### Adaptive moving-mesh relaxation scheme for compressible two-phase barotropic flow with cavitation

Keh-Ming Shyue

**Department of Mathematics** 

National Taiwan University

Taiwan

### Outline

- Introduce simple relaxation model for compressible 2-phase barotropic flow with & without cavitation
- Describe finite-volume method for solving proposed model numerically on fixed mapped (body-fitted) grids
- Discuss adaptive moving mesh approach for efficient improvement of numerical resolution
- Show sample results & discuss future extensions

# **Conventional barotropic** 2-phase model

Assume homogeneous equilibrium barotropic flow with single pressure p & velocity  $\vec{u}$  in 2-phase mixture region

Equations of motion

 $\partial_t (\alpha_1 \rho_1) + \nabla \cdot (\alpha_1 \rho_1 \vec{u}) = 0 \qquad \text{(Continuity } \alpha_1 \rho_1)$  $\partial_t (\alpha_2 \rho_2) + \nabla \cdot (\alpha_2 \rho_2 \vec{u}) = 0 \qquad \text{(Continuity } \alpha_2 \rho_2)$  $\partial_t (\rho \vec{u}) + \nabla \cdot (\rho \vec{u} \otimes \vec{u}) + \nabla p = 0 \qquad \text{(Momentum } \rho \vec{u})$ 

**Saturation condition** for volume fraction  $\alpha_k$ , k = 1, 2

$$\alpha_1 + \alpha_2 = 1 \implies \frac{\alpha_1 \rho_1}{\rho_1(\mathbf{p})} + \frac{\alpha_2 \rho_2}{\rho_2(\mathbf{p})} = 1$$

yielding scalar nonlinear equation for equilibrium p

# **Equilibrium speed of sound**

Non-monotonic sound speed  $c_{eq}$  defined as



exists in 2-phase region, air-water case shown below; yielding numerical difficulty such as inaccurate wave transmission across diffused interface



# Equilibrium vs. frozen sound speed

Equilibrium (solid) & frozen (dashed) sound speeds,  $c_{f}^{2} = \sum Y_{k}c_{k}^{2}$ , in case of passive advection of air-water interface



# Equilibrium vs. frozen sound speed

When acoustic wave interacts with numerical diffusion zone, sound speeds difference leads to time delay  $\tau$  of transmitted waves through interface



# **Relaxation barotropic** 2-**phase model**

To overcome these difficulties, we consider a relaxation model proposed by Caro, Coquel, Jamet, Kokh, Saurel *et al.* 

$$\partial_t (\alpha_1 \rho_1) + \nabla \cdot (\alpha_1 \rho_1 \vec{u}) = 0$$
  

$$\partial_t (\alpha_2 \rho_2) + \nabla \cdot (\alpha_2 \rho_2 \vec{u}) = 0$$
  

$$\partial_t (\rho \vec{u}) + \nabla \cdot (\rho \vec{u} \otimes \vec{u}) + \nabla (\alpha_1 p_1 + \alpha_2 p_2) = 0$$
  

$$\partial_t \alpha_1 + \vec{u} \cdot \nabla \alpha_1 = \mu (p_1 (\rho_1) - p_2 (\rho_2)) \quad (\text{Transport } \alpha_1)$$

When taking infinite pressure relaxation  $\mu \rightarrow \infty$ , we have

$$p_1(\rho_1) = p_2(\rho_2) \implies p_1\left(\frac{\alpha_1\rho_1}{\alpha_1}\right) - p_2\left(\frac{\alpha_2\rho_2}{1-\alpha_1}\right) = 0$$

yielding scalar nonlinear equation for volume fraction  $\alpha_1$ 

# **Relaxation barotropic model: Remarks**

- This model can be viewed as isentropic version of relaxation model proposed by Saurel, Petitpas, Berry (JCP 2009, see below) for 2-phase flow
- This model is hyperbolic & has monotonic sound speed  $c_f^2 = \sum Y_k c_k^2$
- Cavitation is modeled as a simplified mechanical relaxation process, occurring at infinite rate & not as a mass transfer process

*i.e.*, cavitation pockets appear as volume fraction increases for a small amount of gas present initially

### **Relaxation** 2-phase model

#### Saurel, Petitpas, Berry (JCP 2009)

$$\begin{aligned} \partial_t \left( \alpha_1 \rho_1 \right) + \nabla \cdot \left( \alpha_1 \rho_1 \vec{u} \right) &= 0\\ \partial_t \left( \alpha_2 \rho_2 \right) + \nabla \cdot \left( \alpha_2 \rho_2 \vec{u} \right) &= 0\\ \partial_t \left( \rho \vec{u} \right) + \nabla \cdot \left( \rho \vec{u} \otimes \vec{u} \right) + \nabla \left( \alpha_1 p_1 + \alpha_2 p_2 \right) &= 0\\ \partial_t \left( \alpha_1 \rho_1 e_1 \right) + \nabla \cdot \left( \alpha_1 \rho_1 e_1 \vec{u} \right) + \alpha_1 p_1 \nabla \cdot \vec{u} &= -\bar{p}\mu \left( p_1 - p_2 \right)\\ \partial_t \left( \alpha_2 \rho_2 e_2 \right) + \nabla \cdot \left( \alpha_2 \rho_2 e_2 \vec{u} \right) + \alpha_2 p_2 \nabla \cdot \vec{u} &= \bar{p}\mu \left( p_1 - p_2 \right)\\ \partial_t \alpha_1 + \vec{u} \cdot \nabla \alpha_1 &= \mu \left( p_1 - p_2 \right)\\ \bar{p} &= \left( p_1 Z_2 + p_2 Z_1 \right) / \left( Z_1 + Z_2 \right); \quad Z_k = \rho_k c_k \end{aligned}$$

Model agrees with reduced 2-phase model of Kapila, Menikoff, Bdzil, Son, Stewart (Phys. Fluid 2001) formally

### **1-phase barotropic cavitation models**

#### Cutoff model

$$p = \begin{cases} p(\rho) & \text{if } \rho \ge \rho_{sat} \\ p_{sat} & \text{if } \rho < \rho_{sat} \end{cases}$$

Schmidt model

$$p = \begin{cases} p(\rho) & \text{if } \rho \ge \rho_{sat} \\ p_{sat} + p_{gl} \ln \left[ \frac{\rho_g c_g^2 \rho_l c_l^2 (\rho_l + \alpha(\rho_g - \rho_l))}{\rho_l (\rho_g c_g^2 - \alpha(\rho_g c_g^2 - \rho_l c_l^2))} \right] & \text{if } \rho < \rho_{sat} \end{cases}$$

with 
$$p_{gl} = \frac{\rho_g c_g^2 \rho_l c_l^2 (\rho_g - \rho_l)}{\rho_g^2 c_g^2 - \rho_l^2 c_l^2} \quad \& \quad \rho = \alpha \rho_g + (1 - \alpha) \rho_l$$

Modified Schmidt model & its variant

# Mapped grid method

We want to use finite-volume mapped grid approach to solve proposed relaxation model in complex geometry

Assume mapped grids are logically rectangular & will review method for hyperbolic system of conservation laws

 $\partial_t \mathbf{q} + \nabla \cdot \mathbf{f}(\mathbf{q}) = 0$ 



# **Mapped grid methods**

On a curvilinear grid, a finite volume method takes

$$Q_{ij}^{n+1} = Q_{ij}^n - \frac{\Delta t}{\kappa_{ij}\Delta\xi_1} \left( F_{i+\frac{1}{2},j}^1 - F_{i-\frac{1}{2},j}^1 \right) - \frac{\Delta t}{\kappa_{ij}\Delta\xi_2} \left( F_{i,j+\frac{1}{2}}^2 - F_{i,j-\frac{1}{2}}^2 \right)$$

 $\Delta \xi_1$ ,  $\Delta \xi_2$  denote mesh sizes in  $\xi_1$ - &  $\xi_2$ -directions

 $\kappa_{ij} = \mathcal{M}(C_{ij})/\Delta\xi_1\Delta\xi_2$  is area ratio between areas of grid cell in physical & logical spaces

$$\begin{split} F_{i-\frac{1}{2},j}^{1} &= \gamma_{i-\frac{1}{2},j} \breve{F}_{i-\frac{1}{2},j}, \ F_{i,j-\frac{1}{2}}^{2} = \gamma_{i,j-\frac{1}{2}} \breve{F}_{i,j-\frac{1}{2}} \text{ are normal fluxes} \\ \text{per unit length in logical space with } \gamma_{i-\frac{1}{2},j} = h_{i-\frac{1}{2},j} / \Delta \xi_1 \text{ \&} \\ \gamma_{i,j-\frac{1}{2}} &= h_{i,j-\frac{1}{2}} / \Delta \xi_2 \text{ representing length ratios} \end{split}$$

# Wave propagation method

First order wave propagation method devised by LeVeque on mapped grid is a Godunov-type finite volume method

$$Q_{ij}^{n+1} = Q_{ij}^{n} - \frac{\Delta t}{\kappa_{ij}\Delta\xi_{1}} \left( \mathcal{A}_{1}^{+}\Delta Q_{i-\frac{1}{2},j} + \mathcal{A}_{1}^{-}\Delta Q_{i+\frac{1}{2},j} \right) - \frac{\Delta t}{\kappa_{ij}\Delta\xi_{2}} \left( \mathcal{A}_{2}^{+}\Delta Q_{i,j-\frac{1}{2}} + \mathcal{A}_{2}^{-}\Delta Q_{i,j+\frac{1}{2}} \right)$$

with right-, left-, up-, & down-moving fluctuations  $\mathcal{A}_1^+ \Delta Q_{i-\frac{1}{2},j}$ ,  $\mathcal{A}_1^- \Delta Q_{i+\frac{1}{2},j}$ ,  $\mathcal{A}_2^+ \Delta Q_{i,j-\frac{1}{2}}$ , &  $\mathcal{A}_2^- \Delta Q_{i,j+\frac{1}{2}}$  that are entering into grid cell

To determine these fluctuations, one-dimensional Riemann problems in direction normal to cell edges are solved

# Wave propagation method

Speeds & limited versions of waves are used to calculate second order correction terms as

$$Q_{ij}^{n+1} := Q_{ij}^{n+1} - \frac{1}{\kappa_{ij}} \frac{\Delta t}{\Delta \xi_1} \left( \widetilde{\mathcal{F}}_{i+\frac{1}{2},j}^1 - \widetilde{\mathcal{F}}_{i-\frac{1}{2},j}^1 \right) - \frac{1}{\kappa_{ij}} \frac{\Delta t}{\Delta \xi_2} \left( \widetilde{\mathcal{F}}_{i,j+\frac{1}{2}}^2 - \widetilde{\mathcal{F}}_{i,j-\frac{1}{2}}^2 \right)$$

For example, at cell edge  $(i - \frac{1}{2}, j)$  correction flux takes

$$\widetilde{\mathcal{F}}_{i-\frac{1}{2},j}^{1} = \frac{1}{2} \sum_{k=1}^{N_{w}} \left| \lambda_{i-\frac{1}{2},j}^{1,k} \right| \left( 1 - \frac{\Delta t}{\kappa_{i-\frac{1}{2},j} \Delta \xi_{1}} \left| \lambda_{i-\frac{1}{2},j}^{1,k} \right| \right) \widetilde{\mathcal{W}}_{i-\frac{1}{2},j}^{1,k}$$

 $\kappa_{i-\frac{1}{2},j} = (\kappa_{i-1,j} + \kappa_{ij})/2$ . To aviod oscillations near discontinuities, a wave limiter is applied leading to limited waves  $\widetilde{\mathcal{W}}$ 

# Wave propagation method

Transverse wave propagation is included to ensure second order accuracy & also improve stability that  $\mathcal{A}_{1}^{\pm}\Delta Q_{i-\frac{1}{2},j}$  are each split into two transverse fluctuations: up- & down-going  $\mathcal{A}_{2}^{\pm}\mathcal{A}_{1}^{+}\Delta Q_{i-\frac{1}{2},j}$  &  $\mathcal{A}_{2}^{\pm}\mathcal{A}_{1}^{-}\Delta Q_{i-\frac{1}{2},j}$ , at each cell edge

This method can be shown to be conservative & stable under a variant of CFL (Courant-Friedrichs-Lewy) condition of form

$$\nu = \Delta t \max_{i,j,k} \left( \frac{\left| \lambda_{i-\frac{1}{2},j}^{1,k} \right|}{\kappa_{i_p,j} \Delta \xi_1}, \frac{\left| \lambda_{i,j-\frac{1}{2}}^{2,k} \right|}{\kappa_{i,j_p} \Delta \xi_2} \right) \le 1,$$
  
if  $\lambda_{i-\frac{1}{2},j}^{1,k} > 0$  &  $i-1$  if  $\lambda_{i-\frac{1}{2},j}^{1,k} < 0$ 

 $i_p = i$ 

# **Extension to moving mesh**

To extend mapped grid method to solution adaptive moving grid method one simple way is to take approach proposed by

H. Tang & T. Tang, Adaptive mesh methods for one- and two-dimensional hyperbolic conservation laws, SIAM J. Numer. Anal., 2003

In each time step, this moving mesh method consists of three basic steps:

- (1) Mesh redistribution
- (2) Conservative interpolation of solution states
- (3) Solution update on a fixed mapped grid

### **Mesh redistribution scheme**

Winslow's approach (1981)

Solve  $\nabla \cdot (D\nabla \xi_j) = 0, \quad j = 1, \dots, N_d$ 

for  $\xi(\mathbf{x})$ . Coefficient *D* is a positive definite matrix which may depend on solution gradient

Variational approach (Tang & many others)

Solve  $\nabla_{\boldsymbol{\xi}} \cdot (D\nabla_{\boldsymbol{\xi}} x_j) = 0, \quad j = 1, \dots, N_d$ 

for  $\mathbf{x}(\boldsymbol{\xi})$  that minimizes "energy" functional

$$\mathcal{E}(\mathbf{x}(\xi)) = \frac{1}{2} \int_{\Omega} \sum_{j=1}^{N_d} \nabla_{\xi}^T D \nabla x_j d\xi$$

Lagrangian (ALE)-type approach (e.g., CAVEAT code)

# **Conservative interpolation**

Numerical solutions need to be updated conservatively, i.e.

 $\sum \mathcal{M}\left(C^{k+1}\right)Q^{k+1} = \sum \mathcal{M}\left(C^{k}\right)Q^{k}$ 

after each redistribution iterate k. This can be done by

Finite-volume approach

$$\mathcal{M}(C^{k+1})Q^{k+1} = \mathcal{M}(C^k)Q^k - \sum_{j=1}^{N_s} h_j\breve{G}_j, \quad \breve{G} = (\dot{\mathbf{x}} \cdot \mathbf{n})Q$$

Geometric approach

$$\left[\sum_{S} \mathcal{M}\left(C_{p}^{k+1} \cap S_{p}^{k}\right)\right] Q_{C}^{k+1} = \sum_{S} \mathcal{M}\left(C_{p}^{k+1} \cap S_{p}^{k}\right) Q_{S}^{k}$$

 ${\cal C}_p,\,{\cal S}_p$  are polygonal regions occupied by cells C & S

# **Interpolation-free moving mesh**

If we want to derive an interpolation-free moving mesh method, one may first consider coordinate change of equations via  $(\mathbf{x}, t) \mapsto (\xi, t)$ , yielding transformed conservation law as

$$\partial_t \tilde{\mathbf{q}} + \nabla_{\xi} \cdot \tilde{\mathbf{f}} = \mathcal{G}$$

$$\tilde{q} = Jq, \qquad \tilde{f}_j = J \left( q \ \partial_t \xi_j + \nabla \xi_j \cdot \mathbf{f} \right), \qquad J = \det \left( \partial \xi / \partial \mathbf{x} \right)^{-1}$$
$$\mathcal{G} = q \left[ \partial_t J + \nabla_{\xi} \cdot \left( J \partial_t \xi_j \right) \right] + \sum_{j=1}^N f_j \nabla_{\xi} \cdot \left( J \partial_{x_j} \xi_k \right)$$

= 0 (if GCL & SCL are satisfied)

Numerical method can be devised easily to solve these equations

# **Relaxation solver on moving meshes**

In each time step, our numerical method for solving barotropic 2-phase flows on a moving mesh consists of following steps:

(1) Moving mesh step

Determine cell-interface velocity & cell-interface location in physical space over a time step

#### (2) Frozen step $\mu \to 0$

Solve homogeneous part of relaxation model on a moving mapped grid over same time step as in step 1

#### (3) Relaxation step $\mu \to \infty$

Solve model system with only source terms in infinite relaxation limit

# Water-vapor cavitation

- Initially, in closed shock tube, flow is homogeneous (contains  $\alpha = 10^{-6}$  gas in bulk liquid) at standard atmospheric condition & exists interface separating flow with opposite motion (u = 100 m/s)
- Result in pressure drop & formation of cavitation zone in middle; shocks form also from both ends
- Eventually, shock-cavitation collision occurs



# Water-vapor cavitation





11:20-11:40, July 28, AJK2011, Hamamatsu, Shizuoka, Japan - p. 22/37

### Water-vapor cavitation

Physical grid in x-t plane



- Initially, in closed shock tube, water column moves at u = 1 from left to right, yielding air compression at right
   & air expansion at left
- Subsequently, pressure difference built up across water column resulting deceleration of column of water to right, makes a stop, & then acceleration to left; a reverse pressure difference built up across water column redirecting flow from left to right again
- Eventually, water column starts to oscillate

|     |       | $u \rightarrow$ |     |
|-----|-------|-----------------|-----|
| air | water |                 | air |
|     |       |                 |     |

Physical grid in x-t plane









11:20-11:40, July 28, AJK2011, Hamamatsu, Shizuoka, Japan - p. 26/37

Time evolution of pressure at left & right boundaries



### **Tait equation of state & parameters**

Each fluid phase (liquid & gas) satisfies Tait equation of state

$$p_k(\rho) = (p_{0k} + \mathcal{B}_k) \left(\frac{\rho}{\rho_{0k}}\right)^{\gamma_k} - \mathcal{B}_k \quad \text{for } k = 1, 2.$$

with parameters for liquid phase as

$$(\gamma, \mathcal{B}, \rho_0, p_0)_1 = (7, 3000 \text{ bar}, 10^3 \text{ kg/m}^3, 1 \text{ bar})$$

while parameters for gas phase as

$$(\gamma, \mathcal{B}, \rho_0, p_0)_2 = (1.4, 0, 1 \text{ kg/m}^3, 1 \text{ bar})$$

# Supersonic flow over a bluntbody

#### Formation of cavitation zone





# **Underwater explosion**

#### Contours of density and pressure at selected times



# **Underwater explosion**

Contours of density and pressure at selected times





### **Underwater explosion**

Physical grid at selected times





### **Final remarks**

- Show preliminary results obtained using relaxation moving mesh methods for barotropic 2-phase flow problem
- Cavitation problems are often occurred in low Mach scenario & so suitable fixed up such as preconditioning & others are necessary for solution accuracy improvement
- Extension to non-barotropc cavitation with phase transition
- 9

# Thank you

11:20-11:40, July 28, AJK2011, Hamamatsu, Shizuoka, Japan - p. 34/37

### **Reduced** 2-phase flow model

Reduced 2-phase flow model of Kapila *et al.* is zero-order approximation of Baer-Nunziato equations with stiff mechanical relaxation that takes

$$\partial_t (\alpha_1 \rho_1) + \nabla \cdot (\alpha_1 \rho_1 \vec{u}) = 0$$
  

$$\partial_t (\alpha_2 \rho_2) + \nabla \cdot (\alpha_2 \rho_2 \vec{u}) = 0$$
  

$$\partial_t (\rho \vec{u}) + \nabla \cdot (\rho \vec{u} \otimes \vec{u}) + \nabla p = 0$$
  

$$\partial_t (\rho E) + \nabla \cdot (\rho E \vec{u} + p \vec{u}) = 0$$
  

$$\partial_t \alpha_1 + \vec{u} \cdot \nabla \alpha_1 = \frac{\rho_2 c_2^2 - \rho_1 c_1^2}{\sum_{k=1}^2 \rho_k c_k^2 / \alpha_k} \nabla \cdot \vec{u}$$

### **Baer-Nunziato Two-Phase Flow Model**

Baer & Nunziato (J. Multiphase Flow 1986)

$$\begin{aligned} (\alpha_{1}\rho_{1})_{t} + \nabla \cdot (\alpha_{1}\rho_{1}\vec{u}_{1}) &= 0 \\ (\alpha_{1}\rho_{1}\vec{u}_{1})_{t} + \nabla \cdot (\alpha_{1}\rho_{1}\vec{u}_{1}\otimes\vec{u}_{1}) + \nabla(\alpha_{1}p_{1}) &= p_{0}\nabla\alpha_{1} + \lambda(\vec{u}_{2} - \vec{u}_{1}) \\ (\alpha_{1}\rho_{1}E_{1})_{t} + \nabla \cdot (\alpha_{1}\rho_{1}E_{1}\vec{u}_{1} + \alpha_{1}p_{1}\vec{u}_{1}) &= p_{0}(\alpha_{2})_{t} + \lambda\vec{u}_{0} \cdot (\vec{u}_{2} - \vec{u}_{1}) \\ (\alpha_{2}\rho_{2})_{t} + \nabla \cdot (\alpha_{2}\rho_{2}\vec{u}_{2}) &= 0 \\ (\alpha_{2}\rho_{2}\vec{u}_{2})_{t} + \nabla \cdot (\alpha_{2}\rho_{2}\vec{u}_{2}\otimes\vec{u}_{2}) + \nabla(\alpha_{2}p_{2}) &= p_{0}\nabla\alpha_{2} - \lambda(\vec{u}_{2} - \vec{u}_{1}) \\ (\alpha_{2}\rho_{2}E_{2})_{t} + \nabla \cdot (\alpha_{2}\rho_{2}E_{2}\vec{u}_{2} + \alpha_{2}p_{2}\vec{u}_{2}) &= -p_{0}(\alpha_{2})_{t} - \lambda\vec{u}_{0} \cdot (\vec{u}_{2} - \vec{u}_{1}) \\ (\alpha_{2})_{t} + \vec{u}_{0} \cdot \nabla\alpha_{2} &= \mu (p_{2} - p_{1}) \end{aligned}$$

 $\alpha_k = V_k/V$ : volume fraction ( $\alpha_1 + \alpha_2 = 1$ ),  $\rho_k$ : density,  $\vec{u}_k$ : velocity,  $p_k$ : pressure,  $E_k = e_k + \vec{u}_k^2/2$ : specific total energy,  $e_k$ : specific internal energy, k = 1, 2

### **Baer-Nunziato Model (Cont.)**

 $p_0 \& \vec{u}_0$ : interfacial pressure & velocity

Baer & Nunziato (1986)

• 
$$p_0 = p_2$$
,  $\vec{u}_0 = \vec{u}_1$ 

Saurel & Abgrall (1999)

• 
$$p_0 = \sum_{k=1}^{2} \alpha_k p_k$$
,  $\vec{u}_0 = \sum_{k=1}^{2} \alpha_k \rho_k \vec{u}_k / \sum_{k=1}^{2} \alpha_k \rho_k$ 

 $\lambda \& \mu (> 0)$ : relaxation parameters that determine rates at which velocities and pressures of two phases reach equilibrium