On Algebraic Independence of Special Zeta Values in Characteristic p

Jing Yu

National Taiwan University and TIMS, Taipei

July, 2010, Workshop on Arithmetic Geometry

t-motives

Let t, σ be variables independent of θ . Let $\bar{k}(t)[\sigma, \sigma^{-1}]$ be **noncommutative** ring of Laurent polynomials in σ with coefficients in $\bar{k}(t)$, subject to the relation

$$\sigma f := f^{(-1)}\sigma$$
 for all $f \in \bar{k}(t)$.

Here $f^{(-1)}$ is the rational function obtained from $f \in \bar{k}(t)$ by twisting all its coefficients $a \in \bar{k}$ to $a^{\frac{1}{q}}$.

A pre-t-motive M over \mathbb{F}_q is a left $\bar{k}(t)[\sigma, \sigma^{-1}]$ -module which is finite-dimensional over $\bar{k}(t)$. Let $\mathbf{m} \in \operatorname{Mat}_{r \times 1}(M)$ be a $\bar{k}(t)$ -basis of M. Multiplying by σ on M is represented by $\sigma(\mathbf{m}) = \Phi \mathbf{m}$ for some matrix $\Phi \in \operatorname{GL}_r(\bar{k}(t))$.

The category of pre-t-motives over \mathbb{F}_q forms a rigid abelian $\mathbb{F}_q(t)$ -linear tensor category.

t-motives

Let t, σ be variables independent of θ . Let $\bar{k}(t)[\sigma, \sigma^{-1}]$ be **noncommutative** ring of Laurent polynomials in σ with coefficients in $\bar{k}(t)$, subject to the relation

$$\sigma f := f^{(-1)}\sigma$$
 for all $f \in \bar{k}(t)$.

Here $f^{(-1)}$ is the rational function obtained from $f \in \bar{k}(t)$ by twisting all its coefficients $a \in \bar{k}$ to $a^{\frac{1}{q}}$.

A pre-t-motive M over \mathbb{F}_q is a left $\bar{k}(t)[\sigma, \sigma^{-1}]$ -module which is finite-dimensional over $\bar{k}(t)$. Let $\mathbf{m} \in \operatorname{Mat}_{r \times 1}(M)$ be a $\bar{k}(t)$ -basis of M. Multiplying by σ on M is represented by $\sigma(\mathbf{m}) = \Phi \mathbf{m}$ for some matrix $\Phi \in \operatorname{GL}_r(\bar{k}(t))$.

The category of pre-t-motives over \mathbb{F}_q forms a rigid abelian $\mathbb{F}_q(t)\text{-linear tensor category.}$

Frobenius difference equations

From a pre-t-motive, one associates a "system of Frobenius difference equation" which has solutions in series of t.

Consider the operator on \mathbb{C}_{∞} by $x \mapsto x^{\frac{1}{q}}$. Then extend this operator to $\mathbb{C}_{\infty}((t))$ as follows, for $f = \sum_{i} a_{i}t^{i} \in \mathbb{C}_{\infty}((t))$ define $f^{(-1)} := \sum_{i} a_{i}^{q^{-1}}t^{i}$.

More generally, for matrix B with entries in $\mathbb{C}_{\infty}((t))$ define twisting $B^{(-1)}$ by the rule $B^{(-1)}_{ij} = B_{ij}^{(-1)}$.

Let $\mathbf{m} \in \text{Mat}_{r \times 1}(M)$ be a $\bar{k}(t)$ -basis of M. Multiplying by σ on M is represented by $\sigma(\mathbf{m}) = \Phi \mathbf{m}$ for some matrix $\Phi \in \text{GL}_r(\bar{k}(t))$.

The *equation* to be solved in $\Psi \in \operatorname{Mat}_r(\mathbb{C}_{\infty}((t))$ is :

$$\Psi^{(-1)} = \Phi \Psi.$$

Frobenius difference equations

From a pre-t-motive, one associates a "system of Frobenius difference equation" which has solutions in series of t.

Consider the operator on \mathbb{C}_{∞} by $x \mapsto x^{\frac{1}{q}}$. Then extend this operator to $\mathbb{C}_{\infty}((t))$ as follows, for $f = \sum_{i} a_{i}t^{i} \in \mathbb{C}_{\infty}((t))$ define $f^{(-1)} := \sum_{i} a_{i}^{q^{-1}}t^{i}$.

More generally, for matrix B with entries in $\mathbb{C}_{\infty}((t))$ define twisting $B^{(-1)}$ by the rule $B^{(-1)}_{ij} = B_{ij}^{(-1)}$.

Let $\mathbf{m} \in Mat_{r \times 1}(M)$ be a k(t)-basis of M. Multiplying by σ on M is represented by $\sigma(\mathbf{m}) = \Phi \mathbf{m}$ for some matrix $\Phi \in \mathsf{GL}_r(\bar{k}(t))$.

The *equation* to be solved in $\Psi \in \operatorname{Mat}_r(\mathbb{C}_{\infty}((t))$ is :

$$\Psi^{(-1)} = \Phi \Psi.$$

Frobenius difference equations

From a pre-t-motive, one associates a "system of Frobenius difference equation" which has solutions in series of t.

Consider the operator on \mathbb{C}_{∞} by $x \mapsto x^{\frac{1}{q}}$. Then extend this operator to $\mathbb{C}_{\infty}((t))$ as follows, for $f = \sum_{i} a_{i}t^{i} \in \mathbb{C}_{\infty}((t))$ define $f^{(-1)} := \sum_{i} a_{i}^{q^{-1}}t^{i}$.

More generally, for matrix B with entries in $\mathbb{C}_{\infty}((t))$ define twisting $B^{(-1)}$ by the rule $B^{(-1)}_{ij} = B_{ij}^{(-1)}$.

Let $\mathbf{m} \in \mathsf{Mat}_{r \times 1}(M)$ be a $\bar{k}(t)$ -basis of M. Multiplying by σ on M is represented by $\sigma(\mathbf{m}) = \Phi \mathbf{m}$ for some matrix $\Phi \in \mathsf{GL}_r(\bar{k}(t))$.

The *equation* to be solved in $\Psi \in Mat_r(\mathbb{C}_{\infty}((t))$ is :

$$\Psi^{(-1)} = \Phi \Psi.$$

Let $t = \theta$

We view Ψ as giving a "fundamental" solution of the system of **Frobenius** difference equations described by the algebraic matrix Φ coming from M.

Note that if $\Psi' \in \operatorname{Mat}_r(\mathbb{C}_{\infty}((t)))$ is also a solution of the Frobenius system from Φ , then ${\Psi'}^{-1}\Psi \in \operatorname{GL}_r(\mathbb{F}_q(t))$.

A power series $f = \sum_{i=0}^{\infty} a_i t^i \in \mathbb{C}_{\infty}[[t]]$ that converges everywhere and satisfies

$$[k_{\infty}(a_0, a_1, a_2, \dots) : k_{\infty}] < \infty$$

is called an entire power series. As a function of t it takes values in $\overline{k_{\infty}}$, when restricted to $\overline{k_{\infty}}$. The ring of the entire power series is denoted by \mathbb{E} .

If all entries of a solution Ψ of the Frobenius system in question are in \mathbb{E} , one can **specializ** Ψ to $\Psi(\theta)$.

Let $t = \theta$

We view Ψ as giving a "fundamental" solution of the system of **Frobenius** difference equations described by the algebraic matrix Φ coming from M.

Note that if $\Psi' \in \operatorname{Mat}_r(\mathbb{C}_{\infty}((t)))$ is also a solution of the Frobenius system from Φ , then ${\Psi'}^{-1}\Psi \in \operatorname{GL}_r(\mathbb{F}_q(t))$.

A power series $f=\sum_{i=0}^\infty a_it^i\in\mathbb{C}_\infty[[t]]$ that converges everywhere and satisfies

$$[k_{\infty}(a_0, a_1, a_2, \dots) : k_{\infty}] < \infty$$

is called an entire power series. As a function of t it takes values in $\overline{k_{\infty}}$, when restricted to $\overline{k_{\infty}}$. The ring of the entire power series is denoted by \mathbb{E} .

If all entries of a solution Ψ of the Frobenius system in question are in \mathbb{E} , one can specializ Ψ to $\Psi(\theta)$.

 $|\cdot|_{\infty} :=$ a fixed absolute value for the completed field \mathbb{C}_{∞} . $\mathbb{T} := \{f \in \mathbb{C}_{\infty}[[t]] \mid f \text{ converges on } |t|_{\infty} \leq 1\}.$ $\mathbb{L} :=$ the fraction field of \mathbb{T} .

Pre t-motive M is called rigid analytically trivial if there exists $\Psi\in {\rm GL}_r(\mathbb{L})$ such that

$$\Psi^{(-1)} = \Phi \Psi.$$

Such matrix Ψ is called a rigid analytic trivialization of the pre t-motive in question.

The category $\mathcal R$ of rigid analytically trivial pre-*t*-motives over $\mathbb F_q$ forms a neutral Tannakian category over $\mathbb F_q(t)$.

□ > < = > <

 $|\cdot|_{\infty} :=$ a fixed absolute value for the completed field \mathbb{C}_{∞} . $\mathbb{T} := \{f \in \mathbb{C}_{\infty}[[t]] \mid f \text{ converges on } |t|_{\infty} \leq 1\}.$ $\mathbb{L} :=$ the fraction field of \mathbb{T} .

Pre t-motive M is called rigid analytically trivial if there exists $\Psi\in {\rm GL}_r(\mathbb{L})$ such that

$$\Psi^{(-1)} = \Phi \Psi.$$

Such matrix Ψ is called a rigid analytic trivialization of the pre *t*-motive in question.

The category \mathcal{R} of rigid analytically trivial pre-*t*-motives over \mathbb{F}_q forms a neutral Tannakian category over $\mathbb{F}_q(t)$.

Given object M in \mathcal{R} and let \mathcal{T}_M be the strictly full Tannakian subcategory of \mathcal{R} generated by M. That is, \mathcal{T}_M consists of all objects of \mathcal{R} isomorphic to subquotients of finite direct sums of

 $M^{\otimes u} \otimes (M^{\vee})^{\otimes v}$ for various u, v,

where M^{\vee} is the dual of M. By Tannakian duality, \mathcal{T}_M is representable by an affine algebraic group scheme Γ_M over $\mathbb{F}_q(t)$. Such Γ_M is called the **motivic Galois group** of M.

Given rigid analytically trivial pre-t-motive M, the motivic Galois group Γ_M is isomorphic over $\mathbb{F}_q(t)$ to the linear algebraic Galois group Γ_{Ψ} of the associated Frobenius difference equation. Given object M in \mathcal{R} and let \mathcal{T}_M be the strictly full Tannakian subcategory of \mathcal{R} generated by M. That is, \mathcal{T}_M consists of all objects of \mathcal{R} isomorphic to subquotients of finite direct sums of

 $M^{\otimes u} \otimes (M^{\vee})^{\otimes v}$ for various u, v,

where M^{\vee} is the dual of M. By Tannakian duality, \mathcal{T}_M is representable by an affine algebraic group scheme Γ_M over $\mathbb{F}_q(t)$. Such Γ_M is called the **motivic Galois group** of M.

Given rigid analytically trivial pre-t-motive M, the motivic Galois group Γ_M is isomorphic over $\mathbb{F}_q(t)$ to the linear algebraic Galois group Γ_{Ψ} of the associated Frobenius difference equation. Given object M in \mathcal{R} and let \mathcal{T}_M be the strictly full Tannakian subcategory of \mathcal{R} generated by M. That is, \mathcal{T}_M consists of all objects of \mathcal{R} isomorphic to subquotients of finite direct sums of

 $M^{\otimes u} \otimes (M^{\vee})^{\otimes v}$ for various u, v,

where M^{\vee} is the dual of M. By Tannakian duality, \mathcal{T}_M is representable by an affine algebraic group scheme Γ_M over $\mathbb{F}_q(t)$. Such Γ_M is called the **motivic Galois group** of M.

Given rigid analytically trivial pre-t-motive M, the motivic Galois group Γ_M is isomorphic over $\mathbb{F}_q(t)$ to the linear algebraic Galois group Γ_{Ψ} of the associated Frobenius difference equation.

Papanikolas theory 2008

This algebraic Galois group Γ_{Ψ} from solution Ψ has the key property

$$\dim \Gamma_{\Psi} = \operatorname{tr.deg}_{\overline{k}(t)} \overline{k}(t)(\Psi).$$

If furthermore $\Psi \in \operatorname{Mat}_r(\mathbb{E})$ and satisfies

$$\operatorname{tr.deg}_{\bar{k}(t)}\bar{k}(t)(\Psi) = \operatorname{tr.deg}_{\bar{k}}\bar{k}(\Psi(\theta)),$$

then we say that M has the ${\bf GP}$ property. It follows that

$$\dim \Gamma_M = \operatorname{tr.deg}_{\bar{k}} \bar{k}(\Psi(\theta)).$$

Pre-*t*-motives having the **GP** property first come from Anderson-Brownawell-Papanikolas 2004, through reformulating the submodule theorem of Yu 1997 which plays the role of Wüstholz subgroup theorem (1989).

Papanikolas theory 2008

This algebraic Galois group Γ_{Ψ} from solution Ψ has the key property

$$\dim \Gamma_{\Psi} = \operatorname{tr.deg}_{\overline{k}(t)} \overline{k}(t)(\Psi).$$

If furthermore $\Psi \in \operatorname{Mat}_r(\mathbb{E})$ and satisfies

$$\operatorname{tr.deg}_{\bar{k}(t)}\bar{k}(t)(\Psi) = \operatorname{tr.deg}_{\bar{k}}\bar{k}(\Psi(\theta)),$$

then we say that M has the **GP** property. It follows that

$$\dim \Gamma_M = \operatorname{tr.deg}_{\bar{k}} \bar{k}(\Psi(\theta)).$$

Pre-*t*-motives having the **GP** property first come from Anderson-Brownawell-Papanikolas 2004, through reformulating the submodule theorem of Yu 1997 which plays the role of Wüstholz subgroup theorem (1989).

The Carlitz motive

The Carlitz motive C. Let $C = \overline{k}(t)$ with σ -action:

$$\sigma f = (t - \theta) f^{(-1)}, \ f \in C.$$

Here $\Phi = (t - \theta)$. Analytic solution Ψ of the equation $\Psi^{(-1)} = (t - \theta)\Psi$ is given by

$$\Psi_C(t) = (-\theta)^{-q/(q-1)} \prod_{i=1}^{\infty} (1 - t/\theta^{q^i}).$$

Note Galois group here is $\Gamma_C = \mathbb{G}_m$ which has dimension 1. Therefore $\Psi_C(\theta) = \frac{-1}{\bar{\pi}}$ is transcendental over \bar{k} , We are interested in finitely generated extension of $\overline{k} = \overline{\mathbb{F}_q(\theta)}$ generated by a set S of special values, denoted by K_S . In particular we want to determine all algebraic relations among elements of S. From known algebraic relations, we can guess the transcendence degree of K_S over \overline{k} , and the goal is to prove that is indeed the specific degree in question.

To proceed, we construct a *t*-motive M_S for this purpose, so that it has the **GP** property and its "periods" $\Psi_S(\theta)$ from rigid analytic trivialization generate also the field K_S , then computing the dimension of this motivic Galois group Γ_{M_S} . We are interested in finitely generated extension of $\overline{k} = \overline{\mathbb{F}_q(\theta)}$ generated by a set S of special values, denoted by K_S . In particular we want to determine all algebraic relations among elements of S. From known algebraic relations, we can guess the transcendence degree of K_S over \overline{k} , and the goal is to prove that is indeed the specific degree in question.

To proceed, we construct a *t*-motive M_S for this purpose, so that it has the **GP** property and its "periods" $\Psi_S(\theta)$ from rigid analytic trivialization generate also the field K_S , then computing the dimension of this motivic Galois group Γ_{M_S} . Suppose we have pre-t-motive M_1 (M_2) with **GP** property for set of values S_1 (S_2 respectively), and we are able to determine the Galois group Γ_{M_1} (Γ_{M_2} respectively). To handle the set $S_1 \cup S_2$, we form the direct sum of pre-t-motive $M = M_1 \oplus M_2$. Then the dimension of the Galois group Γ_M equals to the transcendence degree over \bar{k} of the compositum of the field K_{S_1} and K_{S_2} which is $K_{S_1 \cup S_2}$. We have surjective morphisms from Γ_M onto both Γ_{M_1} and Γ_{M_2} . On many occasions this makes it possible to deduce the dimension of Γ_M from the algebraic group structures of Γ_{M_1} and Γ_{M_2} . As an example

The End. Thank You.

Jing Yu, NTU and TIMS Special Zeta Values

æ

_ ₽ ▶