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Objective
-

fRe(:all that our aim is to discuss a class of volume of fluid
(vs. level set, MAC, particles) methods for interface
problems with application to compressible multiphase flow

1. Adaptive moving grid approach (last lecture)
# Cartesian grid embedded volume tracking
# Moving mapped grid interface capturing

2. Eulerian interface sharpening approach (this lecture)
# Artificial interface compression method
# Anti-diffusion method

o |
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Outline

- N

# Review interface sharpening techniques for viscous
Incompressibe two-phase flow

» Artificial interface compression
s Anti-diffusion

# Extend method to compressible multiphase flow
s Interface only problem
s Problem with shock wave

This is a work In progress since August 2011

o |
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Incompressible2-phase flow: Review

L N

Consider unsteady, incompressible, viscous, immiscible
2-phase flow with governing equations
V-u=0 (Continuity)

O (pi) +V - (pi @) +Vp=V-7+pj+ f,  (Momentum)
O+ u-Va=0 (Volume fraction transport )

Material quantities in 2-phase coexistent region are often
computed by a-based weighted average as

p=ap1+(1—a)p2, €=ae +(1—a)es,
where
Vo

\—T:e(VfH—VUT), f. = —orVa Withmzv-<v—&’) J
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Interface sharpening techniques

nypical Interface sharpening methods for incompressible T
flow include:

# Algebraic based approach

s CICSAM (Compressive Interface Capturing Scheme
for Arbitrary Meshes): Ubbink & Issa JCP 1999

s THINC (Tangent of Hyperbola for INterface

Capturing): Xiao, Honma & Kono Int. J. Numer.
Meth. Fluids 2005

s Improved THINC

# PDE based approah

s Artificial compression: Harten CPAM 1977, Olsson &
Kreiss JCP 2005

L o Anti-diffusion: So, Hu & Adams JCP 2011

|
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Artificial interface compression

fOur first interface-sharpening model concerns artificial
compression proposed by Olsson & Kreiss

1
Oa+u-Va=-V-i|D(Va-n)—a(l—a)
]
where 7 = Va/|Val, D>0, p>1
Standard fractional step method may apply as
1. Advection step over a time step
O+ 1u-Va=0 or O+ V- (au) =0
since by assumption V - 4 = 0
2. Interface compression step to

- Do =V-A[D(Va-i)—a(l—a), 7=t/u

|
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Sguare wave passive advection

quuare-wave pluse moving with v = 1 after 4 periodic cycle T

Y 0 < NO compress
o With compress
O X X ol |
0.8l S Exact
0.6
S
0.4
0.2
< <

|
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Interface compression:1D case
fTo see why this approach works, consider 1D model T

1
8toz+u&,;oz:pﬁxﬁ-[l)(ﬁxaoﬁ)—a(l—@)]a reR, t>0

with 7 = 1 & Initial a(z,0) = ag(z) =1/ (1 +exp (—x/D)).
Exact solution for this initial value problem is simply

a(x,t) = ag(xr — ut)
while solution with perturbed data ag(z) = ag(x) + d(x) IS

a(&, 1) = ap (€ + &) as 700 (E=xz—ut,7=1t/pn)

If perturbation is zero mass [~__4(¢,0)d¢ = 0 (which is true

If model is solved conservatlvely) we have true solution
Lwith &y = 0, see Sattinger (1976) & Goodman (1986) J
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Interface compression: Multi-D case

fLe’[K:DVoz-ﬁ—oz(l—oz) with 7 = Va/|Val. In T
Interface-compression step, we solve

Ora=V-n|DVa-n)—a(l—a)|=KV-n+n-VK

& reach 7-steady state solution as 1 — oo, yielding K =0 &
1D profile in coordinate normal to interface n' as

a=1/(1+exp (—nL/D)) = (1 + tanh (nL/ZD)) /2

When y finite, K # 0, i.e., KV-n+n-VK #0, o & SO
Interface would be changed both normally & tangentially
depending on both strength & accuracy of curvature V - n

Levaluation numerically J
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Zalesak’s rotating disc

fContours o = 0.5 at 4 different times within 1 period in that T
i=(1/2—y.a—1/2)

NoO compression With compression
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Vortex in cell

fContours a = (0.05,0.5,0.95) at 6 different times in 1 period T
U= (- sin® (7z) sin (27y), sin (27z) sin® (7y)) cos (t/8)

No compression

PR

With compression

|
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Interface compression runs

w

1. Use Clawpack for advection in Step 1

ethods used here are very elementary, i.e.,

2. Use simple first order explicit method for interface
compression in Step 2

o Diffusion coefficient D = ¢ miny; Ax;

#® Time step At

# Stopping criterion: simple 1-norm error measure

o |
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Extension to compressible flow

fShukIa, Pantano & Freund (JCP 2010) proposed extension T
of interface-compression method for incompressible flow to
compressible flow governed by reduced 2-phase model as

1
ata1+ﬁ-Va1:;ﬁ°V(DVC¥1-ﬁ—C¥1(1—O{1))

Oup+V - (pil) = %Hml)ﬁ- (V (DVp - i) — (1 — 2a1) V)

LMixture pressure is computed based on isobaric closure J
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Compressible flow: Density correction

- N

To see how density compression term comes from, we
assume Vp-n~Va;-n & consider case when

K=DVain—-a1(l—a;))~0 = DVa-n=ai(l—a)
yielding density diffusion normal to interface as

V(DVpﬁ) -ﬁ%V(Ozl(l—Ozl)) .n = (1—2&1)V&1-ﬁ
~ (1—20&1)Vp°ﬁ
Analogously, we write density equation with correction as

Bp+V - (pil) = iHml)ﬁ- (V (DVp-7i) — (1 — 2a1) V)

LH(oq) — tanh (o1 (1 — aq)/D)? is localized-interface function J
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Shukla et al. Interface compression

-

fIn each time step, Shukla’s interface-compression algorithm
for compressible 2-phase flow consists of following steps:

1. Solve model equation without interface-compression
terms by state-of-the-art shock capturing method

2. Compute promitive variable w = (p1, p2, p, 4, p, 1) from
conservative variables ¢ = (ayp1, aopa, pt, pE, aq)

3. Iterate interface & density compression equations to
T-Steady state until convergence

4. Update conserved variables at end of time step from
primitive variables in step 2 & new values of p , a; from

L step 3 J
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Underwater explosion

fSqution adpated from Shukla’s paper (JCP 2010) T

|
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Shock in air & water cylinder

fSqution adpated from Shukla’s paper (JCP 2010) T




Underwater explosion (revisit)

Solution adpated from Shyue’s paper (JCP 2006)
Density Pressure
Tracking Capturing Tracking Capturing
time=0.2ms air time=0.2ms
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Shukla et al. algorithm: Remark

hn Shukla’s results there are noises in pressure contours forj
UNDEX means poor calculation of pressure near interface

To understand method better, consider simple interface only
problem where p &  are constants in domain, while p &
material quantities in EOS have jumps across interfaces

Assume consistent approximation in step 1 for model
equation without interface-compression, yielding

smeared  (a1p1,a2p2,1)" &  constant  (u,p)*

In step 3, p* = (a1p1)* + (a2p2)* & o] are compressed to p &
a1, which in step 4, for total mass & momentum, we set

(p, pu)
|

ntl— (550" = d""'=pu*/p=u" as expected

|

09:30-10:30, September 15, IAPCM2011, Beijing, China — p. 19/39



Shukla et al. algorithm: Remark

hn addition, for total energy, we set

n+1 1 —)2 e 1 — | 2 el ?
(pE)"™" = { 5plal” + pe = 5Pl |" + pe(?)

Consider stiffened gas EOS for phasic pressure
pr = (v — 1) (pe)r — 1B, k =1,2. We then have

2

. p + Vi B
ﬁe_zakpkek— i
P Ve — 1

2 ~ 2
* 895 ~ ’YkBk
D D D I
it Ea e
yielding equilibrium pressure p" ! = p* |

1 n—+1 2 54]{; ")/B n—+1 2 i ’YkBk
COGER  E)Ee

v—1 — T — v —1

— |
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Shukla et al. algorithm: Remark

-

Next example concerns linearized Mie-Grlneisen EOS for
phasic pressure p = (v — 1) (pe)r + (px — pok) Br

-

2 ~ *
N ap 3 5 By
pe = opprer = Y — (Qrpy, — Apok)
k=1 ok k=1
2 9 5
* k ~ % ~ k
=p — > (Grpp — arpok)
kzjl Ve — 1 kzzl g Vi — 1

yielding equilibrium pressure p" ! = p* if

1 n+1 2 a . B n+1 2 i i B
(—> — Z - & ((p ) ) — Z (Qrpr — kpok) - ﬁ 1

v—1 — w1 v—1 —

o |
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Shukla et al. algorithm: Remark

hn Shukla et al. algorithm, there Is a consistent problem as T

5 5
| .
E (apor)" " = E appr £ p=p"t!
1

k=1

One way to remove this inconsistency is to include
compression terms in ayp, k= 1,2, via

Oy (opr) +V - (apppti) =
%H(Cﬂ)ﬁ' (V DV (agpr) - 1) = (1 = 200) V (akpy))

2 1 2 -
We set p"*! = D k=1 (O%ﬂlc)n+ = 2 _k=1kOk

L Validation of this approach is required J
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Anti-diffusion interface sharpening

fAlternative Interface-sharpening model is anti-diffusion T
proposed by So, Hu & Adams (JCP 2011)

1
8toz+ﬁ-Voz:—;V-(DVoz), D>0 p>1

Standard fractional step method may apply again as
1. Advection step over a time step

O +1u-Va =0
2. Anti-diffusion step towards “sharp layer”
O-a=—-V-(DVa) or O,a=-Vn(DVa-n), 17=t/u

Numerical regularization is required such as employ MinvoD
uimiter to stabilize Vo In discretization, Breul3 et al. ('05, '07)
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Sguare wave passive advection (revisit

quuare-wave pluse moving with v = 1 after 4 periodic cycle T

time=4
1 : TOHERREBEaRR0RR00T :
0 o x No sharpen
o Compress
] ° X N ° o Anti-diffus ||
0.8 - — Exact
D g
0.6_ X
S '
0.4 "
d D
0.2
O O

|
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Vortex In cell (revisit)

fContours a = (0.05,0.5,0.95) at 6 different times in 1 period T
No interface sharpening (second order)

@)

/
[/
L
N
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Deformation flow in 3D

hn this test, consider velocity field T

U= (2 sin? () sin (27y) sin (272), — sin (27 sin® (my) sin (272),

—sin (27z) sin (27y) sin” (72)) cos (7t /3)

08..

06

|
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Deformation flow in 3D

-

No anti-diffusion With anti-diffusion

g(1) attime 1.5000

o8 08

06,
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Deformation flow in 3D
-

No anti-diffusion With anti-diffusion T

g(1) attime 3.0000

o8 08
06 06
0.4

02.
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Passive advection: Conservation

fMass error for sample interface sharpening methods T

1

——compress
—e— anti—diffu

0.5

Mass error
‘

—-0.51
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Anti-diffusion runs

-

Methods used here are the same as artificial interface
compression runs, i.e.,

-

1. Use Clawpack for advection in Step 1

2. Use first order explicit method for anti-diffusion in Step 2
# Diffusion coefficient D = max |u]

#® Time step At

d
1 2
1=

#® Stopping criterion: some measure of interface

L sharpness J
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Positivity & accuracy

-

In compressible multiphase flow, positivity of volume
fraction, i.e., o, > 0, Vk, Is of fundamental importance ; this
IS because it provides, in particular,

-

1. iInformation on interface location

2. Information on thermodynamic states such as pe & p in
numerical “mixture” region & so p;. from «;.p;.

It is known & have been mentioned many times in this
conference that devise of oscillation-free higher-order
method is still an open problem (if | have stated correctly)

In this regards, interface-sharpening of some kind should
be a useful tool as opposed to higher-order methods or
Lother volume-of-fluid methods J
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Anti-diffusion to compressible flow

fReduced 2-phase model with anti-diffusion (Shyue 2011) T

1
o1 +u-Vay =——V - (DVar)

v
B 1

O (a1p1) +V - (a1p11) = _;H(@l)v - (DVaipr)
1

8,5 (&2,02) —+ V - (agpgﬁ) = —;H(Ckl)v . (DVQ(QpQ)

1
O (pti) + V- (pi @ U) + Vp = —;H(oq)ﬁ V- (DVp)

O (pE) +V - (pEU + pui) =

1 | 1
e () ~ e

LDenote L as an diffusion operator J
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Anti-diffusion to compressible flow

To find £ (3p|w]?), assuming |@|* is constant, we observe

1 1
v@m?) L2V yielding z( p\uP) L9 - (DV)

To find L (pe), we need to know equation of state. Now in
stiffened gas case with pp, = (v — 1) (pe)r — VB,

2 2
+ Vi B
V(Z%Pk%) (Z pk%1k>
k

2

-y (p+%l’>’k> B <p+v181 p+w5’2>

— A = — VOél
— r— 1 71— 1 Y2 — 1

. —3Vay yielding L£(pe) =3V (DVay) -
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Anti-diffusion to compressible flow

-

We next consider case with linearized Mie-Grineisen EOS
pe = (v — 1) (pe)r + (p — por) Br k = 1,2, & proceed same
procedure as before

-

LWe choose L (pe) = 5o V - (DVay) + Z? Br V - (DVaygpp) J
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Anti-diffusion to compressible flow

fWrite anti-diffusion model in compact form T

0q+V - f+BVq= ——¢( )
with ¢, f, B, & v defined (not shown)

In each time step, proposed anti-diffusion algorithm for
compressible 2-phase flow consists of following steps:

1. Solve model equation without anti-diffusion terms

q+V - f+ BVqg=0

2. lterate model equation with anti-diffusion terms

aTq — %D((J)
L to 7-steady state until convergence J
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Circular water column advection

fDensity surface plot (Moving speed « = (1,1/10) ) T
No anti-diffusion

1

- i
\'"

L

|

w

|
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Air-Helium Riemann problem

S) ! 14
= No anti—diffu
4.5 © Anti—diffu R ] 12 i
—Exact [ 9
4+ i
10 ]
3.5} E 1
3 ) ] 8 ]
2.5¢ 1 6 |
27 x 4
4 4
1.5 ) ]
: 2 i
ik 1 O "
0.8 1 0 0.2 0.4 0.6 0.8 1
500 P 356 65 W
400 ] 0.8 . i
300 . 0.6} ) ]
i
2001 1 0.4r 1
100f ] 0.21 ) ]
0 L L L &8 e 0 L L L SR |
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
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Future perspectives

-

o Effect of local interface identification H(«)
» Algebraic approach

tanh (a(1 — @)/D)*  (Shukla etal. )
H(a) = { tanh (W(l - a)/D)

» PDE approach

# Anti-diffusion on moving mapped grid

# Extension to other multiphase model

o |
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Thank you
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