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Abstract

In this paper we study the global unique continuation property for the elasticity
system and the general second order elliptic system in two dimensions. For the isotropic
and the anisotropic systems with measurable coefficients, under certain conditions on
coefficients, we show that the global unique continuation property holds. On the other
hand, for the anisotropic system, if the coefficients are Lipschitz, we can prove that the
global unique continuation is satisfied for a more general class of media. In addition
to the positive results, we also present counterexamples to unique continuation and
strong unique continuation for general second elliptic systems.

1 Introduction

In this work, we study the unique continuation property for the elasticity system and the
general second order elliptic system in two dimensions. We begin with the elasticity system.
Let u = (u1, u2)T be a vector-valued function satisfy

∂j(aijkl(x)∂kul) = 0 in R2, (1.1)

where aijkl(x) is a rank four tensor satisfying the symmetry properties:

aijkl = aklij = ajikl. (1.2)

Throughout, the Latin indices range from 1 to 2. Also, the summation convention is imposed.
For isotropic media, we have that aijkl = λδijδkl +µ(δikδjl + δilδjk), where λ and µ are called
Lamé coefficients. In this case, (1.1) is written as

∇ · (µ(∇u+ (∇u)T )) +∇(λ∇ · u) = 0 in R2. (1.3)
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We say that u, a solution of (1.3), satisfies the global unique continuation property if whenever
u that vanishes in the lower half plane, it vanishes identically in R2. Recall that any solution
u of the partial differential equation defined in an open connected set Ω is said to satisfy
the unique continuation property if whenever u vanishes in a non-empty open subset of Ω,
it is zero in Ω. On the other hand, u satisfies the strong unique continuation property if
whenever u vanishes of infinite order at any point of Ω, it vanishes in Ω.

For the isotropic system (1.3) with nice Lamé coefficients, there are a lot of results on the
unique continuation property and the strong unique continuation property (for dimension
n ≥ 2). We will not review the detailed development here. To motivate our study, we only
mention the recent result in [LNUW11], where the strong unique continuation property was
proved for µ ∈ W 1,∞ and λ ∈ L∞, which is the best known assumption on the coefficients
by far. For the scalar second order elliptic equation in non-divergence or divergence form

A∇2u = 0 in R2 (1.4)

or
∇ · (A(x)∇u) = 0 in R2, (1.5)

the strong unique continuation property is satisfied for A ∈ L∞ (see, for example, [Al92],
[Al12], [AE08], [BN54], [Sc98]). The proof is based on the intimate connection between (1.4)
or (1.5) and quasiregular mappings. Therefore, it is a natural question to ask whether the
unique continuation or the strong unique continuation hold for (1.3) or even for (1.1) when
all coefficients are only measurable.

When µ of (1.3) is Lipschitz, it is known that (1.3) is weakly coupled. Hence, the usual
Carleman method will lead us to the unique continuation properties. However, if µ is only
measurable, (1.3) is strongly coupled. To the best of our knowledge, the Carleman method
has never been successfully applied to strongly coupled systems. The general elasticity
system (1.1) is always strongly coupled, regardless of the regularity of coefficients.

In this work we would like to show that solutions u of (1.1) satisfy the global unique
continuation property under some restrictions on the measurable coefficients aijkl. Our
approach to prove this result relies on the the connection between (1.1) and the Beltrami
system with matrix-valued coefficients (see (2.16)). When this matrix-valued coefficient is
sufficiently small (which is satisfied when the coefficients do not deviate too much from a set
of constant coefficients), we can follow the arguments in [IVV02] and use the Lp-norm of the
Beurling-Ahlfors transform to conclude the result. When the coefficients are only measurable,
the set of constant coefficients is rather restricted, see the conditions in Theorem 2.1 and 2.3.
If some coefficients of the general system (1.1) are Lipschitz, the global unique continuation
is true for coefficients near a larger set of constant coefficients, see Theorem 3.1.

In addition to the positive results mentioned above, we also present a counterexample to
unique continuation for a second order elliptic system (in the sense of (4.26)) with measurable
coefficients based on the example derived in [IVV02]. The main idea in the construction of the
counterexample is to convert the second order elliptic system to a first order elliptic system
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and match coefficients of the first order system obtained from the example in [IVV02]. Based
on the example given in [CP11] (also see related article [Ro09]), using the same argument, we
can also construct a counterexample to strong unique continuation for second order elliptic
systems with continuous coefficients satisfying the Lagendre-Hadamard condition (2.21) or
even the strong convexity condition:

aijkl(x)ξlkξ
i
j ≥ c|ξ|2 (1.6)

for any 2 × 2 matrix ξ = (ξlk), where c is a positive constant. Note that (1.6) implies the
Legendre-Hadamard condition.

We would like to remark that the nontrivial solution u of the counterexample to unique
continuation described above vanishes in the lower half plane. It was shown in [MS03] that
there exist nontrivial W 1,2(R2) solution u or Lipschitz solution u whose supports are compact
solving second order elliptic system with measurable coefficients satisfying the Legendre-
Hadamard condition. This is another counterexample to unique continuation for second order
elliptic systems with measurable coefficients. We want to point out that the examples in
[MS03] do not exist in second order elliptic systems satisfying the strong convexity condition
(1.6). This can be easily seen by the integration by parts. Nonetheless, the strong convexity
condition (1.6) does not rule out the existence of the counterexample to unique continuation
we constructed in this paper since this nontrivial solution does not necessarily have compact
support.

The paper is organized as follows. In Section 2, we prove the global unique continuation
property for the Lamé and general anisotropic systems when the measurable elastic coeffi-
cients are close to some constant values. In Section 3, we expand the set of constant values
when the elastic coefficients are Lipschitz. Finally, in Section 4, we construct counterexam-
ples to unique continuation and strong unique continuation for general second order elliptic
systems with measurable coefficients and continuous coefficients, respectively.

2 Elasticity system with measurable coefficients

It is instructive to begin with the isotropic system, i.e., Lamé system (1.3). Assume that
λ, µ ∈ L∞ satisfy the ellipticity condition

µ ≥ δ > 0, λ+ 2µ ≥ δ, ∀ x ∈ R2. (2.1)

The key to proving the global unique continuation property lies in arranging the coefficients
nicely. We write (1.3) componentwisely

∂1(2µ∂1u1) + ∂2(µ(∂1u2 + ∂2u1)) + ∂1(λ∇ · u) = 0 (2.2)

and
∂1(µ(∂1u2 + ∂2u1)) + ∂2(2µ∂2u2) + ∂2(λ∇ · u) = 0. (2.3)
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Let v = ∇ · u = ∂1u1 + ∂2u2 and w = ∇× u = ∂1u2 − ∂2u1, then (2.2) is written as

∂1(2µ∂1u1 + λv) + ∂2(2µ∂2u1 + µw) = 0. (2.4)

Similarly, (2.3) is equivalent to

∂1(2µ∂1u2 − µw) + ∂2(2µ∂2u2 + λv) = 0. (2.5)

By taking advantage of the relation

∆u1 = ∂1v − ∂2w and ∆u2 = ∂2v + ∂1w,

we obtain from (2.4) that

∂1((2µ− 1)∂1u1 + (λ+ 1)v) + ∂2((2µ− 1)∂2u1 + (µ− 1)w) = 0 (2.6)

and from (2.5) that

∂1((2µ− 1)∂1u2 − (µ− 1)w) + ∂2((2µ− 1)∂2u2 + (λ+ 1)v) = 0. (2.7)

Therefore, there exist u′1 and u′2 such that{
∂2u

′
1 = (2µ− 1)∂1u1 + (λ+ 1)v,

−∂1u
′
1 = (2µ− 1)∂2u1 + (µ− 1)w,

(2.8)

and {
∂2u

′
2 = (2µ− 1)∂1u2 − (µ− 1)w,

−∂1u
′
2 = (2µ− 1)∂2u2 + (λ+ 1)v.

(2.9)

Setting f1 = u1 + iu′1 and f2 = u2 + iu′2, (2.8) and (2.9) become{
∂̄f1 = σ∂f1 + h,

∂̄f2 = σ∂f2 + ih,
(2.10)

where

σ =
1− µ
µ

and h = −λ+ 1

2µ
v − iµ− 1

2µ
w.

As usual, we define

∂̄ =
1

2
(∂1 + i∂2), ∂ =

1

2
(∂1 − i∂2).

Using the obvious relations

∂1u1 =
1

2
(∂̄f1 + ∂f1 + ∂f̄1 + ∂f1), ∂1u2 =

1

2
(∂̄f2 + ∂f2 + ∂f̄2 + ∂f2),

∂2u1 =
1

2i
(∂̄f1 − ∂f1 − ∂f̄1 + ∂f1), ∂2u2 =

1

2i
(∂̄f2 − ∂f2 − ∂f̄2 + ∂f2),

4



we can compute

h = −λ+ 1

2µ
v − iµ− 1

2µ
w

= −λ+ 1

4µ

(
(∂̄f1 + ∂f1 + ∂f̄1 + ∂f1)− i(∂̄f2 − ∂f2 − ∂f̄2 + ∂f2)

)
− iµ− 1

4µ

(
(∂̄f2 + ∂f2 + ∂f̄2 + ∂f2) + i(∂̄f1 − ∂f1 − ∂f̄1 + ∂f1)

)
=

(
µ− λ− 2

4µ

)
∂̄f1 +

(
−λ− µ

4µ

)
∂f1 +

(
−λ− µ

4µ

)
∂f̄1 +

(
µ− λ− 2

4µ

)
∂f1

+ i

(
λ− µ+ 2

4µ

)
∂̄f2 + i

(
−λ− µ

4µ

)
∂f2 + i

(
−λ− µ

4µ

)
∂f̄2 + i

(
λ− µ+ 2

4µ

)
∂f2.

For simplicity, let us denote

α =
µ− λ− 2

4µ
, β =

−λ− µ
4µ

,

then
h = α∂̄f1 + β∂f1 + β∂f̄1 + α∂f1 − iα∂̄f2 + iβ∂f2 + iβ∂f̄2 − iα∂f2

and
ih = iα∂̄f1 + iβ∂f1 + iβ∂f̄1 + iα∂f1 + α∂̄f2 − β∂f2 − β∂f̄2 + α∂f2.

Therefore, (2.10) is equivalent to(
I2 +

(
−α iα
−iα −α

))
∂̄

(
f1

f2

)
+

(
−β −iβ
−iβ β

)
∂

(
f̄1

f̄2

)
=

(
β iβ
iβ −β

)
∂

(
f1

f2

)
+

(
σ + α −iα
iα σ + α

)
∂

(
f1

f2

)
,

(2.11)

where In denotes the n × n unit matrix. Setting ∂f̄
∂̄f

= 0 if ∂̄f = 0 and ∂f
∂f

= 0 if ∂f = 0,

(2.11) can be written as(
I2 +

(
−α iα
−iα −α

))
∂̄

(
f1

f2

)
+

(
−β −iβ
−iβ β

)(∂f̄1
∂̄f1

0

0 ∂f̄2
∂̄f2

)
∂̄

(
f1

f2

)

=

(
β iβ
iβ −β

)
∂

(
f1

f2

)
+

(
σ + α −iα
iα σ + α

)(∂f1
∂f1

0

0 ∂f2
∂f2

)
∂

(
f1

f2

)
.

(2.12)

Finally, let U and V be two 2× 2 matrices

U = I2 +

(
−α iα
−iα −α

)
+

(
−β −iβ
−iβ β

)(∂f̄1
∂̄f1

0

0 ∂f̄2
∂̄f2

)
,

V =

(
β iβ
iβ −β

)
+

(
σ + α −iα
iα σ + α

)(∂f1
∂f1

0

0 ∂f2
∂f2

)
,
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then (2.12) writes as

U∂̄

(
f1

f2

)
= V ∂

(
f1

f2

)
. (2.13)

It is clear that

‖U − I2‖L∞ ≤ C(‖α‖L∞ + ‖β‖L∞) and ‖V ‖L∞ ≤ C(‖β‖L∞ + ‖σ‖L∞ + ‖α‖L∞), (2.14)

where C is an absolute constant. Hereafter, for any matrix-valued function A(x) : Cn → Cn

with x ∈ R2, the norm ‖A‖L∞ is defined by

‖A‖L∞ = sup
x∈R2

‖A(x)‖,

where ‖ · ‖ is the usual matrix norm derived by treating Cn as an inner-product space.

Theorem 2.1 There exists an ε > 0 such that if

‖µ− 1‖L∞ ≤ ε and ‖λ+ 1‖L∞ ≤ ε, (2.15)

then for any Lipschitz solution u of (1.3) vanishing in the lower half plane, we must have
u ≡ 0.

Remark 2.2 It is clear that if the Lamé coefficients λ and µ satisfy (2.15), then the ellip-
ticity condition (2.1) holds.

Proof. Since u is Lipschitz and vanishes in the lower half plane, so does the vector-valued
function

F =

(
f1

f2

)
.

In view of the definitions of σ, α, β, if ε of (2.15) is sufficiently small, then all of them
are sufficiently small as well. By (2.14), U is invertible and V is small, consequently,
‖U−1V ‖L∞ ≤ ε′ � 1. Therefore, from (2.13) we have

∂̄F = Ψ∂F in C, (2.16)

where Ψ = U−1V and we have identified R2 as the complex plane C. Note that here
F : C→ C2. (2.16) is a Beltrami system studied in [IVV02]. It was proved in [IVV02] that
if ‖Ψ‖L∞ is sufficiently small and F vanishes in the lower half plane, then F is trivial, i.e.,
u is trivial. For the sake of completeness, we sketch the proof here. We refer to [IVV02,
Section 7] for more details. Without loss of generality, we assume that F vanishes for =z ≤ 1.
Define G(z) = F (

√
z). Then G satisfies

∂̄G =
z

|z|
Ψ(
√
z)∂G. (2.17)
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We can see that the differential of G, DG, lies in Lp(C) for some p > 4 (see (7.13) in [IVV02]).
In other words, we have

‖∂̄G‖Lp ≤ ε′‖∂G‖Lp . (2.18)

Let S be the Beurling-Ahlfors transform, i.e., S∂̄ = ∂. It is known from the Calderón-
Zygmund theory that

‖S‖Lp→Lp ≤ ap (2.19)

for some constant ap, depending only on p (see [BJ08] for a more precise bound on ap).
Hence, (2.19) implies

‖∂G‖Lp ≤ ap‖∂̄G‖Lp . (2.20)

Combining (2.18) and (2.20), we conclude that ‖∂̄G‖Lp = ‖∂G‖Lp = 0 provided apε
′ < 1 for

some p > 4. The proof of theorem then follows. 2

Now we turn to the general elasticity system (1.1). Assume that aijkl ∈ L∞ satisfies the
ellipticity condition

aijkl(x)ξiξlρjρk ≥ δ|ξ|2|ρ|2 ∀ ξ, ρ ∈ R2, (2.21)

i.e., the Legendre-Hadamard condition. Due to the symmetry properties (1.2), for simplicity,
we denote 

a1111 = a, a2222 = b, a1112 = a1211 = a2111 = a1121 = c,

a1122 = a2211 = d, a1212 = a2112 = a1221 = a2121 = e,

a1222 = a2122 = a2212 = a2221 = g.

Componentwise, (1.1) is written as{
∂1(a∂1u1 + c∂1u2 + c∂2u1 + d∂2u2) + ∂2(c∂1u1 + e∂1u2 + e∂2u1 + g∂2u2) = 0,

∂1(c∂1u1 + e∂1u2 + e∂2u1 + g∂2u2) + ∂2(d∂1u1 + g∂1u2 + g∂2u1 + b∂2u2) = 0.
(2.22)

For our purpose, we will express (2.22) as
∂1((a− d− 1)∂1u1 + (d+ 1)v + c∂1u2 + c∂2u1)

+ ∂2((2e− 1)∂2u1 + (e− 1)w + c∂1u1 + g∂2u2) = 0,

∂1((2e− 1)∂1u2 − (e− 1)w + c∂1u1 + g∂2u2)

+ ∂2((b− d− 1)∂2u2 + (d+ 1)v + g∂1u2 + g∂2u1) = 0.

(2.23)

Comparing (2.23) with (2.6), (2.7), it is not difficult to see that (2.23) can be transformed
to (2.16) with similar smallness condition on Ψ if |a− d− 2| � 1, |b− d− 2| � 1, |d+ 1| �
1, |e− 1| � 1, |c| � 1, |g| � 1. Therefore, we can prove that

Theorem 2.3 There exists ε > 0 such that if{
‖a− d− 2‖L∞ ≤ ε, ‖b− d− 2‖L∞ ≤ ε, ‖d+ 1‖L∞ ≤ ε,

‖e− 1‖L∞ ≤ ε, ‖c‖ ≤ ε, ‖g‖L∞ ≤ ε,
(2.24)
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then if u is a Lipschitz function solving (1.1) and vanishes in the lower half plane, then u
vanishes identically.

Remark 2.4 Under the assumptions (2.24), (1.1) is a slightly perturbed system of the Lamé
system with λ, µ satisfying (2.15). Therefore, the ellipticity condition (2.21) holds.

3 Anisotropic system with regular coefficients

One may wonder if |d + 1| � 1 and |e − 1| � 1 in Theorem 2.3 can be replaced by
|d + k0| � 1 and |e − k0| � 1 for k0 6= 1. For measurable coefficients, it is not possible
since the requirement of |e− k0| � 1 and 2e− k0 ∼ 1 will force k0 = 1. However, if a, b, d, e
are Lipschitz, we can extend Theorem 2.3 to a larger class of system. Let k0 be any fixed
constant. Similarly to (2.23), we obtain that

∂1((a− d− k0)∂1u1 + (d+ k0)v + c∂1u2 + c∂2u1)

+ ∂2((2e− k0)∂2u1 + (e− k0)w + c∂1u1 + g∂2u2) = 0,

∂1((2e− k0)∂1u2 − (e− k0)w + c∂1u1 + g∂2u2)

+ ∂2((b− d− k0)∂2u2 + (d+ k0)v + g∂1u2 + g∂2u1) = 0.

(3.1)

Denote ã = a− d− k0, ẽ = 2e− k0, b̃ = b− d− k0. Suppose that ã 6= 0 and b̃ 6= 0. Then (3.1)
is equivalent to

∂1(∂1(ãu1)− ∂1ãu1 + (d+ k0)v + c∂1u2 + c∂2u1)

+ ∂2(ẽã−1(∂2(ãu1)− ∂2ãu1) + (e− k0)w + c∂1u1 + g∂2u2) = 0,

∂1(ẽb̃−1(∂1(b̃u2)− ∂1b̃u2)− (e− k0)w + c∂1u1 + g∂2u2)

+ ∂2(∂2(b̃u2)− ∂2b̃u2 + (d+ k0)v + g∂1u2 + g∂2u1) = 0.

(3.2)

We set ũ1 = ãu1, ũ2 = b̃u2, then (3.2) becomes
∂1(∂1(ũ1)− ∂1ãã

−1ũ1 + (d+ k0)v + c∂1(b̃−1ũ2) + c∂2(ã−1ũ1))

+ ∂2(ẽã−1(∂2(ũ1)− ∂2ãã
−1ũ1) + (e− k0)w + c∂1(ã−1ũ1) + g∂2(b̃−1ũ2)) = 0,

∂1(ẽb̃−1(∂1(ũ2)− ∂1b̃b̃
−1ũ2)− (e− k0)w + c∂1(ã−1ũ1) + g∂2(b̃−1ũ2))

+ ∂2(∂2(ũ2)− ∂2b̃b̃
−1ũ2 + (d+ k0)v + g∂1(b̃−1ũ2) + g∂2(ã−1ũ1)) = 0.

(3.3)

We then express{
v = ∂1u1 + ∂2u2 = ∂1ã

−1ũ1 + ã−1∂1ũ1 + ∂2b̃
−1ũ2 + b̃−1∂2ũ2

w = ∂1u2 − ∂2u1 = ∂1b̃
−1ũ2 + b̃−1∂1ũ2 − ∂2ã

−1ũ1 − ã−1∂2ũ1.
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Theorem 3.1 Let k0 > 0. Assume that a, b, d, e are Lipschitz and c, g are measurable.
Moreover, suppose that a, b, d, e are constants in R2 \K, where K is compact set. Then there
exists an ε = ε(k0, K) > 0 such that if{

‖∇(a− d)‖L∞ ≤ ε, ‖∇(b− d)‖L∞ ≤ ε, ‖a− d− 2e‖L∞ ≤ ε, ‖b− d− 2e‖L∞ ≤ ε,

‖d+ k0‖L∞ ≤ ε, ‖e− k0‖L∞ ≤ ε, ‖c‖L∞ ≤ ε, ‖g‖L∞ ≤ ε,

(3.4)
then if u vanishes in the lower half plane, then u is identically zero.

Proof. We first note that when ε, depending on k0, is sufficiently small, ã and b̃ are strictly
positive. Let f1 = ũ1 + ũ′1 and f2 = ũ2 + iũ′2, where ũ′1 and ũ′2 are conjugate functions of ũ1

and ũ2 defined as above. In view of (3.4), (3.3) is reduced to

∂̄F = Ψ̃∂F +HF + H̃F̄ , (3.5)

where ‖Ψ̃‖L∞ ≤ ε′, ‖H‖L∞ ≤ ε′, ‖H̃‖L∞ ≤ ε′, and H, H̃ are supported in K. Note that
ε′ → 0 as ε→ 0. As before, let G(z) = F (

√
z), then G satisfies

∂̄G =
z

|z|
Ψ̃(
√
z)∂G+H(

√
z)G+ H̃(

√
z)Ḡ.

By the Poincaré inequality, we have that

‖HG‖Lp + ‖H̃Ḡ‖Lp ≤ ε′C(‖∂̄G‖Lp + ‖∂G‖Lp) (3.6)

for p ≥ 2, where C depends on K (and p). Using (3.6), we have from (3.5) that

‖∂̄G‖Lp ≤ ε′′‖∂G‖Lp

with ε′′ → 0 as ε→ 0. Next, using the same arguments as in the proof of Theorem 2.1, the
result follows. 2

Remark 3.2 From the ellipticity condition (2.1) for isotropic media, it is readily seen that
if k0 > 0 and ε is sufficiently small, then the ellipticity condition (2.21) is satisfied.

4 Counterexample to unique continuation

In this section we will construct a counterexample to the unique continuation property,
which vanishes in the lower half plane, for second order elliptic systems with measurable
coefficients. Precisely, we consider

∂j(aijkl(x)∂kul) = 0 in R2, (4.1)
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where the coefficients aijkl do not necessarily satisfy the symmetry conditions (1.2). For
simplicity, we use the following short-hand notations:

11→ 1, 12→ 2, 21→ 3, 22→ 4,

i.e.,
a1111 = a11, a1112 = a12, a1121 = a13, a1122 = a14, · · · etc.

So, the system (4.1) is written as
∂1(a11∂1u1 + a12∂1u2 + a13∂2u1 + a14∂2u2)

+ ∂2(a21∂1u1 + a22∂1u2 + a23∂2u1 + a24∂2u2) = 0,

∂1(a31∂1u1 + a32∂1u2 + a33∂2u1 + a34∂2u2)

+ ∂2(a41∂1u1 + a42∂1u2 + a43∂2u1 + a44∂2u2) = 0.

(4.2)

As before, we can find v1 and v2 such that{
∂2v1 = a11∂1u1 + a13∂2u1 + a12∂1u2 + a14∂2u2,

−∂1v1 = a21∂1u1 + a23∂2u1 + a22∂1u2 + a24∂2u2,
(4.3)

and {
∂2v2 = a32∂1u2 + a34∂2u2 + a31∂1u1 + a33∂2u1,

−∂1v2 = a42∂1u2 + a44∂2u2 + a41∂1u1 + a43∂2u1.
(4.4)

Here we will use a different reduction from the one used in Section 2. The method is inspired
by Bojarski’s work [Bo57]. Denote

α1 =
(a11 + a23) + i(a21 − a13)

2
, β1 =

(a11 − a23) + i(a21 + a13)

2
,

ζ1 = a12 + ia22, η1 = a14 + ia24.

Let f1 = u1 + iv1 and f2 = u2 + iv2, then we can compute that

0 = (1 + α1)∂̄f1 + β1∂f1 + β1∂f1 − (1− α1)∂f1 + ζ1∂1u2 + η1∂2u2

= (1 + α1)∂̄f1 + β1∂f1 + β1∂f1 − (1− α1)∂f1 +
ζ1

2
(∂̄f2 + ∂f2 + ∂f2 + ∂f2)

+
η1

2i
(∂̄f2 − ∂f2 − ∂f2 + ∂f2)

= (1 + α1)∂̄f1 + β1∂f1 + β1∂f1 − (1− α1)∂f1 + (
ζ1

2
+
η1

2i
)∂̄f2 + (

ζ1

2
− η1

2i
)∂f2

+ (
ζ1

2
− η1

2i
)∂f2 + (

ζ1

2
+
η1

2i
)∂f2.

(4.5)
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Likewise, we denote

α2 =
(a32 + a44) + i(a42 − a34)

2
, β2 =

(a32 − a44) + i(a42 + a34)

2
,

ζ2 = a31 + ia41, η2 = a33 + ia43,

then we obtain

0 = (1 + α2)∂̄f2 + β2∂f2 + β2∂f2 − (1− α2)∂f2 + (
ζ2

2
+
η2

2i
)∂̄f1 + (

ζ2

2
− η2

2i
)∂f1

+ (
ζ2

2
− η2

2i
)∂f1 + (

ζ2

2
+
η2

2i
)∂f1.

(4.6)

Putting (4.5) and (4.6) in matrix form gives

A∂̄F +B∂F + C∂F +D∂F = 0 in C, (4.7)

where F =

(
f1

f2

)
and

A =

(
1 + α1

ζ1
2
− iη1

2
ζ2
2
− iη2

2
1 + α2

)
, B =

(
β1

ζ1
2

+ iη1
2

ζ2
2

+ iη2
2

β2

)
,

C =

(
β1

ζ1
2

+ iη1
2

ζ2
2

+ iη2
2

β2

)
(= B), D =

(
−1 + α1

ζ1
2
− iη1

2
ζ2
2
− iη2

2
−1 + α2

)
.

(4.8)

Note that D = A − 2I2. Conversely, it is easy to see that, given any 2 × 2 complex-valued

matrices A, B, C, D satisfying B = C and D = A − 2I2 and (4.7) with F =

(
u1 + iv1

u2 + iv2

)
,

then, writing A, B, C, D as in (4.8), we can find real numbers a11, a12, · · · , a44 such that
(4.3), (4.4) hold, and hence (4.2) is satisfied.

It was proved in [IVV02] that there exists a 2 × 2 complex-valued matrix Q ∈ L∞(C)
with

‖Q‖L∞(C) ≤ κ < 1 (4.9)

and a nontrivial Lipschitz function F̃ : C → C2 vanishing in the lower half plane of C such
that

∂̄F̃ +Q∂F̃ = 0 in C. (4.10)

Adding A× (4.10) and B × (4.10), for any A, B, gives

A∂̄F̃ +B∂F̃ + AQ∂F̃ +BQ∂F̃ = 0 in C. (4.11)

Comparing (4.7) with (4.11), we hope to find A, B, C, D satisfying

B = C = AQ, D = BQ, D = A− 2I2. (4.12)
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To fulfill (4.12), we begin with

A− 2I2 = D = AQQ,

which implies
A(I2 −QQ) = 2I2. (4.13)

In view of (4.9), we have that ‖QQ‖L∞(C) ≤ κ2 < 1 and hence I2−QQ is invertible. In other
words, (4.13) gives

A = 2(I2 −QQ)−1.

Once A is determined, we can find C and, of course, B. Hence the relations in (4.12)
hold. Finally, in view of the definitions of αj, βj, ζj, ηj, j = 1, 2, there exists a unique fourth
rank-tensor (aijkl(x)) producing A, B, C, D which were determined above.

With such A, B, C, D obtained above, there exists a nontrivial solution F : C → C2,
i.e., F = F̃ , vanishing in the lower half plane of C and satisfying (4.7) (and hence, (4.11)),
i.e.,

A∂̄F + AQ∂F + AQ∂F + AQQ∂F = 0 in C. (4.14)

As mentioned above, (4.14) is equivalent to the second order system (4.2) with corresponding
coefficients (aijkl(x)). Now we would like to verify that this second order system is elliptic.
The meaning of ellipticity will be specified later. We first show that L0F := ∂̄F + Q∂F is
equivalent to a first order uniformly elliptic system. Let us denote

F =

(
u1 + iv1

u2 + iv2

)
,

then

2∂̄F =

(
(∂1u1 − ∂2v1) + i(∂1v1 + ∂2u1)
(∂1u2 − ∂2v2) + i(∂1v2 + ∂2u2)

)
and

2∂F =

(
(∂1u1 + ∂2v1) + i(∂1v1 − ∂2u1)
(∂1u2 + ∂2v2) + i(∂1v2 − ∂2u2)

)
.

Let Q = Qr + iQi, then 2L0F can be put into the following equivalent system

L1


u1

u2

v1

v2

 :=

(
I2 +Qr −Qi

Qi I2 +Qr

)
∂1


u1

u2

v1

v2

+

(
Qi −I2 +Qr

I2 −Qr Qi

)
∂2


u1

u2

v1

v2

 , (4.15)

i.e., 2L0F = G =

(
g1

g2

)
=

(
w1 + iz1

w2 + iz2

)
is equivalent to

L1


u1

u2

v1

v2

 =


w1

w2

z1

z2

 .
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For simplicity, we denote

R =

(
I2 +Qr −Qi

Qi I2 +Qr

)
and S =

(
Qi −I2 +Qr

I2 −Qr Qi

)
.

Now we want to show that (4.15) is uniformly elliptic, i.e.,

det(αR + βS) ≥ c(α2 + β2)2, ∀ z ∈ C, (α, β) ∈ R2 6= 0, (4.16)

where c = c(κ) > 0. To prove (4.16), we first observe that

S =

(
Qi −I2 +Qr

I2 −Qr Qi

)
=

(
I2 −Qr Qi

−Qi I2 −Qr

)
J

where

J =

(
0 −I2

I2 0

)
.

Therefore, we obtain that

αR + βS = α(I4 + E) + β(I4 − E)J = (αI4 + βJ) + E(αI4 − βJ), (4.17)

where

E =

(
Qr −Qi

Qi Qr

)
.

From (4.9), we have that for E : R4 → R4

‖E‖L∞(R4) ≤ κ. (4.18)

It is easy to see that

‖(αI4 + βJ)Z‖ = ‖(αI4 − βJ)Z‖ =
√
α2 + β2 ‖Z‖, ∀ Z ∈ R4. (4.19)

Combining (4.18) and (4.19) gives

det(αR + βS) = det(αI4 + βJ)det(I4 + (αI4 + βJ)−1E(αI4 − βJ)) ≥ c(α2 + β2)2

with c = c(κ) and (4.16) is proved.
Now we want to consider

2(∂̄F +Q∂F +Q(∂F +Q ∂F )) = 2L0F + 2QL0F . (4.20)

It is easy to see that

2L0F =

(
w1 − iz1

w2 − iz2

)
,
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which is equivalent to

ÎL1


u1

u2

v1

v2

 = Î


w1

w2

z1

z2

 ,

where

Î =

(
I2 0
0 −I2

)
.

Consequently, (4.20) can be written as

(R + EÎR)∂1


u1

u2

v1

v2

+ (S + EÎS)∂2


u1

u2

v1

v2

 .

It is clear that

det(α(R + EÎR) + β(S + EÎS)) = det([αR + βS] + EÎ[αR + βS])

= det(αR + βS) · det(I4 + EÎ)

≥ c(α2 + β2)2.

Finally, let us denote A = Ar + iAi and

Â =

(
Ar −Ai
Ai Ar

)
,

then
A∂̄F + AQ∂F + AQ∂F + AQQ∂F = 0 (4.21)

is equivalent to the first order system

Â(R + EÎR)∂1


u1

u2

v1

v2

+ Â(S + EÎS)∂2


u1

u2

v1

v2

 = 0. (4.22)

Since detÂ ≥ c > 0, we immediately obtain that

det(αÂ(R + EÎR) + βÂ(S + EÎS)) ≥ c(α2 + β2)2. (4.23)

We would like to remind the reader that (4.21) is equivalent to (4.3), (4.4) (and (4.2)).
Now we return to the system (4.3), (4.4), i.e.,{

∂2v1 = a11∂1u1 + a13∂2u1 + a12∂1u2 + a14∂2u2,

−∂1v1 = a21∂1u1 + a23∂2u1 + a22∂1u2 + a24∂2u2,
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and {
∂2v2 = a32∂1u2 + a34∂2u2 + a31∂1u1 + a33∂2u1,

−∂1v2 = a42∂1u2 + a44∂2u2 + a41∂1u1 + a43∂2u1.

We put this system as
a11 a12 0 0
a21 a22 1 0
a31 a32 0 0
a41 a42 0 1

 ∂1


u1

u2

v1

v2

+


a13 a14 −1 0
a23 a24 0 0
a33 a34 0 −1
a43 a44 0 0

 ∂2


u1

u2

v1

v2

 = 0, (4.24)

which is equivalent to (4.22). From (4.23), we have that

c(α2 + β2)2

≤ det(αÂ(R + EÎR) + βÂ(S + EÎS))

= det

α

a11 a12 0 0
a21 a22 1 0
a31 a32 0 0
a41 a42 0 1

+ β


a13 a14 −1 0
a23 a24 0 0
a33 a34 0 −1
a43 a44 0 0




= −det

α

a11 a12 0 0
a31 a32 0 0
a21 a22 1 0
a41 a42 0 1

+ β


a13 a14 −1 0
a33 a34 0 −1
a23 a24 0 0
a43 a44 0 0




= det


a12α + a14β a11α + a13β −β 0
a32α + a34β a31α + a33β 0 −β
a22α + a24β a21α + a23β α 0
a42α + a44β a41α + a43β 0 α


= det

(
a12α

2 + a14αβ + a22αβ + a24β
2 a11α

2 + a13αβ + a21αβ + a23β
2

a32α
2 + a34αβ + a42αβ + a44β

2 a31α
2 + a33αβ + a41αβ + a43β

2

)
.

(4.25)

It follows from (4.25) that for any ξ = (ξ1, ξ2) 6= 0, the 2 × 2 matrix (
∑

j,k aijkl(z)ξjξk)
satisfies

|det(
∑
j,k

aijkl(z)ξjξk)| ≥ c|ξ|4, ∀ z ∈ C. (4.26)

In summary, we have shown that

Theorem 4.1 There exists a nontrivial vector-valued function u = (u1, u2)T : R2 → R2

vanishing in the lower half plane solving a second order uniformly elliptic system (4.1), in
the sense of (4.26), with essentially bounded coefficients.

To prove Theorem 4.1, we used a reduction different from the one given in Section 2. It
is natural to investigate whether the reduction used here can be applied to prove positive
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results stated in Section 2. We only discuss the Lamé system. Comparing (2.2), (2.3) and
(4.2) implies 

a11 = λ+ 2µ, a12 = a13 = 0, a14 = λ,

a21 = a24 = 0, a22 = a23 = µ,

a31 = a34 = 0, a32 = a33 = µ,

a41 = λ, a42 = a43 = 0, a44 = λ+ 2µ.

By the definitions, we see that
α1 =

λ+ 3µ

2
, β1 =

λ+ µ

2
, ζ1 = iµ, η1 = λ,

α2 =
λ+ 3µ

2
, β2 = −λ+ µ

2
, ζ2 = iλ, η2 = µ,

and thus,

A =

(
1 + λ+3µ

2
i
2
(µ− λ)

i
2
(λ− µ) 1 + λ+3µ

2

)
, B = C =

(
λ+µ

2
i
2
(µ+ λ)

i
2
(λ+ µ) −λ+µ

2

)
,

D =

(
−1 + λ+3µ

2
i
2
(µ− λ)

i
2
(λ− µ) −1 + λ+3µ

2

)
.

Now if µ ≈ 1 and λ ≈ −1 as in Theorem 2.1, then B ≈ 0, C ≈ 0, but

A ≈
(

2 i
−i 2

)
, D =

(
0 i
−i 0

)
.

In other words, (4.7) corresponding to the Lamé system can not be put into the form

∂̄F = Ψ∂F

with ‖Ψ‖L∞ � 1.
On the other hand, if the coefficients (apq) of (4.2) satisfy{

‖apq − 1‖L∞ ≤ ε for pq = 11, 23, 32, 44,

‖apq‖L∞ ≤ ε for all other pq′s
(4.27)

with a sufficiently small ε, then

‖A− 2I2‖L∞ ≤ cε, ‖B‖L∞ = ‖C‖L∞ ≤ cε, ‖D‖L∞ ≤ cε

for some constant c. For this case, we can prove that the global unique continuation property
holds as in the proof of Theorem 2.3. It is not hard to see that the second order system
(4.2) with coefficients satisfying (4.27) is elliptic in the sense of (4.26). In fact, we can even
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show that (apq) = (aijkl) satisfies the strong convexity condition (1.6) (and, of course, the
Legendre-Hadamard condition (2.21)) provided ε is small. To see this, it suffices to consider
a11 = a1111 = 1, a23 = a1221 = 1, a32 = a2112 = 1, a44 = a2222 = 1, and all other apq’s are
zero. Then we have that for any 2× 2 matrix ξ = (ξlk)

aijklξ
l
kξ
i
j = a1111ξ

1
1ξ

1
1 + a1221ξ

1
2ξ

1
2 + a2112ξ

2
1ξ

2
1 + a2222ξ

2
2ξ

2
2 = |ξ|2,

which implies (1.6) for small ε. The class of second order elliptic systems (4.2) satisfying
(4.27) contains a special class of hyperelastic materials, where only the major symmetry
property aijkl = aklij holds.

A counterexample to the strong unique continuation for (2.16) was constructed in [CP11]
(see also related article [Ro09]). The counterexample given in [CP11] shows that there exists
a nontrivial function F vanishing at 0 to infinite order satisfying

∂̄F +Q∂F = 0,

where Q(x) ∈ C2×2 is continuous and vanishes at 0 to infinite order as well. Based on
this example, using the same framework as above, we can construct a counterexample to
strong unique continuation for second order elliptic systems with continuous coefficients in
the plane. Observe that for the extreme case Q = 0, we have A = 2I and B = C = D = 0.
Consequently, we see that

a11 = a23 = a32 = a44 = 1

and all other apq’s are zero. Therefore, when x is near 0, Q is sufficiently small, which
is exactly the case we discussed in (4.27). In other words, for the second order elliptic
system with coefficients satisfying (4.27) and the strong convexity condition (1.6), the global
unique continuation property holds, in spite of the fact that there are examples showing
that the strong unique continuation property fails. Furthermore, we want to point out that
the counterexample to the strong unique continuation for (4.1) we constructed is a small
perturbation of the Laplacian ∆ near the origin. In Section 2 we have shown that the Lamé
system with λ ≈ −1 and µ ≈ 1 can be written as a small perturbation of the Laplacian.
Therefore, this counterexample strongly suggests that the Lamé system with measurable
coefficients, even when λ ≈ −1 and µ ≈ 1, does not possess the strong unique continuation
property. Moreover, this example or an earlier example constructed in [Ali80] also suggest
that the strong unique continuation property for the anisotropic elasticity system even with
continuous coefficients is most likely not true.
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