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Preface

This is a supplementary note based on the note of Keenan Crane, Discrete Differential Ge-
ometry, and the note of Albert Chern and Peter Schröder. The figures of this supplementary
note are copied from their notes.

Discrete differential geometry (DDG) is a relatively new subject in mathematical com-
munity and is becoming a basic language in computer graphics and computer-aided design.
It is also used in elasticity and fluid mechanics, structure chemistry and condensate mat-
ter physics. The objects to be studied are those discrete surfaces, which are triangulated
surfaces. People study topology, geometry and physics on these objects. The applications
include curve and surface smoothing, surface parametrization, vector field design, computa-
tion of geodesic distance. DDG short course was introduced in ACM SIGGRAPH in 2013
and Annual meeting of American Math Society in 2018.

The main resources of this course come from

• Keenan Crane, Discrete Differential Geometry: An Applied Introduction, CMU (2020),
https://www.cs.cmu.edu/~kmcrane/Projects/DDG/

• Albert Chern, Discrete Differential Geometry, UCSD (2020).

• Albert Chern and Peter Schröder, Discrete Differential Geometry, Caltech, 2017.

• Shizuo Kaji, NCTS Course on Image and Shape Manipulation 2018. https://goo.

gl/Joxorp

For topics of differential geometry, I refer to

• Chern, Chen, Lam, Lectures on Differential Geometry (1998).

Topics: Combinatorial surfaces, curves and surfaces, curvature, connections and parallel
transport, exterior algebra, exterior calculus, Stokes theorem, simplicial homology, de Rham
cohomology, Helmholtz-Hodge decomposition, conformal mapping, finite element methods,
and numerical linear algebra.

Applications: approximation of curvature, curve and surface smoothing, surface param-
eterization, vector field design, and computation of geodesic distance.
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Coding exercises refer to a supplementary C++ framework, available from https://

github.com/dgpdec/course. Java code is also available, provided by Crane. Matlab code
will also be acceptable, Mei-Heng Yueh will provide code training lecture.

— I-Liang Chern 2019
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Chapter 1

Curves

This chapter is based on A. Chern and P. Schröder’s note.

1.1 Plane curves

1.1.1 Regular curves

• Planar curve A planar curve is a Lipschitz continuous function γ : I → R2 with
I = [a, b] called the parameter space.

• Regular curve: A regular curve is a C1-curve with γ′(t) ̸= 0 for all t in parameter
interval. Note that a regular curve cannot have cusps, for example, the cycloid is not
a regular curve. But a regular curve allows to have self intersections.

• Re-parameterization of γ: if ϕ : I → Ĩ is strictly increasing, then γ̃ = γ ◦ ϕ−1 : Ĩ →
R2 is a re-parameterization of γ.

The arclength of a curve γ̃ is

s(t) =

ˆ t

a

|γ̃′(t)| dt.

This defines a re-parameterization on γ̃. Namely, s : [a, b] → [0, L] is monotonic increas-
ing. We can take its inverse, called ϕ : [0, L] → [a, b]. Then γ := γ̃ ◦ ϕ is the arclength
parameterized.

Lemma 1.1. A regular curve γ̃ : [a, b]→ R2 can be re-parameterized by arclength.

Below, we consider γ to be arclength parameterized.

Remark There is a gap between Lipschitz continuous curve and C1 curve. See the refer-
ence: Simmon Blatt, “Curves Between Lipschitz and C1 and Their Relation to Geometric
Knot Theory” (2018).
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Examples

1. Cycloid:

Cα :=

{
x = t− α sin t
y = 1− α cos t

α > 0 is a parameter. (1.1)

2. Heart curve: r = 1− sin θ.

3. Spiral curve: x = r(φ) cos(φ), y = r(φ) sin(φ), with

(a) r(φ) = aφ (Archimedean spiral),

(b) r(φ) = aekφ (logarithmic spiral),

(c) ... see Spiral on wiki.

4. Folium of Descartes: x3 + y3 − 3axy = 0.

We may see more examples from list of curves and gallery of curves on wiki.

Homework A circular cycloid is the trajectory of a point on a disk which rolls around
another disk. Write down the equation of such circular cycloid.

1.1.2 Geometric quantities

• A geometric quantity is a quantity that is independent of re-parameterization.

• Tangent vector: T (t) := γ′(t)/|γ′(t)| is a geometric quantity. (Prove it.) For ar-
clength parametrized curve γ, we have |γ′| = 1.∗ Thus, T (s) = γ′(s). In Cartesian
coordinate, we express γ(s) = (x(s), y(s)), then T (s) := γ′(s) = (x′(s), y′(s)). We can
also express the curve in complex plane as γ(s) = x(s)+iy(s), then T (s) = x′(s)+iy′(s).

• Normal: N(s) := (−y′(s), x′(s)). In the complex plane, N(s) = iT ′(s).

• Curvature: κ := ⟨T ′, N⟩ = −⟨N ′, T ⟩. The last equality is due to ⟨T,N⟩ = 0. The
term ⟨N ′, T ⟩ measures how N varies along γ. You can show†

N ′(s) = −κ(s)T (s), T ′(s) = κ(s)N(s). (1.2)

Exercise

1. Show that curvature formula for γ̃(t) = (x(t), y(t)), t ∈ [a, b] is given by

κ =
ÿẋ− ẍẏ

(ẋ2 + ẏ2)3/2
.

2. Show that a circle with radius R has constant curvature 1/R.
∗Because s =

´ s
0
|γ′(τ)| dτ . Differentiate in s both sides, we get |γ′(s)| = 1.

†Use ⟨T, T ⟩ = ⟨N,N⟩ = 1 and ⟨T,N⟩ = 0
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Osculating circle approach of curvature Given a regular curve γ(s). Let q, p, r be
three consecutive points on γ, defined by γ(s − h), γ(s) and γ(s + h). The points q, p, r
determines a circle with radius Rh(s). Show that limh→0+Rh(s) = 1/κ(s). This limiting
circle is called the osculating circle of γ at p.

Turning angle approach of curvature We may treat R2 as the complex plane C and
express γ(s) = x(s) + iy(s). Since |T | = 1, we can write T = eiθ. The angle θ is the angle
between T and the real axis, called the incline angle of γ. The corresponding normal is
N = iT . Now, T ′ = κN reads

(eiθ)′ = iθ′eiθ = θ′N = κN,

which shows

κ = θ′.

As a consequence,

T (t2) = ei(θ2−θ1)T (t1) = ei
´ t2
t1

κ(t) dtT (t1).

For a closed curve with length L,

T (L) = ei
´ L
0 κ(t) dtT (0).

But T (0) = T (L) for a closed curve. Thus, the total turning angle

ˆ L

0

κ(t) dt = 2πm,

for some integer m. This integer m is called turning number for a closed regular curve.
The turning number is a topological quantity. It is invariant under regular deformations
of the closed curve, which means that the deformation is continuous and the corresponding
curvature form κ(s) ds stays continuous. This is a theorem of Whitney-Graustein (1937).
An example of non-regular deformation is the deformation of the cycloid (1.1). In equation
(1.1), the curve has no loop when α < 1 and has loop when α > 1. It has a cusp when α = 1.
As α changes from α < 1 to α > 1, the deformation of Cα is not regular. The curvature κ
goes to ∞ and κds has a jump 2π across α = 1.

Variational approach of curvature Straight lines have zero curvature. Straight lines
are also the shortest distance between two points. Thus, we expect curvature can be charac-
terized by the variation of arclength. Using length as the potential energy, we will see below
that the tension force (minus gradient of the potential energy) is in the normal direction
with curvature as its magnitude.

Now, let us consider the space of all paths connecting two fixed points p, q ∈ R2:

X = {γ : [a, b]→ R2 ∈ C1, γ(a) = p, γ(b) = q}.
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On X, we define the arclength potential energy L as

L[γ] :=
ˆ b

a

|γ̇(t)| dt =
ˆ b

a

√
⟨γ̇(t), γ̇(t)⟩ dt.

Given a specific γ ∈ X, we want to define the directional derivative of L at γ in the direction
of a vector field V : [a, b]→ R2 ∈ C1. This is similar to the directional derivative of a function
f : Rn → R at a point x0 in a direction v ∈ Rn. It is defined as dfx0(v) :=

d
dε
|ε=0f(x0 + εv).

In order to have γ + εV ∈ X, we should require V (p) = V (q) = 0. We define the direction
derivative of L at γ in the direction V as

δLγ(V ) :=
d

dε
|ε=0L(γ + εV ) =

ˆ b

a

⟨γ̇(t), V̇ (t)⟩√
⟨γ̇(t), γ̇(t)⟩

dt =

ˆ b

a

〈
γ̇(t)

|γ̇(t)|
, V̇ (t)

〉
dt..

In this integration, we change the dummy variable t to s, the arclength parameter of γ. Then
the integration domain becomes [0, L], the vector γ̇(t)

|γ̇(t)| = T (s), the tangent vector of γ, and

V̇ (t) dt = dV
ds
ds. Thus,

δLγ(V ) =

ˆ L

0

⟨T (s), V ′(s)⟩ ds = −
ˆ L

0

⟨T ′(s), V (s)⟩ ds =
ˆ L

0

⟨κ(s)N(s), V (s)⟩ ds.

In the last step, we have used V (p) = V (q) = 0. This means that the gradient of L at γ is

δLγ

δγ
= κN.

In mechanics, the total length is the potential energy of a string. Its negative gradient (i.e.
−κN) is the tension.

Theorem 1.1. Given κ(s), there is a curve γ(s) whose curvature is κ(s). The curve is
unique up to translation and rotation.

Proof. Hint: It is easier to prove by using the incline angle representation for curvature.

Remark. The curve flow γ(t, ξ) defined by

d

dt
γ(t, ξ) := −κ(t, ξ)N(t, ξ), ξ ∈ [a, b], t ≥ 0,

with fixed ends γ(t, a) = p, γ(t, b) = q is a curve fatten flow. It is an arclength minimization
process.

Summary

• A geometric quantity associated with a curve is independent of parameterization. Tan-
gent, normal, curvature are geometric quantities, which can be measured.

• Curvature can be defined as (1) how N is turned, (2) how incline angle θ changes, or
(3) tension associated with the arclength potential.

• A curve γ is uniquely determined by its curvature up to translation and rotation. In
particular, a planar curve is a straight line if and only if has zero curvature.

8



1.2 Discrete Plane Curves

A regular discrete planar curve is a regular polygonal curve determined by an ordered se-
quence of points [γ0, ..., γn−1] in R2 with γi+1 ̸= γi and γi+2 ̸= γi for all i considered. The
edges of the curve are [γi, γi+1] (or [i, i+ 1] for simplicity of notation), i = 0, ..., n− 2. If we
add the edge [γn−1, γ0], such discrete curve is called closed.

Just like continuous case, it is convenient to consider arclength parameterized curve,
where the edge length |γi+1 − γi| = ℓ is a constant. In the continuous case, a quantity, say
γ(s), changes per unit length means that dγ/ds. In the discrete setting, it would be ∆γ/∆s,
which is (γi+1 − γi)/ℓ.

There are many ways to define a discrete curvature, which are equivalent in their contin-
uous limits.

1.2.1 Discrete curvature based on angle change

Below, we shall treat R2 as C. We define the tangent and normal by

• Tangent Ti.i+1 := (γi+1 − γi)/|γi+1 − γi|,

• Normal Ni,i+1 := iTi,i+1.

The angle change αi at vertex i is defined by:

Ti,i+1 = exp(iαi)Ti−1,i, or Ni,i+1 = exp(iαi)Ni−1,i.

We define the discrete curvature form

κai = αi.

Note that κai is an angle change which a dimensionless quantity, whereas the continuous
curvature is the angle change per arclength (i.e. dθ/ds), which has dimension 1/L.

It is easy to see that, the total turning angle of a closed discrete curve γ is 2mπ for some
integer m. This integral m is the turning number of γ, which is a topological quantity.

1.2.2 Discrete curvature based osculating circle

Given an arclength parameterized discrete curve (γ0, ..., γn−1), we can construct a circular
arc Γi which is tangent to the polygonal curve γ at (γi+ γi+1)/2 and (γi+ γi−1)/2. Consider
the piecewise curve Γ := (Γ1, ...,Γi−2), which is a C1 curve. It can be shown that the radius
of the circular arc Γi is

ℓ
2
cot(αi

2
). Thus, one define the curvature form on Γi to be

κti := 2 tan
(αi

2

)
.
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Figure 1.1: The circular arc Γi contacts to segments at mid points. Its curvature is defined
to be the curvature of the discrete curve at γi. Copied from Chern and Schröder’s Note.

1.2.3 Discrete curvature based on variational principle

Let us consider a variation of the discrete curve γ by

γεi = γi + εVi

where (V0, V1, ..., Vn−1) is the variation directions. At the ends, we require V0 = Vn−1 = 0 in
order to have fixed ends during variation. The length potential is defined to be

L[γ] :=
n−2∑
i=0

|γi+1 − γi|.

The change of L[γε] in the direction of (V1, ..., Vn−2) is

∂

∂ε
|ε=0L[γε] =

n−2∑
i=1

〈
∂L

∂γi
, Vi

〉
∂L

∂γi
=
∂|γi − γi−1|

∂γi
+
∂|γi+1 − γi|

∂γi
= Ti−1 − Ti.

Thus,

dLγ[V ] = −
n−2∑
i=1

⟨Ti − Ti−1, Vi⟩.

One can check

Ti − Ti−1 = 2 sin
(αi

2

) Ni +Ni−1

|Ni +Ni−1|
.

Thus, we define the discrete curvature form κsi to be

κsi = 2 sin
(αi

2

)
.
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Summary We summarize different definitions of discrete curvature forms:

• exterior angle based: κai = αi;

• osculating circle based: κti = 2 tan
(
αi

2

)
• variational based: κsi = 2 sin

(
αi

2

)
.

They are various approximations of the curvature form κ ds.

1.3 Space Framed Curves

Figure 1.2: Copied from Chern and Schröder’s note

• A space curve can be used to describe electric wire, magnetic filament, vortex filament,
etc.

• A framed curve is a curve associated with an orthonormal frame with one of the frame
coordinate aligned with the tangent of the curve. It can be used to model a band,
ribbon, DNA, airplane path, vertebral, etc.

Examples

1. A spinning curve:
x = cos t, y = sin t, z = t

11



2. A spining ring:

x = cos t, y = sin t, z =
1 + cos(2t)

2
.

1.3.1 Frenet-Serret frame

Let γ : I = [a, b]→ R3 be a regular curve (i.e. γ̇(t) ̸= 0 for all t ∈ [a, b]. Let us parametrize
it by arclength. Along the curve γ, it is natural to define an orthogonal frame, the Frenet
frame, or the Frenet-Serret frame. First, we define the following geometric quantities:

• Tangent: T (s) := γ ′(s).

• Normal: N(s) := T ′(s)/|T ′(s)|.

• Binormal: B(s) := T (s)×N(s).

From this definition, we see that (T,N,B) forms an orthonormal frame along γ, called
Frenet-Serret frame.

Remark In the above definition of N , we have used |T ′(s)| ≠ 0. Thus, in addition to the
assumption γ ′(s) ̸= 0, we also require γ ′′(s) ̸= 0 in order to define the Frenet-Serret frame.
We will see later that such a requirement is not needed for parallel frame.

We can further investigate the variation of the frame along γ, which will provide us how
γ is bended and twisted. We have the following definitions.

• Curvature: the curvature κ is defined through T ′(s) = κ(s)N(s). (This implies κ ≥ 0.)

• Torsion: the torsion τ is defined by B′(s) = −τN(s).

In the above definitions, we need to show that T ′ ∥ N and B′ ∥ N . The formal one comes
from the definition of N . To show B′ ∥ N , it is equivalent to show B′ ⊥ B and B′ ⊥ T .
From ⟨B,B⟩ = 1, we differentiate it to get ⟨B′, B⟩ = 0. To show B′ ⊥ T , we differentiate
⟨B, T ⟩ = 0 to get

⟨B′, T ⟩ = −⟨B, T ′⟩ = ⟨B, κN⟩ = 0.

Thus, the above definitions for κ and τ are properly defined.

Theorem 1.2 (Frenet-Serret Formula, 1847, 1951). For an arclength parameterized curve
γ, the Frenet frame satisfies

[
T ′(s) N ′(s) B′(s)

]
=
[
T (s) N(s) B(s)

]  −κ(s)
κ(s) −τ(s)

τ(s)


Proof. We only need to show N ′(s) = −κ(s)T (s)+ τ(s)B(s). Note that N = B×T because
(T,N,B) is an orthonormal frame. We differentiate this formula to get

N ′ = B′ × T +B × T ′ = −τN × T +B × κN = −κT + τB.

12



Corollary 1.1. There exists a curve γ in R3 with prescribed curvature κ(s) and torsion
τ(s). The curve is unique up to translation and rotation.

Proof. This follows from the existence and uniqueness of ordinary differential equations.
Note that we write R(s) = [T (s), N(s), B(s)]. Then R satisfies

R′(s) = R(s)A(s), A(s) =

 −κ(s)
κ(s) −τ(s)

τ(s)

 .
The matrix R satisfies

d

ds
(R(s)RT (s)) = R′(s)RT (s) +R(s)R′T (s) = R(A+ AT )RT = 0.

Since R(0) satisfies R(0)RT (0) = I, we get that R(s)RT (s) = I for all s. Thus, R(s) stays as
an orthogonal matrix for all time. ‡ The solution R(s) is solved from the ODE and is unique
up to a rotation. Once R(s) is solved, T (s) is found, and γ(s) is solved by integrating T (s),
and is unique up to an initial choice γ(0).

Figure 1.3: Copied from Chern and Schröder’s note

‡R is orthogonal ⇔ RTR = I (i.e. its column vectors are orthonormal) ⇔ RT = R−1 ⇔ R−T = R ⇔
(R−1)T = (R−1)−1 ⇔ R−1 is orthogonal ⇔ RT is orthogonal ⇔ RRT = I (i.e. the row vectors of R are
orthonormal).
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1.3.2 General orthonormal frame

The Frenet frame is only one kind of many frames. Indeed, on the normal plane N (s) ⊥
T (s), we are free to choose a unit vector N1(s), and define N2(s) := T (s) × N1(s), then
(T (s), N1(s), N2(s)) forms an orthonormal frame. The Frenet frame is a special orthonormal
frame with N1 chosen to be T ′/|T ′|. A spatial curve γ is determined by two parameters,
either by T (s) ∈ S2 (which has 2 degrees of freedoms), or by κ(s), τ(s). § For a framed
curve in R3, the choice of N1(s) introduces one more degree of freedom, namely, N1(s) ∈ S1

on the normal plane. Thus, a framed curve in R3 has 3 degrees of freedoms. The Frenet
frame determines two geometric quantities: curvature κ and torsion τ . Likely, a general
orthonormal frame determines three quantities: the complex curvature ψ ∈ C and the twist
ω, which are introduced below.

1.3.3 Complex curvature and Twist

On N (s), we are free to choose N1(s), which is called a gauge. By defining N2(s) = T (s)×
N1(s), then (T (s), N1(s), N2(s)) forms a general orthonormal frame.

Measuring how (T (s), N1(s), N2(s)) varies along γ

• T ′(s): By taking derivative of ⟨T (s), T (s)⟩ = 1, we get ⟨T ′(s), T (s)⟩ = 0. That is,
T ′(s) ∈ N (s). We can express it as

T ′(s) = ψ1N1 + ψ2N2.

Thus, there are two curvatures ψ1 and ψ2 for general frame. Usually, we put them
together as a complex number ψ(s) := ψ1 + iψ2 and call it a complex curvature under
the frame (T (s), N1(s), N2(s)). The reason will be illustrated later.

• Project N ′
1(s) on the normal plane Next, we check how N1(s) varies along γ(s). By

differentiate ⟨N1(s), N1(s)⟩ = 1, we get N ′
1(s) ⊥ N1(s). If we project N ′

1(s) to the
normal plane N (s), we get the twist

ω := ⟨N ′
1(s), N2(s)⟩ = −⟨N ′

2(s), N1(s)⟩,

which measures how N1 twists on the normal plane as it moves along γ. If ω = 0, we
call that N1(s) (same as N2(s)) parallel transports along γ. Such a frame with ω ≡ 0
is called a parallel frame.

§Knowing T (s) we can determine the curve γ by integrating T (s). The curve is unique up to a translation,
i.e. the initial position. The tangent T (s) ∈ S2 which has 2 degrees of freedoms. The curve γ can also be
determined by κ(s) and τ(s), and is unique up to translation and rotation. In short, a curve in R3 has two
degrees of freedoms.
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• Project N ′
1(s) on T (s): We still need to check the component of N ′

1(s) on T (s). Taking
derivative of ⟨N1(s), T (s)⟩ = 0, we get

⟨N ′
1(s), T (s)⟩ = −⟨N1(s), T

′(s)⟩ = −ψ1.

Similarly, we get
⟨N ′

2(s), T (s)⟩ = −ψ2.

We conclude with the following theorem.

Theorem 1.3. A general orthonormal frame (T,N1, N2) on an arclength parameterized curve
γ satisfies the frame equation

[
T ′(s) N ′

1(s) N ′
2(s)

]
=
[
T (s) N1(s) N2(s)

]  −ψ1(s) −ψ2(s)
ψ1(s) −ω(s)
ψ2(s) ω(s)

 (1.3)

Corollary 1.2. There exists a framed curve γ(s), (T (s), N1(s), N2(s)) with prescribed com-
plex curvature ψ(s) and twist ω(s). The framed curve is unique up to translation and rotation.

1.3.4 Orthogonal Matrix Representation

An orthonormal frame (T,N1, N2) can be viewed as a rotation matrix:

R(s) = (T (s), N1(s), N2(s)).

Here, we treat the vectors as column vectors. The matrix R(s) is a 3× 3 orthogonal matrix,
which means that

RTR = I, its column vectors are orthonormal.

This is equivalent to

RT = R−1 ⇔ R−T = R ⇔ (R−1)T = (R−1)−1 ⇔ R−1 is orthogonal

⇔ RT is orthogonal ⇔ RRT = I, the row vectors of R are orthonormal.

This is just reflecting orthonormality of (T,N1, N2). The space of all orthogonal matrices
in R3 with matrix multiplication forms a group, called rotation group, or orthogonal group.
It is denoted by O(3). Since det(RTR) = (det(R))2 = 1. Those orthogonal matrices with
det(R) = 1 preserve orientation. This subset of O(3) is denoted by SO(3), called special
orthogonal group. If R(s) ∈ O(3) is smooth, then there exists a anti-symmetric matrix A(s)
such that

R′(s) = R(s)A(s).

To show this, letA(s) = R−1(s)R′(s) = RT (s)R′(s). By differentiate the identityRT (s)R(s) =
I, we get

0 = R′TR +RTR′ = (RTR′)T +RTR′.

Thus, the matrix A satisfies A+AT = 0. Thus, we have the following SO(3) representation
of framed curved.
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Theorem 1.4. A one-parameter family of orthogonal matrices R(s) ∈ SO(n) is determined
by an anti-symmetric matrix A(s) through the linear ODE

R′(s) = R(s)A(s). (1.4)

It is unique up to an initial choice of R(0). Conversely, given an anti-symmetric matrix
A(s), it determines a one-parameter family of orthogonal matrices satisfying (1.4). It is
unique up to initial rotation R(0).

Corollary 1.3 (Fundamental Theorem of framed curves). Given a continuous complex-
valued functions ψ : [0, L] → C and ω : [0, L] → R, there exists a acrlength parametrized
framed curve γ : [0, L] → R3, [T,N1, N2] : [0, L] → SO(3) with complex curvature ψ and
twist ω. The framed curve is unique up to translation and rotation.

1.3.5 Rotation vector representation

To study how frame moves along a curve γ(s), we can treat s as time, and investigate the
motion of the frame (T (s), N1(s), N2(s)) on S

2, the unit sphere. It is a motion of rotation
on S2.

Theorem 1.5. The frame equationT ′(s)
N ′

1(s)
N ′

2(s)

 =

 ψ1(s) ψ2(s)
−ψ1(s) ω(s)
−ψ2(s) −ω(s)

 T (s)N1(s)
N2(s)

 .
is equivalent to 

T ′(s) = ω(s)× T (s),
N ′

1(s) = ω(s)×N1(s)
N ′

2(s) = ω(s)×N2(s)
(1.5)

where
ω(s) = ωT − ψ2N1 + ψ1N2. (1.6)

If T ′(s) ̸= 0, then {
κN = ψ1N1 + ψ2N2,
κB = −ψ2N1 + ψ1N2

(1.7)

Proof. 1. Suppose ω = aT + bN1 + cN2. Use the above equations, you can get a, b, c.

2. When T ′(s) ̸= 0, then N(s) := T ′(s)/|T ′(s)| is well-defined. In this case, we recall
T ′ = ψ1N1 + ψ2N2. Thus,

κN = T ′ = ψ1N1 + ψ2N2,

and
κB = κT ×N = −ψ2N1 + ψ1N2.

16



Remarks The meaning of this formula is that T (as well as N1 and N2) rotates about ω(s)
with speed |ω(s)| instantaneously. To see this, we recall that the equation for rigid-body
rotation is

ṙ(t) = ω(t)× r(t).

From d
dt
∥r(t)∥2 = 2ṙ · r = 0, we get that ∥r(t)∥2 ≡ constant. Thus, the motion of r(t) is a

rotation. In the case when ω is a constant, it is a rotation with fixed axis. Its solution has
the following representations.

1. Let ω = (ω1, ω2, ω3)
T and define the rotational generator Ω associated with ω by

Ω :=

 0 ω3 −ω2

−ω3 0 ω1

ω2 −ω1 0


Then the solution to ṙ(t) = ω × r(t) is given by

r(t) = eΩtr(0).

Here,

eΩt :=
∞∑
n=0

Ωntn

n!
.

2. We can decompose r into ω and ω⊥:

r(0) = a(t)
ω

|ω|
+ r⊥,

where r⊥ ∈ ω⊥. Then the solution is given by

a(t)(t) = a(0)

r⊥(t) = eJωtr⊥(0),

where J is 90◦ rotation on ω⊥ and ω = |ω|. If r(0) ⊥ ω, then the curve r(t) rotates
along a great circle, a geodesic curve on the sphere.

3. Tangent hodograph The tangent hodograph of a space curve γ(s) is the trajectory
T (s) on the unit sphere. From

T ′(s) = (ωT − ψ2N1 + ψ1N2)× T = (−ψ2N1 + ψ1N2)× T := ω1 × T,

we see that T rotates on the unit sphere about ω1 instantaneously. Since T ⊥ ω1,
T must rotate along a great circle on the unit sphere instantaneously. Note that if
T ′ ̸= 0, then ω1(s) ∥ B(s).
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1.3.6 Complex structure on the Normal Plane

Gauge transformation on normal plane The complex curvature and the twist defined
above depend on the choice of gauge N1(s). If we choose another gauge Ñ1(s), we would like
to see how the corresponding complex curvature ψ̃ and twist ω̃ change. Since both N1(s)
and Ñ1(s) are unit vectors on the normal plane N (s), the vector Ñ1(s) must be a rotation
of N1(s) by some angle α(s). Before stating the result, let us define rotation on the normal
plane as the follows.

Complex structure on the normal plane For any vector Y ∈ R3, define

JY := T × Y.

Note that JT = 0. The operator J : N → N has the properties:

J2Y = T × (T × Y ) = −Y for Y ∈ N .

Thus, J2 = −I on the normal plane N . It is a 90◦ rotation on the normal plane. We can
further define

eαJ :=
∞∑
n=0

αnJn

n!
, α ∈ R.

Then eαJ : N → N is a rotation on N by an angle α.
Given a gauge N1(s) ∈ N (s), we express N2(s) = JN1(s). Any vector Y ∈ N can be

expressed as
Y = a1N1 + a2N2 = (a1 + Ja2)N1.

This makes a one-to-one correspondence between Y ∈ N and the complex number a1 + ia2.
This correspondence induces multiplication on the normal plane:

c1 + Jc2 = (a1 + Ja2) ◦ (b1 + Jb2)⇔ c1 + ic2 = (a1 + ia2) · (b1 + ib2).

Change of complex structure J(s) along the curve γ. Along γ(s), for any Y (s) ∈
N (s),

(JY )′ = (T × Y )′ = T ′ × Y + T × Y ′ = T ′ × Y + JY ′.

We thus define J ′Y := T ′ × Y in order to have the formal Libniz rule: (JY )′ = J ′Y + JY ′

hold. Since T ′ ∈ N , we have J ′Y = T ′ × Y ∥ T for any Y ∈ N .
Now, we can state the gauge transformation theorem.

Theorem 1.6. Given a gauge N1 with the corresponding complex curvature ψ and twist ω.
Let Ñ1(s) = eJθ(s)N1(s), a rotation of N1(s) on the normal plane N (s) by an angle θ(s).
Then the corresponding complex curvature ψ̃ and twist ω̃ satisfy

ψ̃ = e−iθψ, ω̃ = ω + θ′. (1.8)
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Proof. We have

T ′ = ψ1N1 + ψ2N2

= (ψ1 + ψ2J)N1

= (ψ1 + ψ2J)e
−JθÑ1

= (ψ̃1 + Jψ̃2)Ñ1

The last two lines lead to
ψ̃1 + iψ̃2 = (ψ1 + iψ2)e

−iθ.

For ω̃, we have

ω̃ = ⟨Ñ ′
1, Ñ2⟩ = ⟨(eJθN1)

′, eJθN2⟩
= ⟨(Jθ′ + J ′θ)eJθN1 + eJθN ′

1, e
JθN2⟩

= ⟨θ′eJθN2 + eJθN ′
1, e

JθN2⟩ = θ′ + ω.

Here, we have used
⟨eJθY1, eJθY2⟩ = ⟨Y1, Y2⟩

⟨J ′Y1, Y2⟩ = 0,

for any Y1, Y2 ∈ N . The latter follows from J ′Y1 ∥ T .

Remark The transformation γ 7→ ψP is called Hashimoto transformation. It plays impor-
tant role in the soliton theory for the binormal equation γ̇ = γ ′ × γ ′′.

There are two special frames of particular interest:

• Frenet frame: It is the case when T ′ ̸= 0 and with N1 = T ′/|T ′| = N .
It is equivalent to Re(ψ) = κ, Im(ψ) = 0 and ω = τ .

• Parallel frame or Bishop frame: It is the case when ω = 0.

Remark From gauge transformation formula, we note that |ψ| is gauge invariant. For
Frenet frame, ψ = κ. Thus, we obtain

|ψ(s)| = κ(s) (1.9)

for any frame.

1.3.7 Parallel frame: ω = 0

• Construction of parallel frame through Frenet frame. Let us denote the com-
plex curvature for parallel frame by ψP . We can express ΨP in terms of κ and τ by
the following gauge transformation. We look for angle θ(s) such that

N1 = e−JθN
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with N1 being the parallel frame gauge and N the Frenet frame gauge. From the gauge
transformation formula, we get

ψP = κeiθ, 0 = τ − θ′.

Thus, we can construct a parallel frame with a starting N1(0) from a Frenet frame
(T,N, S) through the formula N1(s) = e−Jθ(s) with θ(s) = θ(0) +

´ s

0
τ(s) ds. This N1

is a gauge of a parallel frame with

ψP (s) = κ(s)eiθ0+i
´ s
0 τ(s) ds.

• Construction of parallel frame without using Frenet frame. The above con-
struction of parallel frame requires T ′(s) ̸= 0 (∵ existence of N). We can also construct
a parallel frame for a regular curve without this assumption. Indeed, given T (s), we
can solve the following equation

dN1(s)

ds
=

(
T (s)× dT (s)

ds

)
×N1(s). (1.10)

From (A×B)×C = ⟨A,C⟩B−⟨B,C⟩A, we get that the above equation is equivalent
to

dN1(s)

ds
= −⟨dT (s)

ds
,N1(s)⟩T (s).

Thus, ω := ⟨dN1

ds
, N2(s)⟩ = 0.

• Note that if T ′(s) ̸= 0, then (1.10) is

N ′
1(s) = (T (s)× T ′(s))×N1(s) = κ(s)B(s)×N1(s). (1.11)

That is, N1 rotates about B(s) with angular speed κ instantaneously. Comparing (1.5)
and (1.11), we find

ω1 := −ψ2N1 + ψ1N2 = κB. (1.12)

The rotation {
N ′

1 = ω ×N1

N2 = ω ×N2

with ω = ω1 is a parallel transport.

1.3.8 Quaternion Representation for Framed Curves

Quaternion is an algebraic tool for calculating rotation in R3. It was invented by Hamilton.
See Wiki, Quaternion and Spatial Rotation https://en.wikipedia.org/wiki/Quaternions_
and_spatial_rotation.
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Algebra of quaternion

A quaternion has the form
q = a+ v, a ∈ R,v ∈ R3.

We call a the real part of q and v the imaginary part of q. We express them by

a = Re(q), v = Im(q).

The quaternion space is

H = {a+ v|a ∈ R,v ∈ R3} = R⊕ R3.

Multiplication The multiplication rule of quaternions is defined by

(a+ v)(b+w) = ab+ aw + bv + vw,

vw := −⟨v,w⟩+ v ×w.

If we introduce orthonormal basis i, j,k in R3 and express quaternion

q = a+ v = a+ v1i+ v2j+ v3k,

then the above multiplication rule for the basis {1, i, j,k} are
i2 = −1, j2 = −1, k2 = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j, .

These rule for the basis together with the distributive rule are equivalent to the orignal
multiplication rule.

Associative rule

Proposition 1.1. For p, q, r ∈ H, one has

(pq)r = p(qr).

Proof. You can check this associative rule is valid for the basis: 1, i, j,k. This together with
the distributive rule imply that the associative rule is also valid for general quaternions.
Alternatively, there is a connection between the basis 1, i, j,k and the Pauli matrices. Define

I =

[
1 0
0 1

]
, X =

[
i 0
0 −i

]
, Y =

[
0 −1
1 0

]
, Z =

[
0 −i
−i 0

]
.

The Span{I,X, Y, Z} is a closed subalgebra of C2×2. One can check

X2 = −I, Y 2 = −I, Z2 = −I,
XY = −Y X = Z, Y Z = −ZY = X, ZX = −XZ = −Y.

The mapping
H→ Span{I,X, Y, Z} ⊂ C2×2

a+ v1i+ v2j+ v3k 7→ aI + v1X + v2Y + v3Z

is an algebra isomorphism. It carries the associative rule of matrix multiplication to quater-
nion multiplication.
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Conjugate If q = a+ v, define its conjugate

q̄ = a− v,

and the norm

|q|2 = |a|2 + |v|2.

For unit quaternion, we have q̄ = q−1. We have the following properties for conjugacy and
absolute value.

• |q|2 = qq̄ = q̄q,

• |pq| = |p| |q|,

• pq = q̄p̄,

• q−1 = q̄
|q|2 .

homework Check the above properties.

Geometry of Quaternions

Unit quaternion as a rotation Fact: any q ∈ H with |q| = 1 can be represented as

q = cos

(
θ

2

)
+ sin

(
θ

2

)
v, with |v| = 1,

and vice versa.

Theorem 1.7. Let q = cos( θ
2
) + sin( θ

2
)v with |v| = 1. Let y ∈ R3. Then qyq̄ ∈ R3 and the

mapping

F : y 7→ qyq̄

is a rotation of y around v by the angle θ.

Proof. 1. To show p = qyq̄ ∈ R3, it is equivalent to show p̄ = −p. We check

qyq̄ = ¯̄qȳq̄ = q(−y)q̄ = −qyq̄.

Hence qyq̄ ∈ R3.

2. F (y) is linear and |F (y)| = |qyq̄| = |y|, because |q| = 1. Thus, F is either a rotation,
or a mirrored-rotation, depending det(F ) = 1 or −1, respectively.

3. F is a rotation. This is because F is a continuous function in q, thus in θ. Since F is
the identity map when θ = 0, we get det(F ) = 1.
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4. F (v) = v. (Check by yourself.) F is a rotation on v⊥ by the angle θ. Let w ∈ v⊥, i.e.
⟨w,v⟩ = 0. We have wv = w × v = −vw.

qwq̄ =

(
cos

θ

2
+ sin

θ

2
v

)
w

(
cos

θ

2
− sin

θ

2
v

)
=

(
cos

θ

2
+ sin

θ

2
v

)(
cos

θ

2
+ sin

θ

2
v

)
w

=

(
cos2

θ

2
+ 2 sin

θ

2
cos

θ

2
v − sin2 θ

2

)
w

= (cos θ + sin θv)w

= cos θw + sin θ(v ×w).

Viewed in the orthogonal frame (w,v × w,v), the vector qwq̄ is the rotation of w
about v by the angle θ.

Composition of rotations Suppose F (y) = pyp̄, G(z) = qzq̄ be two rotations. Then the
composition of the two rotations is

(F ◦G)(z) = p(qzq̄)p̄ = (pq)z(pq),

which is the rotation corresponding to the product of p and q..

Dihedral Given two unit vector x and y in R3, one can find a unit quaternion q to rotate
x to y. The rotation axis is v = x× y/|x× y|. The angle is cos θ = ⟨x,y⟩. Thus,

q = c+ sv, c =

√
1 + ⟨x,y⟩

2
, s =

√
1− ⟨x,y⟩

2

We denote q = dihedral(x,y).

Representation of a framed curve by quaternion

Proposition 1.2. Given a framed curve (T (s), N1(s), N2(s)), there exists a unique unit
quaternion q(s) which rotates (i, j,k) to (T (s), N1(s), N2(s)):

T = qiq̄, N1 = qjq̄, N2 = qkq̄.

Proof. We can first find q1, which rotates i to T . Since j ⊥ i, we have q1jq̄1 ⊥ q1iq̄1 = T .
Next, we find q2 which rotates q1jq̄1 to N1. Since both q1jq̄1 ⊥ T and N1 ⊥ T , the rotation
q2 must leave T unchanged. Thus, the resulting rotation q = q2q1 rotates i to T and j to N1.
To conclude, if

q = q2q1, q1 = dihedral(i, T ), q2 = dihedral(q1jq̄1, N1)

then
T = qiq̄, N1 = qjq̄, N2 = qkq̄.

23



Frame equation Given a complex curvature ψ(s) and a twist ω(s), we can determine a
framed curve (T (s), N1(s), N2(s)) by using the frame equation

T ′(s) = ω(s)× T (s),
N ′

1(s) = ω(s)×N1(s)

N ′
2(s) = ω(s)×N2(s),

where ω = ωT − ψ2N1 + ψ1N2. Since (T (s), N1(s), N2(s)) can also be represented from
(i, j,k) by a quaternion q(s). We would like to find a similar ODE that q(·) should satisfy.

Proposition 1.3. Given complex curvature ψ(s) and twist ω(s), let (T (s), N1(s), N2(s)) be
the associated framed curve and q(s) be the associated quaternion which rotates (i, j,k) to
(T (s), N1(s), N2(s)). Then q(s) satisfies the frame equation:

q′(s) = vq = qw,

where

v =
1

2
(ωT − ψ2N1 + ψ1N2) , w =

1

2
(ωi− ψ2j+ ψ1k) .

Proof. 1. We claim q′q̄ ∈ R3 for q(s) with |q(s)| ≡ 1. We differentiate qq̄ = 1 to get
q′q̄+ qq̄′ = 0. Then q′q̄+ q′q̄ = q′q̄+ qq̄′ = 0. Thus, q′q̄ is pure imaginary, which means
q′q̄ ∈ R3.

2. Let us denote q′q̄ = v. We claim that if q(s) represents the framed curve (T (s), N1(s), N2(s)),
then

v =
1

2
ω =

1

2
(ωT − ψ2N1 + ψ1N2) .

With this, multiplying q′q̄ = v by q from right and using qq̄ = 1, we get q′ = vq. To
show this claim, let us compute

T ′ = (qiq̄)′ = q′iq̄ + qiq̄′ = q′(q̄q)iq̄ + qi(q̄q)q̄′

= (q′q̄)(qiq̄) + (qiq̄)(qq̄′) = vT + T v̄ = vT − Tv = 2v × T.

Similarly, we have
N ′

1 = 2v ×N1, N ′
2 = 2v ×N2.

Comparing with Theorem (1.5), we get

v =
1

2
ω :=

1

2
(ωT − ψ2N1 + ψ1N2) .

3. We can have another representation: q′ = qw:

q′ = vq =
1

2
(ωT − ψ2N1 + ψ1N2) q =

1

2
(ωqiq̄ − ψ2qjq̄ + ψ1qkq̄) q

= q

(
ω

2
i− ψ2

2
j+

ψ1

2
k

)
:= qw.
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Remark This means that the frame (T,N1, N2) rotates around v with angular speed (angle
change per unit arclength ds) |2v|.

1.4 Geometric Quantities

A geometric quantity is a quantity which is independent of gauge. From the above gauge
transformation formula, we see that |ψ| is independent of the choice of gauge. In particular,
ψ = κ when we choose N1 = N . Thus |ψ| = κ for any gauge N1. It is a geometric quantity.

Geometric invariants A geometric quantity should be independent from how we pa-
rameterize the curve, and how we set up a coordinate to describe the curve. The physics
associated with the curve should only depend on such geometric quantities. For the curve,
these quantities are the curvature and the torsion. For the framed curve, they are the com-
plex curvature and the twist. For physical applications, the following geometric quantities
are important.

• Total length:
´ b
a
|γξ| dξ.

• Total curvature:
´ L
0
κ(s) ds.

• Total torsion:
´ L
0
τ(s) ds.

• Bending energy:
´ L
0
|κ(s)|2 ds.

• Torsion energy:
´ L
0
|τ(s)|2 ds.

Summary

• Frame equations:

– In rotation matrix form:T ′(s)
N ′

1(s)
N ′

2(s)

 =

 ψ1(s) ψ2(s)
−ψ1(s) ω(s)
−ψ2(s) −ω(s)

 T (s)N1(s)
N2(s)

 .
– In rotation vector form 

T ′(s) = ω(s)× T (s),
N ′

1(s) = ω(s)×N1(s)
N ′

2(s) = ω(s)×N2(s)

where
ω(s) = ωT − ψ2N1 + ψ1N2.
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– In terms of quaternion

q′ = qv, v =
1

2
ω.

• T (s) rotates instantaneously about

ω1 = −ψ2N1 + ψ1N2= κB if T ′(s) ̸= 0

along a great circle on the unit sphere with angular speed κ. For parallel frame, N1

and N2 also rotates instantaneously about ω1(= κB).

• Gauge transformation formula:

ψ̃ = e−iθψ, ω̃ = ω + θ′.

1.5 Discrete framed curves

1.5.1 Discrete curve

We shall consider arclength-parameterized discrete curve: γ : {0, 1, ..., n − 1} → R3. We
define the following discrete geometric quantities

• The tangent Ti := γi+1 − γi. Ti lives on edge [γi,γi+1).

• The averaged tangent T̄i := normalize(Ti−1 + Ti). It lives at γi.

• The binormal Bi the normal of the osculating plane.

Bi :=
Ti−1 × Ti
|Ti−1 × Ti|

.

The binormal Bi lives at the vertex γi.

• Normal:
Ni := normalize

(
Bi × T̄i)

)
.

• curvature κai := αi = the angle from Ti−1 to Ti:

αi := cos−1⟨Ti−1, Ti⟩.

1.5.2 Construction of parallel gauge for a discrete curve

Given a discrete curve γi, i = 1, ..., n− 1, we can construct a parallel gauge along the curve.
This is to construct N1,i, i = 1, ..., n− 2. N1,i is defined on the edges. We start from N1,i−1

to construct N1,i. It is simply by the dihedral rotation

RDh(Ti−1, Ti)
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which rotates Ti−1 to Ti along a great circle on the unit sphere. It also plays the role to
parallel transport any vector on T⊥

i−1 to T⊥
i , because

N ′
1 = ω1 ×N1, ω1 = −ψ2N1 + ψ1N2.

has ω = 0. Thus, we define

N1,i = RDh(Ti−1, Ti)N1,i−1.

In terms of quaternion, it is equivalent to define qi, i = 1, ..., n− 2

qi+1 = dihedral(Ti, Ti+1)qi.

Then N1,i = qijq̄i is the parallel gauge.

Discrete twist Given a discrete framed curve (γi, N1,i), i = 1, ..., n−1. We define its twist

ωi := ∠(RDh(Ti−1, Ti)(N1,i−1), N1,i)

1.5.3 Discrete complex curvature

At γi, we draw a unit sphere. Let p− := −Ti−1 be the south pole and Ti−1 be the north pole.
Consider the polar stereographic projection which maps S2 \ {−Ti−1} to a plane T⊥

i−1. The
plane is tangent to S2 at the north pole. The projection is given by

StereoProj (xNi−1 + yp+ ×Ni−1 + zp−)) =
2x

1− z
+

2y

1− z
i.

The complex curvature ψi is defined to be

ψi := StereoProjTi−1
(Ti). (1.13)

One can check that

|ψi| = 2 tan
(αi

2

)
, (1.14)

arg(ψi) = the angle from Ni−1 to − Ti−1 ×Bi

|Ti−1 ×Bi|
. (1.15)

Homework Verify the above two formulae (1.14), (1.15).

Theorem 1.8. Under a gauge transform Ñk = eiϕkNk, the corresponding complex curvature
and twist satisfy

ψ̃k = eiϕkψk, ω̃k = [ωk + ϕi − ϕi−1](−π,π]
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1.5.4 Hodograph of a discrete curve

• Given a closed discrete curve γ : V = {0, 1, ..., n − 1}toR3 with equal edge length ℓ.
Its tangent Ti−1,i := |γi−γi−1)/ℓ sits in S

2. Let us connect Ti−1,i and Ti,i+1 by a great
circle for i = 1, ..., n − 1 and form a spherical polygon. This is the hodograph of the
discrete curve γ.

• The discrete curvature is the change from Ti−1,i to Ti,i+1, which is the angle αi from
Ti−1,i to Ti,i+1.

• The discrete binormal is defined to satisfy αiBi = (Ti−1,i × Ti,i+1).

• The discrete torsion τi,i+1 is the angle-change from Bi to Bi+1, which is the angle-change
from the great circle Ti−1,i, Ti,i+1 to the great circle Ti,i+1, Ti+1,i+2, or the exterior angle
of the spherical polygon at Ti,i+1.

Figure 1.4: Hodograph of a discrete curve

1.5.5 Summary

Given a discrete curve γ : I → R3.

• Tangent Ti−1,i = γi − γi−1

• Normal plane: Ni−1,i = T⊥
i−1,i

• Binormal Bi =
Ti−1,i×Ti,i+1

|Ti−1,i×Ti,i+1|

• Curvature: κai is turning angle from Ti−1,i to Ti,i+1

• Parallel transport of gauge N1:

N1,i,i+1 = RDh(Ti−1,i, Ti,i+1)(N1,i−1,i)
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• Twist:
ωi := ∠(RDh(Ti−1, Ti)(N1,i−1), N1,i)

• Discrete complex curvature

ψi := StereoProjTi−1,i
(Ti,i+1).

• Discrete torsion: τi,i+1 is the angle-change from Bi to Bi+1, which is the angle-change
from the great circle Ti−1,i, Ti,i+1 to the great circle Ti,i+1, Ti+1,i+2, or the exterior angle
of the spherical polygon at Ti,i+1.
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Chapter 2

Combinatorial Surfaces

This chapter is based on Chapter 1 of Crane’s note on Discrete Differential Geometry.

2.1 Abstract simplicial complex

Discrete surfaces consist of connected vertices. There are many different ways to describe
the connectivity of a discrete surface. What we shall described here is so-called simplicial
complex, which encodes dimensionality information.

Simplex

• An abstract k-simplex is a set of (k + 1) distinct vertices, denoted by {v1, ..., vk+1},
or abbreviated by {1, ..., k + 1}. For example: consider vertices {v1, ..., v4} in R3, a
0-simplex {v1} is a single vertex; a 1-simplex {v1, v2} is an edge, a 2-simplex {v1, v2, v3}
is a triangle, and a 3-simplex {v1, v2, v3, v4} is a tetrahedron. In general, the vertices
are not necessary in R3, we treat them in abstract way. We call k the degree of a
k-simplex.

• Faces of a simplex: Any nonempty subset of a simplex is another simplex, which we
call a face; a strict subset is called a proper face. For example, if σ = {1, 2, 3} is a
2-simplex, then {1, 2}, {2, 3}, {1, 3}, {1}, {2}, {3} and {1, 2, 3} are faces of σ.

Note that an abstract simplicial complex specifies how vertices are connected, but not where
they are in space.

Simplicial Complex

Definition 2.1. A collection of simplices K is called a simplicial complex if for every simplex
σ ∈ K, every face σ′ ⊂ σ is also in K.

For example, K = {{1, 2, 3}, {1, 2}, {2, 3}, {1, 3}, {1}, {2}, {3}} is a simplicial complex,
while the collection {{1, 2, 3}, {1, 2}, {1}, {2}} is not.
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Figure 2.1: Examples of simplicial complex. But they are not pure 2-simplicial complex.
It describes how vertices are connected, but not where they are in the space. Copied from
Crane’s note.

Definition 2.2. subcomplex, pure k-simplicial complex skeleton

1. A subcomplex K′ of a simplicial complex K is a subset that is also a simplicial complex.

2. A complex K is a pure k-simplicial complex if every simplex σ′ ∈ K of degree l < k is
contained in some simplex of degree k.

3. The k-skeleton of K is the collection of all simplices of K of dimension at most k. We
denote it by K(k).

Thus, a simplicial complex K is the union of its skeletons:

K = ∪kK(k),

Examples

• A tetrahedron can be represented by the following simplicial complex: Let V =
{1, 2, 3, 4}, define K = K(3) ∪ K(2) ∪ K(1) ∪ K(0) with

K(3) = {{1, 2, 3, 4}},
K(2) = {{1, 2, 3}, {1, 2, 4}, {2, 3, 4}, {3, 1, 4}},
K(1) = {{1, 2}, {2, 3}, {3, 1}, {1, 4}, {2, 4}, {3, 4}},
K(0) = {{1}, {2}, {3}, {4}}.

• In Figure 1.1,

K(3) = {{0, 1, 2, 3}}

32



K(2) = {{0, 1, 2}, {0, 2, 3}, {0, 1, 3}, {1, 2, 3}, {2, 3, 4}}
K(1) = {{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3},

{2, 3}, {3, 4}, {3, 5}, {4, 5}}
K(0) = {{0}, {1}, {2}, {3}, {4}, {5}}.

Figure 2.2: Example of pure simplex and non-pure simplex. Copied from Crane’s note.

Summary An abstract simplicial complex is just a subset of the integers, closed under the
operation of taking subsets.

2.2 Basic topological operation of simplicial complex

Given a simplicial complex K, we define the following topological operators:

• Star: Let i be a vertex. St(i) = ∪{σ ∈ K | i ∈ σ}. In example below (see Figure 2.3),
vertex i is surrounded by vertices {1, ..., 6}. We have

St(i) = {i} ∪ {{i, 1}, ..., {i, 6}} ∪ {{i, 1, 2}, {i, 2, 3}, ..., {i, 5, 6}, {i, 6, 1}}

• Closure: The closure of a set, denoted by Cl(S), is the smallest subcomplex that
contains S. For example, if S is the above St(i), then

Cl(S) = {{i}, {1}, {2}, ..., {6}} ∪ St(i)∪ {{i, 1}, {i, 2}..., {i, 6}, {1, 2}, {2, 3}, ..., {6, 1}}

• Link: Lk(i) := Cl(St(i)) \ St(i). In the example above (see Fig. 2.4)

Lk(i) = {{1}, {2}, ..., {6}} ∪ {{1, 2}, {2, 3}, ..., {6, 1}}.
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• Boundary: Suppose K′ is a pure k-subcomplex. Its boundary is the closure of the set
of all simplices σ that are proper faces of exactly one simplex of K′.

• Interior: The interior int(K′) = K′ − bd(K′) is then everything but the boundary.

Figure 2.3: Left is the star operation of a vertex i. The surrounding vertices of i are labeled
by {1, 2, ..., 6}. Right subfigure is the closure operation. Copied from Crane’s note.

Figure 2.4: Left is the link of the vertex i. Right is the boundary operation of a subcomplex
K′. It consists of σ′ such that σ′ is a proper face of exactly one σ with σ ∈ K′. Copied from
Crane’s note
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2.3 Orientation

Figure 2.5: Consistent orientation of two adjacent oriented simplices, copied from Crane’s
note.

For each k-simplex, we define its orientation as the follows.

Orientation

• For 1-simplex, the orientation of {i, j} is either from i pointing to j, or the oppo-
site direction. We denote it by [i, j] for the formal one, and [j, i] for the latter one.
Graphically, we draw an arrow from i to j to represent the orientation [i, j].

• For 2-simplex {i, j, k}, we can loop them in the order of (i, j, k) or (j, i, k). We treat
(i, j, k), (j, k, i) and (k, i, j) the same orientation. Thus, a 2-simplex has two orien-
tations, denoted by [i, j, k] and [j, i, k], respectively. Note that we can obtain (j, i, k)
from(i, j, k) by one permutation i ↔ j, and obtain (j, k, i) by two permutations, first
i↔ j, then i↔ k.

• For a k-simplex {0, ..., k}, we consider permutation between the order set [i0, ..., ik],
where 0 ≤ iα ≤ k. For instance [0, 1, 2, ..., k] 7→ [1, 0, 2, ..., k] is a permutation, which
permutes 0↔ 1. [0, 1, 2, ..., k] 7→ [1, 2, 0, 3, ..., k] is a composition of two permutations:
0↔ 1, 1↔ 2. There are two equivalent classes of permutations, even or odd numbers
of permutations from the order set [0, 1, ..., k]. This defines two orientations. One
can be permuted to [0, 1, ..., k] by even numbers of permutations. The other class can
be permuted to [0, 1, ..., k] by odd numbers of permutations. Thus, every k-simplex
with k ≥ 1 can be associated with one of the two orientations, either [0, 1, 2, ..., k], or
[1, 0, 2, ..., k], and denote [1, 0, 2, ..., k] by −[0, 1, 2, ..., k]. For instance, [1, 0] = −[0, 1],
[0, 2, 1] = −[0, 1, 2], [1, 2, 0] = [0, 1, 2], [1, 2, 3, 4] = −[2, 3, 4, 1].

Consistent Orientation of Adjacent Simplices
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Figure 2.6: Manifold and non-manifold. Copied from Crane’s note.

• Two adjacent 1-simplices The following two adjacent oriented 1-simplices [i, j], [j, k]
are said to have consistent orientation, while [j, i] and [j, k] are inconsistent.

• Two adjacent 2-simplices The following two adjacent oriented 2-simplices [i, j, k]
and [k, j, ℓ] are oriented consistently, while [i, j, k] and [j, k, ℓ] are not. Note that the
common edge [j, k] the same order as that in [j, k, i], which is equivalent to [i, j, k]. On
the other hand, [j, k] has opposite order as that in [k, j, ℓ]. See Fig. 2.5.

2.4 Simplicial Surfaces

Abstract simplicial surface An abstract simplicial surface is

• a pure simplicial 2-complex,

• the link of every vertex is a single loop of edges, or equivalently, where the star of every
vertex is a combinatorial disk made of triangles.

The fact that every vertex has a disk-like neighborhood captures the basic idea of a topo-
logical surface; we therefore say that such a complex is a manifold. See Fig. 2.6.

Oriented simplicial surface An oriented simplicial surface is an abstract simplicial sur-
face where we can assign a consistent orientation to every triangle.

Examples

• A tetrahedra [0, 1, 2, 3] is oriented. Its boundaries are the oriented faces: [0, 1, 2],
−[1, 2, 3], [0, 2, 3] and −[0, 1, 3], which are consistent to the orientation of [0, 1, 2, 3].
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We define the boundary operator for an oriented tetrahedra by

∂[v0, v1, v2, v3] =
3∑

i=0

(−1)i[v0, .., v̂i, ..., v3].

where v̂i means vi is dropped from the list.

• Möbius band is not orientable, see Fig. 2.7.

• The n dimensional ball Sn is orientable.

Figure 2.7: Möbius band is not orientable. Copied from Crane’s note

Oriented discrete surface

• A polygon f is an ordered set [i0, i1, ..., in−1] with i0 = in. The set {i0, ..., in−1} are
its vertices, and the set {[ik, ik+1]|k = 0, ..., n} are its edges. Here we identify in = i0.
The edges can be ordered consistently. The polygon can also be oriented consistently
to its edges. Such an oriented polygon is an oriented face. We say this oriented edge
is incident to this oriented face, and vertex i is incident to the edges [i, j] and [j, i].

• Two polygons are adjacent if they have a common edge. They have consistent orien-
tation if their common edge has opposite orientation.

• An oriented discrete surface S = {V,E, F} is composed of consistent polygons and
satisfies

– each edge e ∈ E is incident to one or two faces;
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– for each index i ∈ V , the faces that i is incident to form a closed fan or an open
fan.

• red Boundary of an oriented discrete surface. Given an oriented surface S = (V,E, F ),
the boundary operator ∂21 : F → E with ∂21(f) =

∑
e if e is incident to f . The

boundary operator ∂10 : E → V with ∂10(e) =
∑
v if v is incident to e.

2.5 Adjacent Matrices

Given a 2-simplex with vertices V , edges E and triangles F . We index vertices by (0, ..., |V |−
1), edges by (0, ..., |E| − 1) and triangles by (0, ..., |F | − 1).

Adjacent matrix Ak encodes composition of (k + 1)-simplicies in k-simplicies.

• A0: row (edge index), column (vertex index).

(A0)ij =

{
1 if ith edge contains vextex j;
0 otherwise.

• A1: row (face index), column (edge index).

(A1)ij =

{
1 if ith face contains edge j;
0 otherwise.

Signed adjacent matrix for an oriented simplicial surface We first index oriented
edges and triangles.

• A0: row (oriented edge index), column (vertex index) .

(A0)ij =


1 if ith edge contains j as an end vextex;
−1 if ith edge contains j as a starting vextex;
0 otherwise.

• A1: row (oriented edge index), column (oriented triangle index).

(A1)ij =


1 if ith face contains jth edge with consistent orientation;
−1 if ith face contains jth edge with inconsistent orientation;
0 otherwise.

Example (see Crane’s note, pp.16, 17.)
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2.6 Half-edge Data Structure

Half-edges We want to create a data structure to describe oriented discrete surface. Let
S = {V,E, F} be a discrete surface with vertices V , edges E and faces F .

• Helf-edge: For each edge, there are two orientations. We call them a pair of half-edge.
For instance, [i, j] and [j, i] are a pair of half-edge. The half-edge set H contains all
these pairs of edges. Thus, |H| = 2|E|.

• On H, we define two pointers:

– src: H → V maps the oriented edge to its start vertex;

– face: H → F maps the half-edge to the face it belongs to;

• On H we can define two operations: flip and next.

– flip: η : H → H ∪ {NULL}.

η([i, j]) =

{
[j, i] if [i, j] is an interior edge
NULL if [i, j] is a boundary edge

– next: ρ : H → H

ρ([i, j]) = [j, k] if both [i, j] and [j, k] belong to the same face.

• From these two operations, we can easily produce topological information.

– Get face from a half-edge [i, j]. We perform ρ[i, j] = [j, k], ρ[j, k] = [k, i] and
ρ[k, i] = [i, j]. We obtain the face [i, j, k] that contains [i, j] as its boundary.
Thus, the faces are orbits of ρ.

– Get edges with common vertex i or the vertices adjacent to i. We start from [i, j].
Apply flip η to get [ji], then apply ρ to get [i, k]. Apply this ρ ◦ η repeatedly
until we recover [i, j]. From this process, we get all edges connecting to i. We
also obtain the vertices that are adjacent to i. Thus, surround vertices of a given
vertex are orbits of ρ ◦ η.

We can make the following index table for flip and next operations.

half-edge twin half-edge start vertex face next half-edge
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Figure 2.8: The flip and next operations on half-edges. Copied from Crane’s note.

2.7 Topological Invariants

Definition

• Topological disk A topological disk is, roughly speaking, any shape you can get by
deforming the unit disk in the plane without tearing it, puncturing it, or gluing its
edges together. Some examples of shapes that are disks include a flag, a leaf, and a
glove. Some examples of shapes that are not disks include a circle (i.e., a disk without
its interior), a ball, a sphere, a donut, a washer, and a teapot.

• Polygonal disk A polygonal disk is any topological disk constructed out of simple
polygons.

• Topological sphere A topological sphere is any shape resembling the standard sphere,
and a polyhedron is a sphere made of polygons.

• Piecewise linear surface A piecewise linear surface is any surface made by gluing
together polygons along their edges.

• Simplicial surface A simplicial surface is a special case of a piecewise linear surface
where all the faces are triangles.

• Polygonal sphere A polygonal sphere is a sphere made of polygons, i.e. a polyhedron.

• Genus Numbers of handles. Sphere has no handle. Torus has one handle.

• Valence of a vertex is the number of edges that contains that vertex. A vertex of a
simplicial surface is said to be regular if its valence is 6.
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Theorem 2.1 (Euler’s polyhedra formula). Any polygonal disk with V vertices, E edges and
F faces satisfies

V − E + F = 1.

Any polygonal sphere satisfies
V − E + F = 2.

Proof. Using induction by reducing number of edges. When you cut off one edge, both E
and F are reduced by 1, but V is unchanged. Thus the Euler characteristic remains the
same.

Exercise 1. Complete the proof.

In general, we have the Euler-Poincaré formula:

Theorem 2.2 (Euler-Poincaré). A compact oriented polygonal surface with genus g satisfies

V − E + F = 2− 2g.

Proof. See Eppstein, David. ”Twenty Proofs of Euler’s Formula: V-E+F=2” (2013). For
general formula in high dimensions, see Petr Hliněný, “A Short Proof of Euler–Poincaré
Formula” (2017).

Exercise 3. The only simplicial surface for which every vertex is regular (i.e. its valence
is 6) is torus.
Hint: use Euler-Poincaré characteristic formula.

Exercise 4. The minimum irregular valence in a simplicial complex K is

m(K) =


4, g = 0
0, g = 1
1, g ≥ 2.
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Exercise 5. Show that the mean valence approaches 6 as the number of vertices in a
simplicial surface goes to infinity.

Exercises 6-7

Exercises 8-12, 14-15

2.8 Coding exercise

Please see

• matlab introduction on http://math.ntnu.edu.tw/~yueh/courses/MATLAB_Introduction.
html and

• construction of adjacent matrices on http://math.ntnu.edu.tw/~yueh/courses/MATLAB_
MeshDataStructure.html

provided by Mei-Heng Yueh.
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Chapter 3

Discrete Surfaces

3.1 Discrete surfaces

3.1.1 Basic notions

• Polygon mesh: A polygon mesh is a triple (V,E, F ), which are vertices, edges and
faces.

• A face is a polygon, described by f = {{i1, i2}, {i2, i2}, ..., {in, i1}}, or simply a cycli-
cally ordered list [i1, ..., in].

• Incident relation: We say e is incident to f (denoted by e ≺ f) if e is an edge of
f . If v is a vertex of an edge e, we say v ≺ e. The incident relation is transitive, that
means, if v ≺ e and e ≺ f , we say v ≺ f .

• Discrete surfaces are those polygonal mesh (V,E, F ) satisfying the following mani-
fold conditions:

– each e ∈ E is incident to one or two faces;

– for each vertex v ∈ V , the faces incident to v form a closed fan or an open fan.

• Triangulated surfaces are those discrete surfaces with only triangle faces. Triangu-
lated surfaces are also called simplicial surfaces.

• Discrete metric on a triangulated surface M = (V,E, F ) is a set of positive edge
lengths ℓ : E → R+ satisfying the triangle inequality

ℓij + ℓjk > ℓki for all [ijk] ∈ F.

• Realization of a discrete surface M = (V,E, F ) in 3D by a map

f : V → R3
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with f being linear on F by linear interpolation. Such a surface in R3 is called a
piecewise linear surface. The mapping f is called an immersion if (i) the image of each
face has nonzero area; (ii) the faces incident to each vertex do not intersect. It is called
embedding if the image of M has no intersection.

3.1.2 Geometric measurements for triangulated surfaces

• edge vector vij := fj − fi for [ij] ∈ H

• edge length ℓij := |vij|

• area For an oriented triangle [ijk], Aijk is its signed area;

• normal Nijk :=
vij×vik
|vij×vik|

• interior angle θijk := cos (⟨v̂ij, v̂ik⟩)

• bending angle For an interior edge {j, k} incident to [ijk] and ℓkj], the bending angle

αjk := sin−1 (⟨v̂jk, Nijk ×Nℓkj⟩) .

3.1.3 Intrinsic quantities

• LetM = (V,E, F ) be a triangulated surface with a metric ℓ. A quantity onM is called
intrinsic if it only depends on the metric, not on how M is realized in R3.

• Area A is intrinsic.

Aijk =
1

4

√
(ℓij + ℓjk + ℓki) (−ℓij + ℓjk + ℓki) (ℓij − ℓjk + ℓki) (ℓij + ℓjk − ℓki)

Proof. Let us call the length of the triangle by a, b, c. By sine law,

A2 =
1

4
a2b2 sin2C =

1

4
a2b2

(
1− cos2C

)
=

1

4
a2b2

(
1−

(
a2 + b2 − c2

2ab

)2
)
.

You can complete the rest.

• Interior angle θijk is intrinsic:

θijk = cos

(
ℓ2ij + ℓ2ki − ℓ2jk

2ℓijℓki

)
.

• The angle defect d(i) is intrinsic. For an interior vertex i, we define the angle
defect (or the discrete Gaussian curvature form) of M at i by

d(i) := 2π −
∑

i≺[ijk]

θijk (3.1)
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Figure 3.1: In this figure, we cut the lines to get four triangles. In the second subfigure, we
move down the upper left and upper right edges. These left/right angles decrease. We then
paste the to triangle and get a convex vertex. In the third subfigure, we increase the two
angles on the two wings, then paste the upper triangle. In this case, K < 0.

Theorem 3.1 (Descartes Theorem). Consider a discrete surface M without boundary with
simplicial complex (V,E, F ). Then∑

v∈V

d(v) = 2πχ(M) = 2π(|V | − |E|+ |F |).

Proof. Let v ∈ V be a vertex. By definition, the defect angle

d(v) = 2π −
∑
i

{iv}∈E

αi = 2π −
∑
i

{iv}∈E

(π − βi),

where βi is the supplementary (exterior) angle of αi. Thus,∑
v∈V

d(v) =
∑
v∈V

2π −
∑
v∈V

∑
i

{iv}∈E

(π − βi)

= 2π|V | − 2π|E|+
∑
v∈V

∑
i

{iv}∈E

βi

For the last term, we can sum it over faces.∑
v∈V

∑
i

{iv}∈E

βi =
∑
v∈V

∑
i

{iv}∈E

(π − αi) =
∑
v∈V

∑
f∈F
v≺f

(π − αf )

=
∑
f∈F

∑
f∈F
v≺f

(π − αf ) =
∑
f∈F

(3π − π) = 2π|F |.

Thus, ∑
v∈V

d(v) = 2πχ(M).
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• Parallel transport is intrinsic. Let M = (V,E, F ) be a triangulated surface. Let
γ be a curve on M . We assume γ does not hit any vertex. Let X be a vector on the
tangent plane of M at p1 ∈ γ. The parallel transport of X along γ is by the following:

– In a single triangle, parallel transport of X is the same in the Euclidean space
(plane);

– As γ crawls over an edge, flatten the two triangles and parallel transport X as
that on the flan plane.

Under this definition, the parallel transport is independent how the trangle bent across
an edge. Thus, it is intrinsic.

• Holonomy angle is intrinsic. Let γ be a closed curve that winds around a vertex
i ∈ V counterclockwise once. Let X be a vector field parallel transported along γ.
The angle it rotates after traveling along γ once is called the holonomy angle of i.

Theorem 3.2 (Discrete Local Gauss-Bonnet Theorem (Holonomy)). Let M = (V,E, F ) be
a discrete surface. Let i ∈ V be a vertex. The holonomy h(i) equals the angle defect d(i).

Proof. 1. Let us choose a special curve γ which is constructed as the follows. Let [ijk]
be a triangle incident to i. Let B and C are the points of the edge [ij] and ik with
equal distances to i. We draw two lines from B and C perpendicular to [ij] and [ik]
respectively. These two lines intersect at D. The angle ∠BDC is the supplementary
angle of θijk. By construction, the curve γ is a closed curve.

2. Let X be a vector field parallel transported along γ. There is no angle change as it
craws across an edges. In the triangle [ijk], the angle changes by θijk as it passes by
the intersection point D. Thus, the total angle change in one loop is

∑
[ijk]∈F θ

i
jk.

3. For general γ, we get the same angle change in a triangle because it is flat and no
angle change across edges from the definition of parallel transport.

• Geodesic curvature is intrinsic.. Let γ : I → M be a regular curve. Then by
laying the triangles flat locally, we have a plan curve. The curvature of this plane
curve is called the geodesic curvature, denote by κg. From this definition, it is easy to
see that

´
γ
κg ds = 0 for those closed curve γ that does not wind around any vertex.

Theorem 3.3 (Discrete Local Gauss-Bonnet Theorem (Turning Angle)). Let γ be a
closed curve on M that winds around a vertex i counterclockwise once, then the total
winding number ˆ

γ

κg ds =
∑

[ijk]≻i

θijk

In other words,

d(i) +

ˆ
γ

κg ds = 2π. (3.2)
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Proof. The geodesic curvature is the angle change rate. The integral
´
γ
κg ds is the

total angle change along γ, which is exactly the holonomy at i.

3.1.4 Discrete Gaussian curvature

Consider vertex pi surrounded by the triangles tijk. We would like to define the Gaussian
curvature at pi. Let cijk be the circumcenter of the triangle fijk (the image f(tijk)), cjk the
center of the edge ujk, and Ui the dual cell that contains fi with boundary which is one-loop
geodesic curves that connects cjk, cijk. Let us compute

´
Ui
K. We use the formula

d(pi) = Area(N(Ui)).

The image N(Ui) is a spherical polygon on unit sphere. It consists of vertices Nijk ∈ S2 with
pi ≺ tijk. The interior angle at Nijk is βijk. We claim that βijk + αijk = π, where αijk is the
interior angle of the triangle f(tijk) at vertex fi. This can be shown by investigating interior
angles of the quadrilateral [fi, cik, cijk, cij]. Its proof is left for exercise.

Lemma 3.1. The area of a spherical triangle on S2 with interior angles β1, β2 and β3 is

A = β1 + β2 + β3 − π.

The area of a spherical polygon on S2 with interior angles β1, ..., βn is

A =
n∑

i=1

βi + (2− n)π.

Figure 3.2: Copied from Crane’s note. The angle α in this Figure is the β in this note.
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By using this lemma, we get

d(pi) =
∑

pi≺tijk

βijk + (2− n)π = 2π −
∑

pi≺tijk

αijk.

Figure 3.3: Copied from Crane’s note.
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Chapter 4

Surfaces

4.1 Basic notions of differential geometry

• Charts, Atlas, abstract definition of manifolds, parametrization

• Realization of abstract surfaces, immersion, embedding

• Tangent and normal.

• Metric, Riemannian manifolds

4.1.1 Abstract differential manifolds

Definition of n-dimensional differential manifold

• A parametrized manifold is a set M endowed with an atlas (Uα,xα) such that

(i) Uα ⊂M are open and ∪αUα =M

(ii) xα : Uα → Rn such that on each overlapping region Uα ∩ Uβ, the function

φα,β := xβ ◦ x−1
α : xα(Uα ∩ Uβ)→ xβ(Uα ∩ Uβ)

is a diffeomorphism (i.e. φα,β is 1-1, onto, and both φα,β and φ−1
α,β are continuously

differentiable). Here, x is called a coordinate. Its inverse x−1 : x(U)→ U is called
a parametrization.

• Two atlases (Uα,xα)α (Uβ,xβ)β are called equivalent if their union forms a consistent
new atlas.

• The equivalent class of atlased manifold is called a differential manifold.
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Orientable manifold

• Suppose M is a manifold with atlas (Uα,xα)α. Two overlapping charts (Uα,xα),
(Uβ,xβ) are called orientation consistent if det(dφα,β) > 0 in xα (Uα ∩ Uβ).

• If M owns an orientation consistent atlas, we call M is orientable.

• The Möbius band is not orientable. The projective space CP 2 is not orientable.

4.1.2 Tangent spaces

• Tangent : Given a point p ∈ M . Let (U,x) be a coordinate chart covering p. The
region U is described by the coordinate x. The tangent space at x(p) ∈ x(U) ⊂ Rn

is Rn. Thus, it is natural to identify a vector in Rn as a tangent vector of M at
p. This definition should be consistent in the following sense: if (Uα,xα), (Uβ,xβ)
are two charts covering p and φα,β be coordinate transformation from xα(Uα ∩ Uβ) to
xβ(Uα ∩ Uβ), then the tangent vectors vα ∈ Txα(p)Rn and vβ ∈ Txβ(p)Rn satisfy

vβ = dφα,β|xα(p)
(vα).

Let us denote Tp(M) the tangent space of M at p.

• Let γ : I → M be a parametrized curve with γ(0) = p. We can identify γ′(0) as a
tangent vector at p. Conversely, for any X ∈ Tp(M), there exists a parametrized curve
γ : (−ε, ε)→M such that γ′(0) = X.

4.1.3 Realization of abstract surfaces

• Immersion Let M be a two dimensional manifold. A differential

f :M → R3

is called an immersion of M in R3 if for any chart (U,x), the Jacobian of the map
f ◦ x−1 : R2 → R3 is of full rank.

• Embedding It is called an embedding if f is 1-1.

• Representation of tangent space Let M be a surface, p ∈ M . Suppose (U, (u, v))
is a coordinate chart containing p ∈ M . The tangent plane is spanned by ∂u and ∂v
(i.e. ∂/∂u and ∂/∂v). Their images on R3 are dfp(∂u) = fu and dfp(∂v) = fv. The
matrix representation of dfp is called the Jacobian of f , which is J := (fu, fv)3×2.
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4.1.4 Examples of surfaces

Let us study a surface imbedded in R3. The surface is parameterized by f :M(⊂ R2)→ R3.
Several concrete examples are

• Sphere:

f(u, v) = (cosu cos v, sinu cos v, sin v), 0 ≤ u ≤ 2π,−π/2 ≤ v ≤ π/2.

• Ellipsoid:

f(u, v) = (a cosu cos v, b sinu cos v, c sin v), 0 ≤ u ≤ 2π,−π/2 ≤ v ≤ π/2.

• Hyperboloid:

f(u, v) = (a cosu cosh v, b sinu cosh v, c sinh v), 0 ≤ u ≤ 2π,−∞ < v <∞.

• Cylinder: f(u, z) = (cosu, sinu, z), 0 ≤ u ≤ 2π, 0 ≤ z ≤ 1.

• Torus:

x(θ, φ) = (R + r cos θ) cosφ

y(θ, φ) = (R + r cos θ) sinφ

z(θ, φ) = (R + r sin θ)

0 ≤ θ < 2π, 0 ≤ φ < 2π.

• Möbius band:

x(u, v) =
(
1 +

v

2
cos

u

2

)
cosu

x(u, v) =
(
1 +

v

2
cos

u

2

)
sinu

z(u, v) =
v

2
sin

u

2
.

0 ≤ u < 2π, −1 ≤ 1 ≤ 1.

• Projective plane: is the set of all 1D subspace in R3. That is, we define an equivalent
relation ∼ in R3 − {0} by x ∼ y if there exist a number a such that y = ax. The
projective plane is defined as

RP 2 :=
(
R3 − {0}

)
/ ∼ .

We can define the following open sets:

Ui = {(x0, x1, x2) ∈ R3 − {0}|xi ̸= 0}, i = 0, 1, 2.

Ui is an open set in R3. U0 (in general, Ui) can be parameterized by

ξ10 = x1/x0, ξ20 := x2/x0.

Then (Ui, ξi) is a coordinate chart of RP 2.

We call M the abstract manifold, and the image f(M) the embedded manifold in R3. We
shall investigate surface curvature.
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4.2 Surface measurements

4.2.1 Intrinsic measurement

• Metric (inner product structure): The metric of M is induced by the metric in
R3 through f : for any two tangent vectors X, Y ∈ Tp(M), define their inner product
to be

gp(X, Y ) := ⟨X, Y ⟩p := ⟨dfp(X), dfp(Y )⟩R3 ,

which satisfies

* bilinear: ⟨aX + bY, Z⟩ = a⟨X,Z⟩+ b⟨Y, Z⟩,
* symmetry: ⟨X, Y ⟩ = ⟨Y,X⟩,
* positive definite: ⟨X,X⟩ ≥ 0, ⟨X,X⟩ = 0 if and only if X = 0.

Definition 4.1. (1) A metric on M is a smooth inner product structure gp : TpM ×
TpM → R at every point p.

(2) A manifold M equipped with a smooth inner product structure gp is called a
Riemannian manifold.

• Length: the length of a tangent vector X is defined to be ∥X∥ =
√
⟨X,X⟩. The

length of a C1 curve γ : I →M is defined to beˆ
I

∥γ ′(t)∥ dt.

• Angle: The angle of two tangent vectors X, Y ∈ TpM is defined to be

θ := cos−1

(
⟨X, Y ⟩
∥X∥∥Y ∥

)
.

• Area: Given two tangents X, Y ∈ TpM . The signed area of the parallelogram spanned
by X, Y is given by

det(X, Y ) = ∥X∥∥Y ∥ sin(θ).
It can also be expressed in terms of inner product as

det(X, Y )2 =

∣∣∣∣⟨X,X⟩ ⟨X, Y ⟩⟨X, Y ⟩ ⟨Y, Y ⟩

∣∣∣∣ .
The (unsigned) area of a region U ⊂ M with coordinate x = (u, v) can be computed
by

A(U) =
ˆ
x(U)

| det(∂u, ∂v)| du dv.

Such definition is independent of choice of coordinate chart. The term σ := det(∂u, ∂v) du∧
dv is called a signed area element of M . You can show it is independent of choice of
coordinate chart.
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• Orthogonal coordinate chart Given a coordinate chart (U, (u, v)) at p ∈M , we can
locally reparametrize it as (u,w) in a small neighborhood W of p such that ∂u ⊥ ∂w.
In other words, (W, (u,w)) is an orthogonal coordinate system. ∗

4.2.2 Extrinsic approach through embedding

Gauss Map

• Gauss map: The normal of the surface at p ∈M is the unit vector that is normal to
the tangent plane at p. In terms of coordinate system

N(p) = N(u, v) =
fu × fv
∥fu × fv∥

.

The map N : M → S2 is called the Gauss map. The Gauss map can reflect how the
surface is curved in R3.

Shape Operator

• Definition of Shape operator: Given any X ∈ TpM . By differentiating ⟨N,N⟩ = 1
in the direction X, we get dNp(X) ⊥ Np = dfp(TpM)⊥. Thus, dNp(X) ∈ dfp(TpM). In
other words, for any X ∈ Tp(M), there exists a unique Y ∈ Tp(M) such that

dNp(X) = dfp(Y ).

The mapping S : X 7→ Y is called the shape operator on TpM . That is

dNp = dfp ◦ S. (4.1)

The shape operator is linear because both dNp and dfp are linear.

• Coordinate representation of the shape operator Let (U, (u, v)) be a coordinate
chart containing p ∈M . The corresponding tangent (∂u, ∂v) forms a basis in TpM . We
have [

⟨S∂u, ∂u⟩ ⟨S∂u, ∂v⟩
⟨S∂u, ∂v⟩ S⟨∂v, ∂v⟩

]
= −

[
fuu ·N fuv ·N
fuv ·N fvv ·N

]
.

This is because

⟨S∂u, ∂u⟩ = ⟨dNp(∂u), dfp(∂u)⟩ = ⟨Nu, fu⟩ = −⟨N, fuu⟩.
∗We look for a function w(u, v) such that (wu∂u + wv∂v) ⊥ ∂u using the metric induced by f . That is,

⟨wu∂u + wv∂v, ∂u⟩ = 0.

This is a linear PDE for w which can be solved by method of characteristics locally.
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• Shape operator is self-adjoint:

⟨SX, Y ⟩ = ⟨X,SY ⟩

This is easily followed from the coordinate representation of S and the symmetry
property of the Hessian of f .

• The shape operator S as a quadratic form The quadratic form ⟨SX,X⟩ =
⟨dNp(X), dfp(X)⟩ measures how much deviation of dN from X as N travels along
X.

• Shape operator in coordinate: We introduce the second fundamental form. We
take the variation of N in direction X, then project the resulting vector to dfp(Y ).
This gives

⟨dNp(X), dfp(Y )⟩ = ⟨dfp(SX), dfp(Y )⟩ = ⟨SX, Y ⟩.

We define
II(X, Y ) := ⟨dNp(X), dfp(Y )⟩ = ⟨SX, Y ⟩.

This is called the second fundamental form of M .

• II(·, ·) is symmetric. The symmetry of II can be read from the coordinate representa-
tion of II(·, ·). Note that ⟨N, df(∂u)⟩ = ⟨N, fu⟩ = 0 and ⟨N, fv⟩ = 0. We differentiate
these two equations in u and v to get

II(∂u, ∂v) = ⟨Nu, fv⟩ = −⟨N, fvu⟩ = −⟨N, fuv⟩ = II(∂v, ∂u⟩.

Thus, the coordinate representation of the second fundamental form is[
II(∂u, ∂u) II(∂u, ∂v)
II(∂u, ∂v) II(∂v, ∂v)

]
= −

[
fuu ·N fuv ·N
fuv ·N fvv ·N

]
which is symmetric. Since the bilinear form II(·, ·) is symmetric for the basis ∂u and
∂v, we get II(X, Y ) = II(Y,X) for arbitrary two tangent vectors X and Y .

• The shape operator S : Tp(M)→ Tp(M) is self-adjoint w.r.t. the metric ⟨·, ·⟩. This is
because

⟨SX, Y ⟩ = II(X, Y ) = II(Y,X) = ⟨SY,X⟩ = ⟨X,SY ⟩.

• Coordinate representation of shape operator. Let us use (u, v) as our coordinate on
M . We want to represent S in terms of the basis (∂u, ∂v). We write S(∂u) = a∂u + b∂v
and S(∂v) = c∂u + d∂v. From dN(X) = df(S(X)) with X = ∂u and ∂v respectively,
we get

dN(∂u) = df(S(∂u)), dN(∂v) = df(S(∂v))

This leads to
Nu = afu + bfv, Nv = cfu + dfv. (4.2)
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Note that
⟨N, fu⟩ = 0, ⟨N, fv⟩ = 0

which lead to
⟨Nu, fu⟩ = −⟨N, fuu⟩, ⟨Nv, fv⟩ = −⟨N, fvv⟩,

⟨Nv, fu⟩ = −⟨N, fuv⟩ = ⟨Nu, fv⟩.

Thus, by taking inner product of (4.2) with fu and fv, we get

SI = II,

where

I :=

[
⟨fu, fu⟩ ⟨fu, fv⟩
⟨fu, fv⟩ ⟨fv, fv⟩

]
=

[
E F
F G

]
II := −

[
fuu ·N fuv ·N
fuv ·N fvv ·N

]
= −

[
e f
f g

]
are matrix representation of the first and second fundamental forms, respectively. And
the matrix

S =

[
a b
c d

]
.

Thus,

S = II · I−1 =
1

F 2 − EG

[
eG− fF fE − eF
fG− gF gE − fF

]
. (4.3)

Curvatures

• Normal curvature. Given X ∈ TpM , the quantity dNp(X) measures how the normal
N varies along direction X. Thus, we define the normal curvature

κN(X) :=
⟨dNp(X), dfp(X)⟩

∥X∥2
=
⟨SX,X⟩
∥X∥2

.

It measure how the normal N changes in direction X.

• Principle curvature The eigenvalues κ1 and κ2 of S w.r.t. ⟨·, ·⟩ are called the prin-
cipal curvatures. The corresponding eigenvectors are called the principal curvature
directions. They are orthogonal to each other because S is self-adjoint. The principle
curvatures are the extremal values of the quadratic form ⟨SX,X⟩:

κ1(p) = min
X∈TpM

∥X∥=1

⟨SpX,X⟩,

κ2(p) = max
X∈TpM

∥X∥=1

⟨SpX,X⟩.
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• Mean curvature and Gaussian curvature

* The two invariants of S are

Mean curvature: H := (κ1 + κ2)/2 = 1
2
Tr(S),

Gaussian curvature: K := κ1κ2 = detS.

* Curvature formula in terms of coordinate: using (4.3), we have

H =
1

2

eG+ gE − 2fF

F 2 − EG
.

K = detS =
f 2 − eg
EG− F 2

.

* Properties of Mean curvature We have

H =
1

2π

ˆ 2π

0

κN(Xθ) dθ, (4.4)

where Xθ = cos θX1 + sin θX2. That is, the mean curvature is the average of the
normal curvatures in all directions. Formula (4.4) follows from

κN(Xθ) = κ1 cos
2 θ + κ2 sin

2 θ.

* Property of Gaussian curvature The meaning of the Gaussian curvature can
be read from the formula

dNp = dfp ◦ S
by the following procedure. Let us draw a small disk Bε(p) about p on M . The
image of this disk by the Gauss map N :M → S2 is N(Bε(p)). The image of this
disk by the embedding map f : M → R3 is f(Bε(p)). From dN = df ◦ S, The
ratio of these two areas is the determinant of Sp:

A(N(Bε(p)) ≈ A(f(Bε(p)) · det(Sp) = A(f(Bε(p)) ·Kp.

Thus,

Kp = lim
ε→0

A(N(Bε(p))

A(f(Bε(p))
. (4.5)

• Geodesic curvature Let γ be a curve on M and γ = f ◦ γ be the curve on the
manifold f(M). From curve theory, γ ′ = T , γ ′′ = T ′ ⊥ T . There are two components
of γ ′′: one is on N , the normal of f(M), the other one is on the tangent plane. Let us
construct a local frame: e1 = T , e3 = N and e2 = e3 × e1. Then,

γ ′′ = κge2 − κNe3. (4.6)

Here,
−κN := ⟨γ ′′, e3⟩ = −⟨γ ′, e′3⟩ = −⟨T,N ′⟩.
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κg := ⟨γ ′′, e2⟩ = −⟨γ ′, e′2⟩ = −⟨e1, e′2⟩.
The projection of γ ′′ onto the tangent plane TpM is called the geodesic curvature.
Recall in plane curve, −⟨T,N ′⟩ = κ, where N is the plane normal and κ is the plane
curvature, which measure angle-change of T along γ on the plane. On the surface
M , the term e2 is the plane normal of the curve γ. Thus, κg := ⟨T, e′2⟩ measures the
angle-change of T along γ on the surface M .

Remark Recall the framed curve (T (s), e2(s), N(s)) along γ(s), we have the follow-
ing frame equation T ′

e′2
N ′

 =

 κg −κN
−κg ω
κN −ω

Te2
N


Here, ω = −⟨dN(T ), e2⟩ measures how N is twisted on the normal plane of the curve
γ. We shall come back to this frame approach in the next subsection.

Examples

• The sphere of radius r. κ1 = κ2 = 1/r. H = 2/r and K = r2.

• Cylinder: S1
r × R. κ1 = 1/r, κ2 = 0. H = 1/r and K = 0.

• Torus: S1
r1
× S1

r2
.

• Hyperblic surface f : (x, y) 7→ (x, y, x2 − y2).

• Ruled surfaces

4.3 Intrinsic Surface Structure – Connection approach

We have seen that the variation of the normal vector field on a surface M reflects how M
curves. From which we define normal curvature, principle curvatures, etc. In this section,
we would like to study concept of curvature derived intrinsically. This means that we shall
investigate how surface curved through the variation of tangent vector fields, the covariant
derivative of vector fields. From which, we shall see that the geodesic curvature, the Gaussian
curvature are intrinsic. The contents include

• Covariant derivative for vector fields in R2 with curvilinear coordinate systems

• Frame in R3

• Covariant derivatives for vector fields in R3 with frame

• Frame on surface

• Covariant derivatives for vector fields on a surface

• Gauss-Bonnet Theorem
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4.3.1 Frame and covariant derivatives in Euclidean spaces

Covariant derivative in curvilinear coordinate systems Let us take the polar coor-
dinate as an example to illustrate the concept of covariant derivatives of vector fields in R2

ion curvilinear coordinate system.
Suppose we have a vector field V in R2 with polar coordinate system. We express

V = V rer + V θeθ,

where the unit tangent vectors

er = (cos θ, sin θ) =
∂

∂r
, eθ = (− sin θ, cos θ) =

1

r

∂

∂θ
.

The covariant derivatives for vector field V in the directions of er and eθ are defined to be

∇erV :=
∂V

∂r
=
∂V r

∂r
er +

∂V θ

∂r
eθ + V r ∂er

∂r
+ V θ ∂eθ

∂r

=
∂V r

∂r
er +

∂V θ

∂r
eθ,

∇eθV :=
1

r

∂V

∂θ
=

1

r

(
∂V r

∂θ
er +

∂V θ

∂θ
eθ + V r ∂er

∂θ
+ V θ ∂eθ

∂θ

)
= (∇eθV

r)er + (∇eθV
θ)eθ + V r∇eθer + V θ∇eθeθ.

For general vector field X on R2, X can be expressed as

X = Xeer +Xθeθ.

The covariant derivative of V in the direction of X is defined as

∇XV := Xr∇erV +Xθ∇eθV.

The terms ∇eθer and ∇eθeθ measure how er and eθ change in the direction of eθ. Indeed,

∇erer = 0, ∇ereθ = 0

∇eθer =
1

r

∂

∂θ
(cos θ, sin θ) =

1

r
(− sin θ, cos θ) =

1

r
eθ,

∇eθeθ =
1

r

∂

∂θ
(− sin θ, cos θ) = −1

r
(cos θ, sin θ) = −1

r
er.

Covariant Derivative in Euclidean space

• Covariant Derivative for vector fields in R3 Let V and Y be vector fields in R3.
Define the covariant derivative of Y at p ∈ R3 in the direction of V by

∇V Y := lim
∆t→0

Y (p+∆tV (p))− Y (p)

∆t
. (4.7)
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Note that ∇V Y (p) depends on V (p) and Y in a neighborhood of p. Let γ be the curve
with γ(0) = p and γ̇(0) = V (p). Then

∇V Y =
d

dt
|t=0Y (γ(t)). (4.8)

In other words, the covariant derivative ∇V Y depends on V (p) and Y (q) with q ∈ γ
in a neighborhood of p.

• Covariant derivative for scalar field f

∇V f := V f(p) := lim
∆t→0

f(p+ tV (p))− f(p)
∆t

.

• Properties of covariant derivative.

Proposition 4.1. Let V,W, Y, Z be vector fields, a, b ∈ R, f, g scalar field. The co-
variant derivative ∇V satisfies

(a) ∇V (aY + bZ) = a∇V Y + b∇VZ

(b) ∇fV+gWY = f∇V Y + g∇V Y

(c) ∇V (fY ) = (∇V f)Y + f∇V Y

(d) ∇V (Y · Z) = (∇V Y ) · Z + Y · (∇VZ).

Frame and Dual frame

• Frame A frame {e1, e2, e3} in Ω ⊂ R3 is a triple of three orthonormal smooth vector
fields defined on Ω.

• Dual Frame Let {θ1, θ2, θ3} be the 1-form dual to the frame {e1, e2, e3}. That is,
θi(ej) = δij.

• Example The domain Ω = R3 \ {0} with spherical coordinate system
x = r cos θ cosϕ
y = r cos θ sinϕ
z = r sin θ

0 ≤ ϕ < 2π,−π
2
< θ ≤ π

2
.

The spherical frame (er, eϕ, eθ) are

er = (cos θ cosϕ, cos θ sinϕ, sin θ) =
∂

∂r

eϕ = (− sinϕ, cosϕ, 0) =
1

r cos θ

∂

∂ϕ

eθ = (− sin θ cosϕ,− sin θ sinϕ, cos θ) =
1

r

∂

∂θ
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• Connection Given a frame {e1, e2, e3}, we define the connection ωij to be the 1-form

ωij(V ) := (∇V ei) · ej.

That is,

∇V ei =
3∑

j=1

ωij(V )ej.

Thus, ∇V ei measure the variation of ei in direction V , and ωij(V ) is the projection on
ej.

• Since ei · ej = δij, we take covariant differentiation on this formula to get

(∇V ei) · ej + ei · (∇V ej) = 0.

That is
ωij = −ωji.

Thus, we get frame equation

∇V

e1e2
e3

 =

 0 ω12(V ) ω13(V )
−ω12(V ) 0 ω23(V )
−ω13(V ) −ω23(V ) 0

e1e2
e3

 .
• Representation of frame and connection in Euclidean coordinate. Let {∂xi}3i=1

be the Euclidean basis and {dxi}3i=1 be their dual. We express

ei =
∑
j

aij(x)∂xj .

Then we have

ATA = AAT = Id

θi =
∑
k

aikdx
k

ωij = (daik)ajk.

Proof. 1. Since both {∂xi
} and {ei} are orthonormal, we have ATA = AAT = Id

and ei =
∑

j aij(x)∂xj
.

2. Let V be a vector in R3. We have

ωij(V ) = (∇V ei) · ej =

(
∇V

∑
k

aik∂xk

)
· (
∑
ℓ

ajℓ∂xℓ
)

=
∑
k

(∇V aik)∂xk
· (
∑
ℓ

ajℓ∂xℓ
) =

∑
k

∑
ℓ

(∇V aik)ajℓδkℓ

=
∑
k

(∇V aik)ajk =
∑
k

(daik(V ))ajk.
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Homework Compute (∇ekei) · ej for spherical frame.

Structure Equations

Theorem 4.1 (Cartan’s structure equations). Let {e1, e2, e3} be a frame in Ω ⊂ R3 and
{θ1, θ2, θ3} be its dual frame, and {ωij} be the corresponding connection 1-form. Then, they
satisfy the following structure equation:

(a) First structure equation

dθi =
∑
j

ωij ∧ θj

(b) Second structure equation

dωij =
∑
k

ωik ∧ ωkj

Proof. 1. (a)

dθi = d

(∑
k

aikdx
k

)
=
∑
k

daik ∧ dxk

=
∑
k

daik
∑
j

(A−1)kjθj =
∑
j

∑
k

daikajkθj

=
∑
j

ωij ∧ θj

2. (b)

dωij = d

(∑
k

daikajk

)
= −

∑
k

daik ∧ dajk

= −
∑
k

daik
∑
ℓ

δkℓ ∧ dajℓ

= −
∑
k

∑
ℓ

daik
∑
m

amkamℓ ∧ dajℓ

= −
∑
m

ωim ∧ ωjm =
∑
k

ωik ∧ ωkj
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Remarks

1. dθi(ek, eℓ) measures the difference of changes of ei along ek and eℓ.

dθi(ek, eℓ) =
∑
j

ωij(ek)θj(eℓ)− ωij(eℓ)θj(ek)

= ωiℓ(ek)− ωik(eℓ)

2. The second structure equation means that the differential of ω can be expressed in
terms of ω again. This means there is no need to go higher differentiation. The
geometry of the frame is completely determined by dθ and dω. Later, we will see that
surface curvature is in dω. We don’t need to go higher derivatives of curvature to
determine the surface.

3. The frame is completely determined by the connection 1-form {ωij} through the first
structure equation. However, the connection {ωij} should satisfy the compatibility con-
dition, which is the second structure.

4.3.2 Frame on a surface

Let M be a surface in R3.

• A frame on M is a frame {e1, e2, e3} defined on M with e3 being the normal and e1, e2
the tangents of M .

• There exists a frame in D ⊂ M if and only if D is orientable and there exists a
non-vanishing tangent vector field on D.

• Given a vector field Y defined on M and a tangent vector V ∈ Tp(M), we can find a
curve γ on M with γ(0) = p and γ̇(0) = V (p). Then the covariant derivative

∇V Y =
d

dt
|t=0Y (γ(t)).

is the same as (4.8).

• Suppose {e1, e2, e3} is a frame on M . Let V be a tangent vector field on M . The
connection ωij is a 1-form on M defined by

ωij(V ) = (∇V ei) · ej

We have
ωij = −ωji

and for V ∈ TpM ,

∇V

e1e2
e3

 =

 ω12(V ) ω13(V )
−ω12(V ) ω23(V )
−ω13(V ) −ω23(V )

e1e2
e3

 .
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• Let {θ1, θ2, θ3} be the dual of {e1, e2, e3} onM . This means that for any V =
∑3

i=1 viei,
θj(V ) = vj for j = 1, 2, 3. This can be defined only for points on M . In particular, for
p ∈M , we have

(a) θ3(V ) = 0 for any V ∈ TpM and θ3(e3) = 1

(b) θ1 ∧ θ2 is the area form of M .

• The Cartan’s structure formula is still valid

dθi =
∑
j

ωij ∧ θj, dωij =
∑
k

ωik ∧ ωkj

on M . In particular, if we restrict θj on TpM , then

θ3 = 0.

Cartan’s structure formulae become{
dθ1 = ω12 ∧ θ2, dθ2 = −ω12 ∧ θ1
dθ3 = ω31 ∧ θ1 + ω32 ∧ θ2 = 0.

(4.9)


dω12 = ω13 ∧ ω32

dω23 = ω21 ∧ ω13

dω13 = ω12 ∧ ω23.
(4.10)

• The shape operator S : TpM → TpM is defined to be

SV := −∇V e3 = ω13(V )e1 + ω23(V )e2.

The matrix representation of S in the basis {e1, e2} is

S =

[
ω13(e1) ω13(e2)
ω23(e1) ω23(e2)

]
This matrix is symmetric due to the following reason. From (4.9), we get

0 = ω31 ∧ θ1(e1, e2) + ω32 ∧ θ2(e1, e2) = −ω31(e2) + ω32(e1).

From antisymmetry of ω, we thus obtain

ω13(e2) = ω23(e1).

As a byproduct, this also shows that ∇e2e1 −∇e1e2 ∈ TpM .

• The mean curvature and Gaussian curvature are defined to be

H =
1

2
Tr(S), K = det(S).

We have
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(a) ω13 ∧ θ2 + θ1 ∧ ω23 = 2Hθ1 ∧ θ2
(b) ω13 ∧ ω23 = Kθ1 ∧ θ2
(c) dω12 = −Kθ1 ∧ θ2.

Proof. 1. From
2H = Tr(S) = ω13(e1) + ω23(e2)

and
(ω13 ∧ θ2 + θ1 ∧ ω23)(e1, e2) = ω13(e1) + ω23(e2)

we get
ω13 ∧ θ2 + θ1 ∧ ω23 = 2Hθ1 ∧ θ2.

2. Note that

K = det(S) = ω13(e1)ω23(e2)− ω13(e2)ω23(e1)

= ω13 ∧ ω23(e1, e2)

Thus,
ω13 ∧ ω23 = ω13 ∧ ω23(e1, e2) θ1 ∧ θ2 = Kθ1 ∧ θ2.

Further, from structure equation

dω12 = ω13 ∧ ω32,

we get (c).

Remark. Note that ω12 depends only on e1, e2. The formula

dω12 = −Kθ1 ∧ θ2

means that K is an intrinsic quantity of M . It only depends on the metric of M , which
implies that K is invariant under isometric deformation of M . This is called Gauss’s
Theorema Egregium (Gauss’s remarkable theorem).

• The eigenvalue/eigenvector of S:

Sêi = κiêi, i = 1, 2

Let ω̂ij = ∇êi êj. Then the representation of S in {êi} is

S =

[
ω̂13(ê1) ω̂13(ê2)
ω̂23(ê1) ω̂23(ê2)

]
=

[
κ1 0
0 κ2

]
– The equality ω̂23(ê1) = 0 means that ê2 parallel transports along e1.
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– Similarly, ω̂13(ê2) = 0 means that ê1 parallel transports along e2.

– The quantity ω̂13(ê1) measures how ê1 varies along ê1, or equivalently, how e3
varies along ê1. Along integral curve of ê1, e3 is the normal and ê2 is the binormal.

• We have
ω̂13 =

∑
k

ω̂13(êk)θ̂k = κ1θ̂1

ω̂23 =
∑
k

ω̂23(êk)θ̂k = κ2θ̂2.

Thus, the structure equations are

ω̂13 ∧ θ̂2 + θ̂1 ∧ ω̂23 = 2Hθ̂1 ∧ θ̂2.

dω̂12 = ω̂13 ∧ ω̂32 = −κ1κ2θ̂1 ∧ θ̂2 = −Kθ̂1 ∧ θ̂2.

Theorem 4.2 (Local Gauss-Bonnet Theorem). Let U be a disk-like domain on a 2-
manifold M with smooth boundary γ. Then

ˆ
γ

κg ds = 2π −
ˆ
U

Kσ.

where K is the Gauss curvature and σ is the area form of M .

Proof. Let e1, e2, e3 be an orthogonal frame on M with e3 being the normal of M . We
can express γ ′ as

γ ′ = cosφe1 + sinφe2.

γ ′′ = φ′(− sinφe1 + cosφe2) + (cosφe′1 + sinφe′2)

N × T = − sinφe1 + cosφe2.

The geodesic curvature is

κg := ⟨γ ′′, N × T ⟩ = φ′ + ⟨(cosφe′1 + sinφe′2),− sinφe1 + cosφe2⟩

From ei · ei = 1 and e1 · e2 = 0, we get eie
′
i = 0 and e1 · e′2 + e′1 · e2 = 0. Thus

κg = φ′ − e1 · e′2. (4.11)

If γ is the boundary of a disk-like region U , then

ˆ
γ

κg ds =

ˆ
γ

φ′ds−
ˆ
γ

e1 · e′2 ds

= 2π −
ˆ
γ

∇γ′e2 · e1 ds
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= 2π +

ˆ
γ

ω12(γ
′)

= 2π +

ˆ
U

dω12

= 2π −
ˆ
U

Kσ

Here, σ is the surface area form of M and K is the Gaussian curvature.

Remark Formula (4.11) only involves tangent vector fields, it means that the geodesic
curvature κg is an intrinsic quantity.

Homework Consider the orthonormal frame (eϕ, eθ, er) on the unit sphere with the spher-
ical coordinate, where 0 ≤ ϕ < 2π, π/2 ≤ −θ ≤ π/2 .

1. Derive the formulae of the shape operator S.

2. Consider the following path γ: starts from north pole (0, 0, 1), then follows ϕ = 0,
π/4 ≤ θ ≤ π/2, then θ = π/4, 0 < ϕ < π/2, then go back to the north pole along
ϕ = π/2, π/4 < θ < π/2. Find the κg along this curve and compute the holonomy´
γ
κg ds.

3. Can you find the area enclosed by γ without using Gauss-Bonnet theorem?
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Chapter 5

Exterior Algebra and Calculus

In this chapter, we shall develop theory of exterior calculus which includes differential forms
and exterior derivatives. It is a calculus independent of the coordinate system we set up to
investigate the underlying geometry. Coordinate system is a representation for calculation.
But geometry and physics should not depend on the coordinate we choose. Below, we develop
the exterior algebra for vector spaces and inner product spaces, then on manifolds.
There are nice youtube lectures on geometric algebra and Clifford algebra

• A swift introduction to geometric algebra https://www.youtube.com/watch?v=60z_

hpEAtD8

• Introduction to geometric (Clifford) algebra https://www.youtube.com/watch?v=mz3tk4LRJjc

5.1 Exterior Algebra for Vector Space

5.1.1 Vector space and Dual Space

n-dimensional vector space

• Vector space A vector space V over R is a set V with two operations: vector addition
and scalar multiplication. They satisfy: (1) (u+v)+w = u+(v+w); (2) v+w = w+v;
(3) ∃0 ∈ V such that v + 0 = 0 + v for all v ∈ V ; (4) for any v ∈ V , ∃(−v) ∈ V such
that v + (−v) = 0; (5) for any a, b ∈ R, any v, w ∈ V , it holds (a + b)v = av + bv,
a(v + w) = av + aw, (ab)v = a(bv); (6) 1v = v.

• Dimension Let V be vector space over R. It is called an n dimensional space if it can
be spanned by n independent elements {e1, ..., en}. Such a set is called a basis of V .
Any two bases of V contains same number of elements. (why?) This number is called
the dimension of V . Any vector v ∈ V can be represented uniquely as

v =
n∑

i=1

viei := viei.
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Here, we will use upper index for the coefficient vi and lower index for the basis ei. We
use Einstein’s notation: whenever same upper index and lower index appear in pair, it
means that this is a summation over that index.

• Dual space A linear functional on V is a linear function α : V → R. The dual space
of V is defined as

V ∗ := {α : V → R linear}.

A linear functional is uniquely determined by its values on a basis {e1, ..., en}. Let
ei ∈ V ∗ with

ei(ej) = δij :=

{
1 i = j
0 otherwise.

Then {e1, ..., en} are independent. For any α ∈ V ∗, it can be represented uniquely as

α = αie
i, where αi := α(ei).

Thus, dim(V ∗) = dim(V ). The basis {e1, ..., en} is called the dual basis corresponding
to {e1, ..., en}. An element of V is called a vector, while an element of V ∗ is called a
co-vector.

• V ∗∗ = V Any vector v ∈ V can be viewed as an element of V ∗∗ by v(α) := α(v) for
any α ∈ V ∗. Thus, we have V ⊂ V ∗∗. Since dim(V ∗∗) = dim(V ∗) = dim(V ), we get
V ∗∗ = V .

• Remark. Sometimes, we express α(v) by ⟨α|v⟩.

5.1.2 Tensor spaces

• Tensor product of two vectors: Let U, V be two vector spaces over R. Let u ∈ U
band v ∈ V . The tensor product of them, denoted by u⊗ v is defined as an operation
satisfying linearity in both u and v, associativity, but no commutativity. The tensor
product of U and V is defined as

U ⊗ V := Span{u⊗ v|u ∈ U, v ∈ V }

An element in U ⊗ V is called a tensor.

• If {u1, · · · , um} and {v1, · · · , vn} are bases of U and V respectively, then {ui ⊗ vj|i =
1, ...,m, j = 1, ..., n} constitutes a basis of U⊗V . Thus, dim(U⊗V ) = dim(U)·dim(V ).

• A tensor T in

V ⊗ · · · ⊗ V︸ ︷︷ ︸
r times

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
s times

is called a tensor in V of type (r, s).
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• A tensor on V can also be viewed as a multi-linear function on V . For instance, a
bilinear function on V is a function

A : V × V → R,

which is linear in both arguments. We denote the set of all bilinear linear functions on
V by L(V, V ). We claim that

V ∗ ⊗ V ∗ = L(V, V ).

To check this claim, we first see that a tensor T ∈ V ∗⊗V ∗ is a bilinear function on V .
If T = α⊗ β with α, β ∈ V ∗, we define

α⊗ β(u, v) := α(u)β(v)

for vectors u, v ∈ V . If T =
∑N

i=1 aiαi ⊗ βi, we define

T (u, v) :=
N∑
i=1

aiαi(u)βi(v).

Thus, a tensor T ∈ V ∗ ⊗ V ∗ is a bilinear function on V . Conversely, let {e1, ..., en}
and {e1, ..., en} are a pair of dual bases in V and V ∗ with ei(ej) = δij. For any bilinear
function A, we can define a tensor TA as

TA :=
n∑

i=1

n∑
j=1

A(ei, ej)e
i ⊗ ej.

Then one can check that

TA(u, v) = A(u, v)

for any u, v ∈ V . The mapping: A 7→ TA is linear. The two spaces L(V, V ) and V ∗⊗V ∗

have the same dimension. Thus, L(V, V ) = V ∗ ⊗ V ∗.

• In general, let

L(V ∗, · · · , V ∗︸ ︷︷ ︸
r times

, V, · · · , V︸ ︷︷ ︸
s times

)

be the space of all multilinear functions from V ∗× · · · × V ∗× V × · · · × V → R. Then

L(V ∗, · · · , V ∗︸ ︷︷ ︸
r times

, V, · · · , V︸ ︷︷ ︸
s times

) = V ⊗ · · · ⊗ V︸ ︷︷ ︸
r times

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
s times

.
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5.1.3 The Exterior Algebra for Co-vectors

The k-form is a multi-linear functional on a n-dimensional vector space V . It is to measure
k-dimensional volume of a parallelepiped in an n-dimensional space V .
Let {e1, ..., en} be a basis of V and {e1, ..., en} be its dual basis in V ∗ with ei(ej) = δij.

• An 1-form is a linear functional on V . If α is a 1-form, then it can be represented as

α = αie
i.

For any v ∈ V with v = viei, then

α(v) = αiv
i.

If α = ei, then ei(v) = vi is the length of the projection of v onto ei. In mechanics, α
represents force and α(v) is the projection of force in the direction of v.

• 2-form A 2-form measures two-dimensional signed area of a parallelogram spanned by
the projection of two vector v, w through two linear functional α, β ∈ V ∗. We define
the wedge product of α and β to be a bilinear form on V by

α ∧ β(v, w) :=
∣∣∣∣α(v) β(v)
α(w) β(w)

∣∣∣∣ .
Let us take V = R3 as an example. We measure the signed area of the projection of
the parallelogram onto the plane spanned by e1, e2, which is

e1 ∧ e2(v, w) :=
∣∣∣∣e1(v) e2(v)
e1(w) e2(w)

∣∣∣∣ = ∣∣∣∣v1 v2

w1 w2

∣∣∣∣ .
From this definition, we find

e1 ∧ e2(w, v) =
∣∣∣∣w1 w2

v1 v2

∣∣∣∣ = −e1 ∧ e2(v, w),
e2 ∧ e1(v, w) =

∣∣∣∣v2 v1

w2 w1

∣∣∣∣ = −e1 ∧ e2(v, w).
We can also project the parallelogram v, w to e2-e3 plane by e

2∧ e3, and to e3-e1 plane
by e3 ∧ e1. The object α ∧ β with α, β ∈ V ∗ is called a 2-blade. You can check that
ei ∧ ej = 0 if i = j and ei ∧ ej = −ej ∧ ei. Thus, in R3, the only nontrivial 2-blades
spanned by basis {e1, e2, e3} are e1 ∧ e2, e2 ∧ e3 and e3 ∧ e1. A general 2-form in R3 is
a linear combination of these three basic 2-blades:

ω = ω12e
1 ∧ e2 + ω23e

2 ∧ e3 + ω31e
3 ∧ e1, ω12, ω23, ω31 ∈ R.

Thus, the set of all 2-forms is the vector space spanned by e1 ∧ e2, e2 ∧ e3 and e3 ∧ e1.
We denote is by Λ2(V,R)∗.
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Remark In R3, the 2-form ω measures flux. ω(v, w) is the ω-flux through the paral-
lelogram spanned by v and w.

• 2-form expressed in terms of tensor product For α, β ∈ V ∗, we can define their
tensor product α⊗ β as a bilinear form by

α⊗ β(v, w) := α(v)β(w) for v, w ∈ V.

The wedge product α ∧ β can also be defined to be

α ∧ β := α⊗ β − β ⊗ α.

Then for any two vectors v, w ∈ V ,

α ∧ β(v, w) = α⊗ β(v, w)− β ⊗ α(v, w)
= α(v)β(w)− β(v)α(w)

which is the same as our earlier definition for α ∧ β.

Determinant We recall the definition of determinant det(aji )n×n. Let A = (a1, ..., an),
where aj = (aji )n×1 are column vectors.

det(A) = det(a1, ..., an) :=
∑
σ

sign(σ)a
σ(1)
1 · · · aσ(n)n

where σ : {1, ..., n} → {1, ..., n}. The sign for σ : {1, ..., n} → {1, ..., n} is defined as

sign(σ) =


1 if σ is an even permutation
−1 if σ is an odd permutation
0 otherwise

It is easy to see that the determinant has the following properties.

1. det(A) =
∑

σ sign(σ)a
σ(1)
1 · · · aσ(n)n =

∑
σ sign(σ)a

1
σ(1) · · · anσ(n).

That is, det(A) = det(AT ).

2. det(a1, ..., an) = 0 if ai = aj for some i ̸= j.

3. det(A) = 1
n!

∑
σ,τ sign(σ)sign(τ)a

σ(1)
τ(1) · · · a

σ(n)
τ(n).

4. Rank reduction property: Let Aj
i be the determinant of the (n−1)× (n−1) submatrix

by eliminating ith row and jth column from A. Then for each j

det(A) =
∑
i

(−1)iajiA
j
i .
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The proof for this reduction is by decomposing a permutation σ : {1, ..., n} → {1, ..., n}
into

σ = (i 7→ j)
(
σ′
i : {1, ..., î, ..., n} → {1, ..., ĵ, ..., n}

)
where î means the term i is eliminated from the set. Note that with fixed j, sign(σ) =
(−1)i+jsign(σ′

i). We have

det(A) =
∑
i

∑
σ′
i

(−1)i+jsign(σ′
i)a

j
i

∏
k ̸=i

a
σ′
i(k)

i =
∑
i

(−1)i+jaji det(A
j
i ).

k-blade and k-forms

• Let α1, ..., αk ∈ V ∗. We define

α1 ∧ · · · ∧ αk(v1, ..., vk) := det
(
αj(vi)

)
n×n

.

The tuple α1 ∧ · · · ∧ αk is called a k-blade.

Proposition 5.1. Let σ : {1, ..., k} → {1, ..., k} be a permutation. We have

(a) α1 ∧ · · · ∧ αk(vσ(1), ...vσ(k)) = sign(σ)α1 ∧ · · · ∧ αk(v1, ..., vk).

(b) ασ(1) ∧ · · · ∧ ασ(k) = sign(σ)α1 ∧ · · · ∧ αk.

• Let I = {i1, ..., ik} be an index set with 1 ≤ i1 < ... < ik ≤ n. We shall call it an
ordered index set in {1, ..., n} with size k. We denote

eI := ei1 ∧ · · · ∧ eik .

We have

eI(ej1 , ..., ejk) =

∣∣∣∣∣∣∣
⟨ei1 , ej1⟩ · · · ⟨ei1 , ejk⟩

...
. . .

...
⟨eik , ej1⟩ · · · ⟨eik , ejk⟩

∣∣∣∣∣∣∣
= δi1,...,ikj1,...,jk

:= δIJ ,

where

δIJ := δi1,...,ikj1,...,jk
=


1 if i1, ..., ik are distinct and J is an even permutation of I
−1 if i1, ..., ik are distinct and J is an odd permutation of I
0 otherwise.

The set {eI |I = {i1, ..., ik} and 1 ≤ i1 < ... < ik ≤ n} are independent. There are
(
n
k

)
of them.
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Definition 5.1. A k-form on an n-dimensional vector space (V, ⟨·, ·⟩) is a multi-linear
map

ω : V × · · · × V → R

which is also alternative in the sense that

ω(vσ(1), ..., vσ(k)) = sign(σ)ω(v1, ..., vk),

for any permutation σ : {1, ..., k} → {1, ..., k}.

We denote the set of all k-forms on V by Λk(V,R)∗. We see that Λ1(V,R)∗ = V ∗.

Proposition 5.2. The set {eI |I = {i1, ..., ik} and 1 ≤ i1 < ... < ik ≤ n} forms a basis
of Λk(V,R)∗. Thus, dim(Λk(V,R)∗) =

(
n
k

)
.

Proof. 1. {eI |I = {i1, ..., ik} and 1 ≤ i1 < ... < ik ≤ n} are independent. If aIeI = 0,
then for any J = (j1, ..., jk),

0 = aIe
I(ej1 , ..., ejk) = aIδ

I
J = aJ .

Thus, eI are independent.

2. For any ω ∈ Λk(V,R)∗, let
ωI := ω(ei1 , ..., eik).

You can show that (check)

ω = ωIe
I .

Wedge product We have defined wedge product for two 1-forms. We have also defined
k-blades. Now, we will define wedge product for general k-form and l-form as the follows.

Definition 5.2. (a) Let I and J be two ordered subindex sets of {1, ..., n}. We define

eI ∧ eJ :=

{
eK if I ∩ J = ∅
0 if I ∩ J ̸= ∅

where K = (I, J).

(b) Let α = αIe
I and β = βJe

J , define

α ∧ β =
∑
IJ

αIβJe
I ∧ eJ .
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Proposition 5.3. Let α and β are k-form and ℓ-form. Then for general vectors v1, ..., vk+ℓ,
we have

α ∧ β(v1, ..., vk+ℓ) =
∑

σ∈Sh(k,ℓ)

sign(σ)α(vσ(1), ..., vσ(k))β(vσ(k+1), ..., vσ(k+ℓ)), (5.1)

where Sh(k, ℓ) is the set of all permutations σ satisfying σ(1) < · · · < σ(k) and σ(k + 1) <
· · · < σ(k + ℓ).

This proposition says that the definition of wedge product is independent choice of basis.

Proposition 5.4. Suppose α, β and γ are k, l,m-forms, respectively. Let a, b ∈ R. We have

(a) (aα + bβ) ∧ γ = aα ∧ γ + bβ ∧ γ.

(b) α ∧ β = (−1)klβ ∧ α.

(c) (α ∧ β) ∧ γ = α ∧ (β ∧ γ).

Proof. (Sketch) The bilinearity of the wedge product follows from the construction.

For the associativity for the basis, it follows from definition:

(ei1 ∧ ei2) ∧ ei3 = ei1 ∧ (ei2 ∧ ei3) = ei1 ∧ ei2 ∧ ei3

In general, we need to show

(α ∧ β) ∧ γ(u, v, w) = α ∧ β ∧ γ(u, v, w) =

∣∣∣∣∣∣
α(u) β(u) γ(u)
α(v) β(v) γ(v)
α(w) β(w) γ(w)

∣∣∣∣∣∣ (5.2)

It can be proved by using the rank reduction property of determinant.

Remarks

• The associativity property states that the definition of k-blade α1 ∧ · · · ∧ αk is indeed
the wedge product of the 1-forms α1,...,αk.

Volume form The dimension of Λn(V,R)∗ is
(
n
n

)
= 1. For any α1, ..., αn with αj = ajie

i.
We have

α1 ∧ · · · ∧ αn = det(aji )n×ne
1 ∧ · · · ∧ en.

The n-blade α1 ∧ · · · ∧ αn is called the volume form generated by α1, ..., αn.
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5.1.4 Interior Product

The interior product contracts a k-form with a vector v to produce a (k − 1)-form.

Definition 5.3. Let v ∈ V . The interior product iv is an operator

iv : Λ
kV ∗ → Λk−1V ∗

defined by

(ivα)(v1, ..., vk−1) = α(v, v1, ..., vk−1). (5.3)

Theorem 5.1. Let v ∈ V . The interior product iv has the following properties:

(i) For 1-form α,

iv(α) = α(v).

(ii) iv ◦ iv = 0

(iii) Leibniz rule: Let α and β are k-form and ℓ-form respectively. Then

iv(α ∧ β) = (ivα) ∧ β + (−1)kα ∧ (ivβ). (5.4)

Proof. 1. (ii) can be proven for basis eI by:

ei1 ∧ · · · ∧ eik(v, v, v1, ..., vk−2) = 0.

2. proof of (iii) is left for exercise.

Homework

1. Show (5.2).

2. Show (5.1).

3. Show the Leibniz rule for the interior product.

5.1.5 The Exterior Algebra for Vectors

Exterior algebra handles k-dimensional volumes in n dimensional space. Let V be an n-
dimensional vector space. Let {e1, ..., en} be a basis of V .

k-vectors An 1-vector is just another name of vectors in V . We denote the set of all
1-vectors by Λ1(V,R), which is V .
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2-vector Let {e1, ..., en} be a basis of V . The 2-vectors ei ∧ ej represents a signed area of
the parallelogram spanned by ei and ej. We define ej∧ei = −ei∧ej. This implies ei∧ei = 0.
With these ei ∧ ej, 1 ≤ i < j ≤ n, we define the set of 2-vectors Λ2(V,R) to be the linear
span of all such ei ∧ ej. Its dimension is

(
n
2

)
.

Example Suppose V = R3. Let u = e1+ e2 and v = e2− e3. The wedge product u∧ v can
be viewed as the parallelogram spanned by u and v. It also has the following expression

u ∧ v = (e1 + e2) ∧ (e2 − e3) = e1 ∧ e2 − e2 ∧ e3 + e3 ∧ e1.

We can also take the cross product of u and v to get

u× v = −i+ j+ k.

We find a similarity between u ∧ v and u× v through the correspondence

e2 ∧ e3 ↔ i, e3 ∧ e1 ↔ j, e1 ∧ e2 ↔ k.

3-vector We first define ei1∧ei2∧ei3 as an volume element spanned by the vector ei1 , ei2 , ei3 .
Let Λ3(V,R) be the linear space spanned by these basic 3-vectors. The space of Λ3(V,R)
has dimension

(
n
3

)
.
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Example Suppose V = R3. Let us consider

e1 ∧ e2 ∧ (e3 + e1) = e1 ∧ e2 ∧ e3.

This is a (sheared) parallelepiped. Indeed, the wedge product of any three vectors in R3 has
the form

v1 ∧ v2 ∧ v3 = det(v1, v2, v3)e1 ∧ e2 ∧ e3.

The dimension of Λ3(R3) = 1.

Wedge product The wedge product ∧ applies to any k-vector u and l-vector v. It satisfies

• Anti-symmetry u ∧ v = (−1)klv ∧ u

• Bilinearity: (au+ bv) ∧ w = au ∧ w + bv ∧ w

• Associativity: (u ∧ v) ∧ w = u ∧ (v ∧ w).

Remark

• The exterior algebra we define here is through construction. The construction relies
on the choice of bases {e1, ..., en} and its dual {e1, ..., en}. However, the vector space
operations and the wedge product for the k-vectors and k-covectors are independent
of the choice of basis.

5.2 Inner Product and Hodge ⋆

5.2.1 Inner product space and representation of inner product

• A vector space V endowed with an inner product structure ⟨·, ·⟩ is called an inner
product space. Inner product is used to measure length of a vector by ∥v∥ :=

√
⟨v, v⟩

and the angle cos θ = ⟨u, v⟩/(∥u∥∥v∥) between two vectors.

• Suppose {e1, ..., en} is a basis of V . Let gij := ⟨ei, ej⟩. Then (gij) is a symmetric
positive definite matrix. Moreover, for v = viei and w = wiei, their inner product has
the following formula

⟨v, w⟩ = gijv
iwj.

• If (gij) = (δij), then the corresponding basis {e1, ..., en} is called an orthonormal basis
(ONB).

• Given an n-dimensional inner product space V , we can always find an orthonormal
basis (ONB) {e1, ..., en}. They can be constructed through Gram-Schmidt process.

• Note that the inner product of v, w is independent to the choice of basis.

77



5.2.2 Inner product in the dual space V ∗

• Music isomorphism The inner product ⟨·, ·⟩ in V induces a natural isomorphism
between V and V ∗ called music isomorphism.

(a) V
♭−→ V ∗: For any w ∈ V , it induces a natural linear functional v 7→ ⟨w, v⟩. We

denote this linear map by w♭.

(b) V ∗ ♯−→ V : For any α ∈ V ∗, there exists a unique vector w such that α(v) = ⟨w, v⟩
for all v ∈ V . This statement is called the Riesz representation theorem. We
denote w by α♯.

• Inner product in V ∗ induced by (V, ⟨·, ·⟩) For α, β ∈ V ∗, define

⟨α, β⟩ := ⟨α♯, β♯⟩.

• Inner product representation in basis. Suppose {e1, .., en} is a basis of V with
⟨ei, ej⟩ = gij. Let {e1, ..., en} be its dual basis in V ∗ with ei(ej) = δij. From definition
of the flat map ♭,

e♭i(ej) = ⟨ei, ej⟩ = gij.

That is,
e♭i = gije

j.

Thus, under the basis {e1, ..., en} in the domain V and {e1, ..., en} in the range V ∗, the
flat map ♭ has the following matrix representation: for any v ∈ V ,

v♭ = vie♭i = gijv
iej.

• The sharp ♯ map from V ∗ to V is the inverse of flat ♭. Let

(gij)n×n = (gij)
−1
n×n.

It is the matrix representation of the sharp map under the bases {e1, .., en} and
{e1, ..., en}. That is,

α♯ = αie
i♯ = gijαiej.

• The induced inner product ⟨·, ·⟩ in V ∗ has the following representation:

⟨ei, ej⟩ = ⟨ei♯, ej♯⟩ = ⟨gikek, gjlel⟩ = gikgjlgkl = gij.

Thus,
⟨α, β⟩ = ⟨aiei, bjej⟩ = gijaibj.

• If {e1, ..., en} is an ONB of V , then {ei := e♭i|i = 1, ..., n} is an ONB of V ∗.

• Suppose {e1, ..., en} and {e1, ..., en} are ONB in V and V ∗ with ⟨ei, ej⟩ = δji . Then

– For v = viei, then v
♭ = vie

i with vi = vi.

– For α = αie
i, then α♯ = αiei with α

i = αi.
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5.2.3 Inner product structure for k-vectors and k-covectors

• Inner product for 2-forms Let {e1, ..., en} be a basis of V ∗ with ⟨ei, ej⟩ = δij. We
recall that 2-forms can be expressed in terms of 2-tensors as

ei1 ∧ ei2 = ei1 ⊗ ei2 − ei2 ⊗ ei1 .

We define the inner product for 2-tensor by

⟨α1 ⊗ α2, β1 ⊗ β2⟩ :=
1

2
⟨α1, β1⟩ · ⟨α2, β2⟩.

The factor 1/2 is a dimension factor. We can choose any constant. With this definition
of inner product for tensors, we can define inner product for 2-forms by

⟨ei1 ∧ ei2 , ej1 ∧ ej2⟩ = ⟨(ei1 ⊗ ei2 − ei2 ⊗ ei1), (ej1 ⊗ ej2 − ej2 ⊗ ej1)⟩
=
(
⟨ei1 ⊗ ei2 , ej1 ⊗ ej2⟩+ ⟨ei2 ⊗ ei1 , ej2 ⊗ ej1⟩

)
−
(
⟨ei1 ⊗ ei2 , ej2 ⊗ ej1⟩+ ⟨ei2 ⊗ ei1 , ej1 ⊗ ej2⟩

)
=
(
δi1,j1δi2,j2 − δi1,j2δi2,j1

)
=

∣∣∣∣δi1,j1 δi1,j2

δi2,j1 δi2,j2

∣∣∣∣
= δi1i2j1j2

In general, if ⟨ei, ej⟩ = gij, then

⟨ei1 ∧ ei2 , ej1 ∧ ej2⟩ = ⟨(ei1 ⊗ ei2 − ei2 ⊗ ei1), (ej1 ⊗ ej2 − ej2 ⊗ ej1)⟩
=
(
gi1,j1gi2,j2 − gi1,j2gi2,j1

)
=

∣∣∣∣gi1,j1 gi1,j2

gi2,j1 gi2,j2

∣∣∣∣
• Inner product for k-forms Let I = {i1, ..., ir} and J = {j1, ..., jr} be two index sets
in {1, ..., n}. Let eI = ei1∧· · ·∧eir , eI = ej1∧· · ·∧ejr . The k-blade eI can be expressed
in terms of tensor product:

eI =
∑
σ

sign(σ)eiσ(1) ⊗ · · · ⊗ eiσ(r) :=
∑
σ

sign(σ)eIσ⊗

The inner product for two k-tensors is defined by

⟨αI
⊗, β

J
⊗⟩ := ⟨αi1 ⊗ · · · ⊗ αik , βj1 ⊗ · · · ⊗ βjk⟩ = 1

k!
⟨αi1 , βj1⟩ · · · ⟨αik , βjk⟩.

This leads to an inner product structure for k-forms:

⟨eI , eJ⟩ = ⟨
∑
σ

sign(σ)eIσ⊗ ,
∑
τ

sign(τ)eJτ⊗ ⟩
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= k!
∑
τ

sign(τ)⟨eI⊗, eJτ⊗ ⟩

=
∑
τ

sign(τ)gi1,jτ(1) · · · gik,jτ(k)

= det
((
gij
)
i∈I,j∈J

)
k×k

= gIJ

Suppose {e1, ..., en} be an ONB of V and {e1, ..., en} be the corresponding ONB in V ∗.
Then gij = δij. We have

⟨eI , eJ⟩ =

∣∣∣∣∣∣∣
δi1,j1 · · · δi1,jk
...

. . .
...

δik,j1 · · · δik,jk

∣∣∣∣∣∣∣ = δIJ := δj1,...,jki1,...,ik

Thus, {eI |I is ordered index subset of {1, ..., n}, |I| = k} is ONB of Λk(V,R)∗. The
inner product of ω = ω(eI)e

I and η = η(eI)e
I in Λk(V,R)∗ is

⟨ω, η⟩ :=
∑
I

ω(eI)η(eI),

where ω(eI) := ω(ei1 , ..., eik).

• General inner product representation for k-vectors. Suppose {e1, ..., en} is a
basis in V . Let gij = ⟨ei, ej⟩. Let I = {i1, ..., ik} and J = {j1, ..., jk} be two ordered
index set in {1, ..., n}. Let eI = ei1 ∧ · · · ∧ eik , eI = ej1 ∧ · · · ∧ ejk . Following the same
process for covectors, we have

⟨eI , eJ⟩ = ⟨
∑
σ

sign(σ)e⊗Iσ ,
∑
τ

sign(τ)e⊗Jτ ⟩

= k!
∑
τ

sign(τ)⟨e⊗I , e
⊗
Jτ
⟩

=
∑
τ

sign(τ)gi1,jτ(1) · · · gik,jτ(k)

= det
(
(gij)i∈I,j∈J

)
k×k

:= gIJ

Then the inner product of two k-vectors u = uIeI and v = vIeI is

⟨u, v⟩ = gIJu
IvI .
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5.2.4 Hodge ⋆ for Vectors and Forms

Unit Volume

• If {e1, ..., en} is an ONB of V , then we define the unit volume µ̄ = e1 ∧ · · · ∧ en.
This definition is independent of choice of ONB. If {ê1, ..., ên} be another ONB with
êi = Rj

iej. Since both bases are ONB, we have RTR = I. This implies detR = ±1.
Note that

ê1 ∧ · · · ∧ ên = det(R)e1 ∧ · · · ∧ en = ±e1 ∧ · · · ∧ en.

If detR = 1, we say that {ê1, ..., ên} and {e1, ..., en} have same orientation.

• Suppose {e1, ..., en} is a basis with ⟨ei, ej⟩ = gij. Let {ê1, ..., ên} be an ONB. We can
express ei = aji êj. Then we have

G = (gij) = (⟨ei, ej⟩) = (⟨aki êk, aℓj êℓ⟩) = (
∑
k

aki a
k
j ) = AAT .

This gives det(A) =
√
det(G). The n-volume

e1 ∧ · · · ∧ en = det(A)ê1 ∧ · · · ∧ ên =
√
det(G)ê1 ∧ · · · ∧ ên =

√
det(G) µ̄.

Hodge ⋆ for Vectors The Hodge star ⋆k maps a k-vector to an (n − k)-vector which is
its orthogonal complement. Sometimes, we abbreviate ⋆k by ⋆ when its object v is already
known as a k-vector. We start from a definition through an ONB first. In the examples
below, {e1, ..., en} is an ONB of V .

• Example: 2D

1. ⋆e1 = e2, ⋆e2 = −e1, ⋆1 = e1 ∧ e2.
2. ⋆(2e1 + e2) = 2e2 − e1.

• Example in R3,

1. ⋆(e1 ∧ e2) = e3, ⋆(e2 ∧ e3) = e1, ⋆(e3 ∧ e1) = e2.

2. ⋆e1 = e2 ∧ e3, ⋆e2 = e3 ∧ e1, ⋆e3 = e1 ∧ e2.
3. ⋆1 = e1 ∧ e2 ∧ e3, ⋆(e1 ∧ e2 ∧ e3) = 1.

4. Let u = e1 + e2, v = e2 − e3. We have seen that

u ∧ v = e1 ∧ e2 − e2 ∧ e3 + e3 ∧ e1.

Thus,
⋆(u ∧ v) = e3 − e1 + e2.

This is exactly u× v. Thus, u∧ v is the parallelogram spanned by u and v, while
⋆(u ∧ v) is u× v, which is perpendicular to u and v.
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• Examples in R4

1. ⋆(e1 ∧ e2) = e3 ∧ e4, ⋆(e2 ∧ e3) = e4 ∧ e1, ⋆(e1 ∧ e3) = −e2 ∧ e4.
2. ⋆e1 = e2 ∧ e3 ∧ e4, ⋆e2 = −e1 ∧ e3 ∧ e4.

Definition 5.4. Let {e1, ..., en} be an ONB in V . The Hodge ⋆k : Λk(V,R) →
Λn−k(V,R) is defined by

(a) ⋆k is linear,

(b) ⋆keI := sign(σ)eÎ , where Î = {1, ..., n}\I and σ is the permutation between (I, Î)
and {1, ..., n}. In fact, one can show that

sign(σ) = (−1)i1+···+ik+1+···+k.

• The definition is equivalent to the following general definition.

Proposition 5.5. If v, w ∈ Λk(V,R), then

v ∧ (⋆w) = ⟨v, w⟩µ̄

where µ̄ is the unit volume.

Proof. Let v = vIeI and w = wIeI . Then

v ∧ (⋆w) =
∑
IJ

vIwJeI ∧ (⋆eJ)

=
∑
I

vIwIeI ∧ (⋆eI)

= ⟨v, w⟩e1 ∧ · · · ∧ en.

• Now suppose ⟨ei, ej⟩ = gij. Let I = {i1, ..., ik} be an order index set of {1, ..., n}, Î be
the order index set in {1, ..., n} complement to I, and σ be the permutation between
(I, Î) and {1, ..., n}. From the definition, we have

eI ∧ (⋆eI) = ∥eI∥2µ

We recall that
e1 ∧ · · · ∧ en =

√
gµ, g = det((gij)n×n),

∥eI∥2 = ⟨eI , eI⟩ = gII , gII = det((gij)i∈I,j∈I).

Hence
⋆eI =

gII√
g
sign(σ)eÎ .
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Volume form Suppose {e1, ..., en} is a basis in V with ⟨ei, ej⟩ = gij, where (gij) =
((gij)n×n)

−1. Let ê1, ..., ên be an ONB in V ∗. We define the unit volume form in V by

µ = ê1 ∧ · · · ∧ ên.

Then

e1 ∧ · · · ∧ en =
√
det(gij)µ.

Exercise

1. Let I = (i1, ..., ik) and σ be the permutation between (I, Î) and {1, ..., n}. Show that

sign(σ) = (−1)i1+···+ik+1+···+k.

2. Show that ⋆n−k⋆k = (−1)(n−k)k.

3. Show that ⟨⋆v, ⋆w⟩ = ⟨v, w⟩.

Hodge ⋆ for k-forms

Definition 5.5. Suppose {e1, ..., en} be a basis in V ∗ with ⟨ei, ej⟩ = gij. The Hodge ⋆ for k
form is a map

⋆k : Λ
k(V,R)∗ → Λn−k(V,R)∗

satisfying

(a) ⋆k is linear

(b) for basis eI , where the order index I ⊂ {1, ..., n} and |I| = k,

⋆ke
I :=

gII√
g−1

sign(σ)eÎ ,

where g = det(gij) and g−1 = det(gij), and Î is the order index set in {1, ..., n}
complement to I, and σ is the permutation between (I, Î) and {1, ..., n}.

Proposition 5.6. If ω, η ∈ Λk(V,R)∗, then

ω ∧ ⋆η = ⟨ω, η⟩µ

where µ is the unit volume form.
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5.3 Differential Forms on Manifolds

5.3.1 Manifold

Definition 5.6. A differential manifold of dimension n is a set M with a family of injective
(i.e. 1-1) mappings xα : Uα(⊂M)→ Vα(open ⊂ Rn) such that:

1. ∪αUα =M ;

2. For any α, β, with Uα∩Uβ = W ̸= ∅, the sets xα(W ), xβ(W ) are open and the mapping
xβ ◦ x−1

α : xα(W )→ xβ(W ) is differentiable.

Remarks.

• xα is called a parameterization (or system of coordinate) of M .

• The couple (Uα,xα) is called an atlas or a coordinate chart ofM . The family {(Uα,xα)}
is called a differentiable structure of M .

• This definition is intrinsic, it tells nothing where M is in the space.

Examples

• Consider a graph of a function in Rn: z = z(x1, ..., xn) is a smooth function with
x ∈ V (open ⊂ Rn). Let

M = {(x, z(x))|x ∈ V }.

Such M is an n-manifold. The mapping: (x, z(x)) 7→ x is from M to V ⊂ Rn, and x
is a parameterization of M .

• Disk: {(x, y)|x2 + y2 ≤ 1}. We can use polar coordinate as our coordinate chart:

x = r cos θ, y = r sin θ, 0 ≤ r ≤ 1, 0 ≤ θ < 2π.

• Sphere: Consider the spherical coordinate

x = cosϕ sin θ, y = sinϕ sin θ, z = cos θ, ϕ ∈ [0, 2π], θ ∈ [−π/2, π/2]

The spherical coordinate (θ, ϕ) can serve as a local coordinate on sphere.

Function defined on M

• A function f :M → R is said to be differentiable on a chart (U,x) if f◦x−1, which maps
x(U) ⊂ Rn → R, is differentiable. A function f : M → R is said to be differentiable
on M if it is differentiable on every chart of M .
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5.3.2 Tangent space and cotangent space

Tangent vector and cotangent vectors LetM be an n-dimensional manifold. Consider
a chart (U,x) of M . That is, U ⊂ M is locally parameterized by the map x : U → Rn. Let
p ∈ U .

• A function f defined on U can be treated as a function defined on x(U) ⊂ Rn, and is
denoted by f(x1, ..., xn) in this chart.

• The variation of f at p ∈ U in the direction xi is defined to be the partial derivative:

∂

∂xi

∣∣∣∣
p

f or fxi(p).

Let v = viei ∈ Rn. The variation of f in the direction of v at p is defined to be

⟨dfp|v⟩ := dfp(v) :=
∂f

∂xi
(p)vi.

From this expression, it is natural to define the tangent space of M at p to be Rn. It
is denoted by TpM . The coordinate vector ei ∈ Rn will be denoted as ∂

∂xi |p ∈ TpM . A
tangent vector v ∈ TpM is expressed as

v = vi
∂

∂xi

∣∣∣∣
p

.

And the the differential of f at p, that is, dfp is in T ∗
pM .

• If (V,y) is another coordinate chart containg p, then by the differential structure of
M , x↔ y is diffeomorphism, and we have

∂

∂yj
=
∂xi

∂yj
∂

∂xi
.

From this, one can show that the definition of dfp : TpM → R is independent of choice
of coordinate.

• The coordinate function xi is a smooth function in U . At each point p ∈ U , dxip ∈
Tp(M) and

⟨dxi| ∂
∂xj
⟩|p = δij for every p ∈ U.

Thus, {dx1, ..., dxn} is the dual basis of {∂/∂x1, ..., ∂/∂xn}. The differential df in U
can be expressed as

df = fxidxi.

• The tangent bundle TM := ∪p∈MTpM , the cotangent bundle T ∗M := ∪p∈MT ∗
pM .
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5.3.3 Functions defined on manifolds

Let M be an n-dimensional manifold with a family of charts {(Uα,xα)}.

• Let M and N are smooth manifolds. A function φ : M → N is called smooth if for
every p ∈ M , there exist compatible coordinate charts (U,x) in M with p ∈ U and
(V,y) in N with φ(p) ∈ V such that the mapping

y ◦ φ ◦ x−1 : x(U)→ y(V )

is smooth. We express this function in terms of (x1, ..., xn) and (y1, ..., ym) by (φ1(x), ..., φm(x)).

• The differential dφp : TpM → Tφ(p)N is defined to be

dφp

(
∂

∂xi

)
=
∂φj

∂xi

∣∣∣∣
p

∂

∂yj
.

One can show that the definition of dφ is independent to the choice of coordinate
charts.

• Push forward φ∗ : TpM → Tφ(p)N . The differential dφ is also called push forward map,
and is denoted by φ∗.

• Pull back φ∗ : T ∗
φ(p)N → T ∗

pM is the dual map of φ∗. It is defined by

⟨φ∗dyj| ∂
∂xi
⟩ := ⟨dyj|φ∗

∂

∂xi
⟩ = ∂φj

∂xi
.

That is,

φ∗dyj =
∂φj

∂xi
dxi.

• Suppose M and N are smooth manifolds and φ : M → N smooth. If φ∗ : TpM →
Tφ(p)N is non-degenerate (i.e. this linear map is 1-1) for all p ∈ M , then we call φ is
an immersion and (M,φ) is an immersed submanifold of N . If in addition φ is also
1-1, we call φ an imbedding and (M,φ) an imbedded submanifold of N .

5.3.4 Differential forms

• 0-forms Ω0(M,R) = {f :M → R smooth}.

• 1-forms

Ω1(M,R) = {α :M → T ∗M | α(p) ∈ T ∗
p (M) and α is smooth}.

In a coordinate chart (U,x), α can be represented as

α(x) = αi(x)dx
i,

with αi(·) being smooth in U .
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• k-forms

Ωk(M,R) = {ω :M → ∪p∈MΛk(TpM,R)∗ | ω(p) ∈ Λk(TpM,R)∗ and ω is smooth}

The representation of a k-form ω in a coordinate chart (U,x) is

ω(x) = wI(x)dx
I .

Here, I = (i1, ..., ik), dx
I = dxi1 ∧ · · · ∧ dxik .

• Differential forms are independent of parameterization.

5.3.5 Exterior Derivatives for Differential Forms

We define the exterior derivative d : Ωk → Ωk+1 as the follows.

(a) d is linear;

(b) For k = 0, define df := fxidxi.

(c) For ω = wI(x)dx
I , define d

(
wI(x)dx

I
)
:= dwI(x) ∧ dxI .

Examples in R3

1. df = fx1dx1 + fx2dx2 + fx3dx3.

2. For 1-form

d(A1dx
1 + A2dx

2 + A3dx
3) = (A1,x2dx2 + A1,x3dx3) ∧ dx1

+ (A2,x1dx1 + A2,x3dx3) ∧ dx2 + (A3,x1dx1 + A3,x2dx2) ∧ dx3

= (A3,x2 − A2,x3)dx2 ∧ dx3 + (A1,x3 − A3,x1)dx3 ∧ dx1 + (A2,x1 − A1,x2)dx1 ∧ dx2.

3. For 2-form

d(B1dx
2 ∧ dx3 +B2dx

3 ∧ dx1 +B3dx
1 ∧ dx2) = (B1,x1 +B2,x2 +B3,x3)dx1 ∧ dx2 ∧ dx3.

4. d(ρ(x)dx1 ∧ dx2 ∧ dx3) = 0.

5. One can check that d ◦ d = 0.

d2f = d(fxidxi)

= (fx3x2 − fx2x3)dx2 ∧ dx3 + (fx1x3 − fx3x1)dx3 ∧ dx1 + (fx2x1 − fx1x2)dx1 ∧ dx2

= 0.

d2A = d
[
(A3,x2 − A2,x3)dx2 ∧ dx3 + (A1,x3 − A3,x1)dx3 ∧ dx1 + (A2,x1 − A1,x2)dx1 ∧ dx2

]
= [(A3,x2 − A2,x3)x1 + (A1,x3 − A3,x1)x2 + (A2,x1 − A1,x2)x3 ] dx1 ∧ dx2 ∧ dx3

= 0.

d2B = d
[
(B1,x1 +B2,x2 +B3,x3)dx1 ∧ dx2 ∧ dx3

]
= 0.
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Proposition 5.7. The exterior derivative d is uniquely characterized by the following prop-
erties:

(a) d is linear,

(b) df = fxidxi for any f ∈ Ω0(M,R),

(c) d ◦ d = 0,

(d) For α ∈ Ωk(M), d(α ∧ β) = (dα) ∧ β + (−1)kα ∧ (dβ).

Proof. We shall only prove (d). The rests are left for exercises. To prove (d), suppose
α = αIdx

I , |I| = k, and β = βJdx
J . We have

d(α ∧ β) = d(αIβJ) ∧ dxI ∧ dxJ

= ((dαI)βJ + αI(dβJ)) ∧ dxI ∧ dxJ

= (dαI ∧ dxI) ∧
(
βJdx

J
)
+ (−1)kαIdx

I ∧ dβJ ∧ dxJ

= (dα) ∧ β + (−1)kα ∧ (dβ).

Remarks

1. The proposition also implies that the definition of the exterior derivative d is indepen-
dent of the choice of coordinate chart.

2. If (U,x) and (V,y) are two charts covers a point p. Then, from definition, dyj = ∂yj

∂xi dx
i,

and for any function f :M → R,

df =
∂f

∂yj
dyj =

∂f

∂yj
∂yj

∂xi
dxi =

∂f

∂xi
dxi.

5.3.6 Pullback

In multivariable calculus, we need to perform change-of-variable. This is the pullback oper-
ation of differential form.

Definition 5.7. Let φ :M0 →M . Let α ∈ Ωk(M) be a k-form. Its pullback φ∗α ∈ Ωk(M0)
is defined by

φ∗(α)(v1, ..., vk) := α(dφ(v1), ..., dφ(vk)). (5.5)

Proposition 5.8. The pullback φ∗ has the following properties.

• φ∗(f) = f ◦ φ for f ∈ Ω0(M)

• φ∗(α ∧ β) = (φ∗α) ∧ (φ∗β).
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• φ∗(fα) = (φ∗f)φ∗α.

• φ∗(dα) = dφ∗(α).

Let α ∈ Ωk(M) and Σ ⊂M0 be a k-dimensional submanifold, we have

ˆ
f(Σ)

α =

ˆ
Σ

f ∗α.

5.3.7 Stokes’ Theorem

Stokes’ Theorem in vector calculus In vector calculus, we have three important theo-
rems related to the fundamental theorem of calculus:

• Fundamental Theorem of Calculus: Let C be a curve expressed by x(t) with t ∈ [0, 1].
We have ˆ

C

∇f(x(t)) · dx(t) = f(x(1))− f(x(0)).

• Kelvin-Stokes’ theorem: Let Σ be a surface in R3, u : R3 → R3. We have

¨
Σ

∇× u(x) · n dS =

ˆ
∂Σ

u · dx.

• Divergence theorem: Let D be a domain in R3 and q : D → R3. We have

˚
D

∇ · q(x) dx =

¨
∂D

q · n dS.

Here, the surface normal element n dS has the following representation in terms of a param-
eterization. Suppose Σ is parameterized by x(u, v). Then the outer normal of Σ is

n =
∂x
∂u
× ∂x

∂v∣∣∂x
∂u
× ∂x

∂v

∣∣ .
The area element is

dS =

∣∣∣∣∂x∂u × ∂x

∂v

∣∣∣∣ du ∧ dv.
Thus,

n dS =
∂x

∂u
× ∂x

∂v
du ∧ dv

=

∣∣∣∣∣∣
i j k

∂ux
1 ∂ux

2 ∂ux
3

∂vx
1 ∂vx

2 ∂vx
3

∣∣∣∣∣∣ du ∧ dv
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=

(
∂(x2, x3)

∂(u, v)
,
∂(x3, x1)

∂(u, v)
,
∂(x1, x2)

∂(u, v)

)
du ∧ dv

= (dx2 ∧ dx3, dx3 ∧ dx1, dx1 ∧ dx2).

Here,
∂(x2, x3)

∂(u, v)
:=

∣∣∣∣ ∂x2

∂u
∂x2

∂v
∂x3

∂u
∂x3

∂v

∣∣∣∣
is the Jacobian and

∂(x2, x3)

∂(u, v)
du ∧ dv = dx2 ∧ dx3.

The meaning of dx2 ∧ dx3 is the following. It is a functional applied to a two dimensional
surface S. It returns the infinitesimal area element of the projection of S onto the x2-x3

plane.

Generalized Stokes’ Theorem for differential forms All of above formulae (1D, 2D,
3D) can be unified into one single formula

ˆ
D

dω =

ˆ
∂D

ω

where ∂D denotes the boundary of a domain D. The domain D can be one, two or three
dimensional. The integrand ω is

• 1D: ω = f , dω = ∂f
∂x1dx

1 + ∂f
∂x2dx

2 + ∂f
∂x3dx

3,

• 2D: ω = u1dx
1 + u2dx

2 + u3dx
3,

dω = (∂2u3 − ∂3u2)dx2 ∧ dx3 + (∂3u1 − ∂1u3)dx3 ∧ dx1 + (∂1u2 − ∂2u1)dx1 ∧ dx2.

• 3D: ω = q1dx
2∧dx3+q2dx3∧dx1+q3dx1∧dx2, dω = (∂1q1+∂2q2+∂3q3) dx

1∧dx2∧dx3.

Let us state this generalized Stokes Theorem below.

Theorem 5.2 (Stokes-Cartan). Let M be a smooth k-dimensional manifold with boundary
∂M . Let ω ∈ Ωk−1(M,R). We have

ˆ
M

dω =

ˆ
∂M

ω.

Proof. 1. We partition the parameter domain into union of small cubes. We only need to

prove the case when M = [0, 1]k and ω = fi du
1 ∧ · · · ∧ d̂ui ∧ · · · ∧ duk.

ˆ
[0,1]k

dω =

ˆ
[0,1]k−1

ˆ 1

0

∂fi
∂ui

dui ∧ du1 ∧ · · · d̂ui · · · ∧ duk
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=

ˆ
[0,1]k−1

(fi(1)− fi(0))du1 ∧ · · · d̂ui · · · ∧ duk

=

ˆ
∂[0,1]k

fidu
1 ∧ · · · d̂ui · · · ∧ duk

Remarks

1. The Stokes theorem in vector calculus seems depending on the inner product structure
of R3, it is indeed independent of the inner product. It depends only on the wedge
product and the exterior derivative. Later, we shall show that the Stokes theorem is
purely topological, which is the deRham Theorem.

2. Sometimes we denote the integral by

⟨ω|M⟩ :=
ˆ
M

ω.

and the Stokes-Cartan theorem can be expressed as

⟨dω|M⟩ = ⟨ω|∂M⟩.

This means that d and ∂ are dual to each other. In this setting, the concept of the
vector space Ωk is clear. However, it is not clear what is the vector space for the
collection of k-dimensional sub-manifolds M . In fact, we can construct such a vector
space algebraically, called simplicial complex. The integration of ω is over those k-
simplices. We shall see this in later section.

5.4 Inner product structure for differential forms

5.4.1 Riemannian manifold (Inner product structure)

The vector calculus uses inner product structure in R3 (i.e. the ♭, ♯ operations). For general
manifold M , an inner product structure G = (gij) on M is a symmetric, positive definite,
smooth bilinear function ⟨·, ·⟩ on the tangent space TM . This means that if (U,x) is a
coordinate chart, the inner product of two tangent vectors ∂

∂xi and ∂
∂xj is defined to be

⟨ ∂
∂xi

,
∂

∂xj
⟩ = gij.

with (gij(x)) is a smooth, symmetric and positive definite matrix function. We denote the
arclength

ds2 = gijdx
i ⊗ dxj, or just ds2 = gijdx

idxj
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With the inner product on tangent space TM , it induces inner product structure gij on T ∗M :

⟨dxi, dxj⟩ = gij, (gij) = (gij)
−1,

and on Ωk(M,R) by
⟨dxI , dxJ⟩ = gIJ , gIJ = det((gij)i∈I,j∈J).

For any ω, η ∈ Ωk(M,R), they can be represented as

ω = ω(
∂

∂xi1
, ...,

∂

∂xik
)dxI := ωIdx

I , η = ηIdx
I .

Then
⟨ω, η⟩ := ωIηJg

IJ .

Example

1. Consider polar coordinate in R2. The coordinate chart is (R2, (r, θ)). The imbedding
map is (x, y) = (r cos θ, r sin θ). The inner product of (R2, (r, θ)) is induced by the
inner product of the Euclidean plane (R2, (x, y)). We have

g11 = ⟨
∂

∂r
,
∂

∂r
⟩ = ∥(cos θ, sin θ)∥2 = 1,

g12 = g21 = ⟨
∂

∂r
,
∂

∂θ
⟩ = ⟨(cos θ, sin θ), (−r sin θ, r cos θ)⟩ = 0,

g22 = ⟨
∂

∂θ
,
∂

∂θ
⟩∥(−r sin θ, r cos θ)∥2 = r2.

The corresponding inner product in T ∗M is g11 = 1, g12 = 0 and g22 = 1/r2. The
volume form µ =

√
gdr ∧ dθ = rdr ∧ dθ.

5.4.2 Hodge ⋆ and Co-differential for Differential Forms

We are interested in the L2 inner product structure for k-forms Ωk(M,R): Suppose ω, η ∈
Ωk(M,R), we are interested in the following inner product of ω and η defined by

ˆ
M

⟨ω(p), η(p)⟩µ(p)

where µ is the volume form of M and ⟨ω(p), η(p)⟩ is the inner product of two k-form in
Λk(TpM,R)∗. In performing integration-by-part, it is convenient to introduce the following
Hodge star operator.

Hodge ⋆ for Differential Forms The Hodge ⋆ : Ωk(M,R) → Ωn−k(M,R) is defined as
below.
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Example

• Polar coordinate in R2: We have seen that the volume form µ = rdr ∧ dθ.

1. ⋆1 = µ = rdr ∧ dθ
2. ⋆(dr) = r dθ, ⋆(dθ) = −1

r
dr.

This follows from dθ ∧ (⋆dθ) = ∥dθ∥2rdrdθ, and ∥dθ∥2 = g22 = 1
r2
.

• Global volume form and orientable manifolds Given a Riemannian manifold M ,
we have seen that it can always a unit volume form at each point. Any two such
unit volume forms is different by a sign. If the manifold has a consistent sign of a
unit volume form µ, then we say the manifold is orientable. Below, to define Hodge ⋆
operator, we assume our manifold is orientable. The unit volume form is denoted by
µ.

• Hodge ⋆ on dxI

Let I = {i1, ..., ik} be an ordered index in {1, ..., n}. We define

⋆dxI :=
√
ggIIsign(σ)dxÎ .

where Î = {1, ..., n} \ I, σ is the permutation between (I, Î) and {1, ..., n}, gII =
det((gij)i∈I,j∈I)k×k and g = det(gij).

• Hodge ⋆ for k-form: For ω ∈ Ωk(M), ω can be represented as ω = ωIdx
I , where

I = (i1, ..., ik). We define ⋆ω = ωI ⋆ dx
I . This definition is equivalent to

Proposition 5.9. For any ω, η ∈ Ωk(M,R), we have

ω ∧ ⋆η = ⟨ω, η⟩µ,
where µ is the volume form of M .

Connection of Hodge ⋆ with Vector Calculus In vector calculus, we define grad, curl
and div for vector fields in R3. These operators correspond to the exterior derivatives

d0 ≜ grad, d1 ≜ curl, d2 ≜ div.

In fact,
∇f = (d0f)

♯, ∇× v = (⋆d1(v
♭))♯, ∇ · v = ⋆d2 ⋆ (v

♭). (5.6)

The properties curl ◦ grad = 0 and div ◦ curl = 0 correspond to d2 = 0.

Homeworks

1. Prove (5.6).

2. For f ∈ Ω0(M), show that

△f = ∇ · (∇f) = ⋆d ⋆ df.

3. For v = (v1, v2, v3) : R3 → R3. Let α = v♭. Show that

(△v)♭ = (⋆d ⋆ d− d ⋆ d⋆)α.
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Co-differential operator δ

1. In vector calculus, we use integration-by-part quite often. The formula reads

ˆ
D

∇ϕ · v dx = −
ˆ
D

ϕ∇ · v dx+
ˆ
∂D

ϕv · n dS.

We would like to find the formula of integration-by-part in terms of exterior derivative
d. The volume integration are expressed as

ˆ
D

∇ϕ · v dx =

ˆ
D

⟨dϕ,v♭⟩µ,

ˆ
D

ϕ∇ · v dx =

ˆ
D

⟨ϕ, ⋆d ⋆ v♭⟩µ.

The boundary term is ˆ
∂D

ϕv · n dS =

ˆ
D

d(ϕv♭)µ.

This ⋆d⋆ is the dual of d. It is called the co-differential operator.

2. Exercises

(a) Suppose D ⊂ R3. Show that

ˆ
D

∇× v ·w = −
ˆ
D

v · ∇ ×w dx+

ˆ
∂D

⟨v,w⟩

and to conclude thatˆ
D

⟨dv♭,w♭⟩µ = −
ˆ
D

⟨v♭, ⋆d ⋆w♭⟩µ+

ˆ
∂D

v♭ ∧ ⋆w♭.

3. To define co-differential operator for k-form, we shall define it as the dual of dn−k. Let
us consider the following diagram

Ωk(M) Ωk−1(M)

Ωn−k(M) Ωn−k+1(M)

δk

⋆k ⋆k−1

dn−k

These induce a map δk : Ω
k → Ωk−1 by

δk := (−1)k ⋆−1
k−1 dn−k⋆k = (−1)kn+n+1 ⋆n−k+1 dn−k ⋆k .

Note that δ0 = 0. The operator δk is the dual of dk−1 in the following sense.
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Proposition 5.10 (Integration-by-part). Let M be an orientable n-Riemannian manifold
with volume form µ. For any α ∈ Ωk−1(M), β ∈ Ωk(M),

⟨dk−1α, β⟩µ− ⟨α, δkβ⟩µ = dn−1(α ∧ (⋆β)) .

Proof. We have

d(α ∧ (⋆β)) = (dk−1α) ∧ (⋆β) + (−1)k−1α ∧ (dn−k ⋆ β)

= ⟨dα, β⟩µ− α ∧
(
(−1)k ⋆k−1 ⋆

−1
k−1dn−k ⋆k β

)
= ⟨dα, β⟩µ− α ∧ ⋆k−1δkβ

= ⟨dα, β⟩µ− ⟨α, δβ⟩µ.

Remark In Ωk(M), let us define the inner product by

⟨⟨ω, η⟩⟩ :=
ˆ
M

⟨ω, η⟩µ =

ˆ
M

ω ∧ ⋆η

for ω, η ∈ Ωk(M). When M has no boundary, then

⟨⟨dkω, η⟩⟩ = ⟨⟨ω, δk+1η⟩⟩.

That is, δk+1 : Ω
k+1(M)→ Ωk(M) is the adjoint of dk : Ω

k(M)→ Ωk+1(M):

Ωk(M) Ωk+1(M)
dk

δk+1

5.4.3 Dirichlet Integral and Hodge Laplacian

For an α ∈ Ωk, we define the Dirichlet integral

E[α] :=
1

2

(
∥dkα∥2 + ∥δkα∥2

)
:=

1

2
(⟨⟨dkα, dkα⟩⟩+ ⟨⟨δkα, δkα⟩⟩)

which measure the roughness of α on M . Suppose M has no boundary. We take variation
of E in α. That is,

⟨⟨δE[α], α̇⟩⟩ := d

dε

∣∣∣∣
ε=0

E[α + εα̇].

Taking integration by part, we get

⟨⟨δE[α], α̇⟩⟩ =
ˆ
M

(⟨δk+1dkα, α̇⟩+ ⟨dk−1δkα, α̇⟩)µ :=

ˆ
M

⟨− △ α, α̇⟩µ,
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where △α is called the Hodge Laplacian of α and is defined to be

△α := − (δk+1dk + dk−1δk)α.

Note that from δ0 = 0 and dn = 0, we get

△ = −δ1d0 for 0-forms

△ = −dn−1δn for n-forms

We list its expression in parameter form. Suppose M is locally parameterized by (x1, ..., xn)
with ⟨ ∂

∂xi ,
∂

∂xj ⟩ = gij.

• 0-form: f :M → R

△f =
1
√
g

∂

∂xi

(
√
ggij

∂

∂xj
f

)
.

• k-forms

Homework

1. Derive the formula for Hodge-Laplacian in parameter form.

5.5 Hodge Decomposition

5.5.1 Helmholtz Decomposition for Vector Fields

The Helmholtz decomposition for vector fields in R3 was published in (1858). Such de-
composition was generalized to differential forms by Hodge (1934), to general domains with
boundaries by Friedrichs-Morrey (1955,1956). The theories are termed Helmholtz-Hodge
decomposition and the Hodge-Morrey-Friedrichs decomposition.

Theorem 5.3. Let M be a 3D manifold. Let v : M → R3 be a vector field. Then v can be
L2-orthogonally decomposed into

v = ∇φ+∇×ψ + h, (5.7)

where

• φ :M → R (potential) satisfies
△φ = ∇ · v. (5.8)

φ = 0 on ∂M. (5.9)

• ψ :M → R3 (stream vector field) satisfies

∇× (∇×ψ) = ∇× v, (5.10)

ψ ∥ ν on ∂M (5.11)
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• h :M → R3 (harmonic vector field) satisfies

∇ · h = 0, ∇× h = 0. (5.12)

Proof. 1. We look for equations satisfied by φ, ψ and h. First, By applying the divergence
operator to (5.7), we get

∇ · v = △φ.

2. Next, applying the curl operator to (5.7), we obtain

∇× v = ∇× (∇×ψ) .

3. Suppose we can find φ and ψ from the above two equations, then by defining h =
v −∇φ−∇×ψ, we get ∇ · h = 0 and ∇× h = 0.

4. By choosing proper boundary conditions for ψ and h, we can get the orthogonality
properties: ˆ

M

⟨∇φ,∇×ψ⟩ dx = 0, (5.13)

ˆ
M

⟨∇φ,h⟩ dx = 0, (5.14)

ˆ
M

⟨∇ ×ψ,h⟩ dx = 0. (5.15)

5. To fullfil (5.13), we have

ˆ
M

⟨∇φ,∇×ψ⟩ dx =

ˆ
M

⟨∇ × (∇φ),ψ⟩ dx−
ˆ
∂M

(∇φ)×ψ · νdS

=

ˆ
∂M

(∇φ)×ψ · νdS.

If ψ ∥ ν on ∂M , then the boundary term is zero. Thus, a natural boundary condition
for ψ is (5.11).

6. To satisfy (5.14), we need

ˆ
M

h · ∇φdx =

ˆ
∂M

φh · νdS −
ˆ
M

φ∇ · h dx

=

ˆ
∂M

φh · νdS

Thus, boundary condition h · ν = 0 gives (5.14).
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7. For (5.15), we have

ˆ
M

h · (∇ψ) dx = −
ˆ
∂M

(h×ψ) · νdS +

ˆ
M

(∇× h) ·ψ dx

= −
ˆ
∂M

(h×ψ) · νdS.

Thus, boundary condition (5.11) gives (h×ψ) · ν = 0.

Figure 5.1: Copied from Crane’s lecture note

5.5.2 Hodge decomposition for k-forms

In above decomposition, the keys are the facts

div ◦ curl = 0, curl ◦ grad = 0.
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In exterior calculus, these are unified to

d ◦ d = 0, δ ◦ δ = 0.

Here, d is the differential and δ is the codifferential. We recall the space of k-forms is Ωk(M).
In Ωk(M), we have defined the inner product

⟨⟨ω, η⟩⟩ :=
ˆ
M

ω ∧ ⋆η.

If M is a closed manifold (i.e. it has no boundary), then δk+1 is the adjoint of dk. That is,

⟨⟨dkω, η⟩⟩ = ⟨⟨ω, δk+1η⟩⟩, for any ω ∈ Ωk(M), η ∈ Ωk+1(M).

We have the following diagram

Ωk−1(M) Ωk(M) Ωk+1(M)
dk−1 dk

δk δk+1

Definition 5.8. A k-form ω ∈ Ωk(M) is said to be

• closed if dω = 0,

• exact if ω = dα for some α ∈ Ωk−1,

• co-closed if δω = 0,

• co-exact if ω = δβ for some k + 1-form β,

• harmonic if dω = 0 and δω = 0.

From d ◦ d = 0, we get that exact forms are also closed. From δ ◦ δ = 0, we get that
co-exact implies co-closed. Thus, Im(dk−1) ⊂ Ker(dk) and Im(δk+1) ⊂ Ker(δk). We now
state the Hodge decomposition of k-forms.

Theorem 5.4. Let M be a closed n-manifold, Ωk(M) be the space of its k-forms with the
following diagram

Ωk−1(M) Ωk(M) Ωk+1(M)
dk−1 dk

δk δk+1

Then
Ωk(M) = Im(δk+1)⊕Ker(dk) = Im(δk+1)⊕ Im(dk−1)⊕Hk(M).

That is, for every ω ∈ Ωk(M), there exists a unique α ∈ Ωk−1(M) up to a closed form, a
unique β ∈ Ωk+1(M) up to a co-closed form, and a unique harmonic k-form h ∈ Hk(M),
such that

ω = dα + δβ + h. (5.16)
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The decomposition follows directly from the following Lemmas from Linear Algebra.

Lemma 5.1 (Four Fundamental Subspaces). Let V,W are two inner-product spaces. Let
A : V → W be a linear map and A∗ be its adjoint. Then

(ImA∗)⊥ = kerA, (ImA)⊥ = kerA∗.

This also means
V = kerA⊕ ImA∗, W = kerA∗ ⊕ ImA.

Proof.

y ∈ (ImA)⊥ ⇔ ⟨y, Ax⟩ = 0 ∀x ∈ V ⇔ ⟨A∗y, x⟩ = 0 ∀x ∈ V
⇔ A∗y = 0⇔ y ∈ KerA∗.

The proof for (ImA∗)⊥ = kerA is similar.

Lemma 5.2. Let U, V,W be inner product spaces. Let A,B be linear maps as the diagram

U V WA B with B ◦ A = 0

Then
ImA ∩ ImB∗ = {0}.

Proof. From B ◦ A = 0, we get ImA ⊂ KerB. From previous lemma, we have kerB =
(ImB∗)⊥. Thus, ImA ⊂ (ImB∗)⊥. This implies ImA ∩ ImB∗ = {0}.

Proof of Hodge decomposition

1. From dk : Ω
k → Ωk+1 and δk+1 = d∗k, we get

Ωk(M) = Ker(dk)⊕ Im(δk+1).

2. We further decompose Ker(dk) as

Ker(dk) = Im(dk−1)⊕
(
(Im(dk−1))

⊥ ∩Ker(dk)
)

= Im(dk−1)⊕ (Ker(δk) ∩Ker(dk))
= Im(dk−1)⊕Hk(M).

Next we show that harmonic functions satisfy the Laplace equation.

Proposition 5.11. On a closed manifold M (i.e. M has no boundary),

Hk(M) = {h ∈ Ωk(M)| △h = 0},

where △ = −(dk−1δk + δk+1dk).

100



Proof. 1. We show that △h = 0 ⇒ dh = 0 and δh = 0. If △h = 0, then

dk−1δkh = −δk+1dkh ∈ Im(dk−1) ∩ Im(δk+1) = {0}.

Thus, dk−1δkh = 0 and δk+1dkh = 0.

2. When dk−1δkh = 0, we also have

0 = ⟨⟨dk−1δkh, h⟩⟩ = ⟨⟨δkh, δkh⟩⟩

This leads to δkh = 0.

3. Similarly, when δk+1dkh = 0, we have dkh = 0. Thus, h is harmonic.

4. The proof of (dh = 0 and δh = 0 ⇒ △h = 0) is trivial.

5.5.3 Solving for the Exact, Co-exact and Harmonic Components

Let M be a closed manifold. For ω ∈ Ωk(M), it can be decomposed into

ω = dα + δβ + h. (5.17)

Below, we will extract each components from ω.

Extracting α ∈ Ωk−1(M)

1. We apply δ to the decomposition formula (5.17) to get

δdα = δω. (5.18)

2. The solvability of (5.18) is due to the following lemma (i.e. Im(δkdk−1) = Im(δk)).

Lemma 5.3. In the diagram

Ωk−1(M) Ωk(M) Ωk−1(M)
dk−1 δk ,

it holds {
Ker(δkdk−1) = Ker(dk−1)
Im(δkdk−1) = Im(δk)

. (5.19)

Proof. (a) If u ∈ Ker(δkdk−1) ⊂ Ωk−1(M), by Hodge decomposition

u = dϕ+ δψ + χ

where χ ∈ Hk−1(M). From δdu = 0, we get

δdδψ = 0.
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This implies
0 = ⟨⟨δdδψ, δψ⟩⟩ = ⟨⟨dδψ, dδψ⟩⟩

Hence, dδψ = 0. By taking inner product with ψ, we get

0 = ⟨⟨dδψ, ψ⟩⟩ = ⟨⟨δψ, δψ⟩⟩

Thus, δψ = 0. Hence u ∈ Im(dk−2)⊕Hk−1(M), which is Ker(dk−1). This shows
Ker(δkdk−1) ⊂ Ker(dk−1). The other part Ker(dk−1) ⊂ Ker(δkdk−1) is trivial.

(b) From (δkdk−1)
∗ = δkdk−1, we get

Im(δkdk−1) = Ker(δkdk−1)
⊥.

We have seen that Ker(δkdk−1) = Ker(dk−1). Thus

Ker(δkdk−1)
⊥ = Ker(dk−1)

⊥ = Im(d∗k−1) = Im(δk).

This shows Im(δkdk−1) = Im(δk).

3. The component α ∈ Ωk−1(M) in the decomposition formula (5.17) is unique up to a
closed form. We apply the Hodge decomposition to α to get

α = χ+ dϕ+ δψ.

This is an orthogonal decomposition. Hence

∥α∥2 = ∥χ∥2 + ∥dϕ∥2 + ∥δψ∥2.

The terms χ+dϕ ∈ Ker(dk−1). Thus, it makes no contribution to dα. A canonical way
to determine a unique α is to let α ⊥ Hk−1(M) and α ⊥ Im(dk−2). The latter gives
α ∈ Im(dk−2)

⊥ = Ker(d∗k−2) = Ker(δk−1). To summarize, such unique α ∈ Ωk−1(M)
satisfies 

δdα = δω
δα = 0
⟨⟨α, χ⟩⟩ = 0 for all χ ∈ Hk−1(M).

(5.20)

4. Another way to express (5.20) is{
−△ α = δω
⟨⟨α, χ⟩⟩ = 0 for all χ ∈ Hk−1(M).

(5.21)

Here, −△ := δkdk−1+dk−2δk−1. Clearly, (5.20)⇒ (5.21). Conversely, if δdα+dδα = δω,
then δdα + dδα ∈ Im(δk). Hence, dδα = 0 by Hodge decomposition. This implies

0 = ⟨⟨dδα, α⟩⟩ = ⟨⟨δα, δα⟩⟩

This shows (5.21) ⇒ (5.20).

5. The well-posedness of (5.20) or (5.21) follows from the Hodge decomposition theorem.
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Extract β component By a similar process, one can show that β ∈ Ωk+1(M) can be
determined uniquely by 

dδβ = dω
dβ = 0
⟨⟨β, χ⟩⟩ = 0 for all χ ∈ Hk+1(M).

This is equivalent to {
−△ β = dω
⟨⟨β, χ⟩⟩ = 0 for all χ ∈ Hk+1(M).

Harmonic Component h We simply use the decomposition formula.

h = ω − dα− δβ.

to extract the harmonic component.
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Chapter 6

Discrete Exterior Calculus

The discrete exterior calculus will be built on discrete (algebraic) topological structures
of manifolds. There are various kinds of such discrete structures: simplicial complex, cell
complex, or some other complices, depending on the mesh you use. We will use simplicial
complex, which can be constructed through triangulation. This is the simplest structure
and is usually called the primal complex. The simplicial complex consists of a sequence of
k-simplices and a sequence of associated boundary operators. For instance, for 2-dimensional
manifold M , the simplicial complex K = {V,E, F}, and boundary operators ∂2 : F → E,
∂1 : E → V . Here, V , E, F , are sets of vertices, edges and faces on M , respectively.

In addition to the two main references (Crane + Chern and Schröder) of this note, the
reference of this chapter also include

• Mathieu Desbrun, Anil N. Hirani, Melvin Leok, Jerrold E. Marsden, Discrete Exterior
Calculus, 2005.

• D. Arnold, et al, Finite element exterior calculus, homological techniques, and appli-
cations, 2006.

• D. Arnold, R. Falk, Winther, Finite element exterior calculus: from Hodge theory to
numerical stability, 2009.

6.1 Meshing

Meshing is to discretize a manifold and to build up a topological structure. For instance,
triangulation is one kind of meshing. It builds up a simplicial complex on a manifold. There
are other kinds of meshing, for instance, quadrilateral meshes in 2D and hexahedral meshes
in 3D. We shall only discuss triangle mesh here.

6.1.1 Triangulation

Triangulation on flat domains Suppose M ⊂ Rm is a domain. We want to triangulate
M . The most common way is to use Delaunay triangulation. The corresponding mesh
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maximizes the minimum angle of the underlying triangles. This will give nice property for
the discrete Laplace-Betrami operator.

Delaunay meshes

• Given a set of points V ⊂ Rm. A Delaunay triangulation DT (V ) is a triangulation
such that no point in P is inside the circumcircle (circum-hypersphere) of any triangle
(m-simplex) in DT (V ). This condition is called Delaunay condition. An important
property of Delaunay triangulation is that it maximizes the minimum angle of all the
angles of the triangles in the triangulation.

• If the points in V are in general position, then there exists a unique Denaunay triangu-
lation of V . The meaning of general position is that the affine hull of V is m dimension
and no m+ 2 points in V lie on a hypersphere whose inside contains no points in V .

• Given V = {xi, i = 1, ..., N} ⊂ Rm, generation of DT (V ) can be transformed to find
bottom side of convex hull of the points {(xi, ∥xi∥2)|i = 1, ..., N} in Rm+1.

• Reference:

– Jonathan Richard Shewchuk, Lecture Notes on Delaunay Mesh Generation, 2012.

– Per-Olof Persson and Gilbert Strang, A simple mesh generator in matlab.

Triangulation on a manifold

• A topological space X is called triangulable if there exists a simplicial complex K and a
homeomorphism (i.e. f is 1-1, onto continuous and f−1 is also continuous) f : K → X.

• People also study intrinsic Delaunay triangulation on a Riemannian manifold M with-
out embedded in an Euclidean space. The edges there are geodesic paths.

• Reference: M. Fisher, B. Springborn, P. Schröder, and A. I. Bobenko, An algorithm
for the construction of intrinsic delaunay triangulations with applications to digital
geometry processing, Computing 2007.

6.1.2 Building a simplicial complex on a triangulated domain in
R3

We want to build up a simplicial complex K on a triangulated orientable domain M ⊂
R3. This simplicial complex consists of ordered vertices, edges, faces and tetrahedra. K =
{V,E, F, T}. Here is the procedure.

1. We index the vertices in V , say V = {1, ..., n0}.

106



2. We determine orientation of the edges, faces and tetrahedra. These are the sets E, F
and T . The orientation of each tetrahedron should be consistent to the orientation of
the domain M . Then we index E, F and T . The numbers of them are n1, n2 and n3.

3. The boundary of an oriented simplex is defined to be

∂k[v0, ..., vk] =
k∑

i=0

(−1)i[v0, ..., v̂i, ..., vk].

For example,

• ∂1[v0, v1] = [v1]− [v0];

• ∂2[v0, v1, v2] = [v1, v2]− [v0, v2] + [v0, v1];

• ∂3[v0, v1, v2, v3] = [v1, v2, v3]− [v0, v2, v3] + [v0, v1, v3]− [v0, v1, v2];

4. We construct the boundary operator ∂3, ∂2 and ∂1 using the example in Chern and
Schröder’s note for explanation. (Figure 4.5).

Figure 6.1: Copied from Chern and Schröder note

V =


[1]
[2]
[3]
[4]
[5]

 E =



[12]
[13]
[14]
[23]
[24]
[25]
[34]
[35]
[45]


F =



[123]
[124]
[134]
[234]
[235]
[245]
[345]


T =

(
[1234]
[2345]

)
. (6.1)

The boundaries of the simplices are given by

∂3[1234] = [234]− [134] + [124]− [123],
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∂3[2345] = [345]− [245] + [235]− [234].

∂2[123] = [23]− [13] + [12]

In general, the boundary operators, or the incidence matrices are given by

∂3 =



−1 0
+1 0
−1 0
+1 −1
0 +1
0 −1
0 +1


|F |×|T |

∂2 =



+1 +1 0 0 0 0 0
−1 0 +1 0 0 0 0
0 −1 −1 0 0 0 0
+1 0 0 +1 +1 0 0
0 +1 0 −1 0 +1 0
0 0 0 0 −1 −1 0
0 0 +1 +1 0 0 +1
0 0 0 0 +1 0 −1
0 0 0 0 0 +1 +1


|E|×|F |

∂1 =


−1 −1 −1 0 0 0 0 0 0
+1 0 0 −1 −1 −1 0 0 0
0 +1 0 +1 0 0 −1 −1 0
0 0 +1 0 +1 0 +1 0 −1
0 0 0 0 0 +1 0 +1 +1


|V |×|E|

6.1.3 Building a simplicial complex on a triangulated manifold

Abstract simplicial complex

• Let V = {p1, ..., pN} be N abstract vertices. A k-simplex of V is a set

σk = {v0, ..., vk} ⊂ V.

Any simplex spanned by a proper subset of {v0, ..., vk} is called a face of σk.

• We can make this simplex abstract. Namely, consider a vertex set V = {1, ..., N}. An
abstract k-simplex is {v0, ..., vk}, where vi ∈ V . Any subset of a simplex is another
simplex. We call it a face.

• A collection of simplices K is called a simplicial complex if for every simplex σ ∈ K,
every face σ′ ⊂ σ is also in K. Let K(k) be the collection of k-simplices of K. Then
K = ∪kK(k). For simplicial complex in 3D, it is K = {V,E, F, T}, vertex, edge, face
and tetrahedra.

• A complex K is a pure m-simplicial complex if every simplex σ′ ∈ K of degree l < m is
contained in some simplex of degree m.

• A complex is an m-dimensional simplicial manifold if

– it is a pure m-simplicial complex
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– For every v ∈ V , the star of vi: St(vi) = ∪{σ ∈ K|vi ∈ σ} is composed of
m-simplices.

• Given a k-simplex {v0, ..., vk}, there are only two types of permutations among the
vertex indices, even or odd. The type of permutation determines the orientation of the
simplex. An oriented k-simplex is denoted by [v0, ..., vk]. The orientation of

[vp(0), ..., vp(k)] =

{
[v0, ..., vk] if p is an even permutation,
−[v0, ..., vk] if p is an odd permutation.

• Boundary operator: ∂k : K(k) → K(k−1), for σk = [v0, ..., vk], define

∂kσk :=
k∑

i=0

(−1)i[v0, ..., v̂i, ..., vk]. (6.2)

Here, v̂i means that we skip the term vi. One can show

∂k∂k+1 = 0.

For instance,

∂2[0, 1, 2] = ([2]− [1])− ([2]− [0]) + ([1]− [0]) = 0.

∂2[0, 1, 2, 3] = ([2, 3]− [1, 3] + [1, 2])− ([2, 3]− [0, 3] + [0, 2])

+ ([1, 3]− [0, 3] + [0, 1])− ([1, 2]− [0, 2] + [0, 1]) = 0.

• We say two adjacent k-simplices [v0, v1, ..., vk] and −[w0, v1, ..., vk] have consistent orien-
tation. This is because when we add these two simplices, their common face [v1, ..., vk]
will be cancelled.

• An oriented m-simplicial manifold is an abstract m-dimensional simplicial manifold
where we can assign a consistent orientation to every m-simplex.

6.2 Chain Complex and Co-chain complex

Chain complex

• Chain: Given an abstract simplicial complex K. Let Kk be the collection of all oriented
k-simplex in K. We label them as σk,i, i = 1, ..., nk. The k-chain of K over a field R is
defined to be

Ck(K) := {c =
nk∑
i=1

ciσk,i|ci ∈ R}.
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The k-chain Ck(K) is a vector space of dimension nk.
The boundary operator ∂k : Ck(K)→ Ck−1(K) is defined to be

∂kc = ∂k
(
ciσk,i

)
:= ci∂kσk,i

for c = ciσk,i ∈ Ck(K). Here, we recall

∂k[v0, ..., vk] :=
k∑

i=0

(−1)i[v0, ..., v̂i, ..., vk].

The boundary operator has the following properties:

– ∂k is linear;

– ∂k−1 ◦ ∂k = 0.

For the proof of ∂k−1 ◦ ∂k = 0, we have

∂k−1∂k[v0, ..., vk] = ∂k−1

k∑
i=0

(−1)i[v0, ..., v̂i, ..., vk]

=
k∑

i=0

(−1)i
i−1∑
j=0

(−1)j[v0, ..., v̂j, ..., v̂i, ..., vk]

+
k∑

i=0

(−1)i
k∑

j=i+1

(−1)j−1[v0, ..., v̂i, ..., v̂j, ...vk]

=
k∑

i=0

∑
j<i

(−1)i+j[v0, ..., v̂j, ..., v̂i, ..., vk]

+
k∑

i=0

∑
j<i

(−1)i+j−1[v0, ..., v̂j, ..., v̂i, ..., vk]

= 0.

• Chain complex: The sequence (Ck(K), ∂k):

0 Cm(K) Cm−1(K) · · · C1(K) C0(K) 0i ∂m ∂m−1 ∂2 ∂1 ∂0

is called a chain complex associated with K and is denoted by C(K). Here, i is the
inclusion map.
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• Example: We use Ex.4.1 as an example.

V =


σ0,1
σ0,2
σ0,3
σ0,4
σ0,5

 =


[1]
[2]
[3]
[4]
[5]

 , E =



σ1,1
σ1,2
σ1,3
σ1,4
σ1,5
σ1,6
σ1,7
σ1,8
σ1,9


=



[12]
[13]
[14]
[23]
[24]
[25]
[34]
[35]
[45]


,

F =



σ2,1
σ2,2
σ2,3
σ2,4
σ2,5
σ2,6
σ2,7


=



[123]
[124]
[134]
[234]
[235]
[245]
[345]


, T =

(
σ3,1
σ3,2

)
=

(
[1234]
[2345]

)

The chains Ck = span{σk,i|i = 1, ..., nk}. Thus, C0 = R5, C1 = R9, C2 = R7 and
C3 = R2.

Figure 6.2: Copied from Chern and Schröder note

Homology Chain complex can be used to measure topological properties of the underlying
simplicial complex K.

• Recall the chain diagram

0 Cm(K) Cm−1(K) · · · C1(K) C0(K) 0i ∂m ∂m−1 ∂2 ∂1 ∂0
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From ∂k ◦ ∂k+1 = 0, we get
Im(∂k+1) ⊂ Ker(∂k).

We define

Hk(C(K)) :=
Ker(∂k)

Im(∂k+1)
,

called the kth homology group of C(K). Its dimension (number of generators) is called
the kth Betti number of K, and is denoted by bk.

• We denote the dimension of Ck(K) by Ik, and define the Euler characteristic χ(K) by

χ(K) :=
m∑
k=0

(−1)kIk. (6.3)

Figure 6.3: A disk-like simplicial complex.

• Example 1: Disk. Topologically, it has the following simplicial complex.

V =


[1]
[2]
[3]
[4]

 E =


[12]
[13]
[14]
[23]
[24]

 F =

(
[123]
[314]

)

– Note that the dimensions of C0 (i.e., V ), C1 (i.e., E), and C2 (i.e., F ) are 4, 5,
and 2, respectively. The Euler characteristic is

χ(K) = I0 − I1 + I2 = 4− 5 + 2 = 1.
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– In C2, Ker(∂2) = {0}. Thus, H2 = {0} and b2 = 0. In C1, the following chains
are closed loops

ℓ1 := [12] + [23]− [13]

ℓ2 := [13] + [34] + [41]

There are only two independent loops in C1(K), that are ℓ1 and ℓ2. They are in
Ker(∂1). They are also in Im(∂2) because their interiors are the 2-simplices [123]
and [314]. Thus, Ker(∂1) = Im(∂2) and H

1(K) = {0}. We have b0 = 1, b1 = 0,
b2 = 1.

– In C0, Im(∂1) = ⟨{[2]− [1], [3]− [1], [4]− [1]}⟩ . Note that {[3]− [2], [4]− [3]} are
in Im(∂1) but not independent. The Ker(∂0) =< {1, 2, 3, 4} >. Thus, b0 =
dimH0 = dimKer(∂0)− dim(Im∂1) = 4− 3 = 1. We get b0 − b1 + b2 = 1.

• Example 2: Circle. b0 = 1, b1 = 1, b2 = 0.

• Example 3: Sphere S2. C2 is nontrivial. But C1 is trivial. b0 = 1, b1 = 0, b2 = 1.

• Example 4: Torus. H1 has two independent elements. b0 = 1, b1 = 2, b2 = 1.

Theorem 6.1. Homology is topological invariant: If X and Y are two triangulable topolog-
ical spaces which are homeomorphic to each other. Let KX and KY are the two simplicial
complexes corresponding to X and Y . Then Hk(C(KX)) = Hk(C(KY )).

Since the homological is invariant in any triangulation, we can write Hk(C(KX)) by
Hk(X).

Theorem 6.2. If X is connected, then dimH0(X) = 1.

Proof. Any two points p1 and p2 are connected, which means that there exists edges (p(1), p(2)),
(p(2), p(3)),· · · , (p(m−1), p(m)) with p(1) = p1 and p

(m) = p2. Then ∂
(
(p(1), p(2)) + · · · (p(m−1), p(m))

)
=

p2 − p1. Thus, any two points in K are equivalent to each other w.r.t. im(∂).

Theorem 6.3 (The Euler-Poincaré Theorem). Let K be an m-dimensional simplicial com-
plex. Then χ(K) is related to the Betti number by

χ(K) =
m∑
k=0

(−1)kbk(K).

Proof. 1. Let Ik be the number of generators of Ck, then

Ik = dimCk = dim(Ker∂k) + dim(Im∂k).

2. Let bk be the number of generators of the space Hk, where

Hk = Ker(∂k)/Im(∂k+1),

then
bk = dim(Ker∂k)− dim(Im∂k+1).
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3. The Euler characteristic is

χ(K) =
m∑
k=0

(−1)kIk

=
m∑
k=0

(−1)k [dim(Ker∂k) + dim(Im∂k)]

=
m∑
k=0

[(−1)k [dim(Ker∂k)− dim(Im∂k−1)]

=
m∑
k=0

(−1)kbk.

Reference: Nakahara, Geometry, Topology and Physics, 2003.

6.2.1 Co-chain complex and discrete differential forms

Co-chain and co-boundary operator

• Given a chain complex C(K), its dual

C∗
k(K) := {α : Ck(K)→ R linear}

is called the dual chain. The dual boundary operator ∂∗k : C∗
k−1 → C∗

k is also called the
co-boundary operator. The sequence (C∗(K), ∂∗)

0 C∗
0(K) C∗

1(K) · · · C∗
m−1(K) C∗

m(K) 0
∂∗
0 ∂∗

1 ∂∗
2

∂∗
m−1 ∂∗

m i∗

is called the co-chain complex of the chain complex (C(K), ∂).

• We can formally define the dual basis in C∗
k to be: for each σ ∈ K(k), we formally define

an element σ∗ such that for any σ′ ∈ K(k), we have

⟨σ∗, σ′⟩ = δσσ′ .

• The matrix representation of the co-boundary operator

∂∗k : C∗
k−1(K)→ C∗

k(K)

w.r.t. the basis {σ∗|σ ∈ K(k)} is exactly ∂Tk , the transpose of ∂k.
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de Rham complex and Reduction The differential forms are natural linear functionals
on chain complex.

• de Rham complex: The sequence (Ωk(M), dk):

0 Ω0(M) Ω1(M) · · · Ωm−1(M) Ωm(M) 0i d0 d1 dm−2 dm−1 dm

is called a de Rham complex, where dk+1dk = 0.

• For any α ∈ Ωk(M), we define R(α) ∈ C∗
k by

R : Ωk(M)→ C∗
k(M), ⟨Rα, c⟩ :=

ˆ
c

α :=
∑
i

ci
ˆ
σk,i

α,

where c = ciσk,i. R is called a reduction operator.

• By Stokes’ theorem, for any α ∈ Ωk−1(M) and any c ∈ Ck(K), we haveˆ
c

dα =

ˆ
∂c

α.

• We have the commuting diagram

Ωk(M) Ωk+1(M)

C∗
k(K) C∗

k+1(K)

dk

R R
∂∗
k+1

This is because

⟨R(dαk), ck+1⟩ =
ˆ
ck+1

dαk =

ˆ
∂ck+1

αk = ⟨R(αk), ∂ck+1⟩ = ⟨∂∗R(αk), ck+1⟩.

Whitney elements To bridge the co-chain and differential forms is a representation of
the co-chain in terms of differential form. The simpliest example is the following Whitney
basis.

For each σ ∈ K(k), we will construct a corresponding differential forms ϕσ defined on M
such that there is a 1-1 correspondence between σ ∈ K(k) and ϕσ. We start from 0-form.

• 0-form: Suppose K(0) = {vi|i = 1, ..., n0}. For each [i] := vi ∈ K(0), we want to
construct a function ϕi on M such that

ϕi(vj) = δij

and ϕj is linear on every simplices. More precisely, suppose v ∈ σm ⊂ M , where
σm = [w0, w1, ..., wm] is an m-simplex containing v. Suppose v =

∑
j x

jwj. Then

ϕi(v) :=
∑
j

xjϕi(wj).
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• 1-form: We look for the real-valued one form which is dual to [i0, i1].

ϕ[i0,i1] := ϕi0dϕi1 − ϕi1dϕi0 .

Note that
ϕi0 + ϕi1 = 1 on [i0, i1].

This leads to dϕi0 = −dϕi1 on [i0, i1]. We haveˆ
[i0,i1]

ϕ[i0,i1] =

ˆ
[i0,i1]

ϕi0dϕi1 − ϕi1dϕi0

=

ˆ
[i0,i1]

ϕi0dϕi1 + ϕi1dϕi1

=

ˆ
[i0,i1]

(
ϕi0 + ϕi1

)
dϕi1

=

ˆ
[i0,i1]

dϕi1 = 1.

If we integrate ϕ[i0,i1] over [i0, i2] with i2 ̸= i1. In this case, ϕi1 ≡ 0 on [i0, i2]. This
leads to ϕ[i0,i1] = dϕi1 − ϕi1dϕi0 = 0 on [i0, i2]. Thus,ˆ

[i0,i2]

ϕ[i0,i1] = 0.

In general, you can check that ˆ
[j0,j1]

ϕ[i0,i1] = δi0i1j0j1
,

where

δi0,i1j0,j1
=


1 if (i0, i1)↔ (j0, j1) is an even permutation
−1 if (i0, i1)↔ (j0, j1) is an odd permutation
0 if {i0, i1} ≠ {j0, j1}.

• k-form: In general, let σ = [i0, ..., ik] be a k-simplex, the corresponding dual k-form is

ϕσ := k!
k∑

ℓ=0

(−1)ℓϕiℓdϕi0 ∧ · · · ∧ d̂ϕiℓ ∧ · · · ∧ dϕik .

First, we have
k∑

ℓ=0

ϕiℓ = 1 on [i0, ..., ik].

This is because it is 1 at the vertices i0, ..., ik and each function is a linear function
between 0 and 1. The above equation leads to

dϕi0 = −
k∑

j=1

dϕij on [i0, ..., ik].
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We use this to replace dϕi0 in the expression

ϕσ := k!
k∑

ℓ=0

(−1)ℓϕiℓdϕi0 ∧ · · · ∧ d̂ϕiℓ ∧ · · · ∧ dϕik .

This gives

ϕσ = k!
k∑

ℓ=0

ϕiℓdϕi1 ∧ · · · ∧ dϕik = k!dϕi1 ∧ · · · ∧ dϕik .

By taking the vector Xℓ := viℓ − vi0 , we see that

dϕi1 ∧ · · · ∧ dϕik(X1, ..., Xk) =
1

k!
,

the volume of the simplex [i0, ..., ik]. Thus,

ˆ
[i0,...,ik]

ϕ[i0,...,ik] = 1.

In general, we have ˆ
[j0,...,jk]

ϕ[i0,...,ik] = δi0...,ikj0...,jk
.

Discrete k-forms

• We consider the space spanned by the Whitney elements

Ωk
h(K) := Span {ϕσ|σ ∈ K(k)}

The sequence (Ωk
h(K), dk):

0 Ω0
h(K) Ω1

h(K) · · · Ωm−1
h (K) Ωm

h (K) 0i d0 d1 dm−2 dm−1 dm

is called a Whitney complex.

• We note that

dϕ[i0,...,ik] = d

(
k!

k∑
ℓ=0

ϕiℓdϕi1 ∧ · · · ∧ dϕik

)
= (k + 1)!dϕi0 ∧ · · · ∧ dϕik ,

Thus,

dk+1dk = 0.
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• For α ∈ Ωk
h(K) and a chain c = ciσk,i ∈ Ck(K), we define

⟨α, c⟩ :=
ˆ
c

α :=
∑
i

ci
ˆ
σk,i

α.

There is a natural isomorphism

C∗
k(K) Ωk

h(K)
i by σ∗ 7→ ϕσ

By Stokes’ theorem, for any α ∈ Ωk−1
h (K) and any c ∈ Ck(K), we have

⟨dα, c⟩ = ⟨α, ∂c⟩ = ⟨∂∗α, c⟩.

Thus, we can identify dk as ∂∗k. The matrix representation of

dk−1 : Ω
k−1
h (K)→ Ωk

h(K)

with respective to the Whitney basis is exactly ∂∗k, which is ∂Tk , an nk × nk−1 matrix.

We can also choose other basis in Ck(K). Say {σ̄}, and there is an invertible map F : {σ} →
{σ̄}. The mapping from {σ̄} to a differential form by

I : σ̄ 7→ ϕ̄σ̄

is called a reconstruction operator. The composition:

Ωk(M) Ck(K) Ck(K) Ωk
h(M)R F I

is a natural projection πh : Ωk(M) → Ωk
h(K). Here, h is the mesh size of the simplicial

complex K. An important formula is the following commuting diagram:

Ωk(M) Ωk+1(M)

Ωk
h(K) Ωk+1

h (K)

dk

πh πh

∂∗
k+1

6.3 Hodge ⋆ operator

A discrete 0-form is defined on vertices. Its Hodge star is a discrete n-form defined on n-cells
surrounding the corresponding vertices. These cells form a dual mesh of the original triangle
mesh. The dual mesh of a Delaunay mesh is called a Voronoi mesh.
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6.3.1 Dual mesh

• Voronoi mesh: Given a set of points S = {p1, ..., pN} ⊂ Rm. A Voronoi cell Rk

associated with pk is the region

Rk = {x ∈ Rm|d(x, pk) ≤ d(x, pj) for all j ̸= k}

The Voronoi diagram is the tuple of cells (Rk)pk∈S. They can be generated from a set
of seeds S, see the movie on wiki Voronoi Diagram.

• Let us use example to explain the dual mesh of a Delaunay mesh. Consider a sim-
plicial complex K with dimension m = 2. On the plane, we have a vertex [i0] sur-
rounded by six vertices [i1], ..., [i6]. The edges are [i0, ij], j = 1, ..., 6. The faces
are [i0, i1, i2], [i0, i2, i3], ..., [i0, i5, i6] and [i0, i6, i1]. For each face, we will define its
dual, which will be a vertex. For instance, the dual of σ2 = [i0, i1, i2] is a ver-
tex. We define it to be the circumcenter of σ2, and denote it by c(σ2). There
are six such circumcenters corresponding the six faces. For a edge, say [i0, i2], we
define its dual to be an edge, which connecting c([i0, i1, i2]) and c([i0, i2, i3]). The
orientation of this edge is chosen to be [c([i0, i1, i2]), c([i0, i2, i3])] so that the orien-
tation from v to w is consistent to the orientation of the orientations of the 2D
plane. Here, v = [i0, i2] and w = [c([i0, i1, i2]), c([i0, i2, i3])]. There are six oriented
edges. Lastly, the dual of vertex [i0] is a honey comb surrounded by the dual edges
[[c([i0, i1, i2]), c([i0, i2, i3])], ..., [c([i0, i6, i1]), c([i0, i1, i2])]. Its orientation is defined so
that its is consistent to the plane orientation.

Figure 6.4: Dual Mesh

• Given a k-simplex σ = [v0, ..., vk] in Rm. The circumcenter is the unique point in the
k-dimensional affine space spanned by σ that is equidistant from the k+1 nodes of σ.
We denote it by c(σ).

• The circumcenter c[i0, ..., ik] can be found recursively from 1-simplices to k-simplex.
For example, consider a 3-simplex [i0, i1, i2, i3]. We first find c[i0, i1], ..., c[i3, i0], which
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are midpoints of the edges. Then we find c[i0, i1, i2], which is the intersection of the
two straight lines emitted from c[i0, i1] and c[i1, i2] on the plane [i0, i1, i2] and are
perpendicular to the simplices [i0, i1] and [i1, i2].

Figure 6.5: The vector [c[i0, i1, i2, i3], c[i0, i1, i2]] ⊥ [i0, i1, i2]. The circumcenters can be found
recursively from c[i0, i1], c[i1, i2], c[i2, i3], then c[i0, i1, i2] and then c[i0, i1, i2, i3].

• The circumcentric subdivision of a simplicial complex is [c(σ0), ..., c(σk)], where σ0 ≺
σ1 ≺ · · · ≺ σk, or σi is a proper face of σj for i < j.

• The circumcentric dual of a k-simplex σk is defined to be

σ̃k :=
∑

σk≺···≺σn

εσk,...,σn [c(σk), ..., c(σn)].

Here, the sum is over all circumcentric subdivision that containing σk. This dual σ̃k is
not a simplex in general. We call it a cell.

• The sign εσk,...,σn is chosen as below. First, for σk = [v0, v1, ..., vk], it determines an
orientation of the k-vector u1∧· · ·∧uk, where ui := vi−v0. For the dual [c(σk), ..., c(σn)],
it also determines an orientation of the (n − k)-vector wk+1 ∧ ... ∧ wn, where wj :=
c(σj)− c(σk). The sign εσk,...,σn is chosen so that the orientation of

u1 ∧ · · · ∧ uk ∧ (εσk,...,σnwk+1 ∧ · · · ∧ wn)

is consistent to the volume form of the n-dimensional space.

• The boundary operator for σ̃k is defined to be

∂σ̃k :=
∑

σk≺···≺σn

εσk,...,σn∂[c(σk), ..., c(σn)]
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• The dual of a simplicial complex Ck(K) is a cell complex. The k-cell Cn−k(K̃) is
generated by

Cn−k(K̃) = Span {σ̃k|σk ∈ K(k)}

The sequence (Ck(K̃), ∂) forms a cell complex.

Remark To construct a dual mesh of a triangle mesh, we don’t have to choose circum-
centers of the corresponding simplices. Any point inside a simplex works. Another common
choice is the barycenter.

6.3.2 Discrete Hodge ⋆

• Given K, we have chain complex Ck(K). From K, we can define dual mesh and dual
complex K̃, and the corresponding (n− k)-chain complex Cn−k(K̃). For any σ ∈ K(k),
we define the orientation σ̃ so that

σ ∧ σ̃ = |σ||σ̃|.

• For any σ ∈ K(k), we can construct ϕσ which is a k-form. Thus, ϕσ ∈ Ck(K). For
Whitney element ϕσ satisfy

⟨ϕσ, σ′⟩ :=
ˆ
σ′
ϕσ = δσσ′ .

for any σ, σ′ ∈ K(k). In general, it satisfies

⟨ϕσ, σ′⟩ :=
ˆ
σ′
ϕσ = aσσ′ ,

where the matrix (aσσ′) is in general diagonal dominant and positive definite, unless the
mesh is poor.

• We can define continuous Hodge star for ϕσ. For any pair σ, σ′ ∈ K(k), we want the
matrix

bσσ′ :=

ˆ
σ̃′
(⋆ϕσ)

to be a positive-definite matrix. For Whitney element, we can compute this matrix
directly, and find ˆ

σ̃′
(⋆ϕσ) :=

|σ̃′|
|σ|

δσσ′ .

The corresponding matrix (bσσ′) is a diagonal matrix.

• For Witney element, the star operator is then defined as the follows. It maps a k-form
α to Ωn−k(K̃) such that

⟨⋆α, σ̃⟩ = |σ̃|
|σ|
⟨α, σ⟩ for σ ∈ Ck(K).
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6.3.3 A discrete Laplacian

Let us consider the Poisson equation △u = g on a 2-manifold M , with g ∈ C0(M). The
Laplacian △ = ⋆d ⋆ d. The poisson equation is

⋆d ⋆ du = g.

Or
d ⋆ du = ⋆g.

In the discrete setting, let K = {V,E, F} and the above equation in discrete form is

⋆2g = d∗1 ⋆1 d0u = ∂1
s|ẽ|
|e|

∂T1 u = Lu.

Here, e = [i, j], ẽ is the orthogonal bisector of e connecting c[i, j, k] and c[i, j, ℓ], and s = 1
(resp. −1) if the orientation of (e, ẽ) is positive (resp. negative). One can show that

s|ẽ|
|e|

=
1

2

(
cot θkij + cot θℓji

)
.

Here, the sizes of the matrices are: ∂T1 is |E| × |V |, ⋆1 is |V | × |V |, and ∂1 is |V | × |E|. The
Laplacian L is |V | × |V |.

Figure 6.6: Copied from Albert Chern’s note

6.4 Homology Generators and Harmonic Bases
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Figure 6.7: Copied from Chern and Schröder’s lecture note

Figure 6.8: Copied from Crane’s lecture note
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Chapter 7

Connection, Parallel Transport,
Curvatures

7.1 Motivation of covariant derivative and connection

• Intuition for parallel transport Let M be an m-manifold. A tangent vector field
X : M → TM is a smooth map with Xp ∈ Tp(M) for any p ∈ M . Let us denote the
space of all tangent vector fields on M by X(M).

Suppose we want to study how a vector field Y changed with respect to another vector
field X at a point p. Let γ(t) be the integral curve of X with γ(0) = p. Let q = γ(∆t)
for a small ∆t. The relative change of Y w.r.t. X is the limit of

Y (q)− Y (p)

∆t
.

But Y (q) ∈ Tq(M) and Y (p) ∈ TpM are in different tangent space, which are not
allowed to take subtraction unless they are both embedded in an ambient vector space.
Therefore, we should “parallel transport” Y (p) to Ỹ (q) ∈ Tq(M) in order to take sub-
traction. Thus, we should define what this “parallel transportation” means. Suppose
(U, x) is a coordinate chart. A point p has coordinate x and a neighboring point q has
coordinate x+∆x. The tangent vector Y can be expressed as

Y = Y µ ∂

∂xµ
.

Suppose the tangent vector Y (x) is parallel transported to Ỹ (x+∆x) at x+∆x. We
expect the tilde operator is linear and

Ỹ (x+∆x)− Y (x) ∝ ∆x

This leads to
Ỹ µ(x+∆x) = Y µ(x)− Γµ

νλ(x)Y
λ(x)∆xν
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for some smooth functions Γµ
νλ(x). With the concept of parallel transportation, the

covariant derivative of Y with respective to ∂
∂xν is then defined to be

Y µ(x+∆x)− Ỹ µ(x+∆x)

∆xν
∂

∂xµ
→
(
∂Y µ

∂xν
+ Γµ

νλY
λ

)
∂

∂xµ

In general, X = Xν ∂
∂xν . We define the covariant derivative of Y w.r.t. X to be

∇XY := Xν

(
∂Y µ

∂xν
+ Γµ

νλY
λ

)
∂

∂xµ
.

The operator ∇ : X(M) × X(M) → X(M) (by (X, Y ) 7→ ∇XY ) is called an affine
connection. It has the following properties.

(a) ∇X(Y + Z) = ∇XY +∇XZ

(b) ∇fX+YZ = f∇XZ +∇YZ

(c) ∇XfY = Xf + f∇XY.

To be more concise, we should take these properties as the definition of connection.
And, in a coordinate chart (U, x), define Γµ

νλ to be

∇eνeλ = Γµ
νλeµ

where

eµ =
∂

∂xµ
.

If X = Xνeν and Y = Y µeµ, then

∇XY = Xν∇eν (Y
µeµ)

= Xν

(
∂Y µ

∂xν
eν + Y λ∇eνeλ

)
= Xν

(
∂Y µ

∂xν
+ Y λΓµ

νλ

)
eµ.

The coefficients Γµ
νλ are called the connection coefficients. The operator ∇ or the cor-

responding connection coefficients define how vectors are parallel transported locally.
If we know Γµ

νλ, we can parallel transport vector fields locally, the covariant derivatives
are thus defined. Conversely, the definition of covariant derivative defines the concept
of parallel transportation. This means that if γ is an integral curve of a vector field
X, if Y is a vector field with ∇XY = 0, then we say Y is parallel transported along γ.

Remark SupposeM is a Riemannian manifold and {eµ} is a frame. We have defined
earlier that the connection ωλµ to be the 1-form

ωλµ(eν) = ⟨∇νeλ, eµ⟩ = Γµ
νλ.
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• Intuition for Gauge transformation The parallel transport is not only applied
to tangent vectors, it can also applied to cotangent vectors, tensor fields, in general
sections of fibre bundles. Let us consider a C-fiber bundle CM . That is, given a
manifold M , for each point x ∈ M , we associate it with a space Cx, just like the
tangent bundle TM where the associated fibre is the tangent space TxM . For a point
s ∈ CM , it lies on CxM for some x. We define the projection πs = x. A mapping
Ψ : M → CM with πΨ = id is called a section. On Cx, we can choose an axis as the
real axis, call it ex, a unit vector. The corresponding imaginary axis is iex. We express
Ψ as

Ψ(x) = ψr(x)ex + ψiiex = ψ(x)ex.

Let X be a tangent vector field on M . The covariant derivative of Ψ w.r.t. X is

∇XΨ = ∇Xψex + ψ∇Xex

Here, ∇Xψ := Xψr + iXψi. Since ⟨ex, ex⟩ = 1, we have ∇Xex ⊥ ex. Therefore,

∇Xex = i⟨Ax, X⟩ex

for some 1-form Ax. Thus, we get

∇XΨ = [∇Xψ + i⟨Ax, X⟩ψ]ex

A gauge transform is a transformation of the real unit vector on Cx. That is ex 7→ ẽx.
Since both are unit vector, we can express ẽx = e−iϕ(x)ex. With this transformation,

Ψ(x) = ψ(x)ex = (ψ(x)eiϕ(x))ẽx := ψ̃(x)ẽx.

The covariant derivative of ẽx is

∇X ẽx = ∇X(e
−iϕ(x)ex) = −i∇Xϕẽx + e−iϕ(x)(i⟨Ax, X⟩ex) = i(⟨Ax, X⟩ − ∇Xϕ(x))ẽx.

The covariant derivative of Ψ under ẽx is

∇XΨ(x) = ∇X(ψ̃(x)ẽx)

= ∇Xψ̃ẽx + ψ̃∇X ẽx

=
(
∇Xψ̃ + i(⟨Ax, X⟩ − ∇Xϕ(x))ψ̃

)
ẽx.

Thus, gauge transformation ex 7→ ẽx := e−iϕ(x)ex corresponds to

ψ(x) 7→ ψ̃(x) := eiϕ(x)ψ(x)

Ax 7→ Ãx := Ax − dϕ(x).

7.2 Affine connection and parallel transport

Let M be a differential manifold and X(M) be the space of its tangent vector fields.
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Affine connection for vector fields

Definition 7.1. An affine connection on X(M) is a map ∇ : X(M) × X(M) → X(M) by
(X, Y ) 7→ ∇XY such that

(a) ∇X(Y + Z) = ∇XY +∇XZ

(b) ∇fX+YZ = f∇XZ +∇YZ

(c) ∇XfY = Xf + f∇XY.

Property (c) means that ∇X acts as a derivative and it satisfies Leibnitz rule. ∇XY is called
the covariant derivative of Y in the direction X.
Remark We may also think ∇ maps X to ∇X , which is an endomorphism on TM , that is,
a smooth map TM → TM and linear on TpM for all p ∈M . That is

∇ : X(M)→ End(TM).

Equivalently, ∇ is an End(TM)-valued 1-form which satisfies properties (a),(b),(c).

Coordinate representation of affine connection The affine connection has the follow-
ing representation in a coordinate chart. Suppose (U, x) is a chart onM with tangent vector
fields ei :=

∂
∂xi . Define

∇eνeλ = Γµ
νλeµ

Suppose X = X iei, Y = Y iei. Then

∇XY = Xν∇eν (Y
µeµ)

= Xν

(
∂Y µ

∂xν
eν + Y λ∇eνeλ

)
= Xν

(
∂Y µ

∂xν
+ Y λΓµ

νλ

)
eµ.

Parallel Transport An affine connection on M naturally induces a covariant derivative
of vector field along any curve γ.

Proposition 7.1. Let M be a manifold with an affine connection ∇. Let γ be a curve on
M . Then for any vector field V defined γ, it associates with a unique covariant derivative
DV/dt which has the following properties

(a) D
dt
(V +W ) = DV

dt
+ DW

dt

(b) D
dt
(fV ) = df

dt
V + f DV

dt

(c) If V is induced by a vector field Y ∈ X(M), i.e. V (t) = Y (γ(t)), then DV
dt

= ∇γ′Y .

Ref. Do Carmo, Riemannian Geometry.
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Definition 7.2. Let M be a manifold with an affine connection ∇. Let γ be a curve on M
and V be a vector field defined on γ. We say V is parallel transported along γ if

DV

dt
= 0.

In a local coordinate chart (U, x), we can express γ(t) = (x1(t), ..., xn(t)) and V (t) =
v1(t)e1(γ(t)) + · · ·+ vn(t)en(γ(t)), we have

DV

dt
=
∑
k

(
dvk

dt
+
∑
ij

vj
dxi

dt
Γk
ij

)
ek.

Affine connection for 1-forms If ω is a 1-form, we should define covariant derivative of
ω so that the Leibnitz rule is valid. That is,

X⟨ω, Y ⟩ = ⟨∇Xω, Y ⟩+ ⟨ω,∇XY ⟩.

The representation of this covariant derivative is the following. From

ei⟨dxj, ek⟩ = ⟨∇eidx
j, ek⟩+ ⟨dxj,∇eiek⟩

we get
∇eidx

j = −Γj
ikdx

k.

Suppose ω = ωidx
i and X = X iei. Then

∇Xω = Xωkdx
k − Γj

ikX
iωjdx

k.

Affine connection for tensors Suppose T1 and T2 are two tensors onM and X ∈ X(M).
We define

∇X(T1 ⊗ T2) = (∇XT1)⊗ T2 + T1 ⊗ (∇XT2).

Affine connection for sections on a complex line bundle CM Let CM be a complex
line bundle and Ψ : M → CM be a section. On Cx (x ∈ M) we choose a unit vector ex as
the real axis, called the gauge. We define iex to be the unit vector on C which rotates ex by
90◦ counterclockwise. Then any section map Ψ can be express as

Ψ(x) = ψrex + ψi(iex) := (ψr + iψi)ex := ψex.

Let X ∈ X(M). Define the covariant derivative

∇Xex := i⟨Ax, X⟩ex

Here, Ax is a 1-form, called the connection. The covariant derivative of Ψ is

∇XΨ = ∇X(ψex) := [(∇X + i⟨Ax, X⟩)ψ]ex,

where
∇Xψ := Xψr + iXψi.
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Affine connection on a surface Let M be a surface. Its tangent plane can be viewed
as a complex plane and TM can be treated as a complex line bundle. On every TxM , we
associate a unit vector ex. Suppose γ is a path on M . We view eγ(s) being a unit vector
moving along the curve γ. The covariant derivative

∇γ′ex = i⟨Ax,γ
′⟩ex

measures how ex changes along γ. The motion of ex on TxM is indeed a rotation. The
rotation speed is ⟨Aγ(t),γ

′(t)⟩. If γ is a closed curve, the phase change of eγ is

ˆ t

0

⟨Aγ(τ),γ
′(τ)⟩ dτ.

Let V (0) is a tangent vector. We parallel transport V (0) along γ. We can measure the angle
between V (t) and γ ′(t), called it θ(t). Then θ′(t) = ⟨Aγ(t),γ

′(t)⟩. This means that A is the
angular velocity of V which parallel transport along γ.

7.3 Riemannian connections and Levi-Civita connec-

tions

Definition 7.3. Let M be a Riemannian manifold with metric ⟨·, ·⟩. An affine connection
∇ on M is said to be compatible with the metric ⟨·, ·⟩ if for any path γ on M and any pair
of parallel vectors P1(t) and P2(t) along γ, we have ⟨P1(t), P2(t)⟩ is a constant.

Proposition 7.2. ∇ is compatible with the metric ⟨·, ·⟩ if and only if for any vector fields
V and W along any path γ,

d

dt
⟨V,W ⟩ = ⟨DV

dt
,W ⟩+ ⟨V, DW

dt
⟩.

Proof. (⇐)
If DV

dt
= 0 and DW

dt
= 0, then

d

dt
⟨V,W ⟩ = ⟨DV

dt
,W ⟩+ ⟨V, DW

dt
⟩ = 0.

Hence ⟨V (t),W (t)⟩ is a constant.
(⇒)
We choose an orthonormal basis {P1(0), ..., Pn(0)} at γ(0). We parallel transport them
along γ. Because ∇ is compatible to the metric, we get {P1(t), ..., Pn(t)} are orthonormal
on Tγ(t)M . We express V = viPi and W = wiPi along γ. It follows

DV

dt
=
dvi

dt
Pi + vi

DPi

dt
=
dvi

dt
Pi,
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DW

dt
=
dwi

dt
Pi

Hence

⟨DV
dt

,W ⟩+ ⟨V, DW
dt
⟩ =

∑
i

(
dvi

dt
wi + vi

dwi

dt

)
Pi =

d

dt
⟨V,W ⟩.

Corollary 7.1. A connection ∇ on a Riemannian manifold M is compatible if and only if

X⟨Y, Z⟩ = ⟨∇XY, Z⟩+ ⟨Y,∇XZ⟩ for any X, Y, Z ∈ X(M).

Definition 7.4. An affine connection ∇ is called symmetric if

∇XY −∇YX = [X, Y ].

In coordinate representation, Γk
ij := ⟨∇eiej, dx

k⟩, the connection is symmetric if Γk
ij = Γk

ji.

Theorem 7.1 (Levi-Civita). On a Riemannian manifold M , there exists a unique affine
connection which is

(a) compatible with the metric

(b) symmetric.

Proof. (See Do Carmo)
We claim that we can express ∇YX in terms of metric and Lie brackets:

⟨Z,∇YX⟩ =
1

2
{X⟨Y, Z⟩+ Y ⟨Z,X⟩ − Z⟨X, Y ⟩

− ⟨[X,Z], Y ⟩ − ⟨[Y, Z], X⟩ − ⟨[X, Y ], Z⟩}

which can be obtained from

X⟨Y, Z⟩ = ⟨∇XY, Z⟩+ ⟨Y,∇XZ⟩
Y ⟨Z,X⟩ = ⟨∇YZ,X⟩+ ⟨Z,∇YX⟩
Z⟨X, Y ⟩ = ⟨∇ZX, Y ⟩+ ⟨X,∇ZY ⟩

For detail, see Do Carmo.

Example 1: S2

(x, y, z) = (sin θ cosϕ, sin θ sinϕ, cos θ), 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π.

• Tangents:

∂

∂θ
= eθ = (cos θ cosϕ, cos θ sinϕ,− sin θ)

∂

∂ϕ
= eϕ = (− sin θ sinϕ, sin θ cosϕ, 0)
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• Connection

∇eθeθ = (− sin θ cosϕ,− sin θ sinϕ,− cos θ)

∇eϕeθ = ∇eθeϕ = (− cos θ sinϕ, cos θ cosϕ, 0)

Γθ
θθ = Γϕ

θ,θ = 0

Γϕ
θϕ = Γϕ

ϕθ = ⟨∇eθeϕ, eϕ⟩eϕ/∥eϕ∥2 = cot θ

Γθ
θϕ = Γθ

ϕθ = ⟨∇eθeϕ, eθ⟩eθ/∥eθ∥2 = 0

Γθ
ϕϕ = ⟨∇eϕeϕ, eθ⟩eθ/∥eθ∥2 = − cos θ sin θ

Γϕ
ϕϕ = 0.

7.4 Torsion and Curvature

Torsion and curvature are tensors The operation Z = ∇XY which read two tangent
vectors X, Y and output an tangent vector Z. It is not a type (2, 1) tensor. A tensor is
multilinear in its argument. A type (r, s) tensor is a multilinear function on

TM × · · · × TM × T ∗M × · · · × T ∗M

In order to make such covariant derivative to be a tensor form, we define torsion. For second
order covariant derivatives, we define the Riemann curvature tensor.

• Torsion T : X(M)⊗ X(M)→ X(M)

T (X, Y ) := ∇XY −∇YX − [X, Y ]

Here, [X, Y ] := XY − Y X.

• Curvature K : X(M)⊗ X(M)⊗ X(M)→ X(M)

K(X, Y )Z := ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z.

Proposition 7.3. T and R are tensors:

T (fX, gY ) = fgT (X, Y )

R(fX, gY )(hZ) = fghR(X, Y )Z.

Proof. 1.

T (fX, gY ) = ∇fX(gY )−∇gY (fX)− [fX, gY ]

= f∇X(gY )− g∇Y (fX)− fX(gY ) + gY (fX)

= f(Xg)Y + fg∇XY − g(Y f)X − fg∇YX − f(Xg)Y − fgXY + g(Y f)X + gfY X

= fg(∇XY −∇YX −XY + Y X)

= fgT (X, Y ).
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2.

R(fX, gY )(hZ) = ∇fX∇gY (hZ)−∇gY∇fX(hZ)−∇fX(gY )−gY (fX)(hZ)

= f∇X(g∇Y (hZ))− g∇Y (f∇X)(hZ)− (fXg∇Y − fg∇XY + gY f∇X + gf∇Y X) (hZ)

= f(Xg)∇Y (hZ) + fg∇X∇Y (hZ)− g(Y f)∇X(hZ)− gf∇Y∇X(hZ)

+
(
−fXg∇Y + gY f∇X − fg∇[X,Y ]

)
(hZ)

= fg
(
∇X∇Y −∇Y∇X −∇[X,Y ]

)
(hZ)

= fg
(
∇X((Y h)Z + h∇YZ)−∇Y ((Xh)Z + h∇XZ − ([X, Y ]h)Z − h∇[X,Y ]Z

)
= fg ((XY h)Z + Y h∇XZ +Xh∇YZ + h∇X∇YZ − (Y Xh)Z −Xh∇YZ − Y h∇XZ − h∇Y∇XZ

−(XY h− Y Xh)Z − h∇[X,Y ]Z
)

= fgh
(
∇X∇Y −∇Y∇X −∇[X,Y ]

)
Z

Representation of torsion and curvature in a coordinate chart Let (U, x) be a
coordinate chart with ei := ∂/∂xi.
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Chapter 8

Integral Geometry

8.1 Variation formulation of curvature

8.1.1 Wedge product for vector-valued differential forms

In this section we will take approach of curvature through embedding. Let M be a surface
and

f :M → R3

be an embedding map. We can write f = (x, y, z). It is convenient to introduce the following
vector-valued differential forms and the corresponding wedge product.

Definition 8.1. Let α and β be two R3-valued 1-forms, their wedge product is a R3-valued
2-form on M defined to be

α ∧ β(X, Y ) := α(X)× β(Y )−α(Y )× β(X).

Sometimes, we write

α ∧ β =

∣∣∣∣∣∣
i j k
α1 α2 α3

β1 β2 β3

∣∣∣∣∣∣
∧

:= (α2 ∧ β3 − α3 ∧ β2)i+ (α3 ∧ β1 − α1 ∧ β3)j + (α1 ∧ β2 − α2 ∧ β1)k.

Properties

• Symmetry
α ∧ β = β ∧α.

• α is a vector-valued 1-form, then

d(α ∧ β) = (dα) ∧ β −α ∧ (dβ).

• Suppose f , g are vector-valued 0-forms, then

d(f × dg) = df ∧ dg
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8.1.2 Variation formulation

In this section, we will see that surface curvatures appear in variation of volumes, areas, etc.
To study such variation formulation, we use the embedding formulation of a surface. That
is, f :M → R3. We will assume that M is a closed surface. We want to express the surface
area of f(M) and the volume where f(M) encloses in terms of f . Let also write f = (x, y, z)
to connect with the language in vector calculus.

• Surface area form σ. If M is parametrized by (u, v), then

the normal is N = fu × fv/∥fu × fv∥,

the area form is σ = ∥fu × fv∥du ∧ dv.

• Area normal

Nσ =
1

2
df ∧

×df =
1

2
d(f × df).

Nσ = fu × fv du ∧ dv =

∣∣∣∣∣∣
i j k
xu yu zu
xv yv zv

∣∣∣∣∣∣ du ∧ dv
= (∂(y, z)/∂(u, v), ∂(z, x)/∂(u, v), ∂(x, y)/∂(u, v)) du ∧ dv
= (dy ∧ dz, dz ∧ dx, dx ∧ dy)

=
1

2
df ∧ df.

The last line involves wedge product of a R3-valued 1-forms. Formally, this means that

df∧
×
df =

∣∣∣∣∣∣
i j k
dx dy dz
dx dy dz

∣∣∣∣∣∣ = 2(dy ∧ dz, dz ∧ dx, dx ∧ dy).

More precisely, for two R3-valued 1-forms α and β, their wedge product is defined to
be

α ∧ β(X, Y ) := α(X)× β(Y )−α(Y )× β(X).

Note that
α ∧ β = β ∧α.

From this definition, we have

df ∧ df(X, Y ) = df(X)× df(Y )− df(Y )× df(X) = 2df(X)× df(Y ).

Note that

df ∧ df = d(f × df) = d(ydz − zdy, zdx− xdz, xdy − ydx).
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Figure 8.1: The vectors df(X), df(Y ) are two tangent vectors. df(X) × df(Y ) is in the
normal direction. Its magnitude is the area element. Therefore df ∧ df = 2Nσ.

Or in matrix form

df ∧ df =

∣∣∣∣∣∣
i j k
dx dy dz
dx dy dz

∣∣∣∣∣∣ = d

∣∣∣∣∣∣
i j k
x y z
dx dy dz

∣∣∣∣∣∣
• Mean curvature Normal

1

2
dN ∧ df =

1

2
d(N × df) = HNσ.

Suppose X1 and X2 are the two principal curvature directions of f . That is, dN(X1) =
κ1 df(X1) and dN(X2) = κ2 df(X2). Then

dN ∧ df(X1, X2) = dN(X1)× df(X2)− dN(X2)× df(X1)

= κ1df(X1)× df(X2)− κ2df(X2)× df(X1)

= (κ1 + κ2)df(X1)× df(X2)

= 2Hdf(X1)× df(X2)

= Hdf ∧ df(X1, X2)

You can check that dN ∧ df(X2, X1) = Hdf ∧ df(X2, X1) and dN ∧ df(X1, X1) =
dN ∧ df(X2, X2) = 0. Since {X1, X2} forms a basis of Tp(M), we thus conclude

dN ∧ df = Hdf ∧ df = 2HNσ.

• Gaussian curvature Normal

1

2
dN ∧ dN =

1

2
d(N × dN) = KNσ.
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Figure 8.2: The vectors dN(X), df(Y ) are two tangent vectors. dN(X) × df(Y ) is in the
normal direction. Its magnitude is the area element times the mean curvature. Therefore
dN ∧ df = 2HNσ. dN ∧ df = d(N × df). N × df(X) is the tangential direction and pull to
the normal to df(X).

Let X1 and X2 be the two principal curvature directions with dN(Xi) = κidf(Xi),
i = 1, 2. Following the same step as before, we have

dN ∧ dN(X1, X2) = 2dN(X1)× dN(X2)

= 2κ1κ2df(X1)× df(X2)

= Kdf ∧ df(X1, X2).

Following the same argument as previous step, we also get

dN ∧ dN = Kdf ∧ df = 2KNσ.

Figure 8.3: The vectors dN(X), dN(Y ) are two tangent vectors. They can also be viewed as
two tangent vectors on the unit sphere S2 at N . dN(X)× dN(Y ) is in the normal direction
with magnitude K. Therefore dN ∧ dN = 2KNσ.
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• Area form σ = 1
2
⟨N, df ∧ df⟩ = det(N, df, df).

Here,

σ(X, Y ) =
1

2
⟨N, df ∧ df(X, Y )⟩

=
1

2
[⟨N, df(X)× df(Y )⟩ − ⟨N, df(Y )× df(X)⟩]

= det(N, df(X), df(Y )) := det(N, df, df)(X, Y ).

• Volume form V = 1
6

´
M
⟨f, df ∧ df⟩.

If f(M) encloses a domain in R3, then its volume can be expressed as

1

3

ˆ
M

xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy =
1

6

ˆ
M

⟨f, df ∧ df⟩.

This follows from Stokes’ theorem, where

d(xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy) = 3dx ∧ dy ∧ dz.

• Gaussian curvature form: Kσ = 1
2
⟨N, dN ∧ dN⟩. If f(M) is parameterized by

(u, v), then
1

2
⟨N, dN ∧ dN⟩(∂u, ∂v)du ∧ dv = ⟨N,Nu ×Nv⟩du ∧ dv

The last term is the area element on the unit sphere. Thus, we obtain

ˆ
U

Kσ = Area(N(U)).

Theorem 8.1. Let f : M → R3 be an embedding map. Let us denote variation of f by ḟ .
We have the following variational formulae

V̇M =

ˆ
M

⟨ḟ , N⟩σ,

ȦM =

ˆ
M

⟨ḟ , N⟩2Hσ,

ḢM =

ˆ
M

⟨ḟ , N⟩Kσ,

K̇M = 0.

Remark The meaning of this theorem is:

• δV = Nσ,

• δA = 2NHσ,
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• δH = KNσ.

where δV is the variation of the volume V .

Proof. 1. From VM = 1
6

´
M
⟨f, df ∧ df⟩, we take variation in f to get

V̇M =
1

6

ˆ
M

⟨ḟ , df ∧ df⟩+ 1

3

ˆ
M

⟨f, df ∧ dḟ⟩

=
1

2

ˆ
M

⟨ḟ , df ∧ df⟩ =
ˆ
M

⟨ḟ , N⟩σ.

In the second equality, we use

d det(f, df, ḟ) = d⟨f, df × ḟ⟩
= ⟨df∧, df × ḟ⟩ − ⟨f, df ∧ dḟ⟩
= ⟨df ∧ df, ḟ⟩ − ⟨f, df ∧ dḟ⟩.

and ∂M = ∅.

2. We use area formula

AM =
1

2

ˆ
M

⟨N, df ∧ df⟩.

Take variation in f , we get

ȦM =
1

2

ˆ
M

⟨Ṅ , df ∧ df⟩+
ˆ
M

⟨N, df ∧ dḟ⟩

=

ˆ
M

⟨N, df ∧ dḟ⟩

=

ˆ
M

⟨ḟ , dN ∧ df⟩ −
ˆ
M

ddet(N, df, ḟ)

=

ˆ
M

⟨ḟ , df ∧ df⟩H −
ˆ
∂M

⟨ḟ , N × df⟩

=

ˆ
M

⟨ḟ , N⟩2Hσ −
ˆ
∂M

⟨ḟ , N × df⟩.

In the second step, we use df ∧ df = Nσ and ⟨Ṅ ,N⟩ = 0. In the third equality, we use

d det(N, df, ḟ) = d⟨N, df × ḟ⟩
= ⟨dN∧, df × ḟ⟩ − ⟨N, df ∧ dḟ⟩
= ⟨dN ∧ df, ḟ⟩ − ⟨N, df ∧ dḟ⟩

3. We use the total mean curvature formula

HM =

ˆ
M

Hσ =
1

2

ˆ
M

⟨N, dN ∧ df⟩.
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Take variation in f , we get

ḢM =
1

2

ˆ
M

(
⟨Ṅ , dN ∧ df⟩+ ⟨N, dṄ ∧ df⟩+ ⟨N, dN ∧ dḟ⟩

)
=

1

2

ˆ
M

(
⟨N, dṄ ∧ df⟩+ ⟨N, dN ∧ dḟ⟩

)
=

1

2

ˆ
M

⟨ḟ , dN ∧ dN⟩ − 1

2

ˆ
∂M

(
det(N, dN, ḟ) + det(N, df, Ṅ)

)
=

1

2

ˆ
M

⟨ḟ , N⟩Kσ − 1

2

ˆ
∂M

(
⟨ḟ , N × dN⟩+ ⟨Ṅ ,N × df⟩

)
.

The second equality uses that det(Ṅ , dN, df) = 0 because all of the three entries lie on
the 2D tangent plane. The third equality uses

d det(N, dN, ḟ) = ⟨dN ∧ dN, ḟ⟩ − ⟨N, dN ∧ dḟ⟩
d det(N, df, Ṅ) = −⟨N, df ∧ dṄ⟩.

4. The total Gaussian curvature is

KM =

ˆ
M

Kσ =
1

2

ˆ
M

⟨N, dN ∧ dN⟩

Its variation in f gives

K̇M =
1

2

ˆ
M

⟨Ṅ , dN ∧ dN⟩+
ˆ
M

⟨N, dN ∧ dṄ⟩

= −
ˆ
∂M

det(N, dN, Ṅ)

= −
ˆ
∂M

⟨Ṅ ,N × dN⟩.

The second equality uses dN ∧ dN(X, Y ) = 2dN(X) × dN(Y ) ∥ N and Ṅ ⊥ N .The
third equality uses

d det(N, dN, Ṅ) = −⟨N, dN ∧ dṄ⟩.

Proposition 8.1 (Conservation laws of curvature normals). Let f : M → R3 and U ⊂ M .
We have ˆ

U

Nσ =
1

2

ˆ
∂U

f × df
ˆ
U

HNσ =
1

2

ˆ
∂U

N × df
ˆ
U

KNσ =
1

2

ˆ
∂U

N × dN.
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Proof. This follows from

df ∧ df = d(f × df)
dN ∧ df = d(N × df)
dN ∧ dN = d(N × dN).

Remark Note that N × df is a 90◦ rotation of df . In two dimensions, this is exactly the
orthogonal complement of df . That is, N × df = ⋆df . Thus,

2HNσ = d(N × df) = d ⋆ df = △fσ.

Or
△f = HN

8.2 Discrete curvatures via Variational Approach

In tis subsection, we would like to define normal, mean curvature and Gaussian curvature
for discrete surface. We take variation approach. This means that it will be in weak form.
Recall for discrete curve (γ0, γ1, ..., γn−1), we have defined

• Tangent: Ti = (γi+1 − γi)/|γi+1 − γi|.

• Normal on [γi, γi+1]: Ni := −iTi

• length weighted normal at γi: ℓi−1Ni−1 + ℓiNi, where ℓi := |γi+1 − γi|

• Curvature: κ = ∆θ, ∆θ is the arc length distance between Ni−1 and Ni on unit circle.

In this subsection, we will follow the same track. We will define several notions of normal:
area weighted normal, mean curvature weighted normal. We will also define Gaussian cur-
vature as the area of the polygon spanned by the normals on the unit sphere. They are
defined through an integration over a patch surrounding a vertex. Such definition preserves
conservation laws and make global geometric properties are valid in the discrete sense.

To begin with, we suppose we are given a discrete surface M with simplicial structure
K = (V,E, F ). The embedding map f : V → R3. The vertices V = {p1, ..., pn0}. The edges
are E = {eij} and the triangles are F = {tijk}. We would like to construct

• Area normal

• Mean curvature normal

• Gaussian curvature normal.

at a vertex pi (or its embedded image fi). Suppose pi is surrounded by triangles tijk. We
denote it by pi ≺ tijk. We will mainly integrate df ∧ df , df ∧ dN and dN ∧ dN over those
triangles tijk with pi ≺ tijk.
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Area normal Let us consider a triangle tijk. From the formulaˆ
tijk

df ∧ df =

ˆ
∂tijk

f × df =

ˆ
tijk

Nσ,

The right-hand side is ˆ
tijk

Nσ = NijkAijk.

For the left-hand side, let us integrate along an edge eij:ˆ
eij

f × df =
1

2
(fi + fj)× (fj − fi) = fi × fj

We sum over all faces with common vertex pi to get

∂V

∂fi
=
∑

pi≺tijk

NijkAijk =
∑

pi≺tijk

fj × fk

This formula gives the gradient of volume, which is the area normal, in terms of the positions
of fj.

Mean curvature normal The mean curvature normal involves variation of area:
δAU

δfi
=

ˆ
U

2HNσ =

ˆ
U

dN ∧ df =

ˆ
∂U

N × df.

Let us take U = tijk and denote fj − fi by uij. We take variation of Aijk with respect to fi.
We get

∂Aijk

∂fi
=

1

2
Nijk × ujk =

1

2

(
uji × uki
2Aijk

)
× ujk.

Use the product formula: A× (B × C) = ⟨A,C⟩B − ⟨A,B⟩C, we get

∂Aijk

∂fi
=

1

2

⟨ujk, uji⟩
2Aijk

uki −
1

2

⟨ujk, uki⟩
2Aijk

uji

=
1

2

|ujk|uji| cosα
|ujk||uji| sinα

uki +
1

2

|uki||ukj| cos β
|uki||ukj| sin β

uji

=
1

2
cotαuki +

1

2
cot β uji.

The variation of area with respect to fi is

∂A

∂fi
=
∑

pi≺tijk

∂Aijk

∂fi
=

1

2

∑
pi≺tijk

(cotαij + cot βij) (fi − fj). (8.1)

We summarize the formula from variation of area:

∂A

∂fi
= 2(HN)i =

1

2

∑
pi≺tijk

Nijkujk = (△f)i =
1

2

∑
pi≺tijk

(cotαij + cot βij) (fi − fj). (8.2)

This gives the mean curvature normal in terms of the position function fi.
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Chapter 9

PDEs on Manifolds

We will discuss the standard Poisson equation, heat equation on manifolds.

Physical Units Physical laws are conservation of mass, momentum, energy, etc. Physical
quantities have units. We discuss some of them.

• Density: ρ ∈ Ω3(M,R, kg). Its dimension is [ρ] = [kg/m3].

• Temperature: u ∈ Ω0(M,RK). Its dimension is [u] = [K].

• Velocity: v ∈ Ω1(M,Rm2/s). Its dimension is [v] = [m/s].

• Mass flux: J ∈ Ω2(M,Rkg/s). Its dimension is [J ] = [kg/m2s].

The Hodge star ⋆ maps physical quantities with different units:

⋆k : Ω
k(M,Runit1)→ Ωn−k(M,Runit2)

which encode a material property that relates unit1/m
k with unit2/m

n−k. For instance, the
Fourier law

Q = − ⋆ dT

relates temperature gradient with the heat flux. [Q] = J/sm2, where [dT ] = [K/m].

9.1 Heat Equation

9.1.1 Continuous version

• The physical quantities are

– Temperature: u ∈ Ω0(M,RK)

– Heat Flux: Q ∈ Ωn−1(M,RJ/s).
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• The Fourier law relates du and Q by

Q = −κ ⋆1 d0u.

The physical parameter κ is called the heat conductivity. The temperature and energy
density is connected by physical property of the material:

C ⋆0 ut = E ∈ Ωn(M,RJ/s)

Here, C is called the heat capacitance.

• The physical law is the conservation of energy, which reads

C ⋆0 ut = −dQ = dκ ⋆1 d0u.

• Let us make life simpler by taking κ and C being constants and κ/C = 1. The equation
now reads

ut = ⋆−1
0 dn−1 ⋆1 d0u := △u.

If there is a heat source β(t) ∈ Ωn(M,RJ/s), then the equation is

⋆0ut = −dQ+ β,

or
ut = △u+ ⋆−1

0 β.

• We plot the commuting diagram:

Ω0(M) Ω1(M)

Ωn(M) Ωn−1(M)

d0

⋆−1
0

⋆1

dn−1

9.1.2 Discrete Heat equation – Discrete Exterior Calculus Ap-
proach

Let M be a discrete n-manifold with simplicial complex K. Let K∗ be its Voronoi dual
complex.

• Physical quantities:

– Temperature u is defined on vertices. That is, u ∈ C0(M,RK), where Ck is the
k-cochain.

– The temperature difference d0u ∈ C1(M,RK) sits on edges.

– Heat flux Q is defined on the dual (n− 1)-cell. That is, Q ∈ Cn−1(M∗,RJ/s).
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• The Fourier law is given by the Hodge ⋆ operator:

⋆1 = diag

(
|e∗|
|e|

)
where e ∈ K1 and e∗ is its dual face in K∗,n−1. This is an n1 × n1 matrix.
The connection between temperature and energy is

⋆0u = E.

where
⋆0 = diag(|Ci|), Ci is the dual cell centered at vertex i.

• The conservation of energy reads

⋆0ut = −dn−1 ⋆1 d0u.

Ω0(M) Ω1(M)

Ωn(M∗) Ωn−1(M∗)

d0

⋆−1
0

⋆1

dn−1

We have seen that d0(K) = ∂T1 (K), an n1 × n0 matrix. Note that, there are 1-1
correspondences: K0 ↔ K∗n, K1 ↔ K∗(n−1). For dn−1(K∗) on the dual cell, it is
∂Tn (K∗), an n0 × n1 matrix. But this is exactly ∂1(K). We summary these relation

d0(K) = ∂T1 (K), dn−1(K∗) = ∂Tn (K∗) = ∂1(K).

dn−1(K∗) = dT0 (K).
Thus, we rewrite the above equation as

⋆0ut = −dT0 ⋆1 d0u, Mut = Lu.

For a 2-manifold M , let us compute ⋆1 now. Suppose eij = [ij] ∈ K1 is an edge. e∗ij is its
dual. Let tijk and tijℓ be the two triangles with eij as their common edge. Let αk

ij and αℓ
ij

be the angles of the triangle at k and ℓ. Then

|e∗ij|
|eij|

=
1

2

(
cotαk

ij + cotαℓ
ij

)
.

We get that
L = −dT0 ⋆1 d0,

(Lu)i =
1

2

∑
pi≺eij

(cotαij + cot βij) (uj − ui).

M = diag|Ci|, Ci is the Voronoi cell at vertex i.
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9.1.3 Discrete Heat equation – Finite Element Approach

• Finite element basis In finite element method, we first choose finite element basis ϕi.
Here, we choose the Whitney element ϕi, which is a piecewise linear function on (M,K)
with

ϕi([j]) = δij.

The approximate space is Ω0
h(M), spanned by {ϕi|[i] ∈ K0}. Here, h is the maximum

of |eij| with [ij] ∈ K1. A function u ∈ Ω0(M) is approximated by

û =
∑
[i]∈K0

uiϕ
i.

• Project the equation to Ω0(M). The heat equation in weak form is

ˆ
M

⟨u̇, v⟩µ = −
ˆ
M

⟨du, dv⟩µ

for all v ∈ C1(M). Here, u̇ := ∂u/∂t. We now take u = û and v = ϕi to get

⟨ϕi,
∑
j

u̇jϕ
j⟩ = −⟨dϕi,

∑
j

dϕjuj⟩.

This leads to ∑
j

⟨ϕi, ϕj⟩u̇j = −
∑
j

⟨dϕi, dϕj⟩uj.

In matrix form

Mu̇ = Lu.

where

M = ⋆FEM

0 = (⟨ϕi, ϕj⟩)n0×n0 ,

L = −dT0 ⋆FEM

1 d0 = (⟨dϕi, dϕj⟩)n0×n0 .

M and L are called the mass matrix and the stiff matrix, respectively.

For surface, one can show that

(Lu)i =
1

2

∑
pi≺eij

(cotαij + cot βij) (uj − ui),

where αij and βij are the angles of opposite vertices across from eij in the two adjacent
triangles.
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Figure 9.1: αij and βij are the angles of opposite vertices across from eij in the two adjacent
triangles.

Time Discretization Let us discretize time axis by n∆t. ∆t is called a temporal mesh
size. We denote u(n∆t) by un. The equation

Mu̇ = Lu

is a system of ODE. There are standard time discretization method. The simplest two are
the forward Euler method and the backward Euler method, which are

• Forward Euler Method:

M

(
un+1 − un

∆t

)
= Lun.

• Backward Euler Method:

M

(
un+1 − un

∆t

)
= Lun+1.

For forward Euler method, we have

un+1 =
(
I +∆tM−1L

)
un.

For backward Euler method,

un+1 = (M −∆tL)−1Mun.

In numerical PDE, the above scheme is called stable if ∥un∥ remains bounded for all n ≥ 0
( uniformly w.r.t. n). This is necessary for convergence. Because for a fixed t = n∆t, we
expect un → u(t) as ∆t → 0, or equivalently, n → ∞. The convergence of un leads to
boundedness of ∥un∥.

For forward Euler method, the stability condition is that the ∆t should satisfy

∆t

h2
≤ 1

2
.
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where h = max{|e||e ∈ K1}. For backward Euler method, it is unconditional stable. One
way to prove such a result is to use maximum principle. This means that we can show that
un+1 is convex combination of un. That is, for any i ∈ V , we can show that

un+1
i =

∑
j∈V

aiju
n
j ,

aj ≥ 0,
∑
j

aij = 1

Such a result can lead |un|∞ remain boundedness. This is a stability result in L∞ sense. I
shall not give details of stability results.

9.2 Mean Curvature Flow

Let f :M → R3 be an imbedding map. If f also depends on time, f(t) can describe surface
motion. A particular example is the mean curvature flow, where the surface moves in its
mean curvature normal direction at speed equals to the mean curvature of the surface. We
have seen that

△f = 2HN.

Thus, the mean curvature flow satisfies

∂tf =
1

2
△ f.

The mean curvature can smooth the surface because it is a diffusion process. Usually, it will
shrink to a point. During the shrinking process, it may develop singularities.
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Chapter 10

Surface Parametrization

10.1 Conformal structure

Following the notation of previous chapter on surface, let f :M(⊂ R2)→ R3 be an imbedding
map. In this chapter, we want to parametrize the immersed surface f(M) such that the map
h :M → C preserves angles. First, we can define a conformal structure J on M by: for any
p ∈M ,

J : TpM → TpM, dfp(JX) = Np × dfp(X) for all X ∈ TpM.

Such J has the following property:
J2 = −id.

where id is the identity map. Such J is called a complex structure. It just a 90◦ degree
rotation. A Riemann surface is a surface with a complex structure J .

The complex plan C also has such a complex structure. That is, i2 = −1. We look for
h :M → C such that

dh(JX) = i dh(X) for all X ∈ TM.

This means that it preserves the complex structure. Such function h is called a holomorphic
function. When M is endowed with a metric, then this also means that: if X ⊥ Y , then
dh(X) ⊥ dh(Y ). That is, dh preserves right angles. In this case, in fact, dh preserves all
angles. This is the following proposition.

Proposition 10.1. Suppose A : Rn → Rn is linear and preserves right angles. The latter
means that if ⟨X, Y ⟩ = 0, then ⟨AX,AY ⟩ = 0. Then A is an angle preserving map:

⟨AX,AY ⟩
|AX||AY |

=
⟨X, Y ⟩
|X||Y |

.

Proof. Suppose A = (a1, ..., an), aj are the column vectors of A. Then aj = Aej. From
⟨ei, ej⟩ = 0, we get ⟨ai, aj⟩ = 0 for i ̸= j. From (ei+ej) ⊥ (ei−ej), we get ⟨A(ei+ej), A(ei−
ej)⟩ = 0. This leans to |Aei| = |Aej| for all i ̸= j.Thus, A = sR, where R is a rotation
matrix (i.e. RTR = id) and s ̸= 0. This leads to the angle preserving property.
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Figure 10.1: Copied from Crane’s note. The map z :M → C is holomorphic. The holomor-
phic function z is the function h in this note.

Remarks

1. Conformal structure is a structure weaker than the inner product structure. The former
has only the concept of 90◦ turn, or the concept of orthogonality. The latter has the
concepts of both angle and length. In inner product spaces, a map which preserves the
conformal structure also an angle preserving map. But it may not preserve length. A
length-preserving linear map also angle preserving. Such a map is called an isometry.

2. Let h : M(⊂ R2)→ C be holomorphic. Let us write h(x, y) = (u(x, y), v(x, y))T . The
differential

dh =

[
ux uy
vx vy

]
is conformal means that dh has the form[

a −b
b a

]
.

This leads to
ux = vy uy = −vx,

called the Cauchy-Riemann equations. If we write h = u+ iv, then the above Cauchy-
Riemann equations have a simpler form

∂yh = i ∂xh,

152



or
dh(J∂x) = i dh(∂x),

where J∂x = ∂y.

3. We can express the Cauchy-Riemann equation in terms of differential form and Hodge
⋆ operator. Recall ⋆dx = dy. We have

⋆dh = ⋆(hxdx+ hydy) = hxdy − hydx.

On the other hand,

−dh ◦ J(∂x) = −dh(∂y) = −hy, −dh ◦ J(∂y) = −dh(−∂x) = hx.

Thus,
⋆dh = −dh ◦ J.

The Cauchy-Riemann equation now reads

⋆dh+ i dh = 0.

4. To find such a holomorphic function, we seek for minimum of the conformal energy

EC [h] :=
1

4
∥ ⋆ dh+ idh∥2

subject to some suitable constraints. Here, the norm ∥ · ∥ for a complex 1-form is
defined in the next section. If there exists a nontrivial minimum with zero minimal
value, then this minimum satisfies the Cauchy-Riemann equation. There are basically
two approaches to find such a holomorphic function.

• Fixed boundary approach: The boundary h(∂M) is fixed during minimization
process. When M < is simply connected, a popular one is h(∂M) = S1. That is,
we minimize

min{EC [h] | h(∂M) = S1}
and show that the minimal value is 0.

• Free boundary approach: That is, we let h(∂M) be free during minimization
process. Since the kernel of δEC is too big, we need to impose some constraints
to exclude trivial solutions. One trivial solution is the constant 1. We impose

⟨⟨h,1⟩⟩ = 0.

It means that h(M) is centered at origin on the complex plane. Another one is a
normalization: ∥h∥2 = 1. This is due to the following reason. If we rescale h by
ch, its image on C is rescaled by c and EC [ch] = c2EC [h]. When c is shrunk to 0,
EC is the minimal value. We get trivial solution. Thus, we choose our minimizer
to be

min
h
EC [h] subject to ∥h∥2 = 1, ⟨⟨h,1⟩⟩ = 0.

and show that the minimal value is 0.
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We shall discuss this in the next section.

10.2 Variational Approach

10.2.1 Complex-valued differential forms

We introduce the following definitions.

1. For u, v ∈ C, define ⟨u, v⟩ := ūv.

2. For α, β ∈ Ω1(M,C), define

α ∧ β(X, Y ) := α(X)β(Y )− α(Y )β(X),

for X, Y ∈ TM .

3. For α ∈ Ω1(M,C), define

⋆α := −α ◦ J and ⟨α, β⟩σ := ᾱ ∧ ⋆β.

Here, σ is the area form of M .

We have the following properties.

• ⟨u, v⟩ = ⟨v, u⟩.

• ⟨iu, v⟩ = −⟨u, iv⟩, ⟨iu, iv⟩ = ⟨u, v⟩.

• iα = −iᾱ.

• α ∧ β = −β ∧ α

• α ∧ β = ᾱ ∧ β̄

• Let h = u+ iv. Then du ∧ dv = i
2
dh ∧ dh̄ = − i

2
dh̄ ∧ dh

Proof. dh ∧ dh̄ = d(u+ iv) ∧ d(u− iv) = −2i du ∧ dv.

• ⋆⋆ = −1, ⋆i = i⋆, ⋆α = ⋆ᾱ.

• ⟨⋆α, β⟩ = −⟨α, ⋆β⟩, ⟨⋆α, ⋆β⟩ = ⟨α, β⟩

• ⟨α, β⟩ = ⟨β, α⟩
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Proof. We show ᾱ∧ ⋆β = β̄ ∧ ⋆α. Let X ∈ TpM and Y = JX. Then {X, Y } is a basis
of TpM . We have

ᾱ ∧ ⋆β(X, Y ) = ᾱ(X)(−β(JY ))− ᾱ(Y )(−β(JX))

= ᾱ(X)β(X) + ᾱ(Y )β(Y )

β̄ ∧ ⋆α(X, Y ) = β̄(X)(−α(JY ))− β̄(Y )(−α(JX))

= β̄(X)α(X) + β̄(Y )α(Y )

Thus, we get

ᾱ ∧ ⋆β = β̄ ∧ ⋆α.
which leads to ⟨α, β⟩ = ⟨β, α⟩.

Energy functional Define

⟨⟨α, β⟩⟩ :=
ˆ
M

⟨α, β⟩σ :=

ˆ
M

ᾱ ∧ ⋆β, ∥α∥2 := ⟨⟨α, α⟩⟩.

Here, recall that σ is the area element on M induced by the imbedding map f .

10.2.2 Computing conformal energy

Continuous conformal energy

Proposition 10.2. Let h :M → C, define

EC [h] :=
1

4
∥ ⋆ dh+ i dh∥2.

Then
EC [h] = ED[h]− A[h],

ED[h] :=
1

2
∥dh∥2, A[h] := − i

2

ˆ
M

dh̄ ∧ dh.

Proof.

⟨⋆dh+ i dh, ⋆dh+ i dh⟩ = ⟨⋆dh, ⋆dh⟩+ ⟨i dh, i dh⟩+ ⟨⋆dh, i dh⟩+ ⟨i dh, ⋆dh⟩
= 2⟨dh, dh⟩+ ⟨i dh, ⋆dh⟩+ ⟨i dh, ⋆dh⟩

Note that
⟨i dh, ⋆dh⟩σ = (−i dh̄) ∧ ⋆(⋆dh) = i dh̄ ∧ dh,

we get ˆ
M

⟨⋆dh+ i dh, ⋆dh+ i dh⟩σ = 2⟨⟨dh, dh⟩⟩+ 2i

ˆ
M

dh̄ ∧ dh.
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1. Since

A[h] = − i
2

ˆ
M

dh̄ ∧ dh =

ˆ
M

du ∧ dv

we get that A[h] is the area of h(M) in C.

2. From dh̄ ∧ dh = d(h̄ dh), we get

A[h] = − i
2

ˆ
M

d(h̄ dh) = − i
2

ˆ
∂M

h̄ dh.

A[h] only depends on h(∂M).

3. Dirichlet energy:

ED[h] :=
1

2
⟨⟨dh, dh⟩⟩ = 1

2

ˆ
M

dh̄ ∧ ⋆dh.

Discrete Conformal Energy

1. By taking finite element approach, choosing ϕi be the Whitney element with vertex
i ∈ V , we get

ED[h] =
1

2

∑
i,j∈V

h̄iLijhj :=
1

2
h̄TLh,

Lij =
1

2
(cotαij + cot βij) when eij ∈ E

Lii = −
1

2

∑
pi≺eij

(cotαij + cot βij).

2. In the discrete setting, let E∂ be the edges of ∂M , then

A[h] = − i
2

∑
eij∈E∂

ˆ
eij

h̄ dh

= − i
2

∑
eij∈E∂

h̄i + h̄j
2

(hj − hi)

= − i
4

∑
eij∈E∂

h̄ihj − h̄jhi.

3. Discrete conformal energy

EC [h] =
1

2
h̄TCh, C = L− 2A,

where

L = (Lij)|V |×|V |, h̄TAh := − i
4

∑
eij∈E∂

h̄ihj − h̄jhi.
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10.2.3 Fixed boundary approach

1. SupposeM is simply connected. In this fixed boundary approach, we require h(∂M) =
S1. Since A[h] is the area of h(M), which is fixed now, we get

minEC [h] := min(ED[h] + A[h]) = minED[h].

2. Note that

min{ED[h]||h| = 1 on ∂M} = min
g:∂M→S1

min
h
{ED[h]|h = g on ∂M}

The last minimization problem is the standard Dirichlet problem:

minED[h] :=
1

2

ˆ
M

⟨dh, dh⟩σ, h = g on ∂M

Its variation is

⟨δED[h], ḣ⟩ :=
d

dε
|ε=0ED[h+ εḣ]

=
1

2

d

dε
|ε=0

ˆ
M

⟨d(h+ εḣ), d(h+ εḣ)⟩σ

= −
ˆ
M

⟨△h, ḣ⟩σ.

Here, ḣ :M → C with ḣ = 0 on ∂M . Thus, the corresponding Euler-Lgrange equation
is

△h = 0.

The standard elliptic theory shows that such minimum exists uniquely and satisfies
the Laplace equation

△h = 0 in M, h = g on ∂M.

Such function h is called a harmonic function with Dirichlet boundary data g. We
denote it by hg. The minimization problem now becomes

min{ED[hg]|g : ∂M → S1}

3. In the discrete setting, we look for

min
h : V → C
|h| = 1

EC(h) =
1

2
h̄TCh, C = L− 2A.

In the continuous setting, the condition |h| = 1 gives fixed area(h(∂M)). In the discrete
setting, however, |h| = 1 may not be enough to give a fixed area of the polygon h(∂M).
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Nevertheless, we impose such fixed area condition. Namely, we look for h such that
the variation of the area h̄Ah is fixed. This gives the condition

h ∈ Ker(A).

The minimization problem now reads

min{1
2
h̄TLh|h ∈ Ker(A)}.

Note that the operator A only depends on h on ∂M . Let us denote h|∂M by g. The
above problem becomes

min{1
2
h̄TLh|h = g on ∂M}

Thus, h satisfies
Lh = 0 in M, h = g on ∂M.

But this is equivalent tp
h ∈ Ker(L) ∩Ker(A).

4. The existence of h follows from Riemann mapping theorem: A conformal mapping
between a simply connected domain and the unit disk always exists. Such solution is
unique up to Möbius transforms with dimension 3. A Möbius transform τ : C→ C of
the form

τ(z) =
(z − z0)(z1 − z0)
(z − z2)(z1 − z2)

,

which is conformal and maps (z0, z1, z2) to (0, 1,∞). Given (z0, z1, z2) and (w0, w1, w2),
we can construct a Möbius transform τ−1

2 τ1 to map (z0, z1, z2) to (w0, w1, w2). If zi and
wi are all on S1, there are three degrees of freedoms of such transforms. In order to
have a unique solution for our conformal map, we should fix three boundary point
images, or one interior point image and one boundary point image.

5. We can use gradient descent method, or an iteration between g and h to minimize EC

to find a minimum.
Ref.

• M.-H. Yueh, W.-W. Lin, C.-T. Wu, and S.-T. Yau, An Efficient Energy Minimiza-
tion for Conformal Parameterizations, J. Sci. Comput. 73(1): 203-227, 2017.

• Gu and Yau, Computational Conformal Geometry, 2008.

10.2.4 Free boundary approach

1. In this approach, we let h(∂M) be free and solve the following constrained minimization
problem:

min
h
EC [h] subject to ∥h∥2 = 1, ⟨⟨h,1⟩⟩ = 0.
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The discrete version is

min
h

1

2
h̄TCh, subject to h̄TMh = 1, h̄TM1 = 0,

where

C = L− 2A, Mij = ⟨⟨ϕi, ϕj⟩⟩

is the mass matrix.

2. The minimization of h̄TCh subject to the first constraint leads to an eigenvalue problem

Ch = λMh.

This together with

h̄TMh = 1, h̄TM1 = 0

is our generalized eigenvalue problem.

3. All eigenvalues of C w.r.t. M are non-negative because C ≥ 0. We look for an eigen-
vector corresponding to the zero eigenvalue and also perpendicular to 1. This solution
set is Ker(C) ∩ 1⊥. We apply the inverse power method to find such an eigenvector.
To apply the inverse power method, we replace

C̃ ← C + λ0M, λ0 > 0 (some small constant)

in order to take C̃−1 in the inverse power method. Now, C̃ > 0. We look for

min
h

1

2
h̄T C̃h, subject to h̄TMh = 1, h̄TM1 = 0.

The eigenvector corresponding to λ0 is the one satisfying Ch = 0. The algorithm is
the inverse power method-2 in the next subsection.

10.2.5 Inverse Power method for solving generalized eigenvalue
problem

A standard numerical method to find a largest eigenvalue and the corresponding eigenvector
is the power method. A variant of the power method, called the inverse power method, is to
find a smallest eigenvalue and the corresponding eigenvector. Let us make a short description
on power method. Then go to the inverse power method with constraints. Below, B is
symmetric positive definite matrix.

Power method-1 To find Ax = λx, ∥x∥ = 1 with largest |λ|.
Here, Residual(A, x) := Ax− (x̄TAx)x.
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Algorithm Power Method 1

Input: A, x0(initial guess)
Output: x, λ = x̄TAx, x, the largest eigenvalue in magnitude.

1: while Residual(A, xn−1) > ε do
2: y ← Axn−1

3: xn ← y/|y|
4: end while
5: return xn, λ

Algorithm Power Method 2

Input: A, x0(initial guess)
Output: x, λ = x̄TAx, the largest eigenvalue in magnitude.

1: while Residual(A, xn−1) > ε do
2: y ← Axn−1

3: xn ← y/
√
ȳTBy

4: end while
5: return xn, λ

Power method-2 To find Ax = λBx, x̄TBx = 1 with largest |λ|. Here, we define
Residual(A, x) := Ax− (x̄TAx)Bx.

Inverse Power Method-1 The inverse power method is to find the smallest eigenvalue
(in magnitude) of A. This is equivalent to find the largest eigenvalue of A−1. The algorithm
reads

Algorithm Inverse Power Method – 1

Input: A, x0(initial guess)
Output: x, λ = x̄TAx, the smallest eigenvalue in magnitude.

1: while Residual(A, xn−1) > ε do
2: y ← A−1xn−1

3: xn ← y/|y|
4: end while
5: return xn, λ

Inverse Power method for generalized eigenvalue problem wit constraints Let
A,B are Hermitian matrices and B > 0. We assume the smallest eigenvalue of A is λ0. We
want to solve Ax = λ0Bx, x̄

TBx = 1 and x̄TB1 = 0.
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Algorithm Inverse Power Method – 2

Input: A, x0(initial guess)
Output: x, λ = x̄TAx, the largest eigenvalue in magnitude.

1: while Residual(A, xn−1) > ε do
2: y ← A−1xn−1

3: y ← y − ȳTB1/(1TB1)

4: xn ← y/
√
ȳTBy

5: end while
6: return xn, λ

Figure 10.2: Copied from Chern and Schröder’s lecture note
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Chapter 11

Vector Field Design

Definition of vector fields Vector fields on manifolds are those tangent vector valued
functions on manifolds. Directional fields are those vector fields that we care only on its
direction, not magnitude. N -vector fields are referred to that at each point p ∈ M , we
associate it with N vectors.

Applications of vector field design include

• Mesh generation

• Parametrization

• Deformation

• Shape analysis

• Texture mapping and synthesis

• Architectural geometry

• · · ·

Framework of design

• Representation of vector fields

• Set up an objective function and constraints, formulate the problem as an optimization
problem with constraints.

objectives include:

• Parallelity

• Orthogonality
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• Coons interpolation

• · · ·

Constraints are

• Alignment

• Symmetry

• Differential constraints

• Topological constraints

•
...

A good review article is

• Amir Vaxman, Marcel Campen, Olga Diamanti, Daniele Panozzo, David Bommes,
Klaus Hildebrandt and Mirela Ben-Chen, Directional Field Synthesis, Design, and
Processing, EUROGRAPHICS 2016.
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