On Algebraic Independence of Special Zeta Values in Characteristic p

Jing Yu
National Taiwan University and TIMS, Taipei

July, 2010, Workshop on Arithmetic Geometry

t-motives

Let t, σ be variables independent of θ.
Let $\bar{k}(t)\left[\sigma, \sigma^{-1}\right]$ be noncommutative ring of Laurent polynomials in σ with coefficients in $\bar{k}(t)$, subject to the relation

$$
\sigma f:=f^{(-1)} \sigma \text { for all } f \in \bar{k}(t)
$$

Here $f^{(-1)}$ is the rational function obtained from $f \in \bar{k}(t)$ by twisting all its coefficients $a \in \bar{k}$ to $a^{\frac{1}{q}}$.

A pre-t-motive M over \mathbb{F}_{q} is a left $\bar{k}(t)\left[\sigma, \sigma^{-1}\right]$-module
which is finite-dimensional over $\bar{k}(t)$
Let $\mathbf{m} \in \operatorname{Mat}_{r \times 1}(M)$ be a $\bar{k}(t)$-basis of M
Multiplying by σ on M is represented by $\sigma(\mathrm{m})=\Phi \mathrm{m}$ for some matrix $\Phi \in \mathrm{GL}_{r}(\bar{k}(t))$.

The category of pre- t-motives over \mathbb{F}_{q} forms a rigid abelian $\mathbb{F}_{q}(t)$-linear tensor category.

t-motives

Let t, σ be variables independent of θ.
Let $\bar{k}(t)\left[\sigma, \sigma^{-1}\right]$ be noncommutative ring of Laurent polynomials in σ with coefficients in $\bar{k}(t)$, subject to the relation

$$
\sigma f:=f^{(-1)} \sigma \text { for all } f \in \bar{k}(t)
$$

Here $f^{(-1)}$ is the rational function obtained from $f \in \bar{k}(t)$ by twisting all its coefficients $a \in \bar{k}$ to $a^{\frac{1}{q}}$.

A pre- t-motive M over \mathbb{F}_{q} is a left $\bar{k}(t)\left[\sigma, \sigma^{-1}\right]$-module which is finite-dimensional over $\bar{k}(t)$.
Let $\mathbf{m} \in \mathrm{Mat}_{r \times 1}(M)$ be a $\bar{k}(t)$-basis of M.
Multiplying by σ on M is represented by $\sigma(\mathbf{m})=\Phi \mathbf{m}$ for some matrix $\Phi \in \mathrm{GL}_{r}(\bar{k}(t))$.

The category of pre- t-motives over \mathbb{F}_{q} forms a rigid abelian $\mathbb{F}_{q}(t)$-linear tensor category.

Frobenius difference equations

From a pre-t-motive, one associates a "system of Frobenius difference equation" which has solutions in series of t.

Consider the operator on \mathbb{C}_{∞} by $x \mapsto x^{\frac{1}{q}}$ Then extend this operator to $\mathbb{C}_{\infty}((t))$ as follows, for $f=\sum_{i} a_{i} t^{i} \in \mathbb{C}_{\infty}((t))$ define $f^{(-1)}:=\sum_{i} a_{i}^{q}$ More generally, for matrix B with entries in $\mathbb{C}_{\infty}((t))$ define twisting $B^{(-1)}$ by the rule $B^{(-1)}{ }_{i j}=B_{i j}{ }^{(-1)}$.

Multiplying by σ on M is represented by $\sigma(\mathrm{m})=\Phi \mathrm{m}$ for some matrix $\Phi \in \mathrm{GL}_{r}(k(t))$.

The equation to be solved in $\Psi \in \operatorname{Mat}_{r}\left(\mathbb{C}_{\infty}((t))\right.$ is $\Psi^{(-1)}=\Phi \Psi$

Frobenius difference equations

From a pre- t-motive, one associates a "system of Frobenius difference equation" which has solutions in series of t.

Consider the operator on \mathbb{C}_{∞} by $x \mapsto x^{\frac{1}{q}}$. Then extend this operator to $\mathbb{C}_{\infty}((t))$ as follows, for $f=\sum_{i} a_{i} t^{i} \in \mathbb{C}_{\infty}((t))$ define $f^{(-1)}:=\sum_{i} a_{i}^{q^{-1}} t^{i}$. More generally, for matrix B with entries in $\mathbb{C}_{\infty}((t))$ define twisting $B^{(-1)}$ by the rule $B^{(-1)}{ }_{i j}=B_{i j}{ }^{(-1)}$.

Let $\mathrm{m} \in \operatorname{Mat}_{r \times 1}(M)$ be a $k(t)$-basis of M.
Multiplying by σ on M is represented by $\sigma(\mathbf{m})=\Phi \mathbf{m}$ for some
matrix $\Phi \in \mathrm{GL}_{r}(\bar{k}(t))$.
The equation to be solved in $\Psi \in \operatorname{Mat}_{r}\left(\mathbb{C}_{\infty}((t))\right.$ is

Frobenius difference equations

From a pre- t-motive, one associates a "system of Frobenius difference equation" which has solutions in series of t.

Consider the operator on \mathbb{C}_{∞} by $x \mapsto x^{\frac{1}{q}}$. Then extend this operator to $\mathbb{C}_{\infty}((t))$ as follows, for $f=\sum_{i} a_{i} t^{i} \in \mathbb{C}_{\infty}((t))$ define $f^{(-1)}:=\sum_{i} a_{i}^{q^{-1}} t^{i}$.

More generally, for matrix B with entries in $\mathbb{C}_{\infty}((t))$ define twisting $B^{(-1)}$ by the rule $B^{(-1)}{ }_{i j}=B_{i j}{ }^{(-1)}$.

Let $\mathbf{m} \in \operatorname{Mat}_{r \times 1}(M)$ be a $\bar{k}(t)$-basis of M.
Multiplying by σ on M is represented by $\sigma(\mathbf{m})=\Phi \mathbf{m}$ for some matrix $\Phi \in \mathrm{GL}_{r}(\bar{k}(t))$.

The equation to be solved in $\Psi \in \operatorname{Mat}_{r}\left(\mathbb{C}_{\infty}((t))\right.$ is :

$$
\Psi^{(-1)}=\Phi \Psi .
$$

Let $t=\theta$

We view Ψ as giving a "fundamental" solution of the system of Frobenius difference equations described by the algebraic matrix Φ coming from M.
Note that if $\Psi^{\prime} \in \operatorname{Mat}_{r}\left(\mathbb{C}_{\infty}((t))\right)$ is also a solution of the Frobenius system from Φ, then $\Psi^{\prime-1} \Psi \in \mathrm{GL}_{r}\left(\mathbb{F}_{q}(t)\right)$.

A power series $f=\sum_{i=0}^{\infty} a_{i} t^{i} \in \mathbb{C}_{\infty}[[t]]$ that converges everywhere and satisfies
is called an entire power series. As a function of t it takes values in $\overline{k_{\infty}}$, when restricted to $\overline{k_{\infty}}$. The ring of the entire power series is denoted by \mathbb{E}.

If all entries of a solution Ψ of the Frobenius system in question are in \mathbb{E}, one can specializ Ψ to $\Psi(\theta)$.

Let $t=\theta$

We view Ψ as giving a "fundamental" solution of the system of Frobenius difference equations described by the algebraic matrix Φ coming from M.
Note that if $\Psi^{\prime} \in \operatorname{Mat}_{r}\left(\mathbb{C}_{\infty}((t))\right)$ is also a solution of the Frobenius system from Φ, then $\Psi^{\prime-1} \Psi \in \mathrm{GL}_{r}\left(\mathbb{F}_{q}(t)\right)$.

A power series $f=\sum_{i=0}^{\infty} a_{i} t^{i} \in \mathbb{C}_{\infty}[[t]]$ that converges everywhere and satisfies

$$
\left[k_{\infty}\left(a_{0}, a_{1}, a_{2}, \ldots\right): k_{\infty}\right]<\infty
$$

is called an entire power series. As a function of t it takes values in $\overline{k_{\infty}}$, when restricted to $\overline{k_{\infty}}$. The ring of the entire power series is denoted by \mathbb{E}.

If all entries of a solution Ψ of the Frobenius system in question are in \mathbb{E}, one can specializ Ψ to $\Psi(\theta)$.

Rigid analytic trivialization

$|\cdot|_{\infty}:=$ a fixed absolute value for the completed field \mathbb{C}_{∞}.
$\mathbb{T}:=\left\{f \in \mathbb{C}_{\infty}[[t]] \mid f\right.$ converges on $\left.|t|_{\infty} \leq 1\right\}$.
$\mathbb{L}:=$ the fraction field of \mathbb{T}.
Pre t-motive M is called rigid analytically trivial if there exists $\Psi \in \mathrm{GL}_{r}(\mathbb{L})$ such that

$$
\Psi^{(-1)}=\Phi \Psi .
$$

Such matrix Ψ is called a rigid analytic trivialization of the pre t-motive in question.

The category \mathcal{R} of rigid analytically trivial pre-t-motives over \mathbb{F}_{q} forms a neutral Tannakian category over $\mathbb{F}_{q}(t)$.

Rigid analytic trivialization

$|\cdot|_{\infty}:=$ a fixed absolute value for the completed field \mathbb{C}_{∞}.
$\mathbb{T}:=\left\{f \in \mathbb{C}_{\infty}[[t]] \mid f\right.$ converges on $\left.|t|_{\infty} \leq 1\right\}$.
$\mathbb{L}:=$ the fraction field of \mathbb{T}.
Pre t-motive M is called rigid analytically trivial if there exists $\Psi \in \mathrm{GL}_{r}(\mathbb{L})$ such that

$$
\Psi^{(-1)}=\Phi \Psi .
$$

Such matrix Ψ is called a rigid analytic trivialization of the pre t-motive in question.

The category \mathcal{R} of rigid analytically trivial pre-t-motives over \mathbb{F}_{q} forms a neutral Tannakian category over $\mathbb{F}_{q}(t)$.

Tannakian duality

Given object M in \mathcal{R} and let \mathcal{T}_{M} be the strictly full Tannakian subcategory of \mathcal{R} generated by M. That is, \mathcal{T}_{M} consists of all objects of \mathcal{R} isomorphic to subquotients of finite direct sums of

$$
M^{\otimes u} \otimes\left(M^{\vee}\right)^{\otimes v} \text { for various } u, v
$$

where M^{\vee} is the dual of M. By Tannakian duality, \mathcal{T}_{M} is representable by an affine algebraic group scheme Γ_{M} over $\mathbb{F}_{q}(t)$.

Given rigid analytically trivial pre-t-motive M, the motivic Galois group Γ_{M} is isomorphic over $\mathbb{F}_{q}(t)$ to the linear algebraic Galois group Γ_{Ψ} of the associated Frobenius difference equation.

Tannakian duality

Given object M in \mathcal{R} and let \mathcal{T}_{M} be the strictly full Tannakian subcategory of \mathcal{R} generated by M. That is, \mathcal{T}_{M} consists of all objects of \mathcal{R} isomorphic to subquotients of finite direct sums of

$$
M^{\otimes u} \otimes\left(M^{\vee}\right)^{\otimes v} \text { for various } u, v
$$

where M^{\vee} is the dual of M. By Tannakian duality, \mathcal{T}_{M} is representable by an affine algebraic group scheme Γ_{M} over $\mathbb{F}_{q}(t)$. Such Γ_{M} is called the motivic Galois group of M.

Given rigid analytically trivial pre-t-motive M, the motivic Galois group Γ_{M} is isomorphic over $\mathbb{F}_{q}(t)$ to the linear algebraic Galois group Γ_{Ψ} of the associated Frobenius difference equation.

Tannakian duality

Given object M in \mathcal{R} and let \mathcal{T}_{M} be the strictly full Tannakian subcategory of \mathcal{R} generated by M. That is, \mathcal{T}_{M} consists of all objects of \mathcal{R} isomorphic to subquotients of finite direct sums of

$$
M^{\otimes u} \otimes\left(M^{\vee}\right)^{\otimes v} \text { for various } u, v
$$

where M^{\vee} is the dual of M. By Tannakian duality, \mathcal{T}_{M} is representable by an affine algebraic group scheme Γ_{M} over $\mathbb{F}_{q}(t)$. Such Γ_{M} is called the motivic Galois group of M.

Given rigid analytically trivial pre- t-motive M, the motivic Galois group Γ_{M} is isomorphic over $\mathbb{F}_{q}(t)$ to the linear algebraic Galois group Γ_{Ψ} of the associated Frobenius difference equation.

Papanikolas theory 2008

This algebraic Galois group Γ_{Ψ} from solution Ψ has the key property

$$
\operatorname{dim} \Gamma_{\Psi}=\operatorname{tr} \cdot \operatorname{deg}_{\bar{k}(t)} \bar{k}(t)(\Psi)
$$

If furthermore $\Psi \in \operatorname{Mat}_{r}(\mathbb{E})$ and satisfies

$$
\operatorname{tr} \cdot \operatorname{deg}_{\bar{k}}(t) \bar{k}(t)(\Psi)=\operatorname{tr}^{2} \cdot \operatorname{deg}_{\bar{k}} \bar{k}(\Psi(\theta))
$$

then we say that M has the GP property. It follows that

$$
\operatorname{dim} \Gamma_{M}={\operatorname{tr} \cdot \operatorname{deg}_{\bar{k}}}^{\bar{k}}(\Psi(\theta)) .
$$

Pre-t-motives having the GP property first come from Anderson-Brownawell-Papanikolas 2004, through reformulating the submodule theorem of Yu 1997 which plays the role of Wüstholz subgroup theorem (1989)

Papanikolas theory 2008

This algebraic Galois group Γ_{Ψ} from solution Ψ has the key property

$$
\operatorname{dim} \Gamma_{\Psi}=\operatorname{tr} \cdot \operatorname{deg}_{\bar{k}(t)} \bar{k}(t)(\Psi)
$$

If furthermore $\Psi \in \operatorname{Mat}_{r}(\mathbb{E})$ and satisfies

$$
\operatorname{tr} \cdot \operatorname{deg}_{\bar{k}}(t) \bar{k}(t)(\Psi)=\operatorname{tr}^{2} \cdot \operatorname{deg}_{\bar{k}} \bar{k}(\Psi(\theta))
$$

then we say that M has the GP property. It follows that

$$
\operatorname{dim} \Gamma_{M}=\operatorname{tr}^{\prime} \cdot \operatorname{deg}_{\bar{k}} \bar{k}(\Psi(\theta))
$$

Pre- t-motives having the GP property first come from Anderson-Brownawell-Papanikolas 2004, through reformulating the submodule theorem of Yu 1997 which plays the role of Wüstholz subgroup theorem (1989).

The Carlitz motive C. Let $C=\bar{k}(t)$ with σ-action:

$$
\sigma f=(t-\theta) f^{(-1)}, \quad f \in C
$$

Here $\Phi=(t-\theta)$. Analytic solution Ψ of the equation $\Psi^{(-1)}=(t-\theta) \Psi$ is given by

$$
\Psi_{C}(t)=(-\theta)^{-q /(q-1)} \prod_{i=1}^{\infty}\left(1-t / \theta^{q^{i}}\right)
$$

Note Galois group here is $\Gamma_{C}=\mathbb{G}_{m}$ which has dimension 1 . Therefore $\Psi_{C}(\theta)=\frac{-1}{\tilde{\pi}}$ is transcendental over \bar{k},

Motivic Galois theory

We are interested in finitely generated extension of $\bar{k}=\overline{\mathbb{F}_{q}(\theta)}$ generated by a set S of special values, denoted by K_{S}. In particular we want to determine all algebraic relations among elements of S. From known algebraic relations, we can guess the transcendence degree of K_{S} over \bar{k}, and the goal is to prove that is indeed the specific degree in question.

To proceed, we construct a t-motive M_{S} for this purpose, so that it has the GP property and its "periods" $\Psi_{S}(\theta)$ from rigid analytic trivialization generate also the field K_{S}, then computing the dimension of this motivic Galois group Γ_{M}

Motivic Galois theory

We are interested in finitely generated extension of $\bar{k}=\overline{\mathbb{F}_{q}(\theta)}$ generated by a set S of special values, denoted by K_{S}. In particular we want to determine all algebraic relations among elements of S. From known algebraic relations, we can guess the transcendence degree of K_{S} over \bar{k}, and the goal is to prove that is indeed the specific degree in question.

To proceed, we construct a t-motive M_{S} for this purpose, so that it has the GP property and its "periods" $\Psi_{S}(\theta)$ from rigid analytic trivialization generate also the field K_{S}, then computing the dimension of this motivic Galois group $\Gamma_{M_{S}}$.

Motivic Galois games

Suppose we have pre-t-motive $M_{1}\left(M_{2}\right)$ with GP property for set of values S_{1} (S_{2} respectively), and we are able to determine the Galois group $\Gamma_{M_{1}}$ ($\Gamma_{M_{2}}$ respectively). To handle the set $S_{1} \cup S_{2}$, we form the direct sum of pre-t-motive $M=M_{1} \oplus M_{2}$. Then the dimension of the Galois group Γ_{M} equals to the transcendence degree over \bar{k} of the compositum of the field $K_{S_{1}}$ and $K_{S_{2}}$ which is $K_{S_{1} \cup S_{2}}$. We have surjective morphisms from Γ_{M} onto both $\Gamma_{M_{1}}$ and $\Gamma_{M_{2}}$. On many occasions this makes it possible to deduce the dimension of Γ_{M} from the algebraic group structures of $\Gamma_{M_{1}}$ and $\Gamma_{M_{2}}$. As an example

The End. Thank You.

