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Objective

Recall that our aim is to discuss a class of volume of fluid
(vs. level set, MAC, particles) methods for interface
problems with application to compressible multiphase flow

1. Adaptive moving grid approach (last lecture)
Cartesian grid embedded volume tracking
Moving mapped grid interface capturing

2. Eulerian interface sharpening approach (this lecture)
Artificial interface compression method
Anti-diffusion method
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Outline

Review interface sharpening techniques for viscous
incompressibe two-phase flow

Artificial interface compression
Anti-diffusion

Extend method to compressible multiphase flow
Interface only problem
Problem with shock wave

This is a work in progress since August 2011
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Incompressible2-phase flow: Review

Consider unsteady, incompressible, viscous, immiscible
2-phase flow with governing equations

∇ · ~u = 0 (Continuity)

∂t (ρ~u) +∇ · (ρ~u⊗ ~u) +∇p = ∇ · τ + ρ~g + ~fσ (Momentum)

∂tα + ~u · ∇α = 0 (Volume fraction transport )

Material quantities in 2-phase coexistent region are often
computed by α-based weighted average as

ρ = αρ1 + (1− α) ρ2, ǫ = αǫ1 + (1− α) ǫ2,

where

τ = ǫ
(
∇~u+∇~uT

)
, ~fσ = −σκ∇α with κ = ∇ ·

(
∇α

|∇α|

)
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Interface sharpening techniques

Typical interface sharpening methods for incompressible
flow include:

Algebraic based approach
CICSAM (Compressive Interface Capturing Scheme
for Arbitrary Meshes): Ubbink & Issa JCP 1999
THINC (Tangent of Hyperbola for INterface
Capturing): Xiao, Honma & Kono Int. J. Numer.
Meth. Fluids 2005
Improved THINC

PDE based approah
Artificial compression: Harten CPAM 1977, Olsson &
Kreiss JCP 2005
Anti-diffusion: So, Hu & Adams JCP 2011
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Artificial interface compression

Our first interface-sharpening model concerns artificial
compression proposed by Olsson & Kreiss

∂tα + ~u · ∇α =
1

µ
∇ · ~n [D (∇α · ~n)− α (1− α)]

where ~n = ∇α/|∇α|, D > 0, µ≫ 1

Standard fractional step method may apply as

1. Advection step over a time step

∂tα + ~u · ∇α = 0 or ∂tα +∇ · (α~u) = 0

since by assumption ∇ · ~u = 0

2. Interface compression step to

∂τα = ∇ · ~n [D (∇α · ~n)− α (1− α)] , τ = t/µ
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Square wave passive advection

Square-wave pluse moving with u = 1 after 4 periodic cycle
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Interface compression:1D case

To see why this approach works, consider 1D model

∂tα + u∂xα =
1

µ
∂x~n · [D (∂xα · ~n)− α (1− α)], x ∈ lR, t > 0

with ~n = 1 & initial α(x, 0) = α0(x) = 1/ (1 + exp (−x/D)).
Exact solution for this initial value problem is simply

α(x, t) = α0(x− ut)

while solution with perturbed data α̃0(x) = α0(x) + δ(x) is

α(ξ, τ) = α̃0 (ξ + ξ0) as τ → ∞ (ξ = x− ut, τ = t/µ)

If perturbation is zero mass
∫∞

−∞
δ(ξ, 0)dξ = 0 (which is true

if model is solved conservatively), we have true solution
with ξ0 = 0, see Sattinger (1976) & Goodman (1986)
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Interface compression: Multi-D case

Let K = D∇α · ~n− α (1− α) with ~n = ∇α/|∇α|. In
interface-compression step, we solve

∂τα = ∇ · ~n [D (∇α · ~n)− α (1− α)] = K∇ · ~n+ ~n · ∇K

& reach τ -steady state solution as µ→ ∞, yielding K = 0 &
1D profile in coordinate normal to interface n⊥ as

α = 1/
(
1 + exp (−n⊥/D)

)
=
(
1 + tanh (n⊥/2D)

)
/2

When µ finite, K 6= 0, i.e., K∇ · ~n+ ~n · ∇K 6= 0, α & so
interface would be changed both normally & tangentially
depending on both strength & accuracy of curvature ∇ · ~n
evaluation numerically
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Zalesak’s rotating disc

Contours α = 0.5 at 4 different times within 1 period in that

~u = (1/2− y, x− 1/2)

No compression With compression
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Vortex in cell
Contours α = (0.05, 0.5, 0.95) at 6 different times in 1 period

~u =
(
− sin2 (πx) sin (2πy), sin (2πx) sin2 (πy)

)
cos (πt/8)

No compression

With compression
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Interface compression runs

Methods used here are very elementary, i.e.,

1. Use Clawpack for advection in Step 1

2. Use simple first order explicit method for interface
compression in Step 2

Diffusion coefficient D = εmin∀i∆xi

Time step ∆τ

∆τ ≤
1

2D

d∑

i=1

∆x2i

Stopping criterion: simple 1-norm error measure
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Extension to compressible flow

Shukla, Pantano & Freund (JCP 2010) proposed extension
of interface-compression method for incompressible flow to
compressible flow governed by reduced 2-phase model as

∂t (α1ρ1) +∇ · (α1ρ1~u) = 0

∂t (α2ρ2) +∇ · (α2ρ2~u) = 0

∂t (ρ~u) +∇ · (ρ~u⊗ ~u) +∇p = 0

∂t(ρE) +∇ · (ρE~u+ p~u) = 0

∂tα1 + ~u · ∇α1 =
1

µ
~n · ∇ (D∇α1 · ~n− α1 (1− α1))

∂tρ+∇ · (ρ~u) =
1

µ
H(α1)~n · (∇ (D∇ρ · ~n)− (1− 2α1)∇ρ)

Mixture pressure is computed based on isobaric closure
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Compressible flow: Density correction

To see how density compression term comes from, we
assume ∇ρ · ~n ∼ ∇α1 · ~n & consider case when

K = D∇α1·~n−α1 (1− α1) ≈ 0 =⇒ D∇α1 · ~n ≈ α1(1− α1)

yielding density diffusion normal to interface as

∇ (D∇ρ · ~n) · ~n ≈ ∇ (α1(1− α1)) · ~n = (1− 2α1)∇α1 · ~n

∼ (1− 2α1)∇ρ · ~n

Analogously, we write density equation with correction as

∂tρ+∇ · (ρ~u) =
1

µ
H(α1)~n · (∇ (D∇ρ · ~n)− (1− 2α1)∇ρ)

H(α1) = tanh (α1(1− α1)/D)2 is localized-interface function
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Shukla et al. interface compression

In each time step, Shukla’s interface-compression algorithm
for compressible 2-phase flow consists of following steps:

1. Solve model equation without interface-compression
terms by state-of-the-art shock capturing method

2. Compute promitive variable w = (ρ1, ρ2, ρ, ~u, p, α1) from
conservative variables q = (α1ρ1, α2ρ2, ρ~u, ρE, α1)

3. Iterate interface & density compression equations to
τ -steady state until convergence

4. Update conserved variables at end of time step from
primitive variables in step 2 & new values of ρ , α1 from
step 3
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Underwater explosion

Solution adpated from Shukla’s paper (JCP 2010)
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Shock in air & water cylinder

Solution adpated from Shukla’s paper (JCP 2010)
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Underwater explosion (revisit)

Solution adpated from Shyue’s paper (JCP 2006)
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Shukla et al. algorithm: Remark

In Shukla’s results there are noises in pressure contours for
UNDEX means poor calculation of pressure near interface

To understand method better, consider simple interface only
problem where p & ~u are constants in domain, while ρ &
material quantities in EOS have jumps across interfaces

Assume consistent approximation in step 1 for model
equation without interface-compression, yielding

smeared (α1ρ1, α2ρ2, α1)
∗ & constant (~u, p)∗

In step 3, ρ∗ = (α1ρ1)
∗ + (α2ρ2)

∗ & α∗
1

are compressed to ρ̃ &
α̃1, which in step 4, for total mass & momentum, we set

(ρ, ρu)n+1 = (ρ̃, ρ̃~u∗) =⇒ ~un+1 = ρ̃~u∗/ρ̃ = ~u∗ as expected
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Shukla et al. algorithm: Remark

In addition, for total energy, we set

(ρE)n+1 =

(
1

2
ρ|~u|2 + ρe

)n+1

=
1

2
ρ̃|~u∗|2 + ρ̃e(?)

Consider stiffened gas EOS for phasic pressure
pk = (γk − 1) (ρe)k − γkBk, k = 1, 2. We then have

ρ̃e =
2∑

k=1

αkρkek =
2∑

k=1

α̃k

p∗ + γkBk

γk − 1

= p∗
2∑

k=1

α̃k

γk − 1
+

2∑

k=1

α̃k

γkBk

γk − 1

yielding equilibrium pressure pn+1 = p∗ if

(
1

γ − 1

)n+1

=
2∑

k=1

α̃k

γk − 1
&

(
γB

γ − 1

)n+1

=
2∑

k=1

α̃k

γkBk

γk − 1
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Shukla et al. algorithm: Remark

Next example concerns linearized Mie-Grüneisen EOS for
phasic pressure pk = (γk − 1) (ρe)k + (ρk − ρ0k)Bk

ρ̃e =

2∑

k=1

αkρkek =

2∑

k=1

α̃kp
∗

γk − 1
− (α̃kρ

∗

k
− α̃kρ0k)

Bk

γk − 1

= p∗
2∑

k=1

α̃k
γk − 1

−

2∑

k=1

(α̃kρ
∗

k
− α̃kρ0k)

Bk

γk − 1

yielding equilibrium pressure pn+1 = p∗ if

(
1

γ − 1

)n+1

=
2∑

k=1

α̃k

γk − 1
&

(
(ρ− ρ0)B

γ − 1

)n+1

=
2∑

k=1

(α̃kρ
∗

k − α̃kρ0k)
Bk

γk − 1
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Shukla et al. algorithm: Remark

In Shukla et al. algorithm, there is a consistent problem as

2∑

k=1

(αkρk)
n+1 =

2∑

k=1

α̃kρ
∗

k
6= ρ̃ = ρn+1

One way to remove this inconsistency is to include
compression terms in αkρk, k = 1, 2, via

∂t (αkρk) +∇ · (αkρk~u) =

1

µ
H(α1)~n · (∇ (D∇ (αkρk) · ~n)− (1− 2α1)∇ (αkρk))

We set ρn+1 =
∑2

k=1
(αkρk)

n+1 =
∑2

k=1
α̃kρ̃k

Validation of this approach is required

09:30-10:30, September 15, IAPCM2011, Beijing, China – p. 22/39



Anti-diffusion interface sharpening

Alternative interface-sharpening model is anti-diffusion
proposed by So, Hu & Adams (JCP 2011)

∂tα + ~u · ∇α = −
1

µ
∇ · (D∇α), D > 0, µ≫ 1

Standard fractional step method may apply again as

1. Advection step over a time step

∂tα + ~u · ∇α = 0

2. Anti-diffusion step towards “sharp layer”

∂τα = −∇·(D∇α) or ∂τα = −∇·~n (D∇α · ~n) , τ = t/µ

Numerical regularization is required such as employ MINMOD

limiter to stabilize ∇α in discretization, Breuß et al. (’05, ’07)
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Square wave passive advection (revisit)

Square-wave pluse moving with u = 1 after 4 periodic cycle
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Vortex in cell (revisit)

Contours α = (0.05, 0.5, 0.95) at 6 different times in 1 period

No interface sharpening (second order)

With interface compression

With anti-diffusion
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Deformation flow in 3D
In this test, consider velocity field

~u =
(
2 sin2 (πx) sin (2πy) sin (2πz),− sin (2πx) sin2 (πy) sin (2πz),

− sin (2πx) sin (2πy) sin2 (πz)
)
cos (πt/3)
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Deformation flow in 3D

No anti-diffusion With anti-diffusion
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Deformation flow in 3D

No anti-diffusion With anti-diffusion
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Passive advection: Conservation
Mass error for sample interface sharpening methods
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Anti-diffusion runs

Methods used here are the same as artificial interface
compression runs, i.e.,

1. Use Clawpack for advection in Step 1

2. Use first order explicit method for anti-diffusion in Step 2

Diffusion coefficient D = max |~u|

Time step ∆τ

∆τ ≤
1

2D

d∑

i=1

∆x2i

Stopping criterion: some measure of interface
sharpness
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Positivity & accuracy

In compressible multiphase flow, positivity of volume
fraction, i.e., αk ≥ 0, ∀k, is of fundamental importance ; this
is because it provides, in particular,

1. information on interface location

2. information on thermodynamic states such as ρe & p in
numerical “mixture” region & so ρk from αkρk

It is known & have been mentioned many times in this
conference that devise of oscillation-free higher-order
method is still an open problem (if I have stated correctly)

In this regards, interface-sharpening of some kind should
be a useful tool as opposed to higher-order methods or
other volume-of-fluid methods
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Anti-diffusion to compressible flow

Reduced 2-phase model with anti-diffusion (Shyue 2011)

∂tα1 + ~u · ∇α1 = −
1

µ
∇ · (D∇α1)

∂t (α1ρ1) +∇ · (α1ρ1~u) = −
1

µ
H(α1)∇ · (D∇α1ρ1)

∂t (α2ρ2) +∇ · (α2ρ2~u) = −
1

µ
H(α1)∇ · (D∇α2ρ2)

∂t (ρ~u) +∇ · (ρ~u⊗ ~u) +∇p = −
1

µ
H(α1)~u ∇ · (D∇ρ)

∂t (ρE) +∇ · (ρE~u+ p~u) =

−
1

µ
H(α1)L

(
1

2
ρ|~u|2

)
−

1

µ
H(α1)L (ρe)

Denote L as an diffusion operator
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Anti-diffusion to compressible flow

To find L
(
1

2
ρ|~u|2

)
, assuming |~u|2 is constant, we observe

∇

(
1

2
ρ|~u|2

)
=

1

2
|~u|2∇ρ yielding L

(
1

2
ρ|~u|2

)
=

1

2
|~u2|∇ · (D∇ρ)

To find L (ρe), we need to know equation of state. Now in
stiffened gas case with pk = (γk − 1) (ρe)k − γkBk,

∇(ρe) = ∇

(
2∑

k=1

αkρkek

)
= ∇

(
2∑

k=1

αk
p+ γkBk

γk − 1

)

=

2∑

k=1

(
p+ γkBk

γk − 1

)
∇αk =

(
p+ γ1B1

γ1 − 1
−
p+ γ2B2

γ2 − 1

)
∇α1

= β ∇α1 yielding L (ρe) = β ∇ · (D∇α1)
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Anti-diffusion to compressible flow

We next consider case with linearized Mie-Grüneisen EOS
pk = (γk − 1) (ρe)k + (ρk − ρ0k)Bk k = 1, 2, & proceed same
procedure as before

∇(ρe) = ∇

(
2∑

k=1

αkρkek

)
= ∇

(
2∑

k=1

αk
p− (ρk − ρ0k)Bk

γk − 1

)

=

2∑

k=1

p+ ρ0kBk

γk − 1
∇αk +

2∑

k=1

Bk

γk − 1
∇ (αkρk)

= β0∇α1 +

2∑

k=1

βk∇(αkρk)

We choose L (ρe) = β0 ∇ · (D∇α1) +
∑2

1
βk ∇ · (D∇αkρk)
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Anti-diffusion to compressible flow

Write anti-diffusion model in compact form

∂tq +∇ · ~f + B∇q = −
1

µ
ψ(q)

with q, ~f , B, & ψ defined (not shown)

In each time step, proposed anti-diffusion algorithm for
compressible 2-phase flow consists of following steps:

1. Solve model equation without anti-diffusion terms

∂tq +∇ · ~f + B∇q = 0

2. Iterate model equation with anti-diffusion terms

∂τq = ψ(q)

to τ -steady state until convergence
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Circular water column advection
Density surface plot (Moving speed ~u = (1, 1/10) )
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Air-Helium Riemann problem
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Future perspectives

Effect of local interface identification H(α)

Algebraic approach

H(α) =

{
tanh (α(1− α)/D)2 (Shukla et al. )

tanh
(√

α(1− α)/D
)

PDE approach

Anti-diffusion on moving mapped grid

Extension to other multiphase model
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Thank you
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