Advanced Algebra I

representation of finite groups, II Characters

Let \(\rho \) be a 1-dimensional representation of a group \(G \). Then in this case \(\rho = \chi : G \to \mathbb{C}^* \). One sees that \(\chi(st) = \chi(s)\chi(t) \) for all \(s, t \in G \). Such character is called an abelian character.

Let \(\hat{G} \) be the set of all 1-dimensional characters, it forms a group under the multiplication \(\chi\chi' : G \to \mathbb{C}^* \).

Exercise 0.1. Let \(G \) be an abelian group. Prove that \(G \cong \hat{G} \).

Recall that a representation \(\rho : G \to GL(V) \) is the same as a linear action \(G \times V \to V \). Suppose now that there are two representation \(\rho, \rho' \) on \(V, V' \) respectively. A linear transformation \(T : V \to V' \) is said to be \(G \)-invariant if it’s compatible with representations. That is,

\[
T\rho_s(v) = \rho'_s(Tv),
\]

for all \(v \in V \).

Thus an isomorphism of representation is nothing but a \(G \)-invariant bijective linear transformation.

Exercise 0.2. It’s easy to check that if \(T : V \to V' \) is \(G \)-invariant, then the \(\ker(T) \subset V \) and \(\text{im}(T) \subset V' \) are \(G \)-invariant subspaces.

Theorem 0.3 (Schur’s Lemma). Let \(\rho, \rho' \) be two irreducible representation of \(G \) on \(V, V' \) respectively. And let \(T : V \to V' \) be a \(G \)-invariant linear transformation. Then

1. Either \(T \) is an isomorphism or \(T = 0 \).
2. If \(V = V', \rho = \rho' \), then \(T \) is multiplication by a scalar.

Proof.

1. Since \(\ker(T) \) is a \(G \)-invariant subspace and \(V \) is irreducible. One has that either \(\ker(T) = 0 \) or \(\ker(T) = V \). Hence \(T \) is injective or \(T = 0 \). If \(T \) is injective, by looking at \(\text{im}(T) \), one must have \(\text{im}(T) = V' \). Therefore \(T \) is an isomorphism.

2. Let \(\lambda \) be an eigenvalue of \(T \). One sees that \(T_1 := T - \lambda I \) is also an \(G \)-invariant linear transformation. Since \(\ker(T_1) \) is non-zero, one has that \(\ker(T_1) = V \). Thus \(T_1 = 0 \) and hence \(T = \lambda I \).

\[\square \]

Suppose one has \(T : V \to V' \) not necessarily \(G \)-invariant. One can produce an \(G \)-invariant linear transformation by the "averaging process". For \(T(v) = s^{-1}T(sv) \), we set

\[
\tilde{T}(v) := \frac{1}{g} \sum_{s \in G} s^{-1}T(sv).
\]

And it’s easy to check that this is \(G \)-invariant.
proof of the main theorem. (1) Let \(\rho, \rho' \) be two irreducible representation of \(G \) on \(V, V' \) with character \(\chi, \chi' \) respectively.

Let \(T : V \to V' \) be any linear transformation. One can produce a \(G \)-invariant transformation \(\tilde{T} \).

Suppose first that \(\rho \) and \(\rho' \) are not isomorphic. Then by Schur’s Lemma, \(\tilde{T} = 0 \) for all \(T \).

We fix bases of \(V, V' \) and write everything in terms of matrices.

\[
0 = (\tilde{T})_{ij} = \sum_{t,k,l} (R^t_{t-1})_{ik}(T)_{kl}(R_l)_{lj}.
\]

Take \(T = E_{ij} \), then one has

\[
0 = \sum_{t,k,l} (R^t_{t-1})_{ik}(E_{ij})_{kl}(R_l)_{lj} = \sum_t (R^t_{t-1})_{ii}(R_l)_{jj}.
\]

Hence

\[
< \chi', \chi > = \sum_{t,i,j} (R^t_{t-1})_{ii}(R_l)_{jj} = 0.
\]

Suppose now that \(\rho = \rho' \), \(\chi = \chi' \). The averaging process and Schur’s Lemma gives

\[
\lambda I = \tilde{T} = \frac{1}{g} \sum_t R(t)T R_t.
\]

One notice that \(\lambda d = tr(\tilde{T}) = tr(T) \).

Now we set \(T = E_{ii} \), then

\[
\frac{1}{d} = (\lambda I)_{ii} = \frac{1}{g} \sum_t (R^t_{t-1})_{ik}(E_{ii})_{kl}(R_l)_{li} = \sum_t (R^t_{t-1})_{ii}(R_l)_{ii}.
\]

It follows that

\[
< \chi, \chi > = \sum_t \sum_i (R^t_{t-1})_{ii}(R_l)_{ii} = \sum_i \frac{1}{d} = 1.
\]

(2) A class function \(f \) on a group \(G \) is a complex value function such that \(f(s) = f(t) \) if \(s \) and \(t \) are conjugate. The space \(C \) of class function is clearly a vector space of dimension \(r \), where \(r \) denotes the number of conjugacy classes of \(G \). We claim that the set of character of irreducible representation form a orthonormal basis of \(C \).

We remark that inner product can be defined on any class function.

Suppose now that \(\phi \) is a class function which is orthogonal to every \(\chi_i \). For any character \(\chi \) of an irreducible representation \(\rho \), we can produce a linear transformation by averaging process \(T := \frac{1}{d} \sum_t \phi(t) \rho_t \). It’s clear that \(tr(T) = < \phi, \chi >= 0 \). One sees that \(\tilde{T} : V \to V \) is \(G \)-invariant. By Schur’s Lemma, \(T = \lambda I \). But \(Tr(T) = 0 \). Thus \(T = 0 \) for any character \(\chi \).
We apply to the regular representation $\rho : G \to \mathbb{C}[G]$,

$$
0 = T(e_1) = \frac{1}{g} \sum_t \overline{\phi(t)} \rho_t(e_1) = \frac{1}{g} \sum_t \overline{\phi(t)} e_t.
$$

Since e_t forms a basis for $\mathbb{C}[G]$, it follows that $\phi(t) = 0$ for all $t \in G$ and hence $\phi = 0$.

(3) We may assume that there are r irreducible representation. And suppose that the regular representation ρ is decomposed into $n_1 \rho_1 \oplus \ldots \oplus n_r \rho_r$. One notice that $\rho(1) = g$ and $\rho(t) = 0$ for all $t \neq 1$. By direct computation,

$$
d_i = \langle \chi_{\rho}, \chi_i \rangle = n_i,
$$

$$
g = \langle \chi_{\rho}, \chi_{\rho} \rangle = \sum_i d_i^2.
$$

To prove that $d_i | g$ need some extra work on the group algebra $\mathbb{C}[G]$ which we will do later.

□