1st homework
Due date: 9/25

Let F be either \mathbb{Q}, \mathbb{R}, or \mathbb{C}.

Exercise 1. Let $V = \mathbb{R}^2$. Define the addition by

$$(x_1, x_2) \oplus (y_1, y_2) = (x_1 + y_1, x_2y_2),$$

and define the scalar product by

$$\alpha \otimes (x_1, x_2) := (\alpha x_1, x_2).$$

Verify if V is a vector space over \mathbb{R} with \oplus and \otimes.

Exercise 2. Let $V = \mathbb{R}^2$. Then V is equipped with the usual addition $+$. Define a scalar product by

$$\alpha \otimes (x_1, x_2) := (x_1, 0), \quad \alpha, x_1, x_2 \in \mathbb{R}.$$

Verify if V is a vector space over \mathbb{R} with the usual $+$ and \otimes.

Exercise 3. Let $v_1 = (1, 2, 3)$ and $v_2 = (1, -1, 1)$. Determine if $(5, 1, 9)$ is a linear combination of v_1 and v_2.

Exercise 4. Let

$$S = \{x^3 + x^2 + x + 1, x^2 + x + 1, x + 1\} \subset F[x]$$

Determine if $-x^3 + 2x^2 + 3x + 3$ and $2x^3 - x^2 + x + 3$ are linear combinations of vectors in S. Justify your answer.

Exercise 5. Let V be the set of all functions $f : \mathbb{R} \to \mathbb{R}$. Then V is a vector space over \mathbb{R} endowed with the usual addition and scalar product between real-valued functions. Let

$$S = \{1, x, x^2, \ldots, x^n, \ldots\}$$

be the subset of monomials in V. Show that the function $f(x) = \sin x$ is NOT a linear combination of vectors in S over \mathbb{R}.

Exercise 6. Let V be a vector space over F and let W_1, W_2 and W_3 be subspaces of V. Suppose that

$$W_3 \subset W_1 \cup W_2.$$

Show that either $W_3 \subset W_1$ or $W_3 \subset W_2$.

Exercise 7. Let V be a vector space over F. Show that if a subset $\{v_1, v_2, \ldots, v_n\}$ of V is linearly independent over F, then so is the set $\{v_1 - 2v_2, v_2 - 2v_3, \ldots, v_{n-1} - 2v_n, v_n\}$.