Part A.

(1) Suppose that there are two representation ρ, ρ' on V, V' respectively. A linear transformation $T : V \rightarrow V'$ is said to be G-invariant if it’s compatible with representations. That is,

$$T\rho_s(v) = \rho'_s(Tv),$$

for all $v \in V$. Prove that if $T : V \rightarrow V'$ is G-invariant, then the $\ker(T) \subset V$ and $\text{im}(T) \subset V'$ are G-invariant subspaces.

(2) A class function χ is called an abelian character if $\chi(st) = \chi(s)\chi(t)$. Let \hat{G} be the set of abelian characters. Show that \hat{G} is naturally a group. And prove that if G is a finite abelian group, then $|G| = |\hat{G}|$.

(3) Let ρ be a representation of G on V. Prove or disprove: If the only G-invariant linear transformation on V are multiplication by scalar, then ρ is irreducible.

Part B.

(1) Let G be a non-abelian group of order 27 such that maximal order is 3.

(a) Show that the center of G is a group of order 3.
(b) How many conjugacy classes are there in G?
(c) Determine the character table of G.
(d) Find an irreducible representation of degree 3.