Numerical Methods for Compressible Multicomponent Flow with Moving Interfaces and Boundaries

Keh-Ming Shyue

Department of Mathematics

National Taiwan University

- Flying Aluminum-plate problem
- Vacuum-Al boundary

- Flying rigid-cylinder in partially air-filled water tank
- Air-water interface & moving rigid boundary

- Flying rigid-cylinder in partially air-filled water tank
- Air-water interface & moving rigid boundary

- Flying rigid-cylinder in partially air-filled water tank
- Air-water interface & moving rigid boundary

- Flying rigid-cylinder in partially air-filled water tank
- Air-water interface & moving rigid boundary

Overview

- Mathematical model
 - Fluid-mixture type equations of motion for homogeneous two-phase flow
 - Mie-Grüneisen EOS for real materials
- Numerical techniques
 - Finite volume method based on wave propagation
 - Surface tracking for moving boundaries
 - Volume tracking for moving interfaces
- Numerical results
- Future work

Two Phase Flow Problem

Ignore physical effects such as viscosity, surface tension, mass diffusion, and so on

- **Solution** Each fluid component k, k = 1, 2, satisties
 - Eulerian conservation laws

$$\rho_t + \nabla \cdot (\rho \vec{u}) = 0$$
$$(\rho \vec{u})_t + \nabla \cdot (\rho \vec{u} \otimes \vec{u}) + \nabla p = 0$$
$$(\rho E)_t + \nabla \cdot (\rho E \vec{u} + p \vec{u}) = 0$$

Mie-Grüneisen equation of state

$$p(\rho, e) = p_{\text{ref}}(\rho) + \rho \ \Gamma(\rho) \left[e - e_{\text{ref}}(\rho) \right]$$

Typical examples are:

• (p_{ref}, e_{ref}) lies along an isentrope

Typical examples are:

(*p*_{ref}, *e*_{ref}) lies along an isentrope
 Jones-Wilkins-Lee EOS for gaseous explosives

$$\Gamma(V) = \gamma - 1$$

$$e_{\mathsf{ref}}(V) = e_0 + \frac{\mathcal{A} V_0}{\mathcal{R}_1} \exp\left(\frac{-\mathcal{R}_1 V}{V_0}\right) + \frac{\mathcal{B} V_0}{\mathcal{R}_2} \exp\left(\frac{-\mathcal{R}_2 V}{V_0}\right)$$

$$p_{\mathsf{ref}}(V) = p_0 + \mathcal{A} \exp\left(\frac{-\mathcal{R}_1 V}{V_0}\right) + \mathcal{B} \exp\left(\frac{-\mathcal{R}_2 V}{V_0}\right)$$

Here $V = 1/\rho$

Typical examples are:

(*p*_{ref}, *e*_{ref}) lies along an isentrope
 2. Cochran-Chan EOS for solid explosives

$$\begin{split} \Gamma(V) &= \Gamma_0 = \gamma - 1 \\ e_{\mathsf{ref}}(V) &= e_0 + \frac{-\mathcal{A} V_0}{1 - \mathcal{E}_1} \left[\left(\frac{V}{V_0} \right)^{1 - \mathcal{E}_1} - 1 \right] + \frac{\mathcal{B} V_0}{1 - \mathcal{E}_2} \left[\left(\frac{V}{V_0} \right)^{1 - \mathcal{E}_2} - 1 \right] \\ p_{\mathsf{ref}}(V) &= p_0 + \mathcal{A} \left(\frac{V}{V_0} \right)^{-\mathcal{E}_1} - \mathcal{B} \left(\frac{V}{V_0} \right)^{-\mathcal{E}_2} \end{split}$$

(*p*_{ref}, *e*_{ref}) lies along a Hugoniot locus
 Assume linear shock speed *u_s* & particle velocity *u_p*

$$u_s = c_0 + s \ u_p$$

We may derive the relations

$$\Gamma(V) = \Gamma_0 \left(\frac{V}{V_0}\right)^{\alpha}$$

$$p_{\mathsf{ref}}(V) = p_0 + \frac{c_0^2(V_0 - V)}{[V_0 - s(V_0 - V)]^2}$$

$$e_{\mathsf{ref}}(V) = e_0 + \frac{1}{2} \left[p_{\mathsf{ref}}(V) + p_0 \right] (V_0 - V)$$

Material Quantities for Model EOS

JWL EOS	ρ_0 (kg/m ³)	$\mathcal{A}(GPa)$	$\mathcal{B}(GPa)$	\mathcal{R}_1	\mathcal{R}_2	Γ
TNT1	1630	371.2	3.23	4.15	0.95	0.30
TNT2 1630		548.4	9.375	4.94	1.21	1.28
Water	Vater 1004		-4.67		1.45	1.17
CC EOS	$ ho_0$ (kg/m ³)	$\mathcal{A}(GPa)$	B(GPa)	\mathcal{E}_1	\mathcal{E}_2	Γ
TNT	1840	12.87	13.42	4.1	3.1	0.93
Copper	8900	145.67	147.75	2.99	1.99	2
Shock EOS	ρ_0 (kg/m ³)	<i>c</i> ₀ (m/s)	S	Γ_0	lpha	
Aluminum	2785	5328	1.338	2.0	1	
Copper	8924	3910	1.51	1.96	1	

Two-Phase Flow Model

Model derivation based on averaging theory of Drew (Theory of Multicomponent Fluids, D.A. Drew & S. L. Passman, Springer, 1999)

Namely, introduce indicator function χ_k as

$$\chi_k(M,t) = \begin{cases} 1 & \text{if } M \text{ belongs to phase } k \\ 0 & \text{otherwise} \end{cases}$$

Denote $<\psi$ > as volume averaged for flow variable ψ ,

$$\langle \psi \rangle = \frac{1}{V} \int_{V} \psi \ dV$$

Gauss & Leibnitz rules

 $\langle \chi_k \nabla \psi \rangle = \langle \nabla(\chi_k \psi) \rangle - \langle \psi \nabla \chi_k \rangle \quad \& \quad \langle \chi_k \psi_t \rangle = \langle (\chi_k \psi)_t \rangle - \langle \psi(\chi_k)_t \rangle$

Two-Phase Flow Model (Cont.)

Take product of each conservation (or balance) law with χ_k & perform averaging process. In case of mass conservation equation, for example, we have

$$\langle \chi_k \rho_k \rangle_t + \nabla \cdot \langle \chi_k \rho_k \vec{u}_k \rangle = \langle \rho_k (\chi_k)_t + \rho_k \vec{u}_k \cdot \nabla \chi_k \rangle$$

Since χ_k is governed by

 $(\chi_k)_t + \vec{u}_0 \cdot \nabla \chi_k = 0, \qquad \vec{u}_0$: interface velocity

yielding averaged equation for mass

$$\langle \chi_k \rho_k \rangle_t + \nabla \cdot \langle \chi_k \rho_k \vec{u}_k \rangle = \langle \rho_k \left(\vec{u}_k - \vec{u}_0 \right) \cdot \nabla \chi_k \rangle$$

Analogously, we may derive averaged equation for momentum, energy, & entropy (not shown here)

Two-Phase Flow Model (Cont.)

In summary, averaged model system, we have, are

$$\begin{aligned} \langle \chi_k \rho_k \rangle_t + \nabla \cdot \langle \chi_k \rho_k \vec{u}_k \rangle &= \langle \rho_k \left(\vec{u}_k - \vec{u}_0 \right) \cdot \nabla \chi_k \rangle \\ \langle \chi_k \rho_k \vec{u}_k \rangle_t + \nabla \cdot \langle \chi_k \rho_k \vec{u}_k \otimes \vec{u}_k \rangle + \nabla \langle \chi_k p_k \rangle &= \langle p_k \nabla \chi_k \rangle + \\ \langle \rho_k \vec{u}_k \left(\vec{u}_k - \vec{u}_0 \right) \cdot \nabla \chi_k \rangle \\ \langle \chi_k \rho_k E_k \rangle_t + \nabla \cdot \langle \chi_k \rho_k E_k \vec{u}_k + \chi_k p_k \vec{u}_k \rangle &= \langle p_k \vec{u}_k \cdot \nabla \chi_k \rangle + \\ \langle \rho_k E \left(\vec{u}_k - \vec{u}_0 \right) \cdot \nabla \chi_k \rangle \\ \langle \chi_k \rangle_t + \langle \vec{u}_k \cdot \nabla \chi_k \rangle &= \langle (\vec{u}_k - \vec{u}_0) \cdot \nabla \chi_k \rangle \end{aligned}$$

Existence of interfacial source terms Mathematical as well as numerical modelling these terms are essential & difficult for multiphase flow problems

Homogeneous Two-Phase Flow Model

- ▲ Assume homogeneous flow (*i.e.*, across interfaces: $p_k = p \& \vec{u}_k = \vec{u}, k = 0, 1, 2)$
- Introduce volume fraction $\alpha_k = V_k/V$ ($\alpha_1 + \alpha_2 = 1$)

By dropping all interfacial terms, we may obtain a simplified model as

$$(\alpha_k \rho_k)_t + \nabla \cdot (\alpha_k \rho_k \vec{u}) = 0$$

$$(\alpha_k \rho_k \vec{u})_t + \nabla \cdot (\alpha_k \rho_k \vec{u} \otimes \vec{u}) + \nabla (\alpha_k p) = p \nabla \alpha_k$$

$$(\alpha_k \rho_k E_k)_t + \nabla \cdot (\alpha_k \rho_k E_k \vec{u} + \alpha_k p \vec{u}) = p \vec{u} \cdot \nabla \alpha_k$$

$$(\alpha_k)_t + \vec{u} \cdot \nabla \alpha_k = 0$$

for k = 1, 2

Homogeneous Two-Phase Flow Model

- ▲ Assume homogeneous flow (*i.e.*, across interfaces: $p_k = p \& \vec{u}_k = \vec{u}, k = 0, 1, 2$)
- Introduce volume fraction $\alpha_k = V_k/V$ ($\alpha_1 + \alpha_2 = 1$)

Alternatively, a simplified model as

$$(\alpha_k \rho_k)_t + \nabla \cdot (\alpha_k \rho_k \vec{u}) = 0$$

$$(\rho \vec{u})_t + \nabla \cdot (\rho \vec{u} \otimes \vec{u}) + \nabla p = 0$$

$$(\rho E)_t + \nabla \cdot (\rho E \vec{u} + p \vec{u}) = 0$$

$$(\alpha_k)_t + \vec{u} \cdot \nabla \alpha_k = 0$$

Here $\rho = \sum_{k=1}^{2} \alpha_k \rho_k$, $\rho E = \sum_{k=1}^{2} \alpha_k \rho_k E_k$

- Mixture equation of state: $p = p(\alpha_2, \alpha_1\rho_1, \alpha_2\rho_2, \rho_e)$
- Isobaric closure: $p_1 = p_2 = p$
 - For a class of EOS, explicit formula for p is available (examples are given next)
 - For some complex EOS, from $(\alpha_2, \rho_1, \rho_2, \rho_e)$ in model equations we recover p by solving

$$p_1(\rho_1, \rho_1 e_1) = p_2(\rho_2, \rho_2 e_2) \quad \& \quad \sum_{k=1}^2 \alpha_k \rho_k e_k = \rho e_k$$

This homogeneous two-phase model was called a five-equation model by Allaire, Clerc, & Kokh (JCP 2002) or a volume-fraction model by Shyue (JCP 1998)

• Polytropic ideal gas: $p_k = (\gamma_k - 1)\rho_k e_k$

$$\rho e = \sum_{k=1}^{2} \alpha_k \rho_k e_k = \sum_{k=1}^{2} \alpha_k \frac{p}{\gamma_k - 1} \implies p = \rho e \bigg/ \sum_{k=1}^{2} \frac{\alpha_k}{\gamma_k - 1}$$

• Van der Waals gas: $p_k = (\frac{\gamma_k - 1}{1 - b_k \rho_k})(\rho_k e_k + a_k \rho_k^2) - a_k \rho_k^2$

$$\rho e = \sum_{k=1}^{2} \alpha_k \rho_k e_k = \sum_{k=1}^{2} \alpha_k \left[\left(\frac{1 - b_k \rho_k}{\gamma_k - 1} \right) \left(\mathbf{p} + a_k \rho_k^2 \right) - a_k \rho_k^2 \right] = \left[\rho e - \sum_{k=1}^{2} \alpha_k \left(\frac{1 - b_k \rho_k}{\gamma_k - 1} - 1 \right) a_k \rho_k^2 \right] / \sum_{k=1}^{2} \alpha_k \left(\frac{1 - b_k \rho_k}{\gamma_k - 1} \right) e_k \rho_k^2 \right]$$

• Two-molecular vibrating gas: $p_k = \rho_k R_k T(e_k)$, T satisfies

$$e = \frac{RT}{\gamma - 1} + \frac{RT_{\text{vib}}}{\exp\left(T_{\text{vib}}/T\right) - 1}$$

As before, we now have

$$\rho e = \sum_{k=1}^{2} \alpha_{k} \rho_{k} e_{k} = \sum_{k=1}^{2} \alpha_{k} \left[\left(\frac{\rho_{k} R_{k} T_{k}}{\gamma_{k} - 1} \right) + \frac{\rho_{k} R_{k} T_{\mathsf{vib},k}}{\exp\left(T_{\mathsf{vib},k}/T_{k}\right) - 1} \right]$$
$$= \sum_{k=1}^{2} \alpha_{k} \left[\left(\frac{p}{\gamma_{k} - 1} \right) + \frac{p_{\mathsf{vib},k}}{\exp\left(p_{\mathsf{vib},k}/p\right) - 1} \right] \text{ (Nonlin. eq.)}$$

It can be shown entropies, S_k , k = 1, 2, satisfy

$$\left(\frac{\partial p_1}{\partial \mathcal{S}_1}\right)_{\rho_1} \frac{D\mathcal{S}_1}{Dt} - \left(\frac{\partial p_2}{\partial \mathcal{S}_2}\right)_{\rho_2} \frac{D\mathcal{S}_2}{Dt} = \left(\rho_1 c_1^2 - \rho_2 c_2^2\right) \nabla \cdot \vec{u}$$

Murrone & Guillard (JCP 2005) propsed a reduced two-phase flow model in which

$$(\alpha_2)_t + \vec{u} \cdot \nabla \alpha_2 = \alpha_1 \alpha_2 \left(\frac{\rho_1 c_1^2 - \rho_2 c_2^2}{\sum_{k=1}^2 \alpha_k \rho_k c_k^2} \right)$$

and now phase entropies satisfy

$$\frac{DS_k}{Dt} = \frac{\partial S_k}{\partial t} + \vec{u} \cdot \nabla S_k = 0, \quad \text{for} \quad k = 1, 2$$

- Model system is hyperbolic under suitable thermodynamic stability condition (see below)
- In the model, when $\alpha_2 = 0$ (or = 1), ρ_2 (or ρ_1) can not be recovered from $\alpha_2 \& \alpha_2 \rho_2$ (or $\alpha_1 \& \alpha_1 \rho_1$).
- It is not absolutely clear in the model how to compute nonlinear term ρ^{ι} , $\iota > 1$ from $\alpha_k \& \alpha_k \rho_k$
- This formulation of model equation would not work when one fluid component is adiabatic, but the other fluid component is not
- Surely, there are other set of model systems proposed in the literature that are robust for homogeneous flow

Fundamental derivative of gas dynamics

$$\mathcal{G} = -\frac{V}{2} \frac{(\partial^2 p / \partial V^2)_S}{(\partial p / \partial V)_S},$$

S: specific entropy

Fundamental derivative of gas dynamics

$$\mathcal{G} = -\frac{V}{2} \frac{(\partial^2 p / \partial V^2)_S}{(\partial p / \partial V)_S},$$

S: specific entropy

Assume fluid state satisfy G > 0 for thermodynamic stability, *i.e.*,

$$(\partial^2 p / \partial V^2)_S > 0 \qquad \& \qquad (\partial p / \partial V)_S < 0$$

Fundamental derivative of gas dynamics

$$\mathcal{G} = -\frac{V}{2} \frac{(\partial^2 p / \partial V^2)_S}{(\partial p / \partial V)_S},$$

S: specific entropy

- Assume fluid state satisfy G > 0 for thermodynamic stability, *i.e.*,
 - $(\partial^2 p / \partial V^2)_S > 0$ & $(\partial p / \partial V)_S < 0$
 - $(\partial^2 p/\partial V^2)_S > 0$ means convex EOS

Fundamental derivative of gas dynamics

$$\mathcal{G} = -\frac{V}{2} \frac{(\partial^2 p / \partial V^2)_S}{(\partial p / \partial V)_S},$$

S: specific entropy

Assume fluid state satisfy G > 0 for thermodynamic stability, *i.e.*,

$$(\partial^2 p / \partial V^2)_S > 0 \qquad \& \qquad (\partial p / \partial V)_S < 0$$

- $(\partial^2 p / \partial V^2)_S > 0$ means convex EOS
- $(\partial p/\partial V)_S < 0$ means real speed of sound, for

$$c^{2} = \left(\frac{\partial p}{\partial \rho}\right)_{S} = -V^{2} \left(\frac{\partial p}{\partial V}\right)_{S} > 0$$

Finite Volume Wave Propagation Method

Finite volume method, Q_S^n gives approximate value of cell average of solution q over cell S at time t_n

$$Q_S^n \approx \frac{1}{\mathcal{M}(S)} \int_S q(X, t_n) \, dV$$

 $\mathcal{M}(S)$: measure (area in 2D or volume in 3D) of cell S

Wave Propagation Method (cont.)

- First order version: Piecewise constant wave update
 - Godunov-type method: Solve Riemann problem at each cell interface in normal direction & use resulting waves to update cell averages

Wave Propagation Method (cont.)

- First order version: Transverse-wave included
 - Use transverse portion of equation, solve Riemann problem in transverse direction, & use resulting waves to update cell averages as usual
 - Stability of method is typically improved, while conservation of method is maintained

Wave Propagation Method (cont.)

 High resolution version: Piecewise linear wave update wave before propagation after propagation

Volume Tracking Algorithm

- 1. Volume moving procedure
 - (a) Volume fraction update
 Take a time step on current grid to update cell averages of volume fractions at next time step
 - (b) Interface reconstruction Find new interface location based on volume fractions obtained in (a) using an interface reconstruction scheme. Some cells will be subdivided & values in each subcell must be initialized.
- Physical solution update Take same time interval as in (a), but use a method to update cell averages of multicomponent model on new grid created in (b)

Interface Reconstruction Scheme

- Given volume fractions on current grid, piecewise linear interface reconstruction (PLIC) method does:
 - 1. Compute interface normal
 - Gradient method of Parker and Youngs
 - Least squares method of Puckett
 - 2. Determine interface location by iterative bisection

Data set

Parker & Youngs

Puckett

0	0	0	0	0
0	0.09	0.51	0.29	0
0	0.68	1	0.68	0
0	0.29	0.51	0.09	0
0	0	0	0	0

Volume Moving Procedure

- (a) Volume fractions given in previous slide are updated with uniform (u, v) = (1, 1) over $\Delta t = 0.06$
- (b) New interface location is reconstructed

0	0	0	1(-3)	0
0	0.11	0.72	0.74	5(-3)
0	0.38	1	0.85	0
0	0.01	0.25	0.06	0
0	0	0	0	0

(a)

Surface Moving Procedure

Solve Riemann problem at tracked interfaces & use resulting waves to find new location of interface at the next time step

Interface Conditions

- For tracked segments representing rigid (solid wall) boundary (stationary or moving), appropriate boundary states are assigned for fictitious subcells in each time step
- For tracked segments representing material interfaces, jump conditions across interfaces are satisfied only in an approximate manner, & would not be imposed explicitly in each time step

Stability Issues

• Choose time step Δt based on uniform grid mesh size Δx , Δy as

 $\frac{\Delta t \, \max_{p,q} \left(\lambda_p, \mu_q \right)}{\min(\Delta x, \Delta y)} \le 1,$

- λ_p , μ_q : speed of *p*-wave, *q*-wave from Riemann problem solution in normal-, transverse-directions
- Use large time step method of LeVeque (*i.e.*, wave interactions are assumed to behave in linear manner) to maintain stability of method even in the presence of small Cartesian cut cells
- Apply interpolation operator (such as, h-box approach of Berger et al.) locally for cell averages in irregular cells

References

- (JCP 1998) An efficient shock-capturing algorithm for compressible multicomponent problems
- (JCP 1999, 2001) A fluid-mixture type algorithm for compressible multicomponent flow with van der Waals (Mie-Grüneisen) equation of state
- (JCP 2004) A fluid-mixture type algorithm for barotropic two-fluid flow Problems
- (JCP 2006) A wave-propagation based volume tracking method for compressible multicomponent flow in two space dimensions
- (Shock Waves 2006) A volume-fraction based algorithm for hybrid barotropic & non-barotropic two-fluid flow problems

Flying Projectile Problem

Cylinder lift-off Problem

Moving speed of cylinder is governed by Newton's law
 Pressure contours are shown with a 1000 × 200 grid

Cylinder lift-off Problem

• A convergence study of center of cylinder & relative mass loss for at final stopping time t = 0.30085s

Mesh size	Center of cylinder	Relative mass loss
250×50	(0.618181, 0.134456)	-0.257528
500×100	(0.620266, 0.136807)	-0.131474
1000×200	(0.623075, 0.138929)	-0.066984

Results are comparable with numerical appeared in literature

- Leftward-going Mach 1.22 shock wave in air over heavier R22 bubble
- Numerical schlieren images for density

- Leftward-going Mach 1.22 shock wave in air over heavier R22 bubble
- Numerical schlieren images for density

- Leftward-going Mach 1.22 shock wave in air over heavier R22 bubble
- Numerical schlieren images for density

- Leftward-going Mach 1.22 shock wave in air over heavier R22 bubble
- Numerical schlieren images for density

- Leftward-going Mach 1.22 shock wave in air over heavier R22 bubble
- Numerical schlieren images for density

- Leftward-going Mach 1.22 shock wave in air over heavier R22 bubble
- Numerical schlieren images for density

- Leftward-going Mach 1.22 shock wave in air over heavier R22 bubble
- Numerical schlieren images for density

- Leftward-going Mach 1.22 shock wave in air over heavier R22 bubble
- Numerical schlieren images for density

- Leftward-going Mach 1.22 shock wave in air over heavier R22 bubble
- Numerical schlieren images for density

Shock-Bubble Interaction (cont.)

Approximate locations of interfaces

Shock-Bubble Interaction (cont.)

Quantitative assessment of prominent flow velocities:

Velocity (m/s)	V_s	V_R	V_T	V_{ui}	V_{uf}	V_{di}	V_{df}
Haas & Sturtevant	415	240	540	73	90	78	78
Quirk & Karni	420	254	560	74	90	116	82
Our result (tracking)	411	243	538	64	87	82	60
Our result (capturing)	411	244	534	65	86	98	76

- V_s (V_R , V_T) Incident (refracted, transmitted) shock speed $t \in [0, 250]\mu$ s ($t \in [0, 202]\mu$ s, $t \in [202, 250]\mu$ s)
- V_{ui} (V_{uf}) Initial (final) upstream bubble wall speed $t \in [0, 400] \mu s$ ($t \in [400, 1000] \mu s$)
- V_{di} (V_{df}) Initial (final) downstream bubble wall speed $t \in [200, 400] \mu s$ ($t \in [400, 1000] \mu s$)

Shock wave in molybdenum over MORB

Shock-MORB Interaction (cont.)

Numerical schlieren images for pressure

b) Pressure Tracking Capturing time=50µs time=100µs

Shock-MORB Interaction (cont.)

Approximate locations of interfaces

Future Work

- Extension to low Mach number flow
 - Remove sound-speed stiffness by preconditioning techniques or pressure-based method
- Extension to include more physics towards real applications
 - Such as capillary, diffusion, or elastic-plastic effect
- Extension to 3D volume tracking method
 - Surface reconstruction
 - Finite volume method with moving interfaces
 - Stability in presence of small cut cells
- Extension to unified coordinates of W.-H. Hui

Thank You