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Abstract

In this article, we summarize some quantile estimators and related bandwidth

selection methods and give two new bandwidth selection methods. By four distribu-

tions: standard normal, exponential, double exponential and log normal we simulated

the methods and compared their efficiencies to that of the empirical quantile. It turns

out that kernel smoothed quantile estimators, with no matter which bandwidth se-

lection method used, are more efficient than the empirical quantile estimator in most

situations. And when sample size is relatively small, kernel smoothed estimators

are especially more efficient than the empirical quantile estimator. However, no one

method can beat any other methods for all distributions.
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1 Introduction

The estimation of population quantiles is of great interest when a parametric form

for the underlying distribution is not available. In addition, quantiles often arise

as the natural thing to estimate when the underlying distribution is skewed. Let

X1, X2, · · · , Xn be an independent and identically distributed random sample drawn

from an absolutely continuous distribution function F with density f . Let X(1) ≤
X(2) ≤ · · · ≤ X(n) denote the corresponding order statistics. The quantile function Q

of the population is defined as Q(p) = inf{x : F (x) ≥ p}, 0 < p < 1. Note that Q is

the left-continuous inverse of F . Denote, for each 0 < p < 1, the pth quantile of F

by ξp, that is, ξp = Q(p).

A traditional nonparametric estimator of the distribution function is the empir-

ical function Fn(x), which is defined as

Fn(x) =
1

n

n∑
i=1

I(−∞,x](Xi)

where IA(x) = 1 if x ∈ A and 0 otherwise. Accordingly, a nonparametric estimator

of ξp is the empirical quantile

Qn(p) = inf{x : Fn(x) ≥ p} = X([np]+1),

where [np] denotes the integer part of np. Let pr = r/(n+ 1) and qr = 1− pr. If we

use X(r) to estimate the prth quantile, then the asymptotic bias and variance are

ABias{X(r)} =
prqrQ

′′(pr)

2(n+ 2)
+

prqr
(n+ 2)2

{1

3
(qr − pr)Q

′′′
r +

1

8
Q′′′′

r

}
,

AV ar{X(r)} =
prqr

(n+ 2)
Q′2

r +
prqr

(n+ 2)2

{
2(qr − pr)Q

′
rQ

′′
r + prqr(Q

′
rQ

′′′
r +

1

2
Q′′

r)
}
.

The asymptotic mean squared error ofX(r) should beAMSE{X(r)} = ABias{X(r)}2+

AV ar{X(r)}.
When F is continuous, it is more natural to use a smooth random function as an

estimator of F since there is a substantial lack of efficiency, caused by the variability

of individual order statistics. Indeed, the choice of Fn does not always lead to the

best estimator of F (cf. Read (1972), who has shown that Fn is inadmissible with
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respect to the integrated square loss). Intuitively appealing and easily understood

competitors to Qn are the popular kernel quantile estimators, see Section 2.

Section ?? gives the asymptotic mean squared errors and asymptotically optimal

bandwidths for two kernel smoothed quantile estimators. The optimal bandwidths

depend on unknown quantities such as density derivatives and quantile derivatives.

Kernel estimators and optimal bandwidths for these unknowns are addressed as well.

In Section 4, we give four methods to select the bandwidths for the two kernel quantile

estimators based on data. In Section 5 we implement these methods on four specific

distributions and the results of the simulation. The Appendix gives some proofs.

2 Kernel smoothed quantile estimation

2.1 Inverse of kernel distribution function estimator

A popular kernel quantile estimator is based on the Nadaraya (1964) type estimator

for F , defined as

F̂n(x) =
1

n

n∑
i=1

Kh(x−Xi)

where

Kh(x) =

∫ x

−∞

1

h
k(
t

h
)dt,

k is a kernel function satisfying k ≥ 0,
∫∞
−∞ k(x)dx = 1. Here h = hn > 0 is called

the smoothing parameter or bandwidth since it controls the amount of smoothness

in the estimator for a given sample of size n. We make the assumption that h → 0

as n → ∞. The corresponding estimator of the quantile function Q = F−1 is then

defined by

Q̂n(p) = inf{x : F̂n(X) ≥ p}, 0 < p < 1. (1)

Nadaraya (1964) showed under some assumptions for k, f and h, Q̂n(p) (appropri-

ately normalized) has an asymptotic standard normal distribution. Another notable

property of Q̂n(p), namely the almost sure consistency, was obtained by Yamato

(1973). Ralescu and Sun (1992) obtained the necessary and sufficient conditions for

the asymptotic normality of Q̂n(p). Azzalini (1981) and an unpublished report used
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heuristic arguments based on second order approximations and performed some nu-

merical comparisons of Q̂n(p) with the classical sample quantile for estimating the

95th quantile of the Gamma (1) distribution. These studies indicated a considerable

amount of empirical evidence to support the superiority of Q̂n(p) for a variety of

smooth distribution functions.

Azzalini (1981) considered second order property of F̂n under the following as-

sumptions: (i) h → 0 as n → ∞; (ii) the kernel has a finite support, that is,

k(t) = 0 if |t| > t0 for some positive t0; (iii) the density f is continuous in the

interval (x− t0h, x+ t0h); and (iv) f ′(x) exists. He pointed out that the asymptotic

optimal bandwidth for F̂ is of the form

hopt =
( u

4vn

) 1
3

(2)

where

u = f(x)
{
t0 −

∫ t0

−t0

K2(t)dt)
}
, v =

{1

2
f ′(x)

∫ t0

−t0

t2k(t)dt
}2

.

Also, Azzalini (1981) suggested, without offering a proof, that (2) is again the asymp-

totically optimal choice of h for Q̂n(p). We state the result in the following theorem

and the proof of the theorem can be found in Shankar (1998).

We make the following assumptions:

Assumption A

(1) f is differentiable with a bounded derivative f ′;

(2) f ′ is continuous in the neighborhood of ξp and f ′(ξp) 6= 0;

(3)
∫∞
−∞ xk(x)dx = 0 and

∫∞
−∞ x2k(x)dx <∞.

Theorem 1. Under assumptions (1)-(3), the asymptotic mean squared error of Q̂(p)

is

AMSE
{
Q̂(p)

}
=
p(1− p)

nf(ξp)2
+
h4

4

f ′(ξp)
2

f(ξp)2
µ2(k)

2 − h

n

1

f(ξp)
ψ(k)

and the asymptotically optimal choice of bandwidth for the smoothed empirical quan-

tile function Q̂n(p) is

hopt,1 =

[
f(ξp)ψ(k)

n{f ′(ξp)}2µ2(k)2

] 1
3

(3)
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where µ2(k) =
∫∞
−∞ t2k(t)dt and ψ(k) = 2

∫
yk(y)K(y)dy. If we take k as the standard

normal density, then
∫∞
−∞ tdK2(t) = 1/

√
π, µ2(k) = 1 and

hopt,1 =

[
f(ξp)√

πn{f ′g∗n(ξp)}2

] 1
3

.

2.2 Kernel smoothing the order statistics

Another type of smooth quantile estimator, provided by Yang (1985) and also traced

to Parzen (1979), is

Q̃n(p) =
n∑

i=1

X(i)

∫ i
n

i−1
n

1

h
k(
p− x

h
)dx. (4)

It is clear that when i/n is close to p, Q̃n(p) puts more weight on the order statistics

X(i). The asymptotic normality and mean squared consistency of Q̃n(p) were pro-

vided by Yang (1985), while Falk (1984) showed that the asymptotic performance of

Q̃n(p) is better than that of the empirical sample quantile Qn(p) in the sense of rel-

ative deficiency for appropriately chosen kernels and sufficiently smooth distribution

functions.

Building on Faulk (1984), Sheater and Morron (1990) gave the asymptotic mean

squared error (AMSE) of Q̃n(p) as follows if f is not symmetric or f is symmetric

but p 6= 0.5:

AMSE
{
Q̃n(p)

}
=
p(1− p)

n
q2(p) +

1

4
h4q′(p)2µ2(k)

2 − h

n
q2(p)ψ(k) (5)

where q = Q′ and q′ = Q′′. If q = Q′ > 0 then

hopt,2 =

{
Q′(p)2ψ(k)

nQ′′(p)2µ2(k)2

} 1
3

. (6)

Remark 2.1. When F is symmetric and p = 0.5, then

AMSE
{
Q̃n(p)

}
= n−1[q(0.5)]2{0.25− 0.5hψ(k) + n−1h−1R(k)},

where R(k) =
∫
k2(x)dx. In this case, there is no single optimal bandwidth minimizing

the AMSE.
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Remark 2.2. If q = 0, we need higher order terms. The AMSE of Q̃n(p) can be

shown as follows:

AMSE
{
Q̃n(p)

}
= (

1

4
− 1

n
)h4Q′′(q)2µ2

2(k) + 2n−1h2Q′′(q)2

∫
(q − ht)tk(t)j(t)dt

where j(t) =
∫ t

−∞ xk(x)dx. The proof is provided in the Appendix.

3 Density and quantile derivative estimation

The asymptotically optimal bandwidths hopt,1 and hopt,2 for Q̂n(p)) and Q̃n(p) depend

on f(ξp), f
′(ξp), Q

′(p) and Q′′(p). This section provides nonparametric estimators of

these quantities and the asymptotically optimal bandwidths.

3.1 Density derivative estimation

From (3) we know that we need to estimate f ′. A natural estimator of the rth

derivative (r ≥ 1) of f can be obtained by differentiating the estimator

f̂gn(x) =
d

dx
F̂n(x) =

d

dx

{ 1

n

n∑
i=1

Kgn(x−Xi)
}

=
1

n

n∑
i=1

kgn(x−Xi) (7)

of the density f(x), giving

f̂ (r)
gn

(x) =
dr

dxr

1

ngn

n∑
i=1

k
(x−Xi

gn

)
=

1

ngr+1
n

n∑
i=1

k(r)
(x−Xi

gn

)
(8)

where gn is the smoothing parameter (Wand and Jones, 1995). Therefore, the asymp-

totic mean squared error properties of f̂
(r)
gn (x) can be derived straightforwardly to

obtain (Wand and Jones, 1995)

AMSE{f̂ (r)
gn

(x)} =
1

ng2r+1
n

R(k(r))f(x) +
1

4
g4

n{µ2(k)}2
{
f (r+2)(x)

}2
(9)

where R(η) =
∫
η2(x)dx for any square-integrable function η. It follows that the

AMSE-optimal bandwidth for estimating f (r)(x) is of order n−1/(2r+5). The asymp-

totically optimal bandwidth for for f̂gn(x) is given by

g∗n =

{
R(k)f(x)

n(µ2(k))2f ′′(x)2

} 1
5

. (10)
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and the asymptotically optimal bandwidth for f̂ ′gn
(x) is

g∗∗n =

{
3R(k′)f(x)

n(µ2(k))2f ′′′(x)2

} 1
7

. (11)

When k is the standard Normal density,

g∗n =

{
f(x)

n
√
πf ′′(x)2

} 1
5

, g∗∗n =

{
3f(x)

4n
√
πf ′′′(x)2

} 1
7

.

3.2 Quantile derivative estimation

Next, we estimate Q′ = q and Q′′ = q′ in the following ways. From (4), we know that

the estimator of Q′ = q can be constructed as follows:

q̃(p) = Q̃′
n(p) =

∑n
i=1X(i)[ka(p− i−1

n
)− ka(p− i

n
)]

=
∑n

i=2(X(i) −X(i−1))ka(p− i−1
n

)−X(n)ka(p− 1) +X(1)ka(p).

(12)

where ka(x) = 1
a
k(x

a
) and a = an is the bandwidth for q̃. Jones (1992) derived that

the asymptotic MSE of q̃(p) is given as follows:

AMSE{q̃(p)} =
a4

4
q′′(p)2µ2(k)

2 +
1

na
q2(p)

∫
k2(y)dy . (13)

Minimizing (13) with respect to a, we obtain the asymptotically optimal bandwidth

for q̃(p) as

a∗opt =

{
Q′(p)2

∫
k2(y)dy

nQ′′′(p)2µ2(k)2

} 1
5

. (14)

To estimate Q′′ = q′ in (6), note that

Q̃′′
n(p) =

d

dp
Q̃′

n(p) =
1

a2

n∑
i=1

X(i)

{
k′

(p− i−1
n

a

)
− k′

(p− i
n

a

)}
. (15)

Similarly, we obtain the asymptotically optimal bandwidth for Q̃′′
n(p) as

a∗∗opt =

{
3
∫
k′(x)2dxQ′(p)2

nµ2(k)2Q(4)(p)2

} 1
7

. (16)
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4 Bandwidth selection

In this section, we consider several data-based methods to find the asymptotically

optimal bandwidths for the estimators Q̂n(p) and Q̃n(p). Bandwidth plays a critical

role in implementation of practical estimation. It determines the trade-off between

the amount of smoothness obtained and closedness of the estimation to the true

distribution. (see Wand and Jones)

4.1 Method 1. Approximate hopt,1 for Q̂n(p) using density

derivative estimators

Note that the asymptotically optimal bandwidth hopt,1 for Q̂n(p), given in (3), involves

f(ξp) and f ′(ξp), which can be estimated by f̂gn(ξ̂p) and f̂ ′gn
(ξ̂p) respectively. Here, ξ̂p

is the empirical p-th quantile Qn(p). Using g∗n in (10) with f(ξ̂p) and f ′′(ξ̂p) replaced

by their Normal(µ, σ2) reference values, we obtain f̂g∗n(x). Using g∗∗n in (11) with

f(ξ̂p) and f ′′′(ξ̂p) replaced by their Normal(µ, σ2) reference values, we obtain f̂ ′g∗∗n
(x).

Plugging this into (3), we have a data-based bandwidth

ĥopt,1 =

[
f̂g∗n(ξ̂p)ψ(k)

n
{
f̂ ′g∗∗n

(ξ̂p)
}2
µ2(k)2

] 1
3

(17)

for Q̂n(p). If k is the standard normal density then

ĥopt,1 =

[
f̂g∗n(ξ̂p)

n
√
π
{
f̂ ′g∗∗n

(ξ̂p)
}2

] 1
3

. (18)

Remark 4.1. In the expression of the hopt,1, we have the derivative of f in the

denominator. If f ′ has zeros, then its estimates at these zeros are also very small.

Hence the estimator ĥopt,1 of hopt,1 at these zeros will be very unstable. For example,

if f is standard normal, then f ′ = −xf has a zero at x = 0, which corresponds to

p = 0.5, and hence, when p = 0.5, the estimator ĥopt,1 is very unstable. Similarly,

the first derivative of the double exponential density has a zero at x = 0 and the first

derivative of the log normal density has a zero at x = e−1.
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4.2 Method 2. Approximate hopt,2 for Q̃n(p) using quantile

derivative estimators

The asymptotically optimal bandwidth hopt,2, given in (6), for Q̃n(p) involves the

unknown quantities Q′(p) and Q′′(p), which can be estimated by Q̃′
n(p) and Q̃′′

n(p)

in (12) and (15), respectively. The asymptotically optimal bandwidths a∗opt and a∗∗opt,

given in (14) and (16), for Q̃′
n(p) and Q̃′′

n(p) depend on Q′(p), Q′′′(p) and Q(4)(p). We

replace these unknowns by their Normal(µ, σ2) reference values. Then, using Q̃′
n(p)

with a = a∗opt and Q̃′′
n(p) with a = a∗∗opt, we have the following data-based bandwidth

ĥopt,2 =

{
Q̃′

n(p)2ψ(k)

nQ̃′′
n(p)2µ2(k)2

} 1
3

(19)

for Q̃n(p).

4.3 Method 3. Approximate hopt,1 for Q̂n(p) using quantile

derivative estimators

We introduce an alternative way of estimating f(ξp) and f ′(ξp) in hopt,1, see (3), which

uses estimators of the quantile derivatives. Note that

Q′(p) =
1

f(F−1(p))
=

1

f(Q(p))
=

1

f(ξp)
(20)

Q′′(p) =
−f ′(Q(p))

f 3(Q(p))
=
−f ′(ξp)
f 3(ξp)

. (21)

Hence, (3) becomes

hopt,1 =

{
Q′

n(p)5ψ(k)

nQ′′
n(p)2µ2(k)2

} 1
3

.

Similar to Method 2, first replace the unknowns in a∗opt and a∗∗opt by their Normal

reference values, and then use Q̃′
n(p) with a = a∗opt and Q̃′′

n(p) with a = a∗∗opt to get

h̄opt,2 =

{
Q̃′

n(p)5ψ(k)

nQ̃′′
n(p)2µ2(k)2

} 1
3

. (22)

If we take k as the standard normal density, then

h̄opt,2 =

{
Q̃′

n(p)5

n
√
πQ̃′′

n(p)2

} 1
3

.
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4.4 Method 4. Approximate hopt,2 for Q̃n(p) using density

derivative estimators

From (20) and (21), we have

hopt,2 =

{
f(ξp)

4ψ(k)

nf ′(ξp)2µ2(k)2

} 1
3

. (23)

Then, plugin the estimators of f(ξp) and f ′(ξp) in Method 1, see (17), to obtain

h̄opt,2 =

{
f̂g∗n(ξ̂p)

4ψ(k)

nf̂ ′g∗∗n
(ξ̂p)2µ2(k)2

} 1
3

. (24)

When k is standard normal density, h̄opt,2 becomes

h̄opt,2 =

{
f̂g∗n(ξ̂p)

4

n
√
πf̂ ′g∗∗n

(ξ̂p)2

} 1
3

.

5 Numerical Performance

We implement the methods in Section 4. Four distributions are selected: Exponential,

Double Exponential, Lognormal and standard Normal. We shall use the standard

normal density as the kernel k, i.e. k(x) = 1√
2π

exp(−x2/2). Then k′(x) = −xk(x).
and we can find

µ2(k) =

∫
x2k(x)dx = 1,

ψ(k) = 2

∫
{k(x)[

∫ x

−∞
k(t)dt]}dx =

1√
π
,

R(k) =

∫
k2(x)dx =

1

2
√
π
,

R(k′) =

∫
{k′(x)}2dx =

∫
x2k2(x)dx =

1

4
√
π
.

5.1 True values

In the following we compute the asymptotically optimal bandwidths and the AMSEs

for the four distributions. First, we have the relationship between Q(p) and f(ξp) as
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following

Q′(p) =
1

f(ξp)
, Q′′(p) = − f

′(ξp)

f(ξp)3
, Q′′′(p) =

3f ′(ξp)
2 − f(ξp)f

′′(ξp)

f(ξp)5
,

Q(4)(p) =
10f(ξp)f

′(ξp)f
′′(ξp)− f(ξp)

2f ′′′(ξp)− 15f ′(ξp)
3

f(ξp)7
.

Using the above results, the asymptotic mse of Q̃n(p) is

AMSE
{
Q̃n(p)

}
=
p(1− p)

nf(ξp)2
+
h4f ′(ξp)

2

4f(ξp)6
− h

n
√
πf(ξp)2

.

Also we have

a∗ =

{
f(ξp)

8

2n
√
π(3f ′(ξp)2 − f(ξp)f ′′(ξp))2

} 1
5

,

a∗∗ =

{
3f(ξp)

12

4n
√
π(10f(ξp)f ′(ξp)f ′′(ξp)− f(ξp)2f ′′′(ξp)− 15f ′(ξp)3)2

} 1
7

.

Case 1. f is the standard normal density. We have

f(x) =
1√
2π
e−

x2

2 , f ′(x) = (−x)f(x), f ′′(x) = (x2 − 1)f(x), f ′′′(x) = (3x− x3)f(x).

Hence, with x = ξp,

g∗n =

{√
2 exp (x2/2)

n(x2 − 1)2

} 1
5

, g∗∗n =

{
3
√

2 exp (x2/2)

4n(3x− x3)2

} 1
7

,

AMSE
{
Q̂n(p)

}
=

2πp(1− p)

n
ex2 −

√
2h

n
e

x2

2 +
h4

4
x2,

a∗ =
1√
2π

[
e−2x2

√
2n(2x2 + 1)2

] 1
5

, a∗∗ =
1√
2π

{
3e−3x2

2
√

2n(6x3 + 7x)2

} 1
7

,

AMSE
{
Q̃n(p)

}
=

2πp(1− p)

n
ex2

+ π2h4x2e2x2 − 2
√
πh

n
ex2

.

Case 2. f is the density of Exponential(1). We have

f(x) = e−x = −f ′(x) = f ′′(x) = −f ′′′(x).

Hence

g∗n =

{
exp(x)

n
√
π

} 1
5

, g∗∗n =

{
3 exp(x)

4n
√
π

} 1
7

,
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AMSE
{
Q̂n(p)

}
=
p(1− p)

n
e2x − h

n
√
π
ex +

h4

4
,

a∗ =

{
e−4x

8
√
πn

} 1
5

, a∗∗ =

{
3e−6x

144
√
πn

} 1
7

,

AMSE
{
Q̃n(p)

}
=
p(1− p)

n
e2x +

h4

4
e4x − h

n
√
π
e2x

Case 3. f is the density of lognormal. We have

f(x) =
1√
2πx

e−
log2 x

2 ,

f ′(x) =
1√
2π
e−

log2 x
2 (− 1

x2
− 1

x2
log x) = −f(x)

x
(1 + log x),

f ′′(x) =
1√
2π
e−

log2 x
2

1

x3
(1 + 3 log x+ log2 x) =

f(x)

x2
(1 + 3 log x+ log2 x),

f ′′′(x) =
1√
2π
e−

log2 x
2

1

x4
(−8 log x−6 log2 x−log3 x) = −f(x)

x3
(8 log x+6 log2 x+log3 x).

Hence

g∗n =

{
x4

n
√
π(1 + 3 log x+ log2 x)2f(x)

} 1
5

, g∗∗n =

{
3x6

4n
√
π(8 log x+ 6 log2 x+ log3 x)2f(x)

} 1
7

,

AMSE
{
Q̂n(p)

}
=

2πp(1− p)

n
x2elog

2 x −
√

2h

n
xe

log2 x
2 +

h4

4

(1 + log x)2

x2
,

a∗ =
1√
2π

{
e−2 log2 x

n
√

2(2 + 3 log x+ 2 log2 x)2

} 1
5

,

a∗∗ =
1√
2π

{
3e−3 log2 x

2n
√

2(5 + 13 log x+ 11 log2 x+ 6 log3 x)2

} 1
7

,

AMSE
{
Q̃n(p)

}
= π2h4(1 + log x)2e2 log2 x + 2πx2elog

2 x
{
p(1− p)− h√

π

}
.

Case 4. f is the density of double exponential.

We have f(x) = 1
2
e−|x| = f ′′(x) except at x = 0 and

f ′(x) =

{
−1

2
e−x x > 0

1
2
ex x < 0

= −1

2
sign(x)e−|x| = f ′′′(x).
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Hence

g∗∗n =

{
2e|x|

n
√
π

} 1
5

, g∗∗n =

{
3e|x|

2n
√
π

} 1
7

AMSE
{
Q̂n(p)

}
=

4p(1− p)

n
e2|x| − 2h

n
√
π
e|x| +

h4

4
,

a∗ =

{
e−4|x|

27n
√
π

} 1
5

, a∗∗ =

{
e−6|x|

2103n
√
π

} 1
7

,

AMSE
{
Q̃n(p)

}
= 4h4e4|x| +

4p(1− p)

n
e2|x| − 4h

n
√
π
e2|x|.

5.2 Simulation results

We sampled from the four distributions of size 50, 100, 500, and 1000, and computed

the bandwidths and AMSE’s at values of p from 0.05 to 0.95 with step size 0.05.

However, by remark 2.1.1, we omitted p = 0.5 0.5 for normal and double exponential

distributions and p = 0.35 for lognormal. We repeated the computation for 100 times.

In the first several times of simulations, we obtained some extremely large or small

bandwidths, which certainly resulted in extremely large asymptotic MSE. Hence we

adopted the strategy in Sheather and Marron (1990) to adjust too small or large

bandwidths. For example, in method 1, we forced f̂ ′(ξp)
−2 to be in the interval [0.05,

1.5] as follows: if it is not in the interval, we replace it by the closest endpoint of the

interval. Simulation results are displayed by figures. In the figures, plotted against

p is the relative efficiency, i.e. the ratio of the AMSE of the different methods to

the AMSE of the empirical quantile. Figures 1–4 summarize performance of different

methods with the same sample size for the four distributions. Figures 5–8 show

performance of one method with different sample sizes.

From Figures 1-4 we can see that the solid line, which corresponds to sample size

n = 50, is almost the lowest in each plot. This is because when sample size is small,

the empirical quantile has a relatively bigger MSE. Hence the kernel estimators are

relatively more efficient.

Generally speaking, the four methods did a better job than empirical quantiles.

For example, in Figure 6, we can see that when n = 50 only method 2 gave an

efficiency more than 1 with p values between 0.75 and 0.95. Efficiency of all other

13



methods are under 1 with all p values. But, unfortunately, no method works better

than all the other methods for all distributions and all sample sizes. In Figure 8, for

example, Method 2 sometimes works better than the others, but sometimes worse

than the others. From this Figure it seems that Method 1 is always more efficient

than Method 3. But if we look at Figure 6, Method 3 is more efficient than Method 1

for many p values in each sample size. We can also see from Figures 5-8 that plots of

Method 1 (2) are similar to plots of Method 3 (4). This is not casual because we use

the same formula to compute their asymptotic MSEs. From Figures 1–4, we observe

that another common behavior for Method 2 and Method 4 is that they performance

badly near the boundaries, i.e. when p is close to 0 or 1.

In a word, the kernel quantile estimators, wit no matter which bandwidth selec-

tion method, are more efficient than the empirical quantile estimator in most situa-

tions. And when sample size n is relatively small, say n=50, they are significantly

more efficient than the empirical quantile estimator. But no one single method is

most efficient in any situations.
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Appendix

We now provide the proof for AMSE in Remark 2.2. Here we follow the notation

of Faulk (1984). Since F−1′(q) = Q′(q) = 0, we have

V ar
{
Q̃n(p)

}
= n−1

∫ 1

0
{
∫
k(x)(q − αnx− 1(0,q−αnx)(y))F

−1′(q − αnx)dx}2dy

= n−1
∫ 1

0
{
∫
k(x)(q − αnx− 1(0,q−αnx)(y))[F

−1′(q)− αnxF
−1′′(q) +O(α2

n)]dx}2dy

= n−1
∫ 1

0
{
∫
k(x)(q − αnx− 1(0,q−αnx)(y))(−αnxF

−1′′(q))dx}2dy +O(n−1α2
n)

= b
∫ 1

0
{
∫
k(x)(q − αnx− 1(0,q−αnx)(y))xdx}2dy +O(n−1α2

n)

= b
∫ 1

0
{q

∫
xk(x)dx− αn

∫
x2k(x)dx−

∫
xk(x)1(0,q−αnx)(y))dx}2dy +O(n−1α2

n)

= b
∫ 1

0
[αnµ2(k) +

∫
xk(x)1(0,q−αnx)(y))dx]

2dy +O(n−1α2
n)

= b
∫ 1

0
{α2

nµ
2
2(k) + 2αnµ2(k)

∫
xk(x)1(0,q−αnx)(y))dx

+[
∫
xk(x)1(0,q−αnx)(y))dx]

2}dy +O(n−1α2
n)

= bα2
nµ

2
2(k) + 2cαnµ2(k)

∫ 1

0

∫
xk(x)1(0,q−αnx)(y))dxdy

+b
∫ 1

0
[
∫
xk(x)1(0,q−αnx)(y))dx]

2}dy +O(n−1α2
n)

4
= bα2

nµ
2
2(k) + 2bαnµ2(k)S1 + bS2 +O(n−1α2

n)
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where b = n−1α2
nF

−1′′(q)2. But

S1 =
∫ 1

0

∫
xk(x)1(0,q−αnx)(y))dxdy

=
∫
xk(x)

∫ 1

0
1(0,q−αnx)(y))dydx

=
∫
xk(x)(q − αnx)dx

= q
∫
xk(x)dx− αn

∫
x2k(x)dx

= −αnµ2(k)

and
S2 =

∫ 1

0
[
∫
xk(x)1(0,q−αnx)(y))dx]

2}dy

=
∫ 1

0
[
∫ q−y

αn
q−1
αn

xk(x)dx]2dy

= {y[
∫ q−y

αn
q−1
αn

xk(x)dx]2}|10 −
∫ 1

0
yd{[

∫ q−y
αn

q−1
αn

xk(x)dx]2}

= −2
∫ 1

0
{y[

∫ q−y
αn

q−1
αn

xk(x)dx] q−y
αn
k( q−y

αn
)(− 1

αn
)}dy

= 2
αn

∫ 1

0
{y q−y

αn
k( q−y

αn
)[
∫ q−y

αn
q−1
αn

xk(x)dx]}dy

= 2
αn

∫ q−1
αn
q

αn

{(q − αnt)tk(t)[
∫ t

q−1
αn

xk(x)dx]}d(−αnt)

= 2
∫ q

αn
q−1
αn

{(q − αnt)tk(t)[
∫ t

q−1
αn

xk(x)dx]}dt

= 2
∫ q

αn
q−1
αn

(q − αnt)tk(t)j(t)dt

where j(t)
4
=

∫ t

−c
xk(x)dx and c is such that k is finitely supported in [−c, c]. Then

V ar
{
Q̃n(p)

}
= −n−1α2

nF
−1′′(q)2α2

nµ
2
2(k)+2n−1α2

nF
−1′′(q)2

∫
(q−αnt)tk(t)j(t)dt+O(n−1α2

n).
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If we replace αn by h and F−1′′(q) by Q′′(q), then

V ar
{
Q̃n(p)

}
= −n−1h4Q′′(q)2µ2

2(k)+2n−1h2Q′′(q)2

∫
(q−ht)tk(t)j(t)dt+O(n−1h2).

But the bias of Q̃n(p) is

bias =
1

2
h2µ2(k)Q

′′(q) +O(h2) +O(n−1).

Hence the MSE of Q̃n(p) is

MSE
{
Q̃n(p)

}
= h4

4
µ2

2(k)Q
′′(q)2 +O(h4) +O(n−1h2)− n−1h4Q′′(q)2µ2

2(k)

+2n−1h2Q′′(q)2
∫

(q − ht)tk(t)j(t)dt+O(n−1h2).

That is

AMSE
{
Q̃n(p)

}
= (

1

4
− 1

n
)h4Q′′(q)2µ2

2(k) + 2n−1h2Q′′(q)2

∫
(q − ht)tk(t)j(t)dt.
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Figure 1: Efficiency under double exponential. Different panels correspond to

different methods.
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Figure 2: Efficiency under exponential. Different panels correspond to different

methods.
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Figure 3: Efficiency under Log Normal. Different panels correspond to different

methods.
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Figure 4: Efficiency under standard Normal. Different panels correspond to

different methods.
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Figure 5: Efficiency under double exponential. Different panels correspond to

different sample sizes.
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Figure 6: Efficiency under exponential. Different panels correspond to different

sample sizes.
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Figure 7: Efficiency under Log Normal. Different panels correspond to different

sample sizes.
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Figure 8: Efficiency under standard Normal. Different panels correspond to

different sample sizes.
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