Advanced Algebra II
Homework 10
due on May. 21, 2004

k is an algebraically closed field unless otherwise stated.

(1) Consider the ring homomorphism \(\varphi : k[x, y, z, w] \rightarrow k[s, t] \) by \(x \mapsto s^3, y \mapsto s^2t, z \mapsto st^2, w \mapsto t^3 \). Determine \(\ker \varphi \). Is \(\ker \varphi \) a prime ideal?

(2) Determine all prime ideal of \(k[x, y] \).

(3) Let \(R \) be a ring. And let \(\text{Spec}(R) \) be the set of all prime ideals of \(R \). For an ideal \(I \lhd R \), we define

\[V(I) := \{ p \in \text{Spec}(R) | I \subset p \} \]

Show that we can define the "Zariski topology" on \(\text{Spec}(R) \) by considering \(V(I) \) as closed sets.

(4) Consider \(R := k[x, y]/(x^n - y^m) \), where \((n, m) = 1 \). Show that \((x^n - y^m) \) is prime. Find an algebraically independent element \(t \in R \) such that \(R \) is integral over \(k[t] \).

Moreover, let’s define the degree of the extension \(R/k[t] \) to be \([K : k(t)] \), where \(K \) denote the quotient field of \(R \). What’s the degree of your extension \(R/k[t] \)? What’s the minimum possible degree?