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Illustrative Example 1
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Illustrative Example 2

Flying rigid-cylinder in partially air-filled water tank

Air-water interface & moving rigid boundary
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Overview

Mathematical model

Fluid-mixture type equations of motion for
homogeneous two-phase flow
Mie-Grüneisen EOS for real materials

Numerical techniques

Finite volume method based on wave propagation
Surface tracking for moving boundaries
Volume tracking for moving interfaces

Numerical results

Future work
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Two Phase Flow Problem

Ignore physical effects such as viscosity, surface tension,
mass diffusion, and so on

Each fluid component k, k = 1, 2, satisties

Eulerian conservation laws

ρt + ∇ · (ρ~u) = 0

(ρ~u)t + ∇ · (ρ~u⊗ ~u) + ∇p = 0

(ρE)t + ∇ · (ρE~u+ p~u) = 0

Mie-Grüneisen equation of state

p(ρ, e) = pref(ρ) + ρ Γ(ρ)
[

e− eref(ρ)
]

NCTS Workshop on Scientific Computing, June 26-30, 2006 – p. 5/40



Mie-Grüneisen Equations of State

Typical examples are:

(pref, eref) lies along an isentrope
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Mie-Grüneisen Equations of State

Typical examples are:

(pref, eref) lies along an isentrope

1. Jones-Wilkins-Lee EOS for gaseous explosives

Γ(V ) = γ − 1

eref(V ) = e0 +
A V0

R1

exp

(

−R1V

V0

)

+
B V0

R2

exp

(

−R2V

V0

)

pref(V ) = p0 + A exp

(

−R1V

V0

)

+ B exp

(

−R2V

V0

)

Here V = 1/ρ
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Mie-Grüneisen Equations of State

Typical examples are:

(pref, eref) lies along an isentrope

2. Cochran-Chan EOS for solid explosives

Γ(V ) = Γ0 = γ − 1

eref(V ) = e0 +
−A V0

1 − E1

[

(

V

V0

)1−E1

− 1

]

+
B V0

1 − E2

[

(

V

V0

)1−E2

− 1

]

pref(V ) = p0 + A

(

V

V0

)−E1

− B

(

V

V0

)−E2
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Mie-Grüneisen Equations of State

(pref, eref) lies along a Hugoniot locus

Assume linear shock speed us & particle velocity up

us = c0 + s up

We may derive the relations

Γ(V ) = Γ0

(

V

V0

)α

pref(V ) = p0 +
c0

2(V0 − V )

[V0 − s(V0 − V )]2

eref(V ) = e0 +
1

2

[

pref(V ) + p0

]

(V0 − V )
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Material Quantities for Model EOS

JWL EOS ρ0(kg/m3) A(GPa) B(GPa) R1 R2 Γ

TNT1 1630 371.2 3.23 4.15 0.95 0.30

TNT2 1630 548.4 9.375 4.94 1.21 1.28

Water 1004 1582 −4.67 8.94 1.45 1.17

CC EOS ρ0(kg/m3) A(GPa) B(GPa) E1 E2 Γ

TNT 1840 12.87 13.42 4.1 3.1 0.93

Copper 8900 145.67 147.75 2.99 1.99 2

Shock EOS ρ0(kg/m3) c0(m/s) s Γ0 α

Aluminum 2785 5328 1.338 2.0 1

Copper 8924 3910 1.51 1.96 1
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Two-Phase Flow Model
Model derivation based on averaging theory of Drew
(Theory of Multicomponent Fluids, D.A. Drew & S. L.
Passman, Springer, 1999)

Namely, introduce indicator function χk as

χk(M, t) =

{

1 if M belongs to phase k
0 otherwise

Denote < ψ > as volume averaged for flow variable ψ,

〈ψ〉 =
1

V

∫

V

ψ dV

Gauss & Leibnitz rules

〈χk∇ψ〉 = 〈∇(χkψ)〉−〈ψ∇χk〉 & 〈χkψt〉 = 〈(χkψ)t〉−〈ψ(χk)t〉
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Two-Phase Flow Model (Cont.)

Take product of each conservation (or balance) law with χk

& perform averaging process. In case of mass conservation
equation, for example, we have

〈χkρk〉t + ∇· < χkρk~uk >= 〈ρk(χk)t + ρk~uk · ∇χk〉

Since χk is governed by

(χk)t + ~u0 · ∇χk = 0, ~u0: interface velocity

yielding averaged equation for mass

〈χkρk〉t + ∇· < χkρk~uk >= 〈ρk (~uk − ~u0) · ∇χk〉

Analogously, we may derive averaged equation for
momentum, energy, & entropy (not shown here)
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Two-Phase Flow Model (Cont.)

In summary, averaged model system, we have, are

〈χkρk〉t + ∇· < χkρk~uk >= 〈ρk (~uk − ~u0) · ∇χk〉

〈χkρk~uk〉t + ∇· < χkρk~uk ⊗ ~uk > +∇〈χkpk〉 = 〈pk∇χk〉+

〈ρk~uk (~uk − ~u0) · ∇χk〉

〈χkρkEk〉t + ∇· < χkρkEk~uk + χkpk~uk >= 〈pk~uk · ∇χk〉+

〈ρkE (~uk − ~u0) · ∇χk〉

〈χk〉t + 〈~uk · ∇χk〉 = 〈(~uk − ~u0) · ∇χk〉

Existence of interfacial source terms
Mathematical as well as numerical modelling these terms
are essential & difficult for multiphase flow problems
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Homogeneous Two-Phase Flow Model

Assume homogeneous flow (i.e., across interfaces:
pk = p & ~uk = ~u, k = 0, 1, 2)

Introduce volume fraction αk = Vk/V (α1 + α2 = 1)

By dropping all interfacial terms, we may obtain a simplified
model as

(αkρk)t + ∇ · (αkρk~u) = 0

(αkρk~u)t + ∇ · (αkρk~u⊗ ~u) + ∇ (αkp) = p∇αk

(αkρkEk)t + ∇ · (αkρkEk~u+ αkp~u) = p~u · ∇αk

(αk)t + ~u · ∇αk = 0

for k = 1, 2
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Homogeneous Two-Phase Flow Model

Assume homogeneous flow (i.e., across interfaces:
pk = p & ~uk = ~u, k = 0, 1, 2)

Introduce volume fraction αk = Vk/V (α1 + α2 = 1)

Alternatively, a simplified model as

(αkρk)t + ∇ · (αkρk~u) = 0

(ρ~u)t + ∇ · (ρ~u⊗ ~u) + ∇p = 0

(ρE)t + ∇ · (ρE~u+ p~u) = 0

(αk)t + ~u · ∇αk = 0

Here ρ =
∑2

k=1
αkρk, ρE =

∑2

k=1
αkρkEk
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Homogeneous Flow Model (Cont.)

Mixture equation of state: p = p(α2, α1ρ1, α2ρ2, ρe)

Isobaric closure: p1 = p2 = p

For a class of EOS, explicit formula for p is available
(examples are given next)
For some complex EOS, from (α2, ρ1, ρ2, ρe) in model
equations we recover p by solving

p1(ρ1, ρ1e1) = p2(ρ2, ρ2e2) &
2
∑

k=1

αkρkek = ρe

This homogeneous two-phase model was called a
five-equation model by Allaire, Clerc, & Kokh (JCP
2002) or a volume-fraction model by Shyue (JCP 1998)
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Homogeneous Flow Model (Cont.)

Polytropic ideal gas: pk = (γk − 1)ρkek

ρe =

2
∑

k=1

αkρkek =

2
∑

k=1

αk
p

γk − 1
=⇒ p = ρe

/ 2
∑

k=1

αk

γk − 1

Van der Waals gas: pk = ( γk−1

1−bkρk
)(ρkek + akρ

2
k) − akρ

2
k

ρe =
2
∑

k=1

αkρkek =
2
∑

k=1

αk

[(

1 − bkρk

γk − 1

)

(p+ akρ
2
k) − akρ

2
k

]

=⇒

p =

[

ρe−

2
∑

k=1

αk

(

1 − bkρk

γk − 1
− 1

)

akρ
2
k

]

/ 2
∑

k=1

αk

(

1 − bkρk

γk − 1

)
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Homogeneous Flow Model (Cont.)

Two-molecular vibrating gas: pk = ρkRkT (ek), T satisfies

e =
RT

γ − 1
+

RTvib
exp

(

Tvib/T
)

− 1

As before, we now have

ρe =
2
∑

k=1

αkρkek =
2
∑

k=1

αk





(

ρkRkTk

γk − 1

)

+
ρkRkTvib,k

exp
(

Tvib,k
/Tk

)

− 1





=

2
∑

k=1

αk





(

p

γk − 1

)

+
pvib,k

exp
(

pvib,k
/p
)

− 1



 (Nonlin. eq.)
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Homogeneous Flow Model (Cont.)

It can be shown entropies, Sk, k = 1, 2, satisfy
(

∂p1

∂S1

)

ρ1

DS1

Dt
−

(

∂p2

∂S2

)

ρ2

DS2

Dt
=
(

ρ1c
2
1 − ρ2c

2
2

)

∇ · ~u

Murrone & Guillard (JCP 2005) propsed a reduced
two-phase flow model in which

(α2)t + ~u · ∇α2 = α1α2

(

ρ1c
2
1 − ρ2c

2
2

∑2

k=1
αkρkc

2
k

)

and now phase entropies satisfy

DSk

Dt
=
∂Sk

∂t
+ ~u · ∇Sk = 0, for k = 1, 2
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Homogeneous Flow Model (Cont.)

Model system is hyperbolic under suitable
thermodynamic stability condition (see below)

In the model, when α2 = 0 (or = 1), ρ2 (or ρ1) can not be
recovered from α2 & α2ρ2 (or α1 & α1ρ1).

It is not absolutely clear in the model how to compute
nonlinear term ρι, ι > 1 from αk & αkρk

This formulation of model equation would not work
when one fluid component is adiabatic, but the other
fluid component is not

Surely, there are other set of model systems proposed
in the literature that are robust for homogeneous flow
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Thermodynamic Stability

Fundamental derivative of gas dynamics

G = −
V

2

(∂2p/∂V 2)S
(∂p/∂V )S

, S : specific entropy
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Thermodynamic Stability

Fundamental derivative of gas dynamics

G = −
V

2

(∂2p/∂V 2)S
(∂p/∂V )S

, S : specific entropy

Assume fluid state satisfy G > 0 for thermodynamic
stability, i.e.,

(∂2p/∂V 2)S > 0 & (∂p/∂V )S < 0
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Thermodynamic Stability

Fundamental derivative of gas dynamics

G = −
V

2

(∂2p/∂V 2)S
(∂p/∂V )S

, S : specific entropy

Assume fluid state satisfy G > 0 for thermodynamic
stability, i.e.,

(∂2p/∂V 2)S > 0 & (∂p/∂V )S < 0
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Thermodynamic Stability

Fundamental derivative of gas dynamics

G = −
V

2

(∂2p/∂V 2)S
(∂p/∂V )S

, S : specific entropy

Assume fluid state satisfy G > 0 for thermodynamic
stability, i.e.,

(∂2p/∂V 2)S > 0 & (∂p/∂V )S < 0

(∂2p/∂V 2)S > 0 means convex EOS
(∂p/∂V )S < 0 means real speed of sound, for

c2 =

(

∂p

∂ρ

)

S

= −V 2

(

∂p

∂V

)

S

> 0
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Finite Volume Wave Propagation Method

Finite volume method, Qn
S gives approximate value of

cell average of solution q over cell S at time tn

Qn
S ≈

1

M(S)

∫

S

q(X, tn) dV

M(S): measure (area in 2D or volume in 3D) of cell S

C

E

D
F

G H
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Wave Propagation Method (cont.)

First order version: Piecewise constant wave update
Godunov-type method: Solve Riemann problem at
each cell interface in normal direction & use resulting
waves to update cell averages

Qn+1

S := Qn+1

S −
M (Wp ∩ S)

M(S)
Rp, Rp being jump from RP

↓

↓

Wp

Wp
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Wave Propagation Method (cont.)

First order version: Transverse-wave included
Use transverse portion of equation, solve Riemann
problem in transverse direction, & use resulting
waves to update cell averages as usual
Stability of method is typically improved, while
conservation of method is maintained

↓
↓

Wpq
Wpq
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Wave Propagation Method (cont.)

High resolution version: Piecewise linear wave update

wave before propagation after propagation

a) b)

c) d)

α
p
r
p
/2 

α
p
r
p
/2 

λ
p
∆ t 

λ
p
∆ t 
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Volume Tracking Algorithm

1. Volume moving procedure
(a) Volume fraction update

Take a time step on current grid to update cell
averages of volume fractions at next time step

(b) Interface reconstruction
Find new interface location based on volume
fractions obtained in (a) using an interface
reconstruction scheme. Some cells will be
subdivided & values in each subcell must be
initialized.

2. Physical solution update
Take same time interval as in (a), but use a method to
update cell averages of multicomponent model on new
grid created in (b)
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Interface Reconstruction Scheme
Given volume fractions on current grid, piecewise linear
interface reconstruction (PLIC) method does:
1. Compute interface normal

Gradient method of Parker and Youngs
Least squares method of Puckett

2. Determine interface location by iterative bisection

00
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00

00

0

0

0

0

0

0

0

0

0

0
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↓↓

interfaceinterface
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Volume Moving Procedure

(a) Volume fractions given in previous slide are updated
with uniform (u, v) = (1, 1) over ∆t = 0.06

(b) New interface location is reconstructed
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Surface Moving Procedure

Solve Riemann problem at tracked interfaces & use
resulting waves to find new location of interface at the
next time step

o
o

o

o

o

o

↑↑ old frontold front

new front
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Interface Conditions

For tracked segments representing rigid (solid wall)
boundary (stationary or moving), appropriate boundary
states are assigned for fictitious subcells in each time
step

For tracked segments representing material interfaces,
jump conditions across interfaces are satisfied only in
an approximate manner, & would not be imposed
explicitly in each time step
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Stability Issues

Choose time step ∆t based on uniform grid mesh size
∆x, ∆y as

∆t maxp,q (λp, µq)

min(∆x,∆y)
≤ 1,

λp, µq: speed of p-wave, q-wave from Riemann
problem solution in normal-, transverse-directions

Use large time step method of LeVeque (i.e., wave
interactions are assumed to behave in linear manner) to
maintain stability of method even in the presence of
small Cartesian cut cells

Apply interpolation operator (such as, h-box approach
of Berger et al. ) locally for cell averages in irregular cells
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Flying Projectile Problem
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Cylinder lift-off Problem

Moving speed of cylinder is governed by Newton’s law

Pressure contours are shown with a 1000 × 200 grid
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Cylinder lift-off Problem

A convergence study of center of cylinder & relative
mass loss for at final stopping time t = 0.30085s

Mesh size Center of cylinder Relative mass loss
250 × 50 (0.618181, 0.134456) −0.257528

500 × 100 (0.620266, 0.136807) −0.131474

1000 × 200 (0.623075, 0.138929) −0.066984

Results are comparable with numerical appeared in
literature
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Shock in Air & R22 Bubble Interaction

Leftward-going Mach 1.22 shock wave in air over
heavier R22 bubble

Numerical schlieren images for density
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Shock-Bubble Interaction (cont.)

Approximate locations of interfaces

time=55µs

airR22

time=115µs time=135µs

time=187µs time=247µs time=200µs

time=342µs time=417µs time=1020µs
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Shock-Bubble Interaction (cont.)

Quantitative assessment of prominent flow velocities:

Velocity (m/s) Vs VR VT Vui Vuf Vdi Vdf

Haas & Sturtevant 415 240 540 73 90 78 78

Quirk & Karni 420 254 560 74 90 116 82

Our result (tracking) 411 243 538 64 87 82 60

Our result (capturing) 411 244 534 65 86 98 76

Vs (VR, VT ) Incident (refracted, transmitted) shock
speed t ∈ [0, 250]µs (t ∈ [0, 202]µs, t ∈ [202, 250]µs )

Vui (Vuf ) Initial (final) upstream bubble wall speed
t ∈ [0, 400]µs (t ∈ [400, 1000]µs)

Vdi (Vdf ) Initial (final) downstream bubble wall speed
t ∈ [200, 400]µs (t ∈ [400, 1000]µs)
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Shock wave in molybdenum over MORB

Numerical schlieren images for density
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Shock-MORB Interaction (cont.)

Numerical schlieren images for pressure
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Shock-MORB Interaction (cont.)

Approximate locations of interfaces

molybdenum

MORB

molybdenum

MORB

time = 50µs time = 100µs
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Future Work

Extension to low Mach number flow
Remove sound-speed stiffness by preconditioning
techniques or pressure-based method

Extension to include more physics towards real
applications

Such as capillary, diffusion, or elastic-plastic effect

Extension to 3D volume tracking method
Surface reconstruction
Finite volume method with moving interfaces
Stability in presence of small cut cells

Extension to unified coordinates of W.-H. Hui
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Thank You
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