(x) cos kxdx =
2

π

∫ π

0

cos kxdx = 0 ,

bk =
1

π

∫ π

−π

f(x) sin kxdx = 0 ,

therefore the Fourier series of f(x) is

f(x) = 1, −π < x < π.

This recovers the original constant function.

(b) Extend f(x) as an odd function,

a0 =
1

2π

∫ π

−π

f(x)dx = 0 ,

ak =
1

π

∫ π

−π

f(x) cos kxdx = 0 ,

bk =
1

π

∫ π

−π

f(x) sin kxdx =
2

π

∫ π

0

sin kxdx

= − 2

kπ

(
(−1)k − 1

)
=

0, k is even

4
kπ
, k is odd ,

so the Fourier series of f(x) is

f(x) =
4

π

{sin x

1
+

sin 3x

3
+

sin 5x

5
+ · · ·

}
, −π < x < π.

This is very different from the original constant function.

5.4 Some properties of Fourier series

Best approximation by trigonometric polynomials Let consider the space

VN := {F (x) =
N∑

k=0

(Ak cos kx+Bk sin kx), Ak, Bk ∈ R}
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It is the spaces of all trigonometric polynomials of order less or equal to N . For any 2π

periodic function f , we measure the distance from f to VN by

min
F∈VN

‖f − F‖2

This is equivalent to

‖f−F‖2 = E(A0, A1, · · · , An, B0, B1, · · · , Bn) =

∫ π

−π

{
f(x)−

N∑
k=0

(Ak cos kx+Bk sin kx)
}2
dx .

Then we claim that

The best trigonometric approximation of f(x) on [−π, π] in the mean-

square sense is its Fouries series, i.e.,

E(a0, a1, · · · , aN , b0, b1, · · · , bN) = min
∀Ak,Bk∈R1

E(A0, A1, · · · , AN , B0, B1, · · · , BN)

where {ak} and {bk} are the Fourier coefficients of f(x).

To see this, let us assume {Ak, Bk}n
K=0 is a minimizer of E, then

∂E

∂Ak

=2

∫ π

−π

{
f(x)−

n∑
K=0

(Ak cos kx+Bk sin kx)
}

cos kxdx

=2

∫ π

−π

{
f(x)− Ak cos kx

}
cos kxdx

=2

∫ π

−π

f(x) cos kxdx− 2πAk = 0 ,

therefore

Ak =
1

π

∫ π

−π

f(x) cos kxdx = ak,

for k 6= 0. Similarly we have

A0 =
1

2π

∫ π

−π

f(x)dx = a0 ,

and

Bk =
1

π

∫ π

−π

f(x) sin kxdx = bk , ∀k .

This indicates that the minimizer {Ak, Bk}n
k=0 is the Fourier coefficients of f(x). ]

• Think about why we can claim what we get is the minimizer, not the maximizer.

Think about the difference between E({Ai}, {Bi}) and E({ai}, {bi}).
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Bessel’s inequality Our second claim is:

Let fN(x) be the truncated Fourier series

fN(x) =
N∑

k=0

(ak cos kx+ bk sin kx)

then we have ∫ π

−π

f 2
N(x)dx ≤

∫ π

−π

f 2(x)dx .

First we have by using the orthogonality that for any 0 ≤ k ≤ N ,∫ π

−π

(
f(x)− fN(x)

)
cos kxdx = 0∫ π

−π

(
f(x)− fN(x)

)
sin kxdx = 0

This implies that ∫ π

−π

(
f(x)− fN(x)

)
fN(x)dx = 0.

Thus∫ π

−π

f 2(x)dx =

∫ π

−π

(
f(x)− fN(x) + fN(x)

)2
dx

=

∫ π

−π

(
f(x)− fN(x)

)2
dx+ 2

∫ π

−π

(
f(x)− fN(x)

)
fN(x)dx+

∫ π

−π

f 2
N(x)dx

=

∫ π

−π

(
f(x)− fN(x)

)2
dx+

∫ π

−π

f 2
N(x)dx

≥
∫ π

−π

f 2
N(x)dx .

]

• Think about the interesting question. If we define a sequence {αN} by

αN =

∫ π

−π

F 2
N(x)dx,

then the sequence {αN}∞n=0 must be monotonely increasing.
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Convergence of the Fourier series Our third claim is

Let f be a 2π-periodic smooth function. Let fN(x) be its truncated Fourier

series

fN(x) =
N∑

k=0

(ak cos kx+ bk sin kx)

then we have

f(x) = lim
N
fN(x) =

∞∑
k=0

(ak cos kx+ bk sin kx)

Notice that from the relation between real Fourier series and complex Fourier series,

the partial sum has two expressions:

fN(x) =
N∑

k=0

(ak cos kx+ bk sin kx) =
N∑
−N

cke
−ikx

We plug

ck =
1

2π

∫ π

−π

f(y)e−iky dy

into the above formula to get

fN(x) =
N∑
−N

cke
−ikx

=
N∑
−N

1

2π

∫ π

−π

f(y)e−iky dye−ikx

=
1

2π

∫ π

−π

f(y)
N∑

k=−N

eik(x−y) dy

=
1

2π

∫ π

−π

f(y)PN(x− y) dy

=
1

2π

∫ π

−π

f(x− y′)PN(y′) dy′
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where PN(x) is the partial sum of (5.15):

PN(x) =
N∑

k=−N

eikx =
1

2π
e−iNx

N∑
k=−N

ei(N+k)x

= e−iNx

2N∑
k=0

eikx

= e−iNx 1− ei(2N+1)x

1− eix

=
ei(N+ 1

2
)x − e−i(N+ 1

2
)x

eix/2 − e−ix/2

=
sin(N + 1

2
)x

sin 1
2
x

.

We claim that
1

2π
PN(y′) → δ(y′), as N →∞.

If so, then we get

fN(x) =
1

2π

∫ π

−π

f(x− y′)PN(y′) dy′ →
∫ π

−π

f(x− y′)δ(y′) dy′ = f(x).

We shall not prove this claim. Instead, we raise the following questions for students to

think.

Can the series (5.15) really reflect the behavior of δ(x) ?

Study the following questions

1. For each given N , show that

lim
x→0

PN(x) = 2(N +
1

2
).

So PN(x) will tend to infinity at x = 0 when N goes larger and larger.

2. 1
2π

∫ π

−π
PN(x) dx = 1

3. Plot the figure for PN(x) using Matlab; and calculate the integral

1

2π

∫ π

−π

PN(x)f(x)dx

approximately for N = 10, 20, 30, 40, 50, 100. Observe if PN(x) satisfies that

lim
N→∞

1

2π

∫ π

−π

PN(x)f(x)dx = f(0).

if so, 1
2π
PN(x) approximates δ(x).
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Homeworks.

• pp. 285, 4.1.1

• pp. 286, 4.1.2

• pp. 286, 4.1.3

• pp. 286, 4.1.5

• pp. 286, 4.1.8

• pp. 286, 4.1.9

• pp. 287, 4.1.10

• pp. 287, 4.1.11
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5.5 Application of Fourier expansion: Laplace’s equation on a

disk

In this section, we are going to apply the Fourier series to solve an important differential

equation, i.e., the Laplace’s equation:

∂2u

∂x2
+
∂2u

∂y2
= 0, (x, y) ∈ Ω (5.16)

with the boundary condition

u(x, y) = u0(x, y), (x, y) ∈ ∂Ω (5.17)

where Ω is the unit circle, i.e.,

Ω = {(x, y); x2 + y2 < 1}.

Since Ω is a circle, it is easier to use the polar coordinates:

x = r cos θ , y = r sin θ .

Under the transformation, the domain Ω and the equation (5.16) are transformed into

ω = {(r, θ); 0 ≤ r < 1, − π ≤ θ < π}

and
1

r

∂

∂r

(
r
∂u

∂r

)
+

1

r2

∂2u

∂θ2
= 0 . (5.18)

The boundary condition (5.17) changes into

u(1, θ) = u0(θ) . (5.19)

Notice that we hav used the same notations u and u0 for both the Cartesian coordinate

and the polar coordinate. We are now going to find the solutions of (5.18). First, we

can easily check that the following functions

1, r cos θ, r sin θ, r2 cos 2θ, r2 sin 2θ, · · · (5.20)

are all solutions of (5.18). For example, we take u(r, θ) = rk cos kθ for k ≥ 2, then

ur = krk−1 cos kθ ,

1

r

∂

∂r
(rur) = k2rk−2 cos kθ ,
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while
1

r2
uθθ = −k2rk−2 cos kθ ,

therefore u(r, θ) = rk cos kθ is a solution to the equation (5.18). Note that (5.18) is

a linear equation, so any combination of two solutions u1(r, θ) and u2(r, θ) is still a

solution (why ?). Thus the following combination of the above special solutions is a

also solution:

u(r, θ) = a0 + a1r cos θ + b1r sin θ + · · ·+ akr
k cos kθ + bkr

k sin kθ + · · · , (5.21)

where ak and bk are arbitrary constants.

But we have to determine the coefficients ak and bk. This can be done by using the

boundary condition (5.19). For this, we let r = 1 in (5.21) and obtain

u(1, θ) = a0 + a1 cos θ + b1 sin θ + · · ·+ ak cos kθ + bk sin kθ + · · · .

We know that u(1, θ) = u0(θ), so the coefficients ak and bk are nothing else but the

Fourier coefficients of u0, i.e.,

a0 =
1

2π

∫ π

−π

u0(φ)dφ , (5.22)

ak =
1

π

∫ π

−π

u0(φ) cos kφdφ , k = 1, 2, · · · (5.23)

bk =
1

π

∫ π

−π

u0(φ) sin kφdφ , k = 1, 2, · · · . (5.24)

This indicates that u(r, θ) in (5.21) is the desired solution of the boundary value problem

(5.18) with the coefficients ak and bk given by (5.22)-(5.24).

Example 5.5. Find the solution of the following Laplace equation:{
1
r

∂
∂r

(
r ∂u

∂r

)
+ 1

r2
∂2u
∂θ2 = 0, 0 ≤ r < 1, −π ≤ θ < π

u(1, θ) = θ, −π ≤ θ < π .

and {
1
r

∂
∂r

(
r ∂u

∂r

)
+ 1

r2
∂2u
∂θ2 = 0, 0 ≤ r < 1, −π ≤ θ < π

u(1, θ) = δ(θ), −π ≤ θ < π .
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We can plug the integral expression for ak and bk back to (5.21), we get

u(r, θ) =
∞∑

k=0

rk (ak cos kθ + bk sin kθ)

=
1

2π

∫ π

−π

u0(φ) dφ+
∞∑

k=1

1

π

∫ π

−π

u0(φ)rk (cos kφ cos kθ + sin kφ sin kθ) dφ

=
1

2π

∫ π

−π

u0(φ) dφ+
∞∑

k=1

1

π

∫ π

−π

u0(φ)rk (cos k(θ − φ)) dφ

=
1

2π

∫ π

−π

u0(φ) dφ+
∞∑

k=1

1

π

∫ π

−π

u0(φ)Re
(
rkeik(θ−φ)

)
dφ

=
1

2π

∫ π

−π

u0(φ) dφ+
1

π

∫ π

−π

u0(φ)Re

(
∞∑

k=1

(rkeik(θ−φ))

)
dφ

=
1

2π

∫ π

−π

u0(φ)

(
1 + 2Re

(
rei(θ−φ)

1− rei(θ−φ)

))
dφ

=
1

2π

∫ π

−π

u0(φ)
1− r2

1 + r2 − 2r cos(θ − φ)
dφ.

This last expression to represent the solution is called the Poisson formula.

Homeworks.

• pp. 287, 4.1.16

• pp. 287, 4.1.18
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5.6 Orthogonal functions

In this section, we introduce some further knowledge on orthogonal functions.

For a given positive function w(x) on [a, b], we define an inner product

(f, g)ω =

∫ b

a

ω(x) f(x) g(x)dx

for any two real functions f(x) and g(x) on [a, b]. And ω(x) will be called a weight

function. We will often use the following norm:

‖f‖ω =
{∫ b

a

ω(x) f 2(x) dx
} 1

2
.

Definition 5.4 (Weighted orthogonal functions). Let f(x) and g(x) be two real functions

on [a, b]. f(x) is said to be orthogonal to g(x) with respect to the inner product (·, ·)ω if

(f, g)ω = 0.

A sequence of functions {fk}∞k=0 is said to be orthonormal with respect to the inner

product (·, ·)ω if the following holds:

(fm, fn)ω = 0 ∀m 6= n

and each fk is unitary, i.e.,

‖fk‖ω = 1 .

• Check if function cos x is orthogonal to g(x) = sinx with respect to the inner product

(·, ·)ω for ω(x) = 1, x, x2.

• Verify that any sequence of orthogonal functions {gk}∞k=1 on the interval [a, b] are

linearly independent.

Now we are going to demonstrate that

Any sequence of linearly independent functions {φk}∞k=0 defined on

[a, b] can generate a sequence of functions {qk}∞k=0 which are orthonor-

mal with respect to the inner product (·, ·)ω.

Gram-Schmidt orthogonalization is one of such orthogonalizing techniques. Below

we introduce the Gram-Schmidt orthogonalization.
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Gram-Schmidt orthogonalization process.

Given a sequence {φk}∞k=0 of linearly independent functions defined on [a, b], we are

going to construct a sequence of orthonormal functions {qk}∞k=0 as follows:

0) Set

q̃0(x) = φ0(x) .

Normalize q̃0(x):

q0(x) =
q̃0(x)

‖q̃0‖ω

;

1) Set

q̃1(x) = φ1(x)− α10 q0(x) ,

choose α10 such that

(q̃1, q0)ω =

∫ b

a

ω(x) q̃1(x)q0(x)dx = 0,

that gives,

α10 = (φ1, q0)ω =

∫ b

a

ω(x)φ1(x)q0(x)dx.

Normalize q̃1(x):

q1(x) =
q̃1(x)

‖q̃1‖ω

.

k) Suppose q0, q1, · · · , qk are constructed such that

(qi, qj)ω = 0 ∀i 6= j and ‖qi‖ω = 1 .

We then construct qk+1 by

q̃k+1(x) = φk+1(x)−
{
αk+1,0q0(x) + · · ·+ αk+1,kqk(x)

}
with

αk+1,i = (φk+1, qi)ω, i = 0, 1, · · · , k.

Normalize qk+1:

qk+1(x) =
q̃k+1(x)

‖q̃k+1‖ω

.

Then the sequence {qk}∞k=0 constructed above is an orthonormal sequence, i.e.,

(qi, qj)ω = 0 ∀ i 6= j ; ‖qi‖ω = 1 .
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Example 5.6. Given the sequence of polynomials

1, x, x2, · · · , xk, · · · ,

on the interval [−1, 1], use the Gram-Schmidt orthogonalization process to construct an

orthonormal sequence of polynomials, and write down the first three constructed polyno-

mials explicitly.

Solution (exercise). The three polynomials are

P0(x) =
1√
2
, P1(x) =

√
3√
2
x , P2(x) =

√
45√
8

(
x2 − 1

3

)
.

Example 5.7. Check if the Chebyshev polynomials

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x

are orthogonal on [−1, 1] with respect to the weight function w(x) = 1/
√

1− x2.

Solution. Use the transformation x = cosθ.

Example 5.8. Based on a given sequence of functions {φi(x)}∞k=0, which is orthogo-

nal with respect to the inner product (·, ·)ω, use the Gram-Schmidt orthogonalization to

construct an orthonormal sequence of functions with respect to (·, ·)ω. (exercise)

Example 5.9. Expand a given function f(x) on [a, b] in terms of a given orthogonal

sequence of functions {φk(x)}∞k=1 with respect to the inner product (·, ·)ω.

Solution. Let

f(x) = α1φ1(x) + α2φ2(x) + α3φ3(x) + · · · .

Think about how to find the coefficients {αk}. ]
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5.7 Fourier transform

Fourier transforms play a very important role in mathematics, physics and engineering.

5.7.1 Definition and examples

Recall that

eikx = cos(kx) + i sin(kx).

From this expression, we can easily see that the magnitude of k determines the intensity

of the oscillation of function exp(ikx), and k measures the frequencies of the oscillation.

To better understand the relation between the magnitude of k and the oscillation of

exp(ikx), , one may plot and compare the figures of sin πx, sin 4πx and sin 8πx.

The Fourier series expansion for 2π-periodic functions can be extended to any 2T -

periodic functions by the following scaling method. Given a 2T -periodic function f , we

can rescale it as a 2π-periodic function f ′ by the following transformation:

x′ =
πx

T
, define f ′(x′) := f(x).

(Notice that f ′ here does not denote for the derivative of f . It simply means a rescaling

of f .) Let us first write down the Fourier series expansion for the 2π-periodic function

f ′:

f ′(x′) =
∞∑

k′=−∞

ck′e
ik′x′

where

ck′ =
1

2π

∫ π

−π

f ′(y′)e−ik′y′ dy′

We now perform the following transform:

y =
Ty′

π
,

we get

ck′ =
1

2π

∫ T

−T

f ′
(πy
T

)
e−ik′πy/T d

πy

T

=
1

2T

∫ T

−T

f(y)e−ik′πy/T dy.
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We express x′ in terms of x again:

f(x) = f ′
(πx
T

)
=

∞∑
k′=−∞

ck′e
ik′πx/T

Combine the above two, f can be expanded as

f(x) =
∞∑

k′=−∞

ck′e
ik′πx/T =

∞∑
k′=−∞

1

2T
eik′πx/T

[∫ T

−T

f(y)e−ik′πy/T dy

]
If we take T →∞, this means that we are considering a general function defined on the

whole line. The square bracket becomes[∫ ∞

−∞
f(y)e−iky dy

]
:= g(k).

Here, k = k′π
T

is a real number. The summation part is an approximation to an integral:

when ∆k′ = 1, the corresponding ∆k = π
T
.

f(x) =
∞∑

k′=−∞

1

2T
eikxg(k) =

1

2π

∞∑
k′=−∞

∆keikxg(k) → 1

2π

∫ ∞

−∞
g(k)eikx dk.

Thus, we have the following definition.

Definition 5.5. For a given function f(x) defined on (−∞,∞), the Fourier transform

of f is a function f̂ depending on frequency:

f̂(k) =

∫ ∞

−∞
f(x)e−ikxdx , −∞ < k <∞ . (5.25)

The inverse Fourier transform of f̂(k) recovers the original function f(x):

f(x) =
1

2π

∫ ∞

−∞
f̂(k)eikxdk , −∞ < x <∞ . (5.26)

Example 5.10. Find Fourier transform of the delta function f(x) = δ(x).

Solution.

f̂(k) =

∫ ∞

−∞
f(x)e−ikxdx =

∫ ∞

−∞
δ(x)e−ikxdx = 1, for all frequencies k .

So the Fourier transform of the delta function is a constant function.
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Example 5.11. Find the Fourier transform of the function:

f(x) = square pulse =

1 , |x| ≤ a

0 , |x| > a
.

Solution.

f̂(k) =

∫ ∞

−∞
f(x)e−ikxdx =

∫ a

−a

e−ikxdx =
2 sin ka

k
.

• Think about whether this function f̂(k) makes sense at k = 0.

Example 5.12. For a > 0, find the Fourier transform of the function:

f(x) =

 e−ax , x ≥ 0

−eax , x < 0 .

Solution. By definition, we have

f̂(k) =

∫ ∞

−∞
f(x)e−ikxdx =

∫ ∞

0

e−ax−ikxdx+

∫ 0

−∞
−eax−ikxdx

=
1

a+ ik
− 1

a− ik
=

−2ik

a2 + k2
.

• Justify the above process yourself.

Example 5.13. Find the Fourier transform of

f(x) = sign function =

 1 , x > 0

− 1 , x < 0 .

Solution. We have

f̂(k) =

∫ ∞

−∞
f(x)e−ikxdx =

∫ ∞

0

e−ikxdx+

∫ 0

−∞
−e−ikxdx.

But what is e−ikx
∣∣∞
0

? It is difficult to know.

To solve this problem, we consider the function

fa(x) =

 e−ax , x > 0

− eax , x < 0
,
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it is easy to see that

lim
a→0+

fa(x) = f(x) ,

then we can compute as follows:

f̂(k) =

∫ ∞

−∞
f(x)e−ikxdx =

∫ ∞

−∞
lim

a→0+
fa(x)e

−ikxdx

= lim
a→0+

∫ ∞

−∞
fa(x)e

−ikxdx = lim
a→0+

−2ik

a2 + k2

=
−2i

k
=

2

ik
.

Example 5.14. Find the Fourier transformation of the constant function

f(x) = 1, ∀x ∈ (−∞,∞) .

Solution. We have

f̂(k) =

∫ ∞

−∞
e−ikxdx =

∫ ∞

0

e−ikxdx+

∫ 0

−∞
e−ikxdx

= lim
a→0+

{∫ ∞

0

e−axe−ikxdx+

∫ 0

−∞
eaxe−ikxdx

}
= lim

a→0+

{ 1

a+ ik
+

1

a− ik

}
=

0 k 6= 0

? k = 0

What is f̂(0) ? Note that f̂(k) looks like a delta function. Let f̂(k) = αδ(k), then by

the inverse Fourier transform we have

1 = f(x) =
1

2π

∫ ∞

−∞
f̂(k)eikxdk =

α

2π
,

so

α = 2π

or

f̂(k) = 2πδ(k), −∞ < k <∞ .

5.7.2 Two identities for Fourier transforms

(1) For a function f(x) on (−∞,∞) and its Fourier transform f̂(k), we have

2π

∫ ∞

−∞
|f(x)|2dx =

∫ ∞

−∞
|f̂(k)|2dk . (5.27)
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(2) The inner product of any functions f and g satisfies

2π

∫ ∞

−∞
f(x)ḡ(x)dx =

∫ ∞

−∞
f̂(k)¯̂g(k)dk

where ḡ(x) is the conjugate of g(x).

Example 5.15. Check the relation (5.27) for the following function

f(x) =

e−ax , x > 0

0 , x < 0 .

Solution. We have

2π

∫ ∞

−∞
|f(x)|2dx = 2π

∫ ∞

0

e−2axdx =
π

a
,

while

f̂(k) =

∫ ∞

−∞
f(x)e−ikxdx =

∫ ∞

0

e−axe−ikxdx

=− 1

a+ ik
e−ax−ikx

∣∣∞
0

=
1

a+ ik
,

therefore ∫ ∞

−∞

∣∣f̂(k)
∣∣2dx =

∫ ∞

−∞

dk

|a+ ik|2
=

∫ ∞

−∞

dk

a2 + k2
=
π

a
,

that verifies (5.27). Here we have used the transformation k = a cos θ/ sin θ. ]

5.7.3 Important properties of Fourier transform

This subsection discusses some more properties of Fourier transforms.

(1) One can directly verify from definition that for any complex number α,

α̂f(k) = αf̂(k).

(2) One can directly verify from definition that

f̂ + g(k) = f̂(k) + ĝ(k).
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(3) The Fourier transform of df
dx

is ikf̂(k), i.e.,

d̂f

dx
(k) = ikf̂(k) .

To see this, we use

f(x) =
1

2π

∫ ∞

−∞
f̂(k)eikxdk

to obtain
df

dx
(x) =

1

2π

∫ ∞

−∞
ikf̂(k)eikxdk.

Comparing with definition

df

dx
(x) =

1

2π

∫ ∞

−∞

d̂f

dx
(k)eikxdk

gives

d̂f

dx
(k) = ikf̂(k).

(4) The transform of F (x) =
∫ x

a
f(x)dx is

bf(k)
ik

+ C δ(k), i.e.,

F̂ (k) =
f̂(k)

ik
+ C δ(k)

To see this, we use
dF (x)

dx
= f(x),

or
d

dx

(
F (x) + C

)
= f(x) ∀C ∈ R1.

Taking the transform on both sides,

ik
(
F̂ (k) + 2C πδ(k)

)
= f̂(k) ,

this is ,

F̂ (k) =
f̂(k)

ik
+ Cδ(k) ∀C ∈ R1 .

(5) The Fourier transform of F (x) = f(x− d) is e−ikdf̂(k).
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In fact, we have

F̂ (k) =

∫ ∞

−∞
F (x)e−ikxdx

=

∫ ∞

−∞
f(x− d)e−ikxdx

=

∫ ∞

−∞
f(y)e−ik(y+d)dy

=e−ikdf̂(k) .

(6) The transform of g(x) = eixdf(x) is f̂(k − d).

By definition, we have

ĝ(k) =

∫ ∞

−∞
g(x)e−ikxdx =

∫ ∞

−∞
f(x)e(id−ik)xdx

=

∫ ∞

−∞
f(x)e−ik′xdx = f̂(k′) = f̂(k − d) .

(7) The convolution of G and h is the function

u(x) =

∫ ∞

−∞
G(x− y)h(y)dy ,

we often write

u(x) = (G ∗ h)(x)

or

u(x) =
(
G ∗ h

)
(x) =

∫ ∞

−∞
G(x− y)h(y)dy .

We now show that

û(k) = Ĝ(k) ĥ(k).

In fact, we have

û(k) =

∫ ∞

−∞
u(x)e−ikxdx =

∫ ∞

−∞

∫ ∞

−∞
G(x− y)h(y)e−ikxdydx

=

∫ ∞

−∞

∫ ∞

−∞
G(x− y)h(y)e−ikxdxdy =

∫ ∞

−∞
h(y)

∫ ∞

−∞
G(x− y)e−ikxdxdy

=

∫ ∞

−∞
h(y)e−ikydy

∫ ∞

−∞
G(x′)e−ikx′dx′ (let x− y = x′)

=Ĝ(k) ĥ(k) , −∞ < k <∞ .
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5.7.4 Application of Fourier transform for differential equations

Fourier transforms can be applied to solve different types of differential equations. Here

we consider one example.

Consider the differential equation

−d
2u

dx2
+ a2u = h(x) , −∞ < x <∞ . (5.28)

In order to solve the equation, we apply the Fourier transform

û(k) =

∫ ∞

−∞
u(x)e−ikx dx

to each term of the equation to obtain

−(ik)2û(k) + a2û(k) = ĥ(k) .

This gives

û(k) =
ĥ(k)

a2 + k2
. (5.29)

Let G(x) be a function such that

Ĝ(k) =
1

a2 + k2
,

then we know

û(k) =
ĥ(k)

a2 + k2
= Ĝ(k)ĥ(k).

By the convolution property, the solution u(x) can be given by

u(x) = (G ∗ h)(x) =

∫ ∞

−∞
G(x− y)h(y)dy . (5.30)

To find G(x), we consider function f(x) = e−a|x|. By definition, we have

f̂(k) =

∫ ∞

−∞
f(x)e−ikxdx

=

∫ ∞

0

e−(a+ik)xdx+

∫ 0

−∞
e(a−ik)xdx

= − 1

a+ ik
e−(a+ik)x

∣∣∣x=∞

x=0
+

1

a− ik
e(a−ik)x

∣∣∣x=0

x=−∞

=
1

a+ ik
+

1

a− ik
=

2a

a2 + k2
.
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this shows
1̂

2a
f(k) =

1

a2 + k2
,

so we have

G(x) =
1

2a
e−a|x| .

Now we get from (5.30) that

u(x) =
1

2a

∫ ∞

−∞
e−a|x−y|h(y)dy, −∞ < x <∞ . (5.31)

]

• Check if the function u(x) in (5.31) is indeed a solution to the differental equation

(5.28).

Homeworks.

• pp. 326, 4.3.2 (a)

• pp. 326, 4.3.3 (a), (b)

• pp. 326, 4.3.4

• pp. 327, 4.3.6

• pp. 327, 4.3.7

• pp. 327, 4.3.10

5.8 *Complex variables and conformal mapping

5.8.1 Basics on complex variables

In this subsection, we shall discuss how to solve some special differential equations by

complex methods. We start with an introduction of some basic knowledge on complex

variables.

It is best to illustrate a complex number z = x + i y in a plane. E.g., the number

z = −
√

2 +
√

2 i has real part x = −
√

2 and imaginary part y =
√

2, and its distance

to the origin is r =
√
x2 + y2 = 2, the same as the absolute value r = |z| =

√
z z̄. The

angle is given by tan θ = y/x = −1, so it is 135o or 3π/4.
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Let us look at the reciprocal of w = 1/z. We have

w =
1

x+ i y
=

x− i y

x2 + y2
. (5.32)

So its real part is x/r2, and its imaginary part is −y/r2. To see the relation between z

and w = 1/z, one may write z as z = r eiθ in polar coordinates which are much more

convenient when multiplications or divisions are studied, then

w =
1

z
=

1

r eiθ
=

1

r
e−iθ .

From this we clearly see that a circle of radius r in the z-plane is mapped to a circle of

radius 1/r in the w-plane, with the angle θ changed into −θ. That is, moving counter-

clockwise around one circle takes us clockwise around the other. Using this, we directly

find that

w =
1

5
cos θ − 1

5
i sin θ for z = 3 cos θ + 4 i sin θ .

It is easy to observe the important fact from (5.32) that every circle, whether its center

is origin or not, is mapped into another circle by w = 1/z.

The unit circle (r = 1) in z-plane is special, it will be transformed to the unit circle

in w-plane.

Now we look at the special division z/z̄. We have

z

z̄
=

reiθ

re−iθ
= e2iθ or

x+ iy

x− iy
=

(x2 − y2) + 2ixy

x2 + y2
.

Again we see the advantage of the polar coordinates. On the right of the above equa-

tion, one can not see anything directly. But we see immediately from the left that the

magnitude of z/z̄ is always 1, and e2iθ is always on the unit circle.

5.8.2 Analytic functions and Laplace equation

Laplace equation uxx+uyy = 0 is a basic partial differential equation in the mathematical

modelling. It is surprising that complex numbers may provide great help in solving the

equation.

u(x, y) is a real function depending on real numbers x and y. Now, we consider the

complex combination z = x + i y. Then it is amazing to notice that any reasonable
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function f(z) = f(x + i y) is automatically a solution to the Laplace equation. To see

this, we first observe that

∂f

∂x
=
∂f

∂z

∂z

∂x
=
∂f

∂z
,

∂f

∂y
=
∂f

∂z

∂z

∂y
= i

∂f

∂z
. (5.33)

This leads to the following fundamental equation for f(x+ i y):

i
∂f

∂x
=
∂f

∂y
. (5.34)

Further differentiating the two relations in (5.33) gives

∂2f

∂x2
=
∂2f

∂z2
,

∂2f

∂y2
= − ∂2f

∂z2
. (5.35)

This indicates that f(x+ i y) satisfies the Laplace equation:

∂2f

∂x2
+
∂2f

∂y2
= 0 . (5.36)

This relation is very simple but very useful. Immediately we know that f = (x + i y)n

and f = ex+i y are the solutions to the Laplace equation.

Now let us try to get some real solutions to the laplace equation. Let us write

f(x+ i y) = u(x, y) + i s(x, y) (5.37)

where u(x, y) and s(x, y) are both real functions. (Students should try some simple

examples to find out what u(x, y) and s(x, y) are for a given function).

Now we substitute (5.37) in (5.36) to find out that both u and s satisfy laplace

equation.

Next, we try to find out some relation between the real part u(x, y) and the imaginary

part s(x, y). To do so, we substitute (5.37) into (5.34) to obtain

i
(∂u
∂x

+ i
∂s

∂x

)
=
(∂u
∂y

+ i
∂s

∂y

)
.

Comparing the real and imaginary parts give the following Cauchy-Riemann equation:

∂u

∂x
=
∂s

∂y
,

∂u

∂y
= −∂s

∂x
. (5.38)

Based on the above results, we introduce an important class of functions – analytic

functions:

A function f(z) is analytic at z = a if in a neighborhood of point z = a
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1. it depends on the combination z = x+ i y and satisfies i∂f/∂x = ∂f/∂y;

2. its real and imaginary parts are connected by the Cauchy-Riemann equation ux =

sy and uy = −sx;

3. it is the sum of a convergent power series c0 + c1(z − a) + c2(z − a)2 + · · · .

5.8.3 Conforming mapping

Consider solving the Laplace equation

∂2u

∂x2
+
∂2u

∂y2
= 0 in the region Ω , (5.39)

u = u0 on the boundary ∂Ω . (5.40)

We first discuss how to transform the boundary to simpler form. Consider a trans-

formation

X = X(x, y), Y = Y (x, y) .

Usually after the transformation, the Laplace equation will become more complicated.

But if X and Y are the real and imaginary parts of a function F (z) = F (x+iy), situation

is completely different. The equation for U(X, Y ), in the new variables, is still Laplace

equation.

This transformation is called a conforming mapping, when it is given by an analytic

function F (z). We have the following result:

Theorem 5.1. Suppose the combination X+ i Y is a function F of the combination x+

iy. Then if U(X, Y ) satisfies Laplace equation in the X, Y variables, the corresponding

u(x, y) = U(X(x, y), Y (x, y)) satisfies Laplace equation in the x, y variables.

Proof. We can look at U as the real part of some analytic function f(X + i Y ). But

X + i Y is F (x+ iy). Clearly in the x and y variables, u is the real part of f(F (z)). So

it must satisfy the Laplace equation.

Example 5.16. Consider the functions f(X + iY ) = eX+iY and X + iY = (x+ iy)2 =

x2 − y2 + 2ixy.

Discussion. Clearly f(X + iY ) is an analytic function of Z = X + iY , so its real part

U(X, Y ) = eX cosY must satisfy the Laplace equation, so does u = ex2−y2
cos 2xy.
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The conforming mapping

X = X(x, y), Y = Y (x, y)

is invertible if F ′ = dF/dz 6= 0, then the inverse mapping is also conforming.

Consider the region between the x-axis and the line y = x with vertex (0, 0). This

region can be transformed to a better domain by a conforming mapping, e.g., to the

first quardrant. This can be achieved by the conforming mapping f(z) = z2. If we write

z = reiθ, then the conforming mapping f(z) = z2 doubles both the magnitude and the

angle.

Using this mapping, we see that rays from the origin are rotated onto other rays,

with the angle doubled. Circles around the origin are mapped onto other circles, with

radius squared. Only the unit circle stays invariant.

Angle preservation. Conforming mapping has an amazing property: it preserves

angles. It doubles any angle with vertex being the origin, but it preserves the angle

between any two lines. Consider a triangle with vertices z, z + ∆ and z + δ, with ∆

and δ small. With the conforming mapping f(z) = z2, the three vertices become z2,

z2 + 2z∆ and z2 + 2zδ, after ignoring the high order terms. So the original triangle is

amplified but its angle at z is not changed. In fact, the straight edges of the original

triangle become curved in the w-plane because of the neglected terms ∆2 and δ2, but

they are nearly straight near z2.

At the origin, the angle is not preserved, in fact it is doubled. But the mapping fails

to be conforming at z = 0 since F ′(z) = 2z = 0.

The mapping f(z) = z2 simplifies the Laplace equation in the wedge formed by

the x-axis and the line y = x. Let us assume that the mixed boundary conditions are

enforced: u = 0 on the x-axis, and its derivative ∂u/∂n = 0 on the line y = x. Clearly

with the mapping, the first condition does not change: U = 0 on the line Y = 0.

To see how the other boundary condition changes, let N the normal direction on the

Y -axis in the w-plane, then with the conforming mapping X = X(x, y) and Y = Y (x, y),

the normal direction n on the line y = x will be changed to N since angles are preserved.

So the condition ∂u/∂n = 0 on the line y = x is changed to ∂U/∂N = 0 on the Y -axis.

Then one can see that in the new coordinate system (X, Y ), the solution is much

easier to find. As u solves the Laplace equation, so U also solves the Laplace equation,

i.e.,

UXX + UY Y = 0 .
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But noting that the normal N is now in the X-direction, so ∂U
∂N

= 0 gives ∂U
∂X

= 0,

that is, U(X, Y ) == U(Y ). Then we have from the Laplace equation that UY Y = 0, or

U = c Y + d. Using the condition U = 0 on Y = 0, we know U = c Y . The constant c is

not determined by the problem, or it can be determined by the condition at infinity.

The solutions are the straight lines in the w-plane,U = c Y . Going back to the z-

plane, we know Y = 2xy, so the solutions u(x, y) are hyperbolas in the z-plane, u = 2cxy.

One can easily check that this function is indeed the solution to Laplace equation, and

it vanishes on the x-axis, and its normal derivative on the line y = x is zero. To see this,

we have on the line y = x,

∂u

∂n
= ∇u · n = n1

∂u

∂x
+ n2

∂u

∂y

= − 1√
2
2cy +

1√
2
2cx = 0 .

By Riemann’s mapping theorem, every region without holes can be mapped con-

formingly onto every other such region. But it may be difficult to implement the corre-

sponding conforming mapping.

In summary, here is the way to solve the Laplace equations by conforming mappings:

Conforming mapping tries to separate difficulties with the geometry of the domain

from difficulties with the boundary conditions. First, we look for a mapping F (z) such

that it can simplify the geometry. Then we try to find a function U(X, Y ) that satisfies

the new boundary conditions and the Laplace equation in the new coordinate system.

Finally get back to the original solution u(x, y) using the conforming mapping.

Due to the specialty of the method, it works only for two dimensions.

5.8.4 Some important conforming mappings

In this subsection we list some important conforming mappings.

(1). w = f(z) = ex+iy.

This conforming mapping compresses the whole real axis into positive half the real

axis since ex is always positive. Similarly it maps the entire line y = π into negative half

the real axis. So the mapping turns the two parallel boundaries (y = 0 and y = π) of an

infinite horizontal strip into a single line (the x-axis). Points inside the strip go above

this line in the w-plane, by noting that w = ex(cos y + i sin y).
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(2). w = (az + b)/(cz + d).

This conforming mapping takes every circle into another circle; see the textbook for

details.

(3). w = (z + 1/z)/2.

To see the effect of this conforming mapping, we consider z = eiθ lying on the unit

circle. Then we have

w =
1

2
(eiθ + e−iθ) = cos θ .

So the whole unit circle goes to one part of a line: −1 ≤ w ≤ 1. The points outside the

unit circle fill the rest of the w-plane, the same for the points inside the circle.
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6 Numerical methods

6.1 Symmetric positive definite matrices

Definition 6.1 (Symmetric matrix). A matrix A is called symmetric if AT = A.

Think about what conclusions you can draw for a symmetric matrix !

Definition 6.2 (Symmetric positive definite matrix). A matrix A is called symmetric

and positive definite if A is symmetric and

xT Ax > 0 ∀x 6= 0.

Think about what conclusions you can draw for a symmetric positive matrix A.

A direct observation is that the diagonal entries aii of A must be positive, why ?

Definition 6.3 (Eigenvalue and eigenvector). For a given n×n matrix A, if there exists

a non-zero vector x such that

Ax = λx

for some number λ (maybe real or complex), then λ is called an eigenvalue of the matrix

A and x is called a corresponding eigenvector of A.

• Think about if the eigenvectors associated with one eigenvalue are unique.

• If there are two eigenvectors of the matrix A associated with one eigenvalue λ, check

if any combination of the two eigenvectors is still an eigenvector.

Lemma 6.1. If A is a n × n real symmetric matrix, then all its eigenvalues are real

numbers. And A always has real eigenvectors.

Proof. Try to check this property yourself by definition !

Lemma 6.2. A matrix A is symmetric positive definite if and only if A is symmetric

and all its eigenvalues are positive.

Proof. If A is symmetric positive definite, and λi is the i-th eigenvalue of A, i.e., we

have for some x 6= 0 that

Ax = λix .
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But by deinition, xTAx > 0, this leads to

λix
Tx > 0.

So we must have λi > 0.

Think about the proof of the other half of the proposition !

6.2 Least-squares solutions to general linear algebraic systems

We now consider how to solve the following general system of linear algebraic equations:

Ax = b, (6.41)

where A is a m × n matrix with m > n. Clearly this system is not likely to have a

solution as the number of equations is larger than the number of unknowns.

When will this system have a solution x ?

To answer this question, let us write A as

A = (a1, a2, · · · , an),

then we can write (6.41) into

b = x1a1 + x2a2 + · · ·+ xnan .

This indicates

The system (6.41) has a solution only when b lies in the

subspace spanned by the column vectors of A.

And in this case, think about

Under what conditions will the solutions be unique ?

Below, we consider the most general case:

b does not lie in the subspace spanned by the column vectors of A.

We know that the system (6.41) has no solutions in this case.

What will then be some reasonable solutions we should look for ?
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In practical applications, it is meaningful to find some vector x which minimizes the

error (Ax − b) in some sense. One of the most popular solutions of this kind is called

the least-squares solution.

The least-squares solution of the system Ax = b is the vector x that minimizes the

error (Ax− b), namely,

min
x∈Rn

‖Ax− b‖2 (6.42)

• To find the least-squares solution, we first discuss some property of the matrix

ATA. Let A be a m× n matrix, and all its columns are linearly independent. Then

ATA must be symmetric positive definite.

Clearly, ATA is symmetric. And for any x ∈ Rn and x 6= 0, we have

xT (ATA)x = (Ax)T (Ax) > 0. (6.43)

Therefore ATA is positive definite. If (6.43) is not true, then (Ax)T (Ax) = 0, or Ax = 0.

That means the columns of A are linearly dependent, a contradiction. ]

• Further, we look at a simpler minimization problem:

min
x∈Rn

{
xTBx− 2xT b

}
where B is a symmetric possitive definite n× n matrix. Let

J(x) = xTBx− 2xT b, .

We next verify that J(x) takes its minimum at the solution x of the equation Bx = b.

In fact, we easily see that for any y ∈ Rn,

J(y)− J(x) = (yTBy − 2yT b)− (xTBx− 2xT b)

= (yTBy − 2yT b)− (xTBx− 2xTBx)

= (yTBy − 2yTBx) + xTBx

= (y − x)TB(y − x)

≥ 0 ,

so J(x) takes its minimum at the solution to Bx = b.

In summary, we have
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For any given vector b ∈ Rn and any symmetric possitive definite

n× n matrix B, the minimizer of the problem

min
x∈Rn

{
xTBx− 2xT b

}
is the unique solution of the system of linear algebraic equations

Bx = b .

The converse is also true.

• Finally, let us find the least-squares solution (6.42). We can write

‖Ax− b‖2 = (Ax− b)T (Ax− b)

= xT (ATA)x− 2xTAT b+ bT b .

For the minimization, the constant term bT b plays no role. So using the previously

discussed results, we know the minimizer for ‖Ax− b‖2 is the solution x ∈ Rn such that

ATAx = AT b ,

that is,

x = (ATA)−1AT b

is the least-squares solution to the system Ax = b. ]

Cholesky factorization for least-squares solutions. As we have known earlier, to

find the least-squares solution of the system Ax = b, where A is a m × n matrix with

linearly indepedent columns, one needs to solve the normal equation

ATAx = AT b .

Since ATA is a symmetric and positive definite matrix, we may first find its Cholesky

factorization

ATA = LLT ,

where L is a lower triangular matrix. Then solving the normal equation ATAx = AT b

is equivalent to solving the following two triangular systems

Lc = AT b, LTx = c .

• Construct or find a few examples from the textbooks to practice how to find the

least-squares solutions using the Cholesky factorization.
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Exercise. For the least-squares solution x = (ATA)−1AT b, find out the relations be-

tween the error vector (Ax− b) and the column vectors of A.

6.3 *Nonlinear equations and Newton’s method

In this and next subsections, we will introduce some iterative methods for solving linear

and nonlinear algebraic system of equations, some simple boundary value and initial-

value problems. As this course is an introductory course, we will have no time to discuss

each numerical method very deeply.

We will start with the powerful and effective Newton’s methods for a single nonlinear

equation of one variable.

6.3.1 Newton’s method for a scalar nonlinear equation

Consider solving the nonlinear equation

g(x) = 0, x ∈ R1 (6.44)

where g(x) is a nonlinear function in R1. The point x∗ is called a solution of the equation

(6.44) if the condition g(x∗) = 0 holds, i.e., x∗ is the point where the graph of g(x) crosses

the horizontal axis. It is easy to see that the equation g(x) = 0 may have more than one

solution. But the equation often has a unique solution when it is restricted on a small

interval.

Let x∗ be a solution of the equation g(x) = 0, i.e.,

g(x∗) = 0

Our subsequent task is to study how to find the solution x∗.

Newton’s method. Newton’s method is an iterative method. It starts with a given

approximate solution x0 of x∗. Then it tries to find a better approximation x1 of the

form:

x1 = x0 + d0.

To find d0, we expand g(x1) at x0 by Taylor expansion:

0 = g(x1) ≈ g(x0) + g′(x0)d0 .
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Let g(x0) + g′(x0)d0 = 0, we obtain

d0 = − g(x0)

g′(x0)
,

so the next approximation x1 is given by

x1 = x0 − g(x0)

g′(x0)
.

Repeating this procedure, we have

xk+1 = xk − g(xk)

g′(xk)
, k = 0, 1, 2, · · ·

This iterative method is called the Newton’s method.

• Note that the Newton’s method is derived using the Taylor expansion, so the initial

guess can not be too much away from the exact solution. Such iterative methods are

called iterative methods with local convergence.

• Geometrically, the Newton’s method is equivalent to finding the intersection of the

tangent line of g(x) with x-axis at x = x0, x1, x2, · · · . Try to understand this process

and derive the Newton’s method using this approach.

Example 6.1. Solve the equation

g(x) = x2 − 10 = 0

by the Newton’s method with an initial guess x0 = 3.

Solution. Clearly this example is too simple. But we use this simple example just to

demonstrate how fast the Newton’s method may converge.

By using the computer, we know the exact solution is

x∗ =
√

10 = 3.167227766016838.

But by Newton’s method, we have

x0 =3.0,

x1 =x0 − g(x0)

g′(x0)
= x0 − (x0)2 − 10

2x0
≈ 3.16

x2 =x1 − g(x1)

g′(x1)
≈ 3.1622

x3 =3.16227766016

x4 =3.16227766016838 .

We see that Newton’s method converges very fast.
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6.3.2 Newton’s method for system of nonlinear equations

Consider solving the nonlinear system of equations
g1(x1, x2, · · · , xn) = 0 ,

g2(x1, x2, · · · , xn) = 0 ,

· · · · · ·
gn(x1, x2, · · · , xn) = 0

(6.45)

where gi(x1, x2, · · · , xn) are all nonlinear functions. For convenience, we often write this

system as the following vector-form:

g(x) = 0 (6.46)

where x and g(x) are the vectors given by

x =


x1

x2

...

xn

 , g(x) =


g1(x)

g2(x)

· · ·
gn(x)

 .

If gi(x) are linear functions, e.g.,

gi(x1, x2, · · · , xn) = ai1x1 + ai2x2 + · · ·+ ainxn − bi, i = 1, 2, · · · , n,

then we can write equation (6.46) into

Ax = b (6.47)

with

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

· · ·
an1 an2 · · · ann

 , b =


b1

b2
...

bn


So the linear system of equations (6.47) is a special case of the nonlinear system (6.46).

To solve the nonlinear system (6.46), we use the iterative Newton’s method again.

Suppose we have an initial guess x0, then we want to find a new approximation x1 of

the form

x1 = x0 + d0 .
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To find d0, expand g(x1) at x0 by the Taylor series:

g(x1) ≈ g(x0)+ ? (6.48)

To see the ? term in (6.48), we define a function of one variable t:

f(t) = g(x0 + t(x1 − x0)) ,

then by the Taylor expansion,

f(t) ≈ f(0) + f ′(0) t . (6.49)

But

f ′(t) =
d

dt

g1(x
0 + t(x1 − x0))

· · ·
gn(x0 + t(x1 − x0))

 =


∂g1

∂x1
(x1 − x0)1 + · · ·+ ∂g1

∂xn
(x1 − x0)n

· · ·
∂gn

∂x1
(x1 − x0)1 + · · ·+ ∂gn

∂xn
(x1 − x0)n


So we have

f ′(0) = J(x0) (x1 − x0)

where J is called the Jacobian matrix at x0, and it is given by

J(x) =


∂g1

∂x1
(x) ∂g1

∂x2
(x) · · · ∂g1

∂xn
(x)

∂g2

∂x1
(x) ∂g2

∂x2
(x) · · · ∂g2

∂xn
(x)

...
...

...
...

∂gn

∂x1
(x) ∂gn

∂x2
(x) · · · ∂gn

∂xn
(x)

 (6.50)

Now letting t = 1 in (6.49), we obtain

0 = g(x1) ≈ g(x0) + J(x0)(x1 − x0) ,

setting g(x0) + J(x0)(x1 − x0) = 0, we derive

x1 = x0 − J(x0)−1g(x0) . (6.51)

This gives the Newton’s method as follows:

xk+1 = xk − J(xk)−1g(xk), k = 0, 1, 2, · · · (6.52)
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Example 6.2. Use the Newton’s method to find a solution of the system
x1x2 = x2

3 + 1 ,

x1x2x3 + x2
2 = x2

1 + 2 ,

ex1 + x3 = ex2 + 3

(6.53)

with an initial guess (x0
1, x

0
2, x

0
3) = (1, 1, 1).

Solution. Let

g1(x1, x2, x3) = x1x2 − x2
3 − 1

g2(x1, x2, x3) = x1x2x3 + x2
2 − x2

1 − 2

g3(x1, x2, x3) = ex1 + x3 − ex2 − 3 ,

then the system (6.53) can be written as

g(x) = 0

where x and g(x) are the vectors given by

x =


x1

x2

...

xn

 , g(x) =


g1(x)

g2(x)

· · ·
gn(x)

 .

It is easy to compute the Jacobian matrix of g(x):

J(x) =

 x2 x1 −2x3

x2x3 − 2x1 x1x3 + 2x2 x1x2

ex1 −ex2 1

 ,

then the Newton’s method gives

x1 = x0 − J(x0)−1g(x0) ,

x2 = x1 − J(x1)−1g(x1) ,

· · ·

Using the computer, we obtain
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k xk
1 xk

2 xk
3

0 1.0000000 1.0000000 1.0000000

1 2.1893261 1.5984752 1.3939006

2 1.8462202 1.4380561 1.2866010

3 1.7780014 1.4222229 1.2421980

4 1.7774387 1.4237095 1.2378039

5 1.7776553 1.4239426 1.2374951

6 1.7776707 1.4239593 1.2374728

7 1.7776718 1.4239605 1.2374712
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6.4 Classical iterative methods for general linear systems

In this section, we consider solving the linear system of equations

Ax = b (6.54)

by some classical iterative methods. Here A is a n× n matrix and b ∈ Rn.

6.4.1 Splitting methods

A very important class of iterative methods for solving the equation (6.54) is based on

the following splitting of the matrix A:

A = M −N (6.55)

Usually, M is the major part and N is the minor part. Using this splitting, the system

Ax = b can be equivalently written as

Mx = Nx+ b.

This suggests the following iterative method:

Given an initial guess x0, and find x1, x2, x3, · · · by solving the following system of

equations

Mxk+1 = Nxk + b (6.56)

where M is a n × n matrix to be chosen such that the system (6.56) is much easier to

solve than the system (6.54). For example, the system (6.56) will be easily solvable if

M is a diagonal matrix, a upper triangular or lower triangular matrix.

One can check directly that

If the sequence {xk}∞k=1 generated by (6.56) converges to

some limit x∗, then x∗ is the solution of Ax = b.

6.4.2 Jacobi method

There are many different choices of the matrix M in the splitting (6.55). We will

introduce three most frequently used iterative methods of the form (6.56).
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Jacobi method. Given an initial approximate solution of Ax = b:

x0 = (x0
1, x

0
2, · · · , x0

n)T .

The Jacobi method will generate a sequence {xk}∞k=1 by solving
a11x

k+1
1 + a12x

k
2 + · · ·+ a1nx

k
n = b1 for xk+1

1 ,

a21x
k
1 + a22x

k+1
2 + · · ·+ a2nx

k
n = b2 for xk+1

2 ,

· · ·

an1x
k
1 + an2x

k
2 + · · ·+ annx

k+1
n = bn for xk+1

n .

(6.57)

Let D be the diagonal matrix

D = diag (A) =


a11

a22

. . .

ann


Then we can write (6.57) as

Dxk+1 + (A−D)xk = b (6.58)

or equivalently as

Dxk+1 = (D − A)xk + b . (6.59)

That is, the Jacobi’s method is a special case of form (6.56) with M = diag (A).

Example 6.3. Solve the system

Ax = b

by the Jacobi method. Here

A =

(
2 −1

−1 2

)
, b =

(
1

−2

)
.

Solution. We have

D = diag (A) =

(
2 0

0 2

)
, D − A =

(
0 1

1 0

)
.

Then the Jacobi’s method is

Dxk+1 = (D − A)xk + b ,
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or (
2 0

0 2

)(
xk+1

1

xk+1
2

)
=

(
0 1

1 0

)(
xk

1

xk
2

)
+

(
1

−2

)
,

or

xk+1 =

(
0 1

2
1
2

0

)
xk +

(
1
2

−1

)
.

If we take the initial guess x0 =

(
5

5

)
, then we have

k 0 1 2 3 4 5 6 10

xk

(
5
5

) (
3.0
1.5

) (
1.25
0.5

) (
0.75
−0.375

) (
0.3125
−0.625

) (
0.1875
−0.8438

) (
0.0781
−0.9062

) (
0.0049
−0.9941

)

6.4.3 Gauss-Seidel method

Gauss-Seidel method. Given an initial approximate solution:

x0 = (x0
1, x

0
2, · · · , x0

n)T

to the solution of Ax = b. The Gauss-Seidel method generates the sequence {xk}∞k=1 by

solving the following system

a11x
k+1
1 + a12x

k
2 + a13x

k
3 + · · · + a1nx

k
n = b1 for xk+1

1 ,

a21x
k+1
1 + a22x

k+1
2 + a23x

k
3 + · · · + a2nx

k
n = b2 for xk+1

2 ,

a31x
k+1
1 + a32x

k+1
2 + a33x

k+1
3 + · · · + a3nx

k
n = b3 for xk+1

3 ,

· · · · · ·
an1x

k+1
1 + an2x

k+1
2 + an3x

k+1
3 + · · · + annx

k+1
n = bn for xk+1

n .

(6.60)

Let us decompose

A = D + L+ U,

whereD = diag (A), L = the lower triangular of A and U = the upper triangular of A.

Then (6.60) can be written as

Lxk+1 +Dxk+1 + Uxk = b (6.61)
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or

(D + L)xk+1 = (D + L− A)xk + b.

That is, the Gauss-Seidel method is a special case of form (6.56) with M = D + L.

Example 6.4. Solve the system

Ax = b

by the Gauss-Seidel method. Here we have

A =

(
2 −1

−1 2

)
, b =

(
1

−2

)
.

Solution. We have

D = diag (A) =

(
2 0

0 2

)
, L =

(
0 0

−1 0

)

and

U =

(
0 −1

0 0

)
.

Then the Gauss-Seidel method is

(D + L)xk+1 = −Uxk + b

or (
2 0

−1 2

)
xk+1 =

(
0 1

0 0

)
xk +

(
1

−2

)
.

If we take the initial guess x0 =

(
5

5

)
, then the Gauss-Seidel method gives the following

result:

k 0 1 2 3 4 5 6 7

xk

(
5
5

) (
3.0
0.5

) (
0.75
−0.625

) (
0.1875
−0.9062

) (
0.0469
−0.9766

) (
0.0117
−0.9941

) (
0.0029
−0.9985

) (
0.0007
−0.9996

)

Comparing this result with the previous result obtained by the Jacobi method, we can

see that the Gauss-Seidel method converges about twice as fast as the Jacobi method.
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6.4.4 *Successive overrelaxation method

Successive overrelaxation method (often called the SOR method).

Given an approximate solution xk = (xk
1, x

k
2, · · · , xk

n)T of Ax = b. To find the next

approximate solution

xk+1 = (xk+1
1 , xk+1

2 , · · · , xk+1
n )T ,

we solve

a11x1 + a12x
k
2 + · · ·+ a1nx

k
n = b1 for x1 = x̄k+1

1 ,

xk+1
1 = xk

1 + ω(x̄k+1
1 − xk

1) ;

a21x
k+1
1 + a22x2 + a23x

k
3 + · · ·+ a2nx

k
n = b2 for x2 = x̄k+1

2 ,

xk+1
2 = xk

2 + ω (x̄k+1
2 − xk

2) ;

· · · · · ·

an1x
k+1
1 + an2x

k+1
2 + · · ·+ an,n−1x

k+1
n−1 + annxn = bn for xn = x̄k+1

n ,

xk+1
n = xk

n + ω (x̄k+1
n − xk

n) .

(6.62)

If we decompose

A = D + L+ U,

where D = diag (A) , L = the lower triangular part of A and U = the upper triangular

part of A, then the iteration (6.62) can be written as

Lxk+1 +Dx̄k+1 + Uxk = b , (6.63)

xk+1 = xk + ω (x̄k+1 − xk) . (6.64)

We easily see from (6.64) that

x̄k+1 =
1

ω

(
xk+1 + (ω − 1)xk

)
,

substituting it into (6.63), we derive

(L+
1

ω
D)xk+1 +

1

ω

(
ω U + (ω − 1)D

)
xk = b

or

(L+
1

ω
D)xk+1 =

( 1

ω
D − (D + U)

)
xk + b . (6.65)

Clearly, this is still a special case of (6.56) with

M = L+
1

ω
D
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and we know in this case that

M − A = (L+
1

ω
D)− (D + L+ U) =

1

ω
D − (D + U) .

Remark. The parameter ω in the SOR method is often called a relaxation parameter,

and it takes values in the interval 0 < ω < 2. The SOR method reduces to the Gauss-

Seidel method when ω = 1.

• Find some examples of linear algebraic systems and solve them using the Jacobi

method, Gauss-Seidel method and the successive over-relaxation method. Then compare

the effectiveness of the three iterative methods.

Homeworks.

• pp. 424, 5.3.1

• pp. 424, 5.3.2

• pp. 424, 5.3.3

• pp. 424, 5.3.4
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6.5 *Orthogonalization and eigenvalue problems

We first recall some basic concepts. Two given two vectors a, b ∈ Rn are said to be

orthogonal if

aT b =
n∑

i=1

ai bi = 0 .

The norm of a vector a ∈ Rn is defined as

‖a‖ = (aTa)1/2 =
{ n∑

i=1

a2
i

}1/2

.

A set of vectors q1, q2, · · · , qn are called to be orthonormal if

qT
i qj =

0 for i 6= j

1 for i = j .

And in this case, any vector b ∈ Rn can be expressed as

b =
n∑

i=1

αiqi ,

and it is easy to see αi = qT
i b, i = 1, 2, · · · , n.

For a given n× n matrix Q, it is called orthonormal if

QTQ = I .

For an orthonormal matrix Q, we easily see

Q−1 = QT .

Furthermore, we can show the following properties:

1. A n× n orthonormal matrix Q preserves the norm of a vector, namely

‖Qx‖ = ‖x‖ ∀x ∈ Rn .

This is clear since

‖Qx‖2 = (Qx)T (Qx) = xT (QTQ)x = xT x = ‖x‖2 .
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2. For any n× n orthonormal matrix Q, we have

QTQ = QQT = I ,

from which we know the column vectors of Q are orthonormal, and so are the row

vectors.

3. The solution of an orthonormal system is easy to compute. Consider

Qx = b

where Q is a n× n orthonormal matrix, b ∈ Rn. It is easy to find its solution

x = QT b.

6.5.1 *Revisit of least-squares solutions

Consider the linear system

Ax = b (6.66)

where A is a m× n matrix and b ∈ Rm, m and n are positive integers and m > n.

Since the number of equations in (6.66) is larger than the number of unknowns, so

the system (6.66) may not have a solution.

Assume that rank (A) = n, i.e., the columns of A are linearly independent. We have

If rank (A) = n, then ATA is nonsingular.

We check this by contradiction. If ATA is singular, then there exists a nonzero

x ∈ Rn such that

ATAx = 0.

Then we have

xTATAx = (Ax)T (Ax) = 0,

or

Ax = 0,

i.e., the columns of A are linearly dependent. This is a contradiction. ]
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Now we discuss how to find the least-squares solution to the system (6.66). Recall

that the least-squares solution is the solution of the following equation:

ATAx = AT b . (6.67)

This equation is called the normal equation of Ax = b. As ATA is nonsingular, so the

normal equation (6.67) has a unique solution

x = (ATA)−1AT b . (6.68)

As we know that the least squares solution may not be a solution of the equation Ax = b.

Orthonormal systems. If A is a m × n orthonormal matrix, i.e., ATA = I, then the

least squares solution of Ax = b reduces to

x = AT b .

So in this case, the normal equation is extremely easy to solve.

In the general case where A is not an orthonormal matrix, it is difficult to solve the

system since (ATA)−1 is not easy to calculate.

6.5.2 *Solve the normal equation by Gram-Schmidt orthogonalizing process

Consider the normal equation

ATAx = AT b . (6.69)

We next discuss how to solve the system (6.69) by Gram-Schmidt orthogonalizing pro-

cess. To do so, we first orthogonalize the column vectors of A. Write A as

A = (a1, a2, · · · , an), with aj ∈ Rm .

Gram-Schmidt orthogonalization.

Step 1 Set q̃1 = a1; normalize q̃1 as q1 = q̃1

‖q̃1‖ .

Step 2 Set

q̃2 = a2 − α12 q1

choose α12 such that

q̃T
2 q1 = 0, that is, α12 = qT

1 a2 .

normalize q̃2 as q2 = q̃2

‖q̃2‖ .
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Step k Suppose q1, q2, · · · , qk−1 are constructed such that they are orthonormal. Then set

q̃k = ak −
{
α1kq1 + α2kq2 + · · ·+ αk−1,k qk−1

}
,

and choose α1k · · · , αk−1,k such that

q̃T
k qj = 0 , j = 1, 2, · · · , k − 1 ,

that gives

αjk = qT
j ak , j = 1, 2, · · · , k − 1.

normalize q̃k as qk = q̃k

‖q̃k‖
.

In this process, the n vectors q1, q2, · · · , qn constructed above will be a set of or-

thonormal vectors. And we can write this process as follows:

a1 = r11q1 ,

a2 = r12q1 + r22q2 ,

· · ·
ak = r1kq1 + r2kq2 + · · ·+ rk−1,k qk−1 + rkk qk ,

· · ·

Equivalently, we can write this as

A =
(
q1 q2 · · · qn

)

r11 r12 · · · r1n

r22 · · · r2n

· · · ...

rnn

 ≡ QR .

Therefore, the Gram-Schmidt orthogonalizing process is also called the QR factorization

of the matrix A. As q1, q2, · · · , qn are orthonormal, so we have

QTQ = In×n (Note Q is not a square matrix, but R is !) .

Solve the normal equation. Substituting the QR decomposition of A into the normal

equation (6.69), we obtain

(QR)T (QR)x = (QR)T b ,

that is,

RTRx = RTQT b,
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but R is a square matrix and nonsingular (why ?), therefore we have

Rx = QT b . (6.70)

Note that R is a upper triangular matrix, so (6.70) is easy to solve, and the solution of

(6.70) is the least squares solution of the normal equation (6.69), that is,

x = (ATA)−1AT b = R−1QT b.

Example 6.5. Find the QR factorization of the matrix

A =

0 0 5

0 4 1

1 1 1


and use it to find the least squares solution of the equation

Ax = b

where b = (2,−1, 2)T .

Solution. Practice yourself !

6.5.3 *Eigenvalue problems

We shall introduce two effective methods for finding the eigenvalues of a given matrix:

power method and QR iterative method.

Let A be a n× n real matrix10, and has n eigenvalues λ1, λ2, · · · , λn associated with

n eigenvectors x1, x2, · · · , xn . Then we have AX = XΛ, where X = (x1, x2, · · · , xn) and

Λ = diag(λ1, λ2, · · · , λn).

We assume that

|λ1| > |λ2| ≥ · · · ≥ |λn| ,

then the power method can help us find the eigenvalue with largest magnitude, that is,

find the eigenvalue λ1.

10Power method is also valid for complex matrices.
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Power Method. Given an initial vector v(0) ∈ Rn, generate a sequence of vectors v(k)

as follows:
FOR k = 1, 2, 3, · · · ,DO

z(k) = Av(k−1);

λ(k) = z
(k)
i where |z(k)

i | = ‖z(k)‖∞
v(k) = z(k)/λ(k)

END

This iteration is based on the following observation. If v(0) = a1x1 +a2x2 + · · ·+anxn

and a1 6= 0, then it follows that

Akv(0) = a1λ
k
1

[
x1 +

n∑
j=2

aj

a1

(
λj

λ1

)k

xj

]
.

Clearly Akv(0), thus v(k), converges to the first eigenvector. And we have

|λ1 − λ(k)| = O
[( |λ2|

|λ1|

)k ]
.

Example 6.6. Using the power method to find the eigenvalue of largest magnitude for

the following matrix

A =

 −261 209 −49

−530 422 −98

−800 631 −144


Solution. This is a simple example, and it has three eigenvalues λ1 = 10, λ2 = 4 and

λ3 = 3. We use this simple example to demonstrate how effective the power method is.

Applying the Power Method with the initial guess v(0) = (1, 0, 0)T , we obtain the

following results:

k λ(k) k λ(k)

1 994.49 6 10.0198

2 13.0606 7 10.0063

3 10.7191 8 10.0020

4 10.2073 9 10.0007

5 10.0633 10 10.0002

Indeed, we observe that the Power Method converges very fast.
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Next, we introduce another powerful method for finding the eigenvalues of a matrix

A: the QR factorization.

QR Algorithm. Given an n× n matrix A, let A(0) := A.

FOR k = 0, 1, 2, · · · ,DO

A(k) = QkRk; (QR factorization)

A(k+1) := RkQk

END

We can easily see that

A(1) = R0Q0 = (Q0)
−1(Q0R0)Q0 = (Q0)

−1A(0)Q0,

So A(1) and A have the same eigenvalues.11

Similarly we can see that A(k) has the same eigenvalues as A(k−1) . And the following

result holds:

The sequence {A(k)} generated by the QR algorithm con-

verges to a upper triangular matrix and the diagonals of

A(k) converge to the eigenvalues of A

Example 6.7. Use the QR factorization to find the eigenvalues of the following matrix

A =

 −261 209 −49

−530 422 −98

−800 631 −144


Example 6.8. Use the QR factorization to find the eigenvalues of

A =

(
2 −1

−3 0

)
.

Solution. The two eigenvalues are λ1 = 2 and λ2 = −1. Practice yourself !

11We see that
|A1 − λI| = |Q−1(A− λI)Q| = |Q−1||A− λI||Q|,

therefore
|A1 − λI| = 0 ⇔ |A− λI| = 0.

This indicates that A1 and A have the same eigenvalues.
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6.6 Discrete Fourier trasform

Recall the complex form of the Fourier series

f(x) =
∞∑

k=−∞

cke
ikx , x ∈ [0, 2π]

where f(x) is a periodic function with period 2π and

ck =
1

2π

∫ π

−π

f(x)e−ikxdx =
1

2π

∫ 2π

0

f(x)e−ikxdx .

We now discuss how to calculate the Fourier coefficients {ck} by the computer. As we

know, if we want to use computers to calculate these coefficients {ck}, then it is expensive

to use the integral form for the calculation.

Let us first see the nature of the problem. Basically, this calculation is of the form:

input: Given f(x) for all x ∈ [0, 2π] (infinite data);

output: find c0, c1, c2, · · · , ck, · · · (infinite data).

Note that the computer can only handle the finite data. So we will need to truncate

the Fourier series and approximate it by its discrete Fourier transformation. The discrete

Fourier transformation is of the form:

input: Given n input data f0, f1, · · · , fn−1;

output: find c0, c1, c2, · · · , cn−1 (discrete Fourier coefficients).

Let T denote this transformation, then we can write

T


f0

f1

...

fn−1

 =


c0

c1
...

cn−1

 ,

that is, T can be represented by a matrix.

6.6.1 Examples of Discrete Fourier transform

As an example, we first study the behaviour of this transformation T for a simple case.

Suppose we have 4 data:

f0 = 2, f1 = 4, f2 = 6, f3 = 8,
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we try to find a truncated 4-term Fourier series

F4(x) = c0 + c1e
ix + c2e

2ix + c3e
3ix

such that

F4(x) = c0 + c1e
ix + c2e

2ix + c3e
3ix =


f0 = 2 at x = 0

f1 = 4 at x = π
2

f2 = 6 at x = π

f3 = 8 at x = 3π
2

note F4(x)=f0=2 at x=2π

(6.71)

This process is equivalent to finding a transformation T such that

T


f0

f1

f2

f3

 =


c0

c1

c2

c3

 (6.72)

What is the matrix T ? From (6.71) we have

x = 0 : c0 + c1 + c2 + c3 = f0 = 2

x = π
2

: c0 + c1e
π
2
i + c2e

2π
2
i + c3e

3π
2
i = f1 = 4

x = π : c0 + c1e
πi + c2e

2πi + c3e
3πi = f2 = 6

x = 3π
2

: c0 + c1e
3π
2

i + c2e
2 3π

2
i + c3e

3 3π
2

i = f3 = 8

(6.73)

which can be written as follows:

A


c0

c1

c2

c3

 =


f0

f1

f2

f3

 (6.74)

where the matrix A is given by

A =


1 1 1 1

1 e
π
2
i e2

π
2
i e3

π
2
i

1 eπi e2πi e3πi

1 e
3π
2

i e2
3
2
πi e3

3π
2

i

 eπi/2=i


1 1 1 1

1 i i2 i3

1 i2 i4 i6

1 i3 i6 i9


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Comparing (6.72) and (6.74), we know

T = A−1 .

We next calculate T = A−1. Take the complex conjugate of A (changing every i to −i)
and obtain

A =


1 1 1 1

1 −i (−i)2 (−i)3

1 (−i)2 (−i)4 (−i)6

1 (−i)3 (−i)6 (−i)9


Now it is easy to verify

ĀA =


4 0 0 0

0 4 0 0

0 0 4 0

0 0 0 4

 = 4I .

Thus

T = A−1 =
1

4
Ā,

which gives the following formula for computing the coefficients c0, c1, c2 and c3:
c0

c1

c2

c3

 =
1

4
Ā


f0

f1

f2

f3

 =
1

4


1 1 1 1

1 −i −1 i

1 −1 1 −1

1 i −1 −i



f0

f1

f2

f3

 .

6.6.2 Discrete Fourier transform in n variables

In this section we consider the general discrete Fourier transform. Given a function f(x)

on the interval [0, 2π], we want to find a finite Fourier series

Fn(x) =
n−1∑
k=0

cke
ikx , x ∈ [0, 2π] (6.75)

such that

Fn(xj) = f(xj), xj =
j · 2π
n

, j = 0, 1, 2, · · · , n− 1 . (6.76)
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Using the n conditions above, we can determine the n coefficients in (6.75). In fact, let

x = xj = j·2π
n

in (6.75) and use (6.76), we have

at x0 : c0 + c1 + c2 + · · ·+ cn−1 = f0 ≡ f(x0)

at x1 : c0 + c1e
ix1 + c2e

2ix1 + · · ·+ cn−1e
(n−1)ix1 = f1 ≡ f(x1)

at x2 : c0 + c1e
ix2 + c2e

2ix2 + · · ·+ cn−1e
(n−1)ix2 = f2 ≡ f(x2)

· · ·
at xn−1 : c0 + c1e

ixn−1 + c2e
2ixn−1 + · · ·+ cn−1e

(n−1)ixn−1 = fn−1

(6.77)

Set

w = e2πi/n = eix1 ,

then we have

eix2 = w2, eix3 = w3, · · · ,

so the system (6.77) can be written as

c0 + c1 + c2 + · · ·+ cn−1 = f0

c0 + c1w + c2w
2 + · · ·+ cn−1w

n−1 = f1

c0 + c1w
2 + c2w

4 + · · ·+ cn−1w
2(n−1) = f2

· · ·
c0 + c1w

n−1 + c2w
2(n−1) + · · ·+ cn−1w

(n−1)2 = fn−1

(6.78)

and further written as
1 1 1 · · · 1

1 w w2 · · · wn−1

1 w2 w4 · · · w2(n−1)

· · ·
1 wn−1 w2(n−1) · · · w(n−1)2




c0

c1

c2
...

cn−1

 =


f0

f1

f2

...

fn−1

 (6.79)

For convenience, we write this system as

Ac = f.

Let us see how to find the solution vector c = (c1, c2, · · · , cn−1)
T in (6.79). Note that

1 + w + w2 + · · ·+ wn−1 =
1− wn

1− w
= 0 , (6.80)
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and
1 · 1 + wjw̄k + w2jw̄2k + · · ·+ w(n−1)jw̄(n−1)k

=1 + e
j(2πi)

n e−
k(2πi)

n + e
2j(2πi)

n e−
2k(2πi)

n + · · ·+ e
(n−1)j(2πi)

n e−
(n−1)k(2πi)

n

=1 + e
(j−k)(2πi)

n + e
2(j−k)(2πi)

n + · · ·+ e
(n−1)(j−k)(2πi)

n

=

n for j = k;

1−e(j−k)(2πi)

1−e
(j−k)(2πi)

n

= 0 for j 6= k .

(6.81)

Using this relation we obtain (please check yourself !):

AĀ = ĀA = nI (6.82)

or

A−1 =
1

n
Ā .

Therefore the required discrete Fourier coefficients {ci}n−1
i=0 can be calculated by

c = A−1f =
1

n
Āf . (6.83)

Or equivalently, we have for k = 0, 1, · · · , n− 1 that

ck =
1

n

(
f0 + w̄kf1 + w̄2kf2 + · · ·+ w̄(n−1)kfn−1

)
.

But w̄ = e−
2πi
n , thus

ck =
1

n

n−1∑
j=0

fj w̄
jk =

1

n

n−1∑
j=0

fj e
−i 2jkπ

n , k = 0, 1, · · · , n− 1 . (6.84)

6.6.3 Relations between the discrete and continuous Fourier coefficients

The discrete Fourier coefficients in (6.84) have very close relations with the continuous

Fourier coefficients

ĉk =
1

2π

∫ 2π

0

f(x)e−ikxdx . (6.85)

Let us see how these two sets of coefficients are related. To do so, we divide [0, 2π] into

n equally spaced subintervals:

0 = x0 < x1 < · · · < xn−1 < xn = 2π
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with xj = jh, h = 2π
n

, then we can write ĉk in (6.85) as

ĉk =
1

2π

n−1∑
j=0

∫ xj+1

xj

f̃(x)dx , f̃(x) = f(x)e−ikx .

Now using the trapezoidal rule on each interval, we obtain

ĉk =
1

2π

n−1∑
j=0

∫ xj+1

xj

f̃(x)dx ≈ 1

2π

n−1∑
j=0

h

2

(
f̃(xj) + f̃(xj+1)

)
=
h

4π

n−1∑
j=0

(
f̃(xj) + f̃(xj+1)

)
=

h

4π

{
f̃(x0) + f̃(xn) + 2

n−1∑
j=1

f̃(xj)
}
.

Note that f(x) is always assumed to be a periodic function with a period of 2π, so

f̃(xn) = f̃(2π) = f̃(x0).

Thus

ĉk ≈
h

2π

n−1∑
j=0

f̃(xj) =
1

n

n−1∑
j=0

f(xj)e
−i 2jkπ

n ,

this is exactly the previouly discussed discrete Fourier coefficients in (6.84).

In summary, we see from above that the discrete Fourier coefficients in (6.84) are the

approximations of the continuous Fourier coefficients in (6.85) by using the trapezoidal

rule for computing the integrals.

6.7 The fast Fourier transform

Recall the Fourier series of a function f(x):

f(x) =
∞∑

k=−∞

cke
ikx , x ∈ [0, 2π] .

Now let us first look at the basis functions

{eikx}∞k=−∞ , x ∈ [0, 2π] .

If we divide [0, 2π] into n equally spaced subintervals:

0 = x0 < x1 < · · · < xn−1 < xn = 2π ,
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then the grid points are

xj = j
2π

n
, j = 0, 1, 2, · · · , n .

Note that eikx has the same value at x = x0 and x = xn, so we consider only the n

different values of eikx at the following points

x0, x1, x2, · · · , xn−1 ,

namely the following function values

eikx0 , eikx1 , · · · , eikxn−1 .

Taking k = 0, 1, 2, · · · , n− 1, we obtain the following discrete Fourier coefficient matrix

Fn =


1 1 1 · · · 1

eix0 eix1 eix2 · · · eixn−1

ei(2x0) ei(2x1) ei(2x2) · · · ei(2xn−1)

· · ·
ei(n−1)x0 ei(n−1)x1 ei(n−1)x2 · · · ei(n−1)xn−1


Let wn = ei 2π

n = eix1 , then we can write

Fn =


1 1 1 · · · 1

1 wn w2
n · · · wn−1

n

1 w2
n w4

n · · · w
2(n−1)
n

· · ·
1 wn−1

n w
2(n−1)
n · · · w

(n−1)2

n


This matrix is exactly the same as matrix A in (6.79), and arises in many applications.

The fast Fourier transform (FFT) is an efficient method to compute Fn x (for any given

vector x) faster. We now discuss this fast Fourier transform.

First, let us see how expensive the usual way to compute the multiplication Fn x.

For, n = 2m, the usual calculation of Fn x requires n2 multiplication. But the FFT

requires only
1

2
n log2 n operations .

If n = 212, then n2 = 224 = 29 × 215 but n log2 n = 6 × 212 < 215. So if 215 operations

need one second, then n2 operations needs 29 seconds =8.5 minutes. If 215 operations
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need one minute: then n2 operations needs 512 minutes = 8.5 hours. So FFT will save

huge time if the multiplication Fn x is needed many times. This is indeed often the case

in real applications.

Next, we discuss how to compute y = Fn x, we needs to compute the n components

y0, y1, · · · , yn−1 .

By definition, we have

yj =
n−1∑
k=0

wkj
n xk =

2m−1∑
k=0

wkj
n xk . (6.86)

Divide k = 0, 1, 2, · · · , 2m− 1 into

k = 0, 2, · · · , 2(m− 1) ,

k = 1, 3, · · · , 2m− 1 ,

then we can write

yj =
m−1∑
k=0

w2kj
n x2k +

m−1∑
k=0

w(2k+1)j
n x2k+1 . (6.87)

Set

x′ = (x0, x2, · · · , x2(m−1))
T , x′′ = (x1, x3, · · · , x2m−1)

T ,

then for j = 0, 1, 2, · · · ,m− 1, we have

yj =
m−1∑
k=0

wkj
mx

′
k + wj

n

m−1∑
k=0

wkj
mx

′′
k

where we have used

w2
n = ei 4π

n = ei 2π
m = wm,

thus comparing with (6.86), we see

yi = (Fmx
′)j + wj

n(Fmx
′′)j, j = 0, 1, 2, · · · ,m− 1 .

Let y′ = Fmx
′, y′′ = Fmx

′′ , then

yj = y′j + wj
ny

′′
j , j = 0, 1, 2, · · · ,m− 1 . (6.88)

Next replacing j in (6.87) by j +m (j = 0, 1, · · · ,m− 1), we obtain

yj+m =
m−1∑
k=0

w2k(j+m)
n x2k +

m−1∑
k=0

w(2k+1)(j+m)
n x2k+1

=
m−1∑
k=0

wkj+km
m x′k + wj+m

n

m−1∑
k=0

wk(j+m)
m x′′k .
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Note that

wkm
m = e(i

2π
m

)km = 1 , wm
n = e(i

2π
n

)m = eiπ = −1,

hence

yj+m =
m−1∑
k=0

wkj
mx

′
k − wj

n

m−1∑
k=0

wkj
mx

′′
k

= (Fmx
′)j − wj

n(Fmx
′′)j

= y′j − wj
ny

′′
j , j = 0, 1, 2, · · · ,m− 1 . (6.89)

From (6.89) and (6.88), we know that y = Fnx can be calculated as follows:

1. Split x into

x′ = (x0, x2, · · · , x2(m−1))
T , x′′ = (x1, x3, · · · , x2m−1)

T .

2. Compute y′ = Fmx
′ and y′′ = Fmx

′′.

3. Compute the components of y = Fnx by

yj = y′j + wj
ny

′′
j , j = 0, 1, 2, · · · ,m− 1 ,

yj+m = y′j − wj
ny

′′
j , j = 0, 1, 2, · · · ,m− 1 .

Then for the calculation of y′ = Fmx
′ and y′′ = Fmx

′′, we can again reduce to the

multiplication of Fm/2, and finally to F1. Let us denote the number of computations of

Fm by Cm. We see that C1 = 1 and

C2m = 2Cm + 3m.

The number 3 here includes one multiplication and two additions. If we choose n = 2l,

then C2l is

C2l = 2C2l−1 + 3 · 2l−1

This gives

2−lC2l = 2−l+1C2l−1 + 3 · 2−1

This implies

2−lC2l =
3

2
· l,

or

C2l =
3

2
· l · 2l =

3

2
n log2 n.
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Homeworks

• pp. 468, 5.5.1

• pp. 468, 5.5.3

• pp. 468, 5.5.4

• pp. 468, 5.5.5

• pp. 468, 5.5.8

• pp. 469, 5.5.10
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