
16 MULTIPLE INTEGRALS

16.1 DOUBLE INTEGRALS OVER RECTANGLES

TRANSPARENCIES AVAILABLE

#48 (Figures 4 and 5), #49 (Figures 7 and 8), #50 (Figure 11), #51 (Figures 12 and 13)

SUGGESTED TIME AND EMPHASIS

1
2
–1 class Essential Material

POINTS TO STRESS

1. The definition and properties of the double integral.

2. The analogy between single and double integration.

3. Volume interpretations of double integrals.

QUIZ QUESTIONS

• Text Question: Compute
2∑

i=1

3∑
j=1

2i3 j .

Answer: 234

• Drill Question: If we partition [a, b] into m subintervals of equal length and [c, d] into n subintervals of

equal length, what is the value of �A for any subrectangle Ri j?

Answer:

(
b − a

m

)(
d − c

n

)

MATERIALS FOR LECTURE

• Review single variable integration, including Riemann sums. Then show how double integration extends

the concepts of single variable integration.

• Use a geometric argument to directly compute
∫∫

R (3+ 4x) d A over R = [0, 1]× [0, 1].

• Discuss what happens when f (x, y) takes negative values over the region of integration. Start with an odd

function such as x3 + y5 being integrated over R = [−1, 1] × [−1, 1]. Then discuss what happens when

a function that is not odd has negative values, for example, z = 2 − 3x on R = [0, 1] × [0, 1]. Illustrate

numerically. (This can also be done using the group work “An Odd Function”.)

WORKSHOP/DISCUSSION

• Do a problem involving numerical estimation, such as estimating
∫∫ (

x2 + 2y2
)
d A over 0 ≤ x ≤ 2,

0 ≤ y ≤ 2, using both the lower left corners and midpoints as sample points. Also approximate fave over

R.
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CHAPTER 16 MULTIPLE INTEGRALS

• The following example can be used to help solidify the idea of approximating an area. Consider a square

pyramid with vertices at (1, 1, 0), (1,−1, 0), (−1, 1, 0), (−1,−1, 0) and (0, 0, 1). Derive an equation for

the surface of the pyramid, using functions such as z = 1 − max (|x| , |y|), and then the equations of the

planes containing each of the five faces (z = 0, y + z = 1, and so on). Approximate the volume using the

Midpoint Rule for the following equal subdivisions. Note that m is the number of equal subdivisions in

the x-direction and n is the number of equal subdivisions in the y-direction.

1. m = n = 2 (Approximation is 2)

2. m = n = 3 (Approximation is 44
27
)

3. m = n = 4 (Approximation is 3
2
)

4. m = n = 5 (Approximation is 36
25
)

Compare your answers with the actual volume 4
3
computed using the formula V = 1

3
Bh.

• Consider
∫∫ √

4− y2 d A, with R = [0, 3] × [−2, 2]. Use a geometric argument to compute the actual

volume after approximating as above with m = n = 3 and m = n = 4. Show that the average value is

6π
12

= π
2
, and that the point

(
0,

√
4− 1

4
π2

)
≈ (0, 1.24) in R satisfies f

(
0,

√
4− 1

4
π2

)
= π

2
.

GROUP WORK 1: Back to the Park

This group work is similar to Example 4 and uses the Midpoint Rule.

Answer: Roughly 81 meters

GROUP WORK 2: An Odd Function

The goal of the exercise is to estimate
∫∫

[−2,2]× [−2,2]

(
x3 + y5

)
d A numerically. There are three different

problem sheets, each one suggesting a different strategy to obtain sample points for the estimation. Groups

seated near each other should get different problem sheets, without this fact necessarily being announced.

After all the students are finished, have them compare their results. The exact value of the integral is zero, by

symmetry.

Answers:

The answers for arbitrarily chosen points will vary.

Version 1:

Four regions:
(
22
)
( f (−2, 0)+ f (−2,−2)+ f (0, 0)+ f (0,−2)) = −320

Nine regions:
(
4
3

)2 [
f
(
−2, 2

3

)
+ f

(
−2,−2

3

)
+ f (−2,−2)+ f

(
−2

3
, 2
3

)
+ f

(
−2

3
,−2

3

)
+ f

(
−2

3
,−2

)
+ f

(
2
3
, 2
3

)
+ f

(
2
3
,−2

3

)
+ f

(
2
3
,−2

)]
= −640

3
≈ −213.33

Sixteen regions:
(
12
) [

f (−2, 1)+ f (−2, 0)+ f (−2,−1)+ f (−2,−2)+ f (−1, 1)

+ f (−1, 0)+ f (−1,−1)+ f (−1,−2)+ f (0, 1)+ f (0, 0)

+ f (0,−1)+ f (0,−2)+ f (1, 1)+ f (1, 0)+ f (1,−1)+ f (1,−2)
] = −160
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SECTION 16.1 DOUBLE INTEGRALS OVER RECTANGLES

Version 2:

Four regions:
(
22
)
( f (2, 0)+ f (2, 2)+ f (0, 0)+ f (0, 2)) = 320

Nine regions:
(
4
3

)2 [
f
(
2,−2

3

)
+ f

(
2, 2

3

)
+ f (2, 2)+ f

(
2
3
,−2

3

)
+ f

(
2
3
, 2
3

)
+ f

(
2
3
, 2
)

+ f
(
−2

3
,−2

3

)
+ f

(
−2

3
, 2
3

)
+ f

(
−2

3
, 2
)]

= 640
3

≈ 213.33

Sixteen regions:
(
12
) [

f (2,−1)+ f (2, 0)+ f (2, 1)+ f (2, 2)+ f (1,−1)

+ f (1, 0)+ f (1, 1)+ f (1, 2)+ f (0,−1)+ f (0, 0)

+ f (0, 1)+ f (0, 2)+ f (−1,−1)+ f (−1, 0)+ f (−1, 1)+ f (−1, 2)
] = 160

Version 3:

Four regions:
(
22
)
( f (1, 1)+ f (1,−1)+ f (−1, 1)+ f (−1,−1)) = 0

Nine regions:
(
4
3

)2 [
f
(
4
3
,−4

3

)
+ f

(
4
3
, 0
)
+ f

(
4
3
, 4
3

)
+ f

(
0,−4

3

)
+ f (0, 0)

+ f
(
0, 4

3

)
+ f

(
−4

3
,−4

3

)
+ f

(
−4

3
, 0
)
+ f

(
−4

3
, 4
3

)]
= 0

Sixteen regions: 0 (by symmetry)

GROUP WORK 3: Justifying Properties of Double Integrals

Put the students into groups. Have them read the section carefully, and then have some groups try to justify

Equation 7, some Equation 8, and some Equation 9 for nonnegative functions f and g. They don’t have

to do a formal proof, but they should be able to justify these equations convincingly, either using sums or

geometrical reasoning.

There is no handout for this activity.

GROUP WORK 4: Several Ways to Compute Double Integrals

The students may need help finding good points to use for Problem 1. The Midpoint Rule works best.

Answers:

Let f (x, y) = 2− x − y.

1.
(
1
2

)2 (
f
(
1
4
, 1
4

)
+ f

(
3
4
, 1
4

)
+ f

(
1
4
, 3
4

)
+ f

(
3
4
, 3
4

))
= 1 2. A (x) = 3

2
− x 3.

∫ 2
0

(
3
2
− x
)
dx = 1

HOMEWORK PROBLEMS

Core Exercises: 1, 5, 6, 7, 9, 13, 14

Sample Assignment: 1, 2, 4, 5, 6, 7, 9, 10, 12, 13, 14, 17

Exercise D A N G

1 ×
2 ×
4 ×
5 × ×
6 ×
7 ×

Exercise D A N G

9 × ×
10 × ×
12 ×
13 ×
14 ×
17 ×
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GROUP WORK 1, SECTION 16.1

Back to the Park

The following is a map with curves of the same elevation of a region in Orangerock National Park:

Estimate (numerically) the average elevation over this region using the Midpoint Rule.
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GROUP WORK 2, SECTION 16.1

An Odd Function (Version 1)

In this exercise, we are going to try to approximate the double integral
∫∫

[−2,2]× [−2,2]

(
x3 + y5

)
d A. We

start by partitioning the region [−2, 2]× [−2, 2] into four smaller regions, then nine, then sixteen, like this:

Now we approximate the double integral as discussed in the text, picking one point in every smaller region.

To make things simple, just choose the lower left corner of every small region, like so:

Approximation for four regions:

Approximation for nine regions:

Approximation for sixteen regions:

When you are finished, try again using a point of your choice in each region.

Using Arbitrarily Chosen Points

Approximation for four regions:

Approximation for nine regions:

Approximation for sixteen regions:
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GROUP WORK 2, SECTION 16.1

An Odd Function (Version 2)

In this exercise, we are going to try to approximate the double integral
∫∫

[−2,2]× [−2,2]

(
x3 + y5

)
d A. We

start by partitioning the region [−2, 2]× [−2, 2] into four smaller regions, then nine, then sixteen, like this:

Now we approximate the double integral as discussed in the text, picking one point in every smaller region.

To make things simple, just choose the upper right corner of every small region, like so:

Approximation for four regions:

Approximation for nine regions:

Approximation for sixteen regions:

When you are finished, try again using a point of your choice in each region.

Using Arbitrarily Chosen Points

Approximation for four regions:

Approximation for nine regions:

Approximation for sixteen regions:

878



GROUP WORK 2, SECTION 16.1

An Odd Function (Version 3)

In this exercise, we are going to try to approximate the double integral
∫∫

[−2,2]× [−2,2]

(
x3 + y5

)
d A. We

start by partitioning the region [−2, 2]× [−2, 2] into four smaller regions, then nine, then sixteen, like this:

Now we approximate the double integral as discussed in the text, picking one point in every smaller region.

To make things simple, just choose the midpoint of every small region, like so:

Approximation for four regions:

Approximation for nine regions:

Approximation for sixteen regions:

When you are finished, try again using a point of your choice in each region.

Using Arbitrarily Chosen Points

Approximation for four regions:

Approximation for nine regions:

Approximation for sixteen regions:
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GROUP WORK 4, SECTION 16.1

Several Ways to Compute Double Integrals

Consider the double integral
∫∫

(2− x − y) d A, where R = [0, 1]× [0, 1].

1. Estimate the value of the double integral using two equal subdivisions in each direction.

2. Fix x such that 0 ≤ x ≤ 1. What is the area A (x) of the slice shown below?

A(x)

y=0, z=2-x

y=1, z=1-x

2

1

y

1

2
x

z

3. Find the exact volume of the solid with cross-sectional area A (x) using single variable calculus.
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16.2 ITERATED INTEGRALS

SUGGESTED TIME AND EMPHASIS

1
2
–1 class Essential material

POINTS TO STRESS

1. The meaning of
∫ b
a

∫ d
c f (x, y) dy dx for a positive function f (x, y) over a rectangle [a, b]× [c, d].

2. The statement of Fubini’s Theorem and how it makes computations easier.

3. The geometric meaning of Fubini’s Theorem: slicing the area in two different ways.

QUIZ QUESTIONS

• Text Question: Consider Figures 1 and 2 in the text. Why is
∫ b
a A (x) dx = ∫ dc A (y) dy?

�

�

�

�
�

�

	


���



�

�

�

	

	� �

Answer: The two integrals express the volume of the same solid.

• Drill Question: Compute
∫ 3
0

∫ 4
3 x2y dy dx .

Answer: 63
2

MATERIALS FOR LECTURE

• Revisit the example
∫∫

[−2,2]× [−2,2]

(
x3 + y5

)
d A using integrated integrals, to illustrate the power of the

technique of iteration.

• Use an alternate approach to give an intuitive idea of why Fubini’s Theorem is true. Using equal intervals

of length �x and �y in each direction and choosing the lower left corner in each rectangle, we can write

the double sum in Definition 16.1.5 as the iterated sum

m∑
i=1

n∑
j=1

f
(
x∗i j , y

∗
i j

)
�x �y =

m∑
i=1

(
n∑
j=1

f
(
x∗i j , y

∗
i j

)
�x

)
�y

which in the limit gives an iterated integral. Go through some examples such as
∫∫

[−1,3]× [−1,3] xy d A and∫∫
[0,1]× [0,1] (2− x − y) d A to demonstrate this approach.

• Remind the students how, in single-variable calculus, volumes were found by adding up cross-sectional

areas. Take the half-cylinder f (x, y) =
√
1− y2, 0 ≤ x ≤ 2, and find its volume, first by the “old”

method, then by expressing it as a double integral. Show how the two techniques are, in essence, the same.
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CHAPTER 16 MULTIPLE INTEGRALS

WORKSHOP/DISCUSSION

• Have the students work several examples, such as
∫∫

[0,1]× [0,1] y
√
1− x2 sin

(
2πy2

)
d A, which can be

computed as
∫ 1
0 f (x) dx

∫ 1
0 g (y) dy.

• Find the volume of the solids described by
∫∫[

−
√
2,
√
2
]
× [−2,3]

(
2− x2

)
d A and∫∫

[−1,1]× [−1,1]

(
1+ x2 + y2

)
d A.

GROUP WORK 1: Regional Differences

If the students get stuck on this one, give them the hint that Problem 1(b) can be done by finding the double

integral over the square, and then using the symmetry of the function to compute the area over R. The regions

in the remaining problems can be broken into rectangles.

Answers: 1.(a) 3
4

(b) 1
2

2.(a) −8 (b) −5 (c) −9
2

GROUP WORK 2: Practice with Double Integrals

It is a good idea to give the students some practice with straightforward computations of the type included

in Problem 1. It is advised to put the students in pairs or have them work individually, as opposed to putting

them in larger groups. The students are not to actually compute the integral in Problem 2; rather, they should

recognize that each slice integrates to zero. Think about what happens when integrating with respect to x

first.

Answers:

1. (a) 24
5

√
6− 10

3

√
5− 6

5

√
3+ 8

15

√
2 (b) −3

2
ln 3+ 1

2
+ 2 ln 2 (c) e2 − 1− e 2. True

GROUP WORK 3: The Shape of the Solid

In Problem 3, the students could first change the order of integration to more easily recognize the “pup tent”

shape of the resulting solid.

Answers:

1. Irregular tetrahedron, volume 3
2

2. Half a cylinder, volume 12π 3. “Pup tent”, volume 5

HOMEWORK PROBLEMS

Core Exercises: 1, 3, 6, 17, 23, 26, 32, 35

Sample Assignment: 1, 2, 3, 6, 9, 13, 15, 17, 20, 23, 26, 28, 32, 35

Exercise D A N G

1 ×
2 ×
3 ×
6 ×
9 ×
13 ×
15 ×

Exercise D A N G

20 ×
23 ×
26 ×
28 ×
32 × ×
35 ×
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GROUP WORK 1, SECTION 16.2

Regional Differences

1. Calculate the double integral
∫∫

R (x + y) d A for the following regions R:

(a)

x11
_
2

0

1
_
2

1

y

R

(b) y

x10

1

R

2. Calculate the double integral
∫∫

R

(
xy − y3

)
d A for the following regions R.

(a)

x10

2

y

R

1

_1

(b)

x10

2

y

R

1

_1

(c)

x10

2

y

R

1

_1

R
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GROUP WORK 2, SECTION 16.2

Practice with Double Integrals

Compute the following double integrals:

1. (a)

∫∫
[1,2]× [0,1]

x
√
1+ y + x2 d A

(b)

∫∫
[0,1]× [1,2]

x

x + y
dx dy

(c)

∫∫
[0,1]× [1,2]

yexy dx dy

2. Is the statement
∫∫

[0,1]× [0,1] cos
(
2π
(
y2 + x

))
d A = 0 true or false?
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GROUP WORK 3, SECTION 16.2

The Shape of the Solid

For each of the following integrals, describe the shape of the solid whose volume is given by the integral, then

compute the volume.

1.
∫∫

[0,1]× [0,1] (3− 2x − y) d A

2.
∫ 3
−3

∫ 2
−2

√
4− y2 dy dx

3.
∫ 1
−1

∫ 3
−2 (1− |x|) dy dx
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16.3 DOUBLE INTEGRALS OVER GENERAL REGIONS

SUGGESTED TIME AND EMPHASIS

1 class Essential Material

POINTS TO STRESS

1. The geometric interpretation of
∫ b
a

∫ g(y)
f (y) dx dy and

∫ d
c

∫ k(x)
h(x) dy dx .

2. Setting up the limits of double integrals, given a region over which to integrate.

3. Changing the order of integration.

QUIZ QUESTIONS

• Text Question: Sketch a region that is type II and not type I, and then sketch one that is both type II and

type I.

Answer:

• Drill Question: Is it true that
∫ 1
0

∫ 1
x f (x, y) dy dx = ∫ 10 ∫ 1y f (x, y) dx dy?

Answer: Yes, because the limits of integration describe the same region.

MATERIALS FOR LECTURE

• Clarify why we bother with the fuss of defining F(x, y) =
{

f (x, y) if (x, y) ∈ D

0 if (x, y) /∈ D
instead of “just

integrating over D”.

• Show that the order of integration matters when computing
∫∫

ex
2

d A, where D is the region shown below.

0

2

4

1 x

y

y=3x+1

y=x+1

• Point out that
∫∫

D 1 d A gives the area of D, and that
∫ b
a

∫ g(x)
f (x) 1 dy dx gives the usual formula for the area

between curves.

• Evaluate
∫∫

D h d A, where D is a circle of radius r and h is constant. Show how this gives the general

formula for the volume of a cylinder. Ask the students to evaluate
∫∫

D h d A, where D is the parallelogram

with vertices (1, 1), (2, 3), (5, 1), and (6, 3). Have them interpret their answer in terms of volume.
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SECTION 16.3 DOUBLE INTEGRALS OVER GENERAL REGIONS

WORKSHOP/DISCUSSION

• Let D be the region shown below. Set up
∫∫

D f (x, y) d A both as a type I integral
[∫∫

D f (x, y) dx dy
]

and a type II integral
[∫∫

D f (x, y) dy dx
]
.

x

y

x+1=(y-1)$

D
y=2x

_1 1 2 3

_2

2

4

6

• Evaluate
∫∫

D yx2 d A, where D is the unit circle, both as a type I integral and as a type II integral.

• Show how to change order of integration in
∫ 1
0

∫ x1/3
x4 f (x, y) dy dx .

• Change order of integration for
∫ 1
0

∫ y1/3

(2/π) arcsin y f (x, y) dx dy.

GROUP WORK 1: Type I or Type II?

Before handing out this activity, remind the students of the definitions of type I and type II regions given in

the text.

Answers:

1. Both 2. Both 3. Type II 4. Neither 5. Type II 6. Type I 7. Both 8. Type II 9. Neither 10. Both

GROUP WORK 2: Fun with Double Integrals

In this section, it is probably best to have the students get experience in setting up many double integrals,

rather than have them spend a lot of time solving only one. During the homework, of course, both skills

should be practiced.

Answers:

1. (a)
∫ 3/4
0

∫ x−x2

x/4 dy dx . This can also be done as two integrals in dx dy.

(b)
∫ 1
0

∫ 4
√
x

x2
dy dx or

∫ 1
0

∫√y

y4
dx dy

(c)
∫ 1/2
0

∫ 4
√
y

y2
dx dy. This can also be done as two integrals in dy dx .

(d)
∫ 1
0

∫ 2−√
y√

y
dx dy. This can also be done as two integrals in dy dx .

2. A hemisphere
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CHAPTER 16 MULTIPLE INTEGRALS

GROUP WORK 3: Bounding on a Disk

You may or may not tell your students that there is no such thing as Nentebular science. The surface

1

x2 + y2 + 1
lends itself naturally to this type of analysis, as seen by its graph.

Before handing out this activity, review the method of finding the area of an annulus. Close the activity by

pointing out that if we continued the process of dividing D into smaller and smaller rings, the upper and lower

bounds would approach each other, converging on the actual area:∫ 2π

0

∫ 5

0

1

r2 + 1
r dr dθ = π ln 2+ π ln 13 ≈ 3.2581π

Answers:

1. Answers will vary here. The upper bound should be no worse than 25π ≈ 78.5 (setting the function equal

to the constant 1, its maximum) and the lower bound should be no worse than 25π
26

≈ 3.02 (setting the

function equal to the constant 1
26
, its minimum).

2. Upper: 4π (1)+ (25π − 4π)
(
1
5

)
= 41

5
π ≈ 25.8. Lower: 4π

(
1
5

)
+ (25π − 4π)

(
1
26

)
= 209

130
π ≈ 5.05.

3. Upper: π (1)+ (9π − π)
(
1
2

)
+ (25π − 9π)

(
1
10

)
= 33

5
π ≈ 20.7.

Lower: π
(
1
2

)
+ (9π − π)

(
1
10

)
+ (25π − 9π)

(
1
26

)
= 249

130
π ≈ 6.02.

HOMEWORK PROBLEMS

Core Exercises: 1, 5, 10, 13, 22, 32, 43, 45, 51

Sample Assignment: 1, 5, 8, 10, 13, 17, 20, 22, 25, 29, 32, 33, 40, 43, 45, 51, 53, 58, 59

Exercise D A N G

1 ×
5 ×
8 ×
10 ×
13 ×
17 ×
20 ×
22 ×
25 ×
29 ×

Exercise D A N G

32 ×
33 ×
40 ×
43 ×
45 ×
51 × ×
53 ×
58 × ×
59 ×
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GROUP WORK 1, SECTION 16.3

Type I or Type II?

Classify each of the following regions as type I, type II, both, or neither.
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GROUP WORK 2, SECTION 16.3

Fun with Double Integration

1. Write double integrals that represent the following areas.

(a) The area enclosed by the curve y = x − x2

and the line y = x

4

(b) The area enclosed by the curves y = 4
√
x

and
√
y = x

(c) The area enclosed by the curves y = √
x

and 4
√
y = x , and the line y = 1

2

(d) The area enclosed by the curves y = x2

and y = (x − 2)2, and the line y = 0

2. What solid region of R3 do you think is represented by
∫ 1
−1

∫√1− x2

−
√

1− x2

√
1− x2 − y2 dy dx?
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GROUP WORK 3, SECTION 16.3

Bounding on a Disk

One integral that is very important in Nentebular science is the Ossidoot integral:∫∫
D

1

x2 + y2 + 1
d A

For these sorts of integrals the domain D is usually a disk. In this exercise, we are going to find upper and

lower bounds for this integral, where D is the disk 0 ≤ x2 + y2 ≤ 25.

1. It is possible to get some crude upper and lower bounds for this integral over D without any significant

calculations? Find upper and lower bounds for this integral (perhaps crude ones) and explain how you

know for sure that they are true bounds.

2. One can get a better estimate by splitting up the domain as shown in the graph below, and bounding the

integral over the inside disk and then over the outside ring. Using this method, what are the best bounds

you can come up with?

3. Now refine your bounds by looking at the domain D as the union of three domains as shown.
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16.4 DOUBLE INTEGRALS IN POLAR COORDINATES

SUGGESTED TIME AND EMPHASIS

1 class Essential material. If polar coordinates have not yet been covered, the students should read

Section 11.3.

POINTS TO STRESS

1. The definition of a polar rectangle: what it looks like, and its differential area r dr dθ

2. The idea that some integrals are simpler to compute in polar coordinates

3. Integration over general polar regions

QUIZ QUESTIONS

• Text Question: Is the area of a polar rectangle R = {(r,θ) | a ≤ r ≤ b,α ≤ θ ≤ β} equal to

(b − a) (β −α)?

Answer: No

• Drill Question: Convert
∫ 1
−1

∫√1−y2

−
√

1−y2

(
x2 + y2

)
dx dy to polar coordinates.

Answer:
∫ 2π
0

∫ 1
0 r3 dr dθ

MATERIALS FOR LECTURE

• Start by reminding the students of polar coordinates, and ask them what they think the polar area formula

will be: what will replace dx dy?

• Draw a large picture of a polar rectangle, and emphasize that it is the region between the gridlines r = r0,

r = r0 +�r , θ = θ0, and θ = θ0 +�θ.

The following method can be used to show that Area(�R) ≈ r �r �θ if �r and �θ are small:

1. Using the formula for the area of a circular sector, we obtain

Area (�R) = 1
2 (r +�r)2 �θ − 1

2 (r)
2 �θ

= r �r �θ + 1
2
(�r)2 �θ
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SECTION 16.4 DOUBLE INTEGRALS IN POLAR COORDINATES

2. We now take the limit as �r,�θ → 0, of
Area (�R)

r �r �θ
and show that this limit is equal to 1.

lim
�r→0,�θ→0

Area (�R)

r �r �θ
= lim

�r→0,�θ→0

r �r �θ + 1
2
(�r)2 �θ

r �r �θ

= lim
�r→0,�θ→0

1+ �r

2r
= 1

3. The result follows, since when�r and �θ are small,

Area (�R)

r �r �θ
≈ 1

or

Area (�R) ≈ r �r �θ

• Show how to set up the two general types of polar regions. (The second type occurs less frequently, and

may be omitted.) Then indicate to the students that polar coordinates are most useful when one has an

obvious center of symmetry for the region R in the xy-plane.

• Point out that polar areas can be found by setting up (double) polar integrals of the function

f (r cosθ, r sinθ) = 1 and compare this method to using the formula A = ∫ ba 1
2
r2 dθ. Calculate

1. The area between the circles x2 + y2 = 1 and x2 + y2 = 2 in the second quadrant.

2. The area inside the spiral r = θ where 0 ≤ θ ≤ π.

3. A =
{
(x, y) | −1 ≤ x ≤ 1, 0 ≤ y ≤

√
1− x2

}
.

4. The area inside the first loop of the curve r = 2 sinθ cosθ.

WORKSHOP/DISCUSSION

• Illustrate that difficult problems can sometimes be

simplified using geometry and symmetry by finding the

area inside the circles x2+ y2 = 1 and (x − 1)2+ y2 = 1

(or r = 2 cosθ). First find the point of intersection
(
1, π

3

)
(in polar coordinates). Next, break the double integral for

the portion in the first quadrant into two pieces as shown

in the figure. The lighter region is a sector of angle π
3

of the unit disk (which contributes π
6
to the area), the

darker region is a simple polar integral, and the total area

between the circles is double the area above the x-axis.

1 2 x

y

_1

_1

0

1
x@+y@=1 (x-1)@+y@=1
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CHAPTER 16 MULTIPLE INTEGRALS

• Present some different uses of polar integrals:

1. Compute
∫∫

R

(
x2 + y2

)2
d A, where R is the region enclosed by x2+ y2 = 4 between the lines y = x

and y = −x .

0 1_1

_2

2

x

y

2_2

2. Compute the volume between the cone z2 = x2 + y2 and the paraboloid z = 4− x2 − y2.

GROUP WORK 1: The Polar Area Formula

Perhaps start by having students guess the final answer to Problem 1. Notice that the students will have to be

able to antidifferentiate cos2 θ and sin2 θ to complete this activity.

Answers:

1. 2
∫ π
0

1
2 (1+ cosθ)2 dθ = 3π

2
2.
∫ π
0

[
1
2 (1+ sinθ)2 − 1

2 (1)
2
]
dθ = π

4
+ 2

GROUP WORK 2: Fun with Polar Area

Many students will write
∫ 3π
0

∫ θ
0 r dr dθ. Try to get them to see for themselves that they must now subtract

the area of the region that is counted twice in this expression.

Answers:

1. 9
2
π3 − 19

6
π3 = 4

3
π3 2.

∫ π
0

∫ 2
0 e−r

2

r dr dθ = π
2

(
1− e−4

)

GROUP WORK 3: Fun with Polar Volume

If the students get stuck on Problem 2, point out that the intersection can be shown to be x2 + y2 = 3
4
, z = 1

2
,

and hence the integral is over the region x2 + y2 ≤ 3
4
. If time is an issue, the students can be instructed to set

up the integrals without solving them.

Answers:

1.
∫ 2π
0

∫ 1
0

(√
1− r2 + 1

)
r dr dθ = 5π

3

2.
∫ 2π
0

∫ 3/4
0

[√
1− r2 −

(
1−

√
1− r2

)]
r dr dθ = π

48

(
37− 7

√
7
)

894



SECTION 16.4 DOUBLE INTEGRALS IN POLAR COORDINATES

HOMEWORK PROBLEMS

Core Exercises: 2, 5, 11, 15, 22, 30, 33, 35

Sample Assignment: 2, 5, 8, 11, 15, 17, 20, 22, 25, 30, 31, 33, 35

Exercise D A N G

2 × ×
5 × ×
8 ×
11 ×
15 ×
17 ×
20 ×
22 ×
25 ×
30 ×
31 ×
33 × ×
35 ×
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GROUP WORK 1, SECTION 16.4

The Polar Area Formula

The following formula is used for finding the area of a polar region described by the polar curve r = f (θ),

a ≤ θ ≤ b:

A = ∫ ba 1
2

[
f (θ)

]2
dθ

1. Use this formula to compute the area inside the cardioid r = 1+ cosθ.

O

r=1+cos ¬

2. Use the formula to find the area inside the cardioid r = 1+ sinθ and outside the unit circle r = 1.

O

r=1+sin ¬

r=1
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GROUP WORK 2, SECTION 16.4

Fun with Polar Area

1. Find the area of the region inside the curve r = θ, 0 ≤ θ ≤ 3π.

2. Rewrite
∫ 2
−2

∫√4−x2

0 e−x2−y2 dy dx as a polar integral and evaluate it.
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GROUP WORK 3, SECTION 16.4

Fun with Polar Volume

1. Find the volume of the region bounded above by the upper hemisphere of the sphere x2+y2+(z − 1)2 = 1

and bounded below by the xy-plane.

2. Find the volume of the region bounded above by the sphere x2 + y2 + z2 = 1 and below by the sphere

x2 + y2 + (z − 1)2 = 1.
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16.5 APPLICATIONS OF DOUBLE INTEGRALS

SUGGESTED TIME AND EMPHASIS

1 class Optional material

POINTS TO STRESS

I recommend stressing one of the following topics:

1. Density, mass, and centers of mass (for an engineering- or physics-oriented course)

2. Probability and expected values (for a course oriented toward biology or the social sciences)

QUIZ QUESTIONS

• Text Question: What is a logical reason that the total area under a joint density curve should be equal to

1?

Answer: The total area is the probability that some outcome will occur.

• Drill Question: If a lamina has a uniform density and an axis of symmetry, what information do we then

have about the location of the center of mass?

Answer: It is on the axis of symmetry.

MATERIALS FOR LECTURE

• Describe the general ideas behind continuous density functions, computations of mass, and centers of

mass.

• Do one interesting mass problem. A good exercise is the mass over the unit disk if ρ (x, y) = |x | + |y|.
This reduces to 4

∫ 1
0

∫√1−x2

0 (x + y) dy dx which, surprisingly, equals 8
3
.

• Describe the general idea of the joint density function of two variables. Similarly, describe the concept

of expected value. If time permits, show that f (x, y) = 1

2π

1(
1+ x2 + y2

)3/2 describes a joint density

function.
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CHAPTER 16 MULTIPLE INTEGRALS

WORKSHOP/DISCUSSION

• Define the centroid (x, y) of a plane region R as the center of gravity, obtained by using a density of 1 for

the entire region. So x = 1

A (R)

∫∫
x dx dy and y = 1

A (R)

∫∫
y dx dy. Show the students how to find

the centroid for two or three figures like the following:

x=2-y@ y=2-x@

1/Ï3_1/Ï3

2/3

_1/3

Show the students that if x = 0 is an axis of symmetry for a region R, then x = 0, and more generally,

that (x, y) is on the axis of symmetry. Point out that if there are two axes of symmetry, then the centroid

(x, y) is at their intersection.

• Consider the triangular region R shown below, and assume that the density of an object with shape R is

proportional to the square of the distance to the origin. Set up and evaluate the mass integral for such an

object, and then compute the center of mass (x, y).
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SECTION 16.5 APPLICATIONS OF DOUBLE INTEGRALS

GROUP WORK 1: Fun with Centroids

Have the students find the centroids for some of the eight regions described earlier in Workshop/Discussion.

Perhaps give each group of students two different ones to work on, and have them present their answers at the

board.

Answers: 1.
(
0, 8

3π

)
2.
(

8
3π

, 8
3π

)
3.
(
4
5
, 0
)

4.
(
0, 4

5

)
5.
(
0, 2

3

)
6.
(
2
3
a, 2

3
b
)

7.
(
1
3
a, 1

3
b
)

8. (0, 0)

GROUP WORK 2: Verifying the Bivariate Normal Distribution

Go over, in detail, Exercise 36 from Section 12.4, which involves computing the integral
∫∞
−∞ e−x2 dx using

its double integral counterpart. Since these functions are related to the normal distribution and the bivariate

normal distribution, the students can then actually show that

∫ ∞

−∞

1

σ
√
2π

e−(x/μ)2/(2σ) = 1, as it should be.

Show that this is also true for

∫ ∞

−∞

1

σ
√
2π

e−((x−a)/μ)2/(2σ) by noting that replacing x by x−a just corresponds

to a horizontal shift of the integrand. There is no handout for this activity.

GROUP WORK 3: A Slick Model

This activity requires a CAS and is based on the results of Group Work 2.

Answers:

1. K = 1
2π

2. Both are 0. This is because the oil spread is radial. The expected values correspond to the center of mass,

which is at the origin.

3. Radius ≈ 3.0348

HOMEWORK PROBLEMS

Core Exercises: 1, 4, 7, 15, 19, 24, 27, 30

Sample Assignment: 1, 4, 5, 7, 13, 15, 16, 19, 21, 24, 27, 30, 33

Exercise D A N G

1 ×
4 ×
5 ×
7 ×
13 ×
15 ×
16 ×
19 ×
21 ×
24 ×
27 ×
30 × ×
33 × ×
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GROUP WORK 1, SECTION 16.5

Fun with Centroids

Find the centroids of the following figures.

1. 2.

3.

x=2-y@

4.

y=2-x@

5. 6.

7. 8.

1/Ï3_1/Ï3

2/3

_1/3
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GROUP WORK 3, SECTION 16.5

A Slick Model

An oil tanker has leaked its entire cargo of oil into the middle of the Pacific Ocean, far from any island or

continent. The oil has spread out in all directions in a thin layer on the surface of the ocean. The slick can

be modeled by the two-dimensional density function K exp

(
−2

x2 + y2

w2

)
, where w is a fixed constant and

the origin of the xy-plane represents the location of the tanker. Assuming that none of the oil evaporates, the

density function must account for all of the oil and hence can be interpreted as a probability distribution.

1. Supposew = 2. Find the value of K which ensures that K exp

(
−2

x2 + y2

w2

)
is a probability distribution.

2. Find the expected values μx and μy of x and y in the probability distribution from Problem 1. Interpret

your answer geometrically.

3. Find the radius of the circle centered at the origin which contains exactly 99% of the oil in the slick.
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16.6 TRIPLE INTEGRALS

SUGGESTED TIME AND EMPHASIS

1 class Essential material

POINTS TO STRESS

1. The basic definition of a triple integral.

2. The various types of volume domain, and how to set up the volume integral based on each of them.

3. Changing the order of integration in triple integrals.

QUIZ QUESTIONS

• Text Question: Give an example of one region that is type I, type II, and type III.

Answer: A tetrahedron and a sphere are both correct answers. Other answers are possible.

• Drill Question: In the expression
∫∫∫

E f (x, y, z) dV , what does the dV mean?

Answer: Either dx dy dz or a description of the geometric meaning of dV (the infinitesimal volume

element) should be counted as correct.

MATERIALS FOR LECTURE

• One way to introduce volume integrals is by revisiting the concept of area, pointing out that area integrals

can be viewed as double integrals (for example
∫ 10
0 f (x) dx = ∫ 10

0

∫ f (x)
0 dy dx) and then showing how

some volume integrals work by an analogous process. Set up a typical volume integral of a solid S using

double integrals and similarly transform it into a triple integral:

V = ∫∫R f (x, y) d A = ∫ ba ∫ h2(x)h1(x)
f (x, y) dy dx = ∫ ba ∫ h2(x)h1(x)

∫ f (x,y)
0 dz dy dx

Then “move” the bottom surface of S up to z = g (x, y), so S has volume V = ∫ ba ∫ h2(x)h1(x)

∫ f (x,y)
g(x,y) dz dy dx .

If we now have a function k (x, y, z) defined on S, then the triple integral of k over S is∫∫∫
Sk (x, y, z) dV = ∫ ba ∫ h2(x)h1(x)

∫ f (x,y)
g(x,y) k (x, y, z) dz dy dx
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SECTION 16.6 TRIPLE INTEGRALS

• Show the students why the region shown is type 1,

type 2, and type 3, and describe it in all three

ways.

z=1-x-y

(0, 1, 0)

(0, 0, 1)

(1, 0, 0)

• Show how to identify the region of integration E

shown for the volume integral∫ 1
−1

∫√1−x2

−
√

1−x2

∫√1−x2−y2

0 f (x, y, z) dz dy dx ,

and then rewrite the integral as an equivalent

iterated integral of the form∫∫∫
E f (x, y, z) dx dz dy.

1

0
1

0

_1

0

_1

1
yx

z

WORKSHOP/DISCUSSION

• Do a sample computation, such as the triple

integral of f (x, y, z) = z + xy2 over the volume

V bounded by the surface sketched at right, in the

first octant. z=1-x@-y

• Set up a triple integral for the volume V of the

piece of the sphere of radius 1 in the first octant,

with different orders of integration.
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CHAPTER 16 MULTIPLE INTEGRALS

• Sketch the solid whose volume is given by the

triple integral∫√(
√
5+1)/2

−
√

(
√
5+1)/2

∫√1−y2

y2

∫ 3−x−y
0 dz dy dx . Such a

sketch is shown at right.

5

x

y

z

x+y+z=3

x@+y@=1

x=y@

• Compute
∫∫∫

E

(
x2 + y2

)1/2
dV , where E is the

solid pictured at right, by first integrating with

respect to z and then using polar coordinates in

place of dx dy.

0

2

4

_2

2

y

2
x

z

GROUP WORK 1: The Square-Root Solid

Answers:

1. 2.
∫ 1
0

∫√1−z2

−
√

1−z2

∫√y2−z2

−
√

y2−z2
dx dy dz

3.
∫ 1
−1

∫√1−y2

−
√

1−y2

∫ 1√
x2+y2

dz dx dy

4.
∫ 1
−1

∫√1−x2

−
√

1−x2

∫ 1√
x2+y2

dz dy dx = ∫ 2π0

∫ 1
0 r2 dr dθ = π

3

The students don’t yet know how to convert the integral

into cylindrical coordinates, but they can do polar

integrals, and they can also use the formula for the

volume of a cone.

GROUP WORK 2: Setting Up Volume Integrals

Answers:

1. Symmetry gives 4

(∫ 1
0

∫√4−x2

1

∫√4−x2−y2

−
√

4−x2−y2
dz dy dx + ∫ 21 ∫

√
4−x2

0

∫√4−x2−y2

−
√

4−x2−y2
dz dy dx

)
or

8

(∫ 1
0

∫√4−x2

1

∫√4−x2−y2

0 dz dy dx + ∫ 21 ∫
√

4−x2

0

∫√4−x2−y2

0 dz dy dx

)
.

2.
∫√3

−
√
3

∫√4−x2

−
√

4−x2

∫√4−x2−y2

1 dz dy dx

3. Symmetry gives 4

(∫ 1
0

∫√4−x2√
1−x2

∫√4−x2−y2

−
√

4−x2−y2
dz dy dx + ∫ 21 ∫

√
4−x2

0

∫√4−x2−y2

−
√

4−x2−y2
dz dy dx

)
or

8

(∫ 1
0

∫√4−x2√
1−x2

∫√4−x2−y2

0 dz dy dx + ∫ 21 ∫
√

4−x2

0

∫√4−x2−y2

0 dz dy dx

)
.
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SECTION 16.6 TRIPLE INTEGRALS

4. Symmetry gives 4

(∫ 1
0

∫√4−x2

1

∫√4−x2−z2

−
√

4−x2−z2
dy dz dx + ∫ 21 ∫

√
4−x2

0

∫√4−x2−z2

−
√

4−x2−z2
dy dz dx

)
or

8

(∫ 1
0

∫√4−x2

1

∫√4−x2−z2

0 dy dz dx + ∫ 21 ∫
√

4−x2

0

∫√4−x2−z2

0 dy dz dx

)

GROUP WORK 3: An Unusual Volume

This is a challenging group work for more advanced students. The idea is to show that just because a solid

looks simple, the computation of its volume may be difficult. The line generated by P1 and P2 has equation

z = −3
4
x + 4, and hence this equation, interpreted in three dimensions, is also the equation of the plane S.

The integral V (E) = ∫ 2−2

∫√4−(x−2)2

−
√

4−(x−2)2

(
−3

4
x + 4

)
dy dx requires polar coordinates to solve by hand (since

the bounding circle has equation r = 4 cosθ, 0 ≤ θ ≤ π) and also requires the students to remember how to

integrate cos2 θ and cos4 θ. The volume is 16π.

Note that the problem can be simplified by moving the solid so that the z-axis runs through the center of D.

Point out that a simple geometric solution can be obtained by replacing S by the horizontal plane z = 5
2
, thus

giving a standard cylinder.

HOMEWORK PROBLEMS

Core Exercises: 5, 11, 13, 19, 24, 25, 27, 34, 39

Sample Assignment: 2, 5, 8, 10, 11, 13, 17, 19, 21, 23, 24, 25, 26, 27, 30, 34, 39, 42, 46, 50, 51

Exercise D A N G

2 ×
5 ×
8 ×
10 ×
11 ×
13 ×
17 ×
19 ×
21 ×
23 ×
24 ×

Exercise D A N G

25 ×
26 ×
27 ×
30 ×
34 × ×
39 ×
42 ×
46 × ×
50 ×
51 ×
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GROUP WORK 1, SECTION 16.6

The Square-Root Solid

Consider the volume integral over the solid S given by V = ∫ 1−1

∫√1− x2

−
√

1− x2

∫ 1√
x2+ y2

dz dy dx .

1. Identify the solid S by drawing a picture.

2. Rewrite the volume integral as V = ∫∫∫S dx dy dz.

3. Rewrite the volume integral as V = ∫∫∫S dz dx dy.

4. Starting with the original iterated integral, compute the volume by any means at your disposal.
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GROUP WORK 2, SECTION 16.6

Setting Up Volume Integrals

Set up volume integrals for the following solids:

1. S is the solid formed by hollowing out a square cylinder of side length 1 centered along the z-axis through

the solid sphere x2 + y2 + z2 = 4.

2. S is the part of the solid sphere x2 + y2 + z2 = 4 lying above the plane z = 1.

3. S is the solid formed by drilling a cylindrical hole of radius 1 centered along the z-axis through the solid

sphere x2 + y2 + z2 = 4.

4. S is the solid formed by hollowing out a square cylinder of side length 1 centered along the y-axis through

the solid sphere x2 + y2 + z2 = 4.
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GROUP WORK 3, SECTION 16.6

An Unusual Volume

Consider the solid E shown below.

1. Find the equation of the plane S, parallel to the y-axis, which forms the top cap of E .

2. Set up a volume integral for E of the form V (E) = ∫ 2−2

∫√4−(x−2)2

−
√

4−(x−2)2

(
−3

4
+ 4
)
dx dy.

3. Compute V (E) by any means at your disposal.

Hint: Try polar coordinates.
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DISCOVERY PROJECT Volumes of Hyperspheres

Problems 1 and 2 review computations that the students may already know. Problem 4 is optional for this

project, but it is highly recommended. To extend this project, students can be asked to find a book or article

that discusses hyperspheres, and add some geometric discussion of these objects to their reports.
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16.7 TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES

TRANSPARENCY AVAILABLE

#52 (Figure 7)

SUGGESTED TIME AND EMPHASIS

1
2
–1 class Essential material

POINTS TO STRESS

1. The cylindrical coordinate system as an extension of polar coordinates in R2.

2. The basic shapes of cylindrical solids.

3. The idea that the cylindrical coordinate system can be used to simplify equations and volume integrals of

certain three-dimensional surfaces and solids.

QUIZ QUESTIONS

• Text Question: Does the region of Example 3 have an axis of symmetry? If so, what does it say about

the choice of using cylindrical coordinates?

Answer: The solid is symmetric about the z-axis, which implies that cylindrical coordinates should be

considered.

• Drill Question: Describe in your own words the surface given by the equation r = θ, 0 ≤ θ ≤ 6π in

cylindrical coordinates.

Answer: It looks something like a rolled-up piece of paper.

MATERIALS FOR LECTURE

• Compute the intersection of the surfaces z = x2 + y2 and z = x , first in rectangular coordinates, then in

cylindrical coordinates. (Here is a case where the rectangular coordinates are the easiest to visualize, even

though there is an x2 + y2 term.)

• Point out that while lim
(x,y)→(0,0)

xy

x2 + y2
does not exist, lim

(x,y,z)→(0,0,0)

xyz

x2 + y2 + z2
does exist. To see

this, use cylindrical coordinates to get
xyz

x2 + y2 + z2
= r2z sinθ cosθ

r2 + z2
, and compare to

r2z

r2 + z2
, which

approaches 0, as seen in Section 14.2.

• Convert a typical cylindrical volume integral of a solid S computed using double integrals into a triple

integral:

V = ∫∫R f (r,θ) r dr dθ = ∫ β
α

∫ h2(θ)
h1(θ)

f (r,θ) r dr dθ = ∫ β
α

∫ h2(θ)
h1(θ)

∫ f (r,θ)
0 r dz dr dθ
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SECTION 16.7 TRIPLE INTEGRALS IN CYLINDRICAL COORDINATES

Move the bottom surface of S up to

z = g (r,θ), as pictured at right.

The volume now becomes∫ β
α

∫ h2(θ)
h1(θ)

∫ f (r,θ)
g(r,θ) r dz dr dθ. The basic

volume element is given in Figure 3 of

the text. Conclude with the situation

where we have h (r,θ, z) defined on S.

Then the triple integral of h on S is∫ β
α

∫ h2(θ)
h1(θ)

∫ f (r,θ)
g(r,θ) h (r,θ, z) r dz dr dθ.

WORKSHOP/DISCUSSION

• Describe in terms of cylindrical coordinates the surface of rotation formed by rotating z = 1/x about the

z-axis, noting that there is an axis of symmetry. Point out that the equations come from simply replacing

x by r .

• Develop a straightforward example such as the region depicted below:

The Capped Cone

Set this volume up as a triple integral in cylindrical coordinates, and then find the volume. (The

computation of this volume integral is not that hard, and can be assigned to the students.) Conclude

by setting up the volume integral of h (r,θ, z) = rz over this region.

GROUP WORK: A Partially Eaten Sphere

Notice that you are removing “ice cream cones” both above and below the xy-plane.

Answers:

1. 36π − 2
∫ 2π
0

∫√3
0

∫√6

−r
√
2
r dz dr dθ = π

(
36− 10

√
6
)

2. 36π − 2
∫ 2π
0

∫√3
0

∫√6

−r
√
2
zr2 sinθ dz dr dθ = 36π
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CHAPTER 16 MULTIPLE INTEGRALS

HOMEWORK PROBLEMS

Core Exercises: 2, 3, 6, 9, 12, 15, 22, 27

Sample Assignment: 2, 3, 6, 8, 9, 12, 14, 15, 17, 20, 22, 24, 25, 27, 29

Exercise D A N G

2 ×
3 × ×
6 ×
8 ×
9 × ×
12 ×
14 ×
15 × ×
17 ×
20 ×
22 ×
24 × ×
25 ×
27 ×
29 × ×
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GROUP WORK, SECTION 16.7

A Partially Eaten Sphere

1. Compute the volume of the solid S formed by starting with the sphere x2 + y2 + z2 = 9, and removing

the solid bounded below by the cone z2 = 2
(
x2 + y2

)
.

2. Set up the triple integral
∫∫∫

S yz dV in the same coordinate system you used for Problem 1.
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DISCOVERY PROJECT The Intersection of Three Cylinders

This discovery project extends the problem of finding the volume of two intersecting cylinders given in Ex-

ercise 66 in Section 6.2. This is a very thought-provoking project for students with good geometric intuition.

It is worthwhile for students to work on it even if they don’t wind up with the correct answer. If the students

are mechanically inclined, perhaps ask them to build a model of the relevant solid. A good solution is given

in the Complete Solutions Manual.

Transparency 53 can be used with this project.
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16.8 TRIPLE INTEGRALS IN SPHERICAL COORDINATES

TRANSPARENCY AVAILABLE

#52 (Figure 7)

SUGGESTED TIME AND EMPHASIS

1–2 classes Essential material

POINTS TO STRESS

1. The geometry of the spherical coordinate system.

2. The basic shapes of solids in spherical coordinates.

3. The idea that the spherical coordinate system can be used to simplify equations and volume integrals of

certain three-dimensional surfaces and solids.

QUIZ QUESTIONS

• Text Question: What surface is given by the equation ρ = 3?

Answer: A sphere

• Drill Question: What is the solid described by the integral
∫ π
π/2

∫ 2π
0

∫√3
0 ρ2 sinϕ dρ dθ dϕ?

Answer: The bottom half of a sphere with radius
√
3

MATERIALS FOR LECTURE

• One way to demonstrate spherical coordinates is to sit in a pivoting office chair, holding a yardstick or,

better yet, an extendable pointer. Now ρ can be demonstrated in the obvious way, θ by spinning in the

chair, andϕ by raising and lowering the yardstick. The instructor can do this, or students can come up and

be asked to “touch” certain points with the ruler.

• Describe the coordinates of all points 3 units from the origin in each of the three coordinate systems.

Repeat for the coordinates of all points on a circular cylinder of radius 2 with central axis the z-axis, and

the coordinates of all points on the line through the origin with direction vector i + j + k. Conclude

that cylindrical coordinates are the most useful in problems that involve symmetry about an axis, and that

spherical coordinates are most useful where there is symmetry about a point.

• Identify the somewhat mysterious surface ρ cosφ = ρ2 sin2φ cos 2θ given in spherical coordinates by

using the formula cos 2θ = cos2 θ − sin2 θ and changing to rectangular coordinates.
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CHAPTER 16 MULTIPLE INTEGRALS

• Draw a basic spherical rectangular solid S and compute that its volume is approximately

ρ2 sinφ�ρ�φ�θ if �ρ, �φ, and �θ are small. Calculate the volume of the solid pictured below

to be

V = ∫ β
α

∫ h2(θ)
h1(θ)

∫ f (φ,θ)
g(φ,θ) ρ2 sinφ dρ dφ dθ

As usual, if there is a function l (ρ,φ,θ) on S, then the triple integral is∫ β
α

∫ h2(θ)
h1(θ)

∫ f (φ,θ)
g(φ,θ) l (ρ,φ,θ)ρ2 sinφ dρ dφ dθ.

• Give the students some integrands and ask them which coordinate system would be most convenient for

integrating that integrand.

1. f (x, y, z) = 1/
(
x2 + y2

)
over the solid enclosed by a piece of a circular cylinder x2 + y2 = a

2. f (x, y, z) = e2x
2 + 2y2+ 2z2 over a solid between a cone and a sphere

WORKSHOP/DISCUSSION

• Discuss conversions from cylindrical and spherical to rectangular coordinates and back. For example, the

surface sinφ = 1√
2
becomes the cone z =

√
x2 + y2, the surface r = z cosθ becomes xz = x2 + y2, and

the surface z = r2
(
1+ 2 sin2 θ

)
becomes the elliptic paraboloid z = x2 + 3y2.

sinφ = 1√
2

r = z cosθ z = r2
(
1− sin2 θ

)
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SECTION 16.8 TRIPLE INTEGRALS IN SPHERICAL COORDINATES

• Indicate to the students why using spherical

coordinates is a good choice for calculating the

volume of E , the solid bounded above by the

sphere x2 + y2 + z2 = 4 and below by the

paraboloid 4z = 4− x2 − y2. Ask them if they

think cylindrical coodinates would work just as

well. Then compute V (E) using either method.

z

y x

_2

0

2

_2

0

2

0

1

2

• Give a geometric description of the solid S whose volume is given in spherical coordinates by

V = ∫ π0 ∫ π/3π/4

∫ 1
0 ρ2 sinφ dρ dφ dθ, and then show the students how to write the volume of S as a triple

integral in cylindrical coordinates.

• Revisit the “capped cone” example from

Section 15.7 using spherical coordinates. Set

the volume up as a triple integral in spherical

coordinates, and then find the volume.

• Give the students some three-dimensional regions and ask them which coordinate system would be most

convenient for computing the volume of that region. Examples:

1.
{
(x, y, z) ∈ R

3 | x2 + y2 ≤ 4 and − 2 ≤ z ≤ 3
}

2.
{
(x, y, z) ∈ R

3 | z2 + y2 ≤ 4 and |x| ≤ 1
}

3.
{
(x, y, z) ∈ R

3 | z2 ≥ x2 + y2 and x2 + y2 + z2 ≤ 1
}

4.
{
(x, y, z) ∈ R

3 | 1
4
≤ x2 + y2 + z2 ≤ 9, x ≥ 0, y ≥ 0, and z ≥ 0

}

GROUP WORK 1: Describe Me!

This activity has problems that range from straightforward to conceptually tricky. When students have com-

pleted it, they will have a good intuitive sense of the three coordinate systems. They also tend to find this one

enjoyable, particularly if they know ahead of time that the solutions will be distributed at the end. Answers

follow the student handout.

GROUP WORK 2: Setting Up a Triple Integral

If a group finishes Problems 1–4 quickly, have them choose one of their integrals and compute it, and explain

why they made the choice they did. Note that for Problem 5, the solid is a truncated piece of the cone

z = −r + R in cylindrical coordinates.
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CHAPTER 16 MULTIPLE INTEGRALS

Answers:

1.
∫ R
−R

∫√R2−x2

−
√

R2−x2

∫√R2−x2−y2

−
√

R2−x2−y2

(
x2 + y2

)
dz dy dx = 8

15
πR5

2.
∫ R
0

∫ 2π
0

∫√R2−r2

−
√

R2−r2
r3 dz dθ dr = 8

15
πR5

3.
∫ π
0

∫ 2π
0

∫ R
0 ρ4 sin3ϕ dρ dθ dϕ = 8

15
πR5

4.
∫ 1
−1

∫ x
−x

∫√x2−y2

−
√

x2−y2
dz dy dx = 2

3
π

5.
∫ 2π
0

∫ R/2
0

∫−z+R
0 zr3 dr dz dθ = 19

1280
πR6

GROUP WORK 3: Many Paths

This activity should help the students to discover the utility of spherical coordinates. Start by defining “great

circle” for the students. If a group finishes early, have the students replace (0, 0,−1) with (1, 0, 0) and

parametrize the path of shortest length between these two points.

Answers:

1. 〈sinπt, 0, cosπt〉, 0 ≤ t ≤ 1 2.
〈

1√
2
sinπt, 1√

2
sinπt, cosπt

〉
, 0 ≤ t ≤ 1

3.
〈√

1− t2 sinπt,
√
1− t2 cosπt,−t

〉
, −1 ≤ t ≤ 1

LABORATORY PROJECT: Equation of a Goblet

This project is fairly open-ended, giving the students a chance to

stretch as far as they can. In groups, the students try to get the best

equations describing a wine glass, or goblet. As a hint, explain how

cylindrical coordinates are best suited for the task. There will be an

equation for the base, one for the stem, and then one for the glass

itself. If a CAS is available, the students can then graph their

equations and pick a winning glass.

HOMEWORK PROBLEMS

Core Exercises: 1, 4, 10, 17, 21, 28, 41

Sample Assignment: 1, 4, 5, 10, 13, 16, 17, 21, 24, 28, 30, 35, 40, 41, 44

Exercise D A N G

1 ×
4 × ×
5 ×
10 × ×
13 ×
16 × ×
17 × ×
21 ×

Exercise D A N G

24 ×
28 ×
30 ×
35 ×
40 ×
41 ×
44 ×
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GROUP WORK 1, SECTION 16.8

Describe Me!

Sketch, or describe in words, the following surfaces whose equations are given in cylindrical coordinates:

1. r = θ

2. z = r

3. z = θ

Sketch, or describe in words, the following surfaces whose equations are given in spherical coordinates:

4. θ = π
4

5. φ = π
4

6. ρ = φ
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GROUP WORK 1, SECTION 16.8

Describe Me! (Solutions)

1. r = θ 2. z = r

3. z = θ 4. θ = π
4

_4
_2

0
2

4
x

_4

_2

0

2

4

y

_4

_2

0

2

4

z

5. φ = π
4

_4
_2

0
2

4
x

_4

_2

0

2

4

y

0

2

4

z

6. ρ = φ

_2

0

2

_2

0

2

_3

_2

_1

0

1

z

y x
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GROUP WORK 2, SECTION 16.8

Setting Up a Triple Integral

1. Set up the triple integral
∫∫∫

S

(
x2 + y2

)
dV in rectangular coordinates, where S is a solid sphere of radius

R centered at the origin.

2. Set up the same triple integral in cylindrical coordinates.

3. Set up the same triple integral in spherical coordinates.

4. Set up an integral to compute the volume of the solid inside the cone x2 = y2+z2, |x| ≤ 1, in a coordinate

system of your choice.

5. Compute
∫∫∫

E z
(
x2 + y2

)
dV , where E is the solid shown below.

y

x

z

R/2

R/2

R
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GROUP WORK 3, SECTION 16.8

Many Paths

Three people live on the unit sphere, and are going to walk from the North Pole (0, 0, 1) to the South Pole

(0, 0,−1). The first person walks along the arc of a great circle that lies in one of the coordinate planes. The

second walks along an arc of a great circle that does not lie in one of the coordinate planes, and the third walks

along a curve that spirals once around the sphere. Find parametric equations that describe possible paths for

each person.
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APPLIED PROJECT Roller Derby

This project has a highly dramatic outcome: a real race can be run whose results are predicted by mathematics.

An in-class demonstration of the “roller derby” can be done before this project is assigned.

If this project is used, it should be assigned in its entirety, in order to predict the outcome of the race.
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16.9 CHANGE OF VARIABLES IN MULTIPLE INTEGRALS

SUGGESTED TIME AND EMPHASIS

1–11
2
classes Optional material (essential if Chapter 17 is to be covered)

POINTS TO STRESS

1. Reason for change of variables: to reduce a complicated multiple integration problem to a simpler integral

or an integral over a simpler region in the new variables

2. What happens to area over a change in variables: The role of the Jacobian
∂ (x, y)

∂ (u, v)

3. Various methods to construct a change of variables

QUIZ QUESTIONS

• TextQuestion: When we convert a double integral from rectangular coordinates to spherical coordinates,

where does the ρ2 sinϕ term come from?

Answer: It is the magnitude of the Jacobian.

• Drill Question: The unit square is the square with side length 1 and lower left corner at the origin. What

is the area of the image R (in the xy-plane) of the unit square S (in the uv-plane) under the transformation

x = u + 2v, y = −6u − v?

Answer: 11

MATERIALS FOR LECTURE

• One good way to begin this section is to discuss u-substitution from a geometric point of view. For

example,
∫ (

sin2 x
)
cos x dx is a somewhat complicated integral in x-space, but using the change of

coordinate u = sin x reduces it to the simpler integral
∫
u2 du in u-space. If the students are concurrently

taking physics or chemistry, discuss how the semi-logarithmic paper that they use is an example of this

type of coordinate transformation.

• Note that it is very important that we take the absolute value of the Jacobian determinant. For example,

point out that the Jacobian determinant for spherical coordinates is always negative (see Example 4).

Another example of a negative Jacobian is the transformation x = u + 2v , y = 3u + v, which takes 〈1, 0〉
to 〈1, 3〉 and 〈0, 1〉 to 〈2, 1〉.
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SECTION 16.9 CHANGE OF VARIABLES IN MULTIPLE INTEGRALS

• Consider the linear transformation x = u− v , y = u+ v . This takes the unit square S in the uv-plane into

a square with area 2.

Note that the Jacobian of this transformation is
∂ (x, y)

∂ (u, v)
= 2. In general, we have

A(R) =
∫∫

R

1 d A =
∫∫

S

∣∣∣∣∂ (x, y)∂ (u, v)

∣∣∣∣ d A =
∣∣∣∣∂ (x, y)∂ (u, v)

∣∣∣∣ A (S)

So for linear transformations, the Jacobian is the determinant of the matrix of coefficients, and the absolute

value of this determinant describes how area in uv-space is magnified in xy-space under the transformation

T .

• Pose the problem of changing the rectangle [0, 1]× [0, 2π] in the uv-plane into a disk in the xy-plane by

a change of variable r (u, v) = x (u, v) i+ y (u, v) j. Show that x = u cos v , y = u sin v will work.

Then u2 = x2 + y2 and tan v = y/x , so u can be viewed as the distance to the origin and v is the

angle with the positive x-axis. This implies that the u, v transformation is really just the polar-coordinate

transformation. Note that for this transformation the Jacobian is equal to u, so we get u du dv as in polar

coordinates. The grid lines u = c ≥ 0 go to circles, and v = c go to rays. Therefore uv-rectangles go

to polar rectangles in xy-space. Perhaps note that trying to look at this transformation in reverse leads to

problems at the origin. See if the students can determine what happens to the line u = 0. Also note that

there are other transformations that work, such as x = u sin v , y = u cos v .

• Care should be taken near singularities in the coordinate system. The following is a good historical

example:

Consider the curve y = x1/3. This curve has a singularity in its derivative at x = 0. However, if we make

the change of coordinates u = x , v = y3, then our curve becomes the line u = v . So was the original

singularity really a singularity at all, or just a problem with the original coordinate system?

This question came up in physics at the beginning of this century. Schwarzchild solved a problem in

general relativity involving the nature of space-time near a star. However, it turned out that the coordinates

that he used to solve the problem had two singularities: one at the center of the star, and one at a nonzero
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CHAPTER 16 MULTIPLE INTEGRALS

distance away from the center, which distance depended on the mass of the star. For some time, people

wondered if this second singularity was a genuine singularity or, in fact, a problem with the coordinate

system. It was shown later (by Kruskal) that the second singularity was not real, but merely an artifact of

Schwarzchild’s coordinate system.

WORKSHOP/DISCUSSION

• Pose the problem of changing a rectangle into the ellipse
x2

4
+ y2

9
≤ 1. Posit that the answer might again

be of the form x = c1u cos v , y = c2u sin v and solve
x2

c21
+ y2

c22
= u2. So chose c1 = 2, c2 = 3 and then

the rectangle [0, 1] × [0, 2π] maps into the specified ellipse. This time, 2
3
tan v = y

x
so tan v = 3y

2x
. The

grid line u = c > 0 goes to the ellipse
x2

4
+ y2

9
= c and v = k goes to the ray y = 2

3
x tan k. This means

that (u, v) gives an elliptical coordinate system.

The Jacobian is

∣∣∣∣ 2 cos v 3 sin v

−2u sin v 3u cos v

∣∣∣∣ = 6u, leading to 6u du dv. Using this new coordinate system to

compute
∫∫

R x2 d A where R is the region bounded by the ellipse
x2

4
+ y2

9
= 1, we have

∫∫
Rx

2d A =∫ 2π
0

∫ 1
0 (2u cos v)2 |6u| du dv = ∫ 2π0 6 cos2 v dv = 6π.

• Describe how to find a transformation which maps the uv-plane as follows:

Show how it is sufficient to check what happens to 〈0, 1〉 and 〈1, 0〉.
• Consider the change of variables x = u2 − v2, y = 2uv described in Example 1 of the text. Show that

the grid lines u = a give the parabolas x = a2 − y2

4a2
, and the grid lines v = b give the parabolas

x = y2

4b2
− b2.

GROUP WORK 1: Many Changes of Variables

Answers:

1. We change variables: u = 1
2
x− y, v = 3x− y gives us the rectangle in the uv-plane bordered by u = −5

2
,

u = 0, v = 0, and v = 10. The inverse transformation is x = −2
5
u + 2

5
v , y = −6

5
u + 1

5
v , giving an area

element d A = 2
5
dv du. The integral becomes

∫ 0
−5/2

∫ 10
0

(
−2

5
u + 2

5
v
) (

−6
5
u + 1

5
v
)2

dv du = 6875
12

.

2. x = 5u + 5v , y = −2u + 2v . The Jacobian is 20.
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SECTION 16.9 CHANGE OF VARIABLES IN MULTIPLE INTEGRALS

GROUP WORK 2: Transformed Parabolas

Answers:

1. By symmetry, we get 2
∫ 1
0

∫ 1
0

(
u2 − v2

)2
4
(
u2 + v2

)
du dv = 128

105
.

2. The rectangle maps to the region bounded by the straight

line from (−4, 0) to (1, 0), then up the parabola

x = 1− 1
4
y2 until the point (−3, 4), then down the

parabola x = 1
16
y2 − 4.

3.
∫ 1
0

∫ 2
0 4
(
u2 + v2

)
dv du = 40

3

HOMEWORK PROBLEMS

Core Exercises: 1, 3, 8, 13, 15, 17, 19

Sample Assignment: 1, 3, 4, 8, 12, 13, 15, 17, 19, 20, 21, 23

Exercise D A N G

1 ×
3 ×
4 ×
8 × ×
12 ×
13 ×
15 ×
17 × ×
19 ×
20 ×
21 ×
23 ×
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GROUP WORK 1, SECTION 16.9

Many Changes of Variables

1. We wish to find
∫∫

R xy2 d A, where R is given below.

Hint: Use a change of variables to create an equivalent integral over a rectangular region in the uv-plane.

2. Find a mapping T which maps the triangle bounded by (0, 0), (0, 1), and (1, 0) to the triangle bounded

by (0, 0), (5, 2), and (5,−2). What is the Jacobian of T ? What is the area of R?
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GROUP WORK 2, SECTION 16.9

Transformed Parabolas

Consider the change of variables x = u2 − v2, y = 2uv described in Example 1 of the text.

1. Compute
∫∫

R x2 d A, where R is the region shown below.

Hint: How is
∫∫

R x2 d A related to
∫∫

R1
x2 d A, where R1 is the portion of R above the x-axis?

2. Let S be the rectangle {(u, v) | 0 ≤ u ≤ 1, 0 ≤ v ≤ 2}. What is the image T in the xy-plane of S under

this change of variables?

3. What is the area of T ?
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16 SAMPLE EXAM

Problems marked with an asterisk (*) are particularly challenging and should be given careful consideration.

1. Consider the function f (x, y) = x y on the rectangle [1, 2]× [1, 2].

(a) Approximate the value of the integral
∫ 2
1

∫ 2
1 f (x, y) dy dx by dividing the region into four squares

and using the function value at the lower left-hand corner of each square as an approximation for the

function value over that square.

(b) Does the approximation give an overestimate or an underestimate of the value of the integral? How

do you know?

2. Given that
∫ π/2
0

dx

1+ sin2 x
= π

2
√
2
,

(a) evaluate the double integral∫ π/2

0

∫ π/2

0

1(
1+ sin2 x

) (
1+ sin2 y

) dx dy
(b) evaluate the triple integral ∫ π/2

0

∫ π/2

0

∫ 1/
(
1+sin2 y

)

1/
(
1+sin2 x

) dz dx dy

3. Consider the rugged region below:

(a) Divide the region into smaller regions, all of which are Type I.

(b) Divide the region into smaller regions, all of which are Type II.

4. Rewrite the integral ∫ 2π

0

∫ 1

0

r2 dr dθ

in rectangular coordinates.
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CHAPTER 16 SAMPLE EXAM

5. Evaluate
∫∫

D cos
(
x2 + y2

)
d A, where D = {

(x, y) | 1 ≤ x2 + y2 ≤ 4
}
is a washer with inner radius 1

and outer radius 2.

x

y

1

2

6. Consider the ellipse x2 + 2y2 = 1.

(a) Rewrite this equation in polar coordinates.

(b) Write an integral in polar coordinates that gives the area of this ellipse. Note: Your answer will not

look simple.

7. Consider the rectangular prism R pictured below:

Compute
∫∫∫

R 10 dV and
∫∫∫

R x dV .
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CHAPTER 16 MULTIPLE INTEGRALS

8. (a) Compute ∫ 1

0

∫ 1

−1

∫ xy

0

1 dz dx dy

and give a geometric interpretation of your answer.

(b) Compute ∫ 1

0

∫ 1

−1

∫ |xy|

0

1 dz dx dy

and give a geometric interpretation of your answer.

9. A light on the z-axis, pointed at the origin, shines on the sphere ρ = 1 such that 1
4
of the total surface area

is lit. What is the angle φ?

10. Consider the region R enclosed by y = x , y = −x + 2, y = −
√
1− (x − 1)2:

Set up the following integrals as one or more iterated integrals, but do not actually compute them:

(a)
∫∫

R (x + y) dy dx

(b)
∫∫

R (x + y) dx dy
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CHAPTER 16 SAMPLE EXAM

11. Consider the region R enclosed by y = x + 1, y = −x + 1, and the x-axis.

x

y

1

_1 1

R

(a) Set up the integral
∫∫

R xy dx dy in polar coordinates.

(b) Compute the integral
∫∫

R xy dx dy using any method you know.

12. Consider the double integral ∫∫
R

1

9− (x2 + y2
)3/2 d A

where R is given by the region between the two semicircles pictured below:

(a) Compute the shaded area.

(b) Show that the function
1

9− (x2 + y2
)3/2 is constant on each of the two bounding semicircles.

(c) Give a lower bound and an upper bound for the double integral using the above information.

13. Observe the following Pac-Man:

(a) Describe him in polar coordinates.

(b) Evaluate
∫∫

Pac-Man
x d A and

∫∫
Pac-Man

y d A.
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14. Consider the triple integral ∫ 1

0

∫ √
y

y3

∫ xy

0

dz dx dy

representing a solid S. Let R be the projection of S onto the plane z = 0.

(a) Draw the region R.

(b) Rewrite this integral as
∫∫∫

S dz dy dx .

15. Consider the transformation T : x = 2u + v , y = u + 2v .

(a) Describe the image S under T of the unit square R = {(u, v) | 0 ≤ u ≤ 1, 0 ≤ v ≤ 1} in the uv-plane
using a change of coordinates.

(b) Evaluate
∫∫

S (3x + 2y) d A

16. What is the volume of the following region, described in spherical coordinates: 1 ≤ ρ ≤ 9, 0 ≤ θ ≤ π
2
,

π
6
≤ φ ≤ π

4
?

17. Consider the transformation x = v cos 2πu, y = v sin 2πu.

(a) Describe the image S under T of the unit square R = {(u, v) | 0 ≤ u ≤ 1, 0 ≤ v ≤ 1}.
(b) Find the area of S.

18. Consider the function f (x, y) = ax + by, where a and b are constants. Find the average value of f over

the region R = {(x, y) | −1 ≤ x ≤ 1,−1 ≤ y ≤ 1}.

16 SAMPLE EXAM SOLUTIONS

1. f (x, y) = x y

(a)

∫ 2
1

∫ 2
1 f (x, y) dy dx ≈ f (1, 1) · 1

2
· 1
2
+ f

(
3
2
, 1
)
· 1
2
· 1
2
+ f

(
1, 3

2

)
· 1
2
· 1
2
+ f

(
3
2
, 3
2

)
· 1
2
· 1
2

= 1
4

[
1+ 3

2
+ 1+

(
3
2

)3/2]
≈ 1

4
(5.3375) ≈ 1.344

(b) This estimate is an underestimate since the function is increasing in the x- and y-directions as x and

y go from 1 to 2.

2. (a)

∫ π/2

0

∫ π/2

0

1(
1+ sin2 x

) (
1+ sin2 y

) dx dy =
(∫ π/2

0

dx

1+ sin2 x

)(∫ π/2

0

dy

1+ sin2 y

)

=
(

π

2
√
3

)2
= π2

12
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CHAPTER 16 SAMPLE EXAM SOLUTIONS

(b)

∫ π/2

0

∫ π/2

0

∫ 1/
(
1+sin2 y

)

1/
(
1+sin2 x

) dz dx dy =
∫ π/2

0

∫ π/2

0

(
1

1+ sin2 y
− 1

1+ sin2 x

)
dx dy

=
∫ π/2

0

∫ π/2

0

(
1

1+ sin2 y

)
dx dy −

∫ π/2

0

∫ π/2

0

(
1

1+ sin2 x

)
dx dy

= π2

4
√
3
− π2

4
√
3
= 0

3. (a)

6

Type I

(b)

7

Type II

4.
∫ 2π
0

∫ 1
0 r2 dr dθ = ∫ 1−1

∫√1−x2

−
√

1−x2

√
x2 + y2 dy dx

5.
∫ 2π
0

∫ 2
1 cos

(
r2
)
r dr dθ = π (sin 4− sin 1)

6. x2 + 2y2 = 1

(a) r2
(
cos2 θ + 2 sin2 θ

) = r2
(
1+ sin2 θ

) = 1, r ≥ 0

(b)

∫ 2π

0

∫ 1
/√

1+sin2 θ

0

r dr dθ

7. Since the parallelepiped has volume 60, we have
∫∫∫

R 10 dV = 600.∫∫∫
R x dV = 12

∫ 5
0 x dx = 12

(
25
2

)
= 150

8. (a)
∫ 1
0

∫ 1
−1

∫ xy
0 1 dz dx dy = ∫ 1

0

∫ 1
−1 xy dx dy = ∫ 1

0

[
1
2
x2y
]1
−1

dy = 0. The region between z = 0 and

z = xy in the first quadrant is above the xy-plane, while a symmetric region is below the xy-plane in

the second quadrant.
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(b)
∫ 1
0

∫ 1
−1

∫ |xy|
0 1 dz dx dy = 2

∫ 1
0

∫ 1
0

∫ xy
0 dz dx dy = 2

∫ 1
0

[
1
2
x2y
]1
0
dy = 2

∫ 1
0

1
2
y dy = 1

2
y2
]1
0
= 1

2
.

This is the total volume between z = 0 and z = xy. Because we take the absolute value, the volumes

do not cancel.

9. Since the surface area is 4π, we need to find φ so that the area lit is π.

π = ∫ φ0 ∫ 2π0 sinφ dθ dφ = 2π
∫ φ
0 sinφ dφ = 2π (− cosφ+ cos 0), so 1

2
= 1− cosφ ⇒ cosφ = 1

2

⇒ φ = π
3
.

10. (a)
∫ 1
0

∫ x
−
√

1−(x−1)2
(x + y) dy dx + ∫ 21 ∫ 2−x

−
√

1−(x−1)2
(x + y) dy dx

(b)
∫ 0
−1

∫ 1+√1−y2

1−
√

1−y2
(x + y) dx dy + ∫ 10 ∫ 2yy (x + y) dx dy.

Note that the circular part of the curve is y = −
√
1− (x − 1)2 or x = 1±

√
1− y2.

11. (a)
∫ π/2
0

∫ 1/(sinθ+cosθ)
0 r3 sinθ cosθ dr dθ + ∫ π

π/2

∫ 1/(sinθ−cosθ)
0 r3 sinθ cosθ dr dθ

(b) 0

12.

∫∫
R

1

9− (x2 + y2
)3/2 d A

(a) 1
2 (4π − π) = 3π

2

(b) Since the semicircles satisfy x2 + y2 = 1 and x2 + y2 = 4, we have on x2 + y2 = 1,

1

9
(
x2 + y2

)3/2 = 1

8
and on x2 + y2 = 4,

1

9
(
x2 + y2

)3/2 = 1.

(c) A lower bound is the minimum value times the area, that is, 1
8
· 3π

2
= 3π

16
.

An upper bound is the maximum value times the area, that is, 1 · 3π
2

= 3π
2
.

13. (a)
{
(r,θ) | 0 ≤ r ≤ 1, π

4
≤ θ ≤ 7π

4

}
(b)

∫∫
Pac-Man

x d A = ∫ 10 ∫ 7π/4π/4 r2 cosθ dθ dr = ∫ 10 [r2 sinθ]7π/4π/4
dr = −√

2
∫ 1
0 r2 dr = −

√
2
3∫∫

Pac-Man
y d A = ∫ 10 ∫ 7π/4π/4 r2 sinθ dθ dr = ∫ 10 [−r2 cosθ

]7π/4
π/4

dr = 0

14. (a)

(b)
∫ 1
0

∫√y

y3

∫ xy
0 dz dx dy = ∫ 10 ∫ 3

√
x

x2

∫ xy
0 dz dy dx

15. x = 2u + v , y = u + 2v
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(a)

(b) The Jacobian is

∣∣∣∣
∣∣∣∣ ∂x/∂u ∂x/∂v

∂y/∂u ∂y/∂v

∣∣∣∣
∣∣∣∣ =

∣∣∣∣
∣∣∣∣ 2 1

1 2

∣∣∣∣
∣∣∣∣ = 3, so

∫∫
S (3x + 2y) d A = ∫ 1

0

∫ 1
0
[3 (2u + v)+ 2 (u + 2v)] 3 du dv

= 3
∫ 1
0

[
3u2 + 3uv + u2 + 4uv

]1
0
dv

= 3
∫ 1
0 (3+ 3v + 1+ 4v) dv = 3

[
4v + 7

2
v2
]1
0
= 45

2

16.
∫ 9
1

∫ π/2
0

∫ π/4
π/6 ρ2 sinφ dφ dθ dρ = π

2

∫ 9
1

[−ρ2 cosφ
]π/4
π/6

dρ = π
2

∫ 9
1

√
3−

√
2

2
ρ2 dρ

=
√
3−

√
2

2

[
1
3
ρ3
]9
1
= 182

3

(√
3−√

2
)
π

17. (a)

T maps the unit square in the uv-plane to the unit circle in the xy-plane.

(b) The area of S is π.

18. fave =
∫ 1
−1

∫ 1
−1 (ax + by) dy dx∫ 1
−1

∫ 1
−1 1 dy dx

=
∫ 1
−1 2ax dx

4
= 0
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