Advanced Algebra I
Homework 12
due on Dec. 19, 2003

(1) Determine the Galois group of the following extension:
 (a) \(\mathbb{Q}(\sqrt{3}, \sqrt{5}) \) over \(\mathbb{Q} \).
 (b) Let \(F \) be the splitting field of \(x^5 - 2 \) over \(\mathbb{Q} \). What is the
 Galois group \(\text{Gal}_{F/\mathbb{Q}} \)?

(2) Show that if \([F : K] = 2\) then \(F \) is normal over \(K \).

(3) Prove that an algebraically closed field is infinite.

(4) Let \(K = \mathbb{K} \) be an algebraically closed field. Let \(f(x_1, \ldots, x_n) \neq 0 \in \mathbb{K}[x_1, \ldots, x_n] \). Prove that there are \(a_1, \ldots, a_n \in K \) such that
 \(f(a_1, \ldots, a_n) = 0 \). That is \(f = 0 \) has a solution in \(K^n \). What if
 \(K \) is not algebraically closed?

(5) Let \(F \) be a finite field of \(p^n \) elements and \(P \) be its prime field, that is, a subfield of \(p \) elements.
 (a) Consider \(\sigma : F \rightarrow F \) by \(\sigma(u) = u^p \). Show that \(\sigma \in \text{Gal}_{F/P} \).
 (b) Determine \(\text{Gal}_{F/P} \).