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In a nonparametric setting, we discuss identifiability of the conditional and un-

conditional survival and hazard functions when the survival times are subject to

dependent truncation, namely, the survival time is dependent on the truncation

time. Nonparametric kernel estimators of these unknowns are proposed. Useful-

ness of the nonparametric estimators are demonstrated through their theoretical
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1. INTRODUCTION

We consider nonparametric inference in truncated survival-data problems, where

the time of onset of a disease, and the time of death, are observable if and only

if the onset time falls to the left of a time-point t, and the time of death lies to

the right of t. Models of this type address settings, commonly seen in prevalent

cohort studies, where a population is surveyed at time t, and only individuals who

have experienced the disease and still have the disease at that time are followed up.

Under this setting, the survival time between the two events is left truncated by

the truncation time from the initiating event to enrollment.

In this context there exists a literature on parametric approaches to inference,

and also on nonparametric methods, in cases where the onset time and survival

time are stochastically independent or quasi-independent. We shall discuss shortly

this work. However, this quasi-independent, or quasi-stationary, assumption may

be violated in practice. For example, advances in medical treatment and patient

management may reduce the risk of death for patients with later onset times. To

cope with such dependence, Wang et al. (1993) included a parametric component

in their hazard regression models. Nevertheless, the more general nonparametric

setting, where t is fixed and no assumptions are made about the relationship between

onset time and survival time, is not well understood.

At first sight it might appear that there is little hope of making progress with

such a completely general nonparametric approach, since the distributions of on-

set time and survival time are distorted so much by the operation of truncation

at t. However, a closer inspection reveals that a surprising amount of detail can be

recovered.

For example, it is possible to nonparametrically identify, up to a constant of

proportionality and to the right of t, the survival-time density and survival-time
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distribution function. This may be achieved without making any structural as-

sumptions, such as the independence hypothesis mentioned earlier. However, the

constant of proportionality, and the density to the left of t, are not identifiable from

a nonparametric viewpoint. Nevertheless, a “working value” of the constant of pro-

portionality is readily obtained by either fitting a model, or proceeding nonpara-

metrically under the assumption of independence. In this way, fully nonparametric

methods can be used to provide a check on the validity of parametric or structural

approaches. For example, a model, or the independence assumption, can be used to

estimate both the constant of proportionality and the density and distribution to

the right of t. Then, nonparametric estimators of these quantities can be compared

with the “predictions” of the model.

Moreover, the conditional hazard rate for survival time s, given that the onset

time lies to the right of t − s, is fully identifiable in nonparametric terms, as too

is a version of the cumulative hazard rate. We shall suggest fully nonparametric

estimators of these quantities and those discussed in the previous paragraph, and

outline their properties.

A related setting is that where t is random. Here, significantly more information

is available for inference than in the fixed-t case, and greater progress can be made

under relatively weak assumptions. See, for example, the work of Wang et al. (1993),

which addressed models for prevalent cohort data where patients are recruited at

different, random time points. In this research the survival-time distribution was

modelled under both independence and dependence assumptions on the initiating

time.

In many contexts the term “survival time” should be replaced by “incubation

time,” or “induction time,” or “lag time.” In statistical and mathematical terms

these quantities have the same role in the model as survival time. Thus, the descrip-
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tion given by Lagakos et al. (1988) of nonparametric inference for induction time in

the setting of HIV infection, involves an assumption that is functionally equivalent

to the independence of onset time and survival time in a survival-data problem.

Kalbfleisch and Lawless (1989) presented parametric and nonparametric method-

ology under the same independence condition. The nonparametric induction-time

distribution estimators in both papers are in the spirit of methods for nonparametric

maximum-likelihood estimation discussed by Woodroofe (1985); see also Li (1995).

If a time-reversal argument is used (see e.g. Lagakos et al., 1988; Kalbfleisch and

Lawless, 1989) then, after appropriate adjustments, our methods for the conditional

survival and hazard functions can be applied to problems arising from retrospec-

tive studies, where only individuals who have experienced the second event before

time t are observed. Another closely related situation is that of estimating age-

specific incidence, where the time horizon is age instead of calendar time. Outside

the realm of biomedical and epidemiological studies, truncated data frequently oc-

cur in actuarial, demographic and physical research. Therefore, our results about

identifiability, and our nonparametric methods, have a wide range of applications.

Keiding (1991) considered estimating age-specific incidence of certain diseases

under independent truncation. Kalbfleisch and Lawless (1991) treated regression of

the survival distribution on other covariates. There further exist many related para-

metric, semiparametric and nonparametric approaches, based on the independence

assumption, for various problems of inference about the survival distribution, cumu-

lative hazard and hazard functions, etc. See, for example, Becker and Marschner

(1993), Pagano et al. (1994), Gross and Lai (1996), Cui (1999), Grigoletto and

Akritas (1999), Sun and Zhou (2001) and Li et al. (2002). Tests for the indepen-

dence assumption have been proposed by, for example, Tsai (1990), Kalbfkeisch

and Lawless (1991), Efron and Petrosian (1994) and Martin and Betensky (2005).
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Since our estimator of the conditional survival distribution conveys the shape of the

true curve correctly, it can be used to check the quasi-independence condition and

to offer a guild for parametric modeling of the dependence. Further, the proposed

methods may be incorporated in semiparametric hazard or survival regression when

nonparametric modeling of the dependence is desired.

Section 2 discusses identifiability of the conditional and unconditional survival

and hazard functions for both the truncated and original populations. Estimators of

these quantities are proposed in section 3. In section 4, an application to a real-data

set arising from a cancer study and a simulation study are presented. There, data

arise from the right truncation model mentioned two paragraphs before. Section 5

gives theoretical properties of estimators of the conditional distribution, hazard and

density functions in the truncated population. Appendix I contains some notation

and Appendix II gives a proof of the main theorem.

2. IDENTIFIABILITY ISSUES

2.1. Model, main problems, and definitions. Assume the random vector (X∗, Y ∗)

is distributed in the triangular region 0 < x < y < ∞. We observe (X∗, Y ∗) only if

X∗ ≤ t < Y ∗, where t > 0 is fixed. Thus, we have no access to information about

the distribution of (X∗, Y ∗) conditional on X∗ > t, and so we shall condition on

X∗ ≤ t. That is, we shall assume that X∗ ≤ t. This mathematical model describes

data resulting from a medical survey, at time t, of a population, where X∗ and Y ∗

denote respectively the time of onset, and time of cessation, of a particular medical

condition in a given individual. Each member of the population who is observed

at time t to exhibit the condition, is monitored until the condition ceases to be

present.

Let (X,Y ) have the distribution of (X∗, Y ∗) conditional on Y ∗ > t, and let
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(X1, Y1), . . . , (Xn, Yn) be independent random two-vectors distributed as (X, Y ).

Using these data we wish to estimate the distribution of the time duration, S∗ =

Y ∗−X∗, of the medical condition. Below, we shall refer to S∗ as the survival time;

if the medical condition is fatal, in which case Y ∗ denotes the time of death, then

this terminology is standard. We also seek estimators of the hazard function and

cumulative hazard function, each of them conditional on onset time.

Put S = Y −X, and let fS∗X∗(s, x) and fS∗|X∗(s |x) denote, respectively, the

joint density of S∗ and X∗ and the conditional density of S∗ given X∗. Define

fX∗(x), fX(x), etc, analogously. We shall replace f by F when referring to the

corresponding distribution function. In this notation, the survival time distribution

is FS∗ , and the conditional hazard function and its cumulative are, respectively,

λ(s |x) =
fS∗|X∗(s |x)

1− FS∗|X∗(s |x)
, Λ(s |x) =

∫ s

0

λ(u |x) du . (2.1)

2.2. Formulae for the probability of observing (X∗, Y ∗). The definition of the

distribution of X, and the fact that fS∗X∗ = fX∗ fS∗|X∗ , entail, for a constant

q ≥ 1,

fX(x) = q

∫ ∞

t−x

fS∗X∗(s, x) ds = q fX∗(x)
∫ ∞

t−x

fS∗|X∗(s |x) ds

= q fX∗(x) {1− FS∗|X∗(t− x |x)} ,

for 0 < x ≤ t. Therefore, provided

P (S∗ > t− x |X∗ = x) > 0 for all 0 < x ≤ t , (2.2)

we have, for 0 < x ≤ t,

fX∗(x) = p
fX(x)

1− FS∗|X∗(t− x |x)
, (2.3)

where p = q−1 is determined by the fact that
∫
0<x≤t

fX∗(x) dx = 1.
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Note that

p =
∫ t

0

{1− FS∗|X∗(t− x |x)} fX∗(x) dx = P{(X∗, Y ∗) is observed} .

That is, p equals the proportion of data (X∗, Y ∗) that are observed as pairs (X, Y ).

In general the value of p is not identifiable merely from the distribution of (X, Y ).

Indeed, we may make p as close to zero, or as close to 1, as we like, by altering

the distribution of (X∗, Y ∗) but without affecting the (X, Y ) distribution. However,

under more stringent conditions on the distribution of (X∗, Y ∗), p can be identified.

In particular, if

S∗ and X∗ are statistically independent (2.4)

then we may estimate FS∗ root-n consistently from n data on (X, Y ) (see e.g.

Woodroofe, 1985), and thence we may estimate

p =
{ ∫ t

0

fX(x)
1− FS∗(t− x)

dx

}−1

(2.5)

at the same rate, from the same data. Result (2.5) follows from (2.3), provided (2.2)

and (2.4) hold. In the context of independence, (2.2) is equivalent to P (S∗ > t) > 0.

He and Yang (1998) suggested an estimator of the truncation probability 1−p using

a representation different from (2.5).

An alternative approach, more parametric in that it demands particular dis-

tributions for S∗ and X∗, but less structured from the viewpoint that it does not

assume independence, is to fit a model to (X∗, Y ∗) and estimate model parameters

from the data (Xi, Yi). The value of p can then be computed for the model with

parameters fitted.

In practice, estimating p under either (2.4) or a parametric model provides

a “working guide” to choice of p, even if (2.4), or the model, may be false. A
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graph of nonparametric estimators of FS∗ , for a range of values of p centred around

the working estimator of p, provides information where none might otherwise be

available.

2.3. Identifying conditional hazard rate. It follows from the definition of (X,Y )

that, provided that s ≥ t− x,

P (S > s |X = x) = P (S∗ > s |S∗ > t− x , X∗ = x) ,

or equivalently, that

F̄S|X(s |x) ≡ 1− FS|X(s |x) =
1− FS∗|X∗(s |x)

1− FS∗|X∗(t− x |x)
. (2.6)

Noting the definitions of λ(s |x) and Λ(s |x) at (2.1), and that F̄S|X(t− x |x) = 1,

we may deduce from (2.6) that for s ≥ t− x,

λ(s |x) = −∂F̄S|X(s |x)/∂s

F̄S|X(s |x)
, (2.7)

L(s, x) ≡ Λ(s |x)− Λ(t− x |x) = − log
{
F̄S|X(s |x)

}
. (2.8)

Since, for this range of values of s, F̄S|X(s |x) is identifiable from data on (X, Y ),

then it follows from (2.7) and (2.8) that within the same range, λ(s |x) and Λ(s |x)−
Λ(t − x |x) are also identifiable from data on (X,Y ). However, since we can alter

the distribution of (X∗, S∗) in the range s < t−x without affecting the distribution

of (X,Y ), then neither λ(s |x) nor Λ(s |x)−Λ(t−x |x) is identifiable for s < t−x,

and Λ(s |x) is not identifiable for any s > 0.

Of course, λ(s |x) and Λ(s |x) are both identifiable, for s > 0 and 0 < x ≤ t,

under the independence assumption, (2.4). In this context the conditioning on x is

irrelevant, and λ and Λ are functionals of FS∗ .

2.4. Identifying overall hazard and distribution functions. Assuming (2.2) holds,

we may use (2.3) and (2.6) to obtain the formulae,

FS∗(s) = p

∫ t

0

fX(x) FS∗|X∗(s |x)
1− FS∗|X∗(t− x |x)

dx for s > 0 (2.9)
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= 1− p

∫ t

0

fX(x) F̄S|X(s |x) dx for s ≥ t , (2.10)

fS∗(s) = p

∫ t

0

fX(x) fS|X(s |x) dx for s ≥ t . (2.11)

Let us assume, for the time being, that p is known. Then, in view of (2.9),

FS∗ is identifiable from data on (X,Y ), if and only if the integral on the right-hand

side of (2.9) is identifiable. Since knowing (X,Y ) is equivalent to knowing (S,X),

which is constrained by S ≥ t−X, then we cannot, in general, identify FS∗|X∗(s |x)

outside the range s ≥ t − x. However, if s < t then the integral at (2.9) requires

knowledge of FS∗|X∗(s |x) for s to the left of t−x. Therefore, if the only information

we have is in terms of the distribution of (X, Y ), we cannot identify FS∗(s) outside

the range s ≥ t. Indeed, for the reasons just given it is possible to construct two

examples of smooth, non-pathological distributions of (X∗, Y ∗) for which p, and the

distribution of (X,Y ), are identical, but the values FS∗(s) differ for s < t. Within

the identifiable range s ≥ t, (2.10) provides an explicit formula for FS∗ in terms of

p and the identifiable functions fX and FS|X .

Formula (2.10) may equivalently be written as

FS∗(s) = 1− π P (S > s |S > t) for s ≥ t , (2.12)

where the function P (S > s |S > t) is of course identifiable for s ≥ t, and the

constant π ≡ P (S∗ > t) is not identifiable from data on (X, Y ) alone. We argued in

section 2.2 that a “working approximation” to p might be constructed by estimating

p under the assumption that S∗ and X∗ are independent, or via a parametric model.

The same approach can be taken for π, and the function P (S > s |S > t) estimated

root-n consistently from data on (X,Y ).

Note particularly that (2.11), and also (2.12), imply that we can identify, up

to a constant of proportionality and to the right of t, the survival-time density fS∗ .
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In addition, from (2.10) and (2.11), the overall hazard rate

λS∗(s) =
fS∗(s)

1− FS∗(s)

is identifiable from data on (X,Y ) for all s ≥ t.

3. METHODOLOGY

3.1. Outline of methodology. We shall suggest kernel-based methods for estimating

FS|X(s |x), using the data (Xi, Yi). The estimators are of Nelson–Aalen or product-

limit type. They can be applied directly to estimate L(s, x), given at (2.8), and

indirectly to estimate λ(s |x) and FS∗(s). Our methods allow these quantities to be

estimated throughout the range where they are identifiable, which for L(s, x) and

λ(s |x) is s ≥ t− x and, for FS∗(s), is s ≥ t.

The estimator of FS∗(s) may be smoothed, and then differentiated, to give an

estimator of fS∗(s) for s ≥ t. An alternative approach to estimating FS∗ and fS∗ is

to proceed via the representation (2.12). That method too will be discussed. Our

estimators enjoy optimal nonparametric convergence rates.

3.2. Estimators of FS|X and L. We shall treat only second-order methods, designed

for estimating conditional distributions or densities with two bounded derivatives.

Higher-order estimators may be treated similarly.

Let K, a kernel function, be a bounded, compactly supported, symmetric prob-

ability density, and let h denote a bandwidth. Put Kh(u) = h−1 K(u/h). Two

estimators of FS|X , consistent in the range s ≥ t− x and 0 < x ≤ t, are:

F̂S|X(s |x) = 1− exp
{
−

n∑

i=1

I(Si ≤ s)Kh(x−Xi)∑
j≤n I(t−Xj ≤ Si ≤ Sj) Kh(x−Xj)

}
, (3.1)

F̃S|X(s |x) = 1−
n∏

i=1

{
1− Kh(x−Xi)∑

j≤n I(t−Xj ≤ Si ≤ Sj) Kh(x−Xj)

}I(Si≤s)

.
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The first estimator, based on (2.8), derives from a Nelson-Aalen estimator of L(s, x):

L̂(s, x) =
n∑

i=1

I(Si ≤ s)Kh(x−Xi)∑
j≤n I(t−Xj ≤ Si ≤ Sj)Kh(x−Xj)

.

The second estimator, F̃S|X(s |x), is of product-limit type, and may be viewed as an

approximation by Taylor expansion to L̂(s, x). It is analogous to another estimator

of L(s, x), L̃(s, x) say.

Result (5.5), below, will show that L̂ converges to L at rate (nh)−1/2 + h2,

where the first term derives from error-about-the-mean and the second from bias.

A central limit theorem for L̂ is obtainable from a bivariate form of (5.7).

3.3. Smoothing F̂S|X and F̃S|X , and estimating λ. We cannot immediately differ-

entiate either F̂S|X(s |x) or F̃S|X(s |x) in s, since they are not smooth functions of

that variable. However, this difficulty can be eliminated by replacing the indica-

tor function I(Si ≤ s), in the definitions of both estimators, by M{(s − Si)/H},
where M denotes the distribution function corresponding to the density K, and

H is another bandwidth. Provided K is continuous, the functions F̂S|X(s |x) and

F̃S|X(s |x) now have continuous derivatives with respect to s, and these derivatives

can be viewed as estimators of fS|X(s |x).

If we were interested only in smoothing F̂S|X and F̃S|X to remove visually

distracting jumps in graphs of function estimates, such as L̂(s, x), we would choose

H by eye. If we wished to estimate fS|X(s |x) or λS|X(s |x), we would generally

take H = h, so that only one bandwidth had to be chosen. This approach gives

estimators, f̂S|X and λ̂, say, of fS|X and λ, respectively, with optimal convergence

rates. Indeed, under the assumption that fSX has two bounded derivatives, using

the above smoothing technique, and choosing H = h = h(n) → 0 and nh2 → ∞
as n → ∞, the pointwise convergence rates of f̂S|X ≡ ∂F̂S|X/∂s and ∂F̃S|X/∂s to

fS|X(s |x) equal Op{(nh2)−1/2 + h2}. Taking h to be of size n−1/6, this gives the
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optimal mean-square convergence rate of n−2/3, for functions with two bounded

derivatives. In the case of f̂S|X these results follow from (5.6) below, which also

implies a central limit theorem for the estimator.

In more detail, substitution into (2.7) gives

λ̂(s |x) =
∂F̂S|X(s |x)/∂s

1− F̂S|X(s |x)
=

n∑

i=1

Kh(s− Si)Kh(x−Xi)∑
j≤n I(t−Xj ≤ Si ≤ Sj)Kh(x−Xj)

, (3.2)

f̂S|X(s |x) =
{
1− F̂S|X(s |x)

}
λ̂(s |x) .

Here, different values of the smoothing parameter h could be used to construct

λ̂(s |x) and F̂S|X(s |x); the bandwidths would be of sizes n−1/6 and n−1/5, respec-

tively, reflecting the fact that the curve estimation problems are bivariate for the

former and univariate for the latter.

3.4. Alternative estimator of FS|X , and edge effects. Another approach to estimat-

ing FS|X is to proceed via a kernel estimator, f̌SX say, of fSX :

f̌SX(s, x) =
1

nh2

n∑

i=1

K

(
s− Si

h

)
K

(
x−Xi

h

)
.

Since, for s ≥ t− x,

FS|X(s |x) =

∫
t−x<u<s

fSX(u, x) du∫
u>t−x

fSX(u, x) du
,

then, for appropriate choice of the bandwidth h,

F̌S|X(s |x) =

∫
t−x<u<s

f̌SX(u, x) du∫
u>t−x

f̌SX(u, x) du

is a consistent estimator of FS|X(s |x).

A disadvantage of this approach, however, is that it is relatively sensitive to

the impact of edge effects, for example those that occur near the diagonal boundary

defined by s+x = t. These effects can have substantial influence on the bias of F̌S|X ,
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with the result that F̌S|X(s |x) is, in general, not consistent at either the diagonal

boundary or the vertical boundaries defined by x = 0 and x = t. Corrections for

edge effects need to be incorporated, in particular if F̌S|X is used as the basis for

an estimator of FS∗ . Those adjustments can be tedious and cumbersome.

The estimators F̂S|X and F̃S|X are substantially more robust than F̌S|X against

edge effects due to bias. See, for example, the first part of the theorem in section 5,

where the order of bias, O(h2), in (5.5) is valid along the diagonal boundary and

within h of the vertical boundary. Along the vertical boundaries the order of bias

is O(h), rather than O(1) as in the case of F̌S|X , and so the estimators F̂S|X and

F̃S|X are consistent along the vertical boundaries.

However, F̂S|X and F̃S|X can suffer problems in the upper tail of the distribu-

tion, in particular if it happens that for some (s, x),

FS|X(s |x) = 1 . (3.3)

Condition (5.1), in our discussion below of theoretical properties of F̂S|X(s |x),

reflects this point. However, provided the distribution of S given X is unbounded

to the right, the identity (3.3) will never arise, and the upper limit of values of s for

which methods, based on F̂S|X or F̃S|X , can estimate FS|X effectively, will steadily

increase with sample size.

3.5. Estimators of FS∗ , fS∗ and λS∗ . One approach to estimating FS∗ is to construct

an estimator of FS|X , as suggested in section 3.2, then compute an estimator of f̂X

of fX using standard kernel methods, and combine them into an estimator of FS∗ ,

for a particular value of p, by substituting into (2.10):

F̂S∗(s) = 1− p

∫ t

0

f̂X(x) {1− F̂S|X(s |x)} dx

for s ≥ t. Provided we appropriately undersmooth when constructing f̂X and F̂S|X ,
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which means choosing a bandwidth h satisfying n−1+δ ≤ h = O(n−1/4) for some

1
2 < δ ≤ 3

4 , the estimator F̂S∗ is root-n consistent for FS∗ .

It is simpler, however, to work from (2.12), and take

F̂S∗(s) = 1− π Ĝ(s, t) (3.4)

for s ≥ t, where

Ĝ(s, t) =
∑

i I(Si > s)∑
i I(Si > t)

(3.5)

estimates G(s, t) ≡ P (S > s |S > t). Provided P (S > s) > 0, the estimator Ĝ is

root-n consistent for G.

Discontinuities in s can be removed using the method suggested in section 3.3.

Here this amounts to replacing the indicator function I(Si > s) in (3.5) by 1 −
M{(s − Si)/H}, where M is a distribution function and H denotes a bandwidth.

As in section 3.3, if our reason for smoothing was to remove jumps in Ĝ( · , t) then

H would be small, of order n−1, and would be chosen by eye. On the other hand, if

our aim was to estimate fS∗ then we would use a larger bandwidth. Taking H = h

in this case, we differentiate (3.4) with respect to s, obtaining a kernel estimator of

fS∗(s):

f̂S∗(s) = π

∑
i Kh(s− Si)∑
i I(Si > t)

(3.6)

for s ≥ t, where K = M ′. Choosing h to be of size n−1/5 gives an estimator

f̂S∗ with optimal mean-square convergence rate n−4/5, provided π assumes its true

value. At the very least, without any attempt to evaluate π, (3.6) gives, for s > t,

a completely nonparametric estimator of a function, fS∗(s)/π, that is proportional

to the true survival density, fS∗(s).

As suggested in section 2.4, one approach to choosing π would be to use either

a parametric model, or the structural, but nonparametric, assumption that S∗ and
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X∗ are independent, to produce a working value of the non-identifiable quantity

π = P (S∗ > t); and to plot the estimates f̂S∗(s), s ≥ t, for values of π on either

side of the working value.

Forming ratio of f̂S∗(s) and 1− F̂S∗(s) we have an estimator

λ̂S∗(s) =
∑

i Kh(s− Si)∑
i I(Si > s)

(3.7)

of the overall hazard rate λS∗(s) for all s to the right of t.

The estimators at (3.6) and (3.7) can suffer edge effects at the left- hand bound-

ary, i.e. near s = t. These can be removed by conventional means, for example

through using a boundary kernel there or by binning the data and fitting a local

linear smoother.

4. NUMERICAL STUDY

4.1. An application. We present here an application to a dataset from a breast

cancer study conducted by the National Cancer Institute of Canada Clinical Trials

Group. Between April 1998 and July 1999, 305 eligible patients, who had inoperable

metastatic or recurrent breast cancer with an Eastern Cooperative Oncology Group

score of 0 to 2, were entered onto the study from 38 centres in Eastern Europe

(n = 192), Canada (n = 46), South Africa (n = 34), Western Europe (n = 24), and

Australia (n = 9).

Let X̃∗, Ỹ ∗ and t (= 355), all expressed in months and calculated from 1st

January 1970, respectively denote the time a patient was first diagnosed with breast

cancer, the time the patient had the first recurrence of breast cancer, and the time

to the end of the study. Of major interest is the survival time, or progression free

time, S̃∗ = Ỹ ∗− X̃∗ from the first incidence of breast cancer to the first recurrence.

In this study, only individuals with Ỹ ∗ ≤ t can be observed. Equivalently,

the survival time S̃∗ is subject to right truncation by t − X̃∗. Let (X̃, S̃) denote
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the truncated version of (X̃∗, S̃∗), i.e. (X̃, S̃) equals (X̃∗, S̃∗) conditional on S̃∗ ≤
t − X̃∗. The left panel of Figure 1 plots X̃ + S̃ against X̃ for the 287 recurrent

breast cancer patients, among the total of 305 metastatic or recurrent breast cancer

cases.

If the time-reversal transformation

X∗ = t− X̃∗, S∗ = t− S̃∗, X = t− X̃ , S = t− S̃ , (4.1)

is employed, then S∗ is subject to left truncation and (X, S) has the distribution

of (X∗, S∗) conditional on S∗ ≥ t−X∗. Hence, the methods proposed in section 3

can be applied to analyse this data set. The right panel of Figure 1 shows the

transformed data on the truncated population of (X,S). Note that one isolated

point, corresponding to a much earlier initial time of original breast cancer than

the others, has been deleted.

In section 4.1.1, the conditional survival and hazard functions of S̃ given X̃

are estimated using (4.1) and estimators of the conditional survival and hazard

functions of S given X given in section 3.2. Section 4.1.2 studies the original

population (X̃∗, S̃∗). Under the model in section 2, FS∗(s) is identifiable up to

a constant of proportionality and λS∗(s) is identifiable for s ≥ t; FS∗|X∗(s|x) is

identifiable up to a constant of proportionality and λS∗|X∗(s|x) is identifiable for

s > t − x. Under the model here, neither F
S̃∗

(s̃) nor λ
S̃∗

(s̃) is identifiable for

any 0 < s̃ < t; F
S̃∗|X̃∗(s̃|x̃) is identifiable up to a constant of proportionality and

λ
S̃∗|X̃∗(s̃|x̃) is identifiable up to a constant for all 0 < s̃ < t− x̃.

4.1.1. Truncated distribution. Following from the time-reversal transformation

(4.1), for all 0 ≤ s̃ ≤ t− x̃,

F
S̃|X̃(s̃ | x̃) = 1− FS |X(s− |x) , f

S̃|X̃(s̃ | x̃) = fS|X(s |x) ,
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where s = t − s̃ and x = t − x̃. Substituting into this formula our estimators of

FS|X(s |x) and fS|X(s |x), given in (3.1), we obtain estimators of F
S̃|X̃(s̃ | x̃) and

f
S̃|X̃(s̃ | x̃).

Observe from Figure 1 that truncation is heavy for large x̃ values, and that there

are very few points with small x̃ values. Also, there are edge effects. Therefore, in

the analysis of conditional survival distributions, x̃ was fixed at ten middle values

220, 230,. . . , 310. The kernel function was K(u) = 15
16 (1 − u2)2 I(|u| ≤ 1). The

bandwidth h was taken as 15 for the first five x̃ values, and 7.5 for the others.

Figure 2 depicts the estimates of the truncated conditional distribution func-

tion, F
S̃|X̃(s̃ | x̃), over the range 0 ≤ s̃ ≤ t− x̃ where it is identifiable. The truncated

conditional distributions are noticeably different. Therefore, analysis based on the

overall distribution of the true survival time S̃∗, instead of on its conditional distri-

bution on X̃∗, could be quite misleading.

Note from (4.1) that the conditional hazard rate λ
S̃|X̃(s̃ | x̃) is

λ
S̃|X̃(s̃ | x̃) =

fS|X(s |x)
FS|X(s− |x)

= λS |X(s |x)
1− FS|X(s |x)
FS|X(s− |x)

,

for all 0 ≤ s̃ ≤ t− x̃. Hence, to estimate λ
S̃|X̃(s̃ | x̃), one could replace the unknowns

FS|X(s |x) and λS|X(s |x) on the right-hand side by their estimators provided above

and in (3.2).

4.1.2. Original distribution. The survival distribution in the original population

(X̃∗, S̃∗) is of significant interest. Lagakos et al. (1988) derived the product-limit

estimator of F
S̃∗

(s̃) using (4.1) and assuming independence between S̃∗ and X̃∗.

Then one can obtain the corresponding Nelson-Aalen estimator of the cumulative

hazard. The product-limit estimate of F
S̃∗

(s̃) is shown in Figure 3. On the other

hand, for all 0 < s̃ < t,

F
S̃∗

(s̃) = P (S∗ ≥ s) = p

∫ t

0

fX(x)F̄S∗|X∗(s− |x)
1− FS∗|X∗(t− x |x)

dx . (4.2)
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Hence, without the independence condition, neither F
S̃∗

(s̃) nor λ
S̃∗

(s̃) is identifiable

using data on (S̃, X̃) for any 0 < s̃ < t. Even with information on p, this difficulty

remains as the integral in (4.2) cannot be changed to the form in (2.10) for any

0 < s̃ < t. This in can be seen from the data structure X̃∗ < X̃∗ + S̃∗ < t where t

is a constant.

From (2.6) and (4.1), for 0 ≤ s̃ ≤ t− x̃,

F
S̃∗|X̃∗(s̃ | x̃) = F̄S∗|X∗(s− |x) = F̄S|X(s− |x) F̄S∗|X∗(t− x |x) . (4.3)

The conditional truncation probability FS∗|X∗(t−x |x) is not identifiable from data

on the truncated version (S̃, X̃). Under the independence assumption, F̄S∗|X∗(t −
x |x) equals F̄S∗(t− x), or equivalently F

S̃∗
(t− x̃), which can be estimated by the

product-limit method described before. Combining this working value of F̄S∗|X∗(t−
x |x) and our estimator of F̄S|X(s− |x) we obtain an estimator of F

S̃∗|X̃∗(s̃ | x̃) over

the range 0 ≤ s̃ ≤ t− x̃. The results are also depicted in Figure 3. It shows that the

conditional distribution of the survival time S̃∗ given the initial time X̃∗ varies over

the initial time. And the product-limit estimate of the unconditional distribution

function differs from the estimates of the conditional distribution functions in shape.

Often, the hazard function gives better insight into the survival distribution

than the survival function does. From (4.3), for 0 ≤ s̃ ≤ t− x̃,

λ
S̃∗|X̃∗(s̃ | x̃) = λS∗|X∗(s |x)

F̄S∗|X∗(s |x)
FS∗|X∗(s− |x)

= λS∗|X∗(s |x)
F̄S|X(s |x) F̄S∗|X∗(t− x |x)

1− F̄S|X(s− |x) F̄S∗|X∗(t− x |x)
.

Therefore, while λS∗|X∗(s |x) is identifiable for all s ≥ t − x, λ
S̃∗|X̃∗(s̃ | x̃) is not

identifiable in the region 0 ≤ s̃ ≤ t − x̃. An estimator is available using our

estimators of FS|X(s |x) and λS∗|X∗(s |x) (= λS|X(s |x) for s ≥ t−x) given in (3.1)

and (3.2), and a working value of FS∗|X∗(t−x |x), e.g. the product-limit estimator
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of FS∗(t − x), by assuming independence. The results are depicted in Figure 4.

When x̃ = 260 or 270, the first peak in the conditional hazard estimates occurs at

around s̃ = 40 or 20, much earlier than the first peak (around s̃ = 65) in the other

curves. Alternatively, under independence of S̃∗ and X̃∗, kernel smoothing the

Nelson-Aalen estimator yields an estimator of the overall hazard function λ
S̃∗

(s̃).

This overall hazard rate estimate, shown in Figure 4, does not resemble any of the

conditional hazard rate estimates.

The observations made from Figures 3 and 4 suggest that, for this data set,

dependence between the survival time S̃∗ and the truncation time t− X̃∗ exists. In

that case, traditional approaches that rely on the independence assumption, such

as the product-limit and Nelson-Aalen estimators, may not be useful. By contrast,

our methods provide a better description of the dependence by illustrating how the

conditional survival and hazard change over the truncation time.

4.2. Simulation study. Here we use a simulation study to demonstrate that, in

the case of dependent truncation, our methods indeed recover information about

the original distribution from the truncated data more accurately than methods

based on the independence assumption. We consider a setting similar to the breast-

cancer data: n = 300 observations were collected on (X̃, Ỹ ), which equals (X̃∗, Ỹ ∗)

conditional on X̃∗ ≤ Ỹ ∗ ≤ t. Let the truncation time t be 350. Take X̃∗ = 350−Z,

where Z follows an Exponential distribution with rate 0.03 and is constrained by

Z ≤ t (= 350). Suppose the conditional distribution of the survival time, S̃∗ =

Ỹ ∗ − X̃∗, given X̃∗ = x̃ is a log-logistic distribution with density function

f
S̃∗|X̃∗(s̃ | x̃) =

α(x̃)−1β(x̃)
{
s̃/α(x̃)

}β(x̃)−1

[
1 +

{
s̃/α(x̃)

}β(x̃)
]2 , s̃ > 0 .
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The survival and hazard functions are respectively

F̄
S̃∗|X̃∗(s̃ | x̃) =

[
1+

{
s̃/α(x̃)

}β(x̃)
]−1

, λ
S̃∗|X̃∗(s̃ | x̃) =

α(x̃)−1β(x̃)
{
s̃/α(x̃)

}β(x̃)−1

[
1 +

{
s̃/α(x̃)

}β(x̃)
] .

We set α(x̃) = exp(x̃/70) and β(x̃) = (x̃ + 100)/100. The methods described in

section 4.1 were applied to 1000 random samples generate from this model.

Panel (a) of Figure 5 plots the overall hazard function λ
S̃∗

(s̃) and the con-

ditional hazard function λ
S̃∗|X̃∗(s̃ | x̃) for x̃ = 210, 230, 250 and 270. Panel (b) of

Figure 5 gives the pointwise 10th, 50th and 90th percentiles of the product-limit

estimator (by independence assumption) of λ
S̃∗

(s̃) and the true curve. As expected,

this estimator fails here since independence does not hold and the overall hazard

function does not resemble any of the conditional hazard functions. Given in panel

(c) of Figure 5 are five typical realizations of the product-limit estimator that cor-

respond to the 10th, 30th, 50th, 70th and 90th percentiles of the 1000 integrated

squared errors, calculated from zero to the 95th quantile of the true distribution of

S̃∗. All of them depart from the true curve dramatically.

Figure 6 plots the pointwise 10th, 50th and 90th percentiles of our estimator of

λ
S̃∗|X̃∗(s̃ | x̃), described in section 4.1.2, for x̃ = 210, 230, 250 and 270. Although the

product-limit estimator, used as a working value of FS∗|X∗(t−x |x) in our method,

is biased without the independence assumption, our estimator performs quite well.

Comparing Figures 5 and 6, it is clear that our observation in section 4.1.2 are not

just artifacts of random fluctuation. Instead, our estimators indeed recover shapes

of the underlying curves accurately.

We also experimented with replacing the working value of FS∗|X∗(t− x |x) by

the true value in the estimation of λ
S̃∗|X̃∗(s̃ | x̃). The outcomes are not given here,

but this approach always does better. However, only for large values of s̃ or x̃ is it

significantly better than our estimator.
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As stated in section 4.1.1, the conditional hazard function λ
S̃|X̃(s̃ | x̃) is iden-

tifiable; we gave an estimator of it there. Figure 7, presenting performance of our

estimator of λ
S̃|X̃(s̃ | x̃), is an analog of Figure 6. It validates our estimator for a

relatively small sample size, n = 300.

5. THEORETICAL PROPERTIES

First we discuss the estimator F̂S|X , introduced in section 3.2. Results similar to

those below may be derived in the case of F̃S|X . Our main theoretical formula, from

which our other results will follow, will describe uniform convergence properties of

F̂S|X(s |x) for values of (s, x) satisfying 0 < t − x < s < s0, where s0 has the

property:

sup
0<x<t

F (s0 |x) < 1 . (5.1)

Since our estimators are based on second-order kernel methods then their biases

are of order h2. This is true for both density and distribution estimators. Concise

expressions for the order h2 bias terms are especially complex, however, and so we

shall not give them here; they will be represented simply as O(h2) in asymptotic

approximations. On the other hand, we shall be relatively concise about error-

about-the mean terms.

Next we introduce notation. Let cj and βj denote functions, not depending on

n or h, which are introduced in Appendix I. Put

a1(s, x ; s′, x′ |h) = Kh(x− x′) c1(s, x ; s′, x′) ,

a2(s, x ; s′, x′ |h) = Kh(x− x′)Kh(s− s′) c2(s, x ; s′, x′)

and bj(s, x ; s′, x′ |h) = aj(s, x ; s′, x′ |h)− E{aj(s, x ; S,X |h)}. We shall make the

following assumptions:
the distribution of (S,X) is continuous, with density fSX , which has two

continuous derivatives on its support; the support of fX equals the interval

[0, t], on which fX is bounded away from zero;

(5.2)
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K is a bounded, symmetric, Hölder-continuous probability density, sup-

ported on [−1, 1];
(5.3)

for some δ ∈ (0, 1), h = h(n) satisfies nδh → 0 and n1−δh →∞. (5.4)

Theorem 1. Assume (5.2)–(5.4), and that s0 satisfies (5.1). Define F̂S|X by (3.1).

Then, uniformly in (s, x) in the range that 0 < t − x < s < s0 with h ≤ x ≤ t− h

or s ≤ min(t, t− x + h)

F̂S|X(s |x)− FS|X(s |x)
F̄S|X(s |x)

= h2 β1(s, x) +
1
n

n∑

i=1

b1(s, x ; Si, Xi |h)

+ op

{
(nh)−1/2 + h2

}
. (5.5)

Theorem 2. Assume the conditions in Theorem 1. If, in the definition at (3.1), we

replace I(Si ≤ s) in the numerator on the right-hand side by M{(s−Si)/h}, where

M denotes the distribution function corresponding to density K; if we then define

f̂S|X(s |x) as the derivative of F̂S|X(s |x) with respect to s and λ̂(s |x) as in (3.2);

and if we replace the assumption “n1−δh → ∞” in (5.4) by “n1−δh2 → ∞”; then,

for (s, x) satisfying 0 < t−x < s < s0 with h ≤ x ≤ t−h and s > min(t, t−x + h),

λ̂(s |x)− λ(s |x) = λ(s |x)
{

h2 β2(s, x) +
1
n

n∑

i=1

b2(s, x ; Si, Xi |h)
}

+ op

{
h2 + (nh2)−1/2

}
, (5.6)

f̂S|X(s |x)− fS|X(s |x) = fS|X(s |x)
{

h2 β3(s, x) +
1
n

n∑

i=1

b2(s, x ; Si, Xi |h)
}

+ op

{
h2 + (nh2)−1/2

}
. (5.7)

Theorem 1 does not specifically address the order of the bias of F̂S|X within h

of the vertical boundaries, where x = 0 or x = t. However, the bias there can be

shown to be of order h. Formulae for the error-about-the-mean of F̂S|X in those

places are given in (A.8).
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The series on the right-hand side of (5.5) is of course a sum of independent

and identically distributed random variables, and so (5.5) can be used readily to

derive a central limit theorem for F̂S|X . Indeed, n−1
∑

i b1(x, s;Si, Xi |h) is asymp-

totically normally distributed with zero mean and variance (nh)−1 σ1(s, x)2, where

σ1(s, x)2 = κ fX(x) E{c1(s, x; S, X)2} and κ =
∫

K2. Therefore, (5.5) implies that

F̂S|X(s |x)− FS|X(s |x) = F̄S|X(s |x)
{
(nh)−1/2 σ1(s, x)Nn(s, x) + h2 β1(s, x)

}

+ op

(
h2

)
, (5.8)

where the random variable Nn(s, x) is asymptotically normally distributed with

zero mean and unit variance.

Standard arguments may be used to prove that, under the conditions of the the-

orem, n−1
∑

i b1(x, s;Si, Xi |h) is of order (nh)−1/2 (log n)1/2, uniformly in (s, x)

in the range 0 < t− x < s < s0. Hence, (5.5) may also be used to prove that

sup
(s,x) : 0<t−x<s<s0,

h≤x≤t−h

∣∣∣F̂S|X(s |x)− FS|X(s |x)
∣∣∣ = Op

{
(nh)−1/2 (log n)1/2 + h2

}
.

Analogously to the way in which (5.8) follows from (5.5), (5.6) and (5.7) imply

that
{
λS|X(s |x)

}−1{
λ̂S|X(s |x) − λS|X(s |x)

}
and

{
fS|X(s |x)

}−1{
f̂S|X(s |x) −

fS|X(s |x)
}

are each asymptotically normally distributed with respective asymp-

totic means h2 β2(s, x) and h2 β3(s, x) and common variance (nh2)−1σ2
2(s, x), where

σ2
2(s, x) = κ2 fSX(s, x)E

{
c2(s, x;S,X)2

}
.

APPENDIX I: DEFINITIONS OF FUNCTIONS cj AND βj

Put

κj(h, s, x) =
∫

v : min(0,t−s)<x−vh<t

vj K(v) dv , ρj(h, s, x) =
κj(h, s, x)
κ0(h, s, x)

,

cj(s, x ; s′, x′) =
I(j = 1) I(s′ ≤ s) + I(j = 2)

κ0(h, s′, x) r(s′, x)
− {

I(j = 1) I(t− x′ ≤ s) + I(j = 2)
}

× I(t− x′ ≤ s′)
∫ s′

t−x′

{
I(j = 1) I(u ≤ s) + I(j = 2)

}
fSX(u, x)

κ0(h, u, x) r(u, x)2
du ,
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where r(s, x) =
∫

u>s
fSX(u, x) du. Let f

(0,j)
SX (s, x) = (∂j/∂xj) fSX(s, x),

gj(s, x) =

∫
u>s

f
(0,j)
SX (u, x) du

r(s, x)
, Lj(s, x) =

fSX(s, x) gj(s, x)− f
(0,j)
SX (s, x)

r(s, x)
,

β1(s, x) = L1(t− x, x)
∫ (s−t+x)/h

0

ρ1(h, t− x + uh, x) du

− 1
2 ρ2(h, t, x)

{ ∫ s

0

L2(u, x) du

}
I
{
s > min(t, t− x + h)

}
.

Define κ2 =
∫

v2K(v) dv, β2(s, x) = κ2 {g1(s, x)L1(s, x) − L2(s, x)} and β3(s, x) =

β2(s, x)− β1(s, x).

APPENDIX II: PROOF OF THEOREM 1

We shall derive only (5.5); proofs of (5.6) and (5.7) are similar. Put

rh(s, x) =
∫ ∫

t−x+hv≤s≤u

K(v) fSX(u, x− hv) du dv ,

which, for s + x > t, converges to r(s, x) as the bandwidth, h, decreases to zero.

Note that, with

R(s, x) =
1
n

n∑

i=1

I(t−Xi ≤ s ≤ Si) Kh(x−Xi) ,

we have rh(s, x) = E{R(s, x)}. Without loss of generality, the support of K is

confined to [−1, 1]. Given ε > 0, let R = R(ε) denote the set of points (s, x) such

that t − x′ < s < s0 for some x′ ∈ [0, t] with |x − x′| ≤ ε. Under the conditions of

the theorem, there exists η > 0 such that, if ε > 0 is sufficiently small and h ≤ ε,

then rh(s, x) ≥ η for all (s, x) ∈ R.

Put ∆R(s, x) = R(s, x)−rh(s, x). Standard methods can be used to prove that,

for each δ > 0, ∆R(s, x) = Op{nδ (nh)−1/2} uniformly in (s, x) ∈ R. Therefore,

sup
0<u<s

∣∣∣R(u, x)−1 − {
rh(u, x)−1 − rh(u, x)−2 ∆R(u, x)

}∣∣∣ = Op

{
nδ (nh)−1

}
,
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uniformly in (s, x) ∈ R. From this result it may be proved that, uniformly in

(s, x) ∈ R,

T (s, x) ≡ 1
n

n∑

i=1

I(Si ≤ s)Kh(x−Xi)
R(Si, x)

= T1(s, x)− T2(s, x) + Op

{
nδ (nh)−1

}
,

(A.1)

where

T1(s, x) =
1
n

n∑

i=1

I(Si ≤ s)Kh(x−Xi)
rh(Si, x)

,

T2(s, x) =
1
n

n∑

i=1

I(Si ≤ s)Kh(x−Xi) ∆R(Si, x)
rh(Si, x)2

.

Note that

A(s, x) ≡ E{T1(s, x)} = E

{
I(S ≤ s)Kh(x−X)

rh(S, x)

}

=
∫ s

0

κ0(h, u, x) fSX(u, x)
rh(u, x)

du +
2∑

j=1

(−h)j

j!

∫ s

0

κj(h, u, x) f
(0,j)
SX (u, x)

rh(u, x)
du

+ o
(
h2

)
,

rh(s, x) = κ0(h, s, x) r(s, x)
{

1 +
2∑

j=1

(−h)j ρj(h, s, x) gj(s, x)
j!

+ o
(
h2

)}
,

where, here and below, o(h2) remainder terms are of that order uniformly in (s, x) ∈
R. We may Taylor-expand A(s, x) in increasing powers of h, obtaining

A(s, x) = − log
{

r(s, x)
r(0, x)

}
+ hA1(s, x) + h2 A2(s, x) + o

(
h2

)
, (A.2)

say, where A1 and A2 do not depend on h. From (A.2) it may be proved that if K

vanishes outside [−1, 1] then for 0 < t− x < s < s0,

exp{−A(s, x)} = F̄S|X(s |x)
{

1− hC1(s, x)− h2 β1(s, x) + o
(
h2)

}
, (A.3)

where C1(s, x) = C2(s, x) + O(h) and

C2(s, x) = I
{
|2x− t| > t− 2h, s > min(t, t− x + h)

}
ρ1(h, t, x)

∫ s

0

L1(u, x) du .
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Define

B(s, x ; s1, s2, x1, x2) =
I(s1 ≤ s)Kh(x− x1)

rh(s1, x)2
I(t− x2 ≤ s1 ≤ s2)Kh(x− x2) ,

B1(s, x ; s1, x1) = E{B(s, x ; s1, S, x1, X)} ,

B2(s, x ; s2, x2) = E{B(s, x ;S, s2, X, x2)}

and B3(s, x) = E{B1(s, x ; S, X)} = E{B2(s, x ; S, X)}. Note that

T2(s, x) =
1
n2

n∑

i=1

n∑

j=1

I(Si ≤ s)Kh(x−Xi)
rh(Si, x)2

× {I(t−Xj ≤ Si ≤ Sj)Kh(x−Xj)− rh(Si, x)}

= T21(s, x) +
(
1− n−1

)
T22(s, x) +

1
n2

n∑

i=1

B1(s, x; Si, Xi)2

− n−1 T1(s, x) , (A.4)

where T22(s, x) = n−1
∑

j {B2(s, x ;Sj , Xj)−B3(s, x)} and

T21(s, x) =
1
n2

∑∑

i 6=j

{
B(s, x ; Si, Sj , Xi, Xj)−B1(s, x ; Si, Xi)

−B2(s, x ;Sj , Xj) + B3(s, x)
}

.

The quantity T21(s, x) can be viewed as the difference between a U -statistic

and its projection. In particular, it has zero mean and variance of order (nh)−2.

By using a lattice approximation we may show that for all δ > 0,

sup
(s,x)∈R

|T21(s, x)| = Op

{
nδ (nh)−1

}
. (A.5)

Similarly, defining T3(s, x) = T1(s, x) − E{T1(s, x)}, it may be shown that for all

δ > 0,

sup
(s,x)∈R

{
|T3(s, x)|+ |T22(s, x)|+

∣∣∣ 1
n2

n∑

i=1

B1(s, x;Si, Xi)2
∣∣∣
}

= Op

{
nδ (nh)−1/2

}
.

(A.6)
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Combining (A.1) and (A.3)–(A.6) we deduce that for all δ > 0,

exp{−T (s, x)} = F̄S|X(s |x) exp
[
− T3(s, x) + T22(s, x)− hC1(s, x) + h2 β1(s, x)

+ op

(
h2

)
+ Op

{
nδ(nh)−1

}]

= F̄S|X(s |x)
[
1− T3(s, x) + T22(s, x)− hC1(s, x)− h2 β1(s, x)

+ op

(
h2

)
+ Op

{
nδ(nh)−1

}]
, (A.7)

uniformly in (s, x) ∈ R.

Define

ξ1(s, x ; s′, x′) = Kh(x− x′)
[
I(s′ ≤ s)
rh(s′, x)

− I{t− x′ ≤ min(s, s′)}

×
∫

0<x−hv<t

K(v) dv

∫ min(s,s′)

t−x′

fSX(u, x− hv)
rh(u, x)2

du

]

and ξ2(s, x ; s′, x′) = ξ1(s, x ; s′, x′)−E{ξ1(s, x ; S,X)}. Then, T3(s, x)−T22(s, x) =

n−1
∑

i ξ2(s, x ;Si, Xi), and so (A.7) is equivalent to:

F̂S|X(s |x)− FSX(s |x)
F̄S|X(s |x)

= hC1(s, x) + h2 β1(s, x) + n−1
n∑

i=1

ξ2(s, x ; Si, Xi)

+ op

(
h2

)
+ Op

{
nδ(nh)−1

}
. (A.8)

For small h, ξ1(s, x ; s′, x′) is well approximated by a1(s, x ; s′, x′ |h), and therefore

ξ2(s, x ; s′, x′) is well approximated by b1(s, x ; s′, x′ |h). Making these approxima-

tions concise, we obtain (5.5) from (A.8).
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CAPTIONS FOR FIGURES

Caption for Figure 1: Data. In panel (a) the truncated data are illustrated by

plotting X̃ + S̃, the time of first recurrence of breast cancer, against X̃, the time of

first diagnosis of breast cancer, for the same patient. Panel (b) shows a scatter plot

of (X, S) = (t − X̃, t − S̃), i.e. the truncated data after applying the time-reversal

transformation (4.1).

Caption for Figure 2: Conditional distribution in the truncated population. In

panel (a) (respectively, panel (b)) our estimates of F
S̃|X̃(s̃|x̃) for x = 220, 230, 240,

250, 260 (respectively, x̃ = 270, 280, 290, 300, 310) are represented by the solid,

dashed, dotted, dot-dashed and long-dashed lines, respectively.

Caption for Figure 3: Conditional and unconditional distribution functions in

the original population. Panels (a) and (b) plot the estimates of F
S̃∗|X̃∗(s̃|x̃) when

x̃ = 220, 230, 240, 250, 260 and x̃ = 270, 280, 290, 300, 310, respectively. Line types

for different values of x̃ are as in the case of Figure 2. Panel (c) graphs the product-

limit estimator of F
S̃∗

(s̃).

Caption for Figure 4: Conditional and unconditional hazard rates in the original

population. Panels (a) and (b) plot the estimates of λ
S̃∗|X̃∗(s̃|x̃) when x̃ = 220, 230,

240, 250, 260 and x̃ = 270, 280, 290, 300, 310, respectively. Line types for different

values of x̃ are as in the case of Figure 2. Panel (c) shows an estimate of λ
S̃∗

(s̃),

based on smoothing the Nelson-Aalen estimator.

Caption for Figure 5: True hazard rates in the original distribution. The solid

line is the true overall hazard λ
S̃∗

(s̃). In panel (a), the dashed, dotted, dot-dashed

and long-dashed lines respectively depict the true conditional hazard functions

λ
S̃∗|X̃∗(s̃|x̃) for x̃ = 210, 230, 250 and 270. The dashed lines in panel (b) are the

10%, 50% and 90% pointwise quantiles of the product-limit estimator of λ
S̃∗

(s̃)
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(under the independence assumption). Panel (c) depicts five typical realizations of

the product-limit estimator that have the 10% (dashed), 30% (dotted), 50% (dot-

dashed), 70% (long-dashed) and 90% (dotted-long-dashed) integrated squared error

values.

Caption for Figure 6: Variability plot of the estimator of λ
S̃∗|X̃∗(s̃|x̃). The dashed

lines in panels (a)–(d) are the 10th, 50th and 90th pointwise percentiles of our

estimator of λ
S̃∗|X̃∗(s̃|x̃) for x̃ = 210, 230, 250 and 270, respectively. The solid lines

represent the corresponding true conditional hazard functions.

Caption for Figure 7: Variability plot of the estimator of λ
S̃|X̃(s̃|x̃). Interpreta-

tion is as for Figure 6.
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