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Motivation

Some basic facts
Lagrangian method resolve material or slip lines
sharply if no grid tangling
Generalized curvilinear grid is often superior to
Cartesian when employed in numerical methods for
complex fixed or moving geometries
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Motivation

Some basic facts
Lagrangian method resolve material or slip lines
sharply if no grid tangling
Generalized curvilinear grid is often superior to
Cartesian when employed in numerical methods for
complex fixed or moving geometries

Some examples done by Cartesian-based method
Falling liquid drop problem
Shock-bubble interaction
Flying Aluminum-plate problem
Falling rigid object in water tank

Search for more robust method (work present here is
preliminary)
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Falling Liquid Drop Problem

Interface capturing with gravity
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Falling Liquid Drop Problem
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Falling Liquid Drop Problem

Interface diffused badily

100

200

300

400

500

600

700

800

900

air

t = 0.4s

Workshop: CFD on Unified Coordinate Method & Perspective Applications, NCNU, Puli, Taiwan, January 26-28, 2007 – p. 4/65



Falling Liquid Drop Problem
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Falling Liquid Drop Problem
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Falling Liquid Drop Problem
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Shock-Bubble Interaction

Volume tracking for material interface
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Shock-Bubble Interaction
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Shock-Bubble Interaction

Small moving irregular cells: stability & accuracy
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Flying Aluminum-plate problem

Vacuum-Al interface tracking
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Flying Aluminum-plate problem

Small moving irregular cells: stability & accuracy
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Falling Rigid Object in Water Tank

Moving boundary tracking & interface capturing
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Falling Rigid Object in Water Tank
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Falling Rigid Object in Water Tank

Small moving irregular cells: stability & accuracy
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Euler Eqs. in Generalized Coord.

With gravity effect included, for example, 2D compressible
Euler eqs. in Cartesian coordinates take

∂q

∂t
+
∂f(q)

∂x
+
∂g(q)

∂y
= ψ(q)

where

q =















ρ

ρu

ρv

E















, f(q) =















ρu

ρu2 + p

ρuv

Eu+ pu















, g(q) =















ρv

ρuv

ρv2 + p

Ev + pv















, ψ =















0

0

ρg

ρgv















ρ : density, (u, v) : vector of particle velocity
p : pressure, E = ρ[e+ (u2 + v2)/2] : total energy
e(ρ, p) : internal energy, ψ : gravitational source term
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Euler in General. Coord. (Cont.)

Introduce transformation (t, x, y) ↔ (τ, ξ, η) via








dt

dx

dy









=









1 0 0

xτ xξ xη

yτ yξ yη

















dτ

dξ

dη









or









dτ

dξ

dη









=









1 0 0

ξt ξx ξy

ηt ηx ηy

















dt

dx

dy









Basic grid-metric relations:









1 0 0

ξt ξx ξy

ηt ηx ηy









=









1 0 0

xτ xξ xη

yτ yξ yη









−1

=
1

J









xξyη − xηyξ 0 0

−xτyη + yτxη yη −yξ

xτyξ − yτxξ −xη xξ









J = xξyη − xηyξ: grid Jacobian
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Euler in General. Coord. (Cont.)

With these notations, Euler eqs. in generalized coord. are

∂q̃

∂τ
+
∂f̃

∂ξ
+
∂g̃

∂η
= ψ̃

where

q̃ = J















ρ

ρu

ρv

E















, f̃ = J















ρU

ρuU + ξxp

ρvU + ξyp

EU + pU − ξtp















, g̃ = J















ρV

ρuV + ηxp

ρvV + ηyp

EV + pV − ηtp















, ψ̃ = J















0

0

ρg

ρgv















with contravariant velocities U & V defined by

U = ξt + ξxu+ ξyv & V = ηt + ηxu+ ηyv
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Euler in General. Coord. (Cont.)

Model system in quasi-linear form

∂q̃

∂τ
+A

∂q̃

∂ξ
+B

∂q̃

∂η
= ψ̃

A =
∂f̃

∂q̃
=















ξt ξx ξy 0

ξxpρ − uU ξxu(1 − pE) + U ξyu− ξxvpE ξxpE

ξypρ − vU ξxv − ξyupE ξyv(1 − pE) + U ξypE

(pρ −H)U ξxH − uUpE ξyH − vUpE U + pEU















B =
∂g̃

∂q̃
=















ηt ηx ηy 0

ηxpρ − uV ηxu(1 − pE) + V ηyu− ηxvpE ηxpE

ηypρ − vV ηxv − ηyupE ηyv(1 − pE) + V ηypE

(pρ −H)V ηxH − uVpE ηyH − vVpE V + pEV















with H = (E + p)/ρ, U = U − ξt = ξxu+ ξyv, V = V − ηt = ηxu+ ηyv
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Euler in General. Coord. (Cont.)

Eigen-structure of matrix A is

ΛA = diag
(

U − c
√

ξ2x + ξ2y , U, U, U + c
√

ξ2x + ξ2y

)

RA =















1 1 0 1

u− α1c u α2 u+ α1c

v − α2c v −α1 v + α2c

H − U1c H − c2/pE −U2 H + U1c















LA =















(pρ + cU1)/2c
2 −(α1c+ upE)/2c2 −(α2c+ vpE)/2c2 pE/2c

2

1 − pρ/c
2 upE/c

2 vpE/c
2 −pE/c

2

U2 α2 −α1 0

(pρ − cU1)/2c
2 (α1c− upE)/2c2 (α2c− vpE)/2c2 pE/2c

2















with (α1, α2) = (ξx, ξy)/
√

ξ2x + ξ2y , U1 = α1u+α2v, U2 = −α2u+α1v
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Euler in General. Coord. (Cont.)

Eigen-structure of matrix B is

ΛB = diag
(

V − c
√

η2
x + η2

y, V, V, V + c
√

η2
x + η2

y

)

RB =















1 1 0 1

u− β1c u β2 u+ β1c

v − β2c v −β1 v + β2c

H − V1c H − c2/pE −V2 H + V1c















LB =















(pρ + cV1)/2c
2 −(β1c+ upE)/2c2 −(β2c+ vpE)/2c2 pE/2c

2

1 − pρ/c
2 upE/c

2 vpE/c
2 −pE/c

2

V2 β2 −β1 0

(pρ − cV1)/2c
2 (β1c− upE)/2c2 (β2c− vpE)/2c2 pE/2c

2















with (β1, β2) = (ηx, ηy)/
√

η2
x + η2

y, V1 = β1u+ β2v, V2 = −β2u+ β1v
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Grid Movement Conditions

Continuity on mixed derivatives of grid coordinates gives
geometrical conservation laws

∂

∂τ















xξ

yξ

xη

yη















+
∂

∂ξ















−xτ

−yτ

0

0















+
∂

∂η















0

0

−xτ

−yτ















= 0

with (xτ , yτ ) to be specified as, for example,

Eulerian case: (xτ , yτ ) = ~0

Lagrangian case: (xτ , yτ ) = (u, v)

Lagrangian-like case: (xτ , yτ ) = h0(u, v) or (h0u, k0v)

h0 ∈ [0, 1] & k0 ∈ [0, 1] (fixed piecewise const.)
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Grid Movement (Cont.)

General 1-parameter case: (xτ , yτ ) = h(u, v), h ∈ [0, 1]

At given time instance, h can be chosen based on
Grid-angle preserving condition (Hui et al. JCP 1999)

∂

∂τ
cos−1

(

∇ξ

|∇ξ|
·
∇η

|∇η|

)

=
∂

∂τ
cos−1





−yηxη − yξxξ
√

y2
ξ + y2

η

√

x2
ξ + x2

η





= · · ·

= Ahξ + Bhη + Ch = 0 (1st order PDE )

with

A =
√

x2
η + y2

η (vxξ − uyξ) , B =
√

x2
ξ + y2

ξ (uyη − vxη)

C =
√

x2
ξ + y2

ξ (uηyη − vηxη) −
√

x2
η + y2

η (uξyξ − vξxξ)
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Grid Movement (Cont.)

General 1-parameter case: (xτ , yτ ) = h(u, v), h ∈ [0, 1]

Or alternatively, based on
Mesh-area preserving condition

∂J

∂τ
=

∂

∂τ
(xξyη − xηyξ)

= xξτ yη + xξ yητ − xητ yξ − xη yξτ

= · · ·

= Ahξ + Bhη + Ch = 0 (1st order PDE )

with

A = uyη − vxη, B = vxξ − uyξ, C = uξyη + vηxξ − uηyξ − vξxη
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Grid Movement (Cont.)

To ensure h ∈ [0, 1], transformed variable h̃ = κ(h) is used,
e.g., Hui et al. employed κ = ln (εh|~u|) , ε normalized
constant, yielding

Ãh̃ξ + B̃h̃η + C̃ = 0

Grid-angle preserving case

Ã =
√

x2
η + y2

η (xξ sin θ − yξ cos θ) , B̃ =
√

x2
ξ + y2

ξ (yη cos θ − xη sin θ)

C̃ =
√

x2
ξ + y2

ξ [yη(cos θ)η − xη(sin θ)η] −
√

x2
η + y2

η [yξ(cos θ)ξ − xξ(sin θ)ξ]

Mesh-area preserving case

Ã = yη cos θ − xη sin θ, B̃ = xξ sin θ − yξ cos θ

C̃ = yη(cos θ)ξ − xη(sin θ)ξ + xξ(sin θ)η − yξ(cos θ)η

where ~u = (u, v) = |~u|(cos θ, sin θ)
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Grid Movement: Remarks

Numerics: h- or h̃-equation constraint geometrical laws

∂

∂τ















xξ

yξ

xη

yη















−
∂

∂ξ















hu

hv

0

0















−
∂

∂η















0

0

hu

hv















= 0

Usability: Mesh-area evolution equation

∂J

∂τ
−

∂

∂ξ
[h (uyη − vxη)] −

∂

∂η
[h (vxξ − uyξ)] = 0

Initial & boundary conditions for h- or h̃-equation ?
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Grid Movement: 2 Free Degrees

2-parameter case of Hui et al. (2005): (xτ , yτ ) = (Ug, Vg)

Imposed conditions
1. Grid-angle preserving
2. Specialized grid-material line matching (see next)
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2-parameter case of Hui et al. (2005): (xτ , yτ ) = (Ug, Vg)

Imposed conditions
1. Grid-angle preserving
2. Specialized grid-material line matching (see next)
Good results are shown for steady-state problems
Little results for time-dependent problems with rapid
transient solution structures
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Grid Movement: 2 Free Degrees

2-parameter case of Hui et al. (2005): (xτ , yτ ) = (Ug, Vg)

Imposed conditions
1. Grid-angle preserving
2. Specialized grid-material line matching (see next)
Good results are shown for steady-state problems
Little results for time-dependent problems with rapid
transient solution structures

Other 2-parameter case: (xτ , yτ ) = (hu, kv)

Novel imposed conditions for h ∈ [0, 1] & k ∈ [0, 1] ?
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Grid Movement: 2 Free Degrees

2-parameter case of Hui et al. (2005): (xτ , yτ ) = (Ug, Vg)

Imposed conditions
1. Grid-angle preserving
2. Specialized grid-material line matching (see next)
Good results are shown for steady-state problems
Little results for time-dependent problems with rapid
transient solution structures

Other 2-parameter case: (xτ , yτ ) = (hu, kv)

Novel imposed conditions for h ∈ [0, 1] & k ∈ [0, 1] ?

Roadmap of current work:

(xτ , yτ ) = h0(u, v) → (xτ , yτ ) = h(u, v) → · · ·

Workshop: CFD on Unified Coordinate Method & Perspective Applications, NCNU, Puli, Taiwan, January 26-28, 2007 – p. 17/65



Novel Conditions for h & k

Mesh-area preserving case

∂J

∂τ
=

∂

∂τ
(xξyη − xηyξ)

= xξτ yη + xξ yητ − xητ yξ − xη yξτ

= · · ·

= (A1hξ + B1hη + C1h) + (A2kξ + B2kη + C2k) = 0,

yielding, for example,

A1hξ + B1hη + C1h = 0

A2kξ + B2kη + C2k = 0

with
A1 = uyη, B1 = uyξ, C1 = uξyη − uηyξ

A2 = −vxη, B2 = vxξ, C2 = vηxξ − vξxη
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Single-Fluid Model

With (xτ , yτ ) = h0(u, v), our model system for single-phase
flow reads

∂

∂τ





































Jρ

Jρu

Jρv

JE

xξ

yξ

xη

yη





































+
∂

∂ξ





































JρU

JρuU + yηp

JρvU − xηp

JEU + (yηu− xηv)p

−h0u

−h0v

0

0





































+
∂

∂η





































JρV

JρuV − yξp

JρvV + xξp

JEV + (xξv − yξu)p

0

0

−h0u

−h0v





































= ψ̃

where U = (1 − h0)(yηu− xηv) & V = (1 − h0)(xξv − yξu)
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Single-Fluid Model: Remarks

Hyperbolicity (under thermodyn. stability cond.)
In Cartesian coordinates, model is hyperbolic
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Single-Fluid Model: Remarks

Hyperbolicity (under thermodyn. stability cond.)
In Cartesian coordinates, model is hyperbolic
In generalized-moving coord., model is hyperbolic
when h0 6= 1, & is weakly hyperbolic when h0 = 1
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Single-Fluid Model: Remarks

Hyperbolicity (under thermodyn. stability cond.)
In Cartesian coordinates, model is hyperbolic
In generalized-moving coord., model is hyperbolic
when h0 6= 1, & is weakly hyperbolic when h0 = 1

Canonical form
In Cartesian coordinates

∂q

∂t
+
∂f(q)

∂x
+
∂g(q)

∂y
= ψ(q)

In generalized coordinates

∂q

∂τ
+
∂f(q,Ξ)

∂ξ
+
∂g(q,Ξ)

∂η
= ψ(q), Ξ: grid metrics
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Single-Fluid Model: Remarks

Hyperbolicity (under thermodyn. stability cond.)
In Cartesian coordinates, model is hyperbolic
In generalized-moving coord., model is hyperbolic
when h0 6= 1, & is weakly hyperbolic when h0 = 1

Canonical form
In Cartesian coordinates

∂q

∂t
+
∂f(q)

∂x
+
∂g(q)

∂y
= ψ(q)

In generalized coordinates : spatially varying fluxes

∂q

∂τ
+
∂f(q,Ξ)

∂ξ
+
∂g(q,Ξ)

∂η
= ψ(q), Ξ: grid metrics
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Extension to Multifluid

Assume homogeneous (1-pressure & 1-velocity) flow;
i.e., across interfaces pι = p & ~uι = ~u, ∀ fluid phase ι

gas

gas

gas

gas

gas

gas

gas

gas

gas

gas

liquid
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Extension to Multifluid

Assume homogeneous (1-pressure & 1-velocity) flow;
i.e., across interfaces pι = p & ~uι = ~u, ∀ fluid phase ι

Mathematical model: Fluid-mixture type
Use basic conservation (or balance) laws for single
& multicomponent fluid mixtures
Introduce additional transport equations for
problem-dependent material quantities near
numerically diffused interfaces, yielding direct
computation of pressure from EOS
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Extension to Multifluid

Assume homogeneous (1-pressure & 1-velocity) flow;
i.e., across interfaces pι = p & ~uι = ~u, ∀ fluid phase ι

Mathematical model: Fluid-mixture type
Use basic conservation (or balance) laws for single
& multicomponent fluid mixtures
Introduce additional transport equations for
problem-dependent material quantities near
numerically diffused interfaces, yielding direct
computation of pressure from EOS

Sample examples
Barotropic 2-phase flow
Hybrid barotropic & non-barotropic 2-phase flow
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Barotropic 2-Phase Flow

Equations of state

Fluid component 1 & 2: Tait EOS

p(ρ) = (p0ι + Bι)

(

ρ

ρ0ι

)γι

− Bι, ι = 1, 2
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Barotropic 2-Phase Flow

Equations of state

Fluid component 1 & 2: Tait EOS

p(ρ) = (p0ι + Bι)

(

ρ

ρ0ι

)γι

− Bι, ι = 1, 2

Mixture pressure law (Shyue, JCP 2004)

p(ρ, ρe) =



















(p0ι + Bι)

(

ρ

ρ0ι

)γι

− Bι if α = 0 or 1

(γ − 1)

(

ρe+
ρB

ρ0

)

− γB if α ∈ (0, 1)

Here α denotes volume fraction of one chosen fluid component
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Barotropic 2-Phase Flow

Equations of state

Fluid component 1 & 2: Tait EOS

p(ρ) = (p0ι + Bι)

(

ρ

ρ0ι

)γι

− Bι, ι = 1, 2

Mixture pressure law (Shyue, JCP 2004)

p(ρ, ρe) =



















(p0ι + Bι)

(

ρ

ρ0ι

)γι

− Bι if α = 0 or 1

(γ − 1)

(

ρe+
ρB

ρ0

)

− γB if α ∈ (0, 1)

variant form of p(ρ, S) = A(S) (p0 + B)

(

ρ

ρ0

)γ

− B

A(S) = e[(S−S0)/CV ], S, CV : specific entropy & heat at constant volume
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Barotropic 2-Phase Flow (Cont.)

Transport equations for material quantities γ, B, & ρ0

γ-based equations

∂

∂τ

(

1

γ − 1

)

+ U
∂

∂ξ

(

1

γ − 1

)

+ V
∂

∂η

(

1

γ − 1

)

= 0

∂

∂τ

(

γB

γ − 1

)

+ U
∂

∂ξ

(

γB

γ − 1

)

+ V
∂

∂η

(

γB

γ − 1

)

= 0

∂

∂τ

(

J
B

ρ0
ρ

)

+
∂

∂ξ

(

J
B

ρ0
ρU

)

+
∂

∂η

(

J
B

ρ0
ρV

)

= 0
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Barotropic 2-Phase Flow (Cont.)

Transport equations for material quantities γ, B, & ρ0

γ-based equations

∂

∂τ

(

1

γ − 1

)

+ U
∂

∂ξ

(

1

γ − 1

)

+ V
∂

∂η

(

1

γ − 1

)

= 0

∂

∂τ

(

γB

γ − 1

)

+ U
∂

∂ξ

(

γB

γ − 1

)

+ V
∂

∂η

(

γB

γ − 1

)

= 0

∂

∂τ

(

J
B

ρ0
ρ

)

+
∂

∂ξ

(

J
B

ρ0
ρU

)

+
∂

∂η

(

J
B

ρ0
ρV

)

= 0

Above equations are derived from energy equation
& make use of homogeneous equilibrium flow
assumption together with mass conservation law
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Barotropic 2-Phase Flow (Cont.)

Transport equations for material quantities γ, B, & ρ0

γ-based equations

∂

∂τ

(

1

γ − 1

)

+ U
∂

∂ξ

(

1

γ − 1

)

+ V
∂

∂η

(

1

γ − 1

)

= 0

∂

∂τ

(

γB

γ − 1

)

+ U
∂

∂ξ

(

γB

γ − 1

)

+ V
∂

∂η

(

γB

γ − 1

)

= 0

∂

∂τ

(

J
B

ρ0
ρ

)

+
∂

∂ξ

(

J
B

ρ0
ρU

)

+
∂

∂η

(

J
B

ρ0
ρV

)

= 0

If we ignore JBρ/ρ0 term, they are essentially
equations proposed by Saurel & Abgrall (SISC
1999), but are written in generalized coord.
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Barotropic 2-Phase Flow (Cont.)

Transport equations for material quantities γ, B, & ρ0

γ-based equations

∂

∂τ

(

1

γ − 1

)

+ U
∂

∂ξ

(

1

γ − 1

)

+ V
∂

∂η

(

1

γ − 1

)

= 0

∂

∂τ

(

γB

γ − 1

)

+ U
∂

∂ξ

(

γB

γ − 1

)

+ V
∂

∂η

(

γB

γ − 1

)

= 0

∂

∂τ

(

J
B

ρ0
ρ

)

+
∂

∂ξ

(

J
B

ρ0
ρU

)

+
∂

∂η

(

J
B

ρ0
ρV

)

= 0

α-based equations

∂α

∂τ
+ U

∂α

∂ξ
+ V

∂α

∂η
= 0, with z =

2
∑

ι=1

αιzι, z =
1

γ − 1
&

γB

γ − 1

∂

∂τ

(

J
B

ρ0
ρ

)

+
∂

∂ξ

(

J
B

ρ0
ρU

)

+
∂

∂η

(

J
B

ρ0
ρV

)

= 0
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Barotropic 2-Phase Flow (Cont.)

Transport equations for material quantities γ, B, & ρ0

γ-based equations

∂

∂τ

(

1

γ − 1

)

+ U
∂

∂ξ

(

1

γ − 1

)

+ V
∂

∂η

(

1

γ − 1

)

= 0

∂

∂τ

(

γB

γ − 1

)

+ U
∂

∂ξ

(

γB

γ − 1

)

+ V
∂

∂η

(

γB

γ − 1

)

= 0

∂

∂τ

(

J
B

ρ0
ρ

)

+
∂

∂ξ

(

J
B

ρ0
ρU

)

+
∂

∂η

(

J
B

ρ0
ρV

)

= 0

α-based equations (Allaire et al. , JCP 2002)

∂α

∂τ
+ U

∂α

∂ξ
+ V

∂α

∂η
= 0 with z =

2
∑

ι=1

αιzι , z =
1

γ − 1
&

γB

γ − 1

∂

∂τ
(Jρ1α) +

∂

∂ξ
(Jρ1αU) +

∂

∂η
(Jρ1αV ) = 0 with z =

B

ρ0
ρ
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Barotropic 2-Phase Flow (Cont.)

Transport equations for material quantities γ, B, & ρ0

γ-based equations

∂

∂τ

(

1

γ − 1

)

+ U
∂

∂ξ

(

1

γ − 1

)

+ V
∂

∂η

(

1

γ − 1

)

= 0

∂

∂τ

(

γB

γ − 1

)

+ U
∂

∂ξ

(

γB

γ − 1

)

+ V
∂

∂η

(

γB

γ − 1

)

= 0

∂

∂τ

(

J
B

ρ0
ρ

)

+
∂

∂ξ

(

J
B

ρ0
ρU

)

+
∂

∂η

(

J
B

ρ0
ρV

)

= 0

α-based equations (Kapila et al. , Phys. Fluid 2001)

∂α

∂τ
+ U

∂α

∂ξ
+ V

∂α

∂η
= α1α2

(

ρ1c
2
1 − ρ2c

2
2

∑2
k=1 αkρkc2k

)

∇ · ~u

· · · will not be discussed here
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Barotropic & Non-Barotropic Flow

Equations of state

Fluid component 1: Tait EOS

p(ρ) = (p0 + B)

(

ρ

ρ0

)γ

− B

Fluid component 2: Noble-Abel EOS

p(ρ, ρe) =

(

γ − 1

1 − bρ

)

ρe (0 ≤ b ≤ 1/ρ)
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Barotropic & Non-Barotropic Flow

Equations of state

Fluid component 1: Tait EOS

p(ρ) = (p0 + B)

(

ρ

ρ0

)γ

− B

Fluid component 2: Noble-Abel EOS

p(ρ, ρe) =

(

γ − 1

1 − bρ

)

ρe (0 ≤ b ≤ 1/ρ)

Mixture pressure law (Shyue, Shock Waves 2006)

p(ρ, ρe) =



















(p0 + B)

(

ρ

ρ0

)γ

− B if α = 1 (fluid 1)

(

γ − 1

1 − bρ

)

(ρe− B) − B if α 6= 1
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Baro. & Non-Baro. Flow (Cont.)

Equations of state

Fluid component 1: Tait EOS

p(V ) = A(S0) (p0 + B)

(

V0

V

)γ

− B, V = 1/ρ

Fluid component 2: Noble-Abel EOS

p(V, S) = A(S)p0

(

V0 − b

V − b

)γ

Mixture pressure law

p(V, S) = A(S) (p0 + B)

(

V0 − b

V − b

)γ

− B
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Baro. & Non-Baro. Flow (Cont.)

Equations of state

Fluid component 1: Tait EOS

p(V ) = A(S0) (p0 + B)

(

V0

V

)γ

− B, V = 1/ρ

Fluid component 2: Noble-Abel EOS

p(V, S) = A(S)p0

(

V0 − b

V − b

)γ

Mixture pressure law

p(V, S) = A(S) (p0 + B)

(

V0 − b

V − b

)γ

− B

variant form of p(ρ, ρe) =

(

γ − 1

1 − bρ

)

(ρe− B) − B

Workshop: CFD on Unified Coordinate Method & Perspective Applications, NCNU, Puli, Taiwan, January 26-28, 2007 – p. 25/65



Baro. & Non-Baro. Flow (Cont.)

Transport equations for material quantities γ, b, & B

α-based equations

∂α

∂τ
+ U

∂α

∂ξ
+ V

∂α

∂η
= 0

∂

∂τ
(Jρ1α) +

∂

∂ξ
(Jρ1αU) +

∂

∂η
(Jρ1αV ) = 0

with z =
∑2

ι=1 αιzι, z = 1
γ−1 , bρ

γ−1 , & γ−bρ
γ−1 B
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Baro. & Non-Baro. Flow (Cont.)

Transport equations for material quantities γ, b, & B

α-based equations

∂α

∂τ
+ U

∂α

∂ξ
+ V

∂α

∂η
= 0

∂

∂τ
(Jρ1α) +

∂

∂ξ
(Jρ1αU) +

∂

∂η
(Jρ1αV ) = 0

with z =
∑2

ι=1 αιzι, z = 1
γ−1 , bρ

γ−1 , & γ−bρ
γ−1 B

Note:
1 − bρ

γ − 1
p +

γ − bρ

γ − 1
B = ρe =

2
∑

ι=1

αιριeι

=
2
∑

ι=1

αι

(

1 − bιρι

γι − 1
pι +

γι − bιρι

γι − 1
Bι

)
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Baro. & Non-Baro. Flow (Cont.)

Transport equations for material quantities γ, b, & B

α-based equations

∂α

∂τ
+ U

∂α

∂ξ
+ V

∂α

∂η
= 0

∂

∂τ
(Jρ1α) +

∂

∂ξ
(Jρ1αU) +

∂

∂η
(Jρ1αV ) = 0

with z =
∑2

ι=1 αιzι, z = 1
γ−1 , bρ

γ−1 , & γ−bρ
γ−1 B

Note:
1 − bρ

γ − 1
p +

γ − bρ

γ − 1
B = ρe =

2
∑

ι=1

αιριeι

=
2
∑

ι=1

αι

(

1 − bιρι

γι − 1
pι +

γι − bιρι

γι − 1
Bι

)
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Multifluid Model
With (xτ , yτ ) = h0(u, v) & sample EOS described above, our
α-based model for multifluid flow is

∂

∂τ











































Jρ

Jρu

Jρv

JE

xξ

yξ

xη

yη

Jρ1α











































+
∂

∂ξ











































JρU

JρuU + yηp

JρvU − xηp

JEU + (yηu− xηv)p

−h0u

−h0v

0

0

Jρ1αU











































+
∂

∂η











































JρV

JρuV − yξp

JρvV + xξp

JEV + (xξv − yξu)p

0

0

−h0u

−h0v

Jρ1αV











































= ψ̃

∂α

∂τ
+ U

∂α

∂ξ
+ V

∂α

∂η
= 0, plus α-averaged material quantities
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Multifluid Model (Cont.)

For convenience, our multifluid model is written into

∂q

∂τ
+ f

(

∂

∂ξ
, q,Ξ

)

+ g

(

∂

∂η
, q,Ξ

)

= ψ̃

with

q = [Jρ, Jρu, Jρv, JE, xξ, yξ, xη, yη, Jρ1α, α]T

f =

[

∂

∂ξ
(JρU),

∂

∂ξ
(JρuU + yηp),

∂

∂ξ
(JρvU − xηp),

∂

∂ξ
(JEU + (yηu− xηv)p),

∂

∂ξ
(−h0u),

∂

∂ξ
(−h0v), 0, 0,

∂

∂ξ
(Jρ1αU), U

∂α

∂ξ

]T

g =

[

∂

∂η
(JρV ),

∂

∂η
(JρuV − yξp),

∂

∂η
(JρvV + xξp),

∂

∂η
(JEV + (xξv − yξu)p),

0, 0,
∂

∂η
(−h0u),

∂

∂η
(−h0v),

∂

∂η
(Jρ1αV ), V

∂α

∂η

]T
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Multifluid model: Remarks

As before, under thermodyn. stability condition, our
multifluid model in generalized coordinates is hyperbolic
when h0 6= 1, & is weakly hyperbolic when h0 = 1

Our model system is written in quasi-conservative form
with spatially varying fluxes in generalized coordinates

Our grid system is a time-varying grid

Extension of the model to general non-barotropic
multifluid flow can be made in an analogous manner
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Multifluid model: Remarks

As before, under thermodyn. stability condition, our
multifluid model in generalized coordinates is hyperbolic
when h0 6= 1, & is weakly hyperbolic when h0 = 1

Our model system is written in quasi-conservative form
with spatially varying fluxes in generalized coordinates

Our grid system is a time-varying grid

Extension of the model to general non-barotropic
multifluid flow can be made in an analogous manner

Numerical approximation ?
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Numerical Approximation

Equations to be solved are

∂q

∂τ
+ f

(

∂

∂ξ
, q,Ξ

)

+ g

(

∂

∂η
, q,Ξ

)

= ψ̃

A simple dimensional-splitting approach based on
f -wave formulation of LeVeque et al. is used

Solve one-dimensional generalized Riemann
problem (defined below) at each cell interfaces
Use resulting jumps of fluxes (decomposed into
each wave family) of Riemann solution to update cell
averages
Introduce limited jumps of fluxes to achieve high
resolution
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Numerical Approximation (Cont.)

Employ finite volume formulation of numerical solution

Qn
ij ≈

1

∆ξ∆η

∫

Cij

q(ξ, η, τn) dA

that gives approximate value of cell average of solution q
over cell Cij = [ξi, ξi+1] × [ηj , ηj+1] at time τn

−1 −0.5 0 0.5 1

−1.5

−1

−0.5

0

−1 −0.5 0 0.5
−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

x

y

ξ

η

computational grid
physical grid
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Generalized Riemann Problem

Generalized Riemann problem of our multifluid model at cell
interface ξi−1/2 consists of the equation

∂q

∂τ
+ Fi− 1

2
,j (∂ξ, q,Ξ) = 0

together with flux function

Fi− 1

2
,j =







fi−1,j (∂ξ, q,Ξ) for ξ < ξi−1/2

fij (∂ξ, q,Ξ) for ξ > ξi−1/2

and piecewise constant initial data

q(ξ, 0) =







Qn
i−1,j for ξ < ξi−1/2

Qn
ij for ξ > ξi−1/2
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General. Riemann Problem (Cont.)

Generalized Riemann problem at time τ = 0

qτ + fi−1,j (∂ξ, q,Ξ) = 0 qτ + fi,j (∂ξ, q,Ξ) = 0

ξ

τ

Qn
i−1,j Qn

ij
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General. Riemann Problem (Cont.)

Exact generalized Riemann solution: basic structure

qτ + fi−1,j (∂ξ, q,Ξ) = 0 qτ + fi,j (∂ξ, q,Ξ) = 0

ξ

τ

Qn
i−1,j Qn

ij
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General. Riemann Problem (Cont.)

Shock-only approximate Riemann solution: basic structure

qτ + fi−1,j (∂ξ, q,Ξ) = 0 qτ + fi,j (∂ξ, q,Ξ) = 0
ξ

τ

Qn
i−1,j Qn

ij

λ1 λ2

λ3

q−mL q+mL

qmR

Z1 = fL(q−mL) − fL(Qn
i−1,j) Z2 = fR(qmR) − fR(q+mL)

Z3 = fR(Qn
ij) − fR(qmR)
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Numerical Approximation (Cont.)

Basic steps of a dimensional-splitting scheme

ξ-sweeps: solve

∂q

∂τ
+ f

(

∂

∂ξ
, q,Ξ

)

= 0

updating Qn
ij to Q∗

i,j

η-sweeps: solve

∂q

∂τ
+ g

(

∂

∂η
, q,Ξ

)

= 0

updating Q∗

ij to Qn+1

i,j
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Numerical Approximation (Cont.)

That is to say,

ξ-sweeps: we use

Q∗

ij = Qn
ij −

∆τ

∆ξ

(

F−

i+ 1

2
,j
−F+

i− 1

2
,j

)

−
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∆ξ

(

Z̃i+ 1

2
,j − Z̃i− 1

2
,j

)
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2
,j =

1

2
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∑
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sign
(

λp
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2
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)
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∣
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∣
λp
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2
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∣

∣

∣

)

Z̃p
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2
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η-sweeps: we use

Qn+1
ij = Q∗

ij −
∆τ

∆η

(

G−

i,j+ 1

2

− G+
i,j− 1

2

)

−
∆τ
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2
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2

=
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2
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sign
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2

)

(

1 −
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∣

∣

∣λ
p
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2

∣

∣

∣

)

Z̃p
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2
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Numerical Approx.: Remarks

Flux-based wave decomposition

fi,j − fi−1,j =

mw
∑

p=1

Zp
i−1/2 =

mw
∑

p=1

λp
i−1/2W

p
i−1/2

Some care should be taken on the limited jump of fluxes
W̃p, for p = 2 (contact wave), in particular to ensure
correct pressure equilibrium across material interfaces

MUSCL-type (slope limited) high resolution extension is
not simple as one might think of for multifluid problems

Splitting of discontinuous fluxes at cell interfaces:
significance ?

First order or high resolution method for geometric
conservation laws: significance to grid uniformity ?
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Numerical Examples:2D

2D Riemann problem

Underwater explosion

Shock-bubble interaction
Helium bubble case
Refrigerant bubble case
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2D Riemann Problem

Initial condition for 4-shock wave pattern
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2D Riemann problem (Cont.)

Numerical contours for density and pressure
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2D Riemann problem (Cont.)

Grid system with h0 = 0.99
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2D Riemann problem (Cont.)

Eulerian (h0 = 0) vs. generalized Lagrangian (h0 = 0.99)
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Underwater Explosions

Numerical schlieren images h0 = 0.9, 800 × 500 grid
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Underwater Explosions

Numerical schlieren images h0 = 0.9, 800 × 500 grid
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Underwater Explosions (Cont.)

Grid system (coarsen by factor 5) with h0 = 0.9
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Underwater Explosions (Cont.)

Grid system (coarsen by factor 5) with h0 = 0.9
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Underwater Explosions (Cont.)

Grid system (coarsen by factor 5) with h0 = 0.9
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Underwater Explosions (Cont.)

Grid system (coarsen by factor 5) with h0 = 0.9
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Underwater Explosions (Cont.)

Grid system (coarsen by factor 5) with h0 = 0.9
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Underwater Explosions (Cont.)

Volume tracking & interface capturing results
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Underwater Explosions (Cont.)

Generalized curvilinear grid: single bubble animation

Cartesian grid: multiple bubble animation
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Shock-Bubble (Helium)

Numerical schlieren images: h0 = 0.5, 600 × 400 grid
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Shock-Bubble (Helium)

Numerical schlieren images: h0 = 0.5, 600 × 400 grid
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Shock-Bubble (Helium)

Numerical schlieren images: h0 = 0.5, 600 × 400 grid
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Shock-Bubble (Helium)

Numerical schlieren images: h0 = 0.5, 600 × 400 grid
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Shock-Bubble (Helium) (Cont.)

Grid system (coarsen by factor 5) with h0 = 0.5
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Shock-Bubble (Helium) (Cont.)

Grid system (coarsen by factor 5) with h0 = 0.5
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Shock-Bubble (Helium) (Cont.)

Grid system (coarsen by factor 5) with h0 = 0.5
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Shock-Bubble (Helium) (Cont.)

Grid system (coarsen by factor 5) with h0 = 0.5
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Shock-Bubble (Helium) (Cont.)

Grid system (coarsen by factor 5) with h0 = 0.5
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Shock-Bubble (Refrigerant)

Numerical schlieren images: h0 = 0.5, 600 × 400 grid
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Shock-Bubble (Refrigerant)
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Shock-Bubble (Refrigerant)

Numerical schlieren images: h0 = 0.5, 600 × 400 grid
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Shock-Bubble (R22) (Cont.)

Grid system (coarsen by factor 5) with h0 = 0.5
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Shock-Bubble (R22) (Cont.)

Grid system (coarsen by factor 5) with h0 = 0.5
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Shock-Bubble (R22) (Cont.)

Grid system (coarsen by factor 5) with h0 = 0.5
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Shock-Bubble (R22) (Cont.)

Grid system (coarsen by factor 5) with h0 = 0.5
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Shock-Bubble (R22) (Cont.)

Grid system (coarsen by factor 5) with h0 = 0.5
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Three Space Dimensions

Euler equations for inviscid compressible flow

∂

∂t





















ρ

ρu

ρv

ρw

ρE





















+
∂

∂x





















ρu

ρu2 + p

ρuv

ρuw

ρEu+ pu





















+
∂

∂y





















ρv

ρuv

ρv2 + p

ρvw

ρEv + pv





















+
∂

∂z





















ρw

ρuw

ρvw

ρw2 + p

ρEw + pw





















= ψ

E = e+ (u2 + v2 + w2)/2, e(ρ, p): internal energy
ψ: source terms (geometrical, gravitational, & so on)
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Three Space Dimensions (Cont.)

Introduce transformation (t, x, y, z) → (τ, ξ, η, ζ) via














dt

dx

dy

dz















=















1 0 0 0

U A1 B1 C1

V A2 B2 C2

W A3 B3 C3





























dτ

dξ

dη

dζ















where
~Q = (U, V, W ): grid velocity

~Q = 0 Eulerian case

~Q = (u, v, w) Lagrangian case

Ai, Bi, Ci: geometric variables, i = 1, 2, 3
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Three Space Dimensions (Cont.)

Inverse transformation (τ, ξ, η, ζ) → (t, x, y, z) reads














dτ

dξ

dη

dζ















=
1

J















J 0 0 0

J01 J11 J21 J31

J02 J12 J22 J32

J03 J13 J23 J33





























dt

dx

dy

dz















, J =

∣

∣

∣

∣

∣

∣

∣

∣

A1 B1 C1

A2 B2 C2

A3 B3 C3

∣

∣

∣

∣

∣

∣

∣

∣

where

J11 = B2C3 −B3C2, J21 = C1B3 −B1C3, J31 = B1C2 − C1B2

J12 = C2A3 −A2C3, J22 = A1C3 − C1A3, J32 = C1A2 −A1C2

J13 = A2B3 −B2A3, J23 = B1A3 −A1B3, J33 = A1B2 −B1A2

J01 = − (UJ11 + V J21 +WJ31) , J02 = − (UJ12 + V J22 +WJ32)

J03 = − (UJ13 + V J23 +WJ33)
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Three Space Dimensions (Cont.)

Euler equations in generalized curvilinear coordinates

∂

∂τ





















ρJ

ρJu

ρJv

ρJw

ρJE





















+
∂

∂ξ





















ρU

ρuU + pJ11

ρvU + pJ21

ρwU + pJ31

ρEU + pX





















+
∂

∂η





















ρV

ρuV + pJ12

ρvV + pJ22

ρwV + pJ32

ρEV + pY





















+
∂

∂ζ





















ρW

ρuW + pJ13

ρvW + pJ23

ρwW + pJ33

ρEW + pZ





















= ψ

where

U = (u− U)J11 + (v − V )J21 + (w −W )J31, X = uJ11 + vJ21 + wJ31

V = (u− U)J12 + (v − V )J22 + (w −W )J32, Y = uJ12 + vJ22 + wJ32

W = (u− U)J13 + (v − V )J23 + (w −W )J33, Z = uJ13 + vJ23 + wJ33
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Three Space Dimensions (Cont.)

Geometrical conservation laws

∂
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Grid-Velocity Selection

Pseudo-Lagrangian like

(U, V, W ) = h0(u, v, w), h0 ∈ (0, 1)

Mesh-volume preserving: ∂J/∂t = 0

Grid-angle preserving

Other novel approach
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Three Space Dimensions (Cont.)

In summary, Euler equations in generalized coord. takes

∂q

∂t
+
∂f(q,Ξ)

∂ξ
+
∂g(q,Ξ)

∂η
+
∂h(q,Ξ)

∂ζ
= ψ

where

q = (ρJ, ρJu, ρJv, ρJw, ρJE, Ai, Bi, Ci)

f(q,Ξ) = (ρU , ρuU + pJ11, ρvU + pJ21, ρwU + pJ31, ρEU + pX , · · · )

g(q,Ξ) = (ρV , ρuV + pJ12, ρvV + pJ22, ρwV + pJ32, ρEV + pY , · · · )

h(q,Ξ) = (ρW, ρuW + pJ13, ρvW + pJ23, ρwW + pJ33, ρEW + pZ, · · · )

with Ξ : grid metrics & equation of state p = p(ρ, e)
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Numerical Examples:3D

Underwater explosion

Shock-bubble interaction
Helium bubble case
Refrigerant bubble case
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Underwater Explosions

Numerical schlieren images h0 = 0.6, 1003 grid
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Underwater Explosions

Numerical schlieren images h0 = 0.6, 1003 grid
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Underwater Explosions

Numerical schlieren images h0 = 0.6, 1003 grid
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3D Underwater Explosions (Cont.)

Grid system (coarsen by factor 2) with h0 = 0.6
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3D Underwater Explosions (Cont.)

Grid system (coarsen by factor 2) with h0 = 0.6
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3D Underwater Explosions (Cont.)

Grid system (coarsen by factor 2) with h0 = 0.6
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3D Underwater Explosions (Cont.)

Grid system (coarsen by factor 2) with h0 = 0.6
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3D Underwater Explosions (Cont.)

Grid system (coarsen by factor 2) with h0 = 0.6
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3D Shock-Bubble (Helium)

Numerical schlieren images: h0 = 0.6, 150 × 50 × 50 grid
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Shock-Bubble (Helium) (Cont.)

Grid system (coarsen by factor 2) with h0 = 0.6
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Shock-Bubble (Helium) (Cont.)

Grid system (coarsen by factor 2) with h0 = 0.6
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Shock-Bubble (Helium) (Cont.)

Grid system (coarsen by factor 2) with h0 = 0.6
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Shock-Bubble (Helium) (Cont.)

Grid system (coarsen by factor 2) with h0 = 0.6
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Shock-Bubble (Helium) (Cont.)

Grid system (coarsen by factor 2) with h0 = 0.6
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3D Shock-Bubble (Refrigerant)

Numerical schlieren images: h0 = 0.6, 150 × 50 × 50 grid
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3D Shock-Bubble (Refrigerant)

Numerical schlieren images: h0 = 0.6, 150 × 50 × 50 grid

Workshop: CFD on Unified Coordinate Method & Perspective Applications, NCNU, Puli, Taiwan, January 26-28, 2007 – p. 62/65



3D Shock-Bubble (Refrigerant)

Numerical schlieren images: h0 = 0.6, 150 × 50 × 50 grid

Workshop: CFD on Unified Coordinate Method & Perspective Applications, NCNU, Puli, Taiwan, January 26-28, 2007 – p. 62/65



3D Shock-Bubble (Refrigerant)

Numerical schlieren images: h0 = 0.6, 150 × 50 × 50 grid

Workshop: CFD on Unified Coordinate Method & Perspective Applications, NCNU, Puli, Taiwan, January 26-28, 2007 – p. 62/65



3D Shock-Bubble (Refrigerant)

Numerical schlieren images: h0 = 0.6, 150 × 50 × 50 grid
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Shock-Bubble (R22) (Cont.)

Grid system (coarsen by factor 2) with h0 = 0.6
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Shock-Bubble (R22) (Cont.)
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Shock-Bubble (R22) (Cont.)

Grid system (coarsen by factor 2) with h0 = 0.6
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Shock-Bubble (R22) (Cont.)

Grid system (coarsen by factor 2) with h0 = 0.6
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Shock-Bubble (R22) (Cont.)

Grid system (coarsen by factor 2) with h0 = 0.6
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Conclusion

Have described fluid-mixture type algorithm in
generalized moving-curvilinear grid

Have shown results in 2 & 3D to demonstrate feasibility
of method for practical problems
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Conclusion

Have described fluid-mixture type algorithm in
generalized moving-curvilinear grid

Have shown results in 2 & 3D to demonstrate feasibility
of method for practical problems

Future direction
Efficient & accurate grid movement strategy
Static & Moving 3D geometry problems
Weakly compressible flow
Viscous flow extension
· · ·
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Conclusion

Have described fluid-mixture type algorithm in
generalized moving-curvilinear grid

Have shown results in 2 & 3D to demonstrate feasibility
of method for practical problems

Future direction
Efficient & accurate grid movement strategy
Static & Moving 3D geometry problems
Weakly compressible flow
Viscous flow extension
· · ·

Thank You
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Automatic Time-Marching Grid

Supersonic NACA0012 over heavier gas
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