Definite Quaternion Algebras over Function Fields and Brandt Matrices

Fu-Tsun Wei, National Tsing Hua University , and Jing Yu, National Taiwan University.

March 18, 2010, Waseda University

Notations

- k: rational function field $\mathbb{F}_q(t)$, q is power of p, p an odd prime.
- A: polynomial ring $\mathbb{F}_q[t]$.
- $\infty: \$ infinite place, corresponding to the valuation of the degree.
- k_{∞} : $\mathbb{F}_q((\frac{1}{t}))$, i.e., the completion of k at ∞ .
 - P: monic irreducible in A, i.e. finite prime.
- \bar{k}_{∞} : a fixed algebraic closure of k_{∞} .
 - \bar{k} : the algebraic closure of k inside k_{∞} .
- $\overline{\mathbb{F}_q(t)}$: the algebraic closure of \mathbb{F}_q inside \overline{k} .
 - v_{∞} : the valuation on k_{∞} s.t. $v_{\infty}(a) = -\deg(a)$ for all $a \in A$.

For us : k, A, k_{∞} play the role of \mathbb{Q} , \mathbb{Z} , and \mathbb{R} respectively.

Definite quaternion algebras

Let P_0 be a fixed finite prime, \mathcal{D} be the ("definite") quaternion algebra over k which ramifies only at ∞ and P_0 .

Let $R \subset \mathcal{D}$ be a maximal order (A- rank 4). Interested in left ideals I of R inside \mathcal{D} .

The left ideal classes can be put into 1-1 correspondence with isomorphism classes of rank 2 supersingular Drinfeld A-modules in A-characteristic P_0 .

Let R^I be the right order of I, and set $w(I) = \#(R^I)^{\times}/(q-1)$. If $[\phi]$ is class of Drinfeld A-modules corresponds to I, $w(\phi) = w(I)$ counts its automorphisms, then **Mass Formula** (Gekeler) says

$$\sum_{[\phi]} \frac{1}{w(\phi)} = \frac{q^{\deg P_0} - 1}{q^2 - 1} = \zeta_A(-1)(1 - q^{\deg P_0}).$$

Definite quaternion algebras

Let P_0 be a fixed finite prime, \mathcal{D} be the ("definite") quaternion algebra over k which ramifies only at ∞ and P_0 .

Let $R \subset \mathcal{D}$ be a maximal order (A- rank 4). Interested in left ideals I of R inside \mathcal{D} .

The left ideal classes can be put into 1-1 correspondence with isomorphism classes of rank 2 supersingular Drinfeld A-modules in A-characteristic P_0 .

Let R^I be the right order of I, and set $w(I) = \#(R^I)^{\times}/(q-1)$. If $[\phi]$ is class of Drinfeld A-modules corresponds to I, $w(\phi) = w(I)$ counts its automorphisms, then **Mass Formula** (Gekeler) says

$$\sum_{[\phi]} \frac{1}{w(\phi)} = \frac{q^{\deg P_0} - 1}{q^2 - 1} = \zeta_A(-1)(1 - q^{\deg P_0}).$$

Definite quaternion algebras

Let P_0 be a fixed finite prime, \mathcal{D} be the ("definite") quaternion algebra over k which ramifies only at ∞ and P_0 .

Let $R \subset \mathcal{D}$ be a maximal order (A- rank 4). Interested in left ideals I of R inside \mathcal{D} .

The left ideal classes can be put into 1-1 correspondence with isomorphism classes of rank 2 supersingular Drinfeld A-modules in A-characteristic P_0 .

Let R^I be the right order of I, and set $w(I) = \#(R^I)^{\times}/(q-1)$. If $[\phi]$ is class of Drinfeld A-modules corresponds to I, $w(\phi) = w(I)$ counts its automorphisms, then **Mass Formula** (Gekeler) says

$$\sum_{[\phi]} \frac{1}{w(\phi)} = \frac{q^{\deg P_0} - 1}{q^2 - 1} = \zeta_A(-1)(1 - q^{\deg P_0}).$$

Drinfeld A-modules

Let (L, ι) (denoted by L simply) be an A-field, i.e. a field L together with \mathbb{F}_q -algebra homomorphism $\iota : A \to L$. The kernel of ι is called the A-characteristic of L. This A-characteristic is a prime ideal (P), here P is a prime (monic irreducible) in A or zero.

Consider the twist polynomial ring : ($\tau(x) = x^q$)

$$L\{\tau\} = \operatorname{End}_{\mathbb{F}_q}(\mathbb{G}_{a/L})$$

A rank 2 Drinfeld A-modules ϕ over L with A-characteristic P is an \mathbb{F}_q -algebra homomorphism $\phi : A \to L\{\tau\}$, which satisfies

$$\phi_t = \iota(t) + g\tau + \Delta\tau^2, \Delta \neq 0.$$

Drinfeld A-modules

Let (L, ι) (denoted by L simply) be an A-field, i.e. a field L together with \mathbb{F}_q -algebra homomorphism $\iota : A \to L$. The kernel of ι is called the A-characteristic of L. This A-characteristic is a prime ideal (P), here P is a prime (monic irreducible) in A or zero.

Consider the twist polynomial ring : ($\tau(x) = x^q$)

$$L\{\tau\} = \operatorname{End}_{\mathbb{F}_q}(\mathbb{G}_{a/L})$$

A rank 2 Drinfeld A-modules ϕ over L with A-characteristic P is an \mathbb{F}_q -algebra homomorphism $\phi : A \to L\{\tau\}$, which satisfies

$$\phi_t = \iota(t) + g\tau + \Delta\tau^2, \Delta \neq 0.$$

Supersingular Drinfeld *A*-modules

Let ϕ and ϕ' be two Drinfeld modules. A morphism $u : \phi \to \phi'$ over L is an element $u \in L\{\tau\}$ such that for all $a \in A$

$$u\phi_a = \phi'_a u.$$

We have accordingly endomorphisms, isomorphisms, and automorphisms of Drinfeld modules. A non-zero morphism is called an isogeny.

Given ϕ of rank 2 over L, and prime $P \in A$. The P-torsion of ϕ

$$\phi[P] = \{ x \in \overline{L} : \phi_P(x) = 0 \},\$$

where \overline{L} is fixed algebraic closure of L, is a finite A-module isomorphic to $(A/(P))^2$, if P is **not** the A-characteristic of L. In case the A-characteristic is $(P_0) \neq 0$, either $\phi[P_0] \cong A/(P)$ or ϕ is supersingular, i.e. $\phi[P_0] = 0$.

Supersingular Drinfeld *A*-modules

Let ϕ and ϕ' be two Drinfeld modules. A morphism $u : \phi \to \phi'$ over L is an element $u \in L\{\tau\}$ such that for all $a \in A$

$$u\phi_a = \phi'_a u.$$

We have accordingly endomorphisms, isomorphisms, and automorphisms of Drinfeld modules. A non-zero morphism is called an isogeny.

Given ϕ of rank 2 over L, and prime $P \in A$. The P-torsion of ϕ

$$\phi[P] = \{ x \in \overline{L} : \phi_P(x) = 0 \},\$$

where \overline{L} is fixed algebraic closure of L, is a finite A-module isomorphic to $(A/(P))^2$, if P is **not** the A-characteristic of L. In case the A-characteristic is $(P_0) \neq 0$, either $\phi[P_0] \cong A/(P)$ or ϕ is supersingular, i.e. $\phi[P_0] = 0$.

Quaternion algebras as endomorphism algebras

Supersingular Drinfeld A-modules ϕ are always definable over finite A-field L, in fact, quadratic extension of $\mathbb{F}_{P_0} := A/(P_0)$.

If ϕ is of rank 2, $\operatorname{End}_L(\phi) \otimes_A k = \mathcal{D} = \mathcal{D}(P_0, \infty)$ is a quaternion division algebra over k. This quaternion algebra is "definite", in the sense it splits at primes differ from the characteristic P_0 and ∞ .

Then $\operatorname{End}_L(\phi)$ is a maximal order in \mathcal{D} . Left ideal classes of $\operatorname{End}_L(\phi)$ correspond bijectively to the isomorphism classes of rank 2 supersingular Drinfeld A-modules over $L = \overline{\mathbb{F}_{P_0}}$.

The group $G = \operatorname{Gal}(\overline{\mathbb{F}_{P_0}}/\mathbb{F}_{P_0})$ acts on the left ideal classes by acting on the corresponding supersingular Drinfeld A-modules, the types (i.e. conjugacy classes) of maximal orders in \mathcal{D} correspond bijectively to the orbits of isomorphism classes of supersingular Drinfeld A-modules under the action of G.

Quaternion algebras as endomorphism algebras

Supersingular Drinfeld A-modules ϕ are always definable over finite A-field L, in fact, quadratic extension of $\mathbb{F}_{P_0} := A/(P_0)$.

If ϕ is of rank 2, $\operatorname{End}_L(\phi) \otimes_A k = \mathcal{D} = \mathcal{D}(P_0, \infty)$ is a quaternion division algebra over k. This quaternion algebra is "definite", in the sense it splits at primes differ from the characteristic P_0 and ∞ .

Then $\operatorname{End}_L(\phi)$ is a maximal order in \mathcal{D} . Left ideal classes of $\operatorname{End}_L(\phi)$ correspond bijectively to the isomorphism classes of rank 2 supersingular Drinfeld A-modules over $L = \overline{\mathbb{F}_{P_0}}$.

The group $G = \operatorname{Gal}(\overline{\mathbb{F}_{P_0}}/\mathbb{F}_{P_0})$ acts on the left ideal classes by acting on the corresponding supersingular Drinfeld A-modules, the types (i.e. conjugacy classes) of maximal orders in \mathcal{D} correspond bijectively to the orbits of isomorphism classes of supersingular Drinfeld A-modules under the action of G.

Quaternion algebras as endomorphism algebras

Supersingular Drinfeld A-modules ϕ are always definable over finite A-field L, in fact, quadratic extension of $\mathbb{F}_{P_0} := A/(P_0)$.

If ϕ is of rank 2, $\operatorname{End}_L(\phi) \otimes_A k = \mathcal{D} = \mathcal{D}(P_0, \infty)$ is a quaternion division algebra over k. This quaternion algebra is "definite", in the sense it splits at primes differ from the characteristic P_0 and ∞ .

Then $\operatorname{End}_L(\phi)$ is a maximal order in \mathcal{D} . Left ideal classes of $\operatorname{End}_L(\phi)$ correspond bijectively to the isomorphism classes of rank 2 supersingular Drinfeld A-modules over $L = \overline{\mathbb{F}_{P_0}}$.

The group $G = \operatorname{Gal}(\overline{\mathbb{F}_{P_0}}/\mathbb{F}_{P_0})$ acts on the left ideal classes by acting on the corresponding supersingular Drinfeld A-modules, the types (i.e. conjugacy classes) of maximal orders in \mathcal{D} correspond bijectively to the orbits of isomorphism classes of supersingular Drinfeld A-modules under the action of G.

Brandt matrices

Fix miximal order R. For left ideal I, set $I^{-1} = \{b \in \mathcal{D} : IbI \subset I\}$, a right ideal for R whose left order is the right order of I.

Let $\{I_1, ..., I_n\}$ be left ideals of R representing the distinct ideal classes, with $I_1 = R$. Let R_i be the right order of I_i , and $w_i = \#(R_i^{\times})/(q-1)$. Let $M_{ij} = I_j^{-1}I_i$, which is a left ideal of R_j with right order R_i . For any element $b \in M_{ij}$, $\operatorname{Nr}(b)$ denotes its reduced norm, and define $N_{ij} = f/g$ where f and g are the unique monic polynomials in A s.t. the quotients $\operatorname{Nr}(b)/N_{ij}$ are all in A with no common factor.

For each monic $m \in A$, let

$$B_{ij}(m) = \frac{\#\{b \in M_{ij} : (\operatorname{Nr}(b)/N_{ij}) = (m)\}}{(q-1)w_j}$$

and $B(m) = (B_{ij}(m)) \in Mat_n(\mathbb{Z}).$ Also set $B(0) = (B_{ij}(0))$, with $B_{ij}(0) = \frac{1}{(q-1)w_j}$.

Supersingular Drinfeld Modules and Brandt Matrices

For each *i*, let ϕ_i be a supersingular Drinfeld module rank 2 corresponding to I_i . Then $\text{End}(\phi_i) \cong R_i$. Moreover, one has

 $M_{ij} \cong \operatorname{Hom}(\phi_i, \phi_j), b \mapsto u_j b u_i^{-1},$

where $u_i: \phi_1 \rightarrow \phi_i$ is the isogeny corresponding to I_i .

Note that given two isogenies u and u' from ϕ_i to ϕ_j , the finite A-submodule scheme ker(u) and ker(u') are equal if and only if $u' = \alpha u$, where $\alpha \in \operatorname{Aut}(\phi_j)$. Any finite A-submodule scheme C of ϕ_i is the kernel of some isogeny with **height** $h, 0 \leq h \leq 2$. The *Euler-Poincaré characteristic* of C is the ideal $(P_0^h d_1 d_2)$, if $C(\overline{L}) \cong A/(d_1) \times A/(d_2)$.

The entry $B_{ij}(m)$ is exactly the number of finite A-submodule schemes C of ϕ_i whose Euler-Poincaré characteristic is (m) and $\phi_i/C \cong \phi_j$.

Supersingular Drinfeld Modules and Brandt Matrices

For each *i*, let ϕ_i be a supersingular Drinfeld module rank 2 corresponding to I_i . Then $\text{End}(\phi_i) \cong R_i$. Moreover, one has

 $M_{ij} \cong \operatorname{Hom}(\phi_i, \phi_j), b \mapsto u_j b u_i^{-1},$

where $u_i: \phi_1 \rightarrow \phi_i$ is the isogeny corresponding to I_i .

Note that given two isogenies u and u' from ϕ_i to ϕ_j , the finite A-submodule scheme ker(u) and ker(u') are equal if and only if $u' = \alpha u$, where $\alpha \in \operatorname{Aut}(\phi_j)$. Any finite A-submodule scheme C of ϕ_i is the kernel of some isogeny with **height** $h, 0 \leq h \leq 2$. The *Euler-Poincaré characteristic* of C is the ideal $(P_0^h d_1 d_2)$, if $C(\overline{L}) \cong A/(d_1) \times A/(d_2)$.

The entry $B_{ij}(m)$ is exactly the number of finite A-submodule schemes C of ϕ_i whose Euler-Poincaré characteristic is (m) and $\phi_i/C \cong \phi_j$.

Supersingular Drinfeld Modules and Brandt Matrices

For each *i*, let ϕ_i be a supersingular Drinfeld module rank 2 corresponding to I_i . Then $\text{End}(\phi_i) \cong R_i$. Moreover, one has

 $M_{ij} \cong \operatorname{Hom}(\phi_i, \phi_j), b \mapsto u_j b u_i^{-1},$

where $u_i: \phi_1 \rightarrow \phi_i$ is the isogeny corresponding to I_i .

Note that given two isogenies u and u' from ϕ_i to ϕ_j , the finite A-submodule scheme ker(u) and ker(u') are equal if and only if $u' = \alpha u$, where $\alpha \in \operatorname{Aut}(\phi_j)$. Any finite A-submodule scheme C of ϕ_i is the kernel of some isogeny with **height** $h, 0 \leq h \leq 2$. The *Euler-Poincaré characteristic* of C is the ideal $(P_0^h d_1 d_2)$, if $C(\overline{L}) \cong A/(d_1) \times A/(d_2)$.

The entry $B_{ij}(m)$ is exactly the number of finite A-submodule schemes C of ϕ_i whose Euler-Poincaré characteristic is (m) and $\phi_i/C \cong \phi_j$.

(1) The row sums $\sum_{j} B_{ij}(m)$ are independent of i and equal to

$$\sigma(m)_{P_0} := \sum_{m'} q^{\deg(m')}$$

sum is over all monic polynomial m'|m which is prime to P_0 . (2) If (m, m') = 1, then B(m)B(m') = B(mm'). (3) If $B(P_0) \neq 1$, it is a permutation matrix of order 2 and $B(P_0^{\ell}) = B(P_0)^{\ell}$.

(4) If $P \neq P_0$ is another monic prime, then for $\ell \geq 2$,

$$B(P^{\ell}) = B(P^{\ell-1})B(P) - q^{\deg(P)}B(P^{\ell-2}).$$

(5) The B(m) generate a commutative subring \mathbb{B} of $Mat_n(\mathbb{Z})$. (6) For all i, j the symmetry relation

$$w_j B_{ij}(m) = w_i B_{ji}(m).$$

(1) The row sums $\sum_{j} B_{ij}(m)$ are independent of i and equal to

$$\sigma(m)_{P_0} := \sum_{m'} q^{\deg(m')}$$

sum is over all monic polynomial m'|m which is prime to P_0 . (2) If (m,m') = 1, then B(m)B(m') = B(mm'). (3) If $B(P_0) \neq 1$, it is a permutation matrix of order 2 and

$$B(P_0^\ell) = B(P_0)^\ell.$$

(4) If $P \neq P_0$ is another monic prime, then for $\ell \geq 2$,

$$B(P^{\ell}) = B(P^{\ell-1})B(P) - q^{\deg(P)}B(P^{\ell-2}).$$

(5) The B(m) generate a commutative subring \mathbb{B} of $Mat_n(\mathbb{Z})$. (6) For all i, j the symmetry relation

$$w_j B_{ij}(m) = w_i B_{ji}(m).$$

(1) The row sums $\sum_{j} B_{ij}(m)$ are independent of i and equal to

$$\sigma(m)_{P_0} := \sum_{m'} q^{\deg(m')}$$

sum is over all monic polynomial m'|m which is prime to P_0 . (2) If (m, m') = 1, then B(m)B(m') = B(mm'). (3) If $B(P_0) \neq 1$, it is a permutation matrix of order 2 and $B(P_0^{\ell}) = B(P_0)^{\ell}$.

(4) If
$$P \neq P_0$$
 is another monic prime, then for $\ell \geq 2$,

$$B(P^{\ell}) = B(P^{\ell-1})B(P) - q^{\deg(P)}B(P^{\ell-2}).$$

(5) The B(m) generate a commutative subring \mathbb{B} of $Mat_n(\mathbb{Z})$. (6) For all i, j the symmetry relation

$$w_j B_{ij}(m) = w_i B_{ji}(m).$$

(1) The row sums $\sum_{i} B_{ij}(m)$ are independent of i and equal to

$$\sigma(m)_{P_0} := \sum_{m'} q^{\deg(m')}$$

sum is over all monic polynomial m'|m which is prime to P_0 . (2) If (m, m') = 1, then B(m)B(m') = B(mm'). (3) If $B(P_0) \neq 1$, it is a permutation matrix of order 2 and B

$$B(P_0^{\ell}) = B(P_0)^{\ell}.$$

(4) If $P \neq P_0$ is another monic prime, then for $\ell \geq 2$,

$$B(P^{\ell}) = B(P^{\ell-1})B(P) - q^{\deg(P)}B(P^{\ell-2}).$$

(5) The B(m) generate a commutative subring \mathbb{B} of $Mat_n(\mathbb{Z})$.

$$w_j B_{ij}(m) = w_i B_{ji}(m).$$

(E) < E)</p>

(1) The row sums $\sum_{j} B_{ij}(m)$ are independent of i and equal to

$$\sigma(m)_{P_0} := \sum_{m'} q^{\deg(m')}$$

sum is over all monic polynomial m'|m which is prime to P_0 . (2) If (m, m') = 1, then B(m)B(m') = B(mm'). (3) If $B(P_0) \neq 1$, it is a permutation matrix of order 2 and $B(P_0^{\ell}) = B(P_0)^{\ell}$.

(4) If
$$P \neq P_0$$
 is another monic prime, then for $\ell \geq 2$,

$$B(P^{\ell}) = B(P^{\ell-1})B(P) - q^{\deg(P)}B(P^{\ell-2}).$$

(5) The B(m) generate a commutative subring \mathbb{B} of $Mat_n(\mathbb{Z})$. (6) For all i, j the symmetry relation

$$w_j B_{ij}(m) = w_i B_{ji}(m).$$

(1) The row sums $\sum_{j} B_{ij}(m)$ are independent of i and equal to

$$\sigma(m)_{P_0} := \sum_{m'} q^{\deg(m')}$$

sum is over all monic polynomial m'|m which is prime to P_0 . (2) If (m, m') = 1, then B(m)B(m') = B(mm'). (3) If $B(P_0) \neq 1$, it is a permutation matrix of order 2 and $B(P_0^{\ell}) = B(P_0)^{\ell}$.

(4) If $P \neq P_0$ is another monic prime, then for $\ell \geq 2$,

$$B(P^{\ell}) = B(P^{\ell-1})B(P) - q^{\deg(P)}B(P^{\ell-2}).$$

(5) The B(m) generate a commutative subring \mathbb{B} of $Mat_n(\mathbb{Z})$. (6) For all i, j the symmetry relation

$$w_j B_{ij}(m) = w_i B_{ji}(m).$$

Class numbers of imaginary quadratic fields

Let a be an element in $k \subset k_{\infty}$. If $a \neq 0$, then we define

$$\begin{cases} a > 0 & \text{ if } a \in (k_{\infty}^{\times})^2 \text{,} \\ a < 0 & \text{ if } a \in k_{\infty}^{\times} - (k_{\infty}^{\times})^2 \text{.} \end{cases}$$

If $d \in A$ with d < 0 let h(d) be class number of $O_d = A[\sqrt{d}]$ and let $u(d) = \#(O_d^{\times}/\mathbb{F}_q^{\times})$ (u(d) = q + 1 or 1).

$$H(a) = \sum_{df^2 = a, f \text{ monic}} \frac{h(d)}{u(d)}.$$

if
$$P_0$$
 splits in O_a ,

 $H_{P_0}(a) = \begin{cases} 0 & \text{if } P_0 \text{ spine} \\ \frac{2}{q-1}H(a) & \text{if } P_0 \text{ is inert in } O_a, \\ \frac{1}{q-1}H(a) & \text{if } P_0 \text{ ramified but prime to conductor of } O_a, \\ H_{P_0}(a/P_0^2) & \text{if } P_0 \text{ divides the conductor of } O_a. \end{cases}$

if
$$P_0$$
 divides the conductor of O_a

Class numbers of imaginary quadratic fields

Let a be an element in $k \subset k_{\infty}$. If $a \neq 0$, then we define

$$\begin{cases} a > 0 & \text{ if } a \in (k_{\infty}^{\times})^2 \text{,} \\ a < 0 & \text{ if } a \in k_{\infty}^{\times} - (k_{\infty}^{\times})^2 \text{.} \end{cases}$$

If $d \in A$ with d < 0 let h(d) be class number of $O_d = A[\sqrt{d}]$ and let $u(d) = \#(O_d^{\times}/\mathbb{F}_q^{\times})$ (u(d) = q + 1 or 1).

For $a \in A$ with a < 0 the *Hurwitz class number* is given by

$$H(a) = \sum_{df^2 = a, f \text{ monic}} \frac{h(d)}{u(d)}.$$

$$H_{P_0}(a) = \begin{cases} 0 & \text{if } P_0 \text{ splits in } O_a, \\ \frac{2}{q-1}H(a) & \text{if } P_0 \text{ is inert in } O_a, \\ \frac{1}{q-1}H(a) & \text{if } P_0 \text{ ramified but prime to conductor of } O_a. \end{cases}$$

$$H_{P_0}(a/P_0^2) \quad \text{if } P_0 \text{ divides the conductor of } O_a.$$

We have analogue of Eichler's trace formula,

$$\operatorname{tr} B(m) = \sum_{m' \in A, (m') = (m)} \left\{ \sum_{s \in A, s^2 \le 4m'} H_{P_0}(s^2 - 4m') \right\},\$$

for all monic polynomial $m \in A$.

Set also $H_{P_0}(0) = \frac{q^d-1}{(q-1)(q^2-1)}$, then Mass formula amounts to $\operatorname{tr} B(0) = H_{P_0}(0).$

Theta series

Fix additive characters as $\sigma : \mathbb{F}_q \to \mathbb{C}^{\times}$, and $\psi_{\infty} : k_{\infty} \to \mathbb{C}^{\times}$, $\sigma(\xi) = \exp(\frac{2\pi i}{p} \operatorname{tr}_{\mathbb{F}_q/\mathbb{F}_p}(\xi))$, $\psi_{\infty}(y) = \sigma(\operatorname{Res}_{\infty}(ydt))$.

Let n be the class number of the maximal order R, choose representatives $I_i, i = 1, \dots, n$, of the left ideal classes, and set $M_{ij} = I_j^{-1}I_i$. For $x \in k_{\infty}^{\times}$, $y \in k_{\infty}$, define **Theta Series** for \mathcal{D} ,

$$\theta_{ij}(x,y) = \sum_{b \in M_{ij}} \phi_{\infty}(\frac{\operatorname{Nr}(b)}{N_{ij}}xt^2) \cdot \psi_{\infty}(\frac{\operatorname{Nr}(b)}{N_{ij}}y)$$

where ϕ_{∞} is the characteristic function of \mathcal{O}_{∞} , and $N_{ij} = f/g$ where f and g are the unique monic polynomials in A s.t. the quotients $Nr(b)/N_{ij}$ are all in A with no common factor.

Theta series

Fix additive characters as $\sigma : \mathbb{F}_q \to \mathbb{C}^{\times}$, and $\psi_{\infty} : k_{\infty} \to \mathbb{C}^{\times}$, $\sigma(\xi) = \exp(\frac{2\pi i}{p} \operatorname{tr}_{\mathbb{F}_q/\mathbb{F}_p}(\xi))$, $\psi_{\infty}(y) = \sigma(\operatorname{Res}_{\infty}(ydt))$.

Let n be the class number of the maximal order R, choose representatives $I_i, i = 1, \cdots, n$, of the left ideal classes, and set $M_{ij} = I_j^{-1}I_i$. For $x \in k_{\infty}^{\times}$, $y \in k_{\infty}$, define **Theta Series** for \mathcal{D} ,

$$\theta_{ij}(x,y) = \sum_{b \in M_{ij}} \phi_{\infty}(\frac{\operatorname{Nr}(b)}{N_{ij}}xt^2) \cdot \psi_{\infty}(\frac{\operatorname{Nr}(b)}{N_{ij}}y),$$

where ϕ_{∞} is the characteristic function of \mathcal{O}_{∞} , and $N_{ij} = f/g$ where f and g are the unique monic polynomials in A s.t. the quotients $Nr(b)/N_{ij}$ are all in A with no common factor.

Automorphy of theta series

For each $a \in A$, let $B'_{ij}(a) = \#\{b \in M_{ij} : \operatorname{Nr}(b)/N_{ij} = a\}$. Then $(q-1)w_j \cdot B_{ij}(m) = \sum_{(a)=(m)} B'_{ij}(a).$

We may rewrite the theta series as

$$\theta_{ij}(x,y) = \sum_{a \in A, \deg(a) \le v_{\infty}(x) - 2} B'_{ij}(a)\psi_{\infty}(ay)$$

One has $\theta_{ij}(x, y + a) = \theta_{ij}(x, y)$ for $a \in A$. Also $\theta_{ij}(\alpha x, \beta x + y) = \theta_{ij}(x, y)$ for $\alpha \in \mathcal{O}_{\infty}^{\times}$, $\beta \in \mathcal{O}_{\infty}$

For $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(A)$. Assume $v_{\infty}(x) > v_{\infty}(y)$, $v_{\infty}(cx) > v_{\infty}(cy+d)$, and $c \equiv 0 \pmod{P_0}$. Then $\theta_{ij}(g \circ (x, y)) = q^{-2v_{\infty}(cy+d)} \cdot \theta_{ij}(x, y)$.

Automorphy of theta series

For each $a \in A$, let $B'_{ij}(a) = \#\{b \in M_{ij} : \operatorname{Nr}(b)/N_{ij} = a\}$. Then $(q-1)w_j \cdot B_{ij}(m) = \sum_{(a)=(m)} B'_{ij}(a).$

We may rewrite the theta series as

$$\theta_{ij}(x,y) = \sum_{a \in A, \deg(a) \le v_{\infty}(x) - 2} B'_{ij}(a)\psi_{\infty}(ay)$$

One has $\theta_{ij}(x, y + a) = \theta_{ij}(x, y)$ for $a \in A$. Also $\theta_{ij}(\alpha x, \beta x + y) = \theta_{ij}(x, y)$ for $\alpha \in \mathcal{O}_{\infty}^{\times}$, $\beta \in \mathcal{O}_{\infty}$.

For
$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(A)$$
. Assume $v_{\infty}(x) > v_{\infty}(y)$,
 $v_{\infty}(cx) > v_{\infty}(cy+d)$, and $c \equiv 0 \pmod{P_0}$. Then
 $\theta_{ij}(g \circ (x, y)) = q^{-2v_{\infty}(cy+d)} \cdot \theta_{ij}(x, y)$.

Introducing complex-valued functions on $GL_2(k_{\infty})$:

$$\theta_{ij}'(g) = q^{-v_{\infty}(x)}\theta_{ij}(x,y)$$

where
$$g = \gamma \begin{pmatrix} x & y \\ 0 & 1 \end{pmatrix} \gamma_{\infty} \alpha$$
 for some $\gamma \in \Gamma_0(P_0) \cap \operatorname{SL}_2(A)$,
 $\gamma_{\infty} \in \Gamma_{\infty}, \ \alpha \in k_{\infty}^{\times}$. Moreover, let
 $\Theta_{ij}(g) = \sum_{\epsilon \in \mathbb{F}_q^{\times}} \theta'_{ij} \left(\begin{pmatrix} \epsilon \\ & 1 \end{pmatrix} g \right).$

Then Θ_{ij} are complex-valued functions on the double coset space

 $\Gamma_0(P_0) \setminus \operatorname{GL}_2(k_\infty) / \Gamma_\infty k_\infty^{\times}.$

Let Y be the genus 0 curve over k associated with the quaternion algebra \mathcal{D} , which is defined by:

$$Y(M) = \{x \in \mathcal{D} \otimes_k M : \operatorname{tr}(x) = \operatorname{Nr}(x) = 0\}/M^{\times}.$$

Here M is any k-algebra. The group \mathcal{D}^{\times} acts on Y by conjugation. If K is a quadratic extension of k, then one can identify $Y(K) = \text{Hom}(K, \mathcal{D})$.

To each embedding $f: K \to \mathcal{D}$ we let $y = y_f$ be the image of the unique K-line on the quadric $\{x \in \mathcal{D} \otimes_k K : \operatorname{tr}(x) = N(x) = 0\}$ on which conjugation by $f(K^{\times})$ acts by the character $a \mapsto a/\sigma(a)$, σ is the non-trivial automorphism of K/k. Note that y_f is one of the 2 fixed points of $f(K^{\times})$ acting on Y(K); the other is the image of the line where conjugation acts by the character $a \mapsto \sigma(a)/a$. Let Y be the genus 0 curve over k associated with the quaternion algebra \mathcal{D} , which is defined by:

$$Y(M) = \{x \in \mathcal{D} \otimes_k M : \operatorname{tr}(x) = \operatorname{Nr}(x) = 0\}/M^{\times}.$$

Here M is any k-algebra. The group \mathcal{D}^{\times} acts on Y by conjugation. If K is a quadratic extension of k, then one can identify $Y(K) = \text{Hom}(K, \mathcal{D})$.

To each embedding $f: K \to \mathcal{D}$ we let $y = y_f$ be the image of the unique K-line on the quadric $\{x \in \mathcal{D} \otimes_k K : \operatorname{tr}(x) = N(x) = 0\}$ on which conjugation by $f(K^{\times})$ acts by the character $a \mapsto a/\sigma(a)$, σ is the non-trivial automorphism of K/k. Note that y_f is one of the 2 fixed points of $f(K^{\times})$ acting on Y(K); the other is the image of the line where conjugation acts by the character $a \mapsto \sigma(a)/a$.

Notations continued

- k_P : completion of k at a finite prime P.
- A_P : closure of A in k_P .

 $R_P: = R \otimes_A A_P, \ K_P := K \otimes_k k_P, \ \text{and} \ \mathcal{D}_P := \mathcal{D} \otimes_k k_P.$

$$\hat{k}: \quad \prod'_{P} k_{P}, \text{ the finite adele ring of } k. \\ \hat{R}: \quad = \prod_{P} R_{P}, \quad \hat{K} = \prod'_{P} K_{P}, \quad \text{and } \hat{\mathcal{D}} = \prod'_{P} \mathcal{D}_{P}.$$

For quadratic order $O_d \subset K$ one has

 $\hat{O}_d^{\times} \setminus \hat{K}^{\times} / K^{\times} \cong \operatorname{Pic} O_d.$

For left ideal classes of the maximal order R, one has bijection with double cosets in

 $\hat{R}^{\times} \backslash \hat{\mathcal{D}}^{\times} / \mathcal{D}^{\times}.$

Notations continued

 k_P : completion of k at a finite prime P.

$$A_P$$
: closure of A in k_P .

 $R_P: = R \otimes_A A_P, \ K_P := K \otimes_k k_P, \text{ and } \mathcal{D}_P := \mathcal{D} \otimes_k k_P.$

$$\hat{k}: \quad \prod'_{P} k_{P}, \text{ the finite adele ring of } k. \hat{R}: \quad = \prod_{P} R_{P}, \quad \hat{K} = \prod'_{P} K_{P}, \quad \text{and } \hat{\mathcal{D}} = \prod'_{P} \mathcal{D}_{P}.$$

For quadratic order $O_d \subset K$ one has

$$\hat{O}_d^{\times} \setminus \hat{K}^{\times} / K^{\times} \cong \operatorname{Pic} O_d.$$

For left ideal classes of the maximal order R, one has bijection with double cosets in

 $\hat{R}^{\times} \setminus \hat{\mathcal{D}}^{\times} / \mathcal{D}^{\times}.$

Our definite Shimura curve X_{P_0} is defined as

$$\left(\hat{R}^{\times} \setminus \hat{\mathcal{D}}^{\times} \times Y\right) / \mathcal{D}^{\times}.$$

This is union of curves of genus 0, with components in bijection with the left ideal classes of R. Thus if there are n left ideal classes, $\operatorname{Pic}(X_{P_0}) \cong \mathbb{Z}^n$, generated by $e_i, i = 1, \ldots, n$, which are classes of degree 1 on each component of X_{P_0} .

The special points (Gross points) on X_{P_0} over K are points in the image of $\hat{R}^{\times} \setminus \hat{\mathcal{D}}^{\times} \times Y(K)$ in $X_{P_0}(K)$. We say the point x = (g, y) has discriminant d if $f(K) \cap g^{-1}\hat{R}g = f(O_d)$, where $f: K \to \mathcal{D}$ is the embedding corresponding to y. Note that here the discriminant of a special point is well defined up to multiplication by elements in $(\mathbb{F}_q^{\times})^2$. Our definite Shimura curve X_{P_0} is defined as

$$\left(\hat{R}^{\times} \setminus \hat{\mathcal{D}}^{\times} \times Y\right) / \mathcal{D}^{\times}.$$

This is union of curves of genus 0, with components in bijection with the left ideal classes of R. Thus if there are n left ideal classes, $\operatorname{Pic}(X_{P_0}) \cong \mathbb{Z}^n$, generated by $e_i, i = 1, \ldots, n$, which are classes of degree 1 on each component of X_{P_0} .

The special points (Gross points) on X_{P_0} over K are points in the image of $\hat{R}^{\times} \setminus \hat{\mathcal{D}}^{\times} \times Y(K)$ in $X_{P_0}(K)$. We say the point x = (g, y) has discriminant d if $f(K) \cap g^{-1}\hat{R}g = f(O_d)$, where $f: K \to \mathcal{D}$ is the embedding corresponding to y. Note that here the discriminant of a special point is well defined up to multiplication by elements in $(\mathbb{F}_q^{\times})^2$. Our definite Shimura curve X_{P_0} is defined as

$$\left(\hat{R}^{\times} \setminus \hat{\mathcal{D}}^{\times} \times Y\right) / \mathcal{D}^{\times}$$

This is union of curves of genus 0, with components in bijection with the left ideal classes of R. Thus if there are n left ideal classes, $\operatorname{Pic}(X_{P_0}) \cong \mathbb{Z}^n$, generated by $e_i, i = 1, \ldots, n$, which are classes of degree 1 on each component of X_{P_0} .

The special points (Gross points) on X_{P_0} over K are points in the image of $\hat{R}^{\times} \setminus \hat{\mathcal{D}}^{\times} \times Y(K)$ in $X_{P_0}(K)$. We say the point x = (g, y) has discriminant d if $f(K) \cap g^{-1}\hat{R}g = f(O_d)$, where $f: K \to \mathcal{D}$ is the embedding corresponding to y. Note that here the discriminant of a special point is well defined up to multiplication by elements in $(\mathbb{F}_q^{\times})^2$.

Given P. Let \mathcal{T} be the Bruhat-Tits tree of $\mathrm{PGL}_2(k_P)$. The vertices are the classes of A_P -lattices in k_P^2 , and two such vertices are adjacent if the "distance" between the lattice classes is 1.

The Hecke correspondence t_P sends vertex v to the formal sum of its $q^{\deg(P)} + 1$ neighbors on the tree. Identifying $\operatorname{PGL}_2(A_P) \setminus \operatorname{PGL}_2(k_P)$ with vertices of the Bruhat-Tits tree, for $g_P \in \operatorname{PGL}_2(A_P) \setminus \operatorname{PGL}_2(k_P)$ one has:

$$t_P(g_P) = \sum_{\deg(u) \le \deg(P)} \begin{pmatrix} 1 & u \\ 0 & P \end{pmatrix} g_P + \begin{pmatrix} P & 0 \\ 0 & 1 \end{pmatrix} g_P.$$

When $P \neq P_0$, one has $R_P^{\times} \backslash \mathcal{D}_P^{\times} / k_P^{\times} \cong \mathrm{PGL}_2(A_P) \backslash \mathrm{PGL}_2(k_P)$. On the other hand $R_{P_0}^{\times} \backslash \mathcal{D}_{P_0}^{\times} / k_{P_0}^{\times}$ has two elements, just let t_{P_0} sends one element to the other. Given P. Let \mathcal{T} be the Bruhat-Tits tree of $PGL_2(k_P)$. The vertices are the classes of A_P -lattices in k_P^2 , and two such vertices are adjacent if the "distance" between the lattice classes is 1.

The Hecke correspondence t_P sends vertex v to the formal sum of its $q^{\deg(P)} + 1$ neighbors on the tree. Identifying $\operatorname{PGL}_2(A_P) \setminus \operatorname{PGL}_2(k_P)$ with vertices of the Bruhat-Tits tree, for $g_P \in \operatorname{PGL}_2(A_P) \setminus \operatorname{PGL}_2(k_P)$ one has:

$$t_P(g_P) = \sum_{\deg(u) \le \deg(P)} \begin{pmatrix} 1 & u \\ 0 & P \end{pmatrix} g_P + \begin{pmatrix} P & 0 \\ 0 & 1 \end{pmatrix} g_P.$$

When $P \neq P_0$, one has $R_P^{\times} \backslash \mathcal{D}_P^{\times} / k_P^{\times} \cong \mathrm{PGL}_2(A_P) \backslash \mathrm{PGL}_2(k_P)$. On the other hand $R_{P_0}^{\times} \backslash \mathcal{D}_{P_0}^{\times} / k_{P_0}^{\times}$ has two elements, just let t_{P_0} sends one element to the other. Given P. Let \mathcal{T} be the Bruhat-Tits tree of $\mathrm{PGL}_2(k_P)$. The vertices are the classes of A_P -lattices in k_P^2 , and two such vertices are adjacent if the "distance" between the lattice classes is 1.

The Hecke correspondence t_P sends vertex v to the formal sum of its $q^{\deg(P)} + 1$ neighbors on the tree. Identifying $\operatorname{PGL}_2(A_P) \setminus \operatorname{PGL}_2(k_P)$ with vertices of the Bruhat-Tits tree, for $g_P \in \operatorname{PGL}_2(A_P) \setminus \operatorname{PGL}_2(k_P)$ one has:

$$t_P(g_P) = \sum_{\deg(u) \le \deg(P)} \begin{pmatrix} 1 & u \\ 0 & P \end{pmatrix} g_P + \begin{pmatrix} P & 0 \\ 0 & 1 \end{pmatrix} g_P.$$

When $P \neq P_0$, one has $R_P^{\times} \backslash \mathcal{D}_P^{\times} / k_P^{\times} \cong \mathrm{PGL}_2(A_P) \backslash \mathrm{PGL}_2(k_P)$. On the other hand $R_{P_0}^{\times} \backslash \mathcal{D}_{P_0}^{\times} / k_{P_0}^{\times}$ has two elements, just let t_{P_0} sends one element to the other.

Correspondence on Shimura curve

View X_{P_0} as $(\hat{R}^{\times} \setminus \hat{\mathcal{D}}^{\times} / \hat{k}^{\times}) \times Y / (\mathcal{D}^{\times} / k^{\times})$. This leads to global Hecke correspondence t_P on X_{P_0} for all P.

As t_P and $t_{P'}$ are commute for any prime P and P', one defines t_m for every ideal (m) of A:

 $t_{mm'} = t_m t_{m'}, \hspace{1em}$ if m and m' are relatively prime,

$$\begin{split} t_{P^\ell} &= t_{P^{\ell-1}} t_P - q^{\deg P} t_{P^{\ell-2}}, \quad \text{for } P \neq P_0, \\ t_{P_0}^\ell &= t_{P_0}^\ell. \end{split}$$

Let \mathbb{T} be the \mathbb{Z} algebra generated by all $t_m, m \in A$ monic. Then $\mathbb{T} \cong \mathbb{B}$ as \mathbb{Z} -algebras. Passing to $\operatorname{Pic}(X_{P_0})$, one shows that, for the basis $e_i, 1 \leq i \leq n$:

$$t_m e_i = \sum_{j=1}^n B_{ij}(m) e_j.$$

Correspondence on Shimura curve

View X_{P_0} as $(\hat{R}^{\times} \setminus \hat{\mathcal{D}}^{\times} / \hat{k}^{\times}) \times Y / (\mathcal{D}^{\times} / k^{\times})$. This leads to global Hecke correspondence t_P on X_{P_0} for all P.

As t_P and $t_{P'}$ are commute for any prime P and P', one defines t_m for every ideal (m) of A:

$$\begin{split} t_{mm'} &= t_m t_{m'}, \quad \text{if } m \text{ and } m' \text{ are relatively prime,} \\ t_{P^\ell} &= t_{P^{\ell-1}} t_P - q^{\deg P} t_{P^{\ell-2}}, \quad \text{for } P \neq P_0, \\ t_{P_0}^\ell &= t_{P_0}^\ell. \end{split}$$

Let \mathbb{T} be the \mathbb{Z} algebra generated by all $t_m, m \in A$ monic. Then $\mathbb{T} \cong \mathbb{B}$ as \mathbb{Z} -algebras. Passing to $\operatorname{Pic}(X_{P_0})$, one shows that, for the basis $e_i, 1 \leq i \leq n$:

$$t_m e_i = \sum_{j=1}^n B_{ij}(m) e_j.$$

Correspondence on Shimura curve

View X_{P_0} as $(\hat{R}^{\times} \setminus \hat{D}^{\times} / \hat{k}^{\times}) \times Y / (\mathcal{D}^{\times} / k^{\times})$. This leads to global Hecke correspondence t_P on X_{P_0} for all P.

As t_P and $t_{P'}$ are commute for any prime P and P', one defines t_m for every ideal (m) of A:

 $t_{mm'} = t_m t_{m'}$, if m and m' are relatively prime,

$$\begin{split} t_{P^\ell} &= t_{P^{\ell-1}} t_P - q^{\deg P} t_{P^{\ell-2}}, \quad \text{for } P \neq P_0, \\ t_{P_0}^\ell &= t_{P_0}^\ell. \end{split}$$

Let \mathbb{T} be the \mathbb{Z} algebra generated by all $t_m, m \in A$ monic. Then $\mathbb{T} \cong \mathbb{B}$ as \mathbb{Z} -algebras. Passing to $\operatorname{Pic}(X_{P_0})$, one shows that, for the basis $e_i, 1 \leq i \leq n$:

$$t_m e_i = \sum_{j=1}^n B_{ij}(m)e_j.$$

Following B. Gross, we define a height pairing <,> on $\operatorname{Pic}(X_{P_0})$ with values in $\mathbb Z$ by setting

$$\langle e_i, e_j \rangle = 0$$
, if $i \neq j$;

$$\langle e_i, e_i \rangle = w_i.$$

This pairing gives an isomorphism of $\operatorname{Pic}(X_{P_0}))^{\vee} = \operatorname{Hom}(\operatorname{Pic}(X_{P_0}), \mathbb{Z})$ with the subgroup of $\operatorname{Pic}(X_{P_0}) \otimes_{\mathbb{Z}} \mathbb{Q}$ with basis $\{\check{e}_i = e_i/w_i : i = 1, ..., n\}$. Since $w_j B_{ij}(m) = w_i B_{ji}(m)$ always hold, one has the following identity, for all classes e and e' in $\operatorname{Pic}(X_{P_0})$,

$$\langle t_m e, e' \rangle = \langle e, t_m e' \rangle.$$

Automorphic forms

Let \mathcal{O}_{∞} be the valuation ring of k_{∞} , with uniformizer π_{∞} . We are interested in automorphic forms of level $P_0\infty$, i.e. complex-valued functions on the double coset space

 $\Gamma_0(P_0) \setminus \operatorname{GL}_2(k_{\infty}) / \Gamma_{\infty} k^{\times}$

where
$$\Gamma_0(P_0) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(A) : c \equiv 0 \mod P_0 \right\},$$

and $\Gamma_\infty = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\mathcal{O}_\infty) : c \in \pi_\infty \mathcal{O}_\infty \right\}.$

From Brandt matrices we have constructed theta series θ_{ij} . These theta series then give rise automorphic forms of **Drinfeld type**.

Automorphic forms

Let \mathcal{O}_{∞} be the valuation ring of k_{∞} , with uniformizer π_{∞} . We are interested in automorphic forms of level $P_0\infty$, i.e. complex-valued functions on the double coset space

 $\Gamma_0(P_0) \setminus \operatorname{GL}_2(k_{\infty}) / \Gamma_{\infty} k_{\infty}^{\times}$

where
$$\Gamma_0(P_0) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(A) : c \equiv 0 \mod P_0 \right\},$$

and $\Gamma_\infty = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\mathcal{O}_\infty) : c \in \pi_\infty \mathcal{O}_\infty \right\}.$

From Brandt matrices we have constructed theta series θ_{ij} . These theta series then give rise automorphic forms of **Drinfeld type**.

Automorphic forms of Drinfeld type

An automorphic form f is of Drinfeld type if it satisfies the following harmonic properties: for any $g \in GL_2(k_{\infty})$

(1)
$$f(g\begin{pmatrix} 0 & 1\\ \pi_{\infty} & 0 \end{pmatrix}) = -f(g),$$

(2) $\sum_{\kappa \in \operatorname{GL}_2(\mathcal{O}_{\infty})/\Gamma_{\infty}} f(g\kappa) = 0.$

All the functions Θ_{ij} constructed from the quaternion algebra ${\cal D}$ are of Drinfeld type.

Let $M(\Gamma(P_0))$ be the space of all automorphic forms of Drinfeld type of level $P_0\infty$. For each monic $m \in A$ one also has Hecke operators T_m on the space $M(\Gamma(P_0))$. This gives a commutative algebra of Hecke operators on automorphic forms of Drinfeld type. This algebra is again isomorphic to the algebra of \mathbb{B} , \mathbb{C} , \mathbb{C}

Automorphic forms of Drinfeld type

An automorphic form f is of Drinfeld type if it satisfies the following harmonic properties: for any $g \in GL_2(k_{\infty})$

(1)
$$f(g\begin{pmatrix} 0 & 1\\ \pi_{\infty} & 0 \end{pmatrix}) = -f(g),$$

(2) $\sum_{\kappa \in \operatorname{GL}_2(\mathcal{O}_{\infty})/\Gamma_{\infty}} f(g\kappa) = 0.$

All the functions Θ_{ij} constructed from the quaternion algebra \mathcal{D} are of Drinfeld type.

Let $M(\Gamma(P_0))$ be the space of all automorphic forms of Drinfeld type of level $P_0\infty$. For each monic $m \in A$ one also has Hecke operators T_m on the space $M(\Gamma(P_0))$. This gives a commutative algebra of Hecke operators on automorphic forms of Drinfeld type. This algebra is again isomorphic to the algebra of \mathbb{B} , \dots

Automorphic forms of Drinfeld type

An automorphic form f is of Drinfeld type if it satisfies the following harmonic properties: for any $g \in GL_2(k_{\infty})$

(1)
$$f(g\begin{pmatrix} 0 & 1\\ \pi_{\infty} & 0 \end{pmatrix}) = -f(g),$$

(2) $\sum_{\kappa \in \operatorname{GL}_2(\mathcal{O}_{\infty})/\Gamma_{\infty}} f(g\kappa) = 0.$

All the functions Θ_{ij} constructed from the quaternion algebra \mathcal{D} are of Drinfeld type.

Let $M(\Gamma(P_0))$ be the space of all automorphic forms of Drinfeld type of level $P_0\infty$. For each monic $m \in A$ one also has Hecke operators T_m on the space $M(\Gamma(P_0))$. This gives a commutative algebra of Hecke operators on automorphic forms of Drinfeld type. This algebra is again isomorphic to the algebra of \mathbb{B} .

A canonical pairing

Moreover we have for all $1 \leq i,j \leq n$ and any monic m the identity,

$$T_m \Theta_{ij} = \sum_{\ell} B_{i\ell}(m) \Theta_{\ell j}.$$

The multiplicity one theorem for automorphic forms then implies that the theta series $\Theta_{\ell j}$ generate a subspace inside $M(\Gamma(P_0))$ which is a free $\mathbb{B} \otimes \mathbb{C}$ -module of rank one. We have a pairing :

$$\phi : \operatorname{Pic}(X_{P_0}) \times \operatorname{Pic}(X_{P_0}) \longrightarrow M(\Gamma(P_0)),$$

$$\phi(e, e') \begin{pmatrix} \pi_{\infty}^{r} & u \\ 0 & 1 \end{pmatrix} = q^{-r+2} \left(\deg e \cdot \deg e' + \sum_{\substack{m \text{ monic,} \deg m \le r-2 \\ m \text{ monic,} \deg m \le r-2}} < e, t_{m} e' > \sum_{\substack{(\lambda) = (m) \\ (\lambda) = (\lambda) \\ m \text{ price for the source function fields}}} \psi_{\infty}(\lambda u) \right)$$

A canonical pairing

Moreover we have for all $1 \leq i, j \leq n$ and any monic m the identity,

$$T_m \Theta_{ij} = \sum_{\ell} B_{i\ell}(m) \Theta_{\ell j}.$$

The multiplicity one theorem for automorphic forms then implies that the theta series $\Theta_{\ell j}$ generate a subspace inside $M(\Gamma(P_0))$ which is a free $\mathbb{B} \otimes \mathbb{C}$ -module of rank one.

We have a pairing :

 $\phi : \operatorname{Pic}(X_{P_0}) \times \operatorname{Pic}(X_{P_0}) \longrightarrow M(\Gamma(P_0)),$

$$\phi(e, e') \begin{pmatrix} \pi_{\infty}^{r} & u \\ 0 & 1 \end{pmatrix} = q^{-r+2} \left(\deg e \cdot \deg e' + \sum_{\substack{m \text{ monic,} \deg m \le r-2 \\ e + e \neq 0 \\ e + e \neq 0 \\ (\lambda) = (m) \\ (\lambda) = (m$$

A canonical pairing

Moreover we have for all $1 \leq i,j \leq n$ and any monic m the identity,

$$T_m \Theta_{ij} = \sum_{\ell} B_{i\ell}(m) \Theta_{\ell j}.$$

The multiplicity one theorem for automorphic forms then implies that the theta series $\Theta_{\ell j}$ generate a subspace inside $M(\Gamma(P_0))$ which is a free $\mathbb{B} \otimes \mathbb{C}$ -module of rank one. We have a pairing :

$$\phi: \operatorname{Pic}(X_{P_0}) \times \operatorname{Pic}(X_{P_0}) \longrightarrow M(\Gamma(P_0)),$$

$$\phi(e, e') \begin{pmatrix} \pi_{\infty}^{r} & u \\ 0 & 1 \end{pmatrix} = q^{-r+2} \left(\deg e \cdot \deg e' + \sum_{\substack{m \text{ monic,} \deg m \le r-2 \\ e < e, t_{m}e' > \sum_{\substack{(\lambda) = (m) \\ \langle \alpha \rangle > \langle \alpha \rangle > \langle \alpha \rangle < \langle \alpha \rangle < \langle \alpha \rangle }} \psi_{\infty}(\lambda u) \right)$$

$$T_m\phi(e,e') = \phi(t_m e,e') = \phi(e,t_m e').$$

We claim that the theta series $\Theta_{\ell j}$ actually generate $M(\Gamma(P_0))$. It follows that our pairing induces an isomorphism of Hecke modules:

 $(\operatorname{Pic}(X_{P_0}) \otimes_{\mathbb{Z}} \mathbb{C}) \otimes_{\mathbb{T}_{\mathbb{C}}} (\operatorname{Pic}(X_{P_0}) \otimes_{\mathbb{Z}} \mathbb{C}) \cong M(\Gamma_0(P_0)).$

The dimension of $M(\Gamma(P_0))$ therefore equals to the number of left ideal classes of R. It also equals to $g(\Gamma(P_0)) + 1$ (Gekeler), where $g(\Gamma(P_0))$ is the genus of the Drinfeld modular curve $X_0(P_0)$.

$$T_m\phi(e,e') = \phi(t_m e,e') = \phi(e,t_m e').$$

We claim that the theta series $\Theta_{\ell j}$ actually generate $M(\Gamma(P_0))$. It follows that our pairing induces an isomorphism of Hecke modules:

 $(\operatorname{Pic}(X_{P_0}) \otimes_{\mathbb{Z}} \mathbb{C}) \otimes_{\mathbb{T}_{\mathbb{C}}} (\operatorname{Pic}(X_{P_0}) \otimes_{\mathbb{Z}} \mathbb{C}) \cong M(\Gamma_0(P_0)).$

The dimension of $M(\Gamma(P_0))$ therefore equals to the number of left ideal classes of R. It also equals to $g(\Gamma(P_0)) + 1$ (Gekeler), where $g(\Gamma(P_0))$ is the genus of the Drinfeld modular curve $X_0(P_0)$.

$$T_m\phi(e,e') = \phi(t_m e,e') = \phi(e,t_m e').$$

We claim that the theta series $\Theta_{\ell j}$ actually generate $M(\Gamma(P_0))$. It follows that our pairing induces an isomorphism of Hecke modules:

$$(\operatorname{Pic}(X_{P_0}) \otimes_{\mathbb{Z}} \mathbb{C}) \otimes_{\mathbb{T}_{\mathbb{C}}} (\operatorname{Pic}(X_{P_0}) \otimes_{\mathbb{Z}} \mathbb{C}) \cong M(\Gamma_0(P_0)).$$

The dimension of $M(\Gamma(P_0))$ therefore equals to the number of left ideal classes of R. It also equals to $g(\Gamma(P_0)) + 1$ (Gekeler), where $g(\Gamma(P_0))$ is the genus of the Drinfeld modular curve $X_0(P_0)$.

$$T_m\phi(e,e') = \phi(t_m e,e') = \phi(e,t_m e').$$

We claim that the theta series $\Theta_{\ell j}$ actually generate $M(\Gamma(P_0))$. It follows that our pairing induces an isomorphism of Hecke modules:

$$(\operatorname{Pic}(X_{P_0}) \otimes_{\mathbb{Z}} \mathbb{C}) \otimes_{\mathbb{T}_{\mathbb{C}}} (\operatorname{Pic}(X_{P_0}) \otimes_{\mathbb{Z}} \mathbb{C}) \cong M(\Gamma_0(P_0)).$$

The dimension of $M(\Gamma(P_0))$ therefore equals to the number of left ideal classes of R. It also equals to $g(\Gamma(P_0)) + 1$ (Gekeler), where $g(\Gamma(P_0))$ is the genus of the Drinfeld modular curve $X_0(P_0)$.

Jacquet-Langlands revisited

Given a Hecke character $\eta : \mathbb{A}_k^{\times}/k^{\times}$. Let $\mathcal{A}_0(\eta)$ be the space of automorphic cusp forms for $GL_2(k)$ with central character η and $\mathcal{A}'(\eta)$ be the space of automorphic forms for \mathcal{D}^{\times} with central character η . Jacquet-Langlands correspondence describes the connection between $\mathcal{A}'(\eta)$ and $\mathcal{A}_0(\eta)$, namely:

If an irreducible admissible representation $\rho' = \otimes \rho'_v$ is a constituent of $\mathcal{A}'(\eta)$ and ρ'_v is infinite dimensional at ∞ and P_0 , then there exist an irreducible admissible representation $\rho(=\rho'^{\mathsf{JL}})$ which is a constituent of $\mathcal{A}_0(\eta)$ so that

$$L(s,\omega\otimes\rho)=L(s,\omega\otimes\rho')$$

for any Hecke character ω .

Note that $\rho = \otimes \rho_v$ where $\rho_v = \rho'_v$ for finite place $v \neq P_0$. On the other hand ρ_{P_0} is from theta correspondence of ρ'_v and ρ_v , and is special or supercuspidal.

Conversely, suppose $\rho = \otimes \rho_v$ is a constituent of $\mathcal{A}_0(\eta)$. If the representation ρ_{P_0} is special or supercuspidal, then there is a constituent $\rho' = \otimes \rho'_v$ of $\mathcal{A}'(\eta)$ s.t. $\rho_v = {\rho'_v}^{JL}$.

Jacquet-Langlands correspondence gives an isomorphism (as Hecke modules) between

{ non-constant functions on
$$\hat{R}^{\times} \setminus \hat{\mathcal{D}}^{\times} / \mathcal{D}^{\times}$$
}

and

automorphic cusp forms for $\Gamma_0(P_0)$ giving special representation at ∞ with trivial central character $\left.\right\}$.

The End. Thank You.

æ

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶