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Notations

k : rational function field Fq(t), q is power of p, p an odd prime.

A : polynomial ring Fq[t].
∞ : infinite place, corresponding to the valuation of the degree.

k∞ : Fq((1
t )), i.e., the completion of k at ∞.

P : monic irreducible in A, i.e. finite prime.

k̄∞ : a fixed algebraic closure of k∞.

k̄ : the algebraic closure of k inside k∞.

Fq(t) : the algebraic closure of Fq inside k̄.

v∞ : the valuation on k∞ s.t. v∞(a) = −deg(a) for all a ∈ A.

For us : k, A, k∞ play the role of Q, Z, and R respectively.
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Definite quaternion algebras

Let P0 be a fixed finite prime, D be the (“definite”) quaternion

algebra over k which ramifies only at ∞ and P0.

Let R ⊂ D be a maximal order (A- rank 4).

Interested in left ideals I of R inside D.

The left ideal classes can be put into 1-1 correspondence with

isomorphism classes of rank 2 supersingular Drinfeld A-modules in

A-characteristic P0.

Let RI be the right order of I, and set w(I) = #(RI)×/(q − 1).

If [φ] is class of Drinfeld A-modules corresponds to I, w(φ) = w(I)

counts its automorphisms, then Mass Formula (Gekeler) says

∑
[φ]

1

w(φ)
=
qdegP0 − 1

q2 − 1
= ζA(−1)(1− qdegP0).
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Drinfeld A-modules

Let (L, ι) (denoted by L simply) be an A-field, i.e. a field L

together with Fq-algebra homomorphism ι : A→ L.

The kernel of ι is called the A-characteristic of L. This

A-characteristic is a prime ideal (P ), here P is a prime (monic

irreducible) in A or zero.

Consider the twist polynomial ring : ( τ(x) = xq)

L{τ} = EndFq(Ga/L)

A rank 2 Drinfeld A-modules φ over L with A-characteristic P

is an Fq-algebra homomorphism φ : A→ L{τ}, which satisfies

φt = ι(t) + gτ + ∆τ2,∆ 6= 0.
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Supersingular Drinfeld A-modules

Let φ and φ′ be two Drinfeld modules. A morphism u : φ→ φ′

over L is an element u ∈ L{τ} such that for all a ∈ A

uφa = φ′au.

We have accordingly endomorphisms, isomorphisms, and

automorphisms of Drinfeld modules. A non-zero morphism is

called an isogeny.

Given φ of rank 2 over L, and prime P ∈ A. The P -torsion of φ

φ[P ] = {x ∈ L : φP (x) = 0},

where L is fixed algebraic closure of L, is a finite A-module

isomorphic to (A/(P ))2, if P is not the A-characteristic of L.

In case the A-characteristic is (P0) 6= 0, either φ[P0] ∼= A/(P ) or

φ is supersingular, i.e. φ[P0] = 0.
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Quaternion algebras as endomorphism algebras

Supersingular Drinfeld A-modules φ are always definable over finite

A-field L, in fact, quadratic extension of FP0 := A/(P0).

If φ is of rank 2, EndL(φ)⊗A k = D = D(P0,∞) is a quaternion

division algebra over k. This quaternion algebra is “definite”, in the

sense it splits at primes differ from the characteristic P0 and ∞.

Then EndL(φ) is a maximal order in D. Left ideal classes of

EndL(φ) correspond bijectively to the isomorphism classes of rank

2 supersingular Drinfeld A-modules over L = FP0 .

The group G = Gal(FP0/FP0) acts on the left ideal classes by

acting on the corresponding supersingular Drinfeld A-modules, the

types (i.e. conjugacy classes) of maximal orders in D correspond

bijectively to the orbits of isomorphism classes of supersingular

Drinfeld A-modules under the action of G.
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Brandt matrices

Fix miximal order R. For left ideal I, set I−1 = {b ∈ D : IbI ⊂ I},
a right ideal for R whose left order is the right order of I.

Let {I1, ..., In} be left ideals of R representing the distinct ideal

classes, with I1 = R. Let Ri be the right order of Ii, and

wi = #(R×i )/(q − 1). Let Mij = I−1
j Ii, which is a left ideal of Rj

with right order Ri. For any element b ∈Mij , Nr(b) denotes its

reduced norm, and define Nij = f/g where f and g are the unique

monic polynomials in A s.t. the quotients Nr(b)/Nij are all in A

with no common factor.

For each monic m ∈ A, let

Bij(m) =
#{b ∈Mij : (Nr(b)/Nij) = (m)}

(q − 1)wj

and B(m) = (Bij(m)) ∈ Matn(Z).

Also set B(0) = (Bij(0)), with Bij(0) = 1
(q−1)wj

.
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Supersingular Drinfeld Modules and Brandt Matrices

For each i, let φi be a supersingular Drinfeld module rank 2

corresponding to Ii. Then End(φi) ∼= Ri. Moreover, one has

Mij
∼= Hom(φi, φj), b 7→ ujbu

−1
i ,

where ui : φ1 → φi is the isogeny corresponding to Ii.

Note that given two isogenies u and u′ from φi to φj , the finite

A-submodule scheme ker(u) and ker(u′) are equal if and only if

u′ = αu, where α ∈ Aut(φj). Any finite A-submodule scheme C

of φi is the kernel of some isogeny with height h, 0 ≤ h ≤ 2.

The Euler-Poincaré characteristic of C is the ideal (P h0 d1d2), if

C(L) ∼= A/(d1)×A/(d2).

The entry Bij(m) is exactly the number of finite A-submodule

schemes C of φi whose Euler-Poincaré characteristic is (m) and

φi/C ∼= φj .
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About Brandt matrices

(1) The row sums
∑

j Bij(m) are independent of i and equal to

σ(m)P0 :=
∑
m′

qdeg(m′)

sum is over all monic polynomial m′|m which is prime to P0.

(2) If (m,m′) = 1, then B(m)B(m′) = B(mm′).

(3) If B(P0) 6= 1, it is a permutation matrix of order 2 and

B(P `0) = B(P0)`.

(4) If P 6= P0 is another monic prime, then for ` ≥ 2,

B(P `) = B(P `−1)B(P )− qdeg(P )B(P `−2).

(5) The B(m) generate a commutative subring B of Matn(Z).

(6) For all i, j the symmetry relation

wjBij(m) = wiBji(m).

(7) The algebra B⊗Z Q is semisimple, and isomorphic to a product

of totally real number fields.
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Class numbers of imaginary quadratic fields

Let a be an element in k ⊂ k∞. If a 6= 0, then we define{
a > 0 if a ∈ (k×∞)2,

a < 0 if a ∈ k×∞ − (k×∞)2.

If d ∈ A with d < 0 let h(d) be class number of Od = A[
√
d] and

let u(d) = #(O×d /F
×
q ) (u(d) = q + 1 or 1).

For a ∈ A with a < 0 the Hurwitz class number is given by

H(a) =
∑

df2=a,f monic

h(d)

u(d)
.

HP0(a) =


0 if P0 splits in Oa,

2
q−1H(a) if P0 is inert in Oa,

1
q−1H(a) if P0 ramified but prime to conductor of Oa,

HP0(a/P 2
0 ) if P0 divides the conductor of Oa.
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Trace formula

We have analogue of Eichler’s trace formula,

trB(m) =
∑

m′∈A,(m′)=(m)

 ∑
s∈A,s2≤4m′

HP0(s2 − 4m′)

 ,

for all monic polynomial m ∈ A.

Set also HP0(0) = qd−1
(q−1)(q2−1)

, then Mass formula amounts to

trB(0) = HP0(0).
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Theta series

Fix addtive characters as σ : Fq → C×, and ψ∞ : k∞ → C×,

σ(ξ) = exp(2πi
p trFq/Fp

(ξ)),

ψ∞(y) = σ(Res∞(ydt)).

Let n be the class number of the maximal order R, choose

representatives Ii, i = 1, · · · , n, of the left ideal classes, and set

Mij = I−1
j Ii. For x ∈ k×∞, y ∈ k∞, define Theta Series for D,

θij(x, y) =
∑
b∈Mij

φ∞(
Nr(b)

Nij
xt2) · ψ∞(

Nr(b)

Nij
y),

where φ∞ is the characteristic function of O∞, and Nij = f/g

where f and g are the unique monic polynomials in A s.t. the

quotients Nr(b)/Nij are all in A with no common factor.
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Automorphy of theta series

For each a ∈ A, let B′ij(a) = #{b ∈Mij : Nr(b)/Nij = a}. Then

(q − 1)wj ·Bij(m) =
∑

(a)=(m)

B′ij(a).

We may rewrite the theta series as

θij(x, y) =
∑

a∈A,deg(a)≤v∞(x)−2

B′ij(a)ψ∞(ay).

One has θij(x, y + a) = θij(x, y) for a ∈ A.

Also θij(αx, βx+ y) = θij(x, y) for α ∈ O×∞, β ∈ O∞.

For g =

(
a b

c d

)
∈ SL2(A). Assume v∞(x) > v∞(y),

v∞(cx) > v∞(cy + d), and c ≡ 0 (mod P0). Then

θij(g ◦ (x, y)) = q−2v∞(cy+d) · θij(x, y).
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Functions on ∞-adic space

Introducing complex-valued functions on GL2(k∞) :

θ′ij(g) = q−v∞(x)θij(x, y)

where g = γ

(
x y

0 1

)
γ∞α for some γ ∈ Γ0(P0) ∩ SL2(A),

γ∞ ∈ Γ∞, α ∈ k×∞. Moreover, let

Θij(g) =
∑
ε∈F×q

θ′ij

((
ε

1

)
g

)
.

Then Θij are complex-valued functions on the double coset space

Γ0(P0)\GL2(k∞)/Γ∞k
×
∞.
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Definite Shimura curves

Let Y be the genus 0 curve over k associated with the quaternion

algebra D, which is defined by:

Y (M) = {x ∈ D ⊗kM : tr(x) = Nr(x) = 0}/M×.

Here M is any k-algebra. The group D× acts on Y by

conjugation. If K is a quadratic extension of k, then one can

identify Y (K) = Hom(K,D).

To each embedding f : K → D we let y = yf be the image of the

unique K-line on the quadric {x ∈ D⊗kK : tr(x) = N(x) = 0} on

which conjugation by f(K×) acts by the character a 7→ a/σ(a), σ

is the non-trivial automorphism of K/k. Note that yf is one of the

2 fixed points of f(K×) acting on Y (K); the other is the image of

the line where conjugation acts by the character a 7→ σ(a)/a.
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Notations continued

kP : completion of k at a finite prime P .

AP : closure of A in kP .

RP : = R⊗A AP , KP := K ⊗k kP , and DP := D ⊗k kP .

k̂ :
∏′
P kP , the finite adele ring of k.

R̂ : =
∏
P RP , K̂ =

∏′
P KP , and D̂ =

∏′
P DP .

For quadratic order Od ⊂ K one has

Ô×d \K̂
×/K× ∼= PicOd.

For left ideal classes of the maximal order R, one has bijection

with double cosets in

R̂×\D̂×/D×.
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Special points

Our definite Shimura curve XP0 is defined as(
R̂×\D̂× × Y

)
/D×.

This is union of curves of genus 0, with components in bijection

with the left ideal classes of R. Thus if there are n left ideal

classes, Pic(XP0) ∼= Zn, generated by ei, i = 1, . . . , n, which are

classes of degree 1 on each component of XP0 .

The special points (Gross points) on XP0 over K are points in

the image of R̂×\D̂× × Y (K) in XP0(K). We say the point

x = (g, y) has discriminant d if f(K) ∩ g−1R̂g = f(Od), where

f : K → D is the embedding corresponding to y. Note that here

the discriminant of a special point is well defined up to

multiplication by elements in (F×q )2.
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Hecke correspondences

Given P . Let T be the Bruhat-Tits tree of PGL2(kP ). The

vertices are the classes of AP -lattices in k2
P , and two such vertices

are adjacent if the “distance”between the lattice classes is 1.

The Hecke correspondence tP sends vertex v to the formal sum of

its qdeg(P ) + 1 neighbors on the tree.

Identifying PGL2(AP )\PGL2(kP ) with vertices of the Bruhat-Tits

tree, for gP ∈ PGL2(AP )\PGL2(kP ) one has:

tP (gP ) =
∑

deg(u)≤deg(P )

(
1 u

0 P

)
gP +

(
P 0

0 1

)
gP .

When P 6= P0, one has R×P \D
×
P /k

×
P
∼= PGL2(AP )\PGL2(kP ).

On the other hand R×P0
\D×P0

/k×P0
has two elements, just let tP0

sends one element to the other.
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Correspondence on Shimura curve

View XP0 as (R̂×\D̂×/k̂×)× Y/(D×/k×). This leads to global

Hecke correspondence tP on XP0 for all P .

As tP and tP ′ are commute for any prime P and P ′, one defines

tm for every ideal (m) of A:

tmm′ = tmtm′ , if m and m′ are relatively prime,

tP ` = tP `−1tP − qdegP tP `−2 , for P 6= P0,

t`P0
= t`P0

.

Let T be the Z algebra generated by all tm,m ∈ A monic. Then

T ∼= B as Z-algebras. Passing to Pic(XP0), one shows that, for the

basis ei, 1 ≤ i ≤ n :

tmei =

n∑
j=1

Bij(m)ej .
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Gross pairing

Following B. Gross, we define a height pairing <,> on Pic(XP0)

with values in Z by setting

< ei, ej >= 0, if i 6= j;

< ei, ei >= wi.

This pairing gives an isomorphism of

Pic(XP0))∨ = Hom(Pic(XP0),Z) with the subgroup of

Pic(XP0)⊗Z Q with basis {ěi = ei/wi : i = 1, ..., n}. Since

wjBij(m) = wiBji(m) always hold, one has the following identity,

for all classes e and e′ in Pic(XP0),

< tme, e
′ >=< e, tme

′ > .

Jing Yu Quaternion Algebras over function fields



Automorphic forms

Let O∞ be the valuation ring of k∞, with uniformizer π∞.

We are interested in automorphic forms of level P0∞, i.e.

complex-valued functions on the double coset space

Γ0(P0)\GL2(k∞)/Γ∞k
×
∞,

where Γ0(P0) =

{(
a b

c d

)
∈ GL2(A) : c ≡ 0 mod P0

}
,

and Γ∞ =

{(
a b

c d

)
∈ GL2(O∞) : c ∈ π∞O∞

}
.

From Brandt matrices we have constructed theta series θij .

These theta series then give rise automorphic forms of Drinfeld

type.
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Automorphic forms of Drinfeld type

An automorphic form f is of Drinfeld type if it satisfies the

following harmonic properties: for any g ∈ GL2(k∞)

(1) f(g

(
0 1

π∞ 0

)
) = −f(g),

(2)
∑

κ∈GL2(O∞)/Γ∞

f(gκ) = 0.

All the functions Θij constructed from the quaternion algebra D
are of Drinfeld type.

Let M(Γ(P0)) be the space of all automorphic forms of Drinfeld

type of level P0∞. For each monic m ∈ A one also has Hecke

operators Tm on the space M(Γ(P0)). This gives a commutative

algebra of Hecke operators on automorphic forms of Drinfeld type.

This algebra is again isomorphic to the algebra of B.
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A canonical pairing

Moreover we have for all 1 ≤ i, j ≤ n and any monic m the

identity,

TmΘij =
∑
`

Bi`(m)Θ`j .

The multiplicity one theorem for automorphic forms then implies

that the theta series Θ`j generate a subspace inside M(Γ(P0))

which is a free B⊗ C-module of rank one.

We have a pairing :

φ : Pic(XP0)× Pic(XP0) −→M(Γ(P0)),

φ(e, e′)

(
πr∞ u

0 1

)
= q−r+2

(
deg e · deg e′ +

∑
m monic,degm≤r−2

< e, tme
′ >

∑
(λ)=(m)

ψ∞(λu)

)
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Isomorphism of Hecke modules

This pairing is equivariant w.r.t. the Hecke action: for all m ∈ A.

Tmφ(e, e′) = φ(tme, e
′) = φ(e, tme

′).

We claim that the theta series Θ`j actually generate M(Γ(P0)). It

follows that our pairing induces an isomorphism of Hecke modules:

(Pic(XP0)⊗Z C)⊗TC (Pic(XP0)⊗Z C) ∼= M(Γ0(P0)).

The dimension of M(Γ(P0)) therefore equals to the number of left

ideal classes of R. It also equals to g(Γ(P0)) + 1 (Gekeler), where

g(Γ(P0)) is the genus of the Drinfeld modular curve X0(P0).

The claim is essentially Jacquet-Langlands correspondence over

the function field k.
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Jacquet-Langlands revisited

Given a Hecke character η : A×k /k
×. Let A0(η) be the space of

automorphic cusp forms for GL2(k) with central character η and

A′(η) be the space of automorphic forms for D× with central

character η. Jacquet-Langlands correspondence describes the

connection between A′(η) and A0(η) , namely:

If an irreducible admissible representation ρ′ = ⊗ρ′v is a

constituent of A′(η) and ρ′v is infinite dimensional at ∞ and P0,

then there exist an irreducible admissible representation ρ(= ρ′JL)

which is a constituent of A0(η) so that

L(s, ω ⊗ ρ) = L(s, ω ⊗ ρ′)

for any Hecke character ω.

Note that ρ = ⊗ρv where ρv = ρ′v for finite place v 6= P0. On the

other hand ρP0 is from theta correspondence of ρ′v and ρv, and is

special or supercuspidal.
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Conversely, suppose ρ = ⊗ρv is a constituent of A0(η). If the

representation ρP0 is special or supercuspidal, then there is a

constituent ρ′ = ⊗ρ′v of A′(η) s.t. ρv = ρ′JL
v .

Jacquet-Langlands correspondence gives an isomorphism (as Hecke

modules) between

{ non-constant functions on R̂×\D̂×/D×}

and {
automorphic cusp forms for Γ0(P0) giving special

representation at ∞ with trivial central character

}
.
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The End. Thank You.
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