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Abstract

We suggest a method for reducing variance in nonparametric surface estimation. The
technique is applicable to a wide range of inferential problems, including both density
estimation and regression, and to a wide variety of estimator types. It is based on estimating
the contours of a surface by minimising deviations of elementary surface estimates along a
quadratic curve. Once a contour estimate has been obtained, the final surface estimate is
computed by averaging conventional surface estimates along a portion of the contour.
Theoretical and numerical properties of the technique are discussed.
© 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

We suggest a variance reduction method for nonparametric surface estimators,
based on approximating the projection of a contour into the design plane at the
point x where we wish to construct the estimate. The contour estimator is then used
as an axis along which a continuum of conventional surface estimates is averaged in
order to achieve a final estimate at x. Since our technique does not alter asymptotic
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bias then the reduction in variance that it offers leads directly to a reduction in
asymptotic mean squared error.

This method has several novel features. Firstly, it exploits the extra degree of
freedom that is available in the problem of surface estimation. Secondly, it provides
a new technique for estimating gradients and curvatures of contour lines, without
passing explicitly to derivatives of surface estimates. Thirdly, when applied to a
surface estimate that is always positive, in either density estimation or regression, our
method produces a boundary-corrected estimate that is always positive. Our
approach to estimating contours involves choosing either a line segment or a
quadratic along which a conventional surface estimator is least variable, in the
neighbourhood of the point x at which we wish to estimate the surface.

The technique is applicable to nonparametric methods in both density estimation
and regression. Indeed, it is not tied to a particular estimator type in either of these
settings; for example, in nonparametric regression it can be used in conjunction with
spline, local linear or Nadaraya—Watson methods. In the case of density estimation,
when a conventional kernel estimator is used as its basis, the technique can be viewed
as a device for re-computing kernel shape.

As implied two paragraphs above, the technique also has potential application for
overcoming edge effects. Modified boundary kernel methods have been proposed for
addressing this problem (see e.g. [14,19,20]), but like their univariate counterparts
they can produce negative estimates at boundaries. Local polynomial and
local parametric methods are more successful in this regard, although the
increase in variance of such techniques near the boundary means that good
asymptotic performance is often not visible unless sample size is particularly
large. Scott ([18], pp. 82—85) gives a particularly illuminating discussion of issues
such as these.

Multivariate generalisations are of course possible. However, since the multi-
variate analogue of a contour is not so familiar, not as readily depicted, and not as
easy to compute as in the bivariate case, then high-dimensional generalisations do
not offer as convenient a vehicle for illustrating the potential of the method.
If the distribution is d-variate then the contour corresponding to “height” H is the
set of points y such that g(y) = H, and is a region with d — 1 degrees of
freedom.

Our variance reduction method is related to the so-called balloon kernel
techniques for density estimation. See [9,18, p. 149ff]. There is an extensive literature
on approaches for remedying boundary effects in density estimation and regression,
mainly in univariate cases. It includes methods based on special “boundary kernels”,
for example those considered by Gasser and Miiller [6], Gasser et al. [7], Granovsky
and Miiller [8] and Miiller [13]. Rice [15] suggested a dual-bandwidth approach. So-
called “reflection methods” include those of [la,10,17]. The projection method of
Djojosugito and Speckman [2] is in the same spirit. Eubank and Speckman [3]
proposed a method that involves combining a conventional curve estimator with a
substantially undersmoothed estimator. Cheng, Fan and Marron [1] suggested
methods that have optimal asymptotic performance at boundaries. The natural
boundary-respecting properties of local polynomial methods have been discussed by
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Fan [4], Hastie and Loader [11], Ruppert and Wand [16] and Fan and Gijbels [5], for
example. See also [12].

Section 2 will introduce our method and discuss, in an heuristic and nontechnical
way, its variance-reduction properties. Theoretical results, underpinning the
informal arguments in Section 2, will be given in Section 3, and rigorous technical
details will be outlined in Section 5. Section 4 will summarise a simulation study that
complements the theory.

2. Methodology
2.1. The method

Let g denote a univariate function of a 2-vector; for example, g might be the
density of a bivariate distribution, or the mean in a regression problem where the
explanatory variable is bivariate and the response variable is scalar. We wish to
estimate g nonparametrically, making only smoothness assumptions and exploiting
the extra degree of freedom that is available in the context of surface estimation,
relative to the conventional case where the argument of ¢ is univariate.

To this end we first construct an elementary nonparametric estimator g of g. For
example, when ¢ is a probability density we might take

§(x) = (nh?)™" Z K(X _hX) (2.1)

i=1

where K is a radially symmetric bivariate kernel, / is a bandwidth, and X7, ..., X, are
independent and identically distributed random variables with density g.

Next we describe construction of a local quadratic estimator of the level set, or
contour, of g in the neighbourhood of x; local linear estimators will be treated in
Section 2.2. Let %(x|0, ¢) denote the parabola passing through x = (x1), x?), with
its vertex at x and its tangent there in the direction of the unit vector (cos 0, sin 0),
and with curvature 2¢ at x. Thus, as a curve in the (z(),z(?)-plane, %(x|0,c) has
equation

(z? — x®)cos 0 — (z) — x(V)sin 6

= c{(z? = x@)sin 0 4 (zV — xV) cos 6}

We shall constrain 6 and ¢ by —n/2<0<n/2 and — o0 <c¢< oo, which ensures that
each nondegenerate parabola in the plane is representable by €(x|0, ¢) for a unique
triple (x, 0, c).

Given A>0, let %(x|0,c¢,41) denote the set of points ze®(x|0,c) that satisfy
||z — x||<Ah, where || - || denotes standard Euclidean distance. Let |%| denote the
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length of a finite segment % of a rectifiable curve, and put &(c, 1) = |%(x|0, ¢, 1)|,

G(x16, ¢, 2) = &(c, 2)”! / 4(2) ds,
(x]0,¢,4)

S(x]0,¢,2) = &(c, 1) /( ’ A){g”( 2) — §(x]0, ¢, 1)} ds, (2.2)

(0, ¢,) = argmingg ) S(x[0, ¢, 2), (2.3)

where ds is an infinitesimal element of arc length along ¥ = %(x|0, ¢, 1) at the point
on ¥ with coordinates z. Panel (a) of Fig. 1 depicts an example of the contour

estimator %(x|0y, é,, 2). Our final estimator of g(x) is

g(x[2) = g(x[0y, éx, 2). (2.4)

In practice, one would not necessarily use the same value of A when computing
(éx,éx) and when calculating §. That is, the A’s at (2.2) and (2.4) would not
necessarily be identical. We shall argue in Section 3 that a relatively large value of 4
(asymptotically, 41— oo) should be used to give accurate estimation of the “true”
quadratic approximation %(x|0y,c.) to the contour line at x. On the other hand, a
relatively small value of A may be adequate for reducing variance and removing edge
effects in the estimator 4.

To give an intuitive explanation of this point, note that estimation of 6 and c is
closely related to estimation of second derivatives of g, for which a larger bandwidth
is needed than when simply estimating ¢ itself. This explains why 4k, which is
effectively a bandwidth for computation of 0, and ¢, should be relatively large.
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Fig. 1. Sausage-shaped kernel. In the context of density estimation, panel (a) depicts a portion of a point
cloud, and the true contour line (solid line) that passes x = (0.85,1.04) (cross sign), when data are from the
bivariate normal N (0, 1) distribution and n = 500. Dotted line is the contour line estimate % (x|0y, é, 1),
calculated at that point based on the spherical biweight kernel, # = 0.8, and 4 = 1.25. Panel (b) shows a
perspective plot of the corresponding ‘“‘sausage-shaped” kernel K, defined at (2.5).
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However, there is not the same pressing need for choosing 4/ large when estimating g
itself.

2.2. Choice of contour estimator

To appreciate why minimising S(x|0, ¢, 4) produces a parabola that approximates
the contour 2(x), note that we are in effect finding that choice of (0, ¢) which renders
g(z) least variable as we move z along the curve %(x|0,c). Indeed, if we were to
replace ¢(z) by its true value, g(z), when defining §(x|0, ¢, 1) and S(x6, c, 4), then the
curve %(x|0y,¢,) produced by minimising S would, if not constrained to have a

quadratic equation, be exactly %(x). The curve %(x|0,, ¢,) represents an empirical,
quadratic approximation to this contour.

An alternative technique is to take % to be a line segment, rather than a piece of a
quadratic. The mechanics of implementing the approximation are virtually identical
in this setting: we replace % (x|0,c, 1) by Gin(x]0, 1), denoting the line segment of
length 24 centred at x and inclined at angle 0; we replace &(c, 2) at (2.2) by 24, and
call the resulting integral S(x|0, 1) instead of S(x|6,c,); and we choose 0 = 0 to
minimise S(x|6, 4). This approach is adequate for the results described in Sections
3.1-3.3, but for the higher-order analogues described in Section 3.4 a local quadratic
method, or something similar such as fitting local ellipses, is required.

A very different approach in estimating contour lines is to construct an
appropriately oversmoothed estimator of the function g, and compute its contours.
Oversmoothing is necessary in order to obtain sufficiently accurate estimates of
derivatives of the surface; these are used explicitly or implicitly in constructing an
estimate of the contour. We argue, however, that such a method is in general not as
attractive as that proposed here, owing to the relative difficulty of drawing contours
from differential-geometric properties of a surface.

Nevertheless, oversmoothing ¢ is beneficial when it is necessary to construct § at a
place where the tangent plane to the surface is virtually horizontal. Minimising the
function S(x|6,c, ) with respect to (6, ¢) relies on detecting off-contour differences
in g through variation of g; if the gradient of g is low then so too will be the
variation. In such cases we rely on higher-order derivatives to provide ‘“‘leverage” for
detecting the contour—hence the need for more dramatic smoothing.

2.3. Removing edge effects

Let # denote the support of the distribution of the points X; on which the
estimator ¢ is based. In the context of density estimation # would be the support of
g, and in regression # would be the support of the density of X; in the regression
problem Y; = g(X;) + error. The basic estimator §(x) potentially suffers from edge
effects whenever the support of the function k,(z) = K{(x — z)/h} protrudes outside
2. However, assuming K is radially symmetric and vanishes outside a disc of unit
radius, this problem is solved by the following trivial modification of the estimator
suggested in Section 2.1: Re-define the parabola segment (x|0, ¢, 1) to be the largest
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Fig. 2. Removing edge effects. In the presence of edge effects the subset of €(x|0, ¢) (dotted curve) that
comprises %(x|0, ¢, 1) (solid curve) is reduced, to ensure that the resulting region {0, ¢, (x|60, ¢, 1)}, from
which the estimator §(-|4) is computed, lies wholly within the support £ (right-hand side of the vertical
line) of the design distribution. The point x is marked by a cross. Panels (a) and (b) illustrate cases where
the contour is convex and concave, respectively, with respect to the boundary.

connected subset of #(x|0,c) inside the disc {z: ||z — x||<Ah}, subject to the set
{0, c,%(x|0,c,A)} being wholly contained within %, where

F(0,¢,7) ={z1: ||z1 — z2||<h for some z,€T }.

Fig. 2 illustrates the removal of edge effects in this context. Theoretical results, and
their derivations, in the presence of edge effects are entirely analogous to their
counterparts in the absence of those effects.

2.4. Why the estimator § has advantages

The advantages stem from the property, established in Section 3, that § is a good
approximation to the average of § over a portion of the true contour of the surface
represented by y = g(x). Specifically, let Z(x) denote the contour line that passes
through x, and let Z(x|/) equal the largest connected subset of Z(x) inside the disc
{z: ||z — x|| < Ah}, subject to F{0, ¢, Z(x|A)} being wholly contained within #. Write
Jeont (x|4) for the integral average of §(z) over ze Z(x|A). Then, as we shall show in
Section 3.2, the difference between §(x|4) and geont(x|4) is of smaller order than the
difference between the latter function and the true value of g(x).

It is easy to see why geont(x|4) is likely to perform better than the conventional
estimator §(x). Indeed, the averaging that is explicit in the definition of geont will
clearly tend to reduce variance, by an order of magnitude if /4 is allowed to diverge
with n. And the bias of geont(x|4) will equal the average value of the bias of §(z) over
values of z for which g(z) = g(x). Replacing bias by an average value is generally not
deleterious, and in fact the asymptotic bias of geont(x|2) is identical to that of g(x).
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2.5. Particular cases of §

In the case of density estimation the estimator § may be thought of as having been
computed using a kernel whose shape is symmetric about the parabolic axis

represented by % (x|0y, é). If § is given by (2.1) then this kernel is K, say, defined by

Kx(u)z|fg(0|0”x,éxh,z/h)|—l/ ) K(z+v)ds. (2.5)
%(00x.¢ch,2/h)

In this notation the estimator § has the standard form at (2.1):

=S K <x _hX"),

i=1

glx

where the support of K, is sausage-shaped with its axis represented by the quadratic
%(0[0y, éch).

Fig. 1 illustrates a typical local quadratic contour estimate, and the associated
sausage-shaped kernel, in the case of nonparametric density estimation. There is an
obvious analogue of the figure in the case of a local linear approximation to the
contour.

In the context of kernel-based regression the estimator § cannot be expressed
simply as the result of replacing K in the definition of §(x) by K,. An approach like
this is still feasible, but it would generally involve at least two kernels like K, one
(K, say) designed for estimating contours of fg, where f is the design density, and
the other (K, ,) designed to estimate contours of /. For example, in the case of local-
constant or Nadaraya—Watson estimation of g one would use K, ; and K, in the
numerator and denominator, respectively, of the estimator. The computational
complexity of such an approach makes it unattractive, however.

3. Theoretical properties
3.1. Contour approximation

Our aim in this section is to describe the accuracy with which the empirical

contour line (g(x|éx,éx) estimates a nonrandom, quadratic approximation
%(x|0y,cy) to Z(x). For brevity we confine our detailed treatment to the case of
nonparametric density estimation, noting in Section 3.6 the similarities to
nonparametric regression. We deal initially only with situations where edge effects
do not arise; Section 3.5 discusses how our results change in the presence of edge
effects.

Let % denote a bounded, open set in the plane. We assume of the kernel that

K is a compactly supported, radially symmetric, probability

density with Holder-continuous first derivatives; (Ck)
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of i and 2 that
h=n""° J2h/(logn)*> 0, and ih= O™

for some ¢>0, as n— co; (Ch,)

’

and of the density g that it is differentiable on % and satisfies

the gradient of the steepest vector in the tangent plane at x to
the surface represented by y = g(x) does not vanish for xe.&% (Ciy)

and

¢ has two Holder-continuous derivatives, of all types, in <. (Cay)

In respect of (Cj;), note that h=n~'/° is the optimal size of bandwidth for
estimating a density g with two derivatives.

Conditions (Cj,) and (Cy,) imply that, for each xe &, the contour line Z(x) that
passes through x may be represented locally as a quadratic, in the sense that there
exist a real number ¢y, and 0, € (—n/2, n/2], both uniquely determined, such that the
distance from any given point z on Z(x) to the nearest point on %(x|0y,cy)
converges to 0 at rate o(r?), uniformly in z satisfying ||z — x||<r, as r—0.

From a sample X, ..., X, of independent and identically distributed random
variables drawn from the distribution with density g, compute first the density

estimator ¢ given at (2.1), and then (éx, ¢y) defined at (2.3). Our first result describes

rates of convergence of the estimators 6, and ¢¢ to O and ¢y, respectively.
Immediately below the theorem we discuss its analogue when contours are estimated
using local linear methods.

Given >0 let &, = & equal the set of all points xe€.% such that the closed disc of
radius ¢, centred at x, is contained in .%. Let {0; — 0, > denote the distance between
arbitrary real numbers 6; and 6,, modulo .

Theorem 3.1. Assume conditions (Ck), (Cp,), (Ciy) and (Cyy). Constrain c to satisfy
lc| < C/(Ah), where C> 0 is fixed, when choosing (0, ¢) to minimise S(x|0, c, 4), defined
at (2.2). Then for each ¢>0, and with probability 1,

(logn)'/? su§(<éx — 0. + 2 |éc — e])—0. (3.1)

The theorem holds with only minor modifications if we use local linear, rather
than local quadratic, approximations to contour lines. Indeed, consistent estimation
of ¢, is not required for our method to produce asymptotic improvements on the
conventional estimator ¢. If we take S(x|0,1) to be the “linear” analogue of
S(x0, ¢, 1) defined in Section 2.2, and 0, to be its minimiser; and if we assume (Cx),
(Chz), (Ciy) and (Cyy); then (3.1) continues to hold in the sense that with
probability 1,

(logn)'? sup (0 — 0. > —0. (3.2)

XES,
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In practical terms, the assumption “2*%/(log n)S/ ‘5 07 in (Cp,) asks that the
square of the radius, A4, of the parabola fragment %(x|0, ¢, ) be of larger order than
the bandwidth, 4.

3.2. Density estimation

In this section we show that any sufficiently accurate empirical, quadratic
approximation %(x|0y, ¢,) to (x|0y, c,) leads to an estimator §(x|fy, é,, ) that is a
uniformly good approximation to geont(x|2).

Let éx,c} denote general estimators of 0,,c, respectively. Write 4y for a new
version of /, which for the sake of simplicity we shall keep fixed. Our next result
describes properties of the estimator g“(x|§x, Cx, 40). The version of (3.1) for 0, and é.,
and fixed 4, is: with probability 1,

(logn)'? sup (B — 0> + hlé, — cx]) 0. (3.3)

xXev,

Recall the definition of

Geom (x172) = |2 (x] )" / §(:) ds.

(x|7)

Theorem 3.2. Assume conditions (Cx), (Cay) and (3.3). Suppose too that h=n""/% and
Ao >0 is fixed. Then with probability 1,

gv(x|éx; Cy, /10) = gcont (XMO) + Op(hz) (34)

uniformly in xe &, for each ¢>0.

The estimators 0., ¢, described in Theorem 3.1 are examples of 0., 7, and then
(3.1) immediately implies (3.3). However, taking 0, to be a local linear estimator is
also adequate; there we should take ¢, = 0, and (3.3) follows from (3.2).

We should stress that in Theorem 3.2 the value Ay of A is taken fixed, while in
Theorem 3.1 it diverges slowly with n. The latter requirement is symptomatic of the
degree of oversmoothing that is necessary when estimating quantities that are linked
to density derivatives, such as the tangent angle 0, or the curvature c,, rather than
the density itself.

3.3. Performance advantages

To appreciate the variance reduction properties of the estimator geon¢ (and hence
of §), relative to its standard kernel counterpart ¢, let L(v) denote the integral
average of K(v+ z) over ze ¥ where % is any line segment of length 21y, and put
ky = [ M?* for M = K or L. We shall show shortly that the variances of §(x) and
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Geont (X]40) are asymptotic to (nh?)"'g(x) kpr as n— oo, where M = K and L in the
respective cases. Moreover, k; <kg, and so our method reduces variance; and also,
kp/xg~Cly ! for a constant C>0, as 4y— oo. The latter result shows that as the
fixed value of Ay becomes larger, the extent of variance reduction increases in
proportion to 4y. (Note that x; does not depend on the particular choice of £.)
The asymptotic bias of geon (x| 4o) is readily seen to be identical to that of §(x), and
in fact the expected value of either estimator equals g(x) + 11, V2g(x) + o(h?), where

Ky = f(v(l))2 K (v) dv, vV denotes the first component of the vector v, and Vg equals
the Laplacian. Combining this result with that in the previous paragraph, and with

(3.4), we see that the empirical contour estimator ¢(x|0y,¢,, ) has the same
asymptotic bias as the conventional kernel estimator ¢(x), but has reduced
asymptotic variance.

Therefore the estimator gv(x|§x7 &y, A0) has less minimum asymptotic mean squared
error (AMSE) than ¢(x). In particular, if # = Hn '/® then the AMSE equals
n=2/3 A (H), where

AL(H) =3 HYS{V?g(0)Y + H 7 g(x)ke

Through the fact that x; <k this is always (unless g(x) = 0) strictly less than the
AMSE of §(x); in the obvious notation the AMSE of g(x) equals n /> Agx(H).
Likewise the asymptotic mean integrated squared error of g“(x\éx, ¢y, 40), computed
for example over x€.%, is less than that for g(x).

The estimator §(x|0,, ¢, Ao) is also asymptotically normally distributed, in the
sense that

G(x|0y, v, 20) = g(x) + 3 h*V2g(x) + (nh) " {g(x)k }' PN,
+ op(n_l/3), (3.5)

where N, is asymptotically distributed as normal N(0, 1).
To rigorously establish the claims made above, note that geont(x|49) may be
written in a form similar to that at (2.1):

. x—X;
gconl(x|/L0 nh2 Z Kconl X ( ) s (36)
where

Keonix(v) = |Z0| ™" | K(v+z) ds, (3.7)

Do

with 2, denoting the image of the contour line segment %(x) after rescaling by /™!
in each coordinate and translating x to the origin. As 7—0 the kernel Kconx
converges to L, if the line segment . is chosen to have its centre at the origin and to
be parallel to the contour tangent at x. (This does not affect the value of iy,
however.) Therefore, the claim that the variances of ¢(x) and geont(x|4o) are
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asymptotic to (nh?)~'g(x)k s follows from standard arguments for the variance of a
kernel density estimator; see for example [22, pp. 19-23]. The result x; <xg follows
from the Cauchy—Schwarz inequality; equality cannot arise unless 4y = 0. It may be
shown too that

Jokr/kxg— C = /jo ds/K(u)K{v+ (5,0)"} db,

whence it follows that x;~Ckg/4o. Result (3.5) follows from (3.4), (3.6) and
the bias properties of geont(X|4g) noted in the paragraph containing (3.5). Asymptotic
normality of the variable &, in (3.5) is an immediate consequence of the fact
that geont(x|4o) is a sum of n independent and identically distributed random
variables.

3.4. High-order generalisations, and optimality

In Section 3.2 we simplified our theory by considering only the case where / is of
the size appropriate for optimal construction of ¢, and ¢ is fixed. In the present
section we discuss improvements in the overall convergence rate that are available
using other choices of bandwidth, and taking 4 to diverge with n. Our first resultis a
version of Theorems 3.1 and 3.2 in this setting.

1/11

Theorem 3.3. Assume (Ck), h = cin= ' and g = con'/"' where ¢y, c, >0 are fixed,

and that

g has two Holder continuous derivatives,

where the Holder coefficient exceeds 3. (3.8)

Then estimators 0, and ¢ of Oy and cy, respectively, can be constructed such that with
probability 1,
hil(IOg n)l/z sup (<0‘c — 0> + 10h|5x - Cx|) —0. (39)
xXev,
Furthermore, if (gx, x) satisfies (3.9), then (3.4) continues to hold with probability 1,
uniformly in xe &, for each ¢>0.

If the Holder coefficient mentioned in (3.8) equals 1—516(0,%); if, when
constructing § for use with the local quadratic contour estimation method
outlined in Section 2.1, we take & = n~3-%)/22 where 0< &, <9¢,/(2 + 3&); and if

we take (éx, éy) to be (éx, ¢y), defined in Section 2.1; then (3.9) holds. (An
outline proof will be given in Section 5.3.) Thus, as noted in the last paragraph of
Section 3.2, it is necessary to use a larger order of bandwidth when estimating
quantities such as 6, and ¢, which depend on derivatives of g, than when estimating
g itself.

The estimator geone in (3.4) again admits representation (3.6), with kernel Kconex
given by (3.7). It may be shown from those formulae that geont(x|Z9) has standard
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deviation O{(nh*49)""*} and bias O(h?). Both are of order n~#!, and so
§(x|0y, ¢, 20) = g(x) + O,(n=*'"). This represents an improvement by an order of
magnitude on the rate of convergence, O,(n~'/?), of the estimator discussed in
Theorem 3.2. Faster rates of convergence, up to OP(n‘Wz)Jré) for any given £>0, can
be obtained for sufficiently smooth densities by using more accurate contour
estimators.

As is well known (see e.g. [21]), the optimal rate of convergence of estimators of
bivariate densities with two bounded derivatives equals O(n~'/?). The results
discussed in Section 3.3 might seem to contradict this result, since they signal the
possibility of achieving a convergence rate of o(n~'/3) by choosing n'/®h to decrease
to zero sufficiently slowly, and /4 to diverge to infinity sufficiently slowly, as n— co.
However, there is in fact no violation, since we need a little more than just two
bounded derivatives, specifically the Hdolder continuity assumption in condition
(Cyy), in order to achieve the rate. Likewise, the assumption in (3.8) that the Holder
coefficient exceeds (rather than equals) % is slightly more than necessary for optimal
performance under minimal conditions. In each case, however, a biproduct of the
additional assumption is the uniform strong approximation of the empirical
contour-based estimator gv(x|5x, Gy, A) by its generalised kernel form geon(x|40), as
evidenced by (3.4).

3.5. The case of edge effects

In Section 2.3 we showed that, in the context of density estimation, there is a
natural version of § that addresses edge effects. As a prelude to stating the results of
Section 3.2 for estimators of this type, redefine the contour segment &, at (3.7) by
taking it to be that subset of the original &, which is as large as possible subject to
the support of fgo K{(-+2z)/h}ds not protruding outside the support set Z#

(introduced in Section 2.3). With this modification, continue to define Kconex by (3.7)
and gvconl by (36)

Take # to be a compact set whose boundary has two Hélder-continuous
derivatives and is such that at no point on the boundary is the tangent to the
boundary equal to the corresponding contour line; and assume the conditions of
Theorems 3.1 and 3.2 on £ rather than .%. Then (3.1) and (3.4) hold uniformly in
x€e (rather than xe.%;). Moreover, an argument identical to that in Section 3.2
shows that the asymptotic variance of geont(x|40), and hence of §(x|4p), decreases to

0 at rate /' as Jg— 0.

3.6. Nonparametric regression

A model for nonparametric regression is that where data pairs (X;, Y;) are
generated by the formula Y; = g(X;) + ¢;, the errors ¢; having zero mean. Theory in
this case is similar to that for density estimation, although regularity conditions are
required on the design variables X; and the error distribution. For the latter it is
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sufficient to suppose that the ¢;s are independent and identically distributed with all
moments finite and zero mean. In this case, terms in log# in (3.1) and (3.3) should be
replaced by terms in n°, for 9>0 fixed but arbitrarily small. In this vein, the
assumption “2%*h/(log n)5/4—> 00 in (Cy,;) should be replaced by “2*h/n’ - co for
some 0>0". Let (C),;) denote the corresponding version of (Cj ;).

Of the design variables it is adequate to suppose that they are independent and
identically distributed with density f, which is bounded away from 0 on . and has
two Hélder-continuous derivatives there. With this assumption, (Ck), (C),;), (Ciy)
and (Cy); using A when estimating (0.,¢,), and employing a fixed 4y when
constructing §; and taking the basic estimator ¢ to be of either Nadaraya—Watson or
local-linear type; results described in Sections 3.2 and 3.3 hold in the case of
nonparametric regression.

4. Numerical examples

Three estimation methods, local quadratic approximation to contour lines (giving
gp(x]4)), local linear approximation (giving §r(x|4)), and the standard kernel
estimator ¢(x), were used to estimate the probability density functions of two
distributions. We generated 200 random samples of size n = 500 from each. For each
sample, integrated squared error (ISE) values for the three estimators were
approximated by numerical integration. Values of MISE were approximated by
averaging 200 of the respective ISE values. The spherical biweight kernel, K(z) =
I3(1 —|z]|)%, was employed throughout.

Our first example is the unimodal bivariate normal N(0,7) distribution. We took
the bandwidth to equal 0.8. To construct gg(x|1) and gy (x|4), 4 in (2.2) was taken as
min(0.1 +3d(x),1.1), where d(x) was the distance from x to the location of the
mode of §. Three-quarters of this value was used for 4 in (2.4). See the second-last
paragraph of Section 2.1 and the last paragraph of Section 3.2. Notice that “‘radii” of
contour lines of the density surface degenerate near the mode, and that linearly
increasing the value of / ensures appropriate approximation of the contour lines.

Among the 200 random samples, the three samples that give median ISE values
for the three estimators are plotted in Fig. 3, which also shows the corresponding
values of g(x), gr(x|4) and §p(x|2). In multivariate cases, often a density surface
estimate fluctuates significantly due to data sparseness difficulties. The averaging
step of our contour approximation methods remedies this problem. This effect is
clearly demonstrated by the middle and bottom rows of Fig. 3. There, for each of the
three samples, the surfaces corresponding to §r(x|4) and gp(x|4) have less wiggly
contour lines than ¢ at places away from the mode.

Table 1 gives ISE values for the nine estimates. Table 2 provides average ISE
values, these being approximation to MISEs, for the three estimators. These results
demonstrate clear gains of gy (x|4) over 4.



M.-Y. Cheng, P. Hall | Journal of Multivariate Analysis 86 (2003) 375-397

-2

-1 0 1

2

Fig. 3. Unimodal density estimates. The top row depicts three samples of size 500 drawn from the bivariate
normal N(0,7) distribution. Middle and bottom rows show contour lines of the true density surface
(dashed lines), g (dotted lines) and contour approximation estimators, for the three respective samples.
The middle row compares the local linear contour approximation method (solid lines) with . The bottom

row compares the local quadratic contour approximation method (solid lines) with g.

Table 1

ISE values of the density estimates shown in Figs. 3 and 4

g(x)
gr(x|2)
gs(x[4)

Unimodal normal
0.001550
0.001398
0.001437

Bimodal normal mixture
0.003616
0.003311
0.003548

0.001660
0.001332
0.001635

0.003717
0.003261
0.003661

0.001602
0.001450
0.001520

0.003610
0.003310
0.003553
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Table 2
Average ISE values of §(x), §r(x|1), and gp(x|1) when applied to 200 random samples of size 500, drawn
from the unimodal N(0, ) or the bimodal normal mixture distribution at (4.1)

Unimodal normal Bimodal normal mixture
g(x) 0.001650 0.003724
jr(x|2) 0.001413 0.003377
ge(x|2) 0.001619 0.003678

Our next example illustrates performance of our estimators in a more complex,
bimodal setting, a mixture of two bivariate normal distributions:

AL E) o

Bandwidth was & = 0.6. To construct §(x|1) we took 4 in (2.2) to be min(0.1 +
2d(x),1.1), and three-quarters of its value to be 4 in (2.4), where d(x) was the
distance from x to the location of the mode of ¢ nearest to x. This prevents our using
too-large values of A at places between the modes, where the contour lines are
curved, and hence helps preserve the bimodal feature of the density surface estimate.
(In practice, there may not be prior information about the number of modes of the
true distribution. In this case one can make a judgment from plots of preliminary
estimates, such as ¢4.) For this example our approach again reduces fluctuations in
the density surface estimates caused by stochastic variability, particularly in regions
away from either of the modes; see the panels in the middle and bottom rows of Fig.
4. The ISE and average ISE values are given in Tables 1 and 2.

In summary, our simulation results demonstrate advantages of the contour
approximation methods: the density surface estimates are more regularly shaped and
the MISE values are reduced, compared to the usual kernel density estimate.
Notably, the local linear contour approximation estimator enjoys good numerical
performance. The local quadratic approximation method performs less well; it
involves fitting two, rather than one, parameter, and thus will outperform g in MISE
terms only when sample size is relatively large.

5. Proofs
5.1. Proof of Theorem 3.1

Puty=E(§),7=E(§),4=¢—7yand 4 = § — 7. Define 4;(x]0,¢c, 1), A2(x|0, ¢, A)
and A3(x|0, ¢, 2) to equal the integrals of {y(z) — 7(x|0, ¢)}*, {4(z) — A(x]0, ¢)}* and
{9(z) = 9(x]0,¢)} {4(z) — 4(x]0,¢)}, respectively, over ze%(x|0, ¢, 1). Then,

A2(x]0, ¢, 7) = / A(z) ds — £(e,2)A(x]6, ), (5.1)

%(x|0,c,)
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Fig. 4. Bimodal density estimates. Same as Fig. 3, except that the samples are from the bivariate normal
mixture distribution at (4.1).

As(xl0, ¢, 7) = / Y(2)A(2) ds — E(e, 2)7(x]6, ) A(x]6, ¢), (5.2)
%(x|0,c,2)
ES = A+ Ay + 24;5. (5.3)

Without loss of generality, 2>1 and 4h<1. Let { denote a differentiable function
defined in the plane, write |Dy|(z) for the supremum of the absolute value of the
directional derivative of s (at z) over all directions, let C>0, and put y = {0 — 0, >
and { = |c¢ — ¢y|. There exists C; >0 with the property that

’(/ -/ )WW
% (x)0,c,4) G (x|0y,cx,4)

<Ci(n+2h0)(Zh)  sup  {|Dy|(z) + Y(2)]} (5-4)

z ||z=x||< Ak
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uniformly in (0, ¢) such that |0],|0,| <=, |c|,|cx| < C/(Ah) and 5, Ah{ < C. (Below we
shall refer to this uniform sense as “uniform™”. At (5.4) and below the constants
Cy, ..., C4 depend only on C.) To derive (5.4), note that the distance between a given
point on %(x|6, ¢) and its counterpart on %(x|0y, ¢y, 4), to which the former may be
rotated about x, is dominated by a constant multiple of (y 4+ Ah{) Zh. Therefore, the
difference of function values at the two points is dominated by a constant multiple of
(n + Ah) Ak times sup|Dy|(z). To obtain the bound at (5.4) this should be multiplied
by a constant times the lengths of the curves, i.e. by a constant times 4. There is an
additional contribution to the right-hand side, coming from the difference between 1
and the Jacobian of the transformation, based on a rotation, which takes €(x|6, ¢) to
%(x|0y, cx, A); but it too is dominated by a constant multiple of the right-hand side
of (5.4).

The quantity ¢&(c,4), being the length of %(x|0,¢, 1), is asymptotic to 21k
uniformly in |¢|< C/(4h); and |é(c, ) — E(ex, A)| < Co(4h)*¢ uniformly in |¢| < C such
that {< C/(Ah). Therefore,

1E(e,4) " = Elew, 2) < Ci2RL, (5.5)

in the same uniform sense. Combining (5.1) with the results in this paragraph, and
defining B;(x(0, ¢, 2) = &(c, i)_lAj(x|0, ¢, ), we conclude that in the uniform™ sense,

|Bz(x|9, ¢, i) - BZ(XWM Cx, j~)|

<Cy(n+ 2002k sup  {|4(2)| |DA|(z) + A(2)*}. (5.6)

zi||z—x||<2h

Given j =0, 1, let A4;(x|0, c, 1) denote the integral of 7(zY A(z) over ze%(x]0, ¢, ).
An argument similar to that leading to (5.6) implies that in the uniform™ sense,

1700, ¢) — 7(0x, cx)| < Cs(n + 2h{) Ah, (5.7)

where the constants Cs, Cg, C; here and below depend only on C, g and K. From
(5.2), (5.7) and the properties of &(c,A) discussed in the previous paragraph, we
deduce that in the uniform™ sense,

|B3(x]0, ¢, 1) — B3(x|0y, ¢x, 4)]
< Co |(2h) " max{| Ay (x]0, ¢, 2) — Ay (x|0x, e, )]}
J=1

+ (n + 2h0) b max{| Ao (x]0, ¢, 2)], | Aao(x]0x, cx, A)] }| - (5.8)
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Combining (5.3), (5.6) and (5.8) we conclude that in the uniform™® sense,
|S(x]6,c, 1) — S(x]0y, cx, 4) — {Bi1(x]0, ¢, 1) — By (x]0y, cx, 1) }|

<G ((M)‘ max{ | y(xl0, ¢, 2) — Ay (xlos ex, 2)]}
J=14

+(n+ ihé)ih[ sup  {|4(2)] IDA|(2) + 4(2)°}

zi ||z—x|| < h
>. (5.9)

The quantities T =4(z), T = As(x]0,c,2) and T3 = Ag(x|0,c,4) —
A4j(x|0y, ¢y, 2) all have zero mean, and have variances equal to O(s}), O(s3) and
0(s3), respectively, where 52 = %, 53 = 21 and s3 = (n + 2h0)(Jh2)*. Also, Ty =
|DA|(z) has mean square equal to O(s3), where s7 = h%. For example, to obtain the
order of the variance of T3, note that the area between the curves %(x|0,¢, 1) and
%(x|0, ¢y, 4) equals O(x), where o= (4 Ah{)(4h)*. The variance of nh*Tj is
essentially the variance of a Poisson variable with mean O(na), and so the variance
of Ty equals O{(nh?) *na}, which, since h=n"1/5, equals O(ah?) = O(s3).

Using Bennett’s inequality we may prove that, provided

+ max{|A40(x]0, ¢, A)|, |Aa0(x|0x, cx, )|}

n'“¢h*s;—> oo, for some ¢>0 and i =1, ...,4, (5.10)

the probability that U, = |T;T4|, Uy = |T2| or Us = | T3] exceeds u; = Cgsys4 logn,
uy = Cgsy(log n)1/2 or uz = Cgss(log n)1/2, respectively, equals O(n~) in each case,
where Cy may be made arbitrarily large by choosing Cg sufficiently large; and these
probabilities are of the stated orders uniformly in x,ze%,, and in c,c,,0,0;
complying with the “uniform™” sense. From this result, using standard methods of

approximation (see below), we may deduce that with probability 1 the right-hand
side of (5.9), denoted below by RHS, satisfies

RHS = 0(5,)
where 8, = (n + 2h0)*h(logn)"* + (n + 2h0) 22h* (log n)'/?, (5.11)

the former identity holding uniformly in x€.%, and in ¢, ¢y, 6, 6, complying with the
“uniform®” sense. (Below we shall refer to this alternative uniform sense as
“uniform’’.)

The “‘standard methods of approximation” alluded to above may be summarised
as follows. Since .# is bounded then, for any ¢>0, a square lattice with edge width
n~¢ has only O(n*) of its vertices in .%. Since the derivatives of K are Hélder
continuous then we may choose ¢ so large that the difference between the value of U;
at a general point u (say) within %;, and the value of U; at the point of the lattice
(within .%) that is nearest to u, equals O(n~!) uniformly in u and in j = 1,2, 3, with
probability 1. Call this result (R;). By choosing Cs (introduced in the previous
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paragraph) so large that we may take Co>2c¢ + 2, and applying the Borel-Cantelli
lemma, we may show that the supremum of U;(u), over all « in the lattice, equals
O(1j) for each j, with probability 1. Call this result (Ry). Since n~! = O(z;) then,
combining (R;) and (R;), we have shown that the supremum of Uj(u), over all
ue Y, equals O(t;) for each j. This implies (5.11).

Define §(x|0, ¢, 2) to equal the integral of &(c, 1) 'g(z) over ze%(x|0, ¢, 2). Given
two bounded functions a and b defined in the plane, and a smooth, rectifiable, planar
curve € of finite length |%|, put
1/2

la—bll, = [ﬂ [t - by as

The conditions assumed of g imply that y = g + O(h*), whence it follows that
Bl(x|07 ¢ )‘)1/2 = ||Q - g(x|07 ¢ ;“)H(ﬁ’(x\(),c,l) + 0(h2)7 (512)

in the uniform’ sense. Moreover, writing §, = f,(x) for a sequence of positive
functions satisfying f8,(x) =1 uniformly in xe.%,, we claim that

llg = 3(x[0, ¢, Dllgxo.ey = B> (0 + Ah0) (5.13)

in the uniform’ sense.

To derive (5.13), note that each point on the curve segment %(x|0, c, 1) (the length
of which is asymptotic to 21h) is distant O{(n + Ah{) Ah} from the nearest point on
the true contour line that passes through x. Moreover, along a portion of the curve
segment, the portion having length equal to at least constant multiple of Ak for all
sufficiently large n, the nearest distance is at least a constant multiple of (y + AA{)h.
Let geont(x|4) denote the average of g(z) for z in the contour segment Z(x|4). In view
of (Cy4) and the results just noted,

llg = 3(x10, ¢; Mlgxo.e.y — 119 = Feont (X1 a1y = B> (n + Ah0) 2, (5.14)

where f8, has the properties claimed of the quantity at (5.13). A similar argument
shows that, since g has two Hoélder-continuous derivatives in &,

) = 19 = Geont (X[ D) 5(x2) = O{(7h)*"'}, (5.15)

where >0 depends on the Holder exponent. But by definition of the contour line
D(X), Joont(x|4) = g(x) and g(z) = g(x) for all ze Z(x), and so (5.14) and (5.15) are
respectively identical to (5.13) and

||g - g(xwxa Cx; ;“)||Q§/(x|(-)x,c,\»,)

19 = 3(x[0x, €xs Dl aip, e,y = OLER)* T} (5.16)
Combining (5.12) and (5.13) we deduce that
Bi(x]0,¢,2) = B,{(n+ 2h0)ah}* + O{(n + h{) ik + h*}. (5.17)

Likewise, (5.16) and the version of (5.12) for (0,c¢) = (0, cx) gives
By (x]0y, cx, ) = O{(Zh) + 1. (5.18)
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Combining (5.9), (5.11), (5.17) and (5.18), and noting that the quantity ( + Ah{)ih3

at (5.17) is of smaller order than the term (5 4 ) h*(log n)l/2 at (5.11), we see that
with probability 1, uniformly in xe %, for each ¢>0,

S(x|0,¢,2) — S(x|0x, ex, 4) = B {(n + Ah0) AR} + O{6, + ()™ + h*}. (5.19)

Therefore, in the operation of minimising S(x|0, ¢, 1) over 0 and ¢, &, = n + Ah{
can be made as small as a sufficiently large constant multiple of &, = (k) ' {6]/> +
(Ah)**" + h?}. Now, the relation ¢, =¢, is equivalent to

en=(A2h) 2 (logn)'® + (An)'. (5.20)

Note too that the property (%) **(logn)'® + (4h)'*' = O(e,) implies (5.10).
Therefore, with probability 1,

Oy — 00 + ihléx — cx| = O{(Z2h) P logn)'* + (1)1,

The theorem follows directly from this result.
5.2. Proof of Theorem 3.2

In a slight abuse of notation, write ¢, j, € and ¢ for g“(x|§x,5x,io), 7(x|§x, G, 20),
%(x|§x, &y, Ao) and &(éx, Ao), and let gy, 7o, €0 and &, denote the respective versions of
those quantities when (0, &,) is replaced by (0, c,). In a slight change of notation
from the previous proof, put n=rn(x)= (O, —0,> and (= {(x) =1¢x — ¢yl
Standard methods of strong approximation, similar to those used to derive (5.11),
may be used to show that under the conditions of the theorem, |d(z) — y(z)| =
O{hz(logn)l/z} and |D(§—v)|(z) = O{h(logn)l/z} uniformly in ze%,, for each
£>0, with probability 1. Using this result, (5.4), (5.5) and the representations

g-1=¢" -0 @-n=&"[ G-,
% %
we may prove that with probability 1,
1g(x|fl, &, Z0) = (x|, &, Z0) — {g(x|0x, ex, Z0) — 7(x|Ox, ex, Z0)}|
= O{(n + h{)*(logn)'*}. (5.21)

Similarly, using the fact that |D(y —g)|(z) = O(h) uniformly in ze%,, and
applying (5.4), (5.5) and the relation

Tl ) = Tl o) = 7 [ =0 =& [ =)
3 6o
we may prove that

|)7(X|5x, Co, 20) — 7(x[0x, cx, 40)| = O{(n + hC)hz} (5.22)
Both (5.21) and (5.22) are valid uniformly in xe.%,, for each ¢>0.
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Likewise, recalling that geont(x|4o) is the average value of § along the contour
segment Z(x|4g); and noting that, in view of the Holder continuity of second
derivatives of g, Z(x|4y) and the parabola segment %(x|6y,cy, o) are uniformly
distant A°n~* apart, for some &> 0; we may show that with probability 1,

|gv(x|9m Cx, 10) - gvcont(x|;LO)| = 0(h2)~ (523)
Combining (5.21)—(5.23) we deduce that with probability 1, and uniformly in x€ %,
G(x|0x, &, 20) = Goons(x|20) = O (n + h)*(logm)'*} + 0(i?). (524)

The theorem follows from this property and (3.4).

5.3. Proof of Theorem 3.3

Here we show that (Cg), (3.8) and (3.9) are sufficient for (3.4) when & = ¢;n=2/!!
and g = c;n"/'!, and that estimators (0, ¢,) satisfying (3.9) are readily constructed
when (3.8) holds.

The arguments leading to (5.21) and (5.22) apply as before, although the terms (4
and 4* on the right-hand sides of those formulae should be replaced by {Joh and
(/loh)2, respectively. Therefore, in view of (3.9), for the present choices of & and Ay,
the right-hand sides of (5.21) and (5.22) equal o(h?) with probability 1, uniformly in
xXeY.

For some &>0,

IEG(r1) — gn) — {EG(»2) — g(»2)}| = O |y — »a|),
1g(»v1) — EG(y ) {d(n) — E4(y2)}
= O{(nh*20) " (ly1 — y21|/h)" (log n)'*}

uniformly in points y; € Z(x|4) and y, e €(x|0y, cx, Ao) that are both distant s from x
and are on the same side of x, and are in xe %,. (In the case of the second identity
the result holds with probability 1.) For some 1>0, ||y> — yi|| = O{(4h)*™"} =
O(h'*), uniformly in pairs (y1,y,). Therefore, with probability 1 the difference
between the integral averages of § — g over Z(x|4) and %(x|0,, c, 4o) equals o(h?),
uniformly in xe.%,.

Given y; and y; as before,

2
g(»2 Z Y i) + O(ly2 = »lI*),

where g and g, represent first partial derivatives, and bracketed superscripts denote
vector components. Recall that ||y, — y1|| = o(h), uniformly in (y;, y2), and observe
(@)

that the integral average of (y» — y1)"” ¢i(y1) over y, € €(x|0y, cx, Ao) is bounded by a

constant multiple of the integral average of ||y, — ||, and hence equals o(h?).
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From this property and the fact that g(y;) = g(x) for each y; we deduce that the
integral average of g(y,) over €(x|0, cx, Ao) equals the integral average of g(y;) over
9(x|40), plus a term equal to o(h?).

Combining these results we see that the difference between the integral averages of
g over Z(x|do) and €(x|0,,cy, A0) equals o(h?), uniformly in xe.%,. This is the
analogue of (5.23) in the present setting. Combining this property and the versions of
(5.21) and (5.22) we obtain the following version of (5.24): g(x|0~x, Gy, Ao) —
Geont(X|40) = o(h?) uniformly in xe.%,, with probability 1. This is equivalent to (3.4).

Next we show that, if (3.8) holds, estimators 0, and ¢, can be constructed such
that (3.9) is true. Note that, in view of the present choice of & and Ay, (3.9) is
equivalent to

nz/”(log n)1/2 sup (0, —0,> >0, nl/“(log n)l/2 sup |&x — x| >0 (5.25)

XeS, xev,

with probability 1. Now, (3.8) implies that, simply by forming the respective
derivatives of ¢, one may estimate first and second derivatives of g with respective
rates n~ /22~ and n~(/1)=" for uniform convergence in .%, with probability 1.
Therefore we may estimate contour tangent angle and contour curvature with the
same respective rates. (In fact we may achieve this end by fitting a local quadratic to
contours, as suggested in Section 2.1.) Result (5.25) follows from this property.

If, when using the local quadratic contour estimation method outlined in Section

2.1, we choose the bandwidth for g to be & = n~3=%)/22 where 0< &, <9¢, /(2 + 3¢))
and &, e(O,%) is the Holder coefficient mentioned in (3.8), then for some 7 >0 the

convergence rates n~ /22~ and n~(/1D=" (for, respectively, first and second
derivatives of g) mentioned in the previous paragraph are obtained. It follows that
the local quadratic contour estimators also enjoy these rates.
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