Definition 1.2.1 An integer \(p > 1 \) is called a prime in case there is no divisor \(d \) of \(p \) satisfying \(1 < d < p \). If an integer \(a < 1 \) is not a prime, it is called a composite number.

Theorem 1.2.2 Every integer \(n > 1 \) can be expressed as a product of primes.

Lemma 1.2.3 If \(p \mid a_1 a_2 \cdots a_n \), \(p \) being a prime, then \(p \) divides at least one factor \(a_i \).

Theorem 1.2.4 (Fundamental theorem of arithmetic) The factorization of any integer \(n > 1 \) into primes is unique apart from the order of the prime factors. [Two proofs.]

Remark 1.2.5 (a) For any positive integer \(a \), \(a = \prod_p p^\alpha(p) \) is called the canonical factoring of \(n \) into prime powers.
 (b) let \(a = \prod_p p^\alpha(p) \), \(b = \prod_p p^\beta(p) \), \(c = \prod_p p^\gamma(p) \). If \(c = ab \), then \(\gamma(p) = \alpha(p) + \beta(p) \).
 \((a, b) = \prod_p p^{\min(\alpha(p), \beta(p))} \), \([a, b] = \prod_p p^{\max(\alpha(p), \beta(p))} \).
 \(a \) is a perfect square if and only if, for all \(p \), \(\alpha(p) \) is even.
 (c) The second proof of 1.2.4 is independent of the previous theorems, so the formulas of \((a, b), [a, b]\) can be used to prove many results in Section 1.1.

Example 1.2.6 The number systems in which the factorization is not unique.
 (a) \(\mathcal{E} = \{2, 4, 6, 8, \cdots \} \).
 (b) \(\mathcal{C} = \{a + b\sqrt{6} : a, b \in \mathbb{Z}\} \).

Example 1.2.7 (Pythagoras) The number \(\sqrt{2} \) is irrational.

1.2.8 The Sieve of Eratosthnes (276-194 B.C.) Write down the integers from 2 to \(n \) in natural order and then systematically eliminate all the composite numbers by striking out all multiples of \(p \) of the primes \(p \leq \sqrt{n} \). The integers that left on the list are primes.

Theorem 1.2.9 (Euclid) The number of primes is infinite. [Three proofs.]

Remark 1.2.10 It is not known whether there are infinitely many prime \(p \) for which \(p^# + 1 \) is also prime, where \(p^# \) is the product of all primes that less than or equal to \(p \).
 At present, 19 primes of the form \(p^# + 1 \) have been identified: \(p = 2, 3, 5, 7, 11, 31, 379, 1019, 1021, 2657, 3229, 4547, 4787, 11549, 13649, 18523, 23801, \)
24029, 42209 (discovered in 2000). The integer $p\# + 1$ is composite for all other $p \leq 120000$.

Remark 1.2.11 Let p_n denote the nth of the prime numbers in natural order.

(a) $p_n < p_1 p_2 \cdots p_{n-1} + 1$, $n \geq 2$.
(b) $p_n < p_1 p_2 \cdots p_{n-1} - 1$, $n \geq 3$.
(c) (Bonse inequality) $p_n^2 < p_1 p_2 \cdots p_{n-1}$, $n \geq 5$.
(d) $p_{2n} \leq p_2 p_3 \cdots p_n - 2$, $n \geq 3$.

Theorem 1.2.12 If p_n is the nth prime number, then $p_n \leq 2^{2^{n-1}}$.

Corollary 1.2.13 For $n \geq 1$, there are at least $n + 1$ primes less than 2^{2^n}.

Theorem 1.2.14 (Bertrand conjecture 1845, proved by P.L. Tchebycheff in 1852) Between $n \geq 2$ and $2n$ there is at least one prime.

Corollary 1.2.15 $p_n < 2^n$.

Theorem 1.2.16 For every real number $y \geq 2$, $\sum_{\text{prime } p \leq y} \frac{1}{p} > \ln \ln y - 1$.

Remark 1.2.17 (a) A corollary of 1.2.16 is 1.2.9.
(b) It can be shown that $\sum_{\text{prime } p \leq y} \frac{1}{p} - \ln \ln y$ is a bounded function of y.
(c) (Prime Number Theorem) $\lim_{x \to \infty} \frac{\pi(x)}{x/\ln x} = 1$, that is $\pi(x) \sim \frac{x}{\ln x}$, where $\pi(x)$ is the number of primes $\leq x$.

Remark 1.2.18 A repunit is an integer written as a string of 1’s. Let R_n denote the repunit consisting of n consecutive 1’s. $R_2, R_{19}, R_{23}, R_{317}, R_{1031}, R_{49081}, R_{86453}$ (discovered in 2001) are primes. These are the only possible R_n for all $n \leq 45000$.

Conjecture 1.2.19 (a) There are infinitely many primes of the form $n^2 - 2$.
(b) There are infinitely many primes of the form $2^n + 1$.
(c) There are infinitely many primes of the form $n^2 + 1$.
(d) There are infinitely many primes of the form $2^n - 1$.
(e) There are infinitely many primes p such that $p + 50$ is also prime.
(f) Every even integer can be written as the difference of two consecutive primes in infinitely many ways.

Remark 1.2.20 There is an unsolved question: Whether there are infinitely many pairs of twin primes.

The largest twins are $33218925 \cdot 2^{169690} \pm 1$ (discovered in 2002).

Theorem 1.2.21 There are arbitrarily large gaps in the series of primes.
Remark 1.2.22 (a) The largest gap discovered is 1132 after the prime 1693182318746371.
(b) Conjecture: There is a prime gap for every even integer.

Remark 1.2.23 (a) Goldbach Conjecture (1972): Every even integer is the sum of two numbers that are either primes or 1.
(b) More generally, every even integer greater than 4 is the sum of two odd prime numbers.
(c) This conjecture implies that each odd number larger than 7 is a sum of three odd primes.
(d) It is known that every even integer is a sum of six or fewer primes.

Theorem 1.2.24 (Hardy, Littlewood, 1922; I.M. Vinogradov, 1937; Borozdkin, 1956; 2002) All odd integers large than 10^{1346} can be written as a sum of three odd primes.

Proposition 1.2.25 There are infinitely many primes of the form $4n + 3$.

Theorem 1.2.26 (P.G.L. Dirichlet, 1837) If a and d are relatively prime positive integers, then the arithmetic progression $a, a + d, a + 2d, a + 3d, \ldots$ contains infinitely many primes.

Theorem 1.2.27 If all the terms of the arithmetic progression $p, p+d, p+2d, p+3d, \ldots, p+(n-1)d$ are prime numbers, then d is divisible by every prime $q < n$.

Remark 1.2.28 (a) There is an unsolved problem: Whether there exist arbitrary long arithmetic progression consists only of primes.
(b) The longest progression found to date is $114103378550553+4609098694200n$, $0 \leq n \leq 21$.
(c) A sequence of 10 consecutive primes which is an arithmetic progression was discovered, the common difference is 210.

Remark 1.2.29 (a) Let $f(n) = n^2 + n + 41$. Then $f(k)$ are primes for $k = 0, 1, 2, \ldots, 40$.
(b) Let $g(n) = 103n^2 - 3945n + 34381$. Then $g(k)$ are primes for $k = 0, 1, 2, \ldots, 42$.
(c) Let $h(n) = 36n^2 - 810n + 2753$. Then $h(k)$ gives a string of 45 prime values.

Lemma 1.2.30 It is impossible to find a polynomial $f(n)$ such that $f(k)$ are primes for all $k \in \mathbb{N}$.

Theorem 1.2.31 (W.H.Mills, 1947) There is a positive real number r such that $f(n) = [r^{3^n}]$ is prime for $n = 1, 2, 3, \ldots$.
Section 1.3 The Binomial Theorem

Definition 1.3.1 Let $\alpha \in \mathbb{R}$, and $k \in \mathbb{N}$. Then the binomial coefficient $\binom{\alpha}{k}$ is given by $\frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!}$.

Lemma 1.3.2 The product of any k consecutive integers is divisible by $k!$.

Theorem 1.3.3 (The binomial Theorem) For any integer $n \geq 1$ and any real numbers x, y, $(x + y)^n = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k}$. [Combinatorial proof, analytic proof]

Lemma 1.3.4 Let $P(z) = \sum_{k=0}^{n} a_k z^k \in \mathbb{C}[z]$. Then $a_r = \frac{P^{(r)}(0)}{r!}$ for $0 \leq r \leq n$.

Lemma 1.3.5 $\binom{n}{k} + \binom{n+1}{k} = \binom{n+1}{k+1}$ for $n, k \in \mathbb{N}$.

Theorem 1.3.6 $(1 + z)^\alpha = \sum_{k=0}^{\infty} \binom{\alpha}{k} z^k$ for $|z| < 1$. [Combinatorial proof, analytic proof]

Example 1.3.7 The Catalan numbers defined by $C_n = \frac{1}{n+1} \binom{2n}{n}$, $n \geq 0$. It first appeared in 1938 when Eugène Catalan (1814-1894) show that there are C_n ways of parenthesizing a nonassociative product of $n + 1$ factors.