(1) Consider the field \(\mathbb{Q}[u] := \mathbb{Q}[x]/(x^3 + x + 1) \), where \(u \) denote the coset of \(x \).
 (a) Find \(u^{-2} \) in \(\mathbb{Q}[u] \).
 (b) Find minimal polynomial of \(u^2 \).

(2) Let \(F/K \) be a field extension. Let \(\mathcal{A} \subset F \) be those elements in \(F \) which is algebraic over \(K \). Show that \(\mathcal{A} \) is a field.

(3) In the group \(\text{GL}(2, \mathbb{F}_q) \), there is the Borel group \(B \) of upper triangular matrices and diagonal subgroup \(D \). There is a group homomorphism \(B \to D \) by \(\begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mapsto \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \). Fix \(\alpha, \beta : \mathbb{F}_q^* \to \mathbb{C}^* \), one has \(D \to \mathbb{F}_q^* \times \mathbb{F}_q^* \xrightarrow{(\alpha, \beta)} \mathbb{C}^* \times \mathbb{C}^* \xrightarrow{\text{mult}} \mathbb{C}^* \).

 It follows that the composition \(B \to \mathbb{C}^* \) is a representation. Let \(W_{\alpha, \beta} \) be the induced representation on \(\text{GL}(2, \mathbb{F}_q) \). Compute the character of \(W_{\alpha, \beta} \) and determine the irreducibility.

 Recall that conjugacy classes of \(\text{GL}(2, \mathbb{F}_q) \) are represented by elements of the following four types:

 \[
 a_x = \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix}, \quad b_x = \begin{pmatrix} x & 1 \\ 0 & x \end{pmatrix}, \quad c_{x,y} = \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix}, \quad d_{x,y} = \begin{pmatrix} x & \varepsilon y \\ y & x \end{pmatrix}
 \]

(4) Let \(F/K \) be a field extension of degree 2 and \(\text{char}(K) \neq 2 \). Show that there is an element \(u \in F - K \) such that \(u^2 \in K \).

(5) Prove or disprove: Let \(F/K \) be a field extension of degree \(n \) and \(d \mid n \). Then there is an intermediate field \(E, K \subset E \subset F \), such that \([E : K] = d \).