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Chapter 1

Introduction

The goal of this course is to introduce theoretical analysis of finite difference methods for solving
partial differential equations. The focuses are the stability and convergence theory. The partial
differential equations to be discussed include

• parabolic equations,

• elliptic equations,

• hyperbolic conservation laws.

1.1 Finite Difference Approximation

A finite difference approximation is to approximate differential operators by finite difference oper-
ators, which is a linear combination of u on discrete points. For example,

• Forward difference: D+u(x) := u(x+h)−u(x)
h ,

• Backward difference: D−u(x) := u(x)−u(x−h)
h ,

• Centered difference: D0u(x) := u(x+h)−u(x−h)
2h .

Here, h is called the mesh size. By Taylor expansion, we can get

• u′(x) = D+u(x) +O(h),

• u′(x) = D−u(x) +O(h),

• u′(x) = D0u(x) +O(h2).

These formulae can be derived by performing Taylor expansion of u at x. For instance, we expand

u(x+ h) = u(x) + u′(x)h+
h2

2
u′′(x) +

h3

3!
u′′′(x) + · · ·
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u(x− h) = u(x)− u′(x)h+
h2

2
u′′(x)− h3

3!
u′′′(x) + · · · .

Subtracting these two equations yields

u(x+ h)− u(x− h) = 2u′(x)h+
2h3

3!
u′′′(x) + · · · .

This gives

u′(x) = D0u(x)− h2

3!
u′′′(x) + · · · = D0u(x) +O(h2).

Thus, u′(x) can be approximated by several difference operators. Indeed, we can approximate u′(x)
by finite difference operators which involve u on more discrete points with higher order errors. For
example,

u′(x) = D3u(x) +O(h3),

where
D3u(x) =

1

6h
(2u(x+ h) + 3u(x)− 6u(x− h) + u(x− 2h)) .

This formula can be derived by taking Taylor expansion of u(x+ h), u(x− h), u(x− 2h) about x,
then making proper combination to cancel 0th, and 2nd derivatives term. That is

u(x+ h) = u(x) + u′(x)h+
h2

2
u′′(x) +

h3

3!
u′′′(x) + · · ·

u(x− h) = u(x)− u′(x)h+
h2

2
u′′(x)− h3

3!
u′′′(x) + · · ·

u(x− 2h) = u(x)− 2u′(x)h+
4h2

2
u′′(x)− 8h3

3!
u′′′(x) + · · ·

Taking the combination 2u(x + h) + 3u(x) − 6u(x − h) + u(x − 2h), we can cancel the zeroth,
second derivatives and obtain u′(x) = D3u(x) +O(h3).

In general, suppose we are given the values of u at discrete points {xj}. These discrete points
are called grid points. We want to approximation u(k) at a specific point x̄ by the values of u at
some of these grid points, say xj , j = 0, ..., n with n ≥ k. That is,

u(k)(x̄) =
n∑
j=0

cju(xj) +O(hp−k+1)

Here, the mesh size h denotes max{|xi − xj |}. The parameter p ≥ k is some positive integer. We
want to design cj so that p is as larger as possible. As we shall see later that we can choose p = n.
To find the coefficients cj , j = 0, ..., n, we make Taylor expansion of u(xj) about the point x:

u(xj) =

p∑
i=0

1

i!
(xj − x̄)iu(i)(x̄) +O(hp+1).
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We plug this expansion formula of u(xj) into the finite difference approximation formula for
u(k)(x):

u(k)(x̄) =
n∑
j=0

cj

p∑
i=0

1

i!
(xj − x̄)iu(i)(x̄) +O(hp−k+1).

Comparing both sides, we obtain

n∑
j=0

(xj − x̄)i

i!
cj =

{
1 if i = k
0 otherwise

}
, for i = 0, ..., p.

There are p+ 1 equations here, it is natural to choose p = n to match the n+ 1 unknowns. This is a
n×nVandermonde system. It is nonsingular if xi are different. The matlab code fdcoeffV(k,xbar,x)
can be used to compute these coefficients. Reference: Randy LeVeque’s book and his Matlab code.

In the case of uniform grid, using central finite differencing, we can get high order approxima-
tion by using less grid points. For instance, let xj = jh, where j ∈ Z. Let uj = u(xj). Then

u′(0) =
u1 − u−1

h
+O(h2)

u′′(0) =
u1 − 2u0 + u−1

h2
+O(h2)

u(3) =
1

2h3
(u2 − 2u1 + 2u0 − 2u−1 + u−2) +O(h2).

Homeworks.

1. Consider xi = ih, i = 0, ..., n. Let x̄ = xm. Find the coefficients ci for u(k)(x̄) and the
coefficient of the leading truncation error for the following cases:

• k = 1, n = 2, 3, m = 0, 1, 2, 3.

• k = 2, n = 2, m = 0, 1, 2.

1.2 Basic Numerical Methods for Ordinary Differential Equations

The basic assumption to design numerical algorithm for ordinary differential equations is the smooth-
ness of the solutions, which is in general valid provided the coefficients are also smooth. Basic
designning techniques include numerical interpolation, numerical integration, and finite difference
approximation.

Euler method

Euler method is the simplest numerical integrator for ODEs. The ODE

y′ = f(t, y) (1.1)
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is discretized by
yn+1 = yn + kf(tn, yn). (1.2)

Here, t0, ..., tn are the grid points of time t. k = tn+1 − tn is time step size of the discretization.
This method is called the forward Euler method. It simply replace dy/dt(tn) by the forward finite
difference (yn+1 − yn)/k. Given a smooth solution y(·), by Taylor expansion, we define the local
truncation error to be

τn := y′(tn)− y(tn+1)− y(tn)

k
= O(k).

We are interested in the true error, which is defined to be en := yn − y(tn). We have the following
convergence theorem.

Theorem 1.1. Assume f ∈ C1 and suppose the solution y′ = f(t, y) with y(0) = y0 exists on
[0, T ]. Then the Euler method converges at any t ∈ [0, T ]. In fact, the true error en has the
following estimate:

|en| ≤ eλt

λ
O(k)→ 0, as n→∞. (1.3)

Here, λ = max |∂f/∂y| and nk = t.

Proof. From the regularity of the solution, we have y ∈ C2[0, T ] and

y(tn+1) = y(tn) + kf(tn, y(tn)) + kτn. (1.4)

Taking difference of (1.2) and (1.4), we obtain

|en+1| ≤ |en|+ k|f(tn, yn)− f(tn, y(tn))|+ k|τn|
≤ (1 + kλ)|en|+ k|τn|.

where
|f(t, x)− f(t, y)| ≤ λ|x− y|.

The finite difference inequality has a fundamental solution Gn = (1 + λk)n, which is positive
provided k is small. Multiplying above equation by (1 + λk)−n−1, we obtain

|em+1|G−m−1 ≤ |em|G−m + kG−m−1|τm|.

Summing in m from m = 0 to n− 1, we get

|en| ≤
n−1∑
m=0

Gn−m−1k|τm| ≤
n−1∑
m=0

GmO(k2)

=
Gn − 1

G− 1
O(k2) ≤ Gn

λ
O(k) ≤ eλt

λ
O(k),

where t = nk and we have used (1 + λk)n ≤ eλt.

Remarks.
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1. The theorem states that the numerical method converges in [0, T ] as long as the solutions of
the ODE exists.

2. The error is O(k) if the solution is in C2[0, T ].

3. The proof above relies on the existence and smoothness of the solution. However, one can
also use this approach to prove the local existence theorem by showning the approximate
solutions generated by the Euler method form a Cauchy sequence.

Backward Euler method

In many applications, the system is relaxed to a stable solution in a very short period of time. For
instance, consider

y′ =
ȳ − y
τ

.

The corresponding solution y(t)→ ȳ as t ∼ O(τ). In the above forward Euler method, practically,
we should require

1 + kλ ≤ 1

in order to haveGn remain bounded. Here, λ is the Lipschitz constant. In the present case, λ = 1/τ .
If τ is very small, the the above forward Euler method will require very small k and lead to inefficient
computation. In general, forward Euler method is inefficient (require small k) if

max

∣∣∣∣∂f(t, y)

∂y

∣∣∣∣ >> 1.

There are two possibilities:

• ∂f/∂y >> 1: In this case, we need to choose a very small k in order to resolve details.

• ∂f/∂y << −1.

For the second case, the backward Euler method is recommended:

yn+1 = yn + kf(tn+1, yn+1).

Comparing the Taylor expansion of the exact solution at tn+1:

y(tn+1) = y(tn) + kf(tn+1, y(tn+1)) +O(k),

we get that the true error en := yn − y(tn) satisfies

en+1 = en + k∆f +O(k2) = en + k

(
∂f

∂y
(t, ȳ)

)
en+1 +O(k2).

(
1− k

(
∂f

∂y
(t, ȳ)

))
en+1 = en +O(k2).
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Since ∂f
∂y (t, ȳ) << −1, we take λ = min

∣∣∣∂f∂y (t, ȳ)
∣∣∣, we get(

1− k
(
∂f

∂y
(t, ȳ)

))
≥ (1 + λk).

Thus,
(1 + λk)|en+1| ≤ |en|+O(k2)

The corresponding fundamental solution is Gn := (1 + λk)−n. Notice that the error satisfies

|en| ≤
n−1∑
m=0

(1 + λk)−mO(k2)

≤ (1 + λk)−n+1

λk
O(k2)

≤ e−λT

λ
O(k).

There is no restriction on the size of k. However, the price to pay is that we need to solve a nonlinear
equation

yn+1 = yn + kf(tn+1, yn+1)

for yn+1 at each time step.

Leap frog method

We integrate y′ = f(t, y) from tn−1 to tn+1:

y(tn+1)− y(tn−1) =

ˆ tn+1

tn−1

f(τ, y(τ)) dτ.

We apply the midpoint rule for numerical integration, we then get

y(tn+1)− y(tn−1) = 2kf(tn, y(tn)) +O(k3).

The midpoint method (or called leapfrog method) is

yn+1 − yn−1 = 2kf(tn, yn). (1.5)

Homeworks.

1. Prove the convergence theorem for the leap-frog method for ODE.
Hint: consider the system yn1 = yn−1 and yn2 = yn.

1.3 Runge-Kutta methods

The Runge-Kutta method (RK) is a strategy to integrate
´ tn+1

tn f dτ by some quadrature method.
Below, RK2, RK4 are RK method with different orders.
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RK2: A second order RK, denoted by RK2, is based on the trapezoidal rule of numerical integra-
tion. First, we integrate the ODE y′ = f(t, y) to get

y(tn+1)− yn =

ˆ tn+1

tn
f(τ, y(τ)) dτ.

Next, this integration is approximated by

ˆ tn+1

tn
f(τ, y(τ)) dτ =

k

2

(
f(tn, yn) + f(tn+1, yn+1)

)
+O(k3).

The latter term involves yn+1. An explicit Runge-Kutta method approximate yn+1 by yn+kf(tn, yn).
Thus, RK2 reads

ξ1 = f(tn, yn)

yn+1 = yn +
k

2
(f(tn, yn) + f(tn+1, yn + kξ1)).

Another kind of RK2 is based on the midpoint rule of integration. It reads

ξ1 = f(tn, yn)

yn+1 = yn + kf(tn+1/2, yn +
k

2
ξ1)

The truncation error of RK2 is

y(tn+1)− y(tn) = yn+1 − y(tn) +O(k3).

RK4 The 4th order Runge-Kutta method uses Simpson’s rule to approximate integration:

ˆ tn+1

tn
f(t, y(t)) dt =

k

6

(
f(tn, y(tn)) + 4f(tn+1/2, y(tn+1/2)) + f(tn+1, y(tn+1))

)
+O(k5).

The quantity y(tn+1/2) is approximated by forward Euler method. It has the form

yn+1 = yn +
k

6
(ξ1 + 2ξ2 + 2ξ3 + ξ4)

ξ1 = f(tn, yn)

ξ2 = f(tn +
1

2
k, yn +

k

2
ξ1)

ξ3 = f(tn +
1

2
k, yn +

k

2
ξ2)

ξ4 = f(tn + k, yn + kξ3)

The truncation error of RK4 is

y(tn+1)− y(tn) = yn+1 − y(tn) +O(k5).
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General explicit Runge-Kutta methods The method takes the following general form

yn+1 = yn + k

s∑
i=1

biξi,

where

ξ1 = f(tn, yn),

ξ2 = f(tn + c2k, y
n + ka21ξ1),

ξ3 = f(tn + c3k, y
n + ka31ξ1 + ka32ξ2),

...

ξs = f(tn + csk, y
n + k(as1ξ1 + · · ·+ as,s−1ξs−1)).

We need to specify s (the number of stages), the coefficients aij(1 ≤ j < i ≤ s), bi(i = 1, ..., s)
and ci(i = 2, ..., s). We list them in the following Butcher table.
There are s(s−1)/2+s+(s−1) unknowns to be determined for a specific scheme. We require the

0
c2 a21

c3 a31 a32
...

...
. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs

truncation error to be O(kp+1). To find these coefficients, we need to expand the truncation error
formula

y(tn+1)− yn = yn+1 − yn +O(kp+1)

about (tn, yn) in terms of derivatives of y(·) at tn. Then we can get linear equations for the coeffi-
cients.

Adaptive Runge-Kutta (Runge-Kutta-Fehlberg method, ODE45) The adaptive Runge-Kutta
method is designed to be able to estimate local truncation error in each time step. From which, we
can adjust time step size to have roughly uniform truncation error in each step. This is done by
using two RK methods with the same sets of aij and ci but different bi, b∗i . The set bi produces
RK method of order p. The auxiliary set b∗i produces a RK method with order p − 1. It is used to
estimate the local truncation by

yn+1 − yn+1,∗ = h
s∑
i=1

(bi − b∗i )ki = O(hp)

The step size h is then estimated so that the truncation error is roughly the same in each time step.
Below is the Butcher table for RK5 and RK4 (b∗).

10



0
1/4 1/4
3/8 3/32 9/32

12/13 1932/2197 −7200/2197 7296/2197
1 439/216 −8 3860/513 −845/4104

1/2 −8/27 2 −3544/2565 1859/4104 −11/40

b 16/135 0 6656/12825 28561/56430 −9/50 2/55
b∗ 25/216 0 1408/2565 2197/4104 −1/5 0

Convergence proof, an example Let us see the proof of the convergence of the two stage Runge-
Kutta method. The scheme can be expressed as

yn+1 = yn + kΨ(yn, tn, k) (1.6)

where
Ψ(yn, tn, k) := f(y +

1

2
kf(y)). (1.7)

Suppose y(·) is a true solution, the corresponding truncation error

τn :=
y(tn+1)− y(tn)

k
−Ψ(y(tn), tn, k) = O(k2)

Thus, the true solution satisfies

y(tn+1)− y(tn) = kΨ(y(tn), tn, k) + kτn

The true error en := yn − y(tn) satisfies

en+1 = en + k(Ψ(yn, tn, k)−Ψ(y(tn), tn, k))− kτn.

This implies
|en+1| ≤ |en|+ kλ′|en|+ k|τn|,

where λ′ is the Lipschitz constant of Ψ(y, t, k) with respect to y. Hence, we get

|en| ≤ (1 + kλ′)n|e0|+ k

n−1∑
m=0

(1 + kλ′)n−1−m|τm|

≤ eλ
′t|e0|+ eλ

′t

λ′
max
m
|τm|

Reference:

• Lloyd N. Trefethen, Finite Difference and Sprectral Methods for Ordinary and Partial Differ-
ential Equations,

• Randy LeVeque,

• You may also google Runge-Kutta method to get more references.
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1.4 Multistep methods

The idea of multi-step method is to derive a relation between, for instance, yn+1, yn, yn−1, y′n and
y′n−1 so that the corresponding truncation is small. The simplest multistep method is the midpoint
method. Suppose yn and yn−1 is given. The new state yn+1 is defined by

yn+1 − yn−1 = 2ky′
n

= 2kf(tn, yn)

The truncation error is

τn :=
1

k

(
y(tn+1)− y(tn−1)− 2ky′(tn)

)
= O(k2).

Thus, the method is second order.
We can also design a method which involves yn+1, yn, yn−1 and y′n, y′n−1. For instance,

yn+1 = yn +
k

2
(3f(yn)− f(yn−1))

The truncation error

τn :=
1

k

(
yn+1 − yn +

k

2
(3f(yn)− f(yn−1))

)
= O(k2).

A general r-step multistep method involves (yn+1, yn, ..., yn+1−r) and (y′n+1, y′n, ..., y′n+1−r).
It can be written as

r∑
m=0

amy
n+1−r+m = k

r∑
m=0

bmy
′n+1−r+m

= k

r∑
m=0

bmf
n+1−r+m. (1.8)

We will always assume ar 6= 0. Because it is the coefficient corresponding to yn+1, which is what
we want to find. When br = 0 the method is explicit; otherwise it is implicit. For a smooth solution
of (1.1), we define the truncation error τn to be

τn :=
1

k

(
r∑

m=0

amy(tn+1−r+m)− k
r∑

m=0

bmy
′(tn+1−r+m)

)

Definition 1.1. A multi-step method is called of order p if τn = O(kp) uniformly in n. It is called
consistent if τn(k)→ 0 uniformly in n as k → 0.

Remark. When f is smooth, the solution of ODE y′ = f(t, y) is also smooth. Then the truncation
is a smooth function of k. In this case, τ(k)→ 0 is equivalent to τ(k) = O(k) as k → 0.

Initial setup An r-step multi-step method needs (y0, y1, ..., yr−1)T to start. There is only y0

given initially. We need to construct y1, ..., yr−1 by other methods. For instance RK methods. In
order to maintain the order of accuracy, we should use a method of p−1 order. This will give initial
error yi − y(ti) = O(kp) for i = 0, ..., r − 1.

12



Derivation of multistep method of order p For notational convenience, let us extend a’s and b’s
by setting am = 0, bm = 0 for m > r. Taking Taylor expansion about tn+1−r, we get

kτn =

r∑
m=0

am

∞∑
j=0

1

j!
y(j)(mk)j − k

r∑
m=0

bm

∞∑
j=1

1

(j − 1)!
y(j)(mk)j−1

=

(
r∑

m=0

am

)
y(0) +

∞∑
j=1

1

j!

r∑
m=0

(
mjam − jmj−1bm

)
kjy(j)

=

(
r∑

m=0

am

)
y(0) +

∞∑
j=1

1

j!

r∑
m=0

mj−1 (mam − jbm) kjy(j)

=
∞∑
j=0

1

j!

∑
m=0

mj−1 (mam − jbm) kjy(j)

=
∞∑
j=0

Cjy
(j).

Here, the derivatives of y(·) are evaluated at tn+1−r. We list few equations for the coefficients a and
b:

C0 = a0 + · · ·+ ar

C1 = (a1 + 2a2 + · · · rar)− (b0 + · · ·+ br)

C2 =
1

2

(
(a1 + 22a2 + · · · r2ar)− 2(b1 + · · ·+ rbr)

)
...

Cp =

r∑
m=0

mp

p!
am −

r∑
m=1

mp−1

(p− 1)!
bm

To obtain a scheme of order p, we need to require

Cj = 0, for j = 0, ..., p.

There are 2(r+ 1) unknowns for the coefficients {am}rm=0, {bm}rm=0. In principle, we can choose
p = 2r + 1 to have the same number of equations. Unfortunately, there is some limitation from
stability criterion which we shall be explained in the next section. The order of accuracy p should
satisfy

p ≤


r + 2 if r is even,
r + 1 if r is odd,
r if it is an explicit scheme.

This is the first Dahlquist stability barrier. We shall not discuss here. See Trefethen’s book, or Stiff
Equation in Wiki, Let us see some concrete examples below.
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Explicit Adams-Bashforth schemes When br = 0, the method is explicit. Here are some exam-
ples of the explicit schemes called Adams-Bashforth schemes, where ar = 1:

• 1-step: yn+1 = yn + kf(yn)

• 2-step: yn+1 = yn + k
2 (3f(yn)− f(yn−1))

• 3 step: yn+1 = yn + k
12(23f(yn)− 16f(yn−1) + 5f(yn−2))

The step size is r and the order is p = r.

Implicit Adams-Moulton schemes Another examples are the Adams-Moulton schemes, where
br 6= 0 and and the step size r = p

• 1-step: yn+1 = yn + k
2 (f(yn+1) + f(yn))

• 2-step: yn+1 = yn + k
12(5f(yn+1) + 8f(yn)− f(yn−1))

• 3 step: yn+1 = yn + k
24(9f(yn+1) + 19f(yn)− 5f(yn−1) + f(yn−2))

Sometimes, we can use an explicit scheme to guess yn+1 as a predictor in an implicit scheme.
Such a method is called a predictor-corrector method. A standard one is the following Adams-
Bashforth-Moulton scheme: Its predictor part is the Adams-Bashforth scheme:

ŷn+1 = yn +
k

12
(23f(yn)− 16f(yn−1) + 5f(yn−2))

The corrector is the Adams-Moulton scheme:

yn+1 = yn +
k

24
(9f(ŷn+1) + 19f(yn)− 5f(yn−1) + f(yn−2))

The predictor-corrector is still an explicit scheme. However, for stiff problem, we should use im-
plicit scheme instead.

Matlab codes are available on Wikiversity with key words “Adams-Bashforth and Adams-
Moulton methods.”

Formal algebra Let us introduce the shift operator Zyn = yn+1, or in continuous sense, Zy(t) =
y(t+ k). Let D be the differential operator. The Taylor expansion

y(t+ k) = y(t) + ky′(t) +
1

2!
k2D2y(t) + · · ·

can be expressed formally as

Zy =

(
1 + (kD) +

1

2!
(kD)2 + · · ·

)
y = ekDy.
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The multistep method can be expressed as

Ly := (a(Z)− kb(Z)D) y =
(
a(ekD)− kDb(ekD)

)
y = (C0 + C1(kD) + · · ·) y.

Here,

a(Z) =

r∑
m=0

amZ
m, b(Z) =

r∑
m=0

bmZ
m

are the generating functions of {am} and {bm}. A multistep method is of order p means that(
a(ekD)− kDb(kD)

)
y = O((kD)p+1)y.

We may abbreviate kD by a symbol κ. The above formula is equivalent to

a(eκ)− κb(eκ) = O(κp+1).

Or equivalently,
a(eκ)

b(eκ)
= κ+O(κp+1) as κ→ 0. (1.9)

We have the following theorem

Theorem 1.2. A multistep method with b(1) 6= 0 is of order p if and only if

a(z)

b(z)
= log z +O((z − 1)p+1) as z → 1.

It is consistent if and only if
a(1) = 0 and a′(1) = b(1).

Proof. The first formula can be obtain from (1.9) by writing eκ = z. For the second formula, we
expand log z about 1. We can get

a(z) = b(z)

(
(z − 1)− (z − 1)2

2
+

(z − 1)3

3
+ · · ·

)
+O((z − 1)p+1).

We also expand a(z) and b(z) about z = 1, we can get

a(1) + (z − 1)a′(1) = b(1)(z − 1) +O((z − 1)2).

Thus, the scheme is consistent if and only if a(1) = 0 and a′(1) = b(1).

Homeworks.

1. Consider the linear ODE y′ = λy, derive the finite difference equation using multistep method
involving yn+1, yn, yn−1 and y′n and y′n−1 for this linear ODE.

2. Solve the linear finite difference equations derived from previous exercise.
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1.5 Linear difference equation

Second-order linear difference equation. In the linear case y′ = λy, the above difference
scheme results in a linear difference equation. Let us consider general second order linear difference
equation with constant coefficients:

ayn+1 + byn + cyn−1 = 0, (1.10)

where a 6= 0. To find its general solutions, we try the ansatz yn = ρn for some number ρ. Here, the
n in yn is an index, whereas the n in ρn is a power. Plug this ansatz into the equation, we get

aρn+1 + bρn + cρn−1 = 0.

This leads to
aρ2 + bρ+ c = 0.

There are two solutions ρ1 and ρ2. In case ρ1 6= ρ2, these two solutions are independent. Since the
equation is linear, any linear combination of these two solutions is again a solution. Moreover, the
general solution can only depend on two free parameters, namely, once y0 and y−1 are known, then
{yn}n∈Z is uniquely determined. Thus, the general solution is

yn = C1ρ
n
1 + C2ρ

n
2 ,

where C1, C2 are constants. In case of ρ1 = ρ2, then we can use the two solutions ρn2 and ρn1 with
ρ2 6= ρ1, but very closed, to produce another nontrivial solution:

lim
ρ2→ρ1

ρn2 − ρn1
ρ2 − ρ1

This yields the second solution is nρn−1
1 . Thus, the general solution is

C1ρ
n
1 + C2nρ

n−1
1 .

Linear finite difference equation of order r . We consider general linear finite difference equa-
tion of order r:

ary
n+r + · · ·+ a0y

n = 0, (1.11)

where ar 6= 0. Since yn+r can be solved in terms of yn+r−1, ..., yn for all n, this equation together
with initial data y0, ..., y−r+1 has a unique solution. The solution space is r dimensions.
To find fundamental solutions, we try the ansatz

yn = ρn

for some number ρ. Plug this ansatz into equation, we get

arρ
n+r + · · ·+ a0ρ

n = 0,

for all n. This implies
a(ρ) := arρ

r + · · ·+ a0 = 0. (1.12)

The polynomial a(ρ) is called the characteristic polynomial of (1.11) and its roots ρ1, ..., ρr are
called the characteristic roots.
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• Simple roots (i.e. ρi 6= ρj , for all i 6= j): The fundamental solutions are ρni , i = 1, ..., r.

• Multiple roots: if ρi is a multiple root with multiplicity mi, then the corresponding indepen-
dent solutions

ρni , nρ
n−1
i , Cn2 ρ

n−2
i ..., Cnmi−1ρ

n−mi+1
i

Here, Cnk := n!/(k!(n− k)!). The solution Cn2 ρ
n−2
i can be derived from differentiation d

dρC
n
1 ρ

n−1

at ρi.
In the case of simple roots, we can express general solution as

yn = C1ρ
n
1 + · · ·+ Crρ

n
r ,

where the constants C1, ..., Cr are determined by

yk = C1ρ
k
1 + · · ·+ Crρ

k
r , k = 0, ..., r − 1.

System of linear difference equation. The above rth order linear difference equation is equiva-
lent to a first order linear difference system:

A0y
n+1 = Ayn (1.13)

where

yn =

 yn1
...
ynr

 =

 yn−r+1

...
yn



A0 =

(
I(r−1)×(r−1) 0

0 ar

)
, A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−a0 −a1 −a2 · · · −ar−1

 .

We may divide (1.13) by A0 and get
yn+1 = Gyn.

We call G the fundamental matrix of (1.13). For this homogeneous equation, the solution is

yn = Gny0

Next, we compute Gn in terms of eigenvalues of G.
In the case that all eigenvalues ρi, i = 1, ..., r of G are distinct, then G can be expressed as

G = TDT−1, D = diag (ρ1, · · · , ρr),

and the column vectors of T are the corresponding eigenvectors.

17



When the eigenvalues of G have multiple roots, we can normalize it into Jordan blocks:

G = TJT−1, J = diag (J1, · · · ,Js),

where the Jordan block Ji corresponds to eigenvalue ρi with multiplicity mi:

Ji =


ρi 1 0 · · · 0
0 ρi 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · ρi


mi×mi

.

and
∑s

i=1mi = r. Indeed, this form also covers the case of distinct eigenvalues.
In the stability analysis below, we are concerned with whether Gn is bounnded. It is easy to see

that
Gn = TJnT−1,Jn = diag (Jn1 , · · · ,Jns )

Jni =


ρni nρn−1

i Cn2 ρ
n−2 · · · Cnmi−1ρ

n−mi+1
i

0 ρni nρn−1
i · · · Cnmi−2ρ

n−mi+2
i

...
...

...
. . .

...
0 0 0 · · · nρn−1

i

0 0 0 · · · ρni


mi×mi

.

where Cnk := n!
k!(n−k)! .

Definition 1.2. The fundamental matrix G is called stable if Gn remains bounded under certain
norm ‖ · ‖ for all n.

Theorem 1.3 (von Neumann). The fundamental matrix G is stable if and only if its eigenvalues
satisfy the following condition:

either |ρ| = 1 and ρ is a simple root,
or |ρ| < 1

(1.14)

Proof. It is easy to see that the nth power of a Jordan form Jni is bounded if its eigenvalue |ρi| < 1
or if ρi| = 1 but simple. On the other hand, if |ρi| > 1 then Jni is unbounded; or if ρi| = 1 but not
simple, then the term nρn−1

i in Jni will be unbounded.

Corollary 1.1. There exists a norm in Rn such that the above root condition for G is equivalent to
‖G‖ ≤ 1 with this norm.

Proof. 1. First, in Rn (or Cn), we define ‖x‖∞ = maxi |xi|. For a linear mapping G : Rn →
Rn, we define its operator norm under the ‖ · ‖∞ by

‖G‖∞ := sup
x 6=0

‖Gx‖∞
‖x‖∞

.
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It is an easy exercise that for G = (aij)n×n, the operator norm

‖G‖∞ = max
i

∑
j

|aij |.

2. Second, a matrix G can be expressed as

G = TDT−1, D = diag (J1, · · · ,Js)

where Ji are Jordan blocks. For any εi 6= 0, we can further transform Ji into

Ji = SiKiS
−1
i

where

Ki =


ρi ε 0 · · · 0
0 ρi ε · · · 0
...

...
...

. . .
...

0 0 0 · · · ε
0 0 0 · · · ρi


mi×mi

, Si = diag (1, εi, ..., ε
mi−1
i ).

Let S = diag(S1, ...,Ss), K = diag(K1, ...,Ks). We can express G as

G = TSK(TS)−1

We now define the new norm of G as

‖G‖ := ‖K‖∞

This means that we define the new norm ‖ · ‖ in Rn by

‖x‖ := ‖(TS)−1x‖∞.

Since TS is invertible, this does define a norm in Rn. With this norm, the corresponding
operator norm is ‖K‖∞.

3. For those Ji with mi > 1, the stability condition requires that |ρi| < 1. We choose εi such
that |ρi| + εi ≤ 1. Then the corresponding ‖Ki‖∞ ≤ 1. Thus, ‖G‖ ≤ 1 with the above
operator norm.
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Nonhomogeneous linear finite difference system In general, we consider the nonhomogeneous
linear difference system:

yn+1 = Gyn + fn (1.15)

with initial data y0. Its solution can be expressed as

yn = Gyn−1 + fn−1

= G(Gyn−2 + fn−2) + fn−1

...

= Gny0 +

n−1∑
m=0

Gn−1−mfm

Homeworks.

1. Consider the linear ODE
y′ = λy

where λ considered here can be complex. Study the linear difference equation derived for this
ODE by forward Euler method, backward Euler, midpoint. Find its general solutions.

2. Consider linear finite difference equation with source term

ayn+1 + byn + cyn−1 = fn

Given initial data ȳ0 and ȳ1, find its solution.

3. Find the characteristic roots for the Adams-Bashforth and Adams-Moulton schemes with
steps 1-3 for the linear equation y′ = λy.

1.6 Stability analysis

There are two kinds of stability concepts.

• Zero stability: Fix t = nk, the computed solution yn remains bounded as n → ∞ (or
equivalently, k → 0).

• Absolute stability: Fix k > 0, the computed solution yn remains bounded as n→∞.

1.6.1 Zero Stability

Our goal is to develop general convergence theory for multistep finite difference method for ODE:
y′ = f(t, y) with initial condition y(0) = y0. An r-step multistep finite difference scheme can be
expressed as

Lyn =
r∑

m=0

amy
n+1−r+m − k

r∑
m=0

bmf(tn+1−r+m, yn+1−r+m) = 0. (1.16)
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Definition 1.3. The truncation error τn(k) for the above finite difference scheme is defined by

τn(k) :=
1

k

(
r∑

m=0

amy(tn+1−r+m)− k
r∑

m=0

bmf(tn+1−r+m, y(tn+1−r+m))

)
,

where y(·) is a true solution of the ODE.

Definition 1.4. A difference scheme is called consistent if the corresponding truncation error τn(k)→
0 uniformly in n as the mesh size k → 0. The scheme is of order p if τn(k) = O(kp) uniform in n.

In the multistep method, the consistency is equivalent to τ(k) = O(k) because we assume y(·)
is smooth and the truncation error is a smooth function in k. The consistency is τ(k)→ 0 as k → 0.
Thus the smoothness of τ implies τ(k) = O(k).

Definition 1.5. A difference scheme is called zero stable if its solutions at time step n remain
bounded as the mesh size k → 0 (nk = T is fixed, according n→∞).

The main theorem is the follows. We will postpone its proof at the end of this section.

Theorem 1.4 (Dahlquist equivalence theorem). For finite difference schemes for ODE y′ = f(t, y),

consistency + zero-stability ⇔ convergence

Stability criterion Let us investigate the condition on the coefficients a and b of an explicit mul-
tistep method for the stability

Lyn = 0

to be bounded. We may assume ar = 1 and br = 0. Let us write it in matrix form:

yn+1 = Ayn + kBfn

where

A =


0 1

0 1
. . . . . .

0 1
−a0 · · · −ar−2 −ar−1

 , yn =

 yn−r

· · ·
yn

 ,

B =


0 0

0 0
. . . . . .

0 0
b0 · · · br−2 br−1

 , fn =

 fn−r

· · ·
fn

 ,

In order to have solution to be bounded for a multistep scheme Ly = 0 for arbitrary f , it has at least
to be valid when f ≡ 0. In this case, we need to invetigate the boundedness for the homogeneous
equation:

yn+1 = Ayn
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We have seen in the last section that

Theorem 1.5. The necessary and sufficient condition for ‖An‖ to be bounded is that the charac-
teristic roots ρi of the characteristic equation a(z) = 0 satisfies:

either |ρi| < 1

or |ρi| = 1 but simple.

Convergence⇒ Stability

Proof. We only need to find an f such that the corresponding multistep is not stable implies that
it does not converge. We choose f ≡ 0. * Since An is unbounded, which means there is an
eigenvalue ρi with eigenvector yi such that |ρi| > 1 or |ρi| = 1 but not simple. We discuss the
formal case. The latter case can also be prove easily. In the former case, let yi be the eigenvector
of A corresponding to the eigenvalue ρi which satisfies |ρi| > 1. Let us choose y0 and generate
y0 = (yr−1

0 , · · · , y0)T by some explicit scheme starting from y0. We can choose y0 such that its
component on yi is nonzero. Then the corresponding yn := Any0 will be unbounded. Hence it
cannot converge to a constant, as k → 0. On the other hand, y0 depends on the mesh size k and
y0(k)→ (y0, · · · , y0)T as k → 0. Thus, the method does not converge for f ≡ 0.

Convergence⇒ Consistency

Proof. From Theorem 1.2, we need to show that a(1) = 0 and a′(1) = b(1). To show the first,
we consider the ODE: y′ = 0 with y(0) = 1. For the second, we consider the ODE: y′ = 1 and
y(0) = 0.

• Show a(1) = 0: We choose y0 = (1, · · · , 1)T . From y1 = Ay0, we get

yr = −a0y
0 − · · · − ar−1y

r−1 = −a0 − · · · − ar−1.

Since yr is independent of k, and we should have yr → 1 as k → 0 (by convergence), we
conclude that yr = 1. Thus, we get a(1) = a0 + · · ·+ ar−1 + 1 = 0.

• Show a′(1) = b(1). We choose f ≡ 1, y(0) = 0. The corresponding ODE solution is
y(t) = t. The multistep method gives

a(Z)yn − kb(Z)1 = 0. (1.17)

We write
a(Z) = a′(1)(Z − 1) +O((Z − 1)2), b(Z)1 = b(1).

*Suppose a multistep method is convergence for every smooth f , then in particular, for f ≡ 0. In this case, if this
multistep method is unstable, we want to show it does not converge. This is a contradiction.
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Then the principal part of the above finite difference is

(Z − 1)y − k b(1)

a′(1)
= 0.

This is an arithmetic series. Its solution is yn = nk b(1)
a′(1) . Indeed, this sequence also satisfies

(1.17) provided its initial data yn also has the form yn = nk b(1)
a′(1) for 0 ≤ n < r. Thus,

arithmetic series yn = nk b(1)
a′(1) is a solution of the difference equation (1.17). Since nk = t,

the convergence yn → t as n→∞ enforces b(1)
a′(1) = 1.

Stability + Consistency⇒ Convergence

Proof. We recall that we can express the scheme as

yn+1 = Ayn + kBfn.

Let Y be an exact solution, then plug it into the above scheme, we get

Yn+1 = AYn + kBFn + kτn,

where Yn := (Y (tn−r), ...Y (tn))T . We subtract these two and call en := Yn − yn. We get

en+1 = Aen + kB (Fn − fn) + kτn.

The term Fn − fn can be repressed as

Fn − fn = (f(Y n−r)− f(yn−r), · · · , f(Y n)− f(yn))T

= (L−re
n−r, · · · , L0e

n)T

:= Lne
n

where

L−m :=

ˆ 1

0
f ′(yn−m + ten−m) dt.

Thus, we get

en+1 = (A + kBLn) en + kτn

= Gn(k)en + kτn

with C independent of n and k. The reason is the follows. First, we assume that f is Lipschitz.
Thus, the functions L−m above are uniformly bounded (independent of n). Hence the term ‖BL‖
is uniformly bounded. Second we have a lemma
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Lemma 1.1. If ‖An‖ is bounded and ‖Bn‖ are uniformly bounded, then the product

‖(A +
1

n
B1) · · · (A +

1

n
Bn)‖

is also uniformly bounded.

We have

en ≤ Gn−1e
n−1 + kτn−1

≤ Gn−1Gn−2e
n−2 + k

(
Gn−2τ

n−2 + τn−1
)

≤ Gn−1Gn−2 · · ·G0e
0

+k
(
Gn−2 · · ·G0τ

0 + · · ·+ Gn−2τ
n−2 + τn−1

)
From the lemma, we get

‖en‖ ≤ C‖e0‖+ nkC max
n
‖τn‖ ≤ C‖e0‖+O(kp).

Proof of Lemma 1.1

Proof. 1. We have seen that ‖An‖ is uniformly bounded under some norm is equivalent to
‖A‖ ≤ 1 for some other operator norm. Thus, we may just assume ‖A‖ ≤ 1.

2. Since all norms in finite dimension are equivalent, we may assume ‖Bi‖ ≤ b for all i =
1, ..., n.

3. We have

‖(A +
1

n
B1) · · · (A +

1

n
Bn)‖ ≤ (‖A‖+

b

n
)n ≤ (1 +

b

n
)n ≤ exp(b).

Theorem 1.6 (First Dahlquist barrier). A zero-stable and linear r-step multistep method with p
order of convergence should satisfies

p ≤


r + 2 if r is even,
r + 1 if r is odd,
r if it is an explicit scheme.

For proof, see pp. Hairer, Norsett, Wanner, Solving Ordinary Differential Equations, 384-387.

1.6.2 Absolute Stability

See Randall LeVeque, Finite Difference Methods for Ordinary and Partial Differential Equations,
Chapter 7.
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Chapter 2

Finite Difference Methods for Linear
Parabolic Equations

2.1 Finite Difference Methods for the Heat Equation

2.1.1 Some discretization methods

Let us start from the simplest parabolic equation, the heat equation:

ut = uxx

Let h = ∆x, k = ∆t be the spatial and temporal mesh sizes. Define xj = jh, j ∈ Z and tn = nk,
n ≥ 0. Let us abbreviate u(xj , t

n) by unj . We shall approximate unj by Unj , where Unj satisfies some
finite difference equations.

Spatial discretization : The simplest one is that we use centered finite difference approximation
for uxx:

uxx =
uj+1 − 2uj + uj−1

h2
+O(h2)

This results in the following systems of ODEs

U̇j(t) =
Uj+1(t)− 2Uj(t) + Uj−1(t)

h2

or in vector form

U̇ =
1

h2
AU

where U = (U0, U1, ...)
t, A = diag (1,−2, 1).
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Homeworks.

1. Derive the 4th order centered finite difference approximation for uxx:

uxx =
1

h2
(−uj−2 + 16uj−1 − 30uj + 16uj+1 − uj+2) +O(h4).

2. Derive a 2nd order centered finite difference approximation for (κ(x)ux)x.

Temporal discretization We can apply numerical ODE solvers

• Forward Euler method:
Un+1 = Un +

k

h2
AUn (2.1)

• Backward Euler method:
Un+1 = Un +

k

h2
AUn+1 (2.2)

• 2nd order Runge-Kutta (RK2):

Un+1 − Un =
k

h2
AUn+1/2, Un+1/2 = Un +

k

2h2
AUn (2.3)

• Crank-Nicolson:
Un+1 − Un =

k

2h2
(AUn+1 +AUn). (2.4)

These linear finite difference equations can be solved formally as

Un+1 = GUn

where

• Forward Euler: G = 1 + k
h2
A,

• Backward Euler: G = (1− k
h2
A)−1,

• RK2: G = 1 + k
h2
A+ 1

2

(
k
h2

)2
A2

• Crank-Nicolson: G =
1+ k

2h2
A

1− k
2h2

A

For the Forward Euler, We may abbreviate it as

Un+1
j = G(Unj−1, U

n
j , U

n
j+1), (2.5)

where
G(Uj−1, Uj , Uj+1) = Uj +

k

h2
(Uj−1 − 2Uj + Uj+1)

26



2.1.2 Stability and Convergence for the Forward Euler method

Our goal is to show under what condition can Unj converges to u(xj , t
n) as the mesh sizes h, k → 0.

To see this, we first see the local error a true solution can produce. Plug a true solution u(x, t)
into (2.1). We get

un+1
j − unj =

k

h2

(
unj+1 − 2unj + unj−1

)
+ kτnj (2.6)

where
τnj = Dt,+u

n
j − (ut)

n
j − (D+D−u

n
j − (uxx)nj ) = O(k) +O(h2).

Let enj denote for unj − Unj . Then subtract (2.1) from (2.6), we get

en+1
j − enj =

k

h2

(
enj+1 − 2enj + enj−1

)
+ kτnj . (2.7)

This can be expressed in operator form:

en+1 = Gen + kτn. (2.8)

‖en‖ ≤ ‖Gen−1‖+ k‖τn−1‖
≤ ‖G2en−2‖+ k(‖Gτn−2‖+ ‖τn−1‖)
≤ ‖Gne0‖+ k(‖Gn−1τ0‖+ · · ·+ ‖Gτn−2‖+ ‖τn−1‖)

Suppose G satisfies the stability condition

‖GnU‖ ≤ C‖U‖

for some C independent of n. Then

‖en‖ ≤ C‖e0‖+ C max
m
|τm|.

If the local truncation error has the estimate

max
m
‖τm‖ = O(h2) +O(k)

and the initial error e0 satisfies
‖e0‖ = O(h2),

then so does the global true error satisfies

‖en‖ = O(h2) +O(k) for all n.

The above analysis leads to the following definitions and the equivalence theorem.

Definition 2.1. A finite difference method is called consistent if its local truncation error τ satisfies

‖τh,k‖ → 0 as h, k → 0.
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Definition 2.2. A finite difference schemeUn+1 = Gh,k(U
n) is called stable in a region (h, k) ∈ R

if there exists a norm ‖ · ‖ such that

‖Gn
h,kU‖ ≤ C‖U‖

for all n > 0. Here, C is a constant independent of n.

Definition 2.3. A finite difference method is called convergence if the true error

‖eh,k‖ → 0 as h, k → 0.

In the above analysis, we have seen that for forward Euler method for the heat equation,

Theorem 2.1. The forward Euler method for the heat equation has the property:

stability + consistency ⇔ convergence.

We have already proven stability + consistency ⇒ convergence. The proof of the other way
is the same as the Dahlquist equivalent theorem 1.4.

2.2 L2 Stability – von Neumann Analysis

We have seen from the above discussion that the convergence issue is reduced to the stability issue.
In the stability analysis, we need to choose a norm to measure stability of the amplification operator
G, we will choose operator norm in L2. For constant coefficient case, the von Neumann analysis
(via Fourier method) provides a necessary and sufficient condition for stability. For more general
cases such as variable coefficient cases, Kreiss’ matrix theorem provides a good characterization of
stability.

Below, we describe L2 stability analysis. We introduce two equivalent methods: Fourier method
and energy method, the Fourier method is also known as the von Neumann stability analysis. Given
{Uj}j∈Z, let us define

‖U‖2 =
∑
j∈Z
|Uj |2

and its Fourier transform
Û(ξ) =

1

2π

∑
j∈Z

Uje
−ijξ, ξ ∈ [0, 2π).

There are two advantages to analyze stability of a finite difference scheme using Fourier method.

• The shift operator is transformed to a multiplier:

T̂U(ξ) = eiξÛ(ξ),

where (TU)j := Uj+1, thus the difference equation becomes an algebraic equation.
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• The Parseval equality

‖U‖2 = ‖Û‖2

≡
ˆ π

−π
|Û(ξ)|2 dξ

holds, thus one can control the L2-norm of U and GU in the Fourier space.

Now, let us consider a finite difference scheme of the form:

Un+1
j = (GUn)j =

m∑
k=−l

akU
n
j+k.

Taking Fourier transform, we obtain

Ûn+1 = Ĝ(ξ)Ûn(ξ),

where

Ĝ(ξ) :=
m∑

k=−l
ake

ikξ.

From the Parseval equality,

‖Un+1‖2 = ‖Ûn+1‖2

=

ˆ π

−π
|Ĝ(ξ)|2 |Ûn(ξ)|2 dξ

≤ max
ξ
|Ĝ(ξ)|2

ˆ π

−π
|Ûn(ξ)|2 dξ

= |Ĝ|2∞‖U‖2

Thus a sufficient condition for stability is

|Ĝ|∞ ≤ 1. (2.9)

Theorem 2.2. A finite difference scheme

Un+1
j =

m∑
k=−l

akU
n
j+k

with constant coefficients is stable if

Ĝ(ξ) :=

m∑
k=−l

ake
ikξ

satisfies
max
−π≤ξ≤π

|Ĝ(ξ)| ≤ 1. (2.10)
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For the forward Euler method for the heat equation,

Un+1
j = G(Uj−1, Uj , Uj+1) = αUj−1 + (1− 2α)Uj + αUj+1, α =

k

h2
.

the corresponding

Ĝ(ξ) = α(eiξ + e−iξ) + (1− 2α) = 1− 4α sin2

(
ξ

2

)
.

The condition (2.10) is equivalent to

α ≤ 1

2
.

That is,
k

h2
≤ 1

2
.

Or equivalently, Un+1
j is the convex combination of Uj−1, Uj and Uj+1.

Homeworks.

1. Compute the Ĝ for the schemes: Backward Euler, RK2 and Crank-Nicolson.

2.3 Energy method

Let us write the finite difference scheme as

Un+1
j = αUnj−1 + βUnj + γUnj+1, (2.11)

where
α, β, γ ≥ 0 and α+ β + γ = 1.

We multiply (2.11) by Un+1
j on both sides, apply Cauchy-Schwarz inequality, we get

(Un+1
j )2 = αUnj−1U

n+1
j + βUnj U

n+1
j + γUnj+1U

n+1
j

≤ α

2
((Unj−1)2 + (Un+1

j )2) +
β

2
((Unj )2 + (Un+1

j )2) +
γ

2
((Unj+1)2 + (Un+1

j )2)

Here, we have used α, β, γ ≥ 0. We multiply this inequality by h and sum it over j ∈ Z. Denote

‖U‖2 :=

∑
j

|Uj |2h

1/2

.

We get

‖Un+1‖2 ≤ α

2
(‖Un‖2 + ‖Un+1‖2) +

β

2
(‖Un‖2 + ‖Un+1‖2) +

γ

2
(‖Un‖2 + ‖Un+1‖2)
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=
1

2
(‖Un‖2 + ‖Un+1‖2).

Here, α+ β + γ = 1 is applied. Thus, we get the energy estimate

‖Un+1‖2 ≤ ‖Un‖2. (2.12)

Homeworks.

1. Can the RK-2 method possess an energy estimate?

2.4 Stability Analysis via Entropy Estimates

Stability in the maximum norm

We notice that the action of G is a convex combination of Uj−1, Uj , Uj+1, provided

0 <
k

h2
≤ 1

2
. (2.13)

Thus, we get
min {Unj−1, U

n
j , U

n
j+1} ≤ Un+1

j ≤ max {Unj−1, U
n
j , U

n
j+1}.

This leads to
minjUn+1

j ≥ minjUnj ,

maxjUn+1
j ≤ maxjUnj ,

and
maxj |Un+1

j | ≤ maxj |Unj |.

That is, G is stable in ‖ · ‖∞.

Entropy estimates

The property that Un+1 is a convex combination (average) of Un is very important. Given any
convex function η(u), by Jenson’s inequality, we have*

η(Un+1
j ) ≤ αη(Unj−1) + βη(Unj ) + γη(Unj+1). (2.14)

*η is convex implies
η(αUj−1 + (1− α)V ) ≤ αη(Uj−1) + (1− α)η(V ).

Take V = (βUj + γUj+1)/(1− α). Apply the definition of convex function again, we get

η(V ) ≤ β

1− α
η(Uj) +

γ

1− α
η(Uj+1).

Combine these two inequalities, we get

η(αUj−1 + βUj + γUj+1) ≤ αη(Uj+1) + βη(Uj) + γη(Uj+1).
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Summing over all j and using α+ β + γ = 1, we get∑
j

η(Un+1
j ) ≤

∑
j

η(Unj ). (2.15)

The convex function is called entropy in this setting. The above inequality means that the “entropy”
decreases in time. In particular, we choose

• η(u) = |u|2, we recover the L2 stability,

• η(u) = |u|p, 1 ≤ p <∞, we get ∑
j

|Un+1
j |p ≤

∑
j

|Unj |p

This leads to ∑
j

|Un+1
j |ph

1/p

≤

∑
j

|Unj |ph

1/p

,

the general Lp stability. Taking p→∞, we recover L∞ stability.

• η(u) = |u− c| for any constant c, we obtain∑
j

|Un+1
j − c| ≤

∑
j

|Unj − c|

This is called Kruzkov’s entropy estimate. We will see this inequality in hyperbolic theory
again.

Homeworks.

1. Show that the solution of the difference equation derived from the RK2 satisfies the entropy
estimate. What is the condition required on h and k for such entropy estimate?

2.5 Entropy estimate for backward Euler method

The backward Euler method for the heat equation is

Un+1 = Un + λAUn+1, A = diag(1,−2, 1), λ =
k

h2
,

the amplification matrix is given by

Un+1 = GUn, G = (I − λA)−1. (2.16)

The matrix M := I − λA has the following property:
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Definition 2.4. A matrix M = (mij) is called an M -matrix if it satisfies

mii > 0, mij ≤ 0,
∑
j 6=i
|mij | ≤ mii (2.17)

For M = I − λA arisen from the backward Euler method, the corresponding mii = 1 + 2λ,
mij = −λ for j 6= i. Thus, it is an M -matrix.

Theorem 2.3. The inverse of an M-matrix is a nonnegative matrix, i.e. all its entries are non-
negative.

I shall not prove this general theorem. You can read Golub-von Loan’s book, or consult wiki.
Instead, I will find the inverse of M for the above specific M-matrix. Let us express

M = I − λ diag(1,−2, 1) =
1 + 2λ

2
diag (−a, 2,−a).

Here,

a =
2λ

1 + 2λ
, and 0 < a < 1 if h, k > 0.

The general solution of the difference equation

− auj−1 + 2uj − auj+1 = 0 (2.18)

has the form:
uj = C1ρ

j
1 + C2ρ

j
2

where ρ1, ρ2 are the characteristic roots, i.e. the roots of the polynomial equation

−aρ2 + 2ρ− a = 0.

Thus,

ρi =
1±
√

1− a2

a
.

From the assumption of the M-matrix, 0 < a < 1, we have ρ1 < 1 and ρ2 > 1.
Now, we define a fundamental solution:

gj =

{
ρj1 for j ≥ 0

ρj2 for j < 0
.

We can check that gj → 0 as |j| → ∞. Moreover, gj satisfies the difference equation (2.18) for
|j| ≥ 1. For j = 0, we have

−ag−1 + 2g0 − ag1 = −aρ−1
2 + 2− aρ1 = 2− a(ρ1 + ρ−1

2 ) = d

We reset

gj ← gj

(
2λ

(1 + 2λ)d

)
.
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Then we have
1 + 2λ

2
(−ag−1 + 2g0 − ag1) = 1,

1 + 2λ

2
(−agj−1 + 2gj − agj+1) = 0,∀j 6= 0.

This means ∑
j

gi−jmj,k = δi,k,

or
G(I − λA) = Id.

Thus, M−1 = (gi−j) is a positive matrix (i.e. all its entries are positive). Furthermore, from

gi−j − λ (−gi−j−1 + 2gi−j − gi−j+1) = δij ,

summing over j ∈ Z, we obtain ∑
j

gi−j = 1 for all i.

This means that
Un+1
i = (GUn)i =

∑
j∈Z

gi−jU
n
j

is indeed average of Un with weights gi−j . With this property, we can apply Jensen’s inequality to
get the entropy estimates:

Theorem 2.4. Let η(u) be a convex function. LetUnj be a solution of the difference equation derived
from the backward Euler method for the heat equation. Then we have∑

j

η(Unj ) ≤
∑
j

η(U0
j ). (2.19)

Remark 1. • From entropy estimate, we get stability estimates for G in all Lp norms with
1 ≤ p ≤ ∞.

• It is important to note that there is no restriction on the mesh sizes h and k for stability for the
Backward Euler method.

Homeworks.

1. Can the Crank-Nicolson method for the heat equation satisfy the entropy estimate? What is
the condition on h and k?
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2.6 Existence Theory

We can prove existence theorem of PDEs through finite difference approximation. In order to do
so, let us define continuous and discrete Sobolev spaces and make a connection between them.

The continuous Sobolev space is defined as

Hm := {u : R→ R|u, u′, ..., u(m) ∈ L2(R)}.

The discrete Sobolev space for functions defined on grid Gh := {xj := jh|j ∈ Z}.

Hm
h := {U : Gh → R|U,Dx,+U, ...,D

m
x,+U ∈ `2}.

Here, (Dx,+U)nj := (Unj+1 − Unj )/h
For any discrete function Uj ∈ Hm

h we can construct a function uh in Hm defined by

uh(x) :=
∑
j

Ujφh(x− xj) (2.20)

where φh(x) = sinc(x/h). We have

uh(xj) = Uj , for all xj ∈ Gh

It can be shown that
‖Dm

x uh‖ ≈ ‖Dm
x,+U‖. (2.21)

Here, the norm is the L2 norm. Similarly, the space L∞k (Hm
h ) can be embeded into L∞(Hm) by

defining
uh,k(x, t) =

∑
n≥0

∑
j

Unj φk(t)φh(x)

The discrete norm and the continuous norm are equivalent.

2.6.1 Existence via forward Euler method

The forward Euler method for the heat equation ut = uxx reads

Un+1
j = Unj +

k

h2

(
Unj−1 − 2Unj + Unj+1

)
.

Here, We have seen that we can get the energy estimate:

‖Un‖ ≤ ‖U0‖.

We perform finite difference operation on the above equation, say the forward Euler equation, for
instance, let V n

j = (Dx,+U)nj := (Unj+1 − Unj )/h. Then V n
j satisfies the same finite difference

equation

V n+1
j = V n

j +
k

h2

(
V n
j−1 − 2V n

j + V n
j+1

)
.
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Thus, it also possesses the same energy estimate. Similar estimate for D2
x,+U . In general, we have

‖Dm
x,+U

n‖ ≤ ‖Dm
x,+U

0‖. (2.22)

If we assume the initial data u0 ∈ H2, then we get Un ∈ H2
h for all n ≥ 0.

Theorem 2.5. If the initial data u0 ∈ Hm,m ≥ 2 and k/h2 ≤ 1/2, then the solution of forward
Euler equation has the estimate

‖Dm
x,+U

n‖ ≤ ‖Dm
x,+U

0‖, ‖Dt,+U
n‖ ≤ ‖D2

x,+U
0‖ (2.23)

Further, the corresponding smoothing function uh,k has the same estimate and has a subsequence
converges to a solution u(x, t) of the original equation.

Proof. The functions uh,k are unformly bounded in W 1,∞(H2). Hence they have a subsequence
converges to a function u ∈ W 1,∞(H2) weakly in W 1,∞(H2) and strongly in L∞(H1). The
functions uh,k satisfy

uh,k(xj , t
n+1)− uh,k(xj , tn) =

k

h2
(uh,k(xj−1, t

n)− 2uh,k(xj , t
n) + uh,k(xj+1, t

n))

Multiply a test smooth function φ, sum over j and n, take summation by part, we can get the
subsequence converges to a solution of ut = uxx weakly.

2.6.2 A Sharper Energy Estimate for backward Euler method

In this subsection, we will get a sharper energy estimate for solutions obtained from the backward
Euler method. Recall the backward Euler method for solving the heat equation is

Un+1
j − Unj = λ(Un+1

j−1 − 2Un+1
j + Un+1

j+1 ) (2.24)

where λ = k/h2. An important technique is the summation by part:∑
j

(Uj − Uj−1)Vj = −
∑
j

Uj(Vj+1 − Vj) (2.25)

There is no boundary term because we consider periodic condition in the present case.
We multiply both sides by Un+1

j , then sum over j. We get∑
j

(Un+1
j )2 − Un+1

j Unj =
∑
j

λ(Un+1
j−1 − 2Un+1

j + Un+1
j+1 )Un+1

j

= λ

∑
j

(Un+1
j−1 − U

n+1
j )Un+1

j +
∑
j

(Un+1
j+1 − U

n
j )Un+1

j


= λ

∑
j

(Un+1
j − Un+1

j+1 )Un+1
j+1 +

∑
j

(Un+1
j+1 − U

n
j )Un+1

j


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= −λ
∑
j

|Un+1
j+1 − U

n+1
j |2.

The term
Un+1
j Unj ≤

1

2
((Un+1

j )2 + (Unj )2)

by Cauchy-Schwartz. Hence, we get

1

2

∑
j

(
(Un+1

j )2 − (Unj )2)
)
≤ −λ

∑
j

|Un+1
j+1 − U

n+1
j |2

Or
1

2
Dt,−‖Un+1‖2 ≤ −h

2

k

k

h2
‖Dx,+U

n+1‖ = −‖Dx,+U
n+1‖2. (2.26)

where,

Dt,−V
n+1
j :=

V n+1
j − V n

j

k
, Dx,+U

n+1
j :=

Un+1
j+1 − U

n+1
j

h
,

We sum in n from n = 1 to N , we get the following theorem.

Theorem 2.6. For the backward Euler method, we have the estimate

‖UN‖2 + C
N∑
n=1

‖Dx,+U
n‖2 ≤ ‖U0‖2 (2.27)

This gives controls not only on ‖Un‖2 but also on ‖Dx,+U
n‖.

Homeworks.

1. Show that the Crank-Nicolson method also has similar energy estimate.

2. Can forward Euler method have similar energy estimate?

2.7 Relaxation of errors

In this section, we want to study the evolution of an error on a periodic domain [0, 2π). We consider

ut = uxx, x ∈ [0, 2π), (2.28)

with initial data u0. The grid points xj = 2πj/N and h = 2π/N . The error enj := u(xj , t
n)− Unj

satisfies
en+1
j = enj + λ(enj−1 − 2enj + enj+1) + kτnj . (2.29)

We want to know how error is relaxed to zero from an initial error e0. We study the homogeneous
finite difference quation first. That is

en+1
j = enj + λ(enj−1 − 2enj + enj+1). (2.30)
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or en+1 = G(un). The matrix is a tridiagonal matrix. It can be diagonalized by Fourier method.
The eigenfunctions and eigenvalues are

vk,j = e2πijk/N , ρk = 1− 2λ+ 2λ cos(2πk/N) = 1− 4λ sin2(πk/N), k = 0, ..., N − 1.

When λ ≤ 1/2, all eigenvalues are negative except ρ0:

1 = ρ0 > |ρ1| > |ρ2| > · · · .

The eigenfunction
v0 ≡ 1.

Hence, the projection of any discrete function U onto this eigenfunction is the average:
∑

j Uj .
Now, we decompose the error into

en =
N−1∑
k=0

enkvk, n ≥ 0

Then
en+1
k = ρke

n
k .

Thus,
enk = ρnke

0
k.

Since ρ0 = 1, we see that en0 = e0
0, which is the average of en, does not decay, unless e0

0 = 0 initially.
To guarantee the average of e0 is zero, we may choose Unj to be the cell average of u(x, tn) in the
jth cell:

Unj =
1

h

ˆ xj+1/2

xj−1/2

u(x, tn) dx.

instead of the grid data. This implies the initial error has zero local averages, and thus so does the
global average.

For the decay behaviours of errors enk for k = 1, ..., N − 1, we notice that for 1 ≤ k ≤ N − 1,

ρk = 1− 4λ sin2

(
πk

N

)
≈ 1− 4λ

(
πk

N

)2

, for N >> 1.

The largest values of ρs are ρ1 and ρN−1:

ρ1 = ρN−1 ≈ 1− 4λ
( π
N

)2
= 1− 4

∆t

h2

π2

N2
= 1−∆t.

They correspond to low frequency eigenmodes: v1 = (e2πij/N )N−1
j=0 and vN−1 = (e−2πij/N )N−1

j=0 .
The decay rate

ρn1 ≈ (1−∆t)n ≈ e−t.
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Here, t = n∆t. This is the decay rate of en1 and enN−1 with n∆t = t. They are the slowest decay
modes. For k = N/2, the corresponding eigenmode vN/2 = ((−1)j)N−1

j=0 is the highest frequency
mode. The corresponding eigenvalue

ρN/2 = 1− 4λ = 1− 4
∆t

h2
.

The decay rate is

ρnN/2 =

(
1− 4

∆t

h2

)n
≈ e−

4t
h2 .

which decays very fast.
The contribution of the truncation error to the true error is:

en+1 = ρke
n
k + ∆tτnk

Its solution is

enk = ρnke
0
k + ∆t

n−1∑
m=0

ρn−1−m
k τmk

We see that the term en0 does not tend to zero unless τm0 = 0. This can be achieved if we choose Uj
as well as fj to be the cell averages instead the grid data. We have seen that the truncation error is
second order. That is

τk,max := max
0≤m≤n−1

|τmk | = O(h2).

Then for k ≥ 1,

∆t
n−1∑
m=0

|ρk|n−1−m ≤ ∆t
n−1∑
m=0

|ρ1|n−1−m = ∆t
1− ρn1
1− ρ1

≈ ∆t
1− e−t

1− (1−∆t)
= 1− e−t.

Thus, we obtain
|en| ≤ e−te0 + (1− e−t)O(h2)

with n∆t = t.

Homeworks.

1. Define Uj := 1
h

´ xj+1/2

xj−1/2
u(x) dx. Show that if u(x) is a smooth periodic function on [0, 1],

then

u′′(xj) =
1

h2
(Uj−1 − 2Uj + Uj+1) + τ

with τ = O(h2).
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2.8 Boundary Conditions

2.8.1 Dirichlet boundary condition

Now, we consider the initial-boundary problem:

ut = uxx, x ∈ [0, 1]

The Dirichlet boundary condition is

u(0) = a, u(1) = b. (2.31)

The initial condition is
u(x, 0) = u0(x).

We introduce uniform grids: xj = j/N , j = 0, ..., N . The forward Euler method can be realized
on x1, ..., xN−1 as

Un+1
j − Unj =

∆t

h2

(
Unj−1 − 2Unj + Unj+1

)
, j = 1, ..., N − 1.

Near the boundary point x1, the finite difference approximation of uxx at x1 involves u at x0 = 0.
We plug the boundary condition:

uxx(x1) =
U0 − 2U1 + U2

h2
+O(h2) =

a− 2U1 + U2

h2
+O(h2) (2.32)

Similarly,

uxx(xN−1) =
UN−2 − 2UN−1 + UN

h2
+O(h2) =

UN−2 − 2UN−1 + b

h2
+O(h2)

The unknowns are Un1 , ..., U
n
N−1 with N − 1 finite difference equations at x1, ..., xN−1. Including

boundary terms, we write the equation as

Un+1 = (I + λA)Un + λB, λ =
∆t

h2
,

A =


−2 1 0 · · · 0 0
1 −2 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 −2


(N−1)×(N−1)

, B =


a
0
...
b


(N−1)×1

. (2.33)

The matrix A is the discrete Laplacian with zero Dirichlet boundary condition. The term B comes
from the Dirichlet boundary conditions.

We can have energy estimates, entropy estimates as the case of periodic boundary condition.
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Next, we examine how error is relaxed for the Euler method with zero Dirichlet boundary con-
dition. We have seen that the error enj := u(xj , t

n) − Unj satisfies the difference equation with
truncation error as the source term:

en+1
j = ((I + λA)en)j + λδB + ∆tτnj , j = 1, ..., N − 1

where τnj is the truncation error,

δB =


δa
0
...
δb


(N−1)×1

.

If there is any error from u(0) = a, say U0 = a+ δa, it will creates a truncation error δa/h2 at x1.
The solution for this difference equation is

en = Gne0 +
n−1∑
m=0

Gn−1−m (λδB + ∆tτm) , G = I + λA.

From Fourier method, we can compute the eigenvector and eigenvalue of A:

vk = (sin(πjk/N)N−1
j=1 , λk = −4 sin2(πk/(2N)), k = 1, ..., N − 1.

In fact, we extend vk to an N + 1-vector as vk,0 = vk,N = 0. Using this extended vector, we can
check

vk,j−1−2vk,j+vk,j+1 = (2 cos(πk/N)−2) sin(πjk/N) = −4 sin2

(
πk

2N

)
vk,j , j = 1, ..., N−1, k = 1, ..., N−1.

The eigenvalues of I + 4λA are

ρk = 1− 4λ sin2

(
πk

2N

)
, k = 1, ..., N − 1.

In the present case, all eigenvalues

ρk < 1, k = 1, ..., N − 1.

provided the stability condition
λ ≤ 1/2.

In this case,
1 > ρ1 > |ρ2| > ... > |ρN−1|.

The lowest mode is ρ1, which is

ρ1 = 1− 4λ sin2(π/2N) ≈ 1− λ
( π
N

)2
= 1− ∆t

h2

π2

N2
= 1− π2∆t.
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and
ρn1 ≈

(
1− π2∆t

)n ≈ e−π2t

Thus,
‖Gn‖ ≤ e−π2t, n∆t = t.

The accumulation effect is
n−1∑
m=0

‖Gn−1−m‖ ≤ 1− e−π2t

∆t
.

Thus, the error from the initial data is

‖Gne0‖ ≤ e−π2t‖e0‖

The error coming from truncation is

n−1∑
m=0

Gn−1−m (∆tτm) = (1− e−π2t)O(h2).

The error due to boundary is

n−1∑
m=0

Gn−1−m (λδB) = (1− e−π2t)
1

h2
‖δB‖.

2.8.2 Neumann boundary condition

The Neumann boundary condition is

u′(0) = σ0, u
′(1) = σ1. (2.34)

We may use the following discretization methods:

• First order:
U1 − U0

h
= σ0.

• Second order-I:

U1 − U0

h
= ux(x1/2) = ux(0) +

h

2
uxx(x0) = σ0 +

h

2
f(x0) (2.35)

• Second order-II: we use extrapolation

−3U0 + 4U1 − U2

2h2
= σ0.

The knowns are Unj with j = 0, ..., N . In the mean time, we add two more equations at the
boundaries.
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Homeworks.

1. Find the eigenfunctions and eigenvalues for the discrete Laplacian with the Neumann bound-
ary condition (consider both first order and second order approximation at boundary). Notice
that there is a zero eigenvalue.

Hint: You may use Matlab to find the eigenvalues and eigenvectors.

Here, I will provide another method. Suppose A is the discrete Laplacian with Neumann boundary
condition. A is an (N + 1) × (N + 1) matrix. Suppose Av = λv. Then for j = 1, ..., N − 1, v
satisfies

vj−1 − 2vj + vj+1 = λvj , j = 1, ..., N − 1.

For v0, we have
−2v0 + 2v1 = λv0.

For vN , we have
−2vN + 2vN−1 = λvN .

Then this matrix has the following eigenvectors:

vkj = cos(πjk/N), k = 0, ..., N

with eigenvalue

λk = −2 + 2 cos(πk/N) = −4 sin2

(
πk

2N

)
, k = 0, ..., N.

Notice that λ0 = 0. The error corresponding this eigenmode does not decay.

Homeworks.

1. Complete the calculation.

2. Consider
ut = uxx + f(x)

on [0, 1] with Neumann boundary condition u′(0) = u′(1) = 0. If
´
f(x) dx 6= 0. What wil

happen to u as t→∞?

2.9 The discrete Laplacian and its inversion

We consider the elliptic equation

uxx − αu = f(x), x ∈ (0, 1),

with the Dirichlet boundary condition

u(0) = a, u(1) = b. (2.36)
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The finite difference approximation of uxx at x1 involves u at x0 = 0. We plug the boundary
contion:

uxx(x1) =
U0 − 2U1 + U2

h2
+O(h2) =

a− 2U1 + U2

h2
+O(h2)

Similarly,

uxx(xN−1) =
UN−2 − 2UN−1 + UN

h2
+O(h2) =

UN−2 − 2UN−1 + b

h2
+O(h2)

The unknowns are Un1 , ..., U
n
N−1 withN−1 finite difference equations at x1, ..., xN−1. The discrete

Laplacian becomes

A =


−2 1 0 · · · 0 0
1 −2 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 −2


(N−1)×(N−1)

. (2.37)

This is a discrete Laplacian with Dirichlet boundary condition. We have seen in the last section
that A can be diagonalized by the discrete Fourier sin functions vk = (sin(πjk/N)j=1N−1 . In this
section, we will find explicit expression ofA−1. Indeed, we will find (A−2β)−1 where β = αh2/2.
The difference equation

Uj−1 − (2 + 2β)Uj + Uj+1 = 0

has two independent solutions ρj1 and ρj2, where ρi are roots of

ρ2 − (2 + 2β)ρ+ 1 = 0.

That is
ρ = 1 + β ±

√
(1 + β)2 − 1.

Our goal below is to construct fundamental solution Gij , which is G = (A− 2β)−1.

Case 1: β = 0 When β = 0, the two independent solutions are Uj = 1 and Uj = j. Let us
construct the fundamental solution centered at i, call it Gij . It has the form:

Gi,j =

{
jCi j ≤ i,
(N − j)C ′i j ≥ i, 1 ≤ i, j ≤ (N − 1). (2.38)

for some constants Ci and C ′i. From Gi,i−1 − 2Gi,i +Gi,i+1 = 1 and iCi = (N − i)C ′i, we obtain
that

Ci = −(N − i)/N C ′i = −i/N.

This gives explicit formula of G = A−1.
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Case 2: β > 0 When β > 0, the two roots are ρ1 < 1 and ρ2 > 1. The fundamental solution Gij
has the following form

Gij =

{
C1ρ

j
1 + C2ρ

j
2 for j ≤ i

D1ρ
j
1 +D2ρ

j
2 for j ≥ i

1 ≤ i ≤ (N − 1), 0 ≤ j ≤ N.

Here, we extend Gi,j with 1 ≤ j ≤ (N − 1) to 0 ≤ j ≤ N . The constants C1, C2, D1, D2 are
determined by

Gi0 = 0, Gi,N = 0,

Gi,i−1 − (2 + 2β)Gi,i +Gi,i+1 = 1

C1ρ
i
1 + C2ρ

i
2 = D1ρ

i
1 +D2ρ

i
2.

Homeworks.

1. Find the coefficients C1, C2, D1, D2 above.

Let us go back to the original equation:

uxx − αu = f(x)

The above study of the Green’s function of the discrete Laplacian helps us to quantify the the error
produced from the source term. If Au = f and A−1 = G, then an error in f , say τ , will produce an
error

e = Gτ.

The error from the boundary also has the same behaviour. If the off-diagonal part of G decays
exponentially (i.e. β > 0), then the error is “localized,” otherwise, it pollutes everywhere.
Project 2. Solve the following equation

uxx − αu+ f(x) = 0, x ∈ [0, 1]

numerically with periodic, Dirichlet and Neumann boundary condition. The equilibrium

1. A layer structure

f(x) =

{
−1 1/4 < x < 3/4
1 otherwise

2. An impluse

f(x) =

{
γ 1/2− δ < x < 1/2 + δ
0 otherwise

3. A dipole

f(x) =


γ 1/2− δ < x < 1/2
−γ 1/2 < x < 1/2 + δ
0 otherwise
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You may choose α = 0.1, 1, 10, observe how solutions change as you vary α.
Project 3. Solve the following equation

−uxx + f(u) = g(x), x ∈ [0, 1]

numerically with Neumann boundary condition. Here, f(u) = F ′(u) and the potential is

F (u) = u4 − γu2.

Study the solution as a function of γ. Choose simple g, say piecewise constant, a delta function
δ(x− x0), or a dipole δ(x− x0 + ε)− δ(x− x0 − ε).
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Chapter 3

Finite Difference Methods for Linear
Elliptic Equations

3.1 Discrete Laplacian in two dimensions

We will solve the Poisson equation

4u = f

in a domain Ω ⊂ R2 with Dirichlet boundary condition

u = g on ∂Ω

Such a problem is a core problem in many applications. We may assume g = 0 by substracting a
suitable function from u. Thus, we limit our discussion to the case of zero boundary condition. Let
h be the spatial mesh size. For simplicity, let us assume Ω = [0, 1] × [0, 1]. But many discussion
below can be extended to general smooth bounded domain.

3.1.1 Discretization methods

Centered finite difference The Laplacian is approximated by

A =
1

h2
(Ui−1,j + Ui+1,j + Ui,j−1 + Ui,j+1 − 4Ui,j) .

For the square domain, the indeces run from 1 ≤ i, j ≤ N − 1 and

U0,j = UN,j = Ui,0 = Ui,N = 0

from the boundary condition.
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If we order the unknowns U by i + j ∗ (N − 1) with j being outer loop index and i the inner
loop index, then the matrix form of the discrete Laplacian is

A =
1

h2


T I
I T I

I T I
. . . . . . . . .

I T


This is an (N −1)× (N −1) block tridiagonal matrix. The block T is an (N −1)× (N −1) matrix

T =


−4 1
1 −4 −1

1 −4 1
. . . . . . . . .

1 −4


Since this discrete Laplacian is derived by centered finite differencing over uniform grid, it is second
order accurate, the truncation error

τi,j :=
1

h2
(u(xi−1, yj) + u(xi+1, yj) + u(xi, yj−1) + u(xi, yj+1)− 4u(xi, yj))

= O(h2).

3.1.2 The 9-point discrete Laplacian

The Laplacian is approximated by

∇2
9 =

1

6h2

 1 4 1
4 −20 4
1 4 1


One can show by Taylor expansion that

∇2
9u = ∇2u+

1

12
h2∇4u+O(h4).

If u is a solution of∇2u = f , then

∇2
9u = f +

1

12
h2∇2f +O(h4).

Thus, we get a 4th order method:

∇2
9Uij = fij +

h2

12
∇2fij
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3.2 Stability of the discrete Laplacian

We have seen that the true solution of4u = f with Dirichlet boundary condition satisfies

Au = f + τ,

where A is the discrete Laplacian and τ is the truncation error and satisfies τ = O(h2) in maximum
norm. The numerical solution U satisfies AU = f . Thus, the true error satisfies

Ae = τ,

where e = u− U . Thus, e satisfies the same equation with right-hand side τ and with the Dirichlet
boundary condition. To get the convergence result, we need an estimate of e in terms of τ . This is
the stability criterion of A. We say that A is stable if there exists some norm ‖ · ‖ and a constant C
such that

‖e‖ ≤ C‖Ae‖.

3.2.1 Fourier method

Since our domain Ω = [0, 1] × [0, 1] and the coefficients are constant, we can apply Fourier trans-
form. Let us see one dimensional case first. Consider the Laplacian d2/dx2 on domain [0, 1] with
Dirichlet boundary condition. The discrete Laplacian is A = 1

h2
diag (1,−2, 1), where h = 1/N .

We can check below that the eigenvectors of A are vk = (sin(πjkh))N−1
j=1 , k = 1, ..., N − 1. The

corresponding eigenvalues are − 4
h2

sin2(πhk/2).

[Avk]j = [A sin(jπkh)]j =
1

h2
(sin((j + 1)πhk) + sin((j − 1)πhk)− 2 sin(jπhk))

=

[
2

h2
(cos(πhk)− 1)

]
sin(jπhk) = − 4

h2
sin2(πhk/2)[vk]j .

For two dimensional case, the eigenfunctions of the discrete Laplacian are Uk,`, 1 ≤, k, ` ≤
N − 1,

(Uk,`)i,j = sin(iπkh) sin(jπ`h), 1 ≤ i, j ≤ N − 1.

The corresponding eigenvalues are

λk,` =
2

h2
(cos(kπh) + cos(`πh)− 2)

= − 4

h2
(sin2(kπh/2) + sin2(`πh/2)), 1 ≤, k, ` ≤ N − 1.

The smallest eigenvalue (in magnitude) is

λ1,1 = − 8

h2
sin2(πh/2) ≈ −2π2 for small h.
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To show the stability, we take Fourier transform of U and A. We then have

‖ÂÛ‖‖Û‖ ≥
∣∣∣〈ÂÛ , Û〉∣∣∣ ≥ |λ1,1|‖Û‖2 ≈ 2π2‖Û‖2.

Hence, the L2 norm of Â has the following estimate:

‖ÂÛ‖ ≥ 2π2‖Û‖.

Thus, we get

‖Û‖ ≤ 1

2π2
‖ÂÛ‖.

From Parseval equality, we have

‖U‖ ≤ 1

2π2
‖AU‖

Applying this stability to the formula: Ae = τ , we get

‖e‖ ≤ 1

2π2
‖τ‖ = O(h2).

Homeworks.

1. Compute th eigenvalues and eigenfunctions of the 9-point discrete Laplacian on the domain
[0, 1]× [0, 1] with zero boundary condition.

3.2.2 Energy method

Below, we use energy method to prove the stability result for discrete Laplacian. We shall prove it
for rectangular domain. However, it can be extended to more general domain. To perform energy
estimate, we rewrite the discrete Laplacian as

AUi,j =
1

h2
(Ui−1,j + Ui+1,j + Ui,j−1 + Ui,j+1 − 4Ui,j) = ((Dx+Dx− +Dy+Dy−)U)i,j

where
(Dx+U)i,j =

Ui+1,j − Ui,j
h

the forward differencing. We multiply the discrete Laplacian by Ui,j , then sum over all i, j. By
applying the summation by part, we get

〈AU,U〉 = 〈(Dx+Dx− +Dy+Dy−)U,U〉
= −〈Dx−U,Dx−U〉 − 〈Dy−U,Dy−U〉
= −‖∇hU‖2h

Here, the discrete L2 norm is defined by

‖U‖2h =
∑
i,j

|Ui,j |2h2.
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The boundary term does not show up because we consider the zero Dirichlet boundary problem.
Thus, the discrete Poisson equation has the estimate

‖∇hU‖2h = |〈f, U〉| ≤ ‖f‖h‖U‖h. (3.1)

Next, for the zero Dirichlet boundary condition, we have the Poincaré inequality, which will be
shown below. Before stating the Poincare inequality, we need to clarify the meaning of zero bound-
ary condition in the discrete sense. We define the Sobolev space H1

h,0 to be the completion of the
restriction of all C1

0 functions to the grid points under the discrete H1 norm. Here, C1
0 function is a

C1 function that is zero on the boundary; the discrete H1 norm is

‖U‖h,1 := ‖U‖h + ‖∇hU‖h.

Lemma 3.1. Let Ω be a bounded domain in R2, then there exist a constant dΩ, which is the diameter
of the domain Ω, such that for any U ∈ H1

h,0,

‖U‖h ≤ dΩ‖∇hU‖h. (3.2)

Proof. Let us take Ω = [0, X]×[0, Y ] as an example for the proof. We assumeX = Mh, Y = Nh.
From zero boundary condition, we have

U2
i,j = (

i∑
i′=1

Dx−Ui′,jh)2

≤ (
i∑

i′=1

12) · (
i∑

i′=1

(Dx−Ui′,j)
2)h2 (Hölder’s inequa;ity)

≤ i(
M∑
i′=1

(Dx−Ui′,j)
2)h2

multiply both sides by h2 then sum over all i, j, we get

‖U‖2h =
∑
i,j

U2
i,jh

2

≤ (
M∑
i=1

i)h2
∑
i′,j

(Dx−Ui′,j)
2h2

≤ M2

2
h2
∑
i′,j

(Dx−Ui′,j)
2h2

=
M2

2
h2‖Dx−U‖2h

Similarly, we have

‖U‖2h ≤
N2

2
h2‖Dy−U‖2h
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Thus,

‖U‖2h ≤ h2 1

2
max{M2, N2}‖∇hU‖2

≤ d2
Ω‖∇hU‖2h.

With the Poincare inequality, we can obtain two estimates for U .

Proposition 3.1. Consider the discrete Laplacian with zero boundary condition. We have

‖U‖h ≤ d2
Ω‖f‖h, (3.3)

‖∇hU‖ ≤ dΩ‖f‖h. (3.4)

Proof. From
‖∇hU‖2h ≤ ‖f‖h · ‖U‖h

We apply the Poincare inequality to the left-hand side, we obtain

‖U‖2h ≤ d2
Ω‖∇U‖2h ≤ d2

Ω‖f‖h‖U‖h

This yields
‖U‖h ≤ d2

Ω‖f‖h
If we apply the Poincare inequality to the right-hand side, we get

‖∇hU‖2h ≤ ‖f‖h · ‖U‖h ≤ ‖f‖h · dΩ‖∇hU‖h

Thus, we obtain
‖∇hU‖ ≤ dΩ‖f‖h

When we apply this result to Ae = τ , we get

‖e‖ ≤ d2
Ω‖τ‖ = O(h2)

‖∇he‖ ≤ dΩ‖τ‖ = O(h2).

Remark The discrete Laplacian has many good properties as those of continuous Laplacian. For
continuous Laplacian, we can have ‖u‖s+2

H estimated by some ‖f‖Hs . In the case of discrete Lapla-
cian, we have similar result. As the truncated error is of ‖τ‖Hs = O(h2) in terms of the discrete
norm, then we have ‖e‖Hs+2 = O(h2). Using Sobolev inequality, wecan get |e|∞ = O(h2).
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Chapter 4

Finite Difference Theory For Linear
Hyperbolic Equations

4.1 A review of smooth theory of linear hyperbolic equations

Hyperbolic equations appear commonly in physical world. The propagation of acoustic wave,
electric-magnetic waves, etc. obey hyperbolic equations. Physical characterization of hyperbolicity
is that the signal propagates at finite speed. Mathematically, it means that compact-supported initial
data yield compact-supported solutions for all time. This hyperbolicity property has been char-
acterized in terms of coefficients of the corresponding linear partial differential equations through
Fourier method.

They are two techaniques for hyperbolic equations, one is based on Fourier method (Garding et
al.), the other is energy method (Friedrichs’ symmetric hyperbolic equations). A good reference is F.
John’s book. For computational purpose, we shall only study one dimensional cases. For analysis,
the techniques include methods of characteristics, energy methods, Fourier methods.

4.1.1 Linear advection equation

We start from the Cauchy problem of the linear advection in one-space dimension

ut + aux = 0, (4.1)

u(x, 0) = u0(x). (4.2)

Its solution is simply a translation of u0, namely,

u(x, t) = u0(x− at).

More generally, we can solve the linear advection equation with variable coefficients by the method
of characteristics. Consider

ut + a(x, t)ux = 0.
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This equation merely says that the direction derivative of u is 0 in the direction (1, a) ‖ (dt, dx). If
x(t, ξ) is the solution of the ODE

dx

dt
= a(x, t).

with initial data x(0, ξ) = ξ, then

d

dt
|ξu(x(t, ξ), t) = ∂tu+ ∂xu

dx

dt
= ut + aux = 0

In other words, u is unchanged along the curve: dx/dt = a. Such a curve is called the characteristic
curve. Suppose from any point (x, t), t > 0, we can find the characteristic curve ξ(s, t, x) backward
in time and ξ(·, t, x) can be extended to s = 0. Namely, ξ(·, t, x) solves the ODE: dξ/ds = a(ξ, s)
with ξ(t, t, x) = x, and ξ(·, t, x) exists on [0, t]. The solution to the Cauchy problem is then given
by u(x, t) = u0(ξ(0, t, x)).

Note that the characteristics are the curves where signals propagate along.
Now, we consider the linear advection equation with source term:

ut + a(x, t)ux = f(x, t).

Let x(t, ξ) be its characteristic curves. Along the characteristic curve, the equation becomes

d

dt
|ξu(x(t, ξ), t) = ut + aux = f(x(t, ξ), t).

We integrate this equation in t with fixed ξ. We obtain

u(x(t, ξ), t) = u0(ξ) +

ˆ t

0
f(x(s, ξ), s) ds.

This is a function in (ξ, t). The final solution is obtain by replacing ξ by ξ(0, t, x).

Homeworks

1. Find the solution of
ut − (tanhx)ux = 0

with initial data u0. Also show that u(x, t)→ 0 as t→∞ , provided u0(x)→ 0 as |x| → ∞.

2. Show that the initial value problem for

ut + (1 + x2)ux = 0

is not well defined. (Show the characteristics issued from x-axis do not cover the entire
domain: x ∈ R, t ≥ 0.)
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4.1.2 Linear systems of hyperbolic equations

Methods of characteristics Second-order hyperbolic equations can be expressed as hyperbolic
systems. For example, the wave equation

utt − c2uxx = 0

can be written as (
ux
ut

)
t

−
(

0 1
c2 0

)(
ux
ut

)
x

= 0.

To solve this system of equations, we diagonalize it. The eigenvalues and eigenvectors of the matrix
is

λ1 = −c, `1 = (−c, 1), r1 = (−c, 1)T ,

λ1 = c, `2 = (c, 1), r2 = (c, 1)T .

We multiply the system by `1 from the left and obtain

(ut − cux)t + c(ut − cux)x = 0.

By multiplying `2, we obtain

(ut + cux)t − c(ut + cux)x = 0.

Let v1 = ut − cux, and v2 = ut + cux. Then v1 and v2 satisfy linear advection equations, and u
satisfies linear advection equation with source term. These can be solved by previous characteristic
method for linear advection equation.

In general, systems of hyperbolic equations have the following form

ut +A(x, t)ux = B(x, t)u+ f(x, t).

Here, u is an n-vector and A,B are n × n matrices. Such a system is called hyperbolic if A is
diagonalizable with real eigenvalues. That is, A has real eigenvalues

λ1 ≤ · · · ≤ λn

with left/right eigenvectors li/ri, respectively. We normalize these eigenvectors so that lirj = δi,j .
Let R = (r1, · · · , rn) and L = (l1, · · · , ln)t. Then

A = RΛL,

Λ = diag (λ1, · · · , λn)

LR = I.

We can use L and R to diagonalize this system. First, we introduce v = Lu, then multiply the
equation by L from the left:

Lut + LAux = LBu+ Lf.

55



This gives

vt + Λvx = Cv + g,

where C = LBR+ LtR+ ΛLxR and g = Lf . The i-th equation:

vi,t + λivi,x =
∑
j

ci,jvj + gi

is simply an ODE in the direction dx/dt = λi(x, t). As before, from a point (x, t) with t > 0, we
draw characteristic curves ξi(·, t, x), i = 1, · · · , n:

dξi
ds

= λi(ξi, s), i = 1, · · · , n

ξi(t, t, x) = x

We integrate the i-th equation along the i-th characteristics to obtain

vi(x, t) = v0,i(ξi(0, t, x)) +

ˆ t

0
(
∑
j

ci,jvj + gi)(ξi(s, t, x), s) ds.

An immediate conclusion we can draw here is that the domain of dependence of (x, t) is [ξn(0, t, x), ξ1(0, t, x)],
which, we denote by D(x, t), is finite. This means that if u0 is zero on D(x, t), then u(x, t) = 0.

One can obtain local existence theorem from this integral equation provided v0 and v0,x are
bounded. Its proof is mimic to that of the local existence of ODE. We define a function space
Cb(R), the bounded continuous functions on R, using the sup norm: ‖u‖∞ := supx |u(x)|. Define
a map

Tv = v0,i(ξi(0, t, x)) +

ˆ t

0

∑
j

ci,jvj + gi

 .

Then the above integral equation is equivalent to find a fixed point of T

v = Tv

in the space Cb(R). The operator T is a contraction in Cb(R) if the time is short enough. The
contraction map T yields a fixed point. This is the solution.

The global existence follows from a priori estimates (for example,C1-estimates) using the above
integral equations. A necessary condition for global existence is that all characteristics issued from
any point (x, t), x ∈ R, t > 0 should be traced back to initial time. A sufficient condition is that
A(x, t) is bounded in the upper half plane in x-t space.

A nice reference for the method of characteristics for systems of hyperbolic equations in one-
dimension is John’s book, PDE, Sec. 5, Chapter 2.
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Energy method for symmetric hyperbolic equations Many physical systems can be written in
the symmetric hyperbolic equations:

A0ut +A(x, t)ux = B(x, t)u+ f,

where A0, A are n×n symmetric matrices andA0 is positive definite. We take inner product of this
equation with u, later we integrate in x over the whole space. For simplicity, we assume A0 and A
are constant matrices temporarily. We get

∂

∂t

1

2
A0u · u+

∂

∂x

1

2
Au · u = Bu · u+ f · u.

Here we have used the symmetric properties of A0 and A:

∂

∂x
Au · u = Aux · u+Au · ux = 2Aux · u.

As we integrate in x over the whole space, we get

d

dt

1

2
〈A0u, u〉 = 〈Bu, u〉+ 〈f, u.〉

Here, the term

〈Aux, u〉 = 〈ux, Au〉 =

ˆ
1

2
(Au, u)x dx = 0.

We have used symmetry property of A. The positivity of A0 yields that (A0u, u) is equivalent to
‖u‖22, namely, there are two constants C1 and C2 such that for any u ∈ L2(R),

C1

ˆ
|u|2 dx ≤ 〈A0u, u〉 ≤ C2

ˆ
|u|2 dx.

If we use 〈A0u, u〉 as a new norm |||u|||2, then we get

d

dt

1

2
|||u(t)|||2 ≤ C|||u|||2 + C ′|||u||| · ‖f‖

Here, we have used the boundedness of B. Eliminating ‖u‖, we get

d

dt
|||u(t)||| ≤ C|||u|||+ C ′‖f‖

This yields (by Gronwell inequality)

‖||u(t)||| ≤ eCt|||u(0)|||+ C ′
ˆ t

0
eC(t−s)‖f(s)‖ ds

Thus, |||u(t)||| s bounded for any finite time if ‖u(0)‖ is bounded.
We can apply this method to the equations for derivatives of u by differentiating the equations.

This will give us the boundedness of all derivatives, from which we get compactness of approximate
solution and existence theorem. For general “smooth” theory for symmetric hyperbolic systems in
high-dimension we refer to Chapter 6 of John’s book.
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4.2 Finite difference methods for linear advection equation

4.2.1 Design techniques

We shall explain some design principles for the linear advection equation:

ut + aux = 0.

We shall assume a > 0 a constant. Despite of its simplicity, the linear advection equation is a proto-
type equation to design numerical methods for nonlinear hyperbolic equations in multi-dimension.

First, we choose h = ∆x and k = ∆t to be the spatial and temporal mesh sizes, respectively.
We discretize the x − t space by the grid points (xj , tn), where xj = j∆x and tn = n∆t. We
shall use the data Unj to approximate u(xj , tn). To derive finite difference schemes, we use finite
differences to approximate derivatives. We demonstrate spatial discretization first, then the temporal
discretization.

1. Spatial discretization. There are two important design principles here, the interpolation and
upwinding.

1. Derivatives are replaced by finite differences. For instance, uxj can be replaced by

Uj − Uj−1

h
, or

Uj+1 − Uj−1

2h
, or

3Uj − 4Uj−1 + Uj−2

2h
.

The first one is first-order, one-side finite differencing, the second one is the central differenc-
ing which is second order, the third one is a one-side, second-order finite differencing. This
formulae can be obtained by make Taylor expansion of uj+k about xj .

2. Upwinding. We assume a > 0, this implies that the information comes from left. Therefore,
it is reasonable to approximate ux by “left-side finite difference”:

Uj − Uj−1

h
or

3Uj − 4Uj−1 + Uj−2

2h
.

2. Temporal discretization.

1. Forward Euler: We replace utnj by (Un+1
j −Unj )/k. As conbining with the upwinding spatial

finite differencing, we obtain the above upwinding scheme.

2. backward Euler: We replace utn+1
j by (Un+1

j − Unj )/k, but replace ux by Dx)n+1
j , where D

is spatial finite difference above.

3. Leap frog: We replace utnj by (Un+1
j − Un−1

j )/2k.

4. An important trick is to replace high-order temporal derivatives by high-order spatial deriva-
tives through the help of P.D.E.: for instance, in order to achieve high order approximation of
ut, we can expand

un+1
j − unj

k
= unt,j +

k

2
untt,j + · · · ,
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We can replace utt by
utt = −auxt = a2uxx,

then approximate uxx by central finite difference. Thus, we obtain a second order approxi-
mation of ut:

ut ←
Un+1
j − Unj

k
− k

2h2
(Unj+1 − 2Unj + Unj−1).

For ux, we can use central difference approximation

ux ←
Unj+1 − Uj−1

2h

The resulting scheme is

Un+1
j − Unj = −ak

2h

(
Unj+1 − Uj−1

)
+
a2k2

2h2
(Unj+1 − 2Unj + Unj−1).

This is a second order scheme in both space and time. The scheme is called Lax-Wendroff
scheme.

We list some finite difference schemes below. Let σ = ak/h.

Upwind : Un+1
j = Unj − σ(Unj − Unj−1)

Lax-Friedrichs : Un+1
j =

Unj+1 + Unj−1

2
+
σ

2
(Unj+1 − Unj−1)

Backward Euler : Un+1
j − Unj =

σ

2
(Un+1

j−1 − U
n+1
j+1 )

Lax-Wendroff : Un+1
j = Unj −

σ

2
(Unj+1 − Unj−1) +

σ2

2
(Unj+1 − 2Unj + Unj−1)

Beam-Warming : Un+1
j = Unj −

σ

2
(3Unj − 4Unj−1 + Unj−2) +

σ2

2
(Unj − 2Unj−1 + Unj−2)

In Beam-Warming, the term ux is approximated by second order finite difference with upwinding:

ux ←
1

2h
(3Unj − 4Unj−1 + Unj−2)

Here the upwinding means that a > 0, the information comes from left, and we use Uj−2, Uj−1 and
Uj as our stencil. The term

ut ←
Un+1
j − Unj

k
− k

2h2
(Unj+1 − 2Unj + Unj−1).

as that in the Lax-Wendroff scheme. Thus, Beam-Warming is a second order scheme.
In general, an (explicit) finite difference scheme for the linear advection equation can be ex-

pressed as

Un+1
j = G(Unj−l, U

n
j−l+1, · · · , Unj+m) =

m∑
k=−l

akU
n
j+k
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Remark.

1. From characteristics method, u(xj , tn+1) = u(xj − ak, tn). We can approximate it by in-
terpolation at neighboring grid points. For instance, a linear interpolation at xj−1 and xj
gives

un+1
j ≈ ak

h
unj−1 + (1− ak

h
)unj .

The corresponding finite difference scheme is then defined by

Un+1
j =

ak

h
Unj−1 + (1− ak

h
)Unj .

This is the well-known upwind scheme. Where the spatial discretization is exactly the above
one-side, first-order finite differencing.

2. The term (un+1
j −unj )/k in a forward Euler method introduces an anti-diffusion term−a2uxx,

namely,
un+1
j − unj

k
= ut +

k

2
utt +O(k2) = ut +

a2k

2
uxx +O(k2).

Thus, a high-order upwind differencing σ
2 (3Unj − 4Unj−1 + Unj−2) for aux and first-order

difference in time will be unstable. We will see this in the modified equation later.

Homeworks

1. Use the trick utt = a2uxx and central finite difference to derive Lax-Wendroff scheme by
yourself.

2. Derive a finite difference using method of characteristics and a quadratic interpolation at
xj−2, xj−1 and xj . Is this scheme identical to the Beam-Warming scheme?

3. Do the same thing with cubic interpolation at xj−2, · · · , xj+1?

4. Write a computer program using the above listed schemes to the linear advection equation.
Use periodic boundary condition. The initial condition are

(a) square wave,

(b) hat function

(c) Gaussian

(d) e−x
2/D sinmx

Refine the mesh by a factor of 2 to check the convergence rates.
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4.2.2 Courant-Friedrichs-Levy condition

For a finite difference scheme:

Un+1
j = G(Unj−`, · · · , Unj+m),

We can define numerical domain of dependence of (xj , tn) to be [xj−n`, xj+nm] (denoted by
D(j, n)). For instance, the numerical domain of upwind method is [xj−n, xj ]. If U0

k = 0 on
D(j, n), then Unj = 0. In order to have our finite difference schemes physically meaningful, a
natural condition is

physical domain of dependence ⊂ numerical domain of dependence.

This gives a constraint on the ratio of h and k. Such a condition is called the Courant-Friedrichs-
Levy (C-F-L) condition. For the linear advection equation with a > 0, the condition is

{xj − ak} ⊂ [xj−`, xj+m].

This leads to
0 ≤ ak

`h
≤ 1

If this condition is violated, we can easily construct an initial condition which is zero on numerical
domain of dependence of (x, t), yet u(x, t) 6= 0. The finite difference scheme will produce 0 at
(x, t). Thus, its limit is also 0. But the true solution u(x, t) is not zero.

Below, we shall fix the ratio h/k during the analysis and take h → 0 in the approximation
procedure.

4.2.3 Consistency and Truncation Errors

Let us express our difference scheme in the form:

Un+1 = GUn.

Given a smooth solution u(x, t) to the PDE. Let us denote u(jh, nk) by unj . Plug un into this finite
difference equation, then make Taylor expansion about (jh, nk). For instance, we plug a smooth
function u into a upwind scheme:

1

k
(un+1
j − unj ) +

1

h
(unj − unj−1) = (ut + aux) + k(utt − σuxx) +O(h2 + k2)

Thus, we define the truncation error as

τn(h, k) =
un+1 −Gun

k
.

A finite difference scheme is called consistent if τ(h, k) → 0 as h, k → 0. Naturally, this is a
minimal requirement of a finite difference scheme. If the scheme is expressed as

Un+1
j =

m∑
k=−l

akU
n
j+k,
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then a necessary and sufficient condition for consistency is
m∑

k=−l
ak = 1.

This is easy to see because the constant is a solution.
If τ = O(kr), then the scheme is called of order r. We can easily check that τ = O(k) for the

upwind method by Taylor expansion:

τ =
1

k

(
un+1
j − unj + σ(unj − unj−1)

)
=

1

k

(
utk +

1

2
uttk

2 +
ak

h
(−uxh+

1

2
uxxh

2

)
+HOT

= (ut + aux) +
k

2

(
utt +

ah

k
uxx

)
+HOT

= (ut + aux)− h2

2k
σ(1− σ)uxx +HOT

The term h2

2kσ(1 − σ)uxx is O(h) if we keep σ = ak/h fixed. Thus, the upwind scheme is first
order.

Homework Find the truncation error of the schemes listed above.

4.2.4 Lax’s equivalence theorem

Suppose Un is generated from a finite difference scheme: Un+1 = G(Un), we wish the solution
remain bounded under certain norm as we let the mesh size ∆t → 0. This is equivalent to let the
time step number n→∞. A scheme is called stable if ‖Un‖ remains bounded under certain norm
‖ · ‖ for all n.

Let u be an exact solution of some linear hyperbolic P.D.E. and U be the solution of a corre-
sponding finite difference equation, We want to estimate the true error enj = unj − Unj .

First we estimate how much errors accumulate in one time step.

en+1 := un+1 − Un+1 = ken +Gun −GUn = ken +Gen.

If we can have an estimate (called stability condition) like

‖GU‖ ≤ ‖U‖ (4.3)

under certain norm ‖ · ‖, then we obtain

‖un − Un‖ ≤ ‖u0 − U0‖+ k(τn−1 + · · ·+ τ1).

From the consistency, we obtain ‖en‖ → 0 as k → 0. If the scheme is of order r, then we obtain

‖en‖ ≤ ‖u0 − U0‖+O(kr).

We have the following theorems.
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Theorem 4.1 (Lax equivalence theorem). Given a linear hyperbolic partial differential equation.
Then a consistent finite difference scheme is stable if and only if is is convergent.

We have proved stability⇒ convergence. We shall prove the other part in the next section.

4.2.5 Stability analysis

Since we only deal with smooth solutions in this section, the L2-norm or the Sobolev norm is a
proper norm to our stability analysis. For constant coefficient and scalar case, the von Neumann
analysis (via Fourier method) provides a necessary and sufficient condition for stability. For system
with constant coefficients, the von Neumann analysis gives a necessary condition for statbility. For
systems with variable coefficients, the Kreiss’ matrix theorem provides characterizations of stability
condition. We describe the von Neumann analysis below.

Given {Uj}j∈Z, we define
‖U‖2 =

∑
j

|Uj |2

and its Fourier transform
Û(ξ) =

1

2π

∑
Uje
−ijξ.

The advantages of Fourier method for analyzing finite difference scheme are

• the shift operator is transformed to a multiplier:

T̂U(ξ) = eiξÛ(ξ),

where (TU)j := Uj+1;

• the Parseval equility

‖U‖2 = ‖Û‖2

≡
ˆ π

−π
|Û(ξ)|2 dξ.

If a finite difference scheme is expressed as

Un+1
j = (GUn)j =

m∑
i=−l

ai(T
iUn)j ,

then
Ûn+1 = Ĝ(ξ)Ûn(ξ).

From the Parseval equality,

‖Un+1‖2 = ‖Ûn+1‖2
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=

ˆ π

−π
|Ĝ(ξ)|2 |Ûn(ξ)|2 dξ

≤ max
ξ
|Ĝ(ξ)|2

ˆ π

−π
Ûn(ξ)|2 dξ

= |Ĝ|2∞‖U‖2

Thus a necessary condition for stability is

|Ĝ|∞ ≤ 1. (4.4)

Conversely, Suppose |Ĝ(ξ0)| > 1, fromĜ being a smooth function in ξ, we can find ε and δ such
that

|Ĝ(ξ)| ≥ 1 + ε for all |ξ − ξ0| < δ.

Let us choose an initial data U0 in `2 such that Û0(ξ) = 1 for |ξ − ξ0| ≤ δ. Then

‖Ûn‖2 =

ˆ
|Ĝ|2n(ξ)|Û0|2

≥
ˆ
|ξ−ξ0|≤δ

|Ĝ|2n(ξ)|Û0|2

≥ (1 + ε)2nδ →∞ as n→∞

The operator Gn is unbounded in ‖ · ‖2 operator norm. It is a fact that it will not be bounded by any
equivalent norm, which involves more analysis and will be omit here. Thus, the scheme can not be
stable. We conclude the above discussion by the following theorem.

Theorem 4.2. A finite difference scheme

Un+1
j =

m∑
k=−l

akU
n
j+k

with constant coefficients is stable if and only if

Ĝ(ξ) :=

m∑
k=−l

ake
−ikξ

satisfies
max
−π≤ξ≤π

|Ĝ(ξ)| ≤ 1. (4.5)

As a simple example, we show that the scheme:

Un+1
j = Unj +

σ

2
(Unj+1 − Unj−1)

is unstable. The operator G = 1 + σ
2 (T − T−1). The corresponding Ĝ(ξ) = 1 + iσ sin ξ, which

cannot be bounded by 1 in magnitude. One the other hand, the Lax-Friedrichs scheme replaces Unj
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in the above scheme by the average (Unj−1 +Unj+1)/2. The corresponding Ĝ(ξ) = cos ξ + iσ sin ξ,
which is bounded by 1 in magnitude provided |σ| ≤ 1. The above replacement is equivalent to add
a term (Unj−1− 2Unj +Unj+1)/2 to the right hand side of the above unstable finite difference. It then
stabilizes the scheme. This quantity is called a numerical viscosity. We see the discussion in the
next section.

Homeworks.

1. Compute the Ĝ for the schemes: Lax-Friedrichs, Lax-Wendroff, Leap-Frog, Beam-Warming,
and Backward Euler.

4.2.6 Modified equation

We shall study the performance of a finite difference scheme to a linear hyperbolic equation. Con-
sider the upwind scheme for the linear advection equation. Let u(x, t) be a smooth function. Expand
u in Taylor series, we obtain

un+1
j −G(un)j = (ut + aux)∆t− (∆x)2

2
(σ − σ2)uxx +O((∆t)3).

The truncation error for the upwind method is O(∆t) if u satisfies the linear advection scheme.
However, if we fix ∆x and ∆t, then the error is O(∆t3) if u satisfies

ut + aux − νuxx = 0,

where

ν =
(∆x)2

2∆t
(σ − σ2).

This equation is called modified equation. The solution of the finite difference equation is closer to
the solution of this modified equation than the original equation. The role of νuxx is a dissipation
term in the scheme. The term −(∆x)2/(∆t)σ2uxx comes from the forward Euler approximation
to ut. It is an anti-diffusion. The term (∆x)2/(∆t)σuxx comes from the upwind discretization for
aux. It is a diffusion. The effect diffusion is νuxx. The constant ν is called numerical viscosity. We
observe that ν ≥ 0 if and only if 0 ≤ σ ≤ 1, which is exactly the (C-F-L as well as von Neumann)
stability condition. This is consistent to the well-postedness of diffusion equations (i.e. ν ≥ 0).

The effect of numerical viscosity is that it will make solution smoother, and will smear out
discontinuities. To see this, let us solve the Cauchy problem:

ut + aux = νuxx

u(x, 0) = H(x) :=

{
1 if x ≥ 0
0 if x < 0.

The function H is called the Heaviside function. The corresponding solution is given by

u(x, t) =
1√

4πνt

ˆ ∞
−∞

e−
(x−at−y)2

4νt u(y, 0) dy
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=
1√

4πνt

ˆ ∞
0

e−
(x−at−y)2

4νt dy

= erf((x− at)/
√

4νt),

where
erf(x) :=

2√
π

ˆ x

−∞
e−z

2
dz.

Let ue(x, t) be the exact solution of ut + aux = 0 with u(x, 0) = H(x). Then

|ue(y + at, t)− u(y + at, t)| = erf(−|y|/
√

4νt).

Hence,

‖ue(·, t)− u(·, t)‖L1 = 2

ˆ 0

−∞
erf(

y√
4νt

) dy

= C
√
νt

Since ν = O(∆t), we see that
‖une − un‖ = O(

√
∆t).

On the other hand, if U is the solution of the finite difference equation, then we expect that ‖Un −
un‖L1 = O(∆t), because it is first order. Indeed, it is only O(

√
∆t) and

‖Un − une ‖L1 = O(
√

∆t).

Thus, a first order scheme is only of half order for “linear discontinuities.”
One can also observe the smearing (averaging) of discontinuities from the finite difference di-

rectly. In upwind scheme, Un+1
j may be viewed as weighted averages of Unj and Unj−1:

Un+1
j = (1− σ)Unj + σUnj−1.

If Unj−1 = 0 and Unj = 1, then Un+1
j is a value between 0 and 1. This is a smearing process

(averaging process). The smearing process will spread out. Its width is (
√
n∆x) = O(

√
∆t) from

the estimate of binomial distribution.
It should be noticed that the magnititute of the numerical viscosity of the upwind method is

smaller than that of the Lax-Friedrichs method. The upwind method uses the information of chara-
teristic speed whereas the Lax-Friedrichs does not use this information.

Homeworks.

1. Find the modified equations for the following schemes:

Lax-Friedrichs : ut + aux =
(∆x)2

2∆t
(1− σ2)uxx

Lax-Wendroff : ut + aux =
(∆x)2

6
a(σ2 − 1)uxxx

Beam-Warming : ut + aux =
(∆x)2

6
a(2− 3σ + σ2)uxxx
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2. Expand u up to uxxxx, find the modified equation with the term uxxxx for the Lax-Wendroff
scheme and Beam-Warming. That is

ut + aux = µuxxx + κuxxxx.

Show that the coefficient κ < 0 for both scheme if and only if the C-F-L stability condition.

3. Find the solution Unj of the upwind scheme with initial data U0
j = δj0. (Hint: a binomial

distribution.) Now, condider the Heaviside function as our initial data. Using the above solu-
tion formula, superposition principle and the Stirling formula, show that

∑
j |unj −Unj |∆x =

O(
√
n∆x) = O(

√
∆t).

Next, we study second-order scheme for solutions with discontinuities. We use Fourier method
to study the solution of the modified equation:

ut + aux = µuxxx.

By taking Fourier transform in x:

û(ξ, t) :=

ˆ
u(x, t)e−ixξ dx,

we find
ût = (−iaξ − iµξ3)û = −iω(ξ)û

Hence
u(x, t) =

ˆ
ei(xξ−ω(ξ)t)û(ξ, 0) dξ.

The initial data we consider here is the Heaviside function H(x). However, in the discrete domain,
its Fourier expansion is truncated. The corresponding inversion has oscillation on both side of the
discontinuity, called Gibb’s phenomena. The width is O(∆x), the height is O(1). We propagate
such an initial data by the equation ut + aux = µuxxx. The superposition of waves in different
wave number ξ cause interference of waves. Eventually, it forms a wave package: a high frequency
wave modulated by a low frequency wave. By the method of stationary phase, we see that the major
contribution of the integral is on the set when

d

dξ
(xξ − ω(ξ)t) = 0.

The correspond wave ei(x−ω
′(ξ)t) is the modulated wave. Its speed ω′(ξ) is called the group velocity

vp. For the Lax-Wendroff scheme, we see that the group speed is

vp = a+ 3µξ2.

For the Beam-Warming, vp = a + 3µξ2. Since µ < 0 for the Lax-Wendroff, while µ > 0 for the
Beam-Warming, we observe that the wave package leaves behind (ahead) the discontinuity in the
Lax-Wendroff (Beam-Warming).
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One can also observe this oscillation phenomena directly from the scheme. In Beam-Warming,
we know that Un+1

j is a quadratic interpolation of Unj−2, U
n
j−1 and Unj . If Unj−2 = 0, and Unj−1 =

Unj = 1, then the quadratic interpolation gives an overshoot at Un+1
j (that is, Un+1

j > 1). Similarly,
in the Lax-Wendroff scheme, Un+1

j is a quadratic interpolation of Unj−1, U
n
j and Unj+1. If Unj−1 =

Unj = 0, and Unj+1 = 1, then Un+1
j < 0 (an undershoot).

Homeworks.

1. Measure the width of the oscillation as a function of number of time steps n.

4.3 Finite difference schemes for linear hyperbolic system with con-
stant coefficients

4.3.1 Some design techniques

We consider the system
ut +Aux = 0

with A being a constant n×n matrix. The first designing principle is to diagonal the system. Using
the left/right eigenvectors, we decompose

A = RΛL

= R(Λ+ − Λ−)L

= A+ −A−

Here, Λ = diag(λ1, · · · , λn) and Λ± are the positive/negative parts of Λ.
With this decomposition, we can define the upwind scheme:

Un+1
j = Unj +

∆t

∆x
A+(Unj−1 − Unj )− ∆t

∆x
A−(Unj+1 − Unj ).

The Lax-Friedrichs is still

Un+1
j =

Unj−1 + Unj+1

2
+

∆t

2∆x
A(Unj−1 − Unj+1)

= Unj +
∆t

2∆x
A(Unj−1 − Unj+1) +

Unj−1 − 2Unj + Unj+1

2

We see the last term is a dissipation term. In general, we can design modified L-F scheme as

Un+1
j = Unj +

∆t

2∆x
A(Unj−1 − Unj+1) +D

Unj−1 − 2Unj + Unj+1

2

where D is a positive constant. D is chosen so that the scheme is stable by the von-Neumann
analysis.
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The Lax-Wendroff scheme is given by

Un+1
j = Unj +

∆t

2∆x
A(Unj−1 − Unj+1) +

(∆t)2

2(∆x)2
A2(Unj+1 − 2Unj + Unj−1).

The C-F-L condition for upwind, L-F, L-W are

max
i
|λi|

∆t

∆x
≤ 1.

Homeworks.

1. Find the modified equation for the above schemes.

2. What is the stability condition on D for the modified L-F scheme.

3. Write a compute program to compute the solution of the wave equation:

ut = vx

vt = c2ux

using upwind, modified L-F, L-W schemes. The initial data is chosen as those for the linear
advection equation. Use the periodic boundary condition.

4.3.2 Stability analysis

The definition of L2-stability is that the L2-norm of the solution of finite difference scheme∑
j

|Unj |2∆x

is uniformly bounded.
This L2-theory for smooth solutions was well developed in the 60s. First, Lax’s equivalence

theorem was originally proved for well-posed linear systems even in multi-dimension. Thus, the
essential issue for finite difference scheme is still the stability problem.

Let us suppose the system is expressed as

ut =
∑
i

Aiuxi +Bu+ f

Here, Ai, B are constant matrices. We assume that the system is hyperbolic. This means that∑
i ξAi is diagonal with real eigenvalues. Suppose the corresponding finite difference scheme is

expressed as
Un+1 = GUn =

∑
aαT

αUn.

Here, α = (α1, · · · , αn) is multi-index, aα are matrices. Consider the Fourier transform of G:

Ĝ(k) =
∑
α

aαe
i
∑
m αmkm∆xm
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If we take ∆xm as a function of ∆t, then Ĝ is a function of (k,∆t). Using Ĝ, we have

Ûn = ĜnÛ0.

From the Parseval equality: ‖U‖2 =
´
|Û |2, we obtain that the stability of a scheme Un+1 = GUn

is equivalent to ‖Ĝn‖ is uniformly bounded. Von Neumann gave a necessary condition for stability
for system case.

Theorem 4.3. A necessary condition for stability is that all eigenvalues of Ĝ(k,∆t) satisfies

|λi(k,∆t)| ≤ 1 +O(∆t),∀k, ∀∆t ≤ τ.

Proof. The spectral radius of Ĝ(k,∆t) is the maximum value of the absolute values of the its
eigenvalues. That is,

ρ(Ĝ) := max
i
|λi|

Since there is an eigenvector v such that |Ĝv| = ρ|v|, we have that

ρ ≤ ‖Ĝ‖ := max
u

|Ĝu|
|u|

.

Also, the eigenvalues of Ĝn are λni . Hence we have

ρ(Ĝn) = ρ(Ĝ)n.

Combine the above two, we obtain
ρ(Ĝ)n ≤ ‖Ĝn‖.

Now, if ‖Ĝn‖ is uniformly bounded, say by a constant C depends on t := n∆t, then

ρ ≤ C1/n

≤ 1 +O(∆t).

For single equation, we have seen that von Neumann condition is also a sufficient condition for
stability.

In general, Kreiss provided characterization of matrices which are stable.

Definition 4.1. A family of matrices {A} is stable if there exists a constant C such that for all
A ∈ {A} and all positive integer n,

‖An‖ ≤ C.

Theorem 4.4 (Kreiss matrix theorem). The stability of {A} is equivalent to each of the following
statements:
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(i) There exists a constant C such that for all A ∈ {A} and z ∈ C, |z| > 1, (A − zI)−1 exists
and satisfies

‖(A− zI)−1‖ ≤ C

|z| − 1
.

(ii) There exist constants C1 and C2 such that for all A ∈ {A}, there exists nonsingular matrix S
such that (1) ‖S‖, ‖S−1‖ ≤ C1, and (2)B = SAS−1 is upper triangular and its off-diagonal
elements satisfy

|Bij | ≤ C2 min{1− |κi|, 1− |κj |}

where κi are the diagonal elements of B.

(iii) There exists a constantC > 0 such that for allA ∈ {A}, there exists a positive definite matrix
H such that

C−1I ≤ H ≤ CI

A∗HA ≤ H

Remarks.

1. In the first statement, the spectral radius of A is bounded by 1.

2. In the second statement, it is necessary that all |κi| ≤ 1.

3. The meaning of the last statement means that we should use the norm
∑
|Uj |2 =

∑
j(HUj , Uj)

instead of the Euclidean norm. Then An is nonincreasing under this norm.

4.4 Finite difference methods for linear systems with variable coeffi-
cients

Again, the essential issue is stability because Lax’s equivalence theorem.
Kreiss showed by an example that the local stability (i.e. the stability for the frozen coefficients)

is neither necessary nor sufficient for overall stability of linear variable systems. However, if the
system ut = Au with A being first order, Strang showed that the overall stability does imply
the local stability. So, for linear first-order systems with variable coefficients, the von Neumann
condition is also a necessary condition for the overall stability.

For sufficient condition, we need some numerical dissipation to damp the high frequency com-
ponent from spatial inhomogeneity. To illustrate this, let us consider the following scalar equation:

ut + a(x)ux = 0,

and a finite difference scheme

Un+1(x) = A(x)Un(x−∆x) +B(x)Un(x) + C(x)Un(x+ ∆x).
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For consistency, we need to require

A(x) +B(x) + C(x) = 1

A(x)− C(x) = a(x)

Now, we impose another condition for local stability:

0 ≤ A(x), B(x), C(x) ≤ 1.

We show stability result. Multiply the difference equation by Un+1(x), use Cauchy-Schwartz in-
equality, we obtain

(Un+1(x))2 = A(x)Un(x−∆x)Un+1(x) +B(x)Un(x)Un+1(x) + C(x)Un(x+ ∆x)Un+1(x)

≤ A(x)

2
((Un(x−∆x))2 + (Un+1(x))2) +

B(x)

2
((Un(x))2 + (Un+1(x))2)

+
C(x)

2
((Un(x+ ∆x))2 + (Un+1(x))2)

=
A(x)

2
(Un(x−∆x))2 +

B(x)

2
(Un(x))2 +

C(x)

2
(Un(x+ ∆x))2 +

1

2
(Un+1(x))2

This implies

(Un+1(x))2 ≤ A(x)(Un(x−∆x))2 +B(x)(Un(x))2 + C(x)(Un(x+ ∆x))2

= A(x−∆x)(Un(x−∆x))2 +B(x)(Un(x))2 + C(x+ ∆x)(Un(x+ ∆x))2

+(A(x)−A(x−∆x))(Un(x−∆x))2 + (C(x)− C(x+ ∆x))(Un(x+ ∆x))2

Now, we sum over x = xj for j ∈ Z. This yields

‖Un+1‖2 ≤ ‖Un‖2 +O(∆t)‖Un‖2

Hence,
‖Un‖2 ≤ (1 +O(∆t))n‖U0‖2 ≤ eKt‖U0‖2.

The above analysis show that monotone schemes are stable in L2. Indeed, the scheme has some
dissipation to damp the errors from the variation of coefficient (i.e. the term like (A(x) − A(x −
∆x))).

For higher order scheme, we need to estimate higher order finite difference ∆U , this will in-
volves |∆a|‖∆U‖, or their higher order finite differences. We need some dissipation to damp the
growth of this high frequency modes. That is, the eigenvalues of the amplification matrix should
satisfies

|λi| ≤ 1− δ|k∆x|2r, when |k∆x| ≤ π

for some δ > 0.
To be more precisely, we consider first-order hyperbolic system in high-space dimension:

ut +

d∑
i=1

ai(x)uxi = 0,
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where u ∈ RN , ai, i = 1, ..., d, are N ×N matrices. Consider a finite difference approximation:

Un+1(x) =
∑
α

Aα(x)TαUn(x)

Here α = (α1, · · · , αd) is a multi-index.
Let Ĝ(x,∆t, ξ) =

∑
αAαe

iα·ξ be the Fourier transform of the frozen finite difference operator.

Definition 4.2. A finite difference scheme with amplification matrix Ĝ(x,∆t, ξ) is called dissipa-
tive of order 2r if there exists a constant δ > 0 such that all eigenvalues of Ĝ satisfy

|λi(x,∆t, ξ)| ≤ 1− δ|ξ|2r

for all maxi |ξi| ≤ π, all x, and all ∆t < τ for some constant τ .

An important theorem due to Kreiss is the following stability theorem.

Theorem 4.5. Suppose the system is symmetric hyperbolic, i.e. the matrices ai are symmetric.
Suppose the coefficient matrices Aα are also symmetric. Assume all coefficients are uniformly
bounded. If the scheme is of order 2r − 1 and is dissipative of order r, then the scheme is stable.
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Chapter 5

Scalar Conservation Laws

5.1 Physical models

Many partial differential equations are derived from physical conservation laws such as conservation
of mass, momentum, energy, charges, etc. This class of PDEs is called conservation laws. The scalar
conservation law is a single conservation law.

5.1.1 Traffic flow model

An interesting model is the following traffic flow model on a high way. We use macroscopic model,
which means that ∆x ≈ 100m. Let ρ be the car density, u be the average car velocity. The car
flux at a point x is the number of car passing through x per unit time. In a time period ∆t, the car
which can pass x must be in the region u(x, t)∆t. Thus, the flux at x is (ρ(x, t)u(x, t)∆t)/(∆t) =
ρ(x, t)u(x, t). Now, consider an arbitrary region (a, b), we have

the change of number of cars in (a, b) = the car flux at a− the car flux at b.

In mathematical formula:

d

dt

ˆ b

a
ρ(x, t) dx = ρ(a, t)u(a, t)− ρ(b, t)u(b, t)

= −
ˆ b

a
(ρu)x dx

This holds for any (a, b). Hence, we have

ρt + (ρu)x = 0. (5.1)

This equation is usually called the continuity equation in continuum mechanics. It is not closed
because it involves two knowns ρ and u. Empirically, u can be teated as a function of ρ which
satisfies u→ 0 as ρ→ ρmax. For instance,

u(ρ) = umax(1− ρ

ρmax
),
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if there is a upper velocity limit, or

u(ρ) = a log(ρmax/ρ)

if there is no restriction of velocity. We can model u to depend on ρx also. For instance,

u = u(ρ)− ν ρx
ρ
.

The quantity ρx/ρ = −Vx/V is the negative expansion rate, where V is called the specific length,
the length of a car (i.e., V = 1/ρ). If the expansion rate is positive, then the car train is rarefied.
Thus, if the car number becomes denser (resp. rarefied), then the speed is reduced (resp. increased).
Here, ν is the diffusion coefficient (viscosity) which is a positive number. Thus, the final equation
is

ρt + f(ρ)x = 0, (5.2)

or
ρt + f(ρ)x = νρxx, (5.3)

where f(ρ) = ρu(ρ).

5.1.2 Burgers’ equation

The Burgers equation is

ut +
1

2
(u2)x = εuxx. (5.4)

When ε = 0, this equation is called inviscid Burgers equation. This equation is a prototype equation
to study conservation laws.

Homeworks.

1. The Burgers equation can be linearized by the following nonlinear transform: let

v = e−
2
ε

´ x u(ξ,t) dξ,

show that v satisfies the heat equation:

vt = εvxx

2. Show that the Cauchy problem of the Burgers equation with initial data u0 has an explicit
solution:

u(x, t) = − ε
2

vx
v

=

ˆ ∞
−∞

(
x− y
t

)
pε(x, t, y) dy,

76



where

pε(x, t, y) =
e−

1
2ε
I(x,t,y)

´∞
−∞ e

− 1
2ε
I(x,t,y) dy

,

I(x, t, y) =
(x− y)2

2t
+

ˆ y

0
u0(ξ) dξ.

The Burgers equation is a prototype equation for conservation laws. It reads

ut + uux =
ε

2
uxx (5.5)

A famous transformation called the Hopf-Cole transform can transform this equation into heat equa-
tion:

φ(x, t) :=

ˆ x

−∞
u(y, t) dy, v = e−

1
ε
φ.

Then φ satisfies the Hamilton-Jacobi equation

φt +
φ2
x

2
=
ε

2
φxx

and v satisfies heat equation:

vt = −1

ε
v, vx = −1

ε
φxv,

vxx = −1

ε
φxxv +

(
1

ε
φx

)2

v.

Thus,

vt =
ε

2
vxx ⇔ φt +

φ2
x

2
=
ε

2
φxx.

The solution to the heat equation can be expressed as

v(x, t) =
1√
2πεt

ˆ ∞
−∞

e−
(x−y)2

2εt v(y, 0) dy

From
φ = −ε ln v, u = φx = −εvx

v
,

we can obtain an explicit form of the solution u as

u(x, t) = −ε 1

v(x, t)

1√
2πεt

ˆ ∞
−∞

(
−x− y

tε

)
e−

(x−y)2
2tε e−

1
ε
φ(y,0) dy

=

ˆ ∞
−∞

(
x− y
t

)
pε(x, y, t) dy
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where

pε(x, y, t) =
e−

1
ε
I(x,y,t)

´∞
−∞ e

− 1
ε
I(x,y,t) dy

, I(x, y, t) =
(x− y)2

2t
+ φ(y, 0).

Taking ε→ 0+, we obtain

u(x, t) =
x− y(x, t)

t
,

where
y(x, t) := arg minxI(x, y, t).

5.1.3 Two phase flow

The Buckley-Leverett equation models how oil and water move in a reservoir. The unknown u is
the saturation of water, 0 ≤ u ≤ 1. The equation is

ut + f(u)x = 0

where

f(u) =
u2

u2 + a(1− u2)2
.

Unlike previous examples, the flux f here is a non-convex function.

5.2 Basic theory

Let consider scalar conservation law

ut + f(u)x = 0. (5.6)

The equation can be viewed as a directional derivative ∂t + f ′(u)∂x of u is zero. That implies u is
constant along the characteristic curve

dx

dt
= f ′(u(x, t)).

This yields that the characteristic curve is indeed a straight line. Using this we can solve the Cauchy
problem of (5.6) with initial data u0 implicitly:

u = u0(x− ut).

For instance, for inviscid Burgers’ equation with u0(x) = x, the solution u is given by u = x− ut,
or u = x/(1 + t).
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Homeworks.

1. If f is convex and u0 is increasing, then the Cauchy problem for equation (5.6) has global
solution.

2. If f is convex and u′0 < 0 at some point, then ux → −∞ at finite time.

The solution may blow up (i.e. |ux| → ∞) in finite time due to the intersection of characteristic
curves. A shock wave (discontinuity) is formed. We have to extend our solution class to to include
these discontinuous solutions. We can view (5.6) in “weak sense.” That is, for every smooth test
function φ with compact support in R× [0,∞),

ˆ ∞
0

ˆ ∞
−∞

φ[ut + f(u)x] dx dt = 0

Integrate by part, we obtain
ˆ ∞

0

ˆ ∞
−∞

[φtu+ φxf(u)] dx dt+

ˆ ∞
−∞

φ(x, 0)u(x, 0) dx = 0, (5.7)

In this formulation, it allows u to be discontinuous.

Definition 5.1. A function u is called a weak solution of (5.6) if it satisfies (5.7) for all smooth test
function φ with compact support in R× [0,∞).

Lemma 5.1. Suppose u is a weak solution with discontinuity across a curve x(t). Suppose u is
smooth on the two sides of x(t). Then u satisfies the following jump condition across x(t):

dx

dt
[u] = [f(u)] (5.8)

where [u] := u(x(t)+, t)− u(x(t)−, t).

Homeworks.Work out this by yourself.

5.2.1 Riemann problem

The Riemann problem is a Cauchy problem of (5.6) with the following initial data

u(x, 0) =

{
u` for x < 0
ur for x > 0

(5.9)

The reasons why Riemann problem is important are:

(i) Discontinuities are generic, therefore Riemann problem is generic locally.

(ii) In physical problems, the far field states are usually two constant states. Because of the
hyperbolicity, at large time, we expect the solution is a perturbation of solution to the Riemann
problem. Therefore, Riemann problem is also generic globally.
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(iii) Both the equation (5.6) and the Riemann data (5.9) are invariant under the Galilean transform:
x→ λx, t→ λt for all λ > 0. If the uniqueness is true, the solution to the Riemann problem
is self-similar. That is, u = u(x/t). The PDE problem is then reduced to an ODE problem.

When f ′′ 6= 0, say, f ′′ > 0, here are two important solutions.

1. shock wave: u` ≥ ur
u(x, t) =

{
u` for x < σt
ur for x > σt

(5.10)

where σ = (f(ur)− f(u`))/(ur − u`).

2. rarefaction wave: u` < ur

u(x, t) =


u` for x < λ`t
u for λ` < λ(u) = x

t < λr
ur for x > λrt

(5.11)

where λ(u) = f ′(u) is an increasing function.

These two solution are of fundamental importance. We shall denote them by (u`, ur).
The weak solution is not unique. For instance, in the case of u` < ur, both (5.11) and (5.10)

are weak solutions. Indeed, there are infinite many weak solutions to such a Riemann problem.
Therefore, additional condition is needed to guarantee uniqueness. Such a condition is called an
entropy condition.

5.2.2 Entropy conditions

To find a suitable entropy condition for general hyperbolic conservation laws, let us go back to
study the gas dynamic problems. The hyperbolic conservation laws are simplified equations. The
original physical equations usually contain a viscous term νuxx, as that in the Navier-Stokes equa-
tion. We assume the viscous equation has uniqueness property. Therefore let us make the following
definition.

Definition 5.2. A weak solution is called admissible if it is the limit of

uεt + f(uε)x = εuεxx, (5.12)

as ε→ 0+.

We shall label this condition by (A). In gas dynamics, the viscosity causes the physical entropy
increases as gas particles passing through a shock front. One can show that such a condition is
equivalent to the admissibility condition. Notice that this entropy increasing condition does not
involve viscosity explicitly. Rather, it is a limiting condition as ε→ 0+. This kind of conditions is
what we are looking for. For general hyperbolic conservation laws, there are many of them. We list
some of them below.

80



(L) Lax’s entropy condition: across a shock (u`, ur) with speed σ, the Lax’s entropy condition is

λ` > σ > λr (5.13)

where λ` (λr) is the left (right) characteristic speed of the shock.
The meaning of this condition is that the information can only enter into a shock, then disap-
pear. It is not allowed to have information coming out of a shock. Thus, if we draw character-
istic curve from any point (x, t) backward in time, we can always meet the initial axis. It can
not stop at a shock in the middle of time because it would violate the entropy condition. In
other words, all information can be traced back to initial time. This is a causality property. It
is also time irreversible, which is consistent to the second law of thermodynamics. However,
Lax’s entropy is only suitable for flux f with f ′′ 6= 0.

(OL) Oleinik-Liu’s entropy condition: Let

σ(u, v) :=
f(u)− f(v)

u− v
.

The Oleinik-Liu’s entropy condition is that, across a shock

σ(u`, v) ≥ σ(u`, ur) (5.14)

for all v between u` and ur. This condition is applicable to nonconvex fluxes.

(GL) The above two conditions are conditions across a shock. Lax proposed another global entropy
condition. First, he define entropy-entropy flux: a pair of function (η(u), q(u)) is called an
entropy-entropy flux for equation (5.6) A weak solution u(x, t) is said to satisfy entropy
condition if for any entropy-entropy flux pair (η, q), u(x, t) satisfies

η(u(x, t))t + q(u(x, t))x ≤ 0 (5.15)

in weak sense.

(K) Another global entropy proposed by Kruzkov is for any constant c,
ˆ ∞

0

ˆ ∞
−∞

[|u− c|φt + sign(u− c)(f(u)− f(c))φx] dx ≥ 0 (5.16)

for all positive smooth φ with compact support in R× (0,∞). (GL)⇒ (K):
For any c, we choose η(u) = |u − c|, which is a convex function. One can check the cor-
responding q(u) = sign(u − c)(f(u) − f(c)). Thus, (K) is a special case of (GL). We may
remark here that we can choose even simplier entropy-entropy flux:

η(u) = u ∨ c, q(u) = f(u ∨ c),

where u ∨ c := max{u, c}.
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When the flux is convex, each of the above conditions is equivalent to the admissibility condi-
tion. When f is not convex, each but the Lax’s entropy condition is equivalent to the admissibility
condition.

We shall not provide general proof here. Rather, we study special case: the weak solution is
only a single shock (u`, ur) with speed σ.

Theorem 5.1. Consider the scalar conservation law (5.6) with convex flux f . Let (u`, ur) be its
shock with speed σ. Then the above entropy conditions are all equivalent.

Proof. (L)⇔ (OL);
We need to assume f to be convex. This part is easy. It follows from the convexity of f . We leave
the proof to the reader.
(A)⇔ (OL):
We also need to assume f to be convex. Suppose (u`, ur) is a shock. Its speed

σ =
f(ur)− f(u`)

ur − u`
.

We shall find a solution of (5.12) such that its zero viscosity limit is (u`, ur). Consider a solution
haing the form φ((x−σt)/ε). In order to have φ→ (u`, ur), we need to require far field condition:

φ(ξ)→
{
u` ξ → −∞
ur ξ →∞ (5.17)

Plug φ((x− σt)/ε) into (5.12), integrate in ξ once, we obtain

φ′ = F (φ). (5.18)

where F (u) = f(u) − f(u`) − σ(u − u`). We find F (u`) = F (ur) = 0. This equation with
far-field condition (5.17) if and only if, for all u between u` and ur, (i) F ′(u) > 0 when u` < ur,
or (ii) F ′(u) < 0 when u` > ur. One can check that (i) or (ii) is equivalent to (OL).

Next, we study global entropy conditions.
(A)⇒ (GL)
If u is an admissible solution. This means that it is the limit of uε which satisfy the viscous con-
servation law (5.12). Let (η, q) be a pair of entropy-entropy flux. Multiply (5.12) by η′(uε), we
obtain

η(uε)t + q(uε)x = εη′(uε)uεxx

= εη(uε)xx − εη′′(uεx)2

≤ εη(uε)xx

We multiply this equation by any positive smooth test function φ with compact support in R ×
(0,∞), then integrate by part, and take ε→ 0, we obtain

ˆ ∞
0

ˆ ∞
−∞

[η(u)φt + q(u)φx] dx dt ≥ 0
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This means that η(u)t + q(u)x ≤ 0 in weak sense.
(K)⇒ (OL) for single shock:
Suppose (u`, ur) is a shock. Suppose it satisfies (K). We want to show it satisfies (OL). The condi-
tion (GL), as applied to a single shock (u`, ur), is read as

−σ[η] + [q] ≤ 0.

Here, we choose η = |u− c|. The condition becomes

−σ(|ur − c| − |u` − c|) + sign(ur − c)(f(ur)− f(c))− sign(u` − c)(f(u`)− f(c)) ≤ 0

Or
− σ(u`, ur)(|ur − c| − |u` − c|) + |ur − c|σ(ur, c)− |u` − c|σ(u`, c) ≤ 0 (5.19)

We claim that this condition is equivalent to (OL). First, if c lies outside of u` and ur, then the
left-hand side of (5.19) is zero. So (5.19) is always true in this case. Next, if c lies betrween u` and
ur, one can easily check it is equivalent to (OL).

5.2.3 Rieman problem for nonconvex fluxes

The Oleinik-Liu’s entropy condition can be interpreted as the follows graphically. Suppose (u`, ur)
is a shock, then the condition (OL) is equivalent to one of the follows. Either u` > ur and the graph
of f between u`, ur lies below the secant (ur, f(ur)), (u`, f(u`)). Or u` < ur and the graph of
f between u`, ur lies above the secant ((u`, f(u`)), (ur, f(ur))). With this, we can construct the
solution to the Riemann problem for nonconvex flux as the follows.

If u` > ur, then we connect (u`, f(u`)) and (ur, f(ur)) by a convex envelope of f (i.e. the
largest convex function below f ). The straight line of this envelope corresponds to an entropy shock.
In curved part, f ′(u) increases, and this portion corresponds to a centered rarefaction wave. Thus,
the solution is a composition of rarefaction waves and shocks. It is called a copmposite wave.

If u` < ur, we simply replace convex envelope by concave envelope.
Example. Consider the cubic flux: f(u) = 1

3u
3. If u` < 0, ur > 0 From u`, we can draw a line

tangent to the graph of f at u∗` = −u`/2. If ur > u∗` , then the wave structure is a shock (u`, u
∗
` )

follows by a rarefaction wave (u∗` , ur). If ur ≤ u∗` , then the wave is a single shock. Notice that in
a composite wave, the shock may contact to a rarefaction wave. Such a shock is called a contact
shock.

Homeworks.

1. For the flux f(u) = u3/3, construct the general solution to the Riemann problem for general
left/right states u` andur.

5.3 Uniqueness and Existence

Theorem 5.2 (Kruzkov). Assume f is Lipschitz continuous and the initial data u0 is in L1 ∩ BV .
Then there exists a global entropy solution (satisfying condition (K)) to the Cauchy problem for
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(5.6). Furthermore, the solution operator is contractive in L1, that is, if u, v are two entropy
solutions, then

‖u(t)− v(t)‖L1 ≤ ‖u(0)− v(0)‖L1 (5.20)

As a consequence, we have uniqueness theorem and the total variation diminishing property:

T.V.u(·, t) ≤ T.V.u(·, 0) (5.21)

Proof. The part of total variation diminishing is easy. We prove it here. The total variation of u is
defined by

T.V.u(·, t) = Suph>0

ˆ
|u(x+ h, t)− u(x, t)|

h
dx

We notice that if u(x, t) is an entropy solution, so is u(x+ h, t). Apply the contraction estimate for
u(·, t) and v = u(·+ h, t). We obtain the total variation diminishing property.

To prove the L1-contraction property, we claim that the constant c in the Kruzhkov entropy
condition (K) can be replaced by any other entropy solution v(t, x). That is
ˆ ˆ

[|u(t, x)− v(t, x)|ψt + sign(u(t, x)− v(t, x))(f(u(t, x))− f(v(t, x)))ψx] dx dt ≥ 0

for all positive smooth ψ with compact support in R× [0,∞). To see this, we choose a test function
φ(s, x, t, y), the entropy conditions for u and v are
ˆ ˆ

[|u(s, x)− k|φs(s, x, t, y) + sign(u(s, x)− k)(f(u(s, x))− f(k))φx(s, x, t, y)] dx ds ≥ 0

ˆ ˆ
[|v(t, y)− k′|φt(s, x, t, y) + sign(v(t, y)− k′)(f(v(t, y))− f(k′))φy(s, x, t, y)] dx ds ≥ 0

Set k = v(t, y) in the first equation and k′ = u(s, x) in the second equation. Integrate the rest
variables and add them together. We get
ˆ ˆ ˆ ˆ

{|u(s, x)− v(t, y)|(φs + φt) + sign(u(s, x)− v(t, y)) · [f(u(s, x))− f(v(t, y))] · (φx + φy)} dx ds dy dt ≥ 0.

Now we choose φ(s, x, t, y) such that it concentrates at the diagonal s = t and x = y. To do
so, let ρh(x) = h−1ρ(x/h) be an approximation of the Dirac mass measure. Let ψ(T,X) be a
non-negative test function on (0,∞)× R. Choosing

φ(s, x, t, y) = ψ

(
s+ t

2
,
x+ y

2

)
ρh

(
s− t

2

)
ρh

(
x− y

2

)
,

we get
ˆ ˆ ˆ ˆ

ρh

(
s− t

2

)
ρh

(
x− y

2

){
|u(s, x)− v(t, y)|ψT

(
s+ t

2
,
x+ y

2

)
+sign(u(s, x)− v(t, y)) · [f(u(s, x))− f(u(v(t, y)))] · ψX

(
s+ t

2
,
x+ y

2

)}
dx dy ds dt ≥ 0.
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Now taking limit h→ 0, we can get the desired inequality.
Next, we choose

ψ(t, x) = [αh(t)− αh(t− τ)] · [1− αh(|x| −R+ L(τ − t))],

where αh(z) =
´ z
−∞ ρh(s) ds. We can get the desired L1 contraction estimate.

The existence theorem mainly based on the same proof of the uniqueness theorem. Suppose the
initial data is in L1∩L∞∩BV , we can construct a sequence of approximate solutions which satisfy
entropy conditions. They can be construncted by finite difference methods (see the next section), or
by viscosity methods, or by wave tracking methods (by approximate the flux function by piecewise
linear functions). Let us suppose the approximate solutions are constructed via viscosity method,
namely, uε are solutions of

uεt + f(uε)x = εuεxx.

Following the same proof for (GL) ⇒ (K), we can get that the total variation norms of the ap-
proximate solutions uε are bounded by T.V.u0. This gives the compactness in L1 and a convergent
subsequence leads to an entropy solution.
Remark. The general existence theorem can allow only initial data u0 ∈ L1 ∩L∞. Even the initial
data is not in BV , the solution immediately has finite total variation at any t > 0.
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Chapter 6

Finite Difference Schemes For Scalar
Conservation Laws

6.1 Major problems

First of all, we should keep in mind that local stability is necessary in designing finite difference
schemes for hyperbolic conservation laws. Namely, the scheme has to be stable for hyperbolic
conservation laws with frozen coefficients, see Chapter 1. In addition, there are new things that
we should be careful for nonlinear equations. The main issue is how to compute discontinuities
correctly. We list common problems on this issue.

• Spurious oscillation appears around discontinuities in every high order schemes. The reason
is that the solution of finite difference scheme is closer to a PDE with higher order derivatives.
The corresponding dispersion formula demonstrates that oscillation should occur. Also, one
may view that it is incorrect to approximate weak derivative at discontinuity by higher order
finite differences. The detail spurious structure can be analyzed by the study of the discrete
traveling wave corresponding to a finite difference scheme.

To cure this problem, we have to lower down the order of approximation near discontinuities
to avoid oscillation. We shall devote to this issue later.

• The approximate solution may converge to a function which is not a weak solution. For in-
stance, let us apply the Courant-Isaacson-Rees (C-I-R) method to compute a single shock for
the inviscid Burgers equation. The C-I-R method is based on characteristic method. Suppose
we want to update the state Un+1

j . We draw a characteristic curve back to time tn. However,
the slope of the characteristic curve is not known yet. So, let us approximate it by Unj . Then
we apply upwind method:

Un+1
j − Unj =

∆t

∆x
Unj (Unj−1 − Unj ) if Unj ≥ 0

Un+1
j − Unj =

∆t

∆x
Unj (Unj − Unj+1) if Unj < 0
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Now, we take the following initial data:

U0
j =

{
1 for j < 0
0 for j ≥ 0

It is easy to see that Unj = U0
j . This is a wrong solution. The reason is that we use wrong

characteristic speed Unj when there is a discontinuity passing xj from tn to tn+1.

To resolve this problem, it is advised that one should use a conservative scheme. We shall
discuss this issue in the next section.

• Even the approximate solutions converge to a weak solution, it may not be an entropy solution.
For instance, consider the invisid Burgers equation ut + uux = 0 with the initial data:

U0
j =

{
−1 for j < 0
1 for j ≥ 0

We define the scheme by

Un+1
j = Unj +

∆t

∆x
(F (Unj−1, U

n
j )− F (Unj , U

n
j+1))

where

F (U, V ) =

{
f(U) if U + V ≥ 0
f(V ) if U + V < 0

We find that F (Unj , U
n
j+1) = F (Unj−1, U

n
j ). Thus, the solution is Unj = U0

j . This is a
nonentropy solution.

6.2 Conservative schemes

A finite difference scheme is called conservative if it can be written as

Un+1
j = Unj +

∆t

∆x
(F

n+1/2
j−1/2 − F

n+1/2
j+1/2 ) (6.1)

where Fn+1/2
j+1/2 is a function of Un and possibly Un+1. The advantage of this formulation is that the

total mass is conservative: ∑
j

Unj =
∑
j

Un+1
j (6.2)

There is a nice interpretation of F if we view Unj as an approximation of the cell-average of the
solution u over the cell (xj−1/2, xj+1/2) at time step n. Let us integrate the conservation law
ut + f(u)x = 0 over the box: (xj−1/2, xj+1/2)× (tn, tn+1). Using divergence theorem, we obtain

ūn+1
j = ūnj +

∆t

∆x
(f̄
n+1/2
j−1/2 − f̄

n+1/2
j+1/2 ) (6.3)
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where

ūnj =
1

∆x

ˆ xj+1/2

xj−1/2

u(x, tn) dx

f̄
n+1/2
j+1/2 =

1

∆t

ˆ tn+1

tn

f(u(xj+1/2, t)) dt

Thus, in a conservative scheme (6.1), we may view Unj as an approximation of the cell average

ūnj and Fn+1/2
j+1/2 as an approximation of the flux average f̄n+1/2

j+1/2 . This formulation is closer to the
original integral formulation of a conservation, and it does not involve derivatives of the unknown
quantity u.

A conservative scheme is consistent if Fj+1/2(U,U) = f(u), where U is a vector with Uj = u.
For explicit scheme, Fj+1/2 is a function of Un only and it only depends on Unj−`+1, · · · , Unj+m.
That is

Fj+1/2 = F (Unj−`+1, · · · , Unj+m).

We usually assume that the function is a Lipschitz function.
The most important advantage of conservative schemes is the following Lax-Wendroff theorem.

Which says that its approximate solutions, if converge, must to a weak solution.

Theorem 6.1 (Lax-Wendroff). Suppose {Unj } be the solution of a conservative scheme (6.1). The
Define u∆x := Unj for [xj−1/2, xj+1/2) × [tn, tn+1). Suppose u∆x is uniformly bounded and
converges to u almost everywhere. Then u is a weak solution of (5.6).

Proof. Let φ be a smooth test function with compact support on R × [0,∞). We multiply (6.1) by
φnj and sum over j and n to obtain

∞∑
n=0

∞∑
j=−∞

φnj (Un+1
j − Unj ) =

∆t

∆x

∞∑
n=0

∞∑
j=−∞

φnj [Fj−1/2(Un)− Fj+1/2(Un)]

Using summation by part, we obtain
∞∑

j=−∞
φ0
jU

0
j +

∞∑
n=1

∞∑
j=−∞

(φnj − φn−1
j )Unj +

∞∑
n=0

∞∑
j=−∞

(φnj+1 − φnj )Fj+1/2(Un) = 0

Since φ is of compact support and u∆x, hence F (Un), are uniformly bounded, we obtain the conver-
gence in the above equation is uniformly in j and n. If (xj , tn)→ (x, t), then from the consistency
condition, Fj+1/2(Un)→ f(u(x, t)). We obtain that u is a weak solution.

Below, we show that many scheme can be written in conservation form. We may view F
n+1/2
j+1/2

as a numerical flux at xj+1/2 between tn and tn+1.

1. Lax-Friedrichs:

F
n+1/2
j+1/2 = F (Uj , Uj+1) =

1

2
(f(Uj+1) + f(Uj)) +

∆t

2∆x
(Uj − Uj+1). (6.4)

The second term is a numerical dissipation.
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2. Two-step Lax-Wendroff:

F
n+1/2
j+1/2 = f(U

n+1/2
j+1/2 )

U
n+1/2
j+1/2 =

Unj + Unj+1

2
+

∆t

2∆x

[
f(Unj )− f(Unj+1)

]
Homeworks.Construct an example to show that the Lax-Wendroff scheme may produce nonen-

tropy solution.

6.3 Entropy and Monotone schemes

Definition 6.1. A scheme expressed as

Un+1
j = G(Unj−`, · · · , Unj+m) (6.5)

is called a monotone scheme if

∂G

∂Uj+k
≥ 0, k = −`, · · · ,m (6.6)

In the case of linear equation, the monotone scheme is

Un+1
j =

m∑
k=−`

akU
n
j+k

with ak ≥ 0. The consistency condition gives
∑

k ak = 1. Thus, a monotone scheme in linear
cases means that Un+1

j is an average of Unj−`, · · · , Unj+m. In the nonlinear case, this is more or less
“true.” For instance, the sup norm is nonincreasing, the solution operator is `1-contraction, and the
total variation is dimishing. To be precise, let us define the norms for U = {Uj}:

|U |∞ = sup
j
|Uj |

‖U‖1 =
∑
j

|Uj |∆x

T.V.(U) =
∑
j

|Uj+1 − Uj |

We have the following theorem.

Theorem 6.2. For a monotone scheme (6.5), we have

(i) `∞- bound:
|Un+1|∞ ≤ |Un|∞
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(ii) `1-contraction: if U , V are two solutions of (6.1), then

‖Un+1 − V n+1‖1 ≤ ‖Un − V n‖1 (6.7)

(iii) total variation diminishing:

T.V.x(Un+1) ≤ T.V.x(Un) (6.8)

(iv) boundedness of total variation: there exists a constant C such that

T.V.x,t(U) ≤ C (6.9)

Proof. 1.

Un+1
j = G(Unj−`, · · · , Unj+m)

≤ G(maxUn, · · · ,maxUn)

= maxUn

Hence, we have maxUn+1 ≤ maxUn. Similarly, we also have minUn+1 ≥ minUn.

2. Let us denote the vector (Unj ) by Un, the scheme (6.5) by an operator Un+1 = G(Un).
U ≤ V means that Uj ≤ Vj for each j. Denote by U ∨ V for the vector (max{Uj , Vj}). The
monotonicity reads

G(U) ≤ G(V ) if U ≤ V.

We have G(U ∨ V ) ≥ G(V ). Hence,

(G(U)−G(V ))+ ≤ ((G(U ∨ V )−G(V ))+ = G(U ∨ V )−G(V ).

We take summation in j, and use conservative property of G, namely,
∑

j(G(U))j =
∑

j Uj ,
we obtain ∑

j

(G(U)−G(V ))+
j ≤

∑
j

((U ∨ V )− V )j =
∑
j

(U − V )+
j .

Similarly, we have ∑
j

(G(V )−G(U))+
j ≤

∑
j

(V − U)+
j .

Adding these two, we obtain the `1-contraction:∑
j

|G(U)j −G(V )j | ≤
∑
j

|Uj − Vj |.
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3. Suppose Unj is a solution of (6.5). We take V n
j to be Unj+1. Then V n

j also satisfies (6.5). From
the `1-contraction property, we have∑

j

|Un+1
j+1 − U

n+1
j | ≤

∑
j

|Unj+1 − Unj |

This shows the total variation dimishing property of (6.5).

4. The total variation of U in x, t with 0 ≤ t ≤ T is defined by

T.V.x,t(U) =
N∑
n=0

∞∑
j=−∞

[
|Unj+1 − Unj |

∆x
+
|Un+1
j − Unj |

∆t

]
∆x∆t

=

N∑
n=0

[
T.V.xU

n∆t+ ‖Un+1 − Un‖L1

]
= T.V.xU

nT +

N∑
n=0

‖Un+1 − Un‖L1 .

Here N∆t = T . We claim that ‖Un+1 − Un‖L1 ≤ O(∆t). If so, then we obtain the result
with C ≤ T +NO(∆t) ≤ T +KT for some constant K. Now, we prove this claim:∑

j

|Un+1
j − Unj | =

∑
j

|G(Unj−`, · · · , Unj+m)−G(Unj , · · · , Unj )|

≤
∑
j

L(|Unj−` − Unj |+ · · ·+ |Unj+m − Unj |)

≤ L(`+m)2T.V.x(Un).

Here, we have used that G is Lipschitz continuous. Hence, we conclude∑
j

|Un+1
j − Unj |∆t ≤ O(∆t).

The boundedness of total variation of U in (x, t) implies that we can substract a subsequence
u∆x which converges in L1. Below, we show that its limit indeed satisfies entropy condition.

Theorem 6.3. The limiting function of the approximate solutions constructed from a monotone
scheme satisfies Kruzkov’s entropy condition.

Proof. We choose η = (u− c)+ = u∨ c− c. The corresponding entropy flux is q(u) = f(u∨ c)−
f(c). It is natural to choose the numerical entropy flux to beQ(Uj−`+1, · · · , Uj+m) = F (Uj−`+1∨
c, · · · , Uj+m ∨ c)− F (c, · · · , c). We have

(Un+1 ∨ c) = G(Unj−`, · · · , Unj+m) ∨G(c, · · · , c)
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≤ G(Unj−` ∨ c, · · · , Unj+m ∨ c)

= Unj ∨ c+
∆t

∆x

[
F (Unj−` ∨ c, · · · , Unj+m−1 ∨ c)− F (Unj−`+1 ∨ c, · · · , Unj+m ∨ c)

]
= Unj ∨ c+

∆t

∆x

[
Q(Unj−`, · · · , Unj+m−1)−Q(Unj−`+1, · · · , Unj+m)

]
Multiply this inequality by φnj , sum over j and n, and apply “summation-by-part”, then take limit
∆t,∆x→ 0. We obtain that u is an entropy solution.

Theorem 6.4 (Harten-Hyman-Lax). A monotone scheme (6.5) is at most first order.

Proof. We claim that the modified equation corresponding to a monotone scheme has the following
form

ut + f(u)x = ∆t[β(u, λ)ux]x (6.10)

where λ = ∆t/∆x,

β =
1

2λ2

m∑
k=−`

k2Gk(u, · · · , u)− 1

2
f ′(u)2, Gk :=

∂G

∂uk
, (6.11)

and β > 0 except for some exceptional cases. Since for smooth solution, the solution of finite
difference equation is closer to the modified equation, we see that the scheme is at most first order.

To show (6.10), we take Taylor expansion of G about (u0, · · · , u0):

G(u−`, · · · , um) = G(u0, · · · , u0)

+

m∑
k=−`

Gk(uk − u0)

+
1

2

m∑
j,k=−`

Gj,k(uj − u0) (uk − u0) +O(∆x)3

= u0 + ∆xux

m∑
k=−`

kGk +
1

2
(∆x)2uxx

m∑
k=−`

k2Gk

+
∑
j,k

1

2
(∆x)2u2

xjkGj,k +O(∆x)3

= u0 + ∆xux

m∑
k=−`

kGk +
1

2
(∆x)2

(
m∑

k=−`
k2Gkux

)
x

+
∑
j,k

1

2
(∆x)2u2

x(jk − k2)Gj,k +O(∆x)3

On the other hand,
G(u−`, · · · , um) = u0 + λ(F (ū)− F (T ū))
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where ū = (u−`, ·, um−1), T ū = (u−`+1, · · · , um). We differentiate this equation to obtain

Gk = δ0,k + λ[Fk(ū)− Fk−1(T ū)]

Gj,k = λ[Fj,k(ū)− Fj−1,k−1(T ū)]

We differentiate the consistency condition F (u0, · · · , u0) = f(u0) to obtain
m−1∑
−`

Fk(u0, · · · , u0) = f ′(u0).

Therefore,
m∑

k=−`
Gk = 1

m∑
k=−`

kGk = λ
∑

(Fk − Fk−1)k = −λf ′(u0)∑
j,k

(j − k)2Gj,k = λ
∑

(j − k)2[Gj−1,k−1 −Gj,k] = 0

Using this and the symmetry Gj,k = Gk,j , we obtain∑
j,k

Gj,k(jk − k2) = −1

2

∑
Gj,k(j − k)2 = 0.

Hence we obtain

G(u−`, · · · , um) = u0 −∆xλf ′(u)ux + (
1

2
∆x)2uxx

∑
k

k2Gk +O(∆x)3

Now, from the Taylor expansion:

u1
0 = u0 + ∆tut +

1

2
(∆t)2utt +O(∆t)3

= u0 −∆tf(u)x + (
1

2
∆t)2[f ′(u)2ux]x +O(∆t)3

Combine these two, we obtain that smooth solution of the finite difference equation satisfy the
modified equation up to a truncation error (∆t)2.

To show β ≥ 0, from the monotonicity Gk ≥ 0. Hence

λ2f ′(u)2 =

(∑
k

kGk

)2

=
(∑

k
√
Gk
√
Gk

)2

≤
∑

k2Gk ·
∑

Gk =
∑
k

k2Gk

The equality holds only whenGk(u, · · · , u) = 0 for all k except 1. This means thatG(u`, · · · , um) =
u1. This is a trivial case.
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Chapter 7

Finite Difference Methods for
Hyperbolic Conservation Laws

Roughly speaking, modern schemes for hyperbolic conservation laws can be classified into the
following two categories.

1) flux-splitting methods

2) high-order Godunov methods

1) is more algebraic construction while 2) is more geometrical construction.
Among 1), there are

• artificial viscosity methods,

• flux correction transport (FCT),

• total variation diminishing (TVD),

• total variation bounded (TVB),

• central scheme,

• relaxation schemes,

• relaxed scheme.

Among 2), there are

• High order Godunov methods,

• MUSCL,

• piecewise parabolic method (PPM),

• essential nonoscillatory. (ENO)

In 1) we describe total variation diminishing method while in 2) we show the high order Godunov
methods.
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7.1 Flux splitting methods

The basic thinking for these methods is to add a switch such that the scheme becomes first order
near discontinuity and remains high order in the smooth region.

Suppose we are given
FL a lower order numerical flux

FH a higher order numerical flux

Define

Fj+ 1
2

= FL
j+ 1

2

+ φj+ 1
2
(FH

j+ 1
2

− FL
j+ 1

2

)

= FH
j+ 1

2

+ (1− φj+ 1
2
)(FL

j+ 1
2

− FH
j+ 1

2

).

Here, φj+ 1
2

is a switch or a limiter. We require

φj+ 1
2
∼ 0, i.e. Fj+ 1

2
∼ FL

j+ 1
2

, near a discontinuity,

φj+ 1
2
∼ 1, i.e. Fj+ 1

2
∼ FH

j+ 1
2

, in smooth region.

In FCT, φ is chosen so that maxUn+1
j ≤ max(Unj−1, U

n
j , U

n
j+1) and minUn+1

j ≥ min(Unj−1, U
n
j , U

n
j+1).

Design Criterion for φj+ 1
2

7.1.1 Total Variation Diminishing (TVD)

Consider the linear advection equation

ut + aux = 0, a > 0.

We show the ideas by choosing

FL
j+ 1

2

= aUj be upwind’s flux, and

FH
j+ 1

2

= aUj + 1
2a(1− a∆t

∆x )(Uj+1 − Uj) be Lax-Wendroff’s flux.

Then the numerical flux is

Fj+ 1
2

= aUj + φj+ 1
2
(
1

2
a(1− a∆t

∆x
)(Uj+1 − Uj)). (7.1)

Here

φj+ 1
2

= φ(θj+ 1
2
),

θj+ 1
2

:=
Uj − Uj−1

Uj+1 − Uj
.
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Theorem 7.1. 1. If φ is bounded, then the scheme is consistent with the partial differential equa-
tion.

2. If φ(1) = 1, and φ is Lipschitz continuous( or C1) at θ = 1, then the scheme is second order
in smooth monoton region.(i.e., u is smooth and ux 6= 0)

3. If 0 ≤ φ(θ)
θ ≤ 2 and 0 ≤ φ(θ) ≤ 2, then the scheme is TVD.

Proof. 1. Fj+ 1
2
(u, u) = f(u) = au.

2. Hint: Apply truncation error analysis.

3. From (7.1), the next time step Un+1
j is

Un+1
j = Unj − cnj−1(Unj − Unj−1),

where cnj−1 = ν + 1
2ν(1− ν)(

φ
j+1

2
(Unj+1−Unj )−φ

j− 1
2

(Unj −Unj−1)

Unj −Unj−1
), ν = a∆t

∆x .

In other words, Un+1
j is the average of Unj and Unj−1 with weights (1− cnj−1) and cnj−1.

Un+1
j+1 − U

n+1
j = (Unj+1 − cnj (Unj+1 − Unj ))− (Unj − cnj−1(Unj − Unj−1))

= (1− cnj )(Unj+1 − Unj ) + cnj−1(Unj − Unj−1)

Suppose 1 ≥ cnj ≥ 0 ∀j, n

|Un+1
j+1 − U

n+1
j | ≤ (1− cnj )|Unj+1 − Unj |+ cnj−1|Unj − Unj−1|

∑
j

|Un+1
j+1 − U

n+1
j | ≤

∑
j

(1− cnj )|Unj+1 − Unj |+
∑

cnj−1|Unj − Unj−1|

=
∑
j

(1− cnj )|Unj+1 − Unj |+
∑

cnj |Unj+1 − Unj |

=
∑
j

|Unj+1 − Unj |,

then the computed solution is total variation diminishing.
Next, we need to find φ such that 0 ≤ cnj ≤ 1, ∀j, n. Consider

φj+ 1
2
(Uj+1 − Uj)− φj− 1

2
(Uj − Uj−1)

Uj − Uj−1
=
φ(θj+ 1

2
)

θj+ 1
2

− φ(θj− 1
2
),

=⇒ cnj−1 = ν +
1

2
ν(1− ν)(

φ(θj+ 1
2
)

θj+ 1
2

− φ(θj− 1
2
)) 0 ≤ ν ≤ 1
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A sufficient condition for 0 ≤ cnj−1 ≤ 1 ∀j is

|
φ(θj+ 1

2
)

θj+ 1
2

− φ(θj− 1
2
)| ≤ 2. (7.2)

If θj+ 1
2
< 0, φ(θj+ 1

2
) = 0.

If 0 ≤ φ(θ)
θ ≤ 2, 0 ≤ φ(θ) ≤ 2, then (7.2) is valid.

0

1

2

1

φ(θ)

θ

φ(θ) ≤ 2

φ(θ)
θ
≤ 2

2

Figure 7.1: The region in which φ(θ) should lie so that the scheme will be TVD.

7.1.2 Other Examples for φ(θ)

1. φ(θ) = 1. This is the Lax-Wendroff scheme.

2. φ(θ) = θ. This is Beam-Warming.

3. Any φ between φB−W and φL−W with 0 ≤ φ ≤ 2, 0 ≤ φ(θ)
θ ≤ 2 is second order.

4. Van Leer’s minmod

φ(θ) =
θ + |θ|
1 + |θ|

.

It is a smooth limiter with φ(1) = 1.

5. Roe’s superbee
φ(θ) = max(0,min(1, 2θ),min(θ, 2))
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0

1

2

1

φ(θ)

θ

Lax-Wendroff

2 0

1

2

1

φ(θ)

θ2

Beam-Warming

0

1

2

1

φ(θ)

θ2

van Leer’s minmod

0

1

2

1

φ(θ)

02

Roe’s superbee

Figure 7.2: Several limiters

7.1.3 Extensions

There are two kinds of extensions. One is the a < 0 case, and the other is the linear system case.
For a < 0, we let

FL
j+ 1

2

=
1

2
a(Uj + Uj+1)− 1

2
|a|(Uj+1 − Uj)

=

{
aUj if a > 0
aUj+1 if a < 0

FH
j+ 1

2

=
1

2
a(Uj + Uj+1)− 1

2
νa(Uj+1 − Uj) ν =

a∆t

∆x

Then

Fj+ 1
2

= FL
j+ 1

2

+ φj+ 1
2
(FH

j+ 1
2

− FL
j+ 1

2

)

= FL
j+ 1

2

+ φj+ 1
2

1

2
(sign(ν)− ν)a(Uj+1 − Uj).

Where φj+ 1
2

= φ(θj+ 1
2
), θj+ 1

2
=

Uj′+1−Uj′
Uj+1−Uj , and j′ = j − sign(ν) = j ± 1.

In the linear system case, our equation is

ut +Aux = 0. (7.3)
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We can decompose A so that A = RΛR−1 with Λ = diag(λ1, · · · , λn) constituting by A’s
eigenvalues and R = [r1, · · · , rn] being right eigenvectors.That is, Ari = λiri. We know that

Uj+1 − Uj =
n∑
k=1

αj,krk, let

νk = λk
∆t

∆x

θj,k =
αj′,k
αj,k

j′ = j − sign(νk).

Therefore,

FL =
1

2
A(Uj + Uj+1)− 1

2
|A|(Uj+1 − Uj)

FH =
1

2
A(Uj + Uj+1)− 1

2

∆t

∆x
A2(Uj+1 − Uj)

where |A| = R|Λ|R−1. The numerical flux is

Fj+ 1
2

= FL
j+ 1

2

+
1

2

∑
k

φ(θj,k)(sign(νk)− νk)λkαj,krk.

7.2 High Order Godunov Methods

Algorithm

1. Reconstruction: start from cell averages {Unj }, we reconstruct a piecewise polynomial func-
tion ũ(x, tn).

2. “Exact” solver for u(x, t), tn < t < tn+1. It is a Riemann problem with initial data ũ(x, tn).

3. Define
Un+1
j =

1

∆x

ˆ x
j+1

2

x
j− 1

2

ũ(x, tn+1) dx.

If 2. is an exact solver, using
ˆ tn+1

tn

ˆ x
j+1

2

x
j− 1

2

ut + f(u)x dxdt = 0

we have
Un+1
j = Unj +

∆t

∆x
(f̃j− 1

2
− f̃j+ 1

2
),

where f̃j+ 1
2

= 1
∆t

´ tn+1

tn
f(ũ(xj+ 1

2
, t)) dt is the average flux. Thus 2. and 3. can be replaced by

2’. an ‘Exact solver” for u at xj+ 1
2
, tn < t < tn+1 to compute averaged flux f̃j+ 1

2
.
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3’. Un+1
j = Unj + ∆t

∆x(f̃j− 1
2
− f̃j+ 1

2
)

1. Reconstruction: We want to construct a polynomial in each cell. The main criterions are

(1) high order in regions where u is smooth and ux 6= 0

(2) total variation no increasing.

In other words, suppose we are given a function u(x), let

Uj =
1

∆x

ˆ x
j+1

2

x
j− 1

2

u(x) dx

From {Uj}, we can use some reconstruct algorithm to construct a function ũ(x). We want the
reconstruction algorithm to satisfy

(1) |ũ(x)− u(x)| = O(∆x)r, where u is smooth in Ij = (xj− 1
2
, xj+ 1

2
) and ux 6= 0 near Ij .

(2) T.V.ũ(x) ≤ T.V.u(x)(1 +O(∆x))

7.2.1 Piecewise-constant reconstruction

Our equation is
ut + f(u)x = 0 (7.4)

Following the algorithm, we have

(1) approximate u(t, x) by piecewise constant function, i.e., {Unj } represents the cell average of
u(x, tn) over (xj− 1

2
, xj+ 1

2
).

xj− 1
2 xj+ 1

2

∆x

(2) solve Riemann problem
(uj , uj+1) on the edge xj+ 1

2
, its solution ũ(xj+ 1

2
, t),tn < t < tn+1 can be found, which is a

constant.
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(3) integrate the equation (7.4) over (xj− 1
2
, xj+ 1

2
)× (tn, tn+1)

=⇒ Un+1
j =

1

∆x

ˆ x
j+1

2

x
j− 1

2

ũ(x, tn+1) dx

= Unj +
∆t

∆x

1

∆t

ˆ tn+1

tn

(
f(ũ(xj− 1

2
, t))− f(ũ(xj+ 1

2
, t)
)
dt

= unj +
∆t

∆x
[f(ũ(xj− 1

2
, tn+ 1

2
))− f(ũ(xj+ 1

2
, tn+ 1

2
))]

Example 1 f(u) = au a > 0

Riemann problem gives ũ(x, t) =

{
uj if x− xj+ 1

2
< at, tn < t < tn+1

uj+1 if x− xj+ 1
2
> at, tn < t < tn+1

u
n+ 1

2

j+ 1
2

= ũ(xj+ 1
2
, tn+ 1

2
) = uj

Fj+ 1
2

= aUn+1
j+ 1

2

= aUj

.·. Un+1
j = Unj +

∆t

∆x
(aUnj−1 − aUnj )

This is precisely the upwind scheme.

Example 2 Linear system
ut +Aux = 0

Let R−1AR = Λ = diag(λ1, · · · , λn). We need to solve Riemann problem with initial data
(Uj , Uj+1). Let L = (`1, · · · , `n) = R−1, `iA = λi`i, i = 1, . . . , n be the left eigenvectors.
Project initial data onto r1, . . . , rn

u(x, tn) =

{
Uj x < xj+ 1

2

Uj+1 x > xj+ 1
2

by `irj = δij ,
∑

(`iu(x, tn))ri = u(x, tn).

`i(ut +Aux) = 0

=⇒ αit + λiαix = 0

=⇒ αi(x, t) = αi(x− λi(t− tn), tn)

= `iu(x− λi(t− tn), tn)

ũ(x, t) =
∑
i

(`iũ(x− λi(t− tn), tn))ri

ũ(xj+ 1
2
, t) =

∑
λi≥0

(`iũ(x− λi(t− tn), tn))ri +
∑
λi<0

(`iũ(x− λi(t− tn), tn))ri
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Ũ
n+ 1

2

j+ 1
2

=
∑
i,λi≥0

`iUjri +
∑
i,λi<0

`iUj+1ri

Fj+ 1
2

= AŨ
n+ 1

2

j+ 1
2

=
∑
i,λi≥0

λi`iUjri +
∑
i,λi<0

λi`iUj+1ri

solve ũ(x, t) for xt = λ

ũ(x, t) =
∑
λi≥λ

λi`iUjri +
∑
λi<λ

λi`iUj+1ri

consider the following cases

(1) λ < λ1 < · · · < λn
ũ(x, t) =

∑
λi≥λ

`iUjri = Uj

(2) λ1 < λ < λ2 < · · · < λn

ũ(x, t) =

n∑
i=2

`iUjri + `1Uj+1r1

=

n∑
i=1

`iUjri + `1Uj+1r1 − λ1`1Ujr1

= Uj + `1(Uj+1 − Uj)r1

There is a jump `1(Uj+1 − Uj)r1

(3) λ1 < λ2 < λ < λ3 < · · · < λn

ũ(x, t) = Uj + `1(Uj+1 − Uj)r1 + `2(Uj+1 − Uj)r2

Therefore the structure of the solution of Riemann problem is composed of nwaves `1(Uj+1−
Uj)r1, · · · , `n(Uj+1 − Uj)rn with left state Uj and right state Uj+1. Each wave propagate at
speed λi respectively.

· · ·

λ1λ2 λ λ` λn

xj+ 1
2

Uj Uj+1
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7.2.2 piecewise-linear reconstruction

(1) Reconstruction
Given cell average {Uj}, we want to reconstruct a polynimial ũ(x, tn) in each cell (xj− 1

2
, xj+ 1

2
)

under following criterions

a) high order approximation in smooth regions.

b) TVD or TVB or ENO

(2) Riemann solver
solve equation “exactly” for (tn, tn+1).

Once we have these two, define Un+1
j = Unj + ∆t

∆x
1

∆t

´ tn+1

tn
f(ũ(xj− 1

2
, t))− f(ũ(xj+ 1

2
, t)) dt. For

second order temporal discretization,

1

∆t

ˆ tn+1

tn

f(ũ(xj+ 1
2
, t)) dt ≈ f(ũ(xj+ 1

2
, tn+ 1

2
)),

Un+1
j = Unj +

∆t

∆x
[f(ũ(xj− 1

2
, tn+ 1

2
))− f(ũ(xj+ 1

2
, tn+ 1

2
))].

For Scalar Case

(1) Reconstruction
Suppose ũ(x, tn) = a+ b(x− xj) + c(x− xj)2, want to find a, b, c such that the average of
ũ = Uj .

1

∆x

ˆ x
j+1

2

x
j− 1

2

ũ(x, tn) dx = Uj

1

∆x

ˆ x
j− 1

2

x
j− 3

2

ũ(x, tn) dx = Uj−1

1

∆x

ˆ x
j+3

2

x
j+1

2

ũ(x, tn) dx = Uj+1

=⇒ a = Uj , b =
Uj+1 − Uj−1

2∆x
, c = 0

Lemma 7.1. Given a smooth function u(x), let Uj = 1
∆x

´ xj+1
2

x
j− 1

2

u(x) dx, and let ũ(x) =

Uj+δUj
x−xj
∆x δUj = (Uj+1−Uj−1)/2, then |ũ(x)−u(x)| = O(∆x)3 for x ∈ (xj− 1

2
, xj+ 1

2
)

When u has discontinuities or ux changes sign, we need to put a “limiter” to avoid oscillation
of ũ.

Example of limiters
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(a)

δUj = minmod(Uj+1 − Uj , Uj − Uj−1)

=


sign(Uj+1 − Uj) min{|Uj+1 − Uj |, |Uj − Uj−1|} ifUj+1−Uj and

Uj − Uj−1 have
the same sign

0 otherwise

(b) δUj = minmod(
Uj+1−Uj−1

2 , 2(Uj − Uj−1), 2(Uj+1 − Uj))

(2) Exact solver for small time step
Consider the linear advection equation

ut + aux = 0.

with precise linear data

ũ(x, tn) =

{
Uj + δUj

x−xj
∆x x < xj+ 1

2

Uj+1 + δUj+1
x−xj+1

∆x x > xj+ 1
2

Then

ũ
n+ 1

2

j+ 1
2

= ũ(xj+ 1
2
− a(t− tn), tn) (a > 0)

= Uj + δUj(xj+ 1
2
− a(tn+ 1

2
− tn)− xj)/∆x

= Uj + δUj(
1

2
− a∆t

2∆x
) let ν =

a∆t

∆x

Fj+ 1
2

= aŨ
n+ 1

2

j+ 1
2

= a(Uj + δUj(
1

2
− ν

2
))

To compare with the TVD scheme, let δUj = minmod(Uj+1 − Uj , Uj − Uj−1)

Fj+ 1
2

= aUj + (
1

2
− ν

2
)a(Uj+1 − Uj) · φj+ 1

2

φj+ 1
2

=
minmod(Uj+1 − Uj , Uj − Uj−1)

Uj+1 − Uj

φ(θ) =


0 θ ≤ 0
θ 0 ≤ θ ≤ 1
1 θ ≥ 1

θ =
Uj − Uj−1

Uj+1 − Uj
Its graph is shown in Fig.(7.3).

If a < 0, then

ũ
n+ 1

2

j+ 1
2

= Uj+1 + δUj+1(−1

2
− a∆t

2∆x
) |a∆t

∆x
| ≤ 1

Fj+ 1
2

= a(Uj+1 + δUj+1(−1

2
− ν

2
))
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1

2

1

φ(θ)

θ2

Figure 7.3: The limiter of second order Godunov method

For System Case
ut +Aux = 0 (7.5)

(1) Reconstruction
Construct ũ(x, tn) to be a piecewise linear function.

ũ(x, tn) = Unj + δUnj (
x− xj

∆x
)

The slope is found by δUnj = minmod(Uj−Uj−1, Uj+1−Uj). We can write it characteristic-
wisely: let

αLj,k = `k(Uj − Uj−1),

αRj,k = `k(Uj+1 − Uj),
αj,k = minmod(αLj,k, α

R
j,k).

Then δUj =
∑
αj,krk.

(2) Exactly solver
We trace back along the characteristic curve to get u in half time step.

u
n+ 1

2

j+ 1
2

=
∑
k

`kũ(xj+ 1
2
− λk(tn+ 1

2
− tn), tn)rk

=
∑
λk≥0

`k(Uj + δUj(
1

2
− νk

2
))rk +

∑
λk<0

`k(Uj+1 + δUj+1(−1

2
− νk

2
))rk

= initial state of Riemann data (Uj , Uj+1) +∑
λk≥0

(`k(
1

2
− νk

2
)rk)δUj +

∑
λk<0

(`k(−
1

2
)− νk

2
)rk)δUj+1.

In another viewpoint, let u
n+ 1

2

j+ 1
2
,L

be the solution of (7.5) with initial data =

{
ũ(x, tn) x ∈ (xj− 1

2
, xj+ 1

2
)

0 otherwise
.

u
n+ 1

2

j+ 1
2
,L

= unj +
∑
λk≥0

`kδU
n
j (
xj+ 1

2
− λk∆t

2 − xj
∆x

)rk
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= unj +
∑
λk≥0

`kδU
n
j (

1

2
− νk

2
)rk

where `k, rk are left / right eigenvector, λk is eigenvalue and νk = λk∆t
∆x .

Similarly,

u
n+ 1

2

j+ 1
2
,R

= unj+1 −
∑
λk<0

`kδU
n
j+1(

xj+ 1
2
− λk∆t

2 − xj+1

∆x
)rk

= unj+1 −
∑
λk<0

`kδU
n
j+1(−1

2
− νk

2
)rk

Then we solve (7.5) with(u
n+ 1

2

j+ 1
2
,L
, u

n+ 1
2

j+ 1
2
,R

) as the Riemann data. This gives u
n+ 1

2

j+ 1
2

. Therefore

u
n+ 1

2

j+ 1
2

= u
n+ 1

2

j+ 1
2
,L

+
∑
λk≥0

`kδUj+ 1
2
(−
λk

∆t
2

∆x
)rk

= u
n+ 1

2

j+ 1
2
,L

+
∑
λk≥0

`kδUj+ 1
2
(−νk

2
)rk

or u
n+ 1

2

j+ 1
2

= u
n+ 1

2

j+ 1
2
,R
−
∑
λk≤0

`kδUj+ 1
2
(−νk

2
)rk

or u
n+ 1

2

j+ 1
2

=
U
n+ 1

2

j+ 1
2
,L

+ U
n+ 1

2

j+ 1
2
,R

2
− 1

2

∑
sign(νk)`kδUj+ 1

2

νk
2
rk

where δUj+ 1
2

= U
n+ 1

2

j+ 1
2
,R
− Un+ 1

2

j+ 1
2
,L

.

(3) Un+1
j = Unj + ∆t

∆x(f(U
n+ 1

2

j− 1
2

)− f(U
n+ 1

2

j+ 1
2

)).

7.3 Multidimension

There are two kinds of methods.

1. Splitting method.

2. Unsplitting method.

We consider two-dimensional case.
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7.3.1 Splitting Method

We start from
ut +Aux +Buy = 0. (7.6)

This equation can be viewed as
ut = (−A∂x −B∂y)u.

Then the solution operator is:
e−t(A∂x+B∂y),

which can be approximate by e−tA∂xe−tB∂y for small t. Let A = −A∂x,B = −B∂y, we have

u = et(A+B)u0.

Consider et(A+B),

et(A+B) = 1 + t(A+ B) +
t2

2
(A2 + B2 +AB + BA) + · · ·

etB · etA = (1 + tB +
t2

2
B2 + · · · )(1 + tA+

t2

2
A2 + · · · )

= 1 + t(A+ B) +
t2

2
(A2 + B2) + t2BA+ · · ·

.·.et(A+B) − etB · etA = t2(
AB − BA

2
) +O(t3).

Now we can design splitting method as:
Given {Uni,j},

1. For each j, solve ut +Aux = 0 with data {Unj } for ∆t step. This gives Ūni,j .

Ūni,j = Uni,j +
∆t

∆x
(F (Uni−1,j , U

n
i,j)− F (Uni,j , U

n
i+1,j))

where F (U, V ) is the numerical flux for ut +Aux = 0.

2. For each i, solve ut +Buy = 0 for ∆t step with data {Ūni,j}. This gives Un+1
i,j .

Un+1
i,j = Ūni,j +

∆t

∆y
(G(Ūni,j−1, Ū

n
i,j)−G(Ūni,j , Ū

n
i,j+1))

The error is first order in time n(∆t)2 = O(∆t).
To reach higher order time splitting, we may approximate et(A+B) by polynomials P (etA, etB)

or rationals R(etA, etB). For example, the Trotter product (or strang splitting) is given by

et(A+B) = e
1
2
tAetBe

1
2
tA +O(t3).

For t = n∆t,

et(A+B)u0 = (e
1
2

∆tAe∆tBe
1
2

∆tA) · · · (e
1
2

∆tAe∆tBe
1
2

∆tA)(e
1
2

∆tAe∆tBe
1
2

∆tA)u0

= e
1
2

∆tAe∆tBe∆tAe∆tBe∆tA · · · e∆tAe∆tBe
1
2

∆tAu0

Trotter product is second order.
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7.3.2 Unsplitting Methods

The PDE is
ut + f(u)x + g(u)y = 0 (7.7)

Integrate this equation over (xi− 1
2
, xi+ 1

2
)× (yj− 1

2
, yj+ 1

2
)× (tn, tn+1). We have

Un+1
i,j = Uni,j +

∆t

∆x
(f̄
n+ 1

2

i− 1
2
,j
− f̄n+ 1

2

i+ 1
2
,j

) +
∆t

∆y
(ḡ
n+ 1

2

i,j− 1
2

− ḡn+ 1
2

i,j+ 1
2

)

where

f̄
n+ 1

2

i+ 1
2
,j

=
1

∆t

ˆ tn+1

tn

f(u(xi+ 1
2
, yj , t)) dt

ḡ
n+ 1

2

i,j+ 1
2

=
1

∆t

ˆ tn+1

tn

g(u(xi, yj+ 1
2
, t)) dt.

Looking for numerical approximationsF (Uni,j+k, U
n
i+1,j+k), G(Uni+`,j , U

n
i+`,j+1) for f̄

n+ 1
2

i+ 1
2
,j+k

, ḡ
n+ 1

2

i+`,j+ 1
2

.

We consider Godunov type method.

1. Reconstruction

ũ(x, y, tn) = uni,j + δxUi,j(
x− xi

∆x
) + δyUi,j(

y − yj
∆y

) in I = (xi− 1
2
, xi+ 1

2
)× (yj− 1

2
, yj+ 1

2
)

For example, δxUi,j = minmod(Ui,j − Ui+1,j , Ui+1,j − Ui,j).

2. We need to solve

ut +Aux +Buy = 0 with data
{
ũ(x, y, tn) for (x, y) ∈ I
0 otherwise

ũ(xj+ 1
2
, yj ,

∆t

2
) = Uni,j +

∑
a>0

δxUi,j(
xi+ 1

2
− a∆t

2 − xi
∆x

) + δyUi,j(
yj − b∆t

2 − yj
∆y

)

= Uni,j +
∑
a>0

(δxU
n
i,j) · (

1

2
− νx

2
) + (δyU

n
i,j)(−

νy
2

)

where νx = a∆t
∆x , νy = b∆t

∆y . For system case, λxk, λ
y
k are eigenvalues of A and B.

U
n+ 1

2

i+ 1
2
,L,j

= Uni,j +
∑
λx≥0

(
1

2
−
νxk
2

)(`xk · δxUi,j)rxk +
∑
k

(−
νyk
2

)(`yk · δyUi,j)r
y
k

similarly,

U
n+ 1

2

i+ 1
2
,R,j

= Uni+1,j +
∑
λxk<0

(−1

2
−
νxk
2

)(`xk · δxUi,j)rxk +
∑
k

(−
νyk
2

)(`yk · δyUi+1,j)r
y
k
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Finally, solve Riemann problem ut +Aux = 0 with data


U
n+ 1

2

i+ 1
2
,L,j

U
n+ 1

2

i+ 1
2
,R,j

.·.U
n+ 1

2

i+ 1
2
,j

= U
n+ 1

2

i+ 1
2
,L,j

+
∑
λxk≥0

`k · δUi+ 1
2
,jrk
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Chapter 8

Systems of Hyperbolic Conservation
Laws

8.1 General Theory

We consider

ut + f(u)x = 0, u =


u1

u2

. . .
un

 f : Rn → Rnthe flux (8.1)

The system (8.1) is called hyperbolic if ∀u, the n × n matrix f ′(u) is diagonalizable with real
eigenvalues λ1(u) ≤ λ2(u) ≤ · · · ≤ λn(u). Let us denote its left/right eigenvectors by `i(u)/ri(u),
respectively.
It is important to notice that the system is Galilean invariant, that is , the equation is unchanged
under the transform:

t −→ λt, x −→ λx, ∀λ > 0.

This suggests we can look for special solution of the form u(xt ).

We plug u(xt ) into (8.1) to yield

u′ · (− x
t2

) + f ′(u)u′ · 1

t
= 0

=⇒ f ′(u)u′ =
x

t
u′

This implies that there exists i such that u′ = ri(u) and x
t = λi(u(xt )). To find such a solution, we

first construct the integral curve of ri(u): u′ = ri(u). Let Ri(u0, s) be the integral curve of ri(u)
passing through u0, and parameterized by its arclength. Along Ri, the speed λi has the variation:

d

ds
λi(Ri(u0, s)) = ∇λi ·R′i = ∇λi · ri.
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We have the following definition.

Definition 8.1. The i-th characteristic field is called

1. genuinely nonlinear if∇λi(u) · ri(u) 6= 0∀u.

2. linearly degenerate if∇λi(u) · ri(u) ≡ 0

3. nongenuinely nonlinear if∇λi(u) · ri(u) = 0 on isolated hypersurface in Rn.

For scalar equation, the genuine nonlinearity is equivalent to the convexity( or concavity) of the
flux f , linear degeneracy is f(u) = au, while nongenuine nonlinearity is nonconvexity of f .

8.1.1 Rarefaction Waves

When the i-th field is genuiely nonlinear, we define

R+
i (u0) = {u ∈ Ri(u0)|λi(u) ≥ λi(u0)}.

Now suppose u1 ∈ R+
i (u0), we construct the centered rarefaction wave, denoted by (u0, u1):

(u0, u1)(
x

t
) =


u0 if xt ≤ λi(u0)
u1 if xt ≥ λi(u1)
u if λi(u0) ≤ x

t ≤ λi(u1)andλi(u) = x
t

It is easy to check this is a solution. We call (u0, u1) an i-rarefaction wave.

t

x

λi(u0)
λi(u1)

u0 u1

λi(u) = x
t

λi

u0

λi(u1)
u1

λi(u0)

Figure 8.1: The integral curve of u′ = ri(u) and the rarefaction wave.

8.1.2 Shock Waves

The shock wave is expressed by:

u(
x

t
) =

{
u0 for xt < σ
u1 for xt > σ

Then (u0, u1, σ) need to satisfy the jump condition:

f(u1)− f(u0) = σ(u1 − u0). (8.2)

112



Lemma 8.1. (Local structure of shock waves)

1. The solution of (8.2) for (u, σ) consists of n algebraic curves passing through u0 locally,
named them by Si(u0), i = 1, · · · , n.

2. Si(u0) is tangent to Ri(u0) up to second order. i.e., S(k)
i (u0) = R

(k)
i (u0), k = 0, 1, 2, here

the derivatives are arclength derivatives.

3. σi(u0, u)→ λi(u0) as u→ u0, and σ′i(u0, u0) = 1
2λ
′
i(u0)

Proof. 1. Let S(u0) = {u|f(u)−f(u0) = σ(u−u0) for some σ ∈ R}. We claim that S(u0) =
n⋃
i=1

Si(u0), where Si(u0) is a smooth curve passing through u0 with tangent ri(u0) at u0.

When u is on S(u0), rewrite the jump condition as

f(u)− f(u0) =

[ˆ 1

0
f ′(u0 + t(u− u0) dt

]
(u− u0)

= Ã(u0, u)(u− u0)

= σ(u− u0)

.·. u ∈ S(u0)⇐⇒ (u− u0) is an eigenvector of Ã(u0, u).

Assume A(u) = f ′(u) has real and distinct eigenvalues λ1(u) < · · ·λn(u), Ã(u0, u) also
has real and distinct eigenvalues λ̃1(u0, u) < · · · < λ̃n(u0, u), with left/right eigenvectors
˜̀
i(u0, u) and r̃i(u0, u), respectively, and they converge to λi(u0), `i(u0), ri(u0) as u → u0

respectively. Normalize the eigenvectors: ‖r̃i‖ = 1, ˜̀
ir̃j = δij . The vector which is parallel

to ri can be determined by

˜̀
k(u0, u)(u− u0) = 0 for k 6= i, k = 1, · · · , n.

Now we define

Si(u0) = {u|˜̀k(u0, u)(u− u0) = 0, k 6= i, k = 1, · · · , n}

We claim this is a smooth curve passing through u0. Choose coordinate system r1(u0), · · · , rn(u0).
Differentiate this equation ˜̀

k(u0, u)(u− u0) = 0 at u = u0 in rj(u0) direction:

∂

∂rj

∣∣∣∣
u=u0

(˜̀
k(u0, u)(u− u0)) = ˜̀

k.(u0, u0) · rj(u0) = δjk,

Thus, this is the Jacobian matrix of the map: ˜̀
k(u0, u)(u − u0) at u0. It is an (n − 1) × n

full rank matrix. By the implicit function theorem, the set Si(u0) is a smooth curve passing
through u0.
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2,3. Ri(u0) = u0 = Si(u0)

f(u)− f(u0) = σi(u0, u)(u− u0) ∀u ∈ Si(u0)

Take arclength derivative along Si(u0)

f ′(u)u′ = σ′i(u− u0) + σiu
′ and u′ = S′i.

When u→ u0

f ′(u0)S′i(u0) = σi(u0, u0)S′i(u0)

=⇒ S′i(u0) = ri(u0) and σi(u0, u0) = λi(u0).

Consider the second derivative.

(f ′′(u)u′, u′) + f ′(u)u′′ = σ′′i (u− u0) + 2σ′i · u′ + σiu
′′

At u = u0, u′ = S′i(u0) = R′i(u0) = ri(u0) and u′′ = S′′i (u0),

=⇒ (f ′′ri, ri) + f ′S′′i = 2σ′iri + σiS
′′
i

On the other hand, we take derivative of f ′(u)ri(u) = λi(u)ri(u) alongRi(u0), then evaluate
at u = u0.

(f ′′ri, ri) + f ′(∇ri · ri) = λ′iri + λi∇ri · ri,
where∇ri · ri = R′′i .

=⇒ (f ′ − λi)(S′′i −R′′i ) = (2σ′i − λ′i)ri
Taking inner product with `i leads to

2σ′i = λ′i.

Let S′′i −R′′i =
∑
k

αkrk(u0). Taking inner product with `k leads to∑
k 6=i

(λk − λi)αkrk = 0 =⇒ αk = 0 ∀k 6= i

On the other hand, from (R′i, R
′
i) = 1 and (S′i, S

′
i) = 1, we get (R′′i , R

′
i) = 0 and (S′′i , S

′
i) =

0. Since R′i = S′i = ri, we then get

(S′′i −R′′i , ri) = 0.

Hence S′′i = R′′i at u0. Hence R′′i = S′′i at u0.

Suppose the i-th characteristic field is genuinely nonlinear. The Lax entropy condition reads

λi(u0) > σi(u0, u1) > λi(u1) (8.3)

Let us define S−i (u0) to be the branch of Si(u0) which satisfies entropy condition:

Si(u0) := {u ∈ Si(u0)|λi(u) < λi(u0)}

Then for u1 ∈ S−i (u0), and u1 ∼ u0, (8.3) is always valid. This follows easily from λi = 2σ′i and
σi(u0, u0) = λi(u0). For u1 ∈ S−i (u0), we call the solution (u0, u1) an i-shock or Lax-shock.
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8.1.3 Contact Discontinuity (Linear Wave)

If∇λi(u) · ri(u) ≡ 0, we call the i-th characteristic field linearly degenerate (`. dg.). In the case of
scalar equation, this correspond f ′′ = 0. We claim

Ri(u0) = Si(u0) and σi(u0, u) = λi(u0) for u ∈ Si(u0) or Ri(u0).

Indeed, along Ri(u0), we have
f ′(u)u′ = λi(u)u′.

and λi(u) is a constant λi(u0) from the linear degeneracy. We integrate the above equation from u0

to u along Ri(u0), we get
f(u)− f(u0) = λi(u0)(u− u0).

This gives the shock condition. Thus, Si(u0) ≡ Ri(u0) and σ(u, u0) ≡ λi(u0).

Homeworks.
(u0, u1) =

{
u0

x
t < σi(u0, u1)

u1
x
t > σi(u0, u1)

Let Ti(u0) = R+
i (u0) ∪ S−i (u0) be called the i-th wave curve. For u1 ∈ Ti(u0), (u0, u1) is either a

rarefaction wave, a shock, or a contact discontinuity.

Theorem 8.1. (Lax) For strictly hyperbolic system (8.1), if each field is either genuinely nonlin-
ear or linear degenerate, then for uL ∼ uR, the Riemann problem with two end states (uL, uR)
has unique self-similar solution which consists of n elementary waves. Namely, there exist u0 =
uL, · · · , un = uR such that (ui−1, ui) is an i-wave.

1-wave

2-wave
n-wave

t

x

u0 = uL un = uR

u1
u2 un−1

Proof. Given (α1, · · · , αn) ∈ Rn, we define ui successively as the follows. First we define u0 =
uL. Then we follow T1 curve from u0 with length α1. This gives u1 ∈ T1(u0) and (u0, u1) forms
a 1-wave with strength α1 (measured by the arc length α1 on T1(u0). From u1, we follow T2(u1)
with length α2 to u2. This gives (u1, u2) a 2-wave with strength α2. We continue this process until
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un := f(uL, α1, ..., αn). This gives a map from strengths (α1, ..., αn) to the final state un with
f(uL, 0, ..., 0) = uL. The mapping is C2 because the curves Ti ∈ C2. Now, we are given the final
state uR. We solve the inverse problem

uR = f(uL, α1, ..., αn).

This mapping is locally invertible because the Jacobian

∂f

∂αk
(uL, 0, ..., 0) = rk(uL), k = 1, ..., n

is invertible at uL. By the inverse function theorem, when uR ∼ uL, there exists a unique α1, ..., αn)
such that uR = f(uL, α1, ..., αn).

8.2 Physical Examples

8.2.1 Gas dynamics

The equations of gas dynamics are derived based on conservation of mass, momentum and energy.
Before we derive these equations, let us review some thermodynamics. First, the basic thermo
variables are pressure (p), specific volume (τ ), called state variables. The internal energy (e) is a
function of p and τ . Such a relation is called a constitutive equation. The basic assumption are

∂e

∂p

∣∣∣∣
τ

> 0,
∂e

∂τ

∣∣∣∣
p

> 0

Sometimes, it is convinient to express p as a function of (τ, e).
In an adiabetic process (no heat enters or losses), the first law of thermodynamics (conservation

of energy) reads
de+ pdτ = 0. (8.4)

This is called a Pfaffian equation mathematically. A function σ(e, τ) is called an integral of (8.4) if
there exists a function µ(e, τ) such that

dσ = µ · (de+ pdτ).

Thus, σ = constant represents a specific adiabetic process. For Pfaffian equation with only two
independent variables, one can always find its integral. First, one can derive equation for µ: from

σe = µ and στ = µp

and using σeτ = στe, we obtain the equation for µ:

µτ = (µp)e.

This is a linear first-order equation for µ. It can be solved by the method of characteristics in
the region τ > 0 and e > 0. The solutions of µ and σ are not unique. If σ is a solution, so
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does σ̄ with dσ̄ = ν(σ)dσ for any function ν(σ). We can choose µ such that if two systems are
in thermo-equilibrium, then they have the same value µ. In other words, µ is only a function of
emperical temperature. We shall denote it by 1/T . Such T is called the absolute temperature. The
corresponding σ is called the physical entropy S. The relation dσ = µ(de+pdτ) is re-expressed as

de = TdS − pdτ. (8.5)

For ideal gas, which satisfies the laws of Boyle and Gay-Lussac:

pτ = RT, (8.6)

whereR is the universal gas constant. From this and (8.5), treating S and τ as independent variables,
one obtains

ReS(S, τ) + τeτ (S, τ) = 0.

We can solve this linear first-order equation by the method of characteristics. We rewrite this equa-
tion as a directional differentiation: (

R
∂

∂S
+ τ

∂

∂τ

)
e = 0.

This means that e is constant along the characteristic curves

R
dτ

dS
= τ.

These characteristics can be integrated as

τe−S/R = φ.

Here φ is a positive constant. The energy e(τ, S) is constant when τe−S/R is a constant. That is,
e = h(φ) for some function h. We notice that h′ < 0 because p = −( ∂e∂τ )S = −e−S/Rh′(τH) > 0.
From T = ( ∂e∂S )τ = − 1

Rh
′(φ) · φ, we see that T is a function of φ. In most cases, T is a decreasing

function of φ. We shall make this as an assumption. With this, we can invert the relation between
T and φ and treat φ as a decreasing function of T . Thus, we can also view e as a function of T , say
e(T ), and e(T ) is now an increasing function. Now, we have five thermo variables p, τ, e, S, T , and
three relations:

pτ = RT

e = e(T )

de = TdS − pdτ

Hence, we can choose two of as independent thermo variables and treat the rest three as dependent
variables.

For instance, e is a linear function of T , i.e. e = cvT , where cv is a constant called specfic heat
at constant volume. Such a gas is called polytropic gas. We can obtain

pτ = RT and e = cvT =
pτ

γ − 1
(8.7)
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or in terms of entropy,

p = A(S)τ−γ

T =
A(S)

R
τ−γ+1

e =
cvA(S)

R
τ−γ+1

where

A(S) = (γ − 1) exp((S − S0)/cv)

γ = 1 +R/cv

If we define dQ = TdS, it is easy to see that cv and cp are the specific heat at constant volume and
constant pressure, respectively.

cv =

(
∂Q

∂T

)
τ

=

(
∂e

∂T

)
τ

,

cp :=

(
∂Q

∂T

)
p

= ((
∂e

∂τ
)p + p)/(

∂T

∂τ
)p

=

(
∂e

∂T

)
p

+ p

(
∂τ

∂T

)
p

In general, cp > cv. Because cp is the amount of heat added to a system per unit mass at constant
pressure. In order to maintain constant pressure, the volume has to expand (otherwise, pressure will
increase), the extra amount of work due to expansion is supplied by the extra amount of heat cp−cv.

Next, we derive the equation of gas dynamics. Let us consider an arbitrary domain Ω ⊂ R3.
The mass flux from outside to inside per unit time per unit area dS is −ρv·, where n is the outer
normal of Ω. Thus, the conservation of mass can be read as

d

dt

ˆ
Ω
ρ dx =

ˆ
∂Ω

[−ρv · n]dS

= −
ˆ

Ω
div (ρ v) dx

This holds for arbitrary Ω, hence we have

ρt + div(ρ v) = 0. (8.8)

This is called the continuity equation.
Now, we derive momentum equation. Let us suppose the only surface force is from pressure

(no viscous force). Then the momentum change in Ω is due to (i) the momentum carried in through
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boundary, (ii) the pressure force exerted on the surface, (iii) the body force. The first term is−ρvv·n,
the second term is −pn. Thus, we have

d

dt

ˆ
Ω
ρv dx =

ˆ
∂Ω
−[ρvv · n+ pn] dS +

ˆ
F dx

=

ˆ
Ω

div[−ρv ⊗ v − pI] + F dx

This yields
(ρv)t + div(ρ v ⊗ v) +∇p = F (8.9)

Here, the notation∇· ρv⊗ v stands for a vector whoes ith component is
∑

j ∂j(ρv
ivj). The energy

per unit volume is E = 1
2ρ v

2 + ρe. The energy change in Ω per unit time is due to (i) the energy
carried in through boundary (ii) the work done by the pressure from boundary, and (iii) the work
done by the body force. The first term is −Ev · n. The second term is −pv · n. The third term is
F · v. The conservation of energy can be read as

d

dt

ˆ
Ω
E dx =

ˆ
∂Ω

[−Ev · n− pv · n] dS +

ˆ
Ω
F · v dx

By applying divergence theorem, we obtain the energy equation:

Et + div[(E + p)v] = ρF · v. (8.10)

In one dimension, the equations are (without body force)

ρt + (ρu)x = 0

(ρu)t + (ρu2 + p)x = 0

(
1

2
ρu2 + e)t + [(

1

2
ρu2 + e+ p)u]x = 0.

Here, the unknowns are two thermo variable ρ and e, and one kinetic variable u. Other thermo
variable p is given by the constitutive equation p(ρ, e).

8.2.2 Riemann Problem of Gas Dynamics

We use (ρ, u, S) as our variables. ρ
u
S


t

+

 u ρ 0
c2

ρ u PS
ρ

0 0 u

 ρ
u
S


x

= 0

Where p(ρ, S) = A(S)ργ , γ > 1 and c2 = ∂P
∂ρ

∣∣∣
S

. The eigenvalues and corresponding eigenvectors
are

λ1 = u− c λ2 = u λ3 = u+ c

r1 =

 ρ
−c
0

 r2 =

 −PS0
c2

 r3 =

 ρ
c
0


`1 = (c,−ρ, PSc ) `2 = (0, 0, 1) `3 = (c, ρ, PSc )
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Note that
∇λ1 · r1 = 1

c (
1
2ρPρρ + c2) > 0

∇λ3 · r3 = 1
c (

1
2ρPρρ + c2) > 0

∇λ2 · r2 ≡ 0.

R1 is the integral curve of (dρ, du, dS) ‖ r1 and (dρ, du, dS) ⊥ `2 and `3. Therefore on R1,{
(dρ, du, dS) · (0, 0, 1) = 0

(dρ, du, dS) · (c, ρ, PSc ) = 0.

=⇒
{
dS = 0 along R1

cdρ+ ρdu+ PS
c dS = 0

=⇒
{
cdρ+ ρdu = 0
c2dρ+ PSdS + cρdu = 0 =⇒ dP + cρdu = 0

On R2, (dρ, du, dS) ⊥ `1, `3

=⇒
{
c2dρ+ cρdu+ PSdS = 0
c2dρ− cρdu+ PSdS = 0

=⇒
{
dP + cρdu = 0
dP − cρdu = 0

=⇒
{
dP = 0
du = 0

ρ 6= 0

On R3, (dρ, du, dS) ⊥ `1, `2 {
dS = 0
cdρ− ρdu = 0

Let ` =
´ c(ρ,S)

ρ dρ. From c =
√
Pρ =

√
A(S)γργ−1, `(P, s) =

√
γA(S) 2

γ−1ρ
γ−1
2 . Then on R′3,

u− u0 = ∓
ˆ ρ

ρ0

c

ρ
dρ = ∓(`− `0)

` =
√
γA(S)

2

γ − 1
ργ−12 =

2

γ − 1

√
γP

ρ

Pρ−γ = A(S) = A(S0) = P0ρ
−γ
0 .

Express ρ interms of P, P0, ρ0, then plug it into `,

`− `0 = ψ(P )

=
2

γ − 1
(

√
γP (

P0

P
)
1
γ ρ−1

0 −

√
γP0

ρ0
)

=
2
√
γ

γ − 1
ρ
− 1

2
0 P

1
2γ

0 (P
γ−1
2γ − P

γ−1
2γ

0 )

120



.·. R1 u = u0 − ψ0(P )

R3 u = u0 + ψ0(P )

P

u

(`)

R+
3

R+
1

Figure 8.2: The integral curve of the first and the third field on the (u, P ) phase plane.

On R2, which is a contact discontinuity, du = 0, dP = 0. Therefore u = u0, P = P0.
For S1, S3 

ρt + (ρu)x = 0
(ρu)t + (ρu2 + P )x = 0
(1

2ρu
2 + ρe)t + ((1

2ρu
2 + ρe+ P )u)x = 0

Suppose the shock is along x− σt. Let v = u− σ (standing shock)
[ρv] = 0
[ρv2 + P ] = 0
[(1

2ρv
2 + ρe+ P )v] = 0

Let
m = ρ0v0 = ρv

which is from the first jump condition. The second jump condition says that

ρ0v
2
0 + P0 = ρv2 + P

mv0 + P0 = mv + P

m = −P − P0

v − v0

= − P − P0

mτ −mτ0
where τ = 1

ρ is the specific volume.

.·. m2 = −P−P0
τ−τ0

v − v0 = −P−P0
m

(u− u0)2 = (v − v0)2 = −(P − P0)(τ − τ0)
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The third one is

(
1

2
ρ0v

2
0 + ρ0e0 + P0)v0 = (

1

2
ρv2 + ρe+ P )v

=⇒ 1

2
v2

0 + e0 + P0τ0 =
1

2
v2 + e+ Pτ

By v2
0 = m2τ2

0 , v
2 = m2τ2,m2 = −P−P0

τ−τ0 ,

=⇒ H(P, τ) = e− e0 +
P + P0

2
(τ − τ0) = 0

Recall e = Pτ
γ−1 . From H(P, τ) = 0,

Pτ

γ − 1
− P0τ0

γ − 1
+ (

P + P0

2
)(τ − τ0) = 0.

Solve fot τ in terms of P, P0, τ0, then plug into

(u− u0)2 = −(P − P0)(τ − τ0)

Set φ(P ) = (P − P0)

√√√√ 2
γ+1τ0

P + γ−1
γ+1P0

Then

S1 : u = u0 − φ0(P )

S3 : u = u0 + φ0(P )

Therefore,

T
(`)
1 : u =

{
u0 − ψ0(P ) P < P0

u0 − φ0(P ) P ≥ P0

T
(`)
3 : u =

{
u0 + ψ0(P ) P > P0

u0 + φ0(P ) P ≤ P0

T
(r)
1 : u =

{
u0 − ψ0(P ) P > P0

u0 − φ0(P ) P ≤ P0

T
(r)
3 : u =

{
u0 + ψ0(P ) P < P0

u0 + φ0(P ) P ≥ P0

Now we are ready to solve Riemann Problem with initial states (ρL, PL, uL) and (ρR, PR, uR).
Recall that in the second field, [P ] = [u] = 0.

122



ρI , PI , uI ρI , PII , uII

ρL, PL, uL ρR, PR, uR

PI = PII = P∗
uI = uII = u∗

u

S1

S3

`

P
R1

R3

r

S3

S1

R1

R3

ρL, PL, uL ρR, PR, uR

ρI ρII

P∗, u∗

The vaccum state

P

u

(`)

S−1
R+

3

R+
1

S−3

P

u

S+
1

S+
3

R−1

R−3

(r)

Figure 8.3: The rarefaction waves ans shocks of 1,3 field on (u, P ) phase plane at left/right state.
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P

u

`
r Solution must satisfy P > 0. If u` + ``

is less than ur−`r, there is no solution.

Finding middle states Given UL := (pL, uL, SL) and UR := (pR, uR, SR), we want to find
two middle states UI and UII such that (UL, UI) forms a 1-wave, (uII , UR) forms a 3-wave and
(UI , UII) forms a 2-wave. From jump condition of the 2-wave, we have UI = (p∗, u∗, SI) and
UII = (p∗, u∗, SII). With this, then SI and SII can be determined the equation on T1(UL) and
T3(UR), respectively. The key step is to find (p∗, u∗).

Godunov gives a procedure to find the middle states (u∗, P∗). The algorithm to find P∗ is to
solve

u` − f`(P ) = uI = uII = ur + fr(P )

f0(P ) =

{
ψ0(P ) P < P0

φ0(P ) P ≥ P0

This is equivalent to {
ZR(u∗ − uR) = P∗ − PR
−ZL(u∗ − uL) = P∗ − PL.

Where

ZR =

√
PR
τR

Φ(
P∗
PR

)

ZL =

√
PL
τL

Φ(
P∗
PL

)

and

Φ(w) =


√

γ+1
2 w + γ−1

2 w > 1
γ−1
2
√
γ

1−w

1−w
γ−1
2γ

w ≤ 1

This is an equation for (u∗, P∗). It can be solved by Newton’s method.

Approximate Riemann Solver Consider the Riemann data (uL, uR). We look for middle states
u0 = uL, u1, ..., un = uR. Suppose uL ∼ uR, the original equation can be replaced by

ut +A(ū)ux = 0,
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where ū =
uL + uR

2
. We will solve this linear hyperbolic equation with Riemann data (uL, uR).

Let λi, `i, ri be eigenvalues and eigenvectors of A(ū). Then the solution of the Riemann problem is
self-similar and has the form

u(
x

t
) = uL +

∑
λi<

x
t

(`i · (uR − uL)) · ri.

One severe error in this approximate Riemann solver is that rarefaction waves are approximated
by discontinuities. This will produce non-entropy shocks. This is particularly serious in Godunov
method which uses Riemann solution at x/t = 0. To cure this problem, we expand such a linear
discontinuity by a linear fan. Precisely, suppose λi(ui−1) < 0, λi(ui) > 0, this suggests that there
exists rarefaction fan crossing x

t = 0. We then expand this discontinuity by a linear fan. At x/t = 0,
we thus choose

um = (1− α)ui−1 + αui,

α =
−λi(ui−1)

λi(ui)− λi(ui−1)
.

A final remark, the above ū can be replaced by Roe’s state in the application of gas dynamics.

125



126



Chapter 9

Kinetic Theory and Kinetic Schemes

9.1 Kinetic Theory of Gases

9.2 Kinetic scheme

Assume the equilibrium distribution is g0(ξ). It should satisfy (i) momentum conditions, (ii) equa-
tion of states (or flux condition), (iii) positivity. That is, the moment condition:

ˆ
g0ψα(ξ) dξ = Uα

and flux condition: ˆ
g0ξψα(ξ) dξ = Fα(U).

For non-convex case f ,
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