
On Galois Theory of Several Variables

Jing Yu

National Taiwan University

August 24, 2009, Nankai Institute

Jing Yu Galois Theory of Several Variables



Algebraic relations

We are interested in understanding transcendental invariants which

arise naturally in mathematics. Satisfactory understanding means

that we are able to determine all the algebraic relations among

these very special values.

Let A be an abelian variety over Q of dimension d, and let P be

the period matrix of A. Grothendieck in 1960’s made conjecture :

trdegQ Q(P ) = dim MT(A),

where MT(A) is the Mumford-Tate group of A and is an algebraic

subgroup of GL2d×Gm. This Mumford-Tate group is the motivic

Galois group of the motive h1(A)⊕Q(1).

Extending this conjecture to general motives, one believes that all

algebraic relations of the special values in question can be known.
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Elliptic curves

Example. Consider elliptic curve E : y2 = 4x3 − g2x− g3 over

Q ⊂ C. Its transcendental invariants are the periods and

quasi-periods. Periods lattice ΛE = Zω1 + Zω2 ⊂ C consisting of

periods of dfk : ∫
c

dx

y
, c ∈ H1(E(C),Z).

From differential of the 2nd kind xdx/y, one has quasi-periods

η(ω), which is Z-linear in ω ∈ ΛE . All the non-zero periods and

quasi-periods are transcendental, by Siegel-Schneider 1930’s. On

the other hand Legendre’s relation says

det

(
ω1 ω2

η(ω1) η(ω2)

)
= ±2π

√
−1.
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CM Elliptic curves

If E has no complex multiplications, one conjectures that

ω1, ω2, η(ω1), η(ω2) are algebraically independent, i.e.

trdegQ Q(π, ω, η(ω);ω ∈ ΛE) = 4.

Complex multiplications certainly give rise algebraic relations, thus

in 1970’s Chudnovsky showed that if E has CM, then the above

finitely generated extension has transcendence degree only two.

In the non-CM case the motivic Galois group for E should be GL2,

in the CM case the Galois group is a 2-dim torus, which is just

Resk/Q Gm, where k is the quadratic field of multiplications of E.
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Euler relations

Example. Consider the following values from arithmetic of Q :

S = {2π
√
−1, ζ(2), ζ(3), · · · , ζ(m) · · · , }, where

ζ(m) :=
∞∑
n=1

n−m.

The value of Riemann zeta function at positive integer m > 1.

For m even, one knows from Euler the relations:

ζ(m) =
−(2π

√
−1)mBm

2m!
.

where Bm are the Bernoulli numbers:

Z

eZ − 1
=
∞∑
m=0

Bm
Zm

m !
.
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Mixed Tate motives

One conjectures that these relations generate all the algebraic

relations among numbers from S over the field of algebraic

numbers Q. In particular, all the zeta values ζ(m) for odd integer

m > 1 should be transcendental, and algebraically independent

from each other, as well as algebraically independent from π.

(Presently the transcendence of ζ(3) is still unknown).

This follows from the period conjecture for Mixed Tate motives.

Arithmetic of positive characteristic.

Fq := the finite field of q elements.

k := Fq(θ) := the rational function field in the variable θ over Fq.
k̄ := fixed algebraic closure of k.
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World of positive characteristic

k∞ := Fq((1
θ )), completion of k with respect to the infinite place.

k∞ := a fixed algebraic closure of k∞ containing k̄.

C∞ := completion of k∞ with respect to the canonical extension

of the infinite place.

Natural transcendental “numbers”from function field arithmetic :

Carlitz zeta values (1935), m ≥ 1,

ζC(m) =
∑

a∈Fq [θ]+

1
am
∈ Fq

(
(
1
θ

)
)
,

where Fq[θ]+ consists of monic polynomials in A := Fq[θ].

Development of transcendence theory in positive characteristic:

1st stage : Transporting classical (characteristic zero) theory (e.g.

methods of Siegel, Schneider, Lang, Baker, and Wüstholz) to

positive characteristic world, from 1980’s to 1990’s.
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Euler-Carlitz relations

One has the obvious Frobenius relations among special zeta values

in characteristic p :

ζC(m)p = ζC(mp).

If m is even, i.e. m ≡ 0 (mod q − 1) because the ring Fq[θ] has

q − 1 signs, one also has the Euler-Carlitz relation.

ζC(m) =
π̃mB̃m
Γm+1

,

where π̃ is a fundamental period of the Carlitz module for Fq :

π̃ = θ(−θ)
1
q−1

∞∏
i=1

(
1− θ1−qi

)−1
,

which is transcendental over Fq(θ) (Wade 1942).
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Bernoulli-Carlitz

The Γm are Carlitz factorials :

setting D0 = 1, and Di = (θq
i − θqi−1

) · · · (θqi − θ), for i ≥ 1,

writing down the q-adic expansion
∞∑
i=0

niq
i of n, and let

Γn+1 =
∞∏
i=0

Dni
i .

The B̃m ∈ Fq(θ) are the Bernoulli-Carlitz “numbers”given by

z

expC(z)
=
∞∑
m=0

B̃m
zm

Γm+1
.

Here Carlitz exponential is the series

expC(z) =
∞∑
h=0

zq
h

Dh
= z

∏
a6=0∈Fq [θ]

(1− z

aπ̃
).
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Carlitz module

Carlitz period π̃ fits in exact sequence of Fq-linear maps :

0→ Fq[θ] π̃ → C∞
expC−−−−→ C∞ → 0.

Carlitz exponential linearizes the Fq[t]-action (Carlitz module)

given by

φC(t) : x 7−→ θx+ xq,

C∞
expC−−−−→ Ga(C∞) = C∞

θ(·)
y yφC(t)

C∞
expC−−−−→ Ga(C∞) = C∞

When q = 2, all integers are “even”, Euler-Carlitz says that

all ζC(m),m ≥ 1, are rational multiples of π̃m.
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Toward algebraic independence

For arbitrary q, interested in following set of special zeta values :

Sq = {π̃, ζC(1), ζC(2), · · · , ζC(m), · · · .}

Yu 1991 proves that all these are transcendental over k̄ = Fq(θ),

and in 1997 it is shown that all linear relations among them come

from the Euler-Carlitz relations.

2nd stage of positive characteristic transcendence theory in last

decade: Go beyond its classical counterparts, i.e. from linear

independence to algebraic independence. In particular an analogue

of Grothendieck’s motivic design actually works (Anderson,

Brownawell, C.-Y. Chang, Papanikolas, and J. Yu).

Chang-Yu 2005 proves that the Euler-Carlitz relations and the

Frobenius relations generate all the algebraic relations among

special Carlitz zeta values over the field k̄.
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t-motives

Let t, σ be variables independent of θ.

Let k̄(t)[σ, σ−1] be noncommutative ring of Laurent polynomials

in σ with coefficients in k̄(t), subject to the relation

σf := f (−1)σ for all f ∈ k̄(t).

Here f (−1) is the rational function obtained from f ∈ k̄(t) by

twisting all its coefficients a ∈ k̄ to a
1
q .

A pre-t-motive M over Fq is a left k̄(t)[σ, σ−1]-module

which is finite-dimensional over k̄(t).

Let m ∈ Matr×1(M) be a k̄(t)-basis of M .

Multiplying by σ on M is represented by σ(m) = Φm for some

matrix Φ ∈ GLr(k̄(t)).

The category of pre-t-motives over Fq forms an abelian Fq(t)-linear

tensor category.

Jing Yu Galois Theory of Several Variables



t-motives

Let t, σ be variables independent of θ.

Let k̄(t)[σ, σ−1] be noncommutative ring of Laurent polynomials

in σ with coefficients in k̄(t), subject to the relation

σf := f (−1)σ for all f ∈ k̄(t).

Here f (−1) is the rational function obtained from f ∈ k̄(t) by

twisting all its coefficients a ∈ k̄ to a
1
q .

A pre-t-motive M over Fq is a left k̄(t)[σ, σ−1]-module

which is finite-dimensional over k̄(t).

Let m ∈ Matr×1(M) be a k̄(t)-basis of M .

Multiplying by σ on M is represented by σ(m) = Φm for some

matrix Φ ∈ GLr(k̄(t)).

The category of pre-t-motives over Fq forms an abelian Fq(t)-linear

tensor category.

Jing Yu Galois Theory of Several Variables



Frobenius difference equations

From a pre-t-motive, one associates a “system of Frobenius

difference equation”which has solutions in series of t.

Consider the operator on C∞ by x 7→ x
1
q .

Then extend this operator to C∞((t)) as follows,

for f =
∑

i ait
i ∈ C∞((t)) define f (−1) :=

∑
i a
q−1

i ti.

More generally, for matrix B with entries in C∞((t)) define

twisting B(−1) by the rule B(−1)
ij = Bij

(−1).

Let m ∈ Matr×1(M) be a k̄(t)-basis of M .

Multiplying by σ on M is represented by σ(m) = Φm for some

matrix Φ ∈ GLr(k̄(t)).

The equation to be solved in Ψ ∈ Matr(C∞((t)) is :

Ψ(−1) = ΦΨ.
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Let t = θ

We view Ψ as giving a “fundamental”solution of the system of

Frobenius difference equations described by the algebraic matrix Φ
coming from M .

Note that if Ψ′ ∈ Matr(C∞((t))) is also a solution of the

Frobenius system from Φ, then Ψ′−1Ψ ∈ GLr(Fq(t)).

A power series f =
∑∞

i=0 ait
i ∈ C∞[[t]] that converges everywhere

and satisfies

[k∞(a0, a1, a2, . . . ) : k∞] <∞

is called an entire power series. As a function of t it takes values in

k∞, when restricted to k∞. The ring of the entire power series is

denoted by E.

If all entries of a solution Ψ of the Frobenius system in question

are in E, one can specializ Ψ to Ψ(θ).
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Rigid analytic trivialization

| · |∞ := a fixed absolute value for the completed field C∞.

T := {f ∈ C∞[[t]] | f converges on |t|∞ ≤ 1}.
L := the fraction field of T.

Pre t-motive M is called rigid analytically trivial if there exists

Ψ ∈ GLr(L) such that

Ψ(−1) = ΦΨ.

Such matrix Ψ is called a rigid analytic trivialization of the pre

t-motive in question.

The category R of rigid analytically trivial pre-t-motives over Fq
forms a neutral Tannakian category over Fq(t).
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Tannakian duality

Given object M in R and let TM be the strictly full Tannakian

subcategory of R generated by M . That is, TM consists of all

objects of R isomorphic to subquotients of finite direct sums of

M⊗u ⊗ (M∨)⊗v for various u, v,

where M∨ is the dual of M . By Tannakian duality, TM is

representable by an affine algebraic group scheme ΓM over Fq(t).

Such ΓM is called the motivic Galois group of M .

Given rigid analytically trivial pre-t-motive M , the motivic Galois

group ΓM is isomorphic over Fq(t) to the linear algebraic Galois

group ΓΨ of the associated Frobenius difference equation.
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Papanikolas theory 2008

This algebraic Galois group ΓΨ from solution Ψ has the key

property

dim ΓΨ = tr.degk(t) k(t)(Ψ).

If furthermore Ψ ∈ Matr(E) and satisfies

tr.degk̄(t)k̄(t)(Ψ) = tr.degk̄k̄(Ψ(θ)),

then we say that M has the GP property. It follows that

dim ΓM = tr.degk̄ k̄(Ψ(θ)).

Pre-t-motives having the GP property first come from

Anderson-Brownawell-Papanikolas 2004, through reformulating the

submodule theorem of Yu 1997 which plays the role of Wüstholz

subgroup theorem (1989).
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dim ΓM = tr.degk̄ k̄(Ψ(θ)).

Pre-t-motives having the GP property first come from

Anderson-Brownawell-Papanikolas 2004, through reformulating the

submodule theorem of Yu 1997 which plays the role of Wüstholz

subgroup theorem (1989).
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Galois theory

We are interested in finitely generated extension of k̄ = Fq(θ)
generated by a set S of special values, denoted by KS . In particular

we want to determine all algebraic relations among elements of S.

From known algebraic relations, we can guess the transcendence

degree of KS over k̄, and the goal is to prove that specific degree.

We construct a t-motive MS for this purpose, so that it has the

GP property and its “periods”ΨS(θ) from rigid analytic

trivialization generate also the field KS , then computing the

dimension of the motivic Galois group ΓMS
.

Following transcendental arithmetic values have been tackled:

Periods and quasi-periods of Drinfeld Fq[t]-module defined

over k̄ (arbitrary rank), Chang-Papanikolas 2009.

Logarithms at algebraic points of Drinfeld Fq[t]-module over

k̄, rank 1 Papanikolas 2008, rank 2 Chang-Papanikolas 2009.
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Construction of motives

The Carlitz zeta values ζC(m),m ≥ 1, Chang-Yu 2007.

Geometric Gamma values Γ(α), α ∈ Fq(θ)− Fq(θ)+,

Anderson-Brownawell-Papanikolas 2004 (analogue of

Lang-Rohrlich conjecture).

Arithmnetic Gamma values r!, r ∈ Q ∩ (Zp − Z) (p is the

characteristic), Chang-Thakur-Papanikolas-Yu 2008.

Construction of the t-motives in question rely on the

arithmetic-geometric structures in question:

Canonical t-motive associated to Drinfeld module over k̄ of

rank r following Anderson. In case the Drinfelds module has

full CM, the Galois group is a torus of dim r. In the generic

case, the Galois group is GLr.
For logarithms at algebraic points, the Galois group is an

extension of the Galois group for the Drinfeld module by a

vector group.
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Galois groups

By a formula of Anderson-Thakur, these special zeta values

are linear combinations of polylogarithms at algebraic points.

The Galois group is an extension of Gm by a vector group.

The motive construction for these special geometric Gamma

values is by way of geometric cyclotomy, or “solitons”. The

Galois groups for these values come from tori which are

obtained from Gm via restriction of scalars from the

geometric CM field of the motive in question.

The motive here is the one associated to the Carlitz module

with CM from a constant field extension. The Galois groups

for special arithmetic Gamma values are tori obtained from

Gm via restriction of scalars from the constant field extension

in question.
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The Carlitz motive

The Carlitz motive C. Let C = k̄(t) with σ-action:

σf = (t− θ)f (−1), f ∈ C.

Here Φ = (t− θ). Analytic solution Ψ of the equation

Ψ(−1) = (t− θ)Ψ is given by

ΨC(t) = (−θ)−q/(q−1)
∞∏
i=1

(1− t/θqi).

Note Galois group here is ΓC = Gm which has dimension 1.

Therefore ΨC(θ) = −1
π̃ is transcendental over k̄,
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Drinfeld modules

Let τ : x 7→ xq be the Frobenius endomorphism of Ga/Fq.

Let k̄[τ ] be the twisted polynomial ring :

τc = cqτ, for all c ∈ k̄.

A Drinfeld Fq[t]-module ρ of rank r (over k̄) is a Fq-linear ring

homomorphism (Drinfeld 1974) ρ : Fq[t]→ k̄[τ ] given by (∆ 6= 0)

ρt = θ + g1τ + · · ·+ gr−1τ
r−1 + ∆τ r,

Drinfeld exponential expρ(z) =
∑∞

h=0 chz
qh , ch ∈ k̄, on C∞

linearizes this t-action :

C∞
expρ−−−−→ Ga(C∞) = C∞

θ(·)
y yρt

C∞
expρ−−−−→ Ga(C∞) = C∞
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Periods of Drinfeld modules

Kernel of expρ is a discrete free Fq[θ]-module Λρ ⊂ C∞ of rank r.

Moreover

expρ(z) = z
∏

λ 6=0∈Λρ

(1− z

λ
).

The nonzero elements in Λρ are the periods of the Drinfeld

module ρ. They are all transcendental over k̄ (Yu 1986).

Morphisms of Drinfeld modules f : ρ1 → ρ2 are the twisting

polynomials f ∈ k̄[τ ] satisfying (ρ2)t ◦ f = f ◦ (ρ1)t.

Isomorphisms from ρ1 to ρ2 are given by constant polynomials

f ∈ k̄ ⊂ k̄[τ ] such that f Λρ1 = Λρ2 .

The endomorphism ring of Drinfeld module ρ can be identified with

Rρ = {α ∈ k̄| αΛρ ⊂ Λρ}.
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Algebraic relations among periods

The field of fractions of Rρ, denoted by Kρ, is called the field of

multiplications of ρ. One has that [Kρ : k] always divides the rank

of the Drinfeld module ρ.

Drinfeld module ρ of rank r is said to be without Complex

Multiplications CM, if Kρ = k, and with “full”CM if [Kρ : k] = r.

If ρ has CM, there are non-trivial algebraic relations among its

periods.

In late 1980’s, quasi-periods for Drinfeld modules are introduced by

Anderson, Deligne, Gekeler, and Yu.

All nonzero quasi-periods are also transcendental over k̄ (Yu 1990),

and there are algebraic relations between periods, quasi-periods

and the Carlitz period π̃ (Anderson, Gekeler 1989), as analogue of

the Legendre relation.
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The period matrix

Let ρ be a Drinfeld module of rank r, and let {δ1, . . . , δr−1} be a

basis of the de Rham cohomology of ρ. Let Fi(z) be the

quasi-periodic function associated to δi, i = 1, . . . , r − 1, and

{λ1, . . . , λr} be a fixed basis of Λρ. Then period matrix of ρ

corresponding to this choice of basis is

Pρ =


λ1 F1(λ1) · · · Fr−1(λ1)
λ2 F1(λ2) · · · Fr−1(λ2)
...

...
. . .

...

λr F1(λr) · · · Fr−1(λr)


Analogue of Legendre’s relation amounts to detPρ = απ̃, with

α 6= 0 ∈ k̄.

Jing Yu Galois Theory of Several Variables



Drinfeld motives

Let Drinfeld Fq[t]-module ρ of rank r (over k̄) be given by

ρt = θ + g1τ + · · ·+ gr−1τ
r−1 + τ r,

We associate to ρ a dimension r pre-t-motive Mρ via the matrix

Φρ =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 1
(t− θ) −g(−1)

1 · · · · · · −g(−1)
r−1


To solve the Frobenius difference equation, let {λ1, . . . , λr} be a

fixed basis of Λρ, and δi : t 7→ τ i, i = 1, . . . , r − 1, be chosen basis

of the de Rham cohomology of ρ. Then the solution Ψρ can be

explicitly written down which specializes (setting t = θ) to the

period matrix Pρ.
Jing Yu Galois Theory of Several Variables



Galois games

Suppose we have pre-t-motive M1 (M2) with GP property for set

of values S1 (S2 respectively), and we are able to determine the

Galois group ΓM1 (ΓM2 respectively). To handle the set S1 ∪ S2,

we form the direct sum of pre-t-motive M = M1 ⊕M2. Then the

dimension of the Galois group ΓM equals to the transcendence

degree over k̄ of the compositum of the field KS1 and KS2 which

is KS1∪S2 . We have surjective morphisms from ΓM onto both ΓM1

and ΓM2 . On many occasions this makes it possible to deduce the

dimension of ΓM from the algebraic group structures of ΓM1 and

ΓM2 . As an example

Theorem (2008, Chang-Yu) Let ρ be a Drinfeld modules with full

CM, then its periods and quasi-periods are algebraically

independent over k̄ from the values ζC(m), (q − 1) - m.

Similar phenomena should hold also in the classical world!
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The End. Thank You.
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