Definite Quaternion Algebras over Function Fields and Brandt Matrices

Fu-Tsun Wei, National Tsing Hua University, and Jing Yu, National Taiwan University.

March 18, 2010, Waseda University

Notations

$k: \quad$ rational function field $\mathbb{F}_{q}(t), q$ is power of p, p an odd prime.
A : polynomial ring $\mathbb{F}_{q}[t]$.
∞ : infinite place, corresponding to the valuation of the degree.
$k_{\infty}: \mathbb{F}_{q}\left(\left(\frac{1}{t}\right)\right)$, i.e., the completion of k at ∞.
P : monic irreducible in A, i.e. finite prime.
$\bar{k}_{\infty}: \quad$ a fixed algebraic closure of k_{∞}.
\bar{k} : the algebraic closure of k inside k_{∞}.
$\overline{\mathbb{F}_{q}(t)}$: the algebraic closure of \mathbb{F}_{q} inside \bar{k}.
v_{∞} : the valuation on k_{∞} s.t. $v_{\infty}(a)=-\operatorname{deg}(a)$ for all $a \in A$.
For us: k, A, k_{∞} play the role of \mathbb{Q}, \mathbb{Z}, and \mathbb{R} respectively.

Definite quaternion algebras

Let P_{0} be a fixed finite prime, \mathcal{D} be the ("definite") quaternion algebra over k which ramifies only at ∞ and P_{0}.

Let $R \subset \mathcal{D}$ be a maximal order (A - rank 4). Interested in left ideals I of R inside \mathcal{D}.

The left ideal classes can be put into 1-1 correspondence with isomorphism classes of rank 2 supersingular Drinfeld A-modules in A-characteristic P_{0}

Let R^{I} be the right order of I, and set $w(I)=\#\left(R^{I}\right)^{\times} /(q-1)$ If $[\phi\rceil$ is class of Drinfeld A-modules corresponds to $I, w(\phi)=w(I)$ counts its automorphisms, then Mass Formula (Gekeler) says

Definite quaternion algebras

Let P_{0} be a fixed finite prime, \mathcal{D} be the ("definite") quaternion algebra over k which ramifies only at ∞ and P_{0}.

Let $R \subset \mathcal{D}$ be a maximal order (A - rank 4). Interested in left ideals I of R inside \mathcal{D}.

The left ideal classes can be put into 1-1 correspondence with isomorphism classes of rank 2 supersingular Drinfeld A-modules in A-characteristic P_{0}.

Let R^{I} be the right order of I, and set $w(I)=\#\left(R^{I}\right)^{\times} /(q-1)$ If $[\phi]$ is class of Drinfeld A-modules corresponds to $I, w(\phi)=w(I)$ counts its automorphisms, then Mass Formula (Gekeler) savs

Definite quaternion algebras

Let P_{0} be a fixed finite prime, \mathcal{D} be the ("definite") quaternion algebra over k which ramifies only at ∞ and P_{0}.

Let $R \subset \mathcal{D}$ be a maximal order (A - rank 4). Interested in left ideals I of R inside \mathcal{D}.

The left ideal classes can be put into 1-1 correspondence with isomorphism classes of rank 2 supersingular Drinfeld A-modules in A-characteristic P_{0}.

Let R^{I} be the right order of I, and set $w(I)=\#\left(R^{I}\right)^{\times} /(q-1)$. If $[\phi]$ is class of Drinfeld A-modules corresponds to $I, w(\phi)=w(I)$ counts its automorphisms, then Mass Formula (Gekeler) says

$$
\sum_{[\phi]} \frac{1}{w(\phi)}=\frac{q^{\operatorname{deg} P_{0}}-1}{q^{2}-1}=\zeta_{A}(-1)\left(1-q^{\operatorname{deg} P_{0}}\right)
$$

Drinfeld A-modules

Let (L, ι) (denoted by L simply) be an A-field, i.e. a field L together with \mathbb{F}_{q}-algebra homomorphism $\iota: A \rightarrow L$. The kernel of ι is called the A-characteristic of L. This A-characteristic is a prime ideal (P), here P is a prime (monic irreducible) in A or zero.

Consider the twist polynomial ring

$$
L\{\tau\}=\operatorname{End}_{\mathbb{F}_{q}}\left(\mathbb{G}_{a / L}\right)
$$

A rank 2 Drinfeld A-modules ϕ over L with A-characteristic P is an \mathbb{F}_{q}-algebra homomornhism $\phi: A \rightarrow L\{\tau\}$. which satisfies

Drinfeld A-modules

Let (L, ι) (denoted by L simply) be an A-field, i.e. a field L together with \mathbb{F}_{q}-algebra homomorphism $\iota: A \rightarrow L$.
The kernel of ι is called the A-characteristic of L. This A-characteristic is a prime ideal (P), here P is a prime (monic irreducible) in A or zero.

Consider the twist polynomial ring : $\left(\tau(x)=x^{q}\right)$

$$
L\{\tau\}=\operatorname{End}_{\mathbb{F}_{q}}\left(\mathbb{G}_{a / L}\right)
$$

A rank 2 Drinfeld A-modules ϕ over L with A-characteristic P is an \mathbb{F}_{q}-algebra homomorphism $\phi: A \rightarrow L\{\tau\}$, which satisfies

$$
\phi_{t}=\iota(t)+g \tau+\Delta \tau^{2}, \Delta \neq 0
$$

Supersingular Drinfeld A-modules

Let ϕ and ϕ^{\prime} be two Drinfeld modules. A morphism $u: \phi \rightarrow \phi^{\prime}$ over L is an element $u \in L\{\tau\}$ such that for all $a \in A$

$$
u \phi_{a}=\phi_{a}^{\prime} u .
$$

We have accordingly endomorphisms, isomorphisms, and automorphisms of Drinfeld modules. A non-zero morphism is called an isogeny.

Given ϕ of rank 2 over L, and prime $P \in A$. The P-torsion of ϕ

$$
\phi[P]=\left\{x \in \bar{L}: \phi_{P}(x)=0\right\}
$$

where \bar{L} is fixed algebraic closure of L, is a finite A-module isomorphic to $(A /(P))^{2}$, if P is not the A-characteristic of L. In case the A-characteristic is $\left(P_{0}\right) \neq 0$, either $\phi\left[P_{0}\right] \cong A /(P)$ or ϕ is supersingular,

Supersingular Drinfeld A-modules

Let ϕ and ϕ^{\prime} be two Drinfeld modules. A morphism $u: \phi \rightarrow \phi^{\prime}$ over L is an element $u \in L\{\tau\}$ such that for all $a \in A$

$$
u \phi_{a}=\phi_{a}^{\prime} u
$$

We have accordingly endomorphisms, isomorphisms, and automorphisms of Drinfeld modules. A non-zero morphism is called an isogeny.

Given ϕ of rank 2 over L, and prime $P \in A$. The P-torsion of ϕ

$$
\phi[P]=\left\{x \in \bar{L}: \phi_{P}(x)=0\right\},
$$

where \bar{L} is fixed algebraic closure of L, is a finite A-module isomorphic to $(A /(P))^{2}$, if P is not the A-characteristic of L. In case the A-characteristic is $\left(P_{0}\right) \neq 0$, either $\phi\left[P_{0}\right] \cong A /(P)$ or ϕ is supersingular, i.e. $\phi\left[P_{0}\right]=0$.

Quaternion algebras as endomorphism algebras

Supersingular Drinfeld A-modules ϕ are always definable over finite A-field L, in fact, quadratic extension of $\mathbb{F}_{P_{0}}:=A /\left(P_{0}\right)$.

If ϕ is of rank $2, \operatorname{End}_{L}(\phi) \otimes_{A} k=\mathcal{D}=\mathcal{D}\left(P_{0}, \infty\right)$ is a quaternion division algebra over k. This quaternion algebra is "definite", in the sense it splits at primes differ from the characteristic P_{0} and ∞.

Quaternion algebras as endomorphism algebras

Supersingular Drinfeld A-modules ϕ are always definable over finite A-field L, in fact, quadratic extension of $\mathbb{F}_{P_{0}}:=A /\left(P_{0}\right)$.

If ϕ is of rank $2, \operatorname{End}_{L}(\phi) \otimes_{A} k=\mathcal{D}=\mathcal{D}\left(P_{0}, \infty\right)$ is a quaternion division algebra over k. This quaternion algebra is "definite", in the sense it splits at primes differ from the characteristic P_{0} and ∞.

Then $\operatorname{End}_{L}(\phi)$ is a maximal order in \mathcal{D}. Left ideal classes of $\operatorname{End}_{L}(\phi)$ correspond bijectively to the isomorphism classes of rank 2 supersingular Drinfeld A-modules over $L=\overline{\mathbb{F}_{P_{0}}}$.

Quaternion algebras as endomorphism algebras

Supersingular Drinfeld A-modules ϕ are always definable over finite A-field L, in fact, quadratic extension of $\mathbb{F}_{P_{0}}:=A /\left(P_{0}\right)$.

If ϕ is of rank $2, \operatorname{End}_{L}(\phi) \otimes_{A} k=\mathcal{D}=\mathcal{D}\left(P_{0}, \infty\right)$ is a quaternion division algebra over k. This quaternion algebra is "definite", in the sense it splits at primes differ from the characteristic P_{0} and ∞.

Then $\operatorname{End}_{L}(\phi)$ is a maximal order in \mathcal{D}. Left ideal classes of $\operatorname{End}_{L}(\phi)$ correspond bijectively to the isomorphism classes of rank 2 supersingular Drinfeld A-modules over $L=\overline{\mathbb{F}_{P_{0}}}$.

The group $G=\operatorname{Gal}\left(\overline{\mathbb{F}_{P_{0}}} / \mathbb{F}_{P_{0}}\right)$ acts on the left ideal classes by acting on the corresponding supersingular Drinfeld A-modules, the types (i.e. conjugacy classes) of maximal orders in \mathcal{D} correspond bijectively to the orbits of isomorphism classes of supersingular Drinfeld A-modules under the action of G.

Brandt matrices

Fix miximal order R. For left ideal I, set $I^{-1}=\{b \in \mathcal{D}: I b I \subset I\}$, a right ideal for R whose left order is the right order of I.

Let $\left\{I_{1}, \ldots, I_{n}\right\}$ be left ideals of R representing the distinct ideal classes, with $I_{1}=R$. Let R_{i} be the right order of I_{i}, and $w_{i}=\#\left(R_{i}^{\times}\right) /(q-1)$. Let $M_{i j}=I_{j}^{-1} I_{i}$, which is a left ideal of R_{j} with right order R_{i}. For any element $b \in M_{i j}, \mathrm{Nr}(b)$ denotes its reduced norm, and define $N_{i j}=f / g$ where f and g are the unique monic polynomials in A s.t. the quotients $\operatorname{Nr}(b) / N_{i j}$ are all in A with no common factor.
For each monic $m \in A$, let

$$
B_{i j}(m)=\frac{\#\left\{b \in M_{i j}:\left(\mathrm{Nr}(b) / N_{i j}\right)=(m)\right\}}{(q-1) w_{j}}
$$

and $B(m)=\left(B_{i j}(m)\right) \in \operatorname{Mat}_{n}(\mathbb{Z})$.
Also set $B(0)=\left(B_{i j}(0)\right)$, with $B_{i j}(0)=\frac{1}{(q-1) w_{j}}$.

Supersingular Drinfeld Modules and Brandt Matrices

For each i, let ϕ_{i} be a supersingular Drinfeld module rank 2 corresponding to I_{i}. Then $\operatorname{End}\left(\phi_{i}\right) \cong R_{i}$. Moreover, one has

$$
M_{i j} \cong \operatorname{Hom}\left(\phi_{i}, \phi_{j}\right), b \mapsto u_{j} b u_{i}^{-1},
$$

where $u_{i}: \phi_{1} \rightarrow \phi_{i}$ is the isogeny corresponding to I_{i}.
Note that given two isogenies u and u^{\prime} from ϕ_{i} to ϕ_{j}, the finite A-submodule scheme $\operatorname{ker}(u)$ and $\operatorname{ker}\left(u^{\prime}\right)$ are equal if and only if $u^{\prime}=\alpha u$, where $\alpha \in \operatorname{Aut}\left(\phi_{j}\right)$. Any finite A-submodule scheme C of ϕ_{i} is the kernel of some isogeny with height $h, 0 \leq h \leq 2$. The Euler-Poincaré characteristic of C is the ideal $\left(P_{0}^{h} d_{1} d_{2}\right)$, if $C(\bar{L}) \cong A /\left(d_{1}\right) \times A /\left(d_{2}\right)$. The entry $B_{i j}(m)$ is exactly the number of finite A-submodule schemes C of ϕ_{i} whose Euler-Poincaré characteristic is (m) and

Supersingular Drinfeld Modules and Brandt Matrices

For each i, let ϕ_{i} be a supersingular Drinfeld module rank 2 corresponding to I_{i}. Then $\operatorname{End}\left(\phi_{i}\right) \cong R_{i}$. Moreover, one has

$$
M_{i j} \cong \operatorname{Hom}\left(\phi_{i}, \phi_{j}\right), b \mapsto u_{j} b u_{i}^{-1},
$$

where $u_{i}: \phi_{1} \rightarrow \phi_{i}$ is the isogeny corresponding to I_{i}.
Note that given two isogenies u and u^{\prime} from ϕ_{i} to ϕ_{j}, the finite A-submodule scheme $\operatorname{ker}(u)$ and $\operatorname{ker}\left(u^{\prime}\right)$ are equal if and only if $u^{\prime}=\alpha u$, where $\alpha \in \operatorname{Aut}\left(\phi_{j}\right)$. Any finite A-submodule scheme C of ϕ_{i} is the kernel of some isogeny with height $h, 0 \leq h \leq 2$. The Euler-Poincaré characteristic of C is the ideal $\left(P_{0}^{h} d_{1} d_{2}\right)$, if $C(\bar{L}) \cong A /\left(d_{1}\right) \times A /\left(d_{2}\right)$.

Supersingular Drinfeld Modules and Brandt Matrices

For each i, let ϕ_{i} be a supersingular Drinfeld module rank 2 corresponding to I_{i}. Then $\operatorname{End}\left(\phi_{i}\right) \cong R_{i}$. Moreover, one has

$$
M_{i j} \cong \operatorname{Hom}\left(\phi_{i}, \phi_{j}\right), b \mapsto u_{j} b u_{i}^{-1},
$$

where $u_{i}: \phi_{1} \rightarrow \phi_{i}$ is the isogeny corresponding to I_{i}.
Note that given two isogenies u and u^{\prime} from ϕ_{i} to ϕ_{j}, the finite A-submodule scheme $\operatorname{ker}(u)$ and $\operatorname{ker}\left(u^{\prime}\right)$ are equal if and only if $u^{\prime}=\alpha u$, where $\alpha \in \operatorname{Aut}\left(\phi_{j}\right)$. Any finite A-submodule scheme C of ϕ_{i} is the kernel of some isogeny with height $h, 0 \leq h \leq 2$. The Euler-Poincaré characteristic of C is the ideal $\left(P_{0}^{h} d_{1} d_{2}\right)$, if $C(\bar{L}) \cong A /\left(d_{1}\right) \times A /\left(d_{2}\right)$.

The entry $B_{i j}(m)$ is exactly the number of finite A-submodule schemes C of ϕ_{i} whose Euler-Poincaré characteristic is (m) and $\phi_{i} / C \cong \phi_{j}$.

About Brandt matrices

(1) The row sums $\sum_{j} B_{i j}(m)$ are independent of i and equal to

$$
\sigma(m)_{P_{0}}:=\sum_{m^{\prime}} q^{\operatorname{deg}\left(m^{\prime}\right)}
$$

sum is over all monic polynomial $m^{\prime} \mid m$ which is prime to P_{0}.
\square
(3) If $B\left(P_{0}\right) \neq 1$, it is a permutation matrix of order 2 and $B\left(P_{0}^{\ell}\right)=B\left(P_{0}\right)^{\ell}$
(4) If $P \neq P_{0}$ is another monic prime, then for $\ell \geq 2$, $B\left(P^{\ell}\right)=B\left(P^{\ell-1}\right) B(P)-q^{\operatorname{deg}(P)} B\left(P^{\ell-2}\right)$.
(5) The $B(m)$ generate a commutative subring \mathbb{R} of $\mathrm{Mat}_{n}(\mathbb{Z})$ (6) For all i, j the symmetry relation

$$
w_{j} B_{i j}(m)=w_{i} B_{j i}(m) .
$$

(7) The algebra $\mathbb{B} \otimes_{\mathbb{Z}} \mathbb{Q}$ is semisimple, and isomorphic to a product

About Brandt matrices

(1) The row sums $\sum_{j} B_{i j}(m)$ are independent of i and equal to

$$
\sigma(m)_{P_{0}}:=\sum_{m^{\prime}} q^{\operatorname{deg}\left(m^{\prime}\right)}
$$

sum is over all monic polynomial $m^{\prime} \mid m$ which is prime to P_{0}.
(2) If $\left(m, m^{\prime}\right)=1$, then $B(m) B\left(m^{\prime}\right)=B\left(m m^{\prime}\right)$.
(3) If $B\left(P_{0}\right) \neq 1$, it is a permutation matrix of order 2 and $B\left(P_{0}^{\ell}\right)=B\left(P_{0}\right)^{\ell}$
(4) If $P \neq P_{0}$ is another monic prime, then for $\ell \geq 2$,

(5) The $B(m)$ generate a commutative subring \mathbb{B} of $\operatorname{Mat}_{n}(\mathbb{Z})$
(6) For all i, j the symmetry relation

$$
w_{j} B_{i j}(m)=w_{i} B_{j i}(m) .
$$

(7) The algebra $\mathbb{B} \otimes_{\mathbb{Z}} \mathbb{Q}$ is semisimple, and isomorphic to a product

About Brandt matrices

(1) The row sums $\sum_{j} B_{i j}(m)$ are independent of i and equal to

$$
\sigma(m)_{P_{0}}:=\sum_{m^{\prime}} q^{\operatorname{deg}\left(m^{\prime}\right)}
$$

sum is over all monic polynomial $m^{\prime} \mid m$ which is prime to P_{0}.
(2) If $\left(m, m^{\prime}\right)=1$, then $B(m) B\left(m^{\prime}\right)=B\left(m m^{\prime}\right)$.
(3) If $B\left(P_{0}\right) \neq 1$, it is a permutation matrix of order 2 and

$$
B\left(P_{0}^{\ell}\right)=B\left(P_{0}\right)^{\ell}
$$

(4) If $P \neq P_{0}$ is another monic prime, then for $\ell \geq 2$,

$$
B\left(P^{\ell}\right)=B\left(P^{\ell-1}\right) B(P)-q^{\operatorname{deg}(P)} B\left(P^{\ell-2}\right)
$$

(5) The $B(m)$ generate a commutative subring \mathbb{B} of $\operatorname{Mat}_{n}(\mathbb{Z})$
(6) For all i, j the symmetry relation
$w_{j} B_{i j}(m)=w_{i} B_{j i}(m)$.
(7) The algebra $\mathbb{B} \otimes_{\mathbb{Z}} \mathbb{Q}$ is semisimple, and isomorphic to a product

About Brandt matrices

(1) The row sums $\sum_{j} B_{i j}(m)$ are independent of i and equal to

$$
\sigma(m)_{P_{0}}:=\sum_{m^{\prime}} q^{\operatorname{deg}\left(m^{\prime}\right)}
$$

sum is over all monic polynomial $m^{\prime} \mid m$ which is prime to P_{0}.
(2) If $\left(m, m^{\prime}\right)=1$, then $B(m) B\left(m^{\prime}\right)=B\left(m m^{\prime}\right)$.
(3) If $B\left(P_{0}\right) \neq 1$, it is a permutation matrix of order 2 and

$$
B\left(P_{0}^{\ell}\right)=B\left(P_{0}\right)^{\ell} .
$$

(4) If $P \neq P_{0}$ is another monic prime, then for $\ell \geq 2$,

$$
B\left(P^{\ell}\right)=B\left(P^{\ell-1}\right) B(P)-q^{\operatorname{deg}(P)} B\left(P^{\ell-2}\right)
$$

(5) The $B(m)$ generate a commutative subring \mathbb{B} of $\operatorname{Mat}_{n}(\mathbb{Z})$.
(6) For all i, j the symmetry relation

About Brandt matrices

(1) The row sums $\sum_{j} B_{i j}(m)$ are independent of i and equal to

$$
\sigma(m)_{P_{0}}:=\sum_{m^{\prime}} q^{\operatorname{deg}\left(m^{\prime}\right)}
$$

sum is over all monic polynomial $m^{\prime} \mid m$ which is prime to P_{0}.
(2) If $\left(m, m^{\prime}\right)=1$, then $B(m) B\left(m^{\prime}\right)=B\left(m m^{\prime}\right)$.
(3) If $B\left(P_{0}\right) \neq 1$, it is a permutation matrix of order 2 and

$$
B\left(P_{0}^{\ell}\right)=B\left(P_{0}\right)^{\ell} .
$$

(4) If $P \neq P_{0}$ is another monic prime, then for $\ell \geq 2$,

$$
B\left(P^{\ell}\right)=B\left(P^{\ell-1}\right) B(P)-q^{\operatorname{deg}(P)} B\left(P^{\ell-2}\right)
$$

(5) The $B(m)$ generate a commutative subring \mathbb{B} of $\operatorname{Mat}_{n}(\mathbb{Z})$.
(6) For all i, j the symmetry relation

$$
w_{j} B_{i j}(m)=w_{i} B_{j i}(m)
$$

(7) The algebra $\mathbb{B} \otimes \mathbb{Z} \mathbb{Q}^{\mathbb{Q}}$ is semisimple, and isomorphic to a product

About Brandt matrices

(1) The row sums $\sum_{j} B_{i j}(m)$ are independent of i and equal to

$$
\sigma(m)_{P_{0}}:=\sum_{m^{\prime}} q^{\operatorname{deg}\left(m^{\prime}\right)}
$$

sum is over all monic polynomial $m^{\prime} \mid m$ which is prime to P_{0}.
(2) If $\left(m, m^{\prime}\right)=1$, then $B(m) B\left(m^{\prime}\right)=B\left(m m^{\prime}\right)$.
(3) If $B\left(P_{0}\right) \neq 1$, it is a permutation matrix of order 2 and

$$
B\left(P_{0}^{\ell}\right)=B\left(P_{0}\right)^{\ell}
$$

(4) If $P \neq P_{0}$ is another monic prime, then for $\ell \geq 2$,

$$
B\left(P^{\ell}\right)=B\left(P^{\ell-1}\right) B(P)-q^{\operatorname{deg}(P)} B\left(P^{\ell-2}\right)
$$

(5) The $B(m)$ generate a commutative subring \mathbb{B} of $\operatorname{Mat}_{n}(\mathbb{Z})$.
(6) For all i, j the symmetry relation

$$
w_{j} B_{i j}(m)=w_{i} B_{j i}(m)
$$

(7) The algebra $\mathbb{B} \otimes_{\mathbb{Z}} \mathbb{Q}$ is semisimple, and isomorphic to a product of totally real number fields.

Class numbers of imaginary quadratic fields

Let a be an element in $k \subset k_{\infty}$. If $a \neq 0$, then we define

$$
\begin{cases}a>0 & \text { if } a \in\left(k_{\infty}^{\times}\right)^{2}, \\ a<0 & \text { if } a \in k_{\infty}^{\times}-\left(k_{\infty}^{\times}\right)^{2} .\end{cases}
$$

If $d \in A$ with $d<0$ let $h(d)$ be class number of $O_{d}=A[\sqrt{d}]$ and let $u(d)=\#\left(O_{d}^{\times} / \mathbb{F}_{q}^{\times}\right)(u(d)=q+1$ or 1$)$.

For $a \in A$ with $a<0$ the Hurwitz class number is given by

Class numbers of imaginary quadratic fields

Let a be an element in $k \subset k_{\infty}$. If $a \neq 0$, then we define

$$
\begin{cases}a>0 & \text { if } a \in\left(k_{\infty}^{\times}\right)^{2}, \\ a<0 & \text { if } a \in k_{\infty}^{\times}-\left(k_{\infty}^{\times}\right)^{2} .\end{cases}
$$

If $d \in A$ with $d<0$ let $h(d)$ be class number of $O_{d}=A[\sqrt{d}]$ and let $u(d)=\#\left(O_{d}^{\times} / \mathbb{F}_{q}^{\times}\right)(u(d)=q+1$ or 1$)$.

For $a \in A$ with $a<0$ the Hurwitz class number is given by

$$
H(a)=\sum_{d f^{2}=a, f \text { monic }} \frac{h(d)}{u(d)} .
$$

$$
H_{P_{0}}(a)= \begin{cases}0 & \text { if } P_{0} \text { splits in } O_{a}, \\ \frac{2}{q-1} H(a) & \text { if } P_{0} \text { is inert in } O_{a}, \\ \frac{1}{q-1} H(a) & \text { if } P_{0} \text { ramified but prime to conductor of } O_{a} \\ H_{P_{0}}\left(a / P_{0}^{2}\right) & \text { if } P_{0} \text { divides the conductor of } O_{a} .\end{cases}
$$

We have analogue of Eichler's trace formula,

$$
\operatorname{tr} B(m)=\sum_{m^{\prime} \in A,\left(m^{\prime}\right)=(m)}\left\{\sum_{s \in A, s^{2} \leq 4 m^{\prime}} H_{P_{0}}\left(s^{2}-4 m^{\prime}\right)\right\},
$$

for all monic polynomial $m \in A$.
Set also $H_{P_{0}}(0)=\frac{q^{d}-1}{(q-1)\left(q^{2}-1\right)}$, then Mass formula amounts to

$$
\operatorname{tr} B(0)=H_{P_{0}}(0) .
$$

Theta series

Fix addtive characters as $\sigma: \mathbb{F}_{q} \rightarrow \mathbb{C}^{\times}$, and $\psi_{\infty}: k_{\infty} \rightarrow \mathbb{C}^{\times}$, $\sigma(\xi)=\exp \left(\frac{2 \pi i}{p} \operatorname{tr}_{\mathbb{F}_{q} / \mathbb{F}_{p}}(\xi)\right)$,
$\psi_{\infty}(y)=\sigma\left(\operatorname{Res}_{\infty}(y d t)\right)$.
Let n be the class number of the maximal order R, choose representatives $I_{i}, i=1, \cdots, n$, of the left ideal classes, and set $M_{i j}=I_{j}^{-1} I_{i}$. For $x \in k_{\infty}^{\times}, y \in k_{\infty}$, define Theta Series for \mathcal{D},

where ϕ_{∞} is the characteristic function of \mathcal{O}_{∞}, and $N_{i j}=f / g$ where f and g are the unique monic polynomials in A s.t. the quotients $\operatorname{Nr}(b) / N_{i j}$ are all in A with no common factor.

Theta series

Fix addtive characters as $\sigma: \mathbb{F}_{q} \rightarrow \mathbb{C}^{\times}$, and $\psi_{\infty}: k_{\infty} \rightarrow \mathbb{C}^{\times}$, $\sigma(\xi)=\exp \left(\frac{2 \pi i}{p} \operatorname{tr}_{\mathbb{F}_{q} / \mathbb{F}_{p}}(\xi)\right)$,
$\psi_{\infty}(y)=\sigma\left(\operatorname{Res}_{\infty}(y d t)\right)$.
Let n be the class number of the maximal order R, choose representatives $I_{i}, i=1, \cdots, n$, of the left ideal classes, and set $M_{i j}=I_{j}^{-1} I_{i}$. For $x \in k_{\infty}^{\times}, y \in k_{\infty}$, define Theta Series for \mathcal{D},

$$
\theta_{i j}(x, y)=\sum_{b \in M_{i j}} \phi_{\infty}\left(\frac{\mathrm{Nr}(b)}{N_{i j}} x t^{2}\right) \cdot \psi_{\infty}\left(\frac{\mathrm{Nr}(b)}{N_{i j}} y\right),
$$

where ϕ_{∞} is the characteristic function of \mathcal{O}_{∞}, and $N_{i j}=f / g$ where f and g are the unique monic polynomials in A s.t. the quotients $\mathrm{Nr}(b) / N_{i j}$ are all in A with no common factor.

Automorphy of theta series

For each $a \in A$, let $B_{i j}^{\prime}(a)=\#\left\{b \in M_{i j}: \operatorname{Nr}(b) / N_{i j}=a\right\}$. Then

$$
(q-1) w_{j} \cdot B_{i j}(m)=\sum_{(a)=(m)} B_{i j}^{\prime}(a)
$$

We may rewrite the theta series as

$$
\theta_{i j}(x, y)=\sum_{a \in A, \operatorname{deg}(a) \leq v_{\infty}(x)-2} B_{i j}^{\prime}(a) \psi_{\infty}(a y)
$$

One has $\theta_{i j}(x, y+a)=\theta_{i j}(x, y)$ for $a \in A$.
Also $\theta_{i j}(\alpha x, \beta x+y)=\theta_{i j}(x, y)$ for $\alpha \in \mathcal{O}_{\infty}^{\times}, \beta \in \mathcal{O}_{\infty}$
For $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}_{2}(A)$. Assume $v_{\infty}(x)>v_{\infty}(y)$,
$v_{\infty}(c x)>v_{\infty}(c y+d)$, and $c \equiv 0\left(\bmod P_{0}\right)$. Then

Automorphy of theta series

For each $a \in A$, let $B_{i j}^{\prime}(a)=\#\left\{b \in M_{i j}: \operatorname{Nr}(b) / N_{i j}=a\right\}$. Then

$$
(q-1) w_{j} \cdot B_{i j}(m)=\sum_{(a)=(m)} B_{i j}^{\prime}(a)
$$

We may rewrite the theta series as

$$
\theta_{i j}(x, y)=\sum_{a \in A, \operatorname{deg}(a) \leq v_{\infty}(x)-2} B_{i j}^{\prime}(a) \psi_{\infty}(a y)
$$

One has $\theta_{i j}(x, y+a)=\theta_{i j}(x, y)$ for $a \in A$.
Also $\theta_{i j}(\alpha x, \beta x+y)=\theta_{i j}(x, y)$ for $\alpha \in \mathcal{O}_{\infty}^{\times}, \beta \in \mathcal{O}_{\infty}$.
For $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(A)$. Assume $v_{\infty}(x)>v_{\infty}(y)$,
$v_{\infty}(c x)>v_{\infty}(c y+d)$, and $c \equiv 0\left(\bmod P_{0}\right)$. Then

$$
\theta_{i j}(g \circ(x, y))=q^{-2 v_{\infty}(c y+d)} \cdot \theta_{i j}(x, y)
$$

Functions on ∞-adic space

Introducing complex-valued functions on $\mathrm{GL}_{2}\left(k_{\infty}\right)$:

$$
\theta_{i j}^{\prime}(g)=q^{-v_{\infty}(x)} \theta_{i j}(x, y)
$$

where $g=\gamma\left(\begin{array}{ll}x & y \\ 0 & 1\end{array}\right) \gamma_{\infty} \alpha$ for some $\gamma \in \Gamma_{0}\left(P_{0}\right) \cap \mathrm{SL}_{2}(A)$,
$\gamma_{\infty} \in \Gamma_{\infty}, \alpha \in k_{\infty}^{\times}$. Moreover, let

$$
\Theta_{i j}(g)=\sum_{\epsilon \in \mathbb{F}_{q}^{\times}} \theta_{i j}^{\prime}\left(\left(\begin{array}{ll}
\epsilon & \\
& 1
\end{array}\right) g\right) .
$$

Then $\Theta_{i j}$ are complex-valued functions on the double coset space

$$
\Gamma_{0}\left(P_{0}\right) \backslash \mathrm{GL}_{2}\left(k_{\infty}\right) / \Gamma_{\infty} k_{\infty}^{\times}
$$

Definite Shimura curves

Let Y be the genus 0 curve over k associated with the quaternion algebra \mathcal{D}, which is defined by:

$$
Y(M)=\left\{x \in \mathcal{D} \otimes_{k} M: \operatorname{tr}(x)=\operatorname{Nr}(x)=0\right\} / M^{\times} .
$$

Here M is any k-algebra. The group \mathcal{D}^{\times}acts on Y by conjugation. If K is a quadratic extension of k, then one can identify $Y(K)=\operatorname{Hom}(K, \mathcal{D})$.

To each embedding $f: K \rightarrow \mathcal{D}$ we let $y=y_{f}$ be the image of the unique K-line on the quadric $\left\{x \in \mathcal{D} \otimes_{k} K: \operatorname{tr}(x)=N(x)=0\right\}$ on which conjugation by $f\left(K^{\times}\right)$acts by the character $a \mapsto a / \sigma(a), \sigma$ is the non-trivial automorphism of K / k. Note that y_{f} is one of the 2 fixed points of $f\left(K^{\times}\right)$acting on $Y(K)$; the other is the image of the line where conjugation acts by the character $a \mapsto \sigma(a) / a$.

Definite Shimura curves

Let Y be the genus 0 curve over k associated with the quaternion algebra \mathcal{D}, which is defined by:

$$
Y(M)=\left\{x \in \mathcal{D} \otimes_{k} M: \operatorname{tr}(x)=\operatorname{Nr}(x)=0\right\} / M^{\times}
$$

Here M is any k-algebra. The group \mathcal{D}^{\times}acts on Y by conjugation. If K is a quadratic extension of k, then one can identify $Y(K)=\operatorname{Hom}(K, \mathcal{D})$.

To each embedding $f: K \rightarrow \mathcal{D}$ we let $y=y_{f}$ be the image of the unique K-line on the quadric $\left\{x \in \mathcal{D} \otimes_{k} K: \operatorname{tr}(x)=N(x)=0\right\}$ on which conjugation by $f\left(K^{\times}\right)$acts by the character $a \mapsto a / \sigma(a), \sigma$ is the non-trivial automorphism of K / k. Note that y_{f} is one of the 2 fixed points of $f\left(K^{\times}\right)$acting on $Y(K)$; the other is the image of the line where conjugation acts by the character $a \mapsto \sigma(a) / a$.

Notations continued

k_{P} : completion of k at a finite prime P.
A_{P} : closure of A in k_{P}.
$R_{P}:=R \otimes_{A} A_{P}, K_{P}:=K \otimes_{k} k_{P}$, and $\mathcal{D}_{P}:=\mathcal{D} \otimes_{k} k_{P}$.
$\hat{k}: \quad \prod_{P}^{\prime} k_{P}$, the finite adele ring of k.
$\hat{R}: \quad=\prod_{P} R_{P}, \quad \hat{K}=\prod_{P}^{\prime} K_{P}, \quad$ and $\hat{\mathcal{D}}=\prod_{P}^{\prime} \mathcal{D}_{P}$.

For quadratic order $O_{d} \subset K$ one has

For left ideal classes of the maximal order R, one has bijection with double cosets in

Notations continued

k_{P} : completion of k at a finite prime P.
A_{P} : closure of A in k_{P}.

$$
R_{P}: \quad=R \otimes_{A} A_{P}, K_{P}:=K \otimes_{k} k_{P}, \text { and } \mathcal{D}_{P}:=\mathcal{D} \otimes_{k} k_{P} .
$$

$\hat{k}: \quad \prod_{P}^{\prime} k_{P}$, the finite adele ring of k.

$$
\hat{R}: \quad=\prod_{P} R_{P}, \quad \hat{K}=\prod_{P}^{\prime} K_{P}, \quad \text { and } \hat{\mathcal{D}}=\prod_{P}^{\prime} \mathcal{D}_{P}
$$

For quadratic order $O_{d} \subset K$ one has

$$
\hat{O}_{d}^{\times} \backslash \hat{K}^{\times} / K^{\times} \cong \operatorname{Pic} O_{d}
$$

For left ideal classes of the maximal order R, one has bijection with double cosets in

$$
\hat{R}^{\times} \backslash \hat{\mathcal{D}}^{\times} / \mathcal{D}^{\times}
$$

Special points

Our definite Shimura curve $X_{P_{0}}$ is defined as

$$
\left(\hat{R}^{\times} \backslash \hat{\mathcal{D}}^{\times} \times Y\right) / \mathcal{D}^{\times}
$$

This is union of curves of genus 0 , with components in bijection with the left ideal classes of R. Thus if there are n left ideal classes, $\operatorname{Pic}\left(X_{P_{0}}\right) \cong \mathbb{Z}^{n}$, generated by $e_{i}, i=1, \ldots, n$, which are classes of degree 1 on each component of $X_{P_{0}}$.

The special points (Gross points) on $X_{P_{0}}$ over K are points in the image of $\hat{R}^{\times} \backslash \hat{\mathcal{D}}^{\times} \times Y(K)$ in $X_{P_{0}}(K)$. We say the point $x=(g, y)$ has discriminant d if $f(K) \cap g^{-1} \hat{R} g=f\left(O_{d}\right)$, where $f: K \rightarrow \mathcal{D}$ is the embedding corresponding to y. Note that here the discriminant of a special point is well defined up to multiplication by elements in $\left(\mathbb{F}_{q}^{\times}\right)^{2}$.

Special points

Our definite Shimura curve $X_{P_{0}}$ is defined as

$$
\left(\hat{R}^{\times} \backslash \hat{\mathcal{D}}^{\times} \times Y\right) / \mathcal{D}^{\times}
$$

This is union of curves of genus 0 , with components in bijection with the left ideal classes of R. Thus if there are n left ideal classes, $\operatorname{Pic}\left(X_{P_{0}}\right) \cong \mathbb{Z}^{n}$, generated by $e_{i}, i=1, \ldots, n$, which are classes of degree 1 on each component of $X_{P_{0}}$.

The special points (Gross points) on $X_{P_{0}}$ over K are points in the image of $\hat{R}^{\times} \backslash \hat{\mathcal{D}}^{\times} \times Y(K)$ in $X_{P_{0}}(K)$. We say the point $x=(g, y)$ has discriminant d if $f(K) \cap g^{-1} \hat{R} g=f\left(O_{d}\right)$, where $f: K \rightarrow \mathcal{D}$ is the embedding corresponding to y. Note that here the discriminant of a special point is well defined up to multiplication by elements in $\left(\mathbb{F}_{q}^{\times}\right)^{2}$.

Special points

Our definite Shimura curve $X_{P_{0}}$ is defined as

$$
\left(\hat{R}^{\times} \backslash \hat{\mathcal{D}}^{\times} \times Y\right) / \mathcal{D}^{\times} .
$$

This is union of curves of genus 0 , with components in bijection with the left ideal classes of R. Thus if there are n left ideal classes, $\operatorname{Pic}\left(X_{P_{0}}\right) \cong \mathbb{Z}^{n}$, generated by $e_{i}, i=1, \ldots, n$, which are classes of degree 1 on each component of $X_{P_{0}}$.

The special points (Gross points) on $X_{P_{0}}$ over K are points in the image of $\hat{R}^{\times} \backslash \hat{\mathcal{D}}^{\times} \times Y(K)$ in $X_{P_{0}}(K)$. We say the point $x=(g, y)$ has discriminant d if $f(K) \cap g^{-1} \hat{R} g=f\left(O_{d}\right)$, where $f: K \rightarrow \mathcal{D}$ is the embedding corresponding to y. Note that here the discriminant of a special point is well defined up to multiplication by elements in $\left(\mathbb{F}_{q}^{\times}\right)^{2}$.

Hecke correspondences

Given P. Let \mathcal{T} be the Bruhat-Tits tree of $\mathrm{PGL}_{2}\left(k_{P}\right)$. The vertices are the classes of A_{P}-lattices in k_{P}^{2}, and two such vertices are adjacent if the "distance" between the lattice classes is 1 .

The Hecke correspondence t_{P} sends vertex v to the formal sum of its $q^{\operatorname{deg}(P)}+1$ neighbors on the tree
Identifying $\mathrm{PGL}_{2}\left(A_{P}\right) \backslash \mathrm{PGL}_{2}\left(k_{P}\right)$ with vertices of the Bruhat-Tits tree, for $g_{P} \in \mathrm{PGL}_{2}\left(A_{P}\right) \backslash \mathrm{PGL} L_{2}\left(k_{P}\right)$ one has:

When $P \neq P_{0}$, one has $R_{P}^{\times} \backslash \mathcal{D}_{P}^{\times} / k_{P}^{\times} \cong \mathrm{PGL}_{2}\left(A_{P}\right) \backslash \mathrm{PGL}_{2}\left(k_{P}\right)$. On the other hand $R_{P_{n}}^{\times} \backslash \mathcal{D}_{P_{0}}^{\times} / k_{P_{0}}^{\times}$has two elements, just let $t_{P_{0}}$ sends one element to the other.

Hecke correspondences

Given P. Let \mathcal{T} be the Bruhat-Tits tree of $\mathrm{PGL}_{2}\left(k_{P}\right)$. The vertices are the classes of A_{P}-lattices in k_{P}^{2}, and two such vertices are adjacent if the "distance" between the lattice classes is 1 .

The Hecke correspondence t_{P} sends vertex v to the formal sum of its $q^{\operatorname{deg}(P)}+1$ neighbors on the tree. Identifying $\mathrm{PGL}_{2}\left(A_{P}\right) \backslash \mathrm{PGL}_{2}\left(k_{P}\right)$ with vertices of the Bruhat-Tits tree, for $g_{P} \in \mathrm{PGL}_{2}\left(A_{P}\right) \backslash \mathrm{PGL}_{2}\left(k_{P}\right)$ one has:

$$
t_{P}\left(g_{P}\right)=\sum_{\operatorname{deg}(u) \leq \operatorname{deg}(P)}\left(\begin{array}{ll}
1 & u \\
0 & P
\end{array}\right) g_{P}+\left(\begin{array}{cc}
P & 0 \\
0 & 1
\end{array}\right) g_{P}
$$

Hecke correspondences

Given P. Let \mathcal{T} be the Bruhat-Tits tree of $\mathrm{PGL}_{2}\left(k_{P}\right)$. The vertices are the classes of A_{P}-lattices in k_{P}^{2}, and two such vertices are adjacent if the "distance" between the lattice classes is 1 .

The Hecke correspondence t_{P} sends vertex v to the formal sum of its $q^{\operatorname{deg}(P)}+1$ neighbors on the tree.
Identifying $\mathrm{PGL}_{2}\left(A_{P}\right) \backslash \mathrm{PGL}_{2}\left(k_{P}\right)$ with vertices of the Bruhat-Tits tree, for $g_{P} \in \mathrm{PGL}_{2}\left(A_{P}\right) \backslash \mathrm{PGL}_{2}\left(k_{P}\right)$ one has:

$$
t_{P}\left(g_{P}\right)=\sum_{\operatorname{deg}(u) \leq \operatorname{deg}(P)}\left(\begin{array}{cc}
1 & u \\
0 & P
\end{array}\right) g_{P}+\left(\begin{array}{cc}
P & 0 \\
0 & 1
\end{array}\right) g_{P}
$$

When $P \neq P_{0}$, one has $R_{P}^{\times} \backslash \mathcal{D}_{P}^{\times} / k_{P}^{\times} \cong \mathrm{PGL}_{2}\left(A_{P}\right) \backslash \mathrm{PGL}_{2}\left(k_{P}\right)$.
On the other hand $R_{P_{0}}^{\times} \backslash \mathcal{D}_{P_{0}}^{\times} / k_{P_{0}}^{\times}$has two elements, just let $t_{P_{0}}$ sends one element to the other.

Correspondence on Shimura curve

View $X_{P_{0}}$ as $\left(\hat{R}^{\times} \backslash \hat{\mathcal{D}}^{\times} / \hat{k}^{\times}\right) \times Y /\left(\mathcal{D}^{\times} / k^{\times}\right)$. This leads to global Hecke correspondence t_{P} on $X_{P_{0}}$ for all P.

As t_{P} and $t_{P^{\prime}}$ are commute for any prime P and P^{\prime}, one defines t_{m} for every ideal (m) of A

$$
\begin{aligned}
& t_{m m^{\prime}}=t_{m} t_{m^{\prime}}, \quad \text { if } m \text { and } m^{\prime} \text { are relatively prime, } \\
& \qquad t_{P^{\ell}}=t_{P^{\ell-1}} t_{P}-q^{\text {deg } P} t_{P^{\ell-2}}, \quad \text { for } P \neq P_{0}
\end{aligned}
$$

Let \mathbb{T} be the \mathbb{Z} algebra generated by all $t_{m}, m \in A$ monic. Then $\mathbb{T} \cong \mathbb{B}$ as \mathbb{Z}-algebras. Passing to $\operatorname{Pic}\left(X_{P_{0}}\right)$, one shows that, for the basis $e_{i}, 1 \leq i \leq n$

Correspondence on Shimura curve

View $X_{P_{0}}$ as $\left(\hat{R}^{\times} \backslash \hat{\mathcal{D}}^{\times} / \hat{k}^{\times}\right) \times Y /\left(\mathcal{D}^{\times} / k^{\times}\right)$. This leads to global Hecke correspondence t_{P} on $X_{P_{0}}$ for all P.

As t_{P} and $t_{P^{\prime}}$ are commute for any prime P and P^{\prime}, one defines t_{m} for every ideal (m) of A :

$$
\begin{gathered}
t_{m m^{\prime}}=t_{m} t_{m^{\prime}}, \quad \text { if } m \text { and } m^{\prime} \text { are relatively prime, } \\
t_{P^{\ell}}=t_{P^{\ell-1}} t_{P}-q^{\operatorname{deg} P} t_{P^{\ell-2}}, \quad \text { for } P \neq P_{0} \\
t_{P_{0}}^{\ell}=t_{P_{0}}^{\ell}
\end{gathered}
$$

Let \mathbb{T} be the \mathbb{Z} algebra generated by all $t_{m}, m \in A$ monic. Then
$\mathbb{T} \cong \mathbb{B}$ as \mathbb{Z}-algebras. Passing to $\operatorname{Pic}\left(X_{P_{0}}\right)$, one shows that, for the
basis $e_{i}, 1 \leq i \leq n$

Correspondence on Shimura curve

View $X_{P_{0}}$ as $\left(\hat{R}^{\times} \backslash \hat{\mathcal{D}}^{\times} / \hat{k}^{\times}\right) \times Y /\left(\mathcal{D}^{\times} / k^{\times}\right)$. This leads to global Hecke correspondence t_{P} on $X_{P_{0}}$ for all P.

As t_{P} and $t_{P^{\prime}}$ are commute for any prime P and P^{\prime}, one defines t_{m} for every ideal (m) of A :

$$
\begin{gathered}
t_{m m^{\prime}}=t_{m} t_{m^{\prime}}, \quad \text { if } m \text { and } m^{\prime} \text { are relatively prime, } \\
\qquad t_{P^{\ell}}=t_{P^{\ell-1}} t_{P}-q^{\operatorname{deg} P} t_{P^{\ell-2}}, \quad \text { for } P \neq P_{0} \\
t_{P_{0}}^{\ell}=t_{P_{0}}^{\ell}
\end{gathered}
$$

Let \mathbb{T} be the \mathbb{Z} algebra generated by all $t_{m}, m \in A$ monic. Then $\mathbb{T} \cong \mathbb{B}$ as \mathbb{Z}-algebras. Passing to $\operatorname{Pic}\left(X_{P_{0}}\right)$, one shows that, for the basis $e_{i}, 1 \leq i \leq n$:

$$
t_{m} e_{i}=\sum_{j=1}^{n} B_{i j}(m) e_{j}
$$

Gross pairing

Following B. Gross, we define a height pairing $<,>$ on $\operatorname{Pic}\left(X_{P_{0}}\right)$ with values in \mathbb{Z} by setting

$$
\begin{gathered}
<e_{i}, e_{j}>=0, \text { if } i \neq j \\
<e_{i}, e_{i}>=w_{i}
\end{gathered}
$$

This pairing gives an isomorphism of
$\left.\operatorname{Pic}\left(X_{P_{0}}\right)\right)^{\vee}=\operatorname{Hom}\left(\operatorname{Pic}\left(X_{P_{0}}\right), \mathbb{Z}\right)$ with the subgroup of $\operatorname{Pic}\left(X_{P_{0}}\right) \otimes_{\mathbb{Z}} \mathbb{Q}$ with basis $\left\{\check{e}_{i}=e_{i} / w_{i}: i=1, \ldots, n\right\}$. Since $w_{j} B_{i j}(m)=w_{i} B_{j i}(m)$ always hold, one has the following identity, for all classes e and e^{\prime} in $\operatorname{Pic}\left(X_{P_{0}}\right)$,

$$
<t_{m} e, e^{\prime}>=<e, t_{m} e^{\prime}>
$$

Automorphic forms

Let \mathcal{O}_{∞} be the valuation ring of k_{∞}, with uniformizer π_{∞}. We are interested in automorphic forms of level $P_{0} \infty$, i.e. complex-valued functions on the double coset space

$$
\Gamma_{0}\left(P_{0}\right) \backslash \mathrm{GL}_{2}\left(k_{\infty}\right) / \Gamma_{\infty} k_{\infty}^{\times},
$$

where $\Gamma_{0}\left(P_{0}\right)=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{GL}_{2}(A): c \equiv 0 \bmod P_{0}\right\}$, and $\Gamma_{\infty}=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}\left(\mathcal{O}_{\infty}\right): c \in \pi_{\infty} \mathcal{O}_{\infty}\right\}$.

From Brandt matrices we have constructed theta series θ_{i} These theta series then give rise automorphic forms of Drinfeld type

Automorphic forms

Let \mathcal{O}_{∞} be the valuation ring of k_{∞}, with uniformizer π_{∞}. We are interested in automorphic forms of level $P_{0} \infty$, i.e. complex-valued functions on the double coset space

$$
\Gamma_{0}\left(P_{0}\right) \backslash \mathrm{GL}_{2}\left(k_{\infty}\right) / \Gamma_{\infty} k_{\infty}^{\times},
$$

where $\Gamma_{0}\left(P_{0}\right)=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}(A): c \equiv 0 \bmod P_{0}\right\}$,
and $\Gamma_{\infty}=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}\left(\mathcal{O}_{\infty}\right): c \in \pi_{\infty} \mathcal{O}_{\infty}\right\}$.
From Brandt matrices we have constructed theta series $\theta_{i j}$. These theta series then give rise automorphic forms of Drinfeld type.

Automorphic forms of Drinfeld type

An automorphic form f is of Drinfeld type if it satisfies the following harmonic properties: for any $g \in \mathrm{GL}_{2}\left(k_{\infty}\right)$

$$
\begin{aligned}
& \text { (1) } f\left(g\left(\begin{array}{cc}
0 & 1 \\
\pi_{\infty} & 0
\end{array}\right)\right)=-f(g), \\
& \text { (2) } \sum_{\kappa \in \mathrm{GL}_{2}\left(\mathcal{O}_{\infty}\right) / \Gamma_{\infty}} f(g \kappa)=0 .
\end{aligned}
$$

All the functions $\Theta_{i j}$ constructed from the quaternion algebra \mathcal{D} are of Drinfeld type.

Let $M\left(\Gamma\left(P_{0}\right)\right)$ be the space of all automorphic forms of Drinfeld type of level $P_{0} \infty$. For each monic $m \in A$ one also has Hecke operators T_{m} on the space $M\left(\Gamma\left(P_{0}\right)\right)$. This gives a commutative algebra of Hecke operators on automorphic forms of Drinfeld type.

Automorphic forms of Drinfeld type

An automorphic form f is of Drinfeld type if it satisfies the following harmonic properties: for any $g \in \mathrm{GL}_{2}\left(k_{\infty}\right)$

$$
\begin{aligned}
& \text { (1) } f\left(g\left(\begin{array}{cc}
0 & 1 \\
\pi_{\infty} & 0
\end{array}\right)\right)=-f(g), \\
& \text { (2) } \sum_{\kappa \in \mathrm{GL}_{2}\left(\mathcal{O}_{\infty}\right) / \Gamma_{\infty}} f(g \kappa)=0 .
\end{aligned}
$$

All the functions $\Theta_{i j}$ constructed from the quaternion algebra \mathcal{D} are of Drinfeld type.

Let $M\left(\Gamma\left(P_{0}\right)\right)$ be the space of all automorphic forms of Drinfeld type of level $P_{0} \infty$. For each monic $m \in A$ one also has Hecke operators T_{m} on the space $M\left(\Gamma\left(P_{0}\right)\right)$. This gives a commutative algebra of Hecke operators on automorphic forms of Drinfeld type.

Automorphic forms of Drinfeld type

An automorphic form f is of Drinfeld type if it satisfies the following harmonic properties: for any $g \in \mathrm{GL}_{2}\left(k_{\infty}\right)$

$$
\begin{align*}
& \text { (1) } f\left(g\left(\begin{array}{cc}
0 & 1 \\
\pi_{\infty} & 0
\end{array}\right)\right)=-f(g), \\
& \text { (2) } \sum_{\kappa \in \mathrm{GL}_{2}\left(\mathcal{O}_{\infty}\right) / \Gamma_{\infty}} f(g \kappa)=0 . \tag{2}
\end{align*}
$$

All the functions $\Theta_{i j}$ constructed from the quaternion algebra \mathcal{D} are of Drinfeld type.

Let $M\left(\Gamma\left(P_{0}\right)\right)$ be the space of all automorphic forms of Drinfeld type of level $P_{0} \infty$. For each monic $m \in A$ one also has Hecke operators T_{m} on the space $M\left(\Gamma\left(P_{0}\right)\right)$. This gives a commutative algebra of Hecke operators on automorphic forms of Drinfeld type. This algebra is again isomorphic to the algebra of \mathbb{B}.

A canonical pairing

Moreover we have for all $1 \leq i, j \leq n$ and any monic m the identity,

$$
T_{m} \Theta_{i j}=\sum_{\ell} B_{i \ell}(m) \Theta_{\ell j}
$$

The multiplicity one theorem for automorphic forms then implies that the theta series $\Theta_{\ell j}$ generate a subspace inside $M\left(\Gamma\left(P_{0}\right)\right)$ which is a free $\mathbb{B} \otimes \mathbb{C}$-module of rank one. We have a pairing

$$
\phi: \operatorname{Pic}\left(X_{P_{0}}\right) \times \operatorname{Pic}\left(X_{P_{0}}\right) \longrightarrow M\left(\Gamma\left(P_{0}\right)\right),
$$

A canonical pairing

Moreover we have for all $1 \leq i, j \leq n$ and any monic m the identity,

$$
T_{m} \Theta_{i j}=\sum_{\ell} B_{i \ell}(m) \Theta_{\ell j}
$$

The multiplicity one theorem for automorphic forms then implies that the theta series $\Theta_{\ell j}$ generate a subspace inside $M\left(\Gamma\left(P_{0}\right)\right)$ which is a free $\mathbb{B} \otimes \mathbb{C}$-module of rank one.
We have a pairing
$\phi: \operatorname{Pic}\left(X_{P_{0}}\right) \times \operatorname{Pic}\left(X_{P_{0}}\right) \longrightarrow M\left(\Gamma\left(P_{0}\right)\right)$,

A canonical pairing

Moreover we have for all $1 \leq i, j \leq n$ and any monic m the identity,

$$
T_{m} \Theta_{i j}=\sum_{\ell} B_{i \ell}(m) \Theta_{\ell j}
$$

The multiplicity one theorem for automorphic forms then implies that the theta series $\Theta_{\ell j}$ generate a subspace inside $M\left(\Gamma\left(P_{0}\right)\right)$ which is a free $\mathbb{B} \otimes \mathbb{C}$-module of rank one.
We have a pairing :

$$
\begin{aligned}
& \phi: \operatorname{Pic}\left(X_{P_{0}}\right) \times \operatorname{Pic}\left(X_{P_{0}}\right) \longrightarrow M\left(\Gamma\left(P_{0}\right)\right), \\
& \phi\left(e, e^{\prime}\right)\left(\begin{array}{cc}
\pi_{\infty}^{r} & u \\
0 & 1
\end{array}\right)= q^{-r+2}\left(\operatorname{deg} e \cdot \operatorname{deg} e^{\prime}+\right. \\
&\left.\sum_{m \text { monic,deg } m \leq r-2}<e, t_{m} e^{\prime}>\sum_{(\lambda)=(m)} \psi_{\infty}(\lambda u)\right)
\end{aligned}
$$

Isomorphism of Hecke modules

This pairing is equivariant w.r.t. the Hecke action: for all $m \in A$.

$$
T_{m} \phi\left(e, e^{\prime}\right)=\phi\left(t_{m} e, e^{\prime}\right)=\phi\left(e, t_{m} e^{\prime}\right)
$$

We claim that the theta series $\Theta_{\ell j}$ actually generate $M\left(\Gamma\left(P_{0}\right)\right)$. It follows that our pairing induces an isomorphism of Hecke modules: $\left(\operatorname{Pic}\left(X_{P_{0}}\right) \otimes_{\mathbb{Z}} \mathbb{C}\right) \otimes_{\mathbb{T}_{\mathbb{C}}}\left(\operatorname{Pic}\left(X_{P_{0}}\right) \otimes_{\mathbb{Z}} \mathbb{C}\right) \cong \bar{M}\left(\Gamma_{0}\left(P_{0}\right)\right)$.

The dimension of $M\left(\Gamma\left(P_{0}\right)\right)$ therefore equals to the number of left ideal classes of R. It also equals to $g\left(\Gamma\left(P_{0}\right)\right)+1$ (Gekeler), where $g\left(\Gamma\left(P_{0}\right)\right)$ is the genus of the Drinfeld modular curve $X_{0}\left(P_{0}\right)$.

The claim is essentially Jacquet-Langlands correspondence over the function field k

Isomorphism of Hecke modules

This pairing is equivariant w.r.t. the Hecke action: for all $m \in A$.

$$
T_{m} \phi\left(e, e^{\prime}\right)=\phi\left(t_{m} e, e^{\prime}\right)=\phi\left(e, t_{m} e^{\prime}\right)
$$

We claim that the theta series $\Theta_{\ell j}$ actually generate $M\left(\Gamma\left(P_{0}\right)\right)$. It follows that our pairing induces an isomorphism of Hecke modules:

$$
\left(\operatorname{Pic}\left(X_{P_{0}}\right) \otimes_{\mathbb{Z}} \mathbb{C}\right) \otimes_{\mathbb{T}_{\mathbb{C}}}\left(\operatorname{Pic}\left(X_{P_{0}}\right) \otimes_{\mathbb{Z}} \mathbb{C}\right) \cong M\left(\Gamma_{0}\left(P_{0}\right)\right)
$$

The dimension of $M\left(\Gamma\left(P_{0}\right)\right)$ therefore equals to the number of left ideal classes of R. It also equals to $g\left(\Gamma\left(P_{0}\right)\right)+1$ (Gekeler), where $g\left(\Gamma\left(P_{0}\right)\right)$ is the genus of the Drinfeld modular curve $X_{0}\left(P_{0}\right)$

The claim is essentially Jacquet-Langlands correspondence over the function field k

Isomorphism of Hecke modules

This pairing is equivariant w.r.t. the Hecke action: for all $m \in A$.

$$
T_{m} \phi\left(e, e^{\prime}\right)=\phi\left(t_{m} e, e^{\prime}\right)=\phi\left(e, t_{m} e^{\prime}\right)
$$

We claim that the theta series $\Theta_{\ell j}$ actually generate $M\left(\Gamma\left(P_{0}\right)\right)$. It follows that our pairing induces an isomorphism of Hecke modules:

$$
\left(\operatorname{Pic}\left(X_{P_{0}}\right) \otimes_{\mathbb{Z}} \mathbb{C}\right) \otimes_{\mathbb{T}_{\mathbb{C}}}\left(\operatorname{Pic}\left(X_{P_{0}}\right) \otimes_{\mathbb{Z}} \mathbb{C}\right) \cong M\left(\Gamma_{0}\left(P_{0}\right)\right)
$$

The dimension of $M\left(\Gamma\left(P_{0}\right)\right)$ therefore equals to the number of left ideal classes of R. It also equals to $g\left(\Gamma\left(P_{0}\right)\right)+1$ (Gekeler), where $g\left(\Gamma\left(P_{0}\right)\right)$ is the genus of the Drinfeld modular curve $X_{0}\left(P_{0}\right)$.

The claim is essentially Jacquet-Langlands correspondence over the function field k.

Isomorphism of Hecke modules

This pairing is equivariant w.r.t. the Hecke action: for all $m \in A$.

$$
T_{m} \phi\left(e, e^{\prime}\right)=\phi\left(t_{m} e, e^{\prime}\right)=\phi\left(e, t_{m} e^{\prime}\right)
$$

We claim that the theta series $\Theta_{\ell j}$ actually generate $M\left(\Gamma\left(P_{0}\right)\right)$. It follows that our pairing induces an isomorphism of Hecke modules:

$$
\left(\operatorname{Pic}\left(X_{P_{0}}\right) \otimes_{\mathbb{Z}} \mathbb{C}\right) \otimes_{\mathbb{T}_{\mathbb{C}}}\left(\operatorname{Pic}\left(X_{P_{0}}\right) \otimes_{\mathbb{Z}} \mathbb{C}\right) \cong M\left(\Gamma_{0}\left(P_{0}\right)\right)
$$

The dimension of $M\left(\Gamma\left(P_{0}\right)\right)$ therefore equals to the number of left ideal classes of R. It also equals to $g\left(\Gamma\left(P_{0}\right)\right)+1$ (Gekeler), where $g\left(\Gamma\left(P_{0}\right)\right)$ is the genus of the Drinfeld modular curve $X_{0}\left(P_{0}\right)$.

The claim is essentially Jacquet-Langlands correspondence over the function field k.

Jacquet-Langlands revisited

Given a Hecke character $\eta: \mathbb{A}_{k}^{\times} / k^{\times}$. Let $\mathcal{A}_{0}(\eta)$ be the space of automorphic cusp forms for $G L_{2}(k)$ with central character η and $\mathcal{A}^{\prime}(\eta)$ be the space of automorphic forms for \mathcal{D}^{\times}with central character η. Jacquet-Langlands correspondence describes the connection between $\mathcal{A}^{\prime}(\eta)$ and $\mathcal{A}_{0}(\eta)$, namely:

If an irreducible admissible representation $\rho^{\prime}=\otimes \rho_{v}^{\prime}$ is a constituent of $\mathcal{A}^{\prime}(\eta)$ and ρ_{v}^{\prime} is infinite dimensional at ∞ and P_{0}, then there exist an irreducible admissible representation $\rho\left(=\rho^{\prime J \mathrm{~L}}\right)$ which is a constituent of $\mathcal{A}_{0}(\eta)$ so that

$$
L(s, \omega \otimes \rho)=L\left(s, \omega \otimes \rho^{\prime}\right)
$$

for any Hecke character ω.
Note that $\rho=\otimes \rho_{v}$ where $\rho_{v}=\rho_{v}^{\prime}$ for finite place $v \neq P_{0}$. On the other hand $\rho_{P_{0}}$ is from theta correspondence of ρ_{v}^{\prime} and ρ_{v}, and is special or supercuspidal.

Conversely, suppose $\rho=\otimes \rho_{v}$ is a constituent of $\mathcal{A}_{0}(\eta)$. If the representation $\rho_{P_{0}}$ is special or supercuspidal, then there is a constituent $\rho^{\prime}=\otimes \rho_{v}^{\prime}$ of $\mathcal{A}^{\prime}(\eta)$ s.t. $\rho_{v}=\rho_{v}^{\prime \mathrm{JL}}$.

Jacquet-Langlands correspondence gives an isomorphism (as Hecke modules) between

$$
\left\{\text { non-constant functions on } \hat{R}^{\times} \backslash \hat{\mathcal{D}}^{\times} / \mathcal{D}^{\times}\right\}
$$

and
$\left\{\begin{array}{l}\text { automorphic cusp forms for } \Gamma_{0}\left(P_{0}\right) \text { giving special } \\ \text { representation at } \infty \text { with trivial central character }\end{array}\right\}$.

The End. Thank You.

