Advanced Algebra I

GROUP ALGEBRA

Recall that by a regular representation of G, we consider a vector space with basis $\{e_s\}_{s \in G}$. Let $\mathbb{C}[G]$ be the vector space with basis $\{e_s\}_{s \in G}$. One can have a natural ring structure on $\mathbb{C}[G]$ as following:

$$\sum_{s \in G} a_s e_s + \sum_{s \in G} b_s e_s = \sum_{s \in G} (a_s + b_s) e_s,$$

$$(\sum_{s \in G} a_s e_s)(\sum_{t \in G} b_t e_t) = \sum_{s, t} a_s b_t e_{st} = \sum_{u \in G} (\sum_{s, t} a_s b_t) e_u.$$

We call $\mathbb{C}[G]$ the group algebra of G.

We claim that $\mathbb{C}[G] \cong \prod_{i=1}^{r} M_{n_i}(\mathbb{C})$.

Where r is the number of conjugacy classes of G and n_i is the degree of each irreducible representation.

First of all, the irreducible representation $\rho_i : G \to GL(W_i)$ induces an algebra homomorphism $\tilde{\rho}_i : \mathbb{C}[G] \to End(W_i) \cong M_{n_i}(\mathbb{C})$ by $\tilde{\rho}_i(\sum_{s \in G} a_s e_s) = \sum_s a_s \rho_i(g)$. Hence one has

$$\tilde{\rho} : \mathbb{C}[G] \to \prod_{i=1}^{r} End(E_i) \cong \prod_{i=1}^{r} M_{n_i}(\mathbb{C}).$$

We first claim the $\tilde{\rho}$ is surjective. Suppose not, then there is a linear relation on the images. It follows that there is a relation on the coefficients of ρ_i. In particular, there is a linear relation on χ_i. By the orthogonal property, this is impossible. Hence $\tilde{\rho}$ is surjective. However, they have the same dimension. Hence $\tilde{\rho}$ is an isomorphism.

Remark 0.1. $\mathbb{C}[G]$ is abelian if and only if G is abelian.

Our next goal it to determine the center $Z(\mathbb{C}[G])$. In order to check $x = \sum a_s e_s$ is in center or not, we need to check for all $t \in G$,

$$x = \sum_{s \in G} a_s e_s = e_t^{-1} x e_t = \sum_{s \in G} a_s e_{t^{-1}st} = \sum_{s \in G} a_{ts^{-1}} e_s.$$

Note that $t^{-1}st$ is conjugate to s. Thus, it’s equivalent to have $a_s = a_{s'}$ for all s' conjugate to s.

A special case is that the above equation holds for $e_c := \sum_{\sigma \in c} e_\sigma$, where c is a conjugacy class. Moreover, by our computation above, it’s indeed that

$$Z(\mathbb{C}[G]) = \{ \sum_{i=1}^{r} a_i e_{c_i} | a_i \in \mathbb{C}, c_i \text{ runs through all conjugacy classes} \}.$$
Example 0.2. Let $G = S_3$. Then the center has a basis $e_{(1)}, e_{(12)} + e_{(13)}, e_{(123)} + e_{(132)}$

By viewing the isomorphism $\tilde{\rho}$, one sees that if $u = \sum a_se_s \in Z(\mathbb{C}[G])$, then $\tilde{\rho}(u)$ is of the form λ_iI on the irreducible representation V_i. The value λ can be computed. Note that the coefficient a_s actually gives a class function on G because $a_s = a_{s'}$ for s, s' in the same conjugate class. We write it as a^G. By averaging process, one has $\tilde{\rho}_i = \sum_{s \in G} a_s \rho_i(s)$ linear transformation on V_i. Thus one has

$$\lambda_i = \frac{1}{d_i} \text{tr}(\sum_{s \in G} a_s \rho_i(s)) = \frac{1}{d_i} \sum a_s \chi_i(s).$$

Theorem 0.3. Keep notation as before, then one has $d_i | g$.

To prove this result, we need some facts on integral extension and algebraic integers.

Remark 0.4. (1) Let R be a commutative ring, one can view it as a \mathbb{Z}-module. An element $x \in R$ is said to be integral over \mathbb{Z} if x satisfies a monic integral polynomial in $\mathbb{Z}[x]$.

(2) In a commutative ring R, the elements which are integral over \mathbb{Z} forms a subring of R.

(3) If $R = \mathbb{C}$, then subring of elements which are integral over \mathbb{Z} is called ring of algebraic integers, denoted \mathbb{A}.

(4) $\mathbb{A} \cap \mathbb{Q} = \mathbb{Z}$.

Remark 0.5. The character $\chi(s)$ is an algebraic integer for all χ and all $s \in G$. This is because χ is sum of eigenvalues of a representation ρ. However, the eigenvalues are root of unity which are algebraic integers.

Proposition 0.6. Let $u = \sum a_se_s \in Z(\mathbb{C}[G])$ such that $a_s \in \mathbb{A}$. Then u is integral over \mathbb{Z}.

Proof. Since $Z(\mathbb{C}[G])$ is generated by e_c. Let $c_1, ..., c_r$ be all the conjugacy classes and let $a_i := a_{s_i}$ for some $s_i \in c_i$. We first consider $R := \oplus_{i=1}^r \mathbb{Z}e_{c_i}$. It’s clear that R is a subring of $Z(\mathbb{C}[G])$ which is finitely generated over \mathbb{Z}. Now let $M = \mathbb{Z}[a_1, ..., a_r]$. Since a_i is integral over \mathbb{Z}, it follows that M is a finite \mathbb{Z}-module. One checks that $\mathbb{Z}[u] \subset \oplus_{i=1}^r Me_{c_i}$. Hence u is integral over \mathbb{Z}. □

Proof of the theorem. For each i, take $u = \sum_{s \in G} \chi(s^{-1})e_s$. It’s clear that $u \in Z(\mathbb{C}[G])$. By the previous Proposition, one has that u is integral over \mathbb{Z}.

Note that one has natural ring homomorphism $\omega_i : Z(\mathbb{C}[G]) \to \mathbb{C}$,
by sending u to λ_i the multiple of its i-component. It follows that the homomorphic image λ_i is an algebraic integer. One has now

$$\lambda_i := \frac{1}{d_i} \sum \chi_i(s^{-1})\chi_i(s) = \frac{g}{d_i} < \chi_i, \chi_i > = \frac{g}{d_i}.$$

Hence $\lambda_i \in \mathcal{A} \cap \mathbb{Q} = \mathbb{Z}$. It follows that $d_i | g$. \qed