Interface sharpening methods for compressible multiphase flow problems: Overview & look ahead

Keh-Ming Shyue

Institute of Applied Mathematical Sciences National Taiwan University

Joint work: M. Pelanti (Paris Tech) & F. Xiao (Tokyo Tech) 11:00-12:00, September 17, 2015, IUSTI, AMU

Interface sharpening methods for model systems:

- 1. Passive tracer transport (motivation)
- 2. Compressible single-phase flow (inviscid)
- 3. 5-equation 1-velocity, 1-pressure model for compressible two-phase flow
- 4. 6-equation 1-velocity, 2-pressure model for compressible two-phase flow
- 5. Model for compressible two-phase flow with drift-flux approximation

Higher order method for sharpening interface ?

Higher order method for sharpening interface ?

Benchmark test for shock in air & R22 bubble interaction

WENO 5

WENO gives more chaotic interface, positivity-preserving in WENO5 with MG EOS (working open issue)

With anti-diffusion

time=1020µs

time=1020µs

WENO 5

THINC gives more regularized interface

With anti-diffusion

With THINC

time=1020µs

Standard high-resolution method gives poor interface resolution

Volume tracking (Shyue 2006)

 $2\mathsf{nd} \,\, \mathsf{order}$

Velocity (m/s)	V_s	V_R	V_T	V_{ui}	V_{uf}	V_{di}	V_{df}
Experiment	415	240	540	73	90	78	78
Quirk & Karni	420	254	560	74	90	116	82
Kokh & Lagoutiere	411	243	525	65	86	86	64
Ullah <i>et al.</i>	410	246	535	65	86	76	60
Shyue (tracking)	411	243	538	64	87	82	60
Capturing results	410	244	536	65	86	98	76
THINC results	410	244	538	65	86	87	64
Anti-df results	410	244	532	64	85	100	78

Toy problem: Passive tracer transport

Free-surface (or 2-phase) flow modelled by incompressible Navier-Stokes equations read

$$\begin{aligned} \partial_t \left(\rho \vec{u} \right) + \mathsf{div} \left(\rho \vec{u} \otimes \vec{u} \right) + \nabla p &= \nabla \cdot \tau + \rho \vec{g} + \vec{f_{\sigma}} \\ \partial_t \alpha + \vec{u} \cdot \nabla \alpha &= 0 \quad \text{(volume fraction transport)} \\ \mathsf{div}(\vec{u}) &= 0 \end{aligned}$$

Material quantities in 2-phase region determined by

$$z = \alpha z_1 + (1 - \alpha) z_2, \qquad z = \rho, \ \epsilon, \& \sigma$$

• Source terms are dependent on α also $\tau = \epsilon \left(\nabla \vec{u} + \nabla \vec{u}^T \right), \quad \vec{f}_{\sigma} = -\sigma \kappa \nabla \alpha \quad \text{with } \kappa = \nabla \cdot \left(\frac{\nabla \alpha}{|\nabla \alpha|} \right)$

Sharply resolved positivity-preserving α is fundamental

Standard interface capturing results for toy problem, observing poor interface resolution

Vortex in cell

How interface sharpening ? Toy problem

Eulerian interface sharpening methods (*i.e.*, use uniform underlying grid) for volume fraction transport include

- 1. Differential-based approach
 - Artificial compression: Harten CPAM 1977, Olsson & Kreiss JCP 2005
 - Anti-diffusion: So, Hu & Adams JCP 2011
- 2. Algebraic-based approach
 - CICSAM (Compressive Interface Capturing Scheme for Arbitrary Meshes): Ubbink & Issa JCP 1999
 - THINC (Tangent of Hyperbola for INterface Capturing): Xiao, Honma & Kono Int. J. Numer. Meth. Fluids 2005

No Lagrangian moving grid or volume tracking cut cells

Differential-based interface sharpening

Use modified volume-fraction transport model as basis

$$\partial_t \alpha + \vec{u} \cdot \nabla \alpha = \frac{1}{\mu_I} \mathcal{D}_\alpha$$

 $\mu_I \in \mathbf{R}_+$: free parameter, \mathcal{D}_{α} : interface-sharpening operator • Compression form (Olsson & Kreiss JCP 2005)

$$\mathcal{D}_{\alpha} := \nabla \cdot \left[\left(\varepsilon_c \nabla \alpha \cdot \vec{n} - \alpha \left(1 - \alpha \right) \right) \vec{n} \right]$$

 $ec{n} =
abla lpha / \|
abla lpha \|$, $arepsilon_c \in \mathbf{R}_+$ (order of mesh size)

• Anti-diffusion form (So, Hu & Adams JCP 2011)

$$\mathcal{D}_{\alpha} := -\nabla \cdot (\varepsilon_d \nabla \alpha)$$

 $\varepsilon_d \in \mathbf{R}^N_+$ (order of velocity magnitude)

Solution of interface-sharpening model

$$\partial_t \alpha + \vec{u} \cdot \nabla \alpha = \frac{1}{\mu_I} \mathcal{D}_\alpha$$

can be approximated by employing fractional step method That is, in each time step,

1. Transport step over time step Δt for

$$\partial_t \alpha + \vec{u} \cdot \nabla \alpha = 0$$

by state-of-the-art interface-capturing solver

2. Interface-sharpening step over pseudo-time step Δau for

$$\partial_{\tau} \alpha = \mathcal{D}_{\alpha}, \qquad \tau = t/\mu_I$$

by explicit finite-difference solver, for example

Passive tracer transport: Anti-diffusion results

Vortex in cell

Passive tracer transport: THINC results

Vortex in cell

Vortex-in-cell: Comparisons of results

With THINC

With anti-diffusion

Without interface sharpening

THINC-based interface sharpening

In THINC method, original volume-fraction equation

 $\partial_t \alpha + \vec{u} \cdot \nabla \alpha = 0$

is used in each time step as

- 1. Reconstruct piecewise smooth function $\tilde{\alpha}_i(x, t_n)$ based on THINC reconstruction procedure from cell average $\{\alpha_i^n\}$ at time t_n
- 2. Construct spatial discretization for $\vec{u} \cdot \alpha$ using interpolated initial data from $\{\tilde{\alpha}_i(x, t_n)\}$ obtained in step 1
- 3. Employ semi-discrete method to update α^n from current time to next α^{n+1} over time step Δt

THINC reconstruction in step 1 assumes

$$\tilde{\alpha}_{i}(x) = \alpha_{\min} + \frac{\alpha_{\max} - \alpha_{\min}}{2} \left[1 + \gamma \tanh\left(\beta \frac{x - x_{i-1/2}}{\Delta x} - \bar{x}_{i}\right) \right]$$
$$\alpha_{\mathcal{M}} = \mathcal{M}\left(\alpha_{i-1}, \alpha_{i+1}\right), \ \mathcal{M} := \min, \ \max, \ \gamma = \operatorname{sgn}\left(\alpha_{i+1} - \alpha_{i-1}\right)$$

eta measures sharpeness (given constant) & $ar{x}_i$ chosen to fulfill

$$\alpha_i = \frac{1}{\Delta x} \int_{x_{i-1/2}}^{x_{i+1/2}} \tilde{\alpha}_i(x) \ dx$$

For example, cell edges used in step 2 determined by

$$\alpha_{i+1/2,L} = \alpha_{\min} + \frac{\alpha_{\max} - \alpha_{\min}}{2} \left(1 + \gamma \frac{\tanh\beta + C}{1 + C \tanh\beta} \right)$$
$$\alpha_{i-1/2,R} = \alpha_{\min} + \frac{\alpha_{\max} - \alpha_{\min}}{2} \left(1 + \gamma C \right) \qquad (C \text{ not shown})$$

THINC reconstruction: Graphical view

Convergence study of 1-norm errors $\mathcal{E}_1(\alpha)$ as mesh is refined; results for passive advection are shown only

	With THINC		No shar	pening	With anti-diffu	
$N \times N$	$\mathcal{E}_1(\alpha)$	Order	$\mathcal{E}_1(\alpha)$	Order	$\mathcal{E}_1(\alpha)$	Order
50×50	9.8840	NaN	91.7486	NaN	4.0436	NaN
100×100	5.1746	0.93	60.6698	0.60	2.0558	0.98
200×200	2.6455	0.97	39.3623	0.62	0.9921	1.05
400×400	1.3373	0.98	25.2699	0.64	0.4414	1.17

CPU timing in seconds for Passive tracer transport problems (run on HP xw 9400 with AMD Dural-Core Opteron)

Method/Problem	Passive advec.	Rotating disk	Vortex in cell
With THINC	20.5	21.8	280.7
With anti-df	32.1	29.4	383.5
No sharpening	33.2	28.8	344.9
Grid	100×100	100×100	200×200

This validates THINC & anti-diffusion schemes for passive tracer transport

1. Anti-diffusion interface sharpening

- Employed as post-processing step
- Diffusion coefficient ε_d & parameter μ_I controls interface sharpeness

- 1. Anti-diffusion interface sharpening
 - Employed as post-processing step
 - Diffusion coefficient ε_d & parameter μ_I controls interface sharpeness
- 2. THINC interface sharpening
 - Employed as pre-processing step
 - Parameter β controls interface sharpeness

- 1. Anti-diffusion interface sharpening
 - Employed as post-processing step
 - Diffusion coefficient ε_d & parameter μ_I controls interface sharpeness
- 2. THINC interface sharpening
 - Employed as pre-processing step
 - Parameter β controls interface sharpeness
- 3. Hybrid anti-diffusion-THINC is feasible

- 1. Anti-diffusion interface sharpening
 - Employed as post-processing step
 - Diffusion coefficient ε_d & parameter μ_I controls interface sharpeness
- 2. THINC interface sharpening
 - Employed as pre-processing step
 - Parameter β controls interface sharpeness
- 3. Hybrid anti-diffusion-THINC is feasible
- 4. For problems with more than 2 fluid components, interface sharpening based on anti-diffusion appears to be more robust than THINC

Compressible 1-phase flow (inviscid)

Assume inviscid, non-heat conducting, 1-phase, compressible flow in Cartesian coordinates:

$$\partial_t q + \sum_{j=1}^N \partial_{x_j} f_j(q) = 0$$

with q & f_j , $j = 1, 2, \ldots, N$, defined by

$$q = (\rho, \rho u_1, \dots, \rho u_N, E)^T$$

$$f_j = (\rho u_j, \rho u_1 u_j + p \delta_{j1}, \dots, \rho u_N u_j + p \delta_{jN}, E u_j + p u_j)^T$$

Assume Mie-Grüneisen equation of state

$$p(\rho, e) = p_{\infty}(\rho) + \Gamma(\rho)\rho \left[e - e_{\infty}(\rho)\right]$$

Sod Riemann problem: Exact solution

Sod Riemann problem: Interface capturing solution

Sod Riemann problem: THINC solution

Sod Riemann problem: Anti-diffusion solution

How interface sharpening ? Compressible flow

Novel elements (as compared to toy problem for incompressible flow):

- 1. Robust local interface indicator
 - Physical principles based
 - *i.e.*, Flag interface cells by checking jumps of physical quantities nearby (good in 1D, less effective in 2D)
 - Tracer transport based *i.e.*, Flag interface cells based on classical volume-fraction approach (more effective in 2D)
- 2. Consistent interface solution reconstruction (algebraic-based) or post-sharpening (differential-based) to ρ , $\rho \vec{u}$, E, \cdots

Interface reconstruction: Compressible 1-phase flow

Assume equilibrium pressure p & velocity \vec{u} , motion of interface (contact discontinuity) is governed by

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \vec{u} \cdot \nabla \rho &= 0\\ \vec{u} \left(\frac{\partial \rho}{\partial t} + \vec{u} \cdot \nabla \rho \right) &= 0\\ \frac{\vec{u} \cdot \vec{u}}{2} \left(\frac{\partial \rho}{\partial t} + \vec{u} \cdot \nabla \rho \right) + \left[\frac{\partial}{\partial t} \left(\rho e \right) + \vec{u} \cdot \nabla \left(\rho e \right) \right] &= 0 \end{aligned}$$

1. Density ρ is reconstructed by basic THINC scheme

- 2. Momentum $\rho \vec{u}$ is reconstructed by \vec{u} times density in part 1 (see second equation)
- 3. Total energy E is reconstructed by corrections on total kinetic & internal energy (see third equation)

In each time step, our THINC-based interface-sharpening algorithm for compressible flow consists:

- 1. Reconstruct piecewise polynomial $\tilde{q}_i(x, t_n)$ based on MUSCL/WENO reconstruction procedure from cell average $\{Q^n\}$ at time t_n
- 2. Modify $\tilde{q}_i(x, t_n)$ for interface cells using variant of THINC scheme from Q^n
- 3. Construct spatial discretization using interpolated initial data from $\{\tilde{q}_i(x, t_n)\}$ obtained in steps 1 & 2
- 4. Employ semi-discrete method to update Q^n from current time to next Q^{n+1} over time step Δt

Anti-diffusion: Compressible flow

Anti-diffusion model for compressible 1-phase flow is

$$\partial_t \rho + \operatorname{div} \left(\rho \vec{u}\right) = \frac{1}{\mu_I} \mathcal{D}_{\rho}$$
$$\partial_t \left(\rho \vec{u}\right) + \operatorname{div} \left(\rho \vec{u} \otimes u\right) + \nabla p = \frac{1}{\mu_I} \mathcal{D}_{\rho \vec{u}}$$
$$\partial_t E + \operatorname{div} \left(E \vec{u} + p \vec{u}\right) = \frac{1}{\mu_I} \mathcal{D}_E$$

$$\begin{split} \mathcal{D}_{\rho} &:= -H_{I} \nabla \cdot (\varepsilon_{d} \nabla \rho) \\ \mathcal{D}_{\rho u} &:= u \ \mathcal{D}_{\rho}, \qquad \mathcal{D}_{E} := \left[\frac{u \cdot u}{2} + \partial_{\rho}(\rho e) \right] \mathcal{D}_{\rho} \\ H_{I} &: \text{Interface indicator} = \begin{cases} 1 & \text{if interface cell,} \\ 0 & \text{otherwise} \end{cases} \end{split}$$

Anti-diffusion method

Anti-diffusion model in compact form

$$\partial_t q + \mathsf{div} f(q) = rac{1}{\mu_I} \mathcal{D}_q$$

with q, f, & \mathcal{D}_q defined from Euler equations accordingly In each time step, fractional step is used

1. Solve homogeneous equation without source terms

$$\partial_t q + \mathsf{div} f(q) = 0$$

by state-of-the-art solver

2. Interface-sharpening step over pseudo-time

$$\partial_{\tau}q = \mathcal{D}_{\alpha}, \qquad \tau = t/\mu_I$$

by explicit solver, for example

Compressible 2-phase flow: 7-equation model

7-equation non-equilibrium model of Baer & Nunziato (1986)

 $\partial_t (\alpha \rho)_1 + \operatorname{div} (\alpha \rho \vec{u})_1 = 0$ $\partial_t (\alpha \rho \vec{u})_1 + \operatorname{div} (\alpha \rho \vec{u} \otimes \vec{u})_1 + \nabla (\alpha p)_1 = p_I \nabla \alpha_1 + \lambda (\vec{u}_2 - \vec{u}_1)$ $\partial_t (\alpha E)_1 + \operatorname{div} (\alpha E \vec{u} + \alpha p \vec{u})_1 =$ $p_{I}\vec{u}_{I}\cdot\nabla\alpha_{1}-\nu p_{I}(p_{1}-p_{2})+\lambda\vec{u}_{I}\cdot(\vec{u}_{2}-\vec{u}_{1})$ $\partial_t (\alpha \rho)_2 + \operatorname{div} (\alpha \rho \vec{u})_2 = 0$ $\partial_t (\alpha \rho \vec{u})_2 + \operatorname{div} (\alpha \rho \vec{u} \otimes \vec{u})_2 + \nabla (\alpha p)_2 = -p_I \nabla \alpha_1 - \lambda (\vec{u}_2 - \vec{u}_1)$ $\partial_t (\alpha E)_2 + \operatorname{div} (\alpha E \vec{u} + \alpha p \vec{u})_2 =$ $-p_{I}\vec{u}_{I}\cdot\nabla\alpha_{1}+\nu p_{I}(p_{1}-p_{2})-\lambda\vec{u}_{I}\cdot(\vec{u}_{2}-\vec{u}_{1})$ $\partial_t \alpha_1 + \vec{u}_I \cdot \nabla \alpha_1 = \nu (p_1 - p_2)$ Saturation condition $\alpha_1 + \alpha_2 = 1$ Equation of state $p_k(\rho_k, e_k)$, k = 1, 2

- $p_I \& \vec{u}_I$: interfacial pressure & velocity
 - Baer & Nunziato (1986): $p_I = p_2$, $\vec{u}_I = \vec{u}_1$
 - Saurel & Abgrall (JCP 1999, JCP 2003)

$$p_{I} = \alpha_{1}p_{1} + \alpha_{2}p_{2}, \quad \vec{u}_{I} = \frac{\alpha_{1}\rho_{1}\vec{u}_{1} + \alpha_{2}\rho_{2}\vec{u}_{2}}{\alpha_{1}\rho_{1} + \alpha_{2}\rho_{2}}$$

$$p_{I} = \frac{p_{1}/Z_{1} + p_{2}/Z_{2}}{1/Z_{1} + 1/Z_{2}}, \quad \vec{u}_{I} = \frac{\vec{u}_{1}Z_{1} + \vec{u}_{2}Z_{2}}{Z_{1} + Z_{2}}, \quad Z_{k} = \rho_{k}c_{k}$$

$$\nu = \frac{S_{I}}{Z_{1} + Z_{2}}, \quad \lambda = \frac{S_{I}Z_{1}Z_{2}}{Z_{1} + Z_{2}}, \quad S_{I}(\text{Interfacial area})$$

 ν & λ : relaxation parameters that express rates at which pressure & velocity toward equilibrium respectively

This non-equilibrium model can be used to simulate

- 1. Mixtures with different phasic pressures, velocities, temperatures
- 2. Material interfaces
- 3. Permeable interfaces (*i.e.*, interfaces separating a cloud of dispersed phases such as liquid drops or gases)
- 4. Cavitation if it is modeled as a simplified mechanical relaxation process, occurring at infinite rate $\mu \to \infty$ & not modeled as a mass transfer process

Reduced 5-equation model

Kapila *et al.* 2001, Murrone *et al.* 2005, & Saurel *et al.* 2008 showed in asymptotic limits of $\lambda \& \nu \to \infty$ *i.e.*, flow towards mechanical equilibrium: $\vec{u}_1 = \vec{u}_2 = \vec{u} \& p_1 = p_2 = p$, 7-equation model reduces to 5-equation model

$$\begin{split} \partial_t \left(\alpha_1 \rho_1 \right) + \operatorname{div} \left(\alpha_1 \rho_1 \vec{u} \right) &= 0 \\ \partial_t \left(\alpha_2 \rho_2 \right) + \operatorname{div} \left(\alpha_2 \rho_2 \vec{u} \right) &= 0 \\ \partial_t \left(\rho \vec{u} \right) + \operatorname{div} \left(\rho \vec{u} \otimes \vec{u} \right) + \nabla p &= 0 \\ \partial_t E + \operatorname{div} \left(E \vec{u} + p \vec{u} \right) &= 0 \\ \partial_t \alpha_1 + \vec{u} \cdot \nabla \alpha_1 &= \left(\frac{K_2 - K_1}{K_1 / \alpha_1 + K_2 / \alpha_2} \right) \operatorname{div}(\vec{u}), \qquad K_i = \rho_i c_i^2 \end{split}$$

Reduced 5-equation model

Kapila *et al.* 2001, Murrone *et al.* 2005, & Saurel *et al.* 2008 showed in asymptotic limits of $\lambda \& \nu \to \infty$ *i.e.*, flow towards mechanical equilibrium: $\vec{u}_1 = \vec{u}_2 = \vec{u} \& p_1 = p_2 = p$, 7-equation model reduces to 5-equation model

$$\begin{split} \partial_t \left(\alpha_1 \rho_1 \right) + \operatorname{div} \left(\alpha_1 \rho_1 \vec{u} \right) &= 0 \\ \partial_t \left(\alpha_2 \rho_2 \right) + \operatorname{div} \left(\alpha_2 \rho_2 \vec{u} \right) &= 0 \\ \partial_t \left(\rho \vec{u} \right) + \operatorname{div} \left(\rho \vec{u} \otimes \vec{u} \right) + \nabla p &= 0 \\ \partial_t E + \operatorname{div} \left(E \vec{u} + p \vec{u} \right) &= 0 \\ \partial_t \alpha_1 + \vec{u} \cdot \nabla \alpha_1 &= \left(\frac{K_2 - K_1}{K_1 / \alpha_1 + K_2 / \alpha_2} \right) \operatorname{div}(\vec{u}), \qquad K_i = \rho_i c_i^2 \end{split}$$

Equilibrium (mixture) pressure p satisfies

$$p = \left(\rho e - \sum_{k=1}^{2} \alpha_k \rho_k e_{\infty,k}(\rho_k) + \sum_{k=1}^{2} \alpha_k \frac{p_{\infty,k}(\rho_k)}{\Gamma_k(\rho_k)}\right) \Big/ \sum_{k=1}^{2} \frac{\alpha_k}{\Gamma_k(\rho_k)}$$

Reduced 5-equation model is hyperbolic with non-monotonic equilibrium sound speed c_{eq} :

$$\frac{1}{\rho c_{\rm eq}^2} = \frac{\alpha_1}{\rho_1 c_1^2} + \frac{\alpha_2}{\rho_2 c_2^2}$$

(Wood's formula)

yielding stiffness in equations & numerical solver

5-equation transport model

For nearly single-phase flow, where $\alpha_1 \approx 0$ or 1, Allaire, Clerc, & Kokh (JCP 2002) proposed using

$$\begin{split} \partial_t \left(\alpha_1 \rho_1 \right) + \operatorname{div} \left(\alpha_1 \rho_1 \vec{u} \right) &= 0\\ \partial_t \left(\alpha_2 \rho_2 \right) + \operatorname{div} \left(\alpha_2 \rho_2 \vec{u} \right) &= 0\\ \partial_t \left(\rho \vec{u} \right) + \operatorname{div} \left(\rho \vec{u} \otimes \vec{u} \right) + \nabla p &= 0\\ \partial_t E + \operatorname{div} \left(E \vec{u} + p \vec{u} \right) &= 0\\ \partial_t \alpha_1 + \vec{u} \cdot \nabla \alpha_1 &= 0 \end{split}$$

Mixture pressure p computed in same manner as before Phasic entropy S_k satisfies relation

$$\left(\frac{\partial p_1}{\partial \mathcal{S}_1}\right)_{\rho_1} \frac{D\mathcal{S}_1}{Dt} - \left(\frac{\partial p_2}{\partial \mathcal{S}_2}\right)_{\rho_2} \frac{D\mathcal{S}_2}{Dt} = \left(\rho_1 c_1^2 - \rho_2 c_2^2\right) \operatorname{div}(\vec{u}) \neq 0$$

Model is hyperbolic, but with monotone frozen sound speed

Interface reconstruction: 5-equation model

Assume equilibrium pressure p, velocity \vec{u} , & phasic density ρ_k for each interface cell

- 1. Volume fraction α_1 is reconstructed by basic THINC scheme, denoted by $\tilde{\alpha}_1$
- 2. Reconstruct phasic & mixture density $\alpha_i \rho_i$ & ρ by

$$\widetilde{\alpha_i \rho_i} = \tilde{\alpha}_i \rho_i, \quad i = 1, 2, \quad \tilde{\rho} = \tilde{\alpha}_1 \rho_1 + (1 - \tilde{\alpha}_1) \rho_2$$

3. Reconstruct momentum $\rho \vec{u}$ by

$$\widetilde{\rho \vec{u}} = \tilde{\rho} \vec{u}$$

4. Reconstruct total energy E by

$$\tilde{E} = \frac{1}{2}\tilde{\rho}\vec{u}\cdot\vec{u} + \tilde{\alpha}_1\rho_1e_1 + (1-\tilde{\alpha}_1)\rho_2e_2$$

5-equation transport model: Anti-diffusion

5-equation transport model with anti-diffusion

$$\partial_t (\alpha_1 \rho_1) + \operatorname{div} (\alpha_1 \rho_1 \vec{u}) = \frac{1}{\mu_I} \mathcal{D}_{\alpha_1 \rho_1}$$
$$\partial_t (\alpha_2 \rho_2) + \operatorname{div} (\alpha_2 \rho_2 \vec{u}) = \frac{1}{\mu_I} \mathcal{D}_{\alpha_2 \rho_2}$$
$$\partial_t (\rho u) + \operatorname{div} (\rho \vec{u} \otimes \vec{u}) + \nabla p = \frac{1}{\mu_I} \mathcal{D}_{\rho u}$$
$$\partial_t E + \operatorname{div} (E \vec{u} + p \vec{u}) = \frac{1}{\mu_I} \mathcal{D}_E$$
$$\partial_t \alpha_1 + \vec{u} \cdot \nabla \alpha_1 = \frac{1}{\mu_I} \mathcal{D}_{\alpha_1}$$

Exist two ways to set \mathcal{D}_z , $z = \alpha_1 \rho_1, \ldots, \alpha_1$, in literature

1. α - ρ based (Shyue 2011)

$$\mathcal{D}_{\alpha_{1}} := -\nabla \cdot (\varepsilon_{d} \nabla \alpha_{1}), \quad \mathcal{D}_{\alpha_{k}\rho_{k}} := -H_{I} \nabla \cdot (\varepsilon_{d} \nabla \alpha_{k}\rho_{k})$$
$$\mathcal{D}_{\rho} := \sum_{k=1}^{2} \mathcal{D}_{\alpha_{k}\rho_{k}}, \quad \mathcal{D}_{\rho\vec{u}} := \vec{u} \mathcal{D}_{\rho}, \quad K = \frac{1}{2} \vec{u} \cdot \vec{u}$$
$$\mathcal{D}_{E} := K \mathcal{D}_{\rho} + \sum_{k=1}^{2} \partial_{\alpha_{k}\rho_{k}} (\rho_{k}e_{k}) \mathcal{D}_{\alpha_{k}\rho_{k}} + \sum_{k=1}^{2} \rho_{k}e_{k} \mathcal{D}_{\alpha_{k}}$$

2. α -based only (So, Hu, & Adams JCP 2012)

$$\mathcal{D}_{\alpha_1} := -\nabla \cdot (\varepsilon_d \nabla \alpha_1), \quad \mathcal{D}_{\alpha_k \rho_k} := \rho_k \mathcal{D}_{\alpha_k}, \quad \mathcal{D}_{\alpha_2} := -\mathcal{D}_{\alpha_1}$$
$$\mathcal{D}_{\rho} := \sum_{k=1}^2 \mathcal{D}_{\alpha_k \rho_k}, \quad \mathcal{D}_{\rho \vec{u}} := \vec{u} \mathcal{D}_{\rho}, \quad \mathcal{D}_E := K \mathcal{D}_{\rho} + \sum_{k=1}^2 \rho_k e_k \mathcal{D}_{\alpha_k}$$
$$\mathcal{D}_{\alpha_1} := \nabla \cdot \left[(\varepsilon_c \nabla \alpha_1 \cdot \vec{n} - \alpha_1 (1 - \alpha_1)) \vec{n} \right] \text{ applicable}$$

Shock(morb)-contact(moly) interaction

Axisymmetric version of reduced 5-equation model reads

$$\begin{aligned} \partial_t \left(A(x)\alpha_1\rho_1 \right) &+ \partial_x \left(A(x)\alpha_1\rho_1 u \right) = 0\\ \partial_t \left(A(x)\alpha_2\rho_2 \right) &+ \partial_x \left(A(x)\alpha_2\rho_2 u \right) = 0\\ \partial_t \left(A(x)\rho u \right) &+ \partial_x \left(A(x)\rho u^2 \right) + A(x)\partial_x p = 0\\ \partial_t \left(A(x)E \right) &+ \partial_x \left(A(x)Eu + A(x)pu \right) = 0\\ \partial_t \alpha_1 &+ \partial_x \left(\alpha_1 u \right) = \frac{\alpha_1 \bar{K}}{K_1} \partial_x u + \left(\frac{\alpha_1 \bar{K}}{K_1} - \alpha_1 \right) \frac{A'(x)}{A(x)} \partial_x u \end{aligned}$$

where $1/\bar{K} = \sum_{i=1}^2 \alpha_i / K_i$, $K_i = \rho_i c_i^2$

Spherical UNDEX (Wardlaw)

Spherical UNDEX: Initial phase

Spherical UNDEX: Shock-contact interaction phase

Spherical UNDEX: Incompressible phase

Spherical UNDEX: bubble collapse & rebound

Spherical UNDEX test: Diagnosis

Table: Quantitative study of maximum bubble radius r_{\max} & period of bubble oscillation T_b for spherical underwater explosion

	$r_{\rm max}({\rm cm})$	error $(\%)$	$T_b(ms)$	error $(\%)$
Experiment	48.10	0	29.8	0
Incompressible	66.49	38.2	39.1	31.2
Luo <i>et al.</i>	48.75	1.4	29.7	0.3
Wardlaw	46.40	3.5	29.8	0
THINC	48.17	0.1	29.1	2.3
Anti-diffusion	48.57	0.1	29.5	1.1

Underwater explosions: cylindrical wall

High pressure gaseous explosive in water (cylindrical case)

Non-equilibrium 6-equation model of Saurel et al. (JCP 2009):

$$\begin{split} \partial_t \left(\alpha_1 \rho_1 \right) + \operatorname{div} \left(\alpha_1 \rho_1 \vec{u} \right) &= 0 \\ \partial_t \left(\alpha_2 \rho_2 \right) + \operatorname{div} \left(\alpha_2 \rho_2 \vec{u} \right) &= 0 \\ \partial_t \left(\rho \vec{u} \right) + \operatorname{div} \left(\rho \vec{u} \otimes \vec{u} \right) + \nabla \left(\alpha_1 p_1 + \alpha_2 p_2 \right) &= 0 \\ \partial_t \left(\alpha_1 \rho_1 e_1 \right) + \operatorname{div} \left(\alpha_1 \rho_1 e_1 \vec{u} \right) + \alpha_1 p_1 \nabla \cdot \vec{u} &= -p_I \nu \left(p_1 - p_2 \right) \\ \partial_t \left(\alpha_2 \rho_2 e_2 \right) + \operatorname{div} \left(\alpha_2 \rho_2 e_2 \vec{u} \right) + \alpha_2 p_2 \nabla \cdot \vec{u} &= p_I \nu \left(p_1 - p_2 \right) \\ \partial_t \alpha_1 + \vec{u} \cdot \nabla \alpha_1 &= \nu \left(p_1 - p_2 \right) \end{split}$$

Model is hyperbolic with monotone frozen sound speed & is equivalent to reduced 5-equation model asymptotically as $\nu \to \infty$ (*i.e.*, $p_1 \to p_2$)

Pelanti & Shyue (2012) proposed

$$\begin{split} \partial_t \left(\alpha_1 \rho_1 \right) + \mathsf{div}(\alpha_1 \rho_1 \vec{u}) &= 0\\ \partial_t \left(\alpha_2 \rho_2 \right) + \mathsf{div}(\alpha_2 \rho_2 \vec{u}) &= 0\\ \partial_t (\rho \vec{u}) + \mathsf{div}(\rho \vec{u} \otimes \vec{u}) + \nabla \left(\alpha_1 p_1 + \alpha_2 p_2 \right) &= 0\\ \partial_t \left(\alpha_1 E_1 \right) + \mathsf{div} \left(\alpha_1 E_1 \vec{u} + \alpha_1 p_1 \vec{u} \right) + \mathcal{B} \left(q, \nabla q \right) &= -\nu p_I \left(p_1 - p_2 \right)\\ \partial_t \left(\alpha_2 E_2 \right) + \mathsf{div} \left(\alpha_2 E_2 \vec{u} + \alpha_2 p_2 \vec{u} \right) - \mathcal{B} \left(q, \nabla q \right) &= \nu p_I \left(p_1 - p_2 \right)\\ \partial_t \alpha_1 + \vec{u} \cdot \nabla \alpha_1 &= \nu \left(p_1 - p_2 \right) \end{split}$$

 $\mathcal{B} = -\vec{u}\left(\left(Y_2p_1 + Y_1p_2\right)\nabla\alpha_1 + \alpha_1Y_2\nabla p_1 - \alpha_2Y_1\nabla p_2\right)$

Use phasic total energy instead of phasic internal energy; numerically easy to retain mixture total energy consistency
Assume equilibrium pressure p, velocity \vec{u} , & phasic density ρ_k for each interface cell again

- 1. Reconstruct volume fraction α_1 , phasic density $\alpha_i \rho_i$, total density ρ , momentum $\rho \vec{u}$, in same manner as for 5-equation model
- 2. Reconstruct phasic total energy $\alpha_i E_i$ by

$$\widetilde{\alpha_i E_i} = \frac{1}{2} \tilde{\alpha}_i \rho_i \vec{u} \cdot \vec{u} + \tilde{\alpha}_i \rho_i e_i$$

6-equation model: Anti-diffusion

$$\begin{aligned} \partial_t \left(\alpha_1 \rho_1 \right) + \operatorname{div}(\alpha_1 \rho_1 \vec{u}) &= \frac{1}{\mu_I} \mathcal{D}_{\alpha_1 \rho_1} \\ \partial_t \left(\alpha_2 \rho_2 \right) + \operatorname{div}(\alpha_2 \rho_2 \vec{u}) &= \frac{1}{\mu_I} \mathcal{D}_{\alpha_2 \rho_2} \\ \partial_t (\rho \vec{u}) + \operatorname{div}(\rho \vec{u} \otimes \vec{u}) + \nabla \left(\alpha_1 p_1 + \alpha_2 p_2 \right) &= \frac{1}{\mu_I} \mathcal{D}_{\rho u} \\ \partial_t \left(\alpha_1 E_1 \right) + \operatorname{div}\left(\alpha_1 E_1 \vec{u} + \alpha_1 p_1 \vec{u} \right) + \mathcal{B} \left(q, \nabla q \right) &= \\ - \nu p_I \left(p_1 - p_2 \right) + \frac{1}{\mu_I} \mathcal{D}_{\alpha_1 E_1} \\ \partial_t \left(\alpha_2 E_2 \right) + \operatorname{div}\left(\alpha_2 E_2 \vec{u} + \alpha_2 p_2 \vec{u} \right) - \mathcal{B} \left(q, \nabla q \right) &= \\ \nu p_I \left(p_1 - p_2 \right) + \frac{1}{\mu_I} \mathcal{D}_{\alpha_2 E_2} \\ \partial_t \alpha_1 + \vec{u} \cdot \nabla \alpha_1 &= \nu \left(p_1 - p_2 \right) + \frac{1}{\mu_I} \mathcal{D}_{\alpha_1} \end{aligned}$$

Write 6-equation model in compact form as

$$\partial_t q + \operatorname{div}(f(q)) + w(q, \nabla q) = \psi_{\mu_I}(q) + \psi_{\nu}(q)$$

Compute approximate solution based on fractional step: 1. Homogeneous hyperbolic step

$$\partial_t q + \operatorname{div}(f(q)) + w(q, \nabla q) = 0$$

2. Source-terms relaxation step

$$\partial_t q = \psi_{\mu_I}(q) + \psi_{\nu}(q)$$

Continue by considering pressure relaxation with

$$\partial_t q = \psi_
u(q), \qquad ext{as} \quad
u o \infty$$

Current ODE system is

$$\partial_t (\alpha \rho)_1 = 0$$

$$\partial_t (\alpha \rho \vec{u})_1 = 0$$

$$\partial_t (\alpha \rho E)_1 = -\nu p_I (p_1 - p_2)$$

$$\partial_t (\alpha \rho)_2 = 0$$

$$\partial_t (\alpha \rho \vec{u})_2 = 0$$

$$\partial_t (\alpha \rho E)_2 = \nu p_I (p_1 - p_2)$$

$$\partial_t \alpha_1 = \nu (p_1 - p_2)$$

Combining energy & volume fraction equations, we have

 $\partial_t \left(\alpha \rho E \right)_k = -p_I \partial_t \alpha_k$

yielding (after using mass & momentum equations)

 $\partial_t (\alpha \rho e)_k = -p_I \partial_t \alpha_k$ or $\alpha_k \rho_k \partial_t e_k = -p_I \partial_t \alpha_k$

Integration wrt t over Δt , we have

$$\alpha_k \rho_k \left(e_k - e_{k0} \right) = -\int_{\alpha_{k0}}^{\alpha_k} p_I d\alpha_k = -\bar{p}_I \left(\alpha_k - \alpha_{k0} \right)$$

or

$$e_k = e_{k0} - \bar{p}_I \left(\frac{1}{\rho_k} - \frac{1}{\rho_{k0}}\right), \qquad k = 1, 2$$

Combining EOS $e_k(\bar{p}_I, \rho_k)$ with

$$e_k = e_{k0} - \bar{p}_I \left(\frac{1}{\rho_k} - \frac{1}{\rho_{k0}}\right),$$
 we find phasic density ρ_k as a function of \bar{p}_I , *i.e.*,

$$\rho_k\left(\bar{p}_I\right), \qquad k=1,2$$

Use saturation condition

$$\mathbf{l} = \frac{\alpha_1 \rho_1}{\rho_1(\bar{p}_I)} + \frac{\alpha_2 \rho_2}{\rho_2(\bar{p}_I)}$$

leads to algebraic equation for \bar{p}_I (relaxed pressure)

Having relaxed $\bar{p}_I = p_1 = p_2$ & so ρ_k , α_k , conservative vector q can be updated (EOS should be imposed)

Consider $6\text{-equation}\xspace$ model with heat & mass transfer of form

$$\begin{split} \partial_t \left(\alpha_1 \rho_1 \right) + \operatorname{div}(\alpha_1 \rho_1 \vec{u}) &= \vec{m} \\ \partial_t \left(\alpha_2 \rho_2 \right) + \operatorname{div}(\alpha_2 \rho_2 \vec{u}) &= -\vec{m} \\ \partial_t (\rho \vec{u}) + \operatorname{div}(\rho \vec{u} \otimes \vec{u}) + \nabla \left(\alpha_1 p_1 + \alpha_2 p_2 \right) &= 0 \\ \partial_t \left(\alpha_1 E_1 \right) + \operatorname{div}\left(\alpha_1 E_1 \vec{u} + \alpha_1 p_1 \vec{u} \right) + \mathcal{B} \left(q, \nabla q \right) &= \\ - \nu p_I \left(p_1 - p_2 \right) + \mathcal{Q} + e_I \vec{m} \\ \partial_t \left(\alpha_2 E_2 \right) + \operatorname{div}\left(\alpha_2 E_2 \vec{u} + \alpha_2 p_2 \vec{u} \right) - \mathcal{B} \left(q, \nabla q \right) &= \\ \nu p_I \left(p_1 - p_2 \right) - \mathcal{Q} - e_I \vec{m} \\ \partial_t \alpha_1 + \vec{u} \cdot \nabla \alpha_1 &= \mu \left(p_1 - p_2 \right) + \frac{\dot{m}}{\rho_I} \end{split}$$

Assume $\mu, \theta, \nu \to \infty$: instantaneous relaxation effects

- 1. Volume transfer via pressure relaxation: $\mu \left(p_1 p_2 \right)$
 - μ expresses rate toward mechanical equilibrium $p_1 \rightarrow p_2$, & is nonzero in all flow regimes of interest
- 2. Heat transfer via temperature relaxation: $Q := \theta (T_2 - T_1)$
 - θ expresses rate towards thermal equilibrium $T_1 \rightarrow T_2$,
- 3. Mass transfer via thermo-chemical relaxation: $\dot{m} := \nu (g_2 - g_1)$
 - ν expresses rate towards diffusive equilibrium $g_1 \rightarrow g_2$, & is nonzero only at 2-phase mixture & metastable state, *i.e.*,

$$\nu = \begin{cases} \infty & \epsilon_1 \leq \alpha_1 \leq 1 - \epsilon_1 \ \& \ T_{\mathsf{liquid}} > T_{\mathsf{sat}} \\ 0 & \mathsf{otherwise} \end{cases}$$

Assume $\mu, \theta, \nu \to \infty$: instantaneous relaxation effects

- 1. Volume transfer via pressure relaxation: $\mu \left(p_1 p_2 \right)$
 - μ expresses rate toward mechanical equilibrium $p_1 \rightarrow p_2$, & is nonzero in all flow regimes of interest
- 2. Heat transfer via temperature relaxation: $Q := \theta (T_2 - T_1)$
 - θ expresses rate towards thermal equilibrium $T_1 \rightarrow T_2$,
- 3. Mass transfer via thermo-chemical relaxation: $\dot{m} := \nu (g_2 - g_1)$
 - ν expresses rate towards diffusive equilibrium $g_1 \rightarrow g_2$, & is nonzero only at 2-phase mixture & metastable state, *i.e.*,

$$\nu = \begin{cases} \infty & \epsilon_1 \leq \alpha_1 \leq 1 - \epsilon_1 \ \& \ T_{\mathsf{liquid}} > T_{\mathsf{sat}} \\ 0 & \mathsf{otherwise} \end{cases}$$

Liquid-vapor phase change depends strongly on numerical resolution of α_k

Dodecane 2-phase Riemann problem

Saurel et al. (JFM 2008) & Zein et al. (JCP 2010):

• Liquid phase: Left-hand side $(0 \le x \le 0.75 \text{m})$

$$(\rho_v, \rho_l, u, p, \alpha_v)_L = (2 \text{kg/m}^3, 500 \text{kg/m}^3, 0, 10^8 \text{Pa}, 10^{-8})$$

• Vapor phase: Right-hand side $(0.75 \text{m} < x \le 1 \text{m})$

$$(\rho_v, \rho_l, u, p, \alpha_v)_R = (2 \text{kg/m}^3, 500 \text{kg/m}^3, 0, 10^5 \text{Pa}, 1 - 10^{-8})$$

	\leftarrow Membrane
Liquid	Vapor

Dodecane 2-phase problem: Phase diagram

Dodecane 2-phase problem: Phase diagram

Wave path in p-v phase diagram

Dodecane 2-phase problem: Sample solution

Dodecane 2-phase problem: Sample solution

All physical quantities are discontinuous across phase boundary

Consider barotropic 1-pressure, 1-velocity compressible 2-phase flow model with drift flux approximation

 $\begin{array}{l} \partial_t \left(\alpha_1 \rho_1 \right) + \operatorname{div}(\alpha_1 \rho_1 \vec{u}) = \operatorname{div}\left(\rho Y_1 Y_2 \vec{u}_R \right) & (\text{Continuity } \alpha_1 \rho_1) \\ \partial_t \left(\alpha_2 \rho_2 \right) + \operatorname{div}(\alpha_2 \rho_2 \vec{u}) = -\operatorname{div}\left(\rho Y_1 Y_2 \vec{u}_R \right) & (\text{Continuity } \alpha_2 \rho_2) \\ \partial_t (\rho \vec{u}) + \operatorname{div}(\rho \vec{u} \otimes \vec{u}) + \nabla p = 0 & (\text{Momentum}) \end{array}$

Consider barotropic 1-pressure, 1-velocity compressible 2-phase flow model with drift flux approximation

$$\begin{array}{l} \partial_t \left(\alpha_1 \rho_1 \right) + \operatorname{div}(\alpha_1 \rho_1 \vec{u}) = \operatorname{div}\left(\rho Y_1 Y_2 \vec{u}_R \right) & (\text{Continuity } \alpha_1 \rho_1) \\ \partial_t \left(\alpha_2 \rho_2 \right) + \operatorname{div}(\alpha_2 \rho_2 \vec{u}) = -\operatorname{div}\left(\rho Y_1 Y_2 \vec{u}_R \right) & (\text{Continuity } \alpha_2 \rho_2) \\ \partial_t (\rho \vec{u}) + \operatorname{div}(\rho \vec{u} \otimes \vec{u}) + \nabla p = 0 & (\text{Momentum}) \end{array}$$

Equilibrum pressure p computed by solving

$$\alpha_1 + \alpha_2 = \frac{\alpha_1 \rho_1}{\rho_1(p)} + \frac{\alpha_1 \rho_1}{\rho_2(p)} = 1$$

Consider barotropic 1-pressure, 1-velocity compressible 2-phase flow model with drift flux approximation

$$\begin{aligned} \partial_t \left(\alpha_1 \rho_1 \right) + \operatorname{div}(\alpha_1 \rho_1 \vec{u}) &= \operatorname{div}\left(\rho Y_1 Y_2 \vec{u}_R \right) & (\text{Continuity } \alpha_1 \rho_1) \\ \partial_t \left(\alpha_2 \rho_2 \right) + \operatorname{div}(\alpha_2 \rho_2 \vec{u}) &= -\operatorname{div}\left(\rho Y_1 Y_2 \vec{u}_R \right) & (\text{Continuity } \alpha_2 \rho_2) \\ \partial_t (\rho \vec{u}) + \operatorname{div}(\rho \vec{u} \otimes \vec{u}) + \nabla p &= 0 & (\text{Momentum}) \end{aligned}$$

Equilibrum pressure p computed by solving

$$\alpha_1 + \alpha_2 = \frac{\alpha_1 \rho_1}{\rho_1(p)} + \frac{\alpha_1 \rho_1}{\rho_2(p)} = 1$$

Darcy law model for relative velocity \vec{u}_R assumes

$$\vec{u}_{R} = \frac{1}{\lambda} \alpha_{1} \alpha_{2} \left(\frac{\rho_{2} - \rho_{1}}{\rho} \right) \nabla p$$

Consider barotropic 1-pressure, 1-velocity compressible 2-phase flow model with drift flux approximation

$$\begin{aligned} \partial_t \left(\alpha_1 \rho_1 \right) + \operatorname{div}(\alpha_1 \rho_1 \vec{u}) &= \operatorname{div}\left(\rho Y_1 Y_2 \vec{u}_R \right) & (\text{Continuity } \alpha_1 \rho_1) \\ \partial_t \left(\alpha_2 \rho_2 \right) + \operatorname{div}(\alpha_2 \rho_2 \vec{u}) &= -\operatorname{div}\left(\rho Y_1 Y_2 \vec{u}_R \right) & (\text{Continuity } \alpha_2 \rho_2) \\ \partial_t (\rho \vec{u}) + \operatorname{div}(\rho \vec{u} \otimes \vec{u}) + \nabla p &= 0 & (\text{Momentum}) \end{aligned}$$

Equilibrum pressure p computed by solving

$$\alpha_1 + \alpha_2 = \frac{\alpha_1 \rho_1}{\rho_1(p)} + \frac{\alpha_1 \rho_1}{\rho_2(p)} = 1$$

Darcy law model for relative velocity \vec{u}_R assumes

$$\vec{u}_{R} = \frac{1}{\lambda} \alpha_{1} \alpha_{2} \left(\frac{\rho_{2} - \rho_{1}}{\rho} \right) \nabla p$$

Accurate resolution of dissipative source terms & so mathematical model requires good approximation of α_k

Rather than solving saturation condition for p, we may consider model that includes volume fraction equation explicitly as

$$\begin{split} \partial_t \left(\alpha_1 \rho_1 \right) + \operatorname{div}(\alpha_1 \rho_1 \vec{u}) &= \operatorname{div}\left(\rho Y_1 Y_2 \vec{u}_R \right) \\ \partial_t \left(\alpha_2 \rho_2 \right) + \operatorname{div}(\alpha_2 \rho_2 \vec{u}) &= -\operatorname{div}\left(\rho Y_1 Y_2 \vec{u}_R \right) \\ \partial_t (\rho \vec{u}) + \operatorname{div}(\rho \vec{u} \otimes \vec{u}) + \nabla \left(\alpha_1 p_1 + \alpha_2 p_2 \right) &= 0 \\ \partial_t \alpha_1 + \vec{u} \cdot \nabla \alpha_1 - \rho c_w^2 \frac{\alpha_1 \alpha_2}{\rho_1 c_1^2 \rho_2 c_2^2} \left(\rho_2 c_2^2 - \rho_1 c_1^2 \right) \operatorname{div}(\vec{u}) &= \\ \rho c_w^2 \frac{\alpha_1 \alpha_2}{\rho_1 c_1^2 \rho_2 c_2^2} \left(\frac{\rho_1 c_1^2}{\alpha_1 \rho_1} + \frac{\rho_2 c_2^2}{\alpha_2 \rho_2} \right) \operatorname{div}(\rho Y_1 Y_2 \vec{u}_R) \end{split}$$

Here c_w is Wood sound speed defined by

$$\frac{1}{\rho c_{\rm w}^2} = \frac{\alpha_1}{\rho_1 c_1^2} + \frac{\alpha_2}{\rho_2 c_2^2} \qquad ({\rm Wood's\ formula})$$

Water wave problem

Existence or non-existence of 2-bump solution in water wave via computer aided proof in 2-phase (air-water) direct numerical simulation

Hyperelasticity flow · · ·

Hyperelasticity flow ···

Thank you