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1 Introduction

Let {(Yi, Xi)} be a two-dimensional strictly stationary process having the same marginal

distribution as (Y,X). Let m(x) = E(Y |X = x) and σ2(x) = V ar(Y |X = x) be re-

spectively the regression function and the conditional variance, and σ2(x) > 0. Write

Yi = m(Xi) + σ(Xi) εi. (1.1)

Thus E(εi|Xi) = 0 and V ar(εi|Xi) = 1. When Xi = Yi−1, model (1.1) includes

ARCH(1) time series (Engle, 1982) and AR (1) processes with ARCH(1) errors as

special cases. See Borkovec (2001), Borkovec and Klüppelberg (2001) for probabilistic

properties and Ling (2004) and Chan and Peng (2005) for statistical properties of such

AR(1) processes with ARCH(1) errors.

There exists an extensive study on estimating the nonparametric regression func-

tion m(x); see for example Fan and Gijbels (1996). Here we are interested in estimat-

ing the volatility function σ2(x). Some methods have been proposed in the literature;

see Fan and Yao (1998) and references cited therein. More specifically, Fan and Yao

(1998) proposed to first estimate m(x) by the local linear technique, i.e., m̂(x) = â if

(â, b̂) = argmin(a,b)

n∑
i=1

{
Yi − a− b(Xi − x)

}2
K

(Xi − x

h2

)
, (1.2)

where K is a density function and h2 > 0 is a bandwidth, and then estimate σ2(x)

by σ̂2
1(x) = α̂1 if

(α̂1, β̂1) = argmin(α1,β1)

n∑
i=1

{
r̂i − α1 − β1(Xi − x)

}2
W

(Xi − x

h1

)
, (1.3)

where r̂i = {Yi − m̂(Xi)}2, W is a density function and h1 > 0 is a bandwidth. The

main drawback of this conditional variance estimator is that it is not always positive.

Recently, Yu and Jones (2004) studied the local Normal likelihood estimation, men-

tioned in Fan and Yao (1998), with expansion for log σ2(x) instead of σ2(x). The main

advantage of doing this is to ensure that the resulting conditional variance estimator
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is always positive. More specifically, the estimator proposed by Yu and Jones (2004)

is σ̂2
2(x) = exp{α̂2}, where

(α̂2, β̂2) = argmin(α2,β2)

n∑
i=1

[
r̂i exp

{
−α2−β2(Xi−x)

}
+α2+β2(Xi−x)

]
W

(Xi − x

h1

)
.

(1.4)

Yu and Jones (2004) derived the asymptotic limit of σ̂2
2(x) under very strict conditions

which require independence of (Xi, Yi)
′s and εi ∼ N(0, 1).

Motivated by empirical evidences that financial data may have heavy tails, see

for example Mittnik and Rachev (2000), we propose the following new estimator for

σ2(x). Rewrite (1.1) as

log ri = ν(Xi) + log(ε2
i /d) (1.5)

where ri = {Yi − m(Xi)}2, ν(x) = log(dσ2(x)) and d satisfies E{log(ε2
i /d)} = 0.

Based on the above equation, first we estimate ν(x) by ν̂(x) = α̂3 where

(α̂3, β̂3) = argmin(α3,β3)

n∑
i=1

{
log(r̂i + n−1)− α3 − β3(Xi − x)

}2
W

(Xi − x

h1

)
. (1.6)

Note that we employ log(r̂i + n−1) instead of log r̂i to avoid log(0). Next, by noting

that E(ε2
i |Xi) = 1 and ri = exp{ν(Xi)} ε2

i /d, we estimate d by

d̂ =
[ 1

n

n∑
i=1

r̂i exp{−ν̂(Xi)}
]−1

.

Therefore our new estimator for σ2(x) is defined as

σ̂2
3(x) = exp{ν̂(x)}/d̂.

Intuitively, the log-transformation in (1.5) makes data less skewed, and thus the

new estimator may be more efficient in dealing with heavy tailed errors than other

estimators such as σ̂2
1(x) and σ̂2

2(x). Peng and Yao (2003) investigated this effect in

least absolute estimation of the parameters in ARCH and GARCH models. Note that

this new estimator σ̂2
3(x) is always positive.

We organize this paper as follows. In Section 2, the asymptotic distribution of

this new estimator is given and some theoretical comparisons with σ̂2
1(x) and σ̂2

2(x) are
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addressed as well. In Section 3, we apply the variance reduction technique in Cheng,

et al. (2007) to the conditional variance estimators σ̂2
1(x) and σ̂2

3(x) and provide the

limiting distributions. Bandwidth selection for the proposed estimators is discussed

in Section 4. A simulation study and a real application are presented in Section 5.

All proofs are given in Section 6.

2 Asymptotic Normality

To derive the asymptotic limit of our new estimator, we impose the following regu-

larity conditions. Denote by p(·) the marginal density function of X.

(C1) For a given point x, the functions E(Y 3|X = z), E(Y 4|X = z) and p(z)

are continuous at the point x, and m̈(z) = d2

dz2 m(z) and σ̈2(z) = d2

dz2 σ
2(z) are

uniformly continuous on an open set containing the point x. Further, assume

p(x) > 0;

(C2) E(Y 4(1+δ)) < ∞ for some δ ∈ (0, 1);

(C3) The kernel functions W and K are symmetric density functions each with a

bounded support in (−∞,∞). Further, there exists M > 0 such that |W (x1)−
W (x2)| ≤ M |x1−x2| for all x1 and x2 in the support of W and |K(x1)−K(x2)| ≤
M |x1 − x2| for all x1 and x2 in the support of K;

(C4) The strictly stationary process {(Yi, Xi)} is absolutely regular, i.e.,

β(j) := sup
j≥1

E
{

sup
A∈F∞i+j

|P (A|F i
1)− P (A)|

}
→ 0 as j →∞,

where F j
i is the σ-field generated by {(Yk, Xk) : k = i, · · · , j}, j ≥ i. Further,

for the same δ as in (C2),
∞∑

j=1

j2βδ/(1+δ)(j) < ∞;

(C5) As n →∞, hi → 0 and lim inf
n→∞

nh4
i > 0 for i = 1, 2.
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Our main result is as follows.

Theorem 1. Under the regularity conditions (C1)–(C5), we have√
nh1

{
σ̂2

3(x)− σ2(x)− θn3

} d→ N
(
0, p(x)−1σ4(x)λ2(x)R(W )

)
,

where λ2(x) = E{(log(ε2/d))2|X = x), R(W ) =
∫

W 2(t) dt and

θn3 =
1

2
h2

1σ
2(x)ν̈(x)

∫
t2W (t) dt

−1

2
h2

1σ
2(x)Eν̈(X1)

∫
t2W (t) dt + o

(
h2

1 + h2
2

)
.

Next we compare σ̂2
3(x) with σ̂2

1(x) and σ̂2
2(x) in terms of their asymptotic biases

and variances. It follows from Fan and Yao (1998) and Yu and Jones (2004) that, for

i = 1, 2, √
nh1

{
σ̂2

i (x)− σ2(x)− θni

} d→ N
(
0, p−1(x)σ4(x)λ̄2(x)R(W )

)
,

where λ̄2(x) = E{(ε2 − 1)2|X = x},

θn1 =
1

2
h2

1σ̈
2(x)

∫
t2W (t) dt + o(h2

1 + h2
2)

and θn2 = 1
2
h2

1σ
2(x) d2

dx2{log σ2(x)}
∫

t2W (t) dt + o
(
h2

1 + h2
2

)
.

Remark 1. If ν̂(Xi) in d̂ is replaced by another local linear estimate with either

a smaller order of bandwidth than h1 or a higher order of kernel than W , then the

asymptotic squared bias of σ̂2
3(x) is the same as that of σ̂2

2(x), which may be larger

or smaller than the asymptotic squared bias of σ̂2
1(x); see Yu and Jones (2004) for

detailed discussions.

Remark 2. Suppose that given X = x, ε has a t-distribution with degrees of

freedom m. Then the ratios of λ2(x) to λ̄2(x) are 0.269, 0.497, 0.674, 0.848, 1.001 for

m = 5, 6, 7, 8, 9, respectively. That is, σ̂2
3(x) may have a smaller variance than both

σ̂2
1(x) and σ̂2

2(x) when ε has a heavy tailed distribution.

Remark 3. Note that the regularity conditions (C1)–(C5) were employed by Fan

and Yao (1998) as well. However, it follows from the proof in Section 6 that we
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could replace condition (C2) by E{| log(ε2)|2+δ} < ∞ for some δ > 0 in deriving

the asymptotic normality of ν̂(x). Condition (C2) is only employed to ensure that

d̂ − d = Op(n
−1/2). As a matter of fact we only need d̂ − d = op

{
(nh1)

−1/2
}

to

derive the asymptotic normality of σ̂2
3(x). In other words, the asymptotic normality

of σ̂2
3(x) may still hold even when E(Y 4) = ∞. This is different from other conditional

variance estimators such as σ̂2
1(x) and σ̂2

2(x), which require at least E(Y 4) < ∞ to

ensure asymptotic normality.

3 Variance Reduced Estimation

Here we apply the variance reduction techniques proposed by Cheng, et al. (2007),

which concerns nonparametric estimation of m(x), to the conditional variance esti-

mators σ̂2
1(x) and σ̂2

3(x). The reason why we do not consider σ̂2
2(x) here is that the

asymptotic normality was derived by Yu and Jones (2004) under much more stringent

conditions than those required by the other two estimators. The idea of our variance

reduction strategy is to construct a linear combination of either σ̂2
1(z) or σ̂2

3(z) at

three points around x such that the asymptotic bias is unchanged. The details are

given below.

For any given point x, let
{
βx,0, βx,1, βx,2

}
be a grid of equally spaced points,

with bin width γh1 = βx,1−βx,0, such that x = βx,1 + lγh1 for some l ∈ [−1, 1]. Then,

like Cheng et al. (2007), our variance reduction estimators for σ2(x) are defined as

σ̃2
j (x) =

l(l − 1)

2
σ̂2

j (βx,0) + (1− l2) σ̂2
j (βx,1) +

l(l + 1)

2
σ̂2

j (βx,2), (3.1)

for j = 1 and 3. Suppose that Supp(σ) is bounded, Supp(σ) = [0, 1] say, since

βx,0 < x < βx,2, βx,0 and βx,2 would be outside Supp(σ) if x is close to the end-

points. Therefore we take γ(x) = min
{
γ, x/(1 + l)h1, (1 − x)/(1 − l)h1

}
so that{

βx,0, βx,1, βx,2

}
∈ Supp(σ) = [0, 1] all the time.

The following theorem gives the asymptotic limits of the variance reduced esti-
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mators.

Theorem 2. Under the conditions of Theorem 1, for interior point x we have√
nh1

{
σ̃2

1(x)− σ2(x)− θn1

} d→ N
(
0,

{
R(W )− l2(1− l2) C(γ)

}
p(x)−1σ4(x)λ̄2(x)

)
and√

nh1

{
σ̃2

3(x)− σ2(x)− θn3

} d→ N
(
0,

{
R(W )− l2(1− l2) C(γ)

}
p(x)−1σ4(x)λ2(x)

)
,

where C(s, t) =
∫

W (u− st)W (u + st) du and C(s) = 3
2
C(0, s)− 2C(1

2
, s) + 1

2
C(1, s).

Hence σ̃2
j (x) has the same asymptotic bias as σ̂2

j (x) for j = 1, 3. Note that

0 ≤ l2(1 − l2) ≤ 1/4 for all l ∈ [−1, 1] and it attains the maximum at l = ±2−1/2.

Moreover, for symmetric kernel W the quantity C(γ) is nonnegative for all γ ≥ 0;

0 ≤ C(γ) ≤ (3/2)R(W ) and C(γ) is increasing in γ if W is symmetric and concave; see

Cheng et al. (2007). So, the variance reduction estimators have smaller asymptotic

variances and asymptotic mean squared errors.

By choosing l = ±2−1/2, we achieve the most variance reduction regardless what

h1, γ and W are and the resulting estimators are

σ̃2
j,(1)(x) =

1

4
(1− 21/2) σ̂2

j

(
x− (1 + 2−1/2)γh1

)
+

1

2
σ̂2

j

(
x− 2−1/2γh1

)
+

1

4
(1 + 21/2) σ̂2

j

(
x− (2−1/2 − 1)γh1

)
(3.2)

and

σ̃2
j,(2)(x) =

1

4
(1 + 21/2) σ̂2

j

(
x + (2−1/2 − 1)γh1

)
+

1

2
σ̂2

j

(
x + 2−1/2γh1

)
+

1

4
(1− 21/2) σ̂2

j

(
x + (2−1/2 + 1)γh1

)
(3.3)

for j = 1 and 3.

Either of the variance reduction estimators σ̃2
j,(1)(x) and σ̃2

j,(2)(x) uses more in-

formation from data points on one side of x than the other side; see (3.2) and (3.3).

One way to balance this finite sample bias effect is to take the average

σ̃2
j,(3)(x) =

1

2

{
σ̃2

j,(1)(x) + σ̃2
j,(2)(x)

}
(3.4)
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for j = 1 and 3. When Supp(σ) = [0, 1], to keep the points
{
βx,0, βx,1, βx,2

}
with

l = ±2−1/2 all within the data range [0, 1] we let γ(x) = min
{
γ, x/(1 + 2−1/2)h1, (1−

x)/(1 + 2−1/2)h1

}
for a positive constant γ, γ = 1 say.

Theorem 3. Under the conditions of Theorem 1, for interior point x we have√
nh1

{
σ̃2

1,(3)(x)−σ2(x)−θn1

} d→ N
(
0,

{
R(W )−C(γ)/4−D(γ)/2

}
p(x)−1σ4(x)λ̄2(x)

)
and√

nh1

{
σ̃2

3,(3)(x)−σ2(x)−θn3

} d→ N
(
0,

{
R(W )−C(γ)/4−D(γ)/2

}
p(x)−1σ4(x)λ2(x)

)
,

where

D(γ) = R(W )− C(γ)

4
− 1

16

{
4
(
1 +

√
2
)
C

(√
2− 1, γ/2

)
+

(
3 + 2

√
2
)
C

(
2−

√
2, γ/2

)
+2C

(√
2, γ/2

)
+ 4

(
1−

√
2
)
C

(√
2 + 1, γ/2

)
+

(
3− 2

√
2
)
C

(√
2 + 2, γ/2

)}
.

Remark 4. Note that, for any kernel W , 0 ≤ D(γ) ≤ (5/8)R(W ). Hence, σ̃2
j,(3)(x)

has a smaller asymptotic variance than both σ̃2
j,(1)(x) and σ̃2

j,(2)(x) for j = 1 and 3.

Remark 5. In Cheng et al. (2007) the variance reduction techniques are applied to

nonparametric estimation of the regression m(x). The results in Theorems 2 and 3

are nontrivial given the theory developed therein.

Remark 6. When estimating the conditional variance σ2(x), it does not provide any

gain, in asymptotic terms, by replacing m̂(Xi) with the variance reduced regression

estimator of Cheng, et al. (2007) in the squared residuals r̂i =
{
Yi − m̂(Xi)

}2
,

i = 1, · · · , n.

Remark 7. In (1.6), the term n−1 is added to avoid log 0 and it can be replaced

by n−η, for any η > 0, without affecting the theoretical results in Theorems 1–

3. However, in finite sample cases, a too small value of η would increase the bias

and a too large value of η would increase the variability. In the simulation study

summarized in Section 5.1, we also experimented with η = 0.5 and 2. We found that
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η = 0.5 is undesirable as the MADE boxplot is always above the others even though

it is narrower. When η = 2, besides the MADE boxplot is wider than the others,

the performance is not stable with the MADE boxplot lower than the others only in

some settings, not all.

4 Bandwidth Selection

In the construction of our estimator σ̂2
3(x), two bandwidths are needed: h2 is the

bandwidth in (1.2) to get the squared residuals r̂1, · · · , r̂n and h1 is the bandwidth in

(1.6) to estimate the conditional variance. Since both (1.2) and (1.6) are local linear

fittings based on data
{
(Xi, Yi), i = 1, · · · , n

}
and

{
(Xi, log(r̂i + n−1), i = 1, · · · , n

}
respectively, we suggest to employ the same bandwidth procedure in the two steps.

Let ĥ(X1, · · · , Xn; Y1, · · · , Yn) denote any data-driven bandwidth rule for the local

linear fitting (1.2).

1. Take h2 = ĥ(X1, · · · , Xn; Y1, · · · , Yn) in the local linear regression (1.2) to obtain

the regression estimates m̂(Xi), i = 1, · · · , n, and the squared residuals r̂i ={
Yi − m̂(Xi)

}2
, i = 1, · · · , n.

2. Use bandwidth h1 = ĥ
(
X1, · · · , Xn; log(r̂1+n−1), · · · , log(r̂n+n−1)

)
in the local

linear fitting (1.6) to get σ̂2
3(x).

A simple modification of the above bandwidth procedure can be used to imple-

ment our variance reduction estimator σ̃2
3,(3)(x). Comparing Theorem 1 and Theorem

3, the asymptotically optimal global (or local) bandwidths of σ̃2
3,(3)(x) and σ̂2

3(x) differ

by the constant multiplier
{
R(W )−C(γ)/4−D(γ)/2

}1/5
which depend only on the

known W and γ. Therefore, no matter whether ĥ is a global bandwidth or a local

bandwidth, the modification proceeds as, in step 2 above, using

h1 =
{
R(W )−C(γ)/4−D(γ)/2

}1/5
ĥ
(
X1, · · · , Xn; log(r̂1 + n−1), · · · , log(r̂n + n−1)

)
(4.1)
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in (1.6) to obtain σ̂2
3(z), z ∈ {βx,0, βx,1, βx,2} with l = ±2−1/2. Then one can form the

linear combinations, specified in (3.2), (3.3) and (3.4), to get σ̃2
3,(3)(x).

For the conditional variance estimator σ̂2
1(x), Fan and Yao (1998) recommended

a bandwidth principle analogous to what we specify for σ̂2
3(x) in the above. To

modify the bandwidth rule of σ̂2
1(x) for use in σ̃2

1,(3)(x), apply the same constant

factor adjustment as in (4.1) when computing σ̂2
1(z) for z ∈ {βx,0, βx,1, βx,2} with

l = ±2−1/2.

5 Numerical Study

The five estimators σ̂2
1(x), σ̂2

2(x), σ̂2
3(x), σ̃2

1,(3)(x) and σ̃2
3,(3)(x) are compared based

on their finite sample performances via a simulation study and an application to the

motorcycle data set.

5.1 Simulation

Consider the regression model

Yi = a
{
Xi + 2 exp

(
−16X2

i

)}
+ σ (Xi) εi , (5.1)

where σ (x) = 0.4 exp (−2x2) + 0.2, a = 0.5, 1, 2, or 4, Xi ∼ Uniform[−2, 2] and εi

is independent of Xi and follows either the N (0, 1) or the (1/
√

3) t3 distribution.

For each of the settings, 1000 samples of size n = 200 were generated from model

(5.1). The plug-in bandwidth of Ruppert et al. (1995) was employed as the band-

width selector ĥ in Section 4. To implement σ̂2
2(x), h1 was taken as the data-driven

bandwidth given in Yu and Jones (2004). Both K and W , kernels in the regression

and conditional variance estimation stages, were taken as the Epanechnikov kernel

K(u) = (3/4)(1 − u2)I(|u| < 1). The parameter γ in σ̂2
1,(3)(x) and σ̂2

3,(3)(x) was set

to 1. Performance of an estimator σ̂(·) of σ(·) is measured by the mean absolute
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Figure 1: MADE boxplots under model (5.1). In each panel, the MADE boxplots of

σ̂1(·), σ̂2(·), σ̂3(·), σ̃1,(3)(·) and σ̃3,(3)(·) are arranged from left to right. The left and

right columns respectively give the results for the Normal and t errors. From the top,

the rows correspond to a = 0.5, 1, 2 and 4.

deviation error or the mean squared deviation error, respectively defined by

MADE (σ̂) =
1

g

g∑
i=1

∣∣σ̂ (xi)− σ (xi)
∣∣ , MSDE (σ̂) =

1

g

g∑
i=1

{
σ̂ (xi)− σ (xi)

}2
,
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where {xi, i = 1, · · · , g} is a grid on [-2,2] with g = 101. Here, we measure the

performance by MADE or MSDE of estimating σ(·) instead of those of estimating

σ2(·) since the latter would seriously down-weight errors in estimating small values

of σ2(·).

Figure 1 presents the MADE boxplots of the five estimators σ̂j(·), j = 1, 2, 3,

and σ̃j,(3)(·), j = 1, 3. Under all of the configurations, σ̃j,(3)(·) outperforms σ̂j(·) for

j = 1, 3 and our log-tranform based methods improve on the Fan and Yao (1998)

estimator. When the error distribution is Normal, the Yu and Jones (2004) estimator

σ̂2(·) is somehow the best since its MADE median is the lowest. The reason for this

optimality is that σ̂2(·) is derived from a local Normal likelihood model which now

coincides with the true error model. However, its MADE boxplot is always much

wider than those of the other four and this instability is intrinsic to local likelihood

methods. Interestingly, our estimator σ̃3,(3)(·) is nearly optimal even under Normal

errors: compared to σ̂2(·), the MADE median is roughly the same and the MADE
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Figure 2: MADE boxplots of predictions under model (5.2). The layout is the same

as in Figure 1, except that the top and bottom rows respectively represent the two-

and three-step predictions here.
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upper quartile is lower. Further, σ̂3(·) and σ̃3,(3)(·) become decisively better than any

of the others under t errors. Therefore, σ̂3(·) and σ̃3,(3)(·) are very robust against heavy

tailed errors, and σ̂2(·) is not robust against departure from Normality. Although

σ̃1,(3)(·) performs better than σ̂1(·) all the time but its behaviors under different error

distributions is predetermined by that of σ̂1(·). The MSDE boxplots are not given

here, but they provide similar conclusions.

Another setting we considered is the following nonlinear time series model

Xt+1 = 0.235Xt (16−Xt) + εt (5.2)

where εt ∼ N (0, 0.32) is independent of Xt. From model (5.2), 500 samples of

size n = 500 were simulated. The conditional variance of Xt+1 given the past data{
Xt, Xt−1, · · ·

}
is a constant function. Hence we investigate estimation of the condi-

tional variances in two-step and three-step prediction problems with Yt = Xt+2 and

Yt = Xt+3 respectively. Figure 2 presents the MADE boxplots, which convey similar

conclusions as in the previous example. In particular, σ̃3,(3)(·) is quite reliable and

robust.

In the construction of σ̂3(·) and σ̃3,(3)(·), the term n−1 is added in (1.6) to avoid

log 0. We also experimented with the term n−1 replaced by n−0.5 or n−2. To save

space, the results are not given here. We found that with n−0.5 the MADE boxplot

is always above the others even though it is narrower. When using n−2, the MADE

boxplot is wider than the others, but the performance is not stable with the MADE

boxplot lower than the others only in some settings.

5.2 An Application

The estimators σ̂2
1(x), σ̂2

2(x), σ̂2
3(x), σ̃2

1,(3)(x) and σ̃2
3,(3)(x) were employed to estimate

the conditional variance for the motorcycle data given by Schmidt et al. (1981). The

covariate X is the time (in milliseconds) after a simulated impact on motorcycles

and the response variable Y is the head acceleration (in gram) of a test object. The

13
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Figure 3: Motorcycle data. Panel (a) depicts the motorcycle data and the local linear

regression estimate m̂(·). The absolute residuals are plotted against the design points

in panels (b)–(f), which respectively show the estimates σ̂1(·), σ̂2(·), σ̂3(·), σ̃1,(3)(·)
and σ̃3,(3)(·) (solid lines) and 10%, 50% and 90% variability curves of their resampled

versions (dashed lines).

sample size is 132. As before, the squared residuals r̂1, · · · , r̂n are used to estimate

the conditional variance. We took ĥ in Section 4 as the bandwidth selector of Rupprt,

et al. (1995). Then the bandwidth h2 in m̂(·) was 4.0145, and the bandwidth h1 in

σ̂2
1(·), σ̂2

3(·), σ̃2
1,(3)(·) and σ̃2

3,(3)(·) was respectively 6.1775, 4.5763, 5.1053 and 3.7821.

The bandwidth h1 in σ̂2
3(·) was selected by the method of Yu and Jones (2004) and

was 13.4188. In Figure 3, panel (a) depicts the original data and the local linear

regression estimate m̂(·), and the solid lines in panels (b)–(f) are respectively the

estimates σ̂1(·), σ̂2(·), σ̂3(·), σ̃1,(3)(·) and σ̃3,(3)(·). In Figure 4, panel (a) plots the

residuals, and panels (b)–(f) depicts the Normal Q-Q plots of the residuals divided

by the estimates of the conditional standard deviations. Panels (b) and (e) suggest

that the motorcycle data has a heavy left tail in the error distribution. Panels (d)

and (f) show that our estimators σ̂(·) and σ̃3,(3)(·) effectively correct the heavy left

tail. Panel (c) indicates a departure from normality when σ̂2(·) is applied to this data
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Figure 4: Normal Q-Q plots of residuals. Panel (a) depicts the residuals of the

motorcycle data after the local linear regression. Panels (b)–(f) are respectively the

Normal Q-Q plots of the residuals divided by σ̂1(·), σ̂2(·), σ̂3(·), σ̃1,(3)(·) and σ̃3,(3)(·).

set.

To access the variability in each of the estimators, 500 simple random resamples

of size 132 were drawn from
{
(Xi, r̂i), i = 1, · · · , 132

}
and each of the estimators

was applied to the resamples using the respective bandwidth h1. The dashed lines

in panels (b)–(f) of Figure 3 are the pointwise 10%, 50% and 90% curves for the

respective estimators. Our estimator σ̃3,(3)(·) has the narrowest variability band while

both the pointwise 50% curve and the estimate itself follow the trend in the residuals

well. As expected, σ̂2
1(·) (and hence σ̃2

1,(3)(·)) suffers from the negativity problem.
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6 Proofs

Proof of Theorem 1. We follow the lines of the proof in Fan and Yao (1998). Let

G ⊂ {p(x) > 0} be a compact set. Similar to the proof of Lemma 2 of Yao and Tong

(2000), we can show that

ν̂(x)−ν(x) =
{ 1

np(x)

n∑
i=1

Wh1

(
Xi−x

)[
log(r̂i+n−1)−ν(x)−ν̇(x)(Xi−x)

]}{
1+op(1)

}
(6.1)

and

m̂(x)−m(x) =
1

np(x)

n∑
i=1

σ(Xi) εiKh2

(
Xi−x

)
+

h2
2m̈(x)

2

∫
t2K(t) dt+op

( 1√
nh2

+h2
2

)
(6.2)

uniformly in x ∈ G, and

sup
x∈G

∣∣m̂(x)−m(x)
∣∣ = O

{
(nh2)

−1/2(log(h−1
2 ))1/2

}
a.s. (6.3)

Here, Wh1(u) = h−1
1 W (u/h1) and Kh2(u) = h−1

2 K(u/h2). It follows from (6.1) that

exp{ν̂(x)}/d− σ2(x)

=
{σ2(x)

np(x)

n∑
i=1

Wh1

(
Xi − x

)[
log(r̂i + n−1)− ν(x)− ν̇(x)(Xi − x)

]}
{1 + op(1)}

=
{σ2(x)

np(x)

n∑
i=1

Wh1

(
Xi − x)

[
ν(Xi)− ν(x)− ν̇(x)(Xi − x)

]
+

σ2(x)

np(x)

n∑
i=1

Wh1

(
Xi − x

)
log(ε2

i /d)

+
σ2(x)

np(x)

n∑
i=1

Wh1

(
Xi − x

)[
log(r̂i + n−1)− log(ri)

]}
{1 + op(1)}

=
{
I1 + I2 + I3

}
{1 + op(1)}. (6.4)

A direct application of ergodic theorem yields that

I1 = θn3 + op(h
2
1). (6.5)

Since {log xI(x > e3)}4 is a concave function, condition (C2) implies that

E
{
(log ε)4I(ε > e3)

∣∣X = x
}
≤

{
log

(
E[ε2I(ε2 > e3)

∣∣X = x]
)}4

< ∞. (6.6)
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By (6.6) and (C3), we have

E
{

W
(Xi − x

h1

)
log(ε2

i /d)
}4

= E
{

W
(Xi − x

h1

)
log(ε2

i /d)I(ε2
i ≤ e3)

}4

+E
{

W
(Xi − x

h1

)
log(ε2

i /d)I(ε2
i > e3)

}4

= E
{

W
(Xi − x

h1

)4
E

(
(log(ε2

i /d))4I(ε2
i ≤ e3)

∣∣Xi

)}
+E

{
W

(Xi − x

h1

)4
E

(
(log(ε2

i /d))4I(ε2
i > e3)

∣∣Xi

)}
< ∞. (6.7)

Like Fan and Yao (1998), it follows from (6.7), (C4) and Theorem 1.7 of Peligrad

(1986) that √
nh1I2

d→ N
(
0, p−1(x) σ4(x)λ2(x)

∫
W 2(t) dt

)
. (6.8)

Put ζn = (nh1)
−1/2

{
log(n)

}−2
. Write

I3 =
σ2(x)

np(x)

n∑
i=1

Wh1

(
Xi − x

)[
log(r̂i + n−1)− log ri

]
I(ε2

i ≤ ζn)

+
σ2(x)

np(x)

n∑
i=1

Wh1

(
Xi − x

)[
log(r̂i + n−1)− log ri

]
I(ε2

i > ζn)

= I4 + I5.

Note that

r̂i = σ2(Xi) ε2
i + 2σ(Xi) εi

{
m(Xi)− m̂(Xi)

}
+

{
m(Xi)− m̂(Xi)

}2
.

When n is large enough, we have

|I4| = −σ2(x)

np(x)

n∑
i=1

Wh1

(
Xi − x

)
log

(
r̂i + n−1

)
I(ε2

i ≤ ζn)

−σ2(x)

np(x)

n∑
i=1

Wh1

(
Xi − x

)
log ri I(ε2

i ≤ ζn)

≤ σ2(x)

np(x)

n∑
i=1

Wh1

(
Xi − x

)
log n I(ε2

i ≤ ζn)

−σ2(x)

np(x)

n∑
i=1

Wh1

(
Xi − x

)
log(σ2(Xi) ε2

i )I(ε2
i ≤ ζn)

= op

{
(nh1)

−1/2
}

. (6.9)
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Since, for θi between r̂i + n−1 and ri,

log
(
r̂i + n−1

)
− log(ri) =

1

ri

(
r̂i + n−1 − ri

)
− 1

2θ2
i

(
r̂i + n−1 − ri

)2

=
1

σ2(Xi) ε2
i

[
2σ(Xi) εi{m(Xi)− m̂(Xi)}+ {m(Xi)− m̂(Xi)}2

]
− 1

2θ2
i

[
2σ(Xi) εi{m(Xi)− m̂(Xi)}+ {m(Xi)− m̂(Xi)}2

]2

and

θ−2
i ≤

{
σ2(Xi) ε2

i (Xi)
}−2

+
{
σ2(Xi) ε2

i +2σ(Xi) εi(m(Xi)−m̂(Xi))+(m(Xi)−m̂(Xi))
2
}−2

,

we can show, in a way similar to Fan and Yao (1998), that

I5 = op

{
(nh1)

−1/2
}
. (6.10)

By (6.9) and (6.10),

I3 = op

{
(nh1)

−1/2
}
. (6.11)

Further we can show that

d̂−1 − d−1

= 1
n

∑n
i=1(r̂i − ri) exp{−ν̂(Xi)}

+ 1
n

∑n
i=1 ri exp{−ν(Xi)}(exp{−ν̂(Xi) + ν(Xi)} − 1)

= 1
n

∑n
i=1(r̂i − ri) exp{−ν̂(Xi)}

+ 1
n

∑n
i=1 d−1ε2

i (exp{−ν̂(Xi) + ν(Xi)} − 1)

= − 1
n

∑n
i=1 d−1ε2

i
1
2
h2

1ν̈(Xi)
∫

t2W (t) dt + op(
1√
nh1

+ h2
1)

= − 1
2d

h2
1Eν̈(X1)

∫
t2W (t) dt + op(

1√
nh1

+ h2
1).

(6.12)

Hence, the theorem follows from (6.5), (6.8), (6.11) and (6.12).

Proofs of Theorems 2 and 3. Use (6.4) and the corresponding arguments in Cheng

et al. (2007).
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