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Objective

Describe simple Lagrangian-like moving grid approach for
numerical resolution of nonlinear hyperbolic balance laws of
the form

∂

∂t
q (~x, t) +

N
∑

j=1

∂

∂xj
fj (q, ~x) = ψ (q, ~x)

with discontinuous initial data in general N ≥ 1 rectangular
or non-rectangular geometry

~x = (x1, x2, . . . , xN ): spatial vector, t: time

q ∈ lRm: vector of m state quantities

fj ∈ lRm: flux vector, j = 1, 2, . . . , N , ψ ∈ lRm: source term

Model equation is hyperbolic if
∑Nd

j=1 αj (∂fj/∂q) is
diagonalizable with real eigenvalues, αj ∈ lR
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Outline

Mathematical model for general balance laws

Eulerian formulation
Generalized Lagrangian formulation
Example to single component compressible flow

Wave-propagation based finite volume methods

Generalized Riemann problem & approximate solver
Flux-based wave decomposition method

Sample numerical examples

Extension to compressible two-phase flow

Future work
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Mathematical Model

To begin with, consider a general non-rectangular domain Ω
(N = 2 shown below) & introduce coordinate change
(~x, t) 7→ (~ξ, τ) via

~ξ = (ξ1, ξ2, . . . , ξN ) , ξj = ξj(~x, t), τ = t,

that maps a physical domain Ω to a logical one Ω̂
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Mathematical Model (Cont.)

To derive hyperbolic balance laws in this generalized
coordinate (~ξ, τ), using chain rule of partial differentiation,
derivatives in physical space become

∂

∂t
=

∂

∂τ
+

N
∑

i=1

∂ξi
∂t

∂

∂ξi
,

∂

∂xj
=

N
∑

i=1

∂ξi
∂xj

∂

∂ξi
for j = 1, 2, . . . , N,

yielding the equation

∂q

∂τ
+

N
∑

j=1

(

∂ξj
∂t

∂q

∂ξj
+

N
∑

i=1

∂ξi
∂xj

∂fj

∂ξi

)

= ψ(q)

Note this is not in divergence form, and hence is not
conservative, in case the source term ψ is ignored.
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Mathematical Model (Cont.)

To obtain a strong conservation-law form as

∂q̃

∂τ
+

N
∑

j=1

∂f̃j

∂ξj
= ψ̃

for some q̃, f̃j, & ψ̃, we first multiply J = det
(

∂~ξ/∂~x
)

−1

to the
aforementioned non-conservative equations, and have

J
∂q

∂τ
+

N
∑

j=1

J

(

∂ξj
∂t

∂q

∂ξj
+

N
∑

i=1

∂ξi
∂xj

∂fj

∂ξi

)

= Jψ(q)

Then use differentiation by parts, u dv = d(uv)− v du, yielding

∂q̃

∂τ
+

N
∑

j=1

∂f̃j

∂ξj
= ψ̃ + G

with q̃ = Jq, f̃j = J
(

q
∂ξj

∂t +
∑N

k=1 fk
∂ξj

∂xk

)

, ψ̃ = Jψ, & G (see next)
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Mathematical Model (Cont.)

Here we have

G = q





∂J

∂τ
+

N
∑

j=1

∂

∂ξj

(

J
∂ξj
∂t

)



+

N
∑

j=1

fj

[

N
∑

k=1

∂

∂ξk

(

J
∂ξk
∂xj

)

]

Note with the use of basic grid-metric relations (see next),
it is known that

∂J

∂τ
+

N
∑

j=1

∂

∂ξj

(

J
∂ξj
∂t

)

= 0 (geometrical conservation law)

N
∑

k=1

∂

∂ξk

(

J
∂ξk
∂xj

)

= 0 ∀ j = 1, 2, . . . , N (compatibility condition)

and hence G = 0
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Basic Grid-Metric Relations
Assume existence of inverse transformation

t = τ, xj = xj(~ξ, t) for j = 1, 2, . . . , N,

To find basic grid-metric relations between different
coordinates, employ elementary differential rule

∂(τ, ~ξ)

∂(t, ~x)
=
∂(t, ~x)

∂(τ, ~ξ)

−1

yielding in N = 3 case, for example, as














1 0 0 0

∂tξ1 ∂x1
ξ1 ∂x2

ξ1 ∂x3
ξ1

∂tξ2 ∂x1
ξ2 ∂x2

ξ2 ∂x3
ξ2

∂tξ3 ∂x1
ξ3 ∂x2

ξ3 ∂x3
ξ3















=
1

J















J 0 0 0

J01 J11 J21 J31

J02 J12 J22 J32

J03 J13 J23 J33














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Grid-Metric Relations (Cont.)

Here

J =

∣

∣

∣

∣

∂(x1, x2, x3)

∂(ξ1, ξ2, ξ3)

∣

∣

∣

∣

= det
(

∂(x1, x2, x3)

∂(ξ1, ξ2, ξ3)

)

,

J11 =

∣

∣

∣

∣

∂(x2, x3)

∂(ξ2, ξ3)

∣

∣

∣

∣

, J21 =

∣

∣

∣

∣

∂(x1, x3)

∂(ξ3, ξ2)

∣

∣

∣

∣

, J31 =

∣

∣

∣

∣

∂(x1, x2)

∂(ξ2, ξ3)

∣

∣

∣

∣

,

J12 =

∣

∣

∣

∣

∂(x2, x3)

∂(ξ3, ξ1)

∣

∣

∣

∣

, J22 =

∣

∣

∣

∣

∂(x1, x3)

∂(ξ1, ξ3)

∣

∣

∣

∣

, J32 =

∣

∣

∣

∣

∂(x1, x2)

∂(ξ3, ξ1)

∣

∣

∣

∣

,

J13 =

∣

∣

∣

∣

∂(x2, x3)

∂(ξ1, ξ2)

∣

∣

∣

∣

, J23 =

∣

∣

∣

∣

∂(x1, x3)

∂(ξ2, ξ1)

∣

∣

∣

∣

, J33 =

∣

∣

∣

∣

∂(x1, x2)

∂(ξ1, ξ2)

∣

∣

∣

∣

,

J0j = −

Nd
∑

i=1

Jij∂τxi, j = 1, 2, 3,

and so grid-metric relations between different coordinates

∇ξj = (∂tξj , ∇~xξj) = (∂tξj , ∂x1
ξj , ∂x2

ξj , ∂x3
ξj) =

1

J
(J0j , J1j , J2j , J3j)
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Grid-Metric Relations (Cont.)

Note in two dimensions N = 2, we have
(

∂ξ1
∂t

,
∂ξ1
∂x1

,
∂ξ1
∂x2

)

=
1

J

(

−
∂x1

∂τ

∂x2

∂ξ2
+
∂x2

∂τ

∂x1

∂ξ2
,
∂x2

∂ξ2
, −

∂x1

∂ξ2

)

(

∂ξ2
∂t

,
∂ξ2
∂x1

,
∂ξ2
∂x2

)

=
1

J

(

∂x1

∂τ

∂x2

∂ξ1
−
∂x2

∂τ

∂x1

∂ξ1
, −

∂x2

∂ξ1
,
∂x1

∂ξ1

)

J =
∂x1

∂ξ1

∂x2

∂ξ2
−
∂x1

∂ξ2

∂x2

∂ξ1

Thus to have G = 0 fulfilled, grid-metrics should obey

∂J

∂τ
+

∂

∂ξ1

(

J
∂ξ1
∂t

)

+
∂

∂ξ2

(

J
∂ξ2
∂t

)

= 0

∂

∂ξ1

(

J
∂ξ1
∂x1

)

+
∂

∂ξ2

(

J
∂ξ2
∂x1

)

=
∂

∂ξ1

(

∂x2

∂ξ2

)

+
∂

∂ξ2

(

−
∂x2

∂ξ1

)

= 0

∂

∂ξ1

(

J
∂ξ1
∂x2

)

+
∂

∂ξ2

(

J
∂ξ2
∂x2

)

=
∂

∂ξ1

(

−∂x1

∂ξ2

)

+
∂

∂ξ2

(

∂x1

∂ξ1

)

= 0
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Mathematical Model (Cont.)
As an example, with gravity effect included, Euler equations
for single component compressible gas flow take

Cartesian coordinate case

∂

∂t









ρ

ρui

E









+
N
∑

j=1

∂

∂xj









ρuj

ρuiuj + pδij

Euj + puj









=









0

−ρ ∂φ
∂xi

−ρ~u · ∇φ









, i = 1, . . . , N

Generalized coordinate case

∂

∂τ









ρJ

ρJui

JE









+
N
∑

j=1

∂

∂ξj
J









ρUj

ρuiUj + p
∂ξj

∂xi

EUj + pUj − p
∂ξj

∂t









=









0

−ρJ ∂φ
∂xi

−ρJ~u · ∇φ









ρ: density, p = p(ρ, e): pressure , e: internal energy
E = ρe+ ρ

∑N
j=1 u

2
j/2: total energy, φ: gravitational potential

Uj = ∂tξj +
∑N

i=1 ui∂xiξj: contravariant velocity in ξj-direction
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Mathematical Model (Cont.)

Note that to complete the model, we must

1. make clear the transformation (~x, t) 7→ (~ξ, τ) initially
Depending on how complex the geometry is, this can
be done by various numerical means
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Mathematical Model (Cont.)

Note that to complete the model, we must

1. make clear the transformation (~x, t) 7→ (~ξ, τ) initially
Depending on how complex the geometry is, this can
be done by various numerical means

2. choose a moving grid strategy for ∂τ~x
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Mathematical Model (Cont.)

Note that to complete the model, we must

1. make clear the transformation (~x, t) 7→ (~ξ, τ) initially
Depending on how complex the geometry is, this can
be done by various numerical means

2. choose a moving grid strategy for ∂τ~x

When ∂τ~x = 0 or ∂τ~x = ~ub(t) (rigid-body motion)
∂t
~ξ & ∇~x

~ξ are time-independent; no need to have
more additional condition
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Mathematical Model (Cont.)

Note that to complete the model, we must

1. make clear the transformation (~x, t) 7→ (~ξ, τ) initially
Depending on how complex the geometry is, this can
be done by various numerical means

2. choose a moving grid strategy for ∂τ~x

When ∂τ~x = 0 or ∂τ~x = ~ub(t) (rigid-body motion)
∂t
~ξ & ∇~x

~ξ are time-independent; no need to have
more additional condition

While ∂τ~x 6= 0 (flow-dependent motion) (see next)
∂t
~ξ & ∇~x

~ξ would be time-dependent; require
additional conditions to determine ∇~ξ

~x (N2 of them

in total) over time (see below)
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Lagrangian-Like Moving Grid

For compressible flow, to improve numerical resolution of
interfaces (material or slip lines), it is popular to take ∂τ~x as

Lagrangian case: ∂τ~x = ~u (flow velocity)

Lagrangian-like case: ∂τ~x = h0~u (pseudo velocity)
h0 ∈ [0, 1] (fixed piecewise const.)

Unified coordinate case: ∂τ~x = h~u

h ∈ [0, 1] but is determined from a PDE constraint
arising from such as grid-angle or grid-Jacobian
preserving condition

ALE-like case: ∂τ~x = ~U (arbitrary velocity)
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Lagrangian-Like Moving Grid

For compressible flow, to improve numerical resolution of
interfaces (material or slip lines), it is popular to take ∂τ~x as

Lagrangian case: ∂τ~x = ~u (flow velocity)

Lagrangian-like case: ∂τ~x = h0~u (pseudo velocity)
h0 ∈ [0, 1] (fixed piecewise const.)

Unified coordinate case: ∂τ~x = h~u

h ∈ [0, 1] but is determined from a PDE constraint
arising from such as grid-angle or grid-Jacobian
preserving condition

ALE-like case: ∂τ~x = ~U (arbitrary velocity)

Here we will focus on the simple Lagrangian-like case
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Unified Coordinate System

Consider N = 2 case, for example, and use simplified
notation ~x = (x, y), ~ξ = (ξ, η). At given time instance, free
parameter h can be chosen based on

Grid-angle preserving condition (Hui et al. JCP 1999)

∂

∂τ
cos−1

(

∇ξ

|∇ξ|
·
∇η

|∇η|

)

=
∂

∂τ
cos−1





−yηxη − yξxξ
√

y2
ξ + y2

η

√

x2
ξ + x2

η





= · · ·

= Ahξ + Bhη + Ch = 0 (1st order PDE )

with

A =
√

x2
η + y2

η (vxξ − uyξ) , B =
√

x2
ξ + y2

ξ (uyη − vxη)

C =
√

x2
ξ + y2

ξ (uηyη − vηxη)−
√

x2
η + y2

η (uξyξ − vξxξ)
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Unified Coordinate System

Consider N = 2 case, for example, and use simplified
notation ~x = (x, y), ~ξ = (ξ, η). Or alternatively, based on

Grid-Jacobian preserving condition

∂J

∂τ
=

∂

∂τ
(xξyη − xηyξ)

= xξτ yη + xξ yητ − xητ yξ − xη yξτ

= · · ·

= Ahξ + Bhη + Ch = 0 (1st order PDE )

with

A = uyη − vxη, B = vxξ − uyξ, C = uξyη + vηxξ − uηyξ − vξxη
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Lagrangian-Like Grid (Cont.)

Now with the temporal motion of the coordinate system
governed by ∂τ~x = h0~u. We should impose conditions on
grid metrics ∂t

~ξ & ∇~x
~ξ to have the fulfillment of geometrical

conservation law

∂J

∂τ
+

N
∑

j=1

∂

∂ξj

(

J
∂ξj
∂t

)

= 0

Here we are interested in an approach that is based on the
compatibility condition of ∂τ∂ξj

xi & ∂ξj
∂τxi, i.e.,

∂

∂τ

(

∂xi

∂ξj

)

+
∂

∂ξj

(

−
∂xi

∂τ

)

= 0 for i, j = 1, 2, . . . , N .

for unknowns ∂xi/∂ξj , yielding easy computation of J & ∇ξj
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Mathematical Model (Cont.)

In summary, our Lagrangina-like model system for single
component compressible flow problems consists of

Physical balance laws

∂

∂τ









ρJ

ρJui

JE









+

N
∑

j=1

∂

∂ξj
J









ρUj

ρuiUj + p
∂ξj

∂xi

EUj + pUj − p
∂ξj

∂t









=









0

−ρJ ∂φ
∂xi

−ρJ~u · ∇φ









Geometrical conservation laws

∂

∂τ

(

∂xi

∂ξj

)

+
∂

∂ξj

(

−
∂xi

∂τ

)

= 0 for i, j = 1, 2, . . . , N .

Moving grid condition ∂τ~x = h0~u & pressure law p(ρ, e)
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Axisymmetric Compressible Flow
Physical balance laws (ξ1: axisymmetric direction)

∂

∂τ









ρJ

ρJui

JE









+
2
∑

j=1

∂

∂ξj
J









ρUj

ρuiUj + p
∂ξj

∂xi

EUj + pUj − p
∂ξj

∂t









=









− 1
xρJu1

− 1
xρJuiuj − ρJ

∂φ
∂xi

− 1
xJ(E + p)u1 − ρJ~u · ∇φ









for i = 1, 2

Geometrical conservation laws

∂

∂τ

(

∂xi

∂ξj

)

+
∂

∂ξj

(

−
∂xi

∂τ

)

= 0 for i, j = 1, 2.

Moving grid condition ∂τ~x = h0~u & pressure law p(ρ, e)
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Mathematical Models: Remarks

For single component compressible flow model mentioned
above, it is known that under some thermodynamic stability
conditions

when h0 = 0 (Eulerian case), the model is hyperbolic

when h0 = 1 (Lagrangian case), the model is weakly
hyperbolic (do not possess complete eigenvectors)

when h0 ∈ (0, 1) (Lagrangian-like case), the model is
hyperbolic
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Mathematical Models: Remarks

For single component compressible flow model mentioned
above, it is known that under some thermodynamic stability
conditions

when h0 = 0 (Eulerian case), the model is hyperbolic

when h0 = 1 (Lagrangian case), the model is weakly
hyperbolic (do not possess complete eigenvectors)

when h0 ∈ (0, 1) (Lagrangian-like case), the model is
hyperbolic

If a prescribed velocity ~ub for a rigid body motion is included
in the formulation i.e., with ∂τ~x = h0~u+ ~ub, we should be able
to use the model to solve some moving body problems as
well.
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Review of Previous Work

The work presented here is related to

W.H. Hui et al. (JCP 1999, 2001): Unified coordinated
system for Euler equations

W.H. Hui (Comm. Phys. Sci. 2007): Unified coordinate
system in CFD

C. Jin & K. Xu (JCP 2007): Moving grid gas-kinetic
method for viscous flow

P. Jia et al. (Computers and Fluids 2006) Unified
coordinated system for compressible milti-material flow

Z. Chen et al. (Int J. Numer. Meth Fluids 2007): Wave
speed based moving coordinates for compressible flow
equations
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Numerical Methods

Employ finite volume formulation of numerical solution

Qn
ijk ≈

1

∆ξ1∆ξ2∆ξ3

∫

Cijk

q(ξ1, ξ2, ξ3, τn) dV

that gives approximate value of cell average of solution q
over cell Cijk at time τn (sample case in 2D shown below)

i− 1

i− 1

i

i j

j

j + 1
j + 1

Cij

Ĉij

ξ1

ξ2

mapping

∆ξ1

∆ξ2

logical domain
physical domain

←−

x1 = x1(ξ1, ξ2)
x2 = x2(ξ1, ξ2)

x1

x2
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Numerical Methods (Cont.)

In three dimensions N = 3, equations to be solved take

∂

∂τ
q
(

~ξ, τ
)

+

N
∑

j=1

∂

∂ξj
fj

(

q, ~ξ
)

= ψ
(

q, ~ξ
)

A simple dimensional-splitting method based on f -wave
approach of LeVeque et al. is used for approximation, i.e.,

Solve one-dimensional generalized Riemann problem
(defined below) at each cell interfaces

Use resulting jumps of fluxes (decomposed into each
wave family) of Riemann solution to update cell
averages

Introduce limited jumps of fluxes to achieve high
resolution
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Numerical Methods (cont.)

Basic steps of a dimensional-splitting scheme

ξ1-sweeps: solve

∂q

∂τ
+ f1

(

∂

∂ξ
, q,∇~ξ

)

= 0 updating Qn
ijk to Q∗

ijk

ξ2-sweeps: solve

∂q

∂τ
+ f2

(

∂

∂ξ2
, q,∇~ξ

)

= 0 updating Q∗

ijk to Q∗∗

ijk

ξ3-sweeps: solve

∂q

∂τ
+ f3

(

∂

∂ξ3
, q,∇~ξ

)

= 0 updating Q∗∗

ijk to Qn+1
ijk
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Numerical Methods (cont.)

Consider ξ1-sweeps, for example,

First order update is

Q∗

ijk = Qn
ijk −

∆τ

∆ξ1

[

(

A+
1 ∆Q

)n

i−1/2,jk
+
(

A−

1 ∆Q
)n

i+1/2,jk

]

with the fluctuations

(A+
1 ∆Q)n

i−1/2,jk =
∑

m:(λ1,m)n
i−1/2,jk

>0

(Z1,m)n
i−1/2,jk

and

(A−

1 ∆Q)n
i+1/2,jk =

∑

m:(λ1,m)n
i+1/2,jk

<0

(Z1,m)
n
i+1/2,jk

(λ1,m)n
ι−1/2,jk & (Z1,m)n

ι−1/2,jk are in turn wave speed and f -waves
for the mth family of the 1D Riemann problem solutions
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Numerical Methods (cont.)

High resolution correction is

Q∗

ijk := Q∗

ijk −
∆τ

∆ξ1

[

(

F̃1

)n

i+1/2,jk
−
(

F̃1

)n

i−1/2,jk

]

with (F̃1)
n
i−1/2,jk =

1

2

mw
∑

m=1

[

sign (λ1,m)

(

1−
∆τ

∆ξ1
|λ1,m|

)

Z̃1,m

]n

i−1/2,jk

Z̃ι,m is a limited value of Zι,m

It is clear that this method belongs to a class of upwind schemes, and is
stable when the typical CFL (Courant-Friedrichs-Lewy) condition:

ν =
∆τ maxm (λ1,m, λ2,m, λ3,m)

min (∆ξ1,∆ξ2,∆ξ3)
≤ 1,
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Generalized Riemann Problem

Generalized Riemann problem for our model equations at
cell interface ξi−1/2 consists of the equation















∂qi−1,jk

∂τ
+ f1

(

∂

∂ξ1
, qi−1,jk

)

= 0 if ξ1 < (ξ1)i−1/2,

∂qijk

∂τ
+ f1

(

∂

∂ξ1
, qijk

)

= 0 if ξ1 > (ξ1)i−1/2,

together with piecewise constant initial data

q(ξ1, 0) =







Qn
i−1,jk for ξ < ξi−1/2

Qn
ijk for ξ > ξi−1/2

qijk = q|(∂ξ2
~x, ∂ξ3

~x)ijk
& f1(∂ξ1

, qijk) = f1(∂ξ1
, q)|(∂ξ2

~x, ∂ξ3
~x)ijk
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Generalized Riemann Problem

Generalized Riemann problem at time τ = 0

∂τqL + f1 (∂ξ1
, qL) = 0 ∂τqR + f1 (∂ξ1

, qR) = 0

ξ1

τ

Qn
i−1,jk Qn

ijk
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Generalized Riemann Problem

Exact generalized Riemann solution: basic structure

∂τqL + f1 (∂ξ1
, qL) = 0 ∂τqR + f1 (∂ξ1

, qR) = 0

ξ1

τ

Qn
i−1,jk Qn

ijk
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Generalized Riemann Problem

Shock-only approximate Riemann solution: basic structure

∂τqL + f1 (∂ξ1
, qL) = 0 ∂τqR + f1 (∂ξ1

, qR) = 0
ξ1

τ

Qn
i−1,jk Qn

ijk

λ0λ1 λ2

λ3

q−mL q+mL

qmR

Z1 = fL(q−mL)− fL(Qn
i−1,jk) Z2 = fR(qmR)− fR(q+mL)

Z3 = fR(Qn
ijk)− fR(qmR)
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Shock-only Riemann Solver
Rotate velocity vector in Riemann data normal to each cell interface

Find midstate velocity υm and pressure pm by solving

φ(pm) = υmR(pm)− υmL(pm) = 0

derived from Rankine-Hugoniot relation iteratively, where

υmL(p) = υL −
p− pL

ML(p)
, υmR(p) = υR +

p− pR

MR(p)

Propagation speed of each moving discontinuity is determined by

(λ1,1)i−1/2,jk =

[

(1− h0)υm −
ML(pm)

ρmL(pm)

]

∣

∣∇ ~Xξ1
∣

∣

i−1/2,jk

(λ1,2)i−1/2,jk = (1− h0)υm

∣

∣∇ ~Xξ1
∣

∣

i−1/2,jk

(λ1,3)i−1/2,jk =

[

(1− h0)υm +
MR(pm)

ρmR(pm)

]

∣

∣∇ ~Xξ1
∣

∣

i−1/2,jk
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Lax’s Riemann Problem

Ideal gas EOS with γ = 1.4

h0 = 0 Eulerian result

h0 = 0.99 Lagrangian-like result
sharper resolution for contact discontinuity
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Lax’s Riemann Problem

Physical grid coordinates at selected times
Each little dashed line gives a cell-center location of
the proposed Lagrange-like grid system
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Woodward-Colella’s Problem

Ideal gas EOS with γ = 1.4

h0 = 0 Eulerian result

h0 = 0.99 Lagrangian-like result
sharper resolution for contact discontinuity
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Woodward-Colella’s Problem

h0 = 0 Eulerian result

h0 = 0.99 Lagrangian-like result
sharper resolution for contact discontinuity
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Woodward-Colella’s Problem

h0 = 0 Eulerian result

h0 = 0.99 Lagrangian-like result
sharper resolution for contact discontinuity
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Woodward-Colella’s Problem

Physical grid coordinates at selected times
Each little dashed line gives a cell-center location of
the proposed Lagrange-like grid system
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2D Riemann Problem

With initial 4-shock wave pattern
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

ρ
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v

p











=










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








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2D Riemann Problem

With initial 4-shock wave pattern

Lagrangian-like result
Occurrence of simple Mach reflection

0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8
0.2

0.4

0.6

0.8

Density Pressure Physical grid

HYP2008, June 9-13, 2008, U. of Maryland, College Park – p. 35/51



2D Riemann Problem

With initial 4-shock wave pattern

Eulerian result
Poor resolution around simple Mach reflection
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Radially Symmetric Problem
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a) h0 = 0.99
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Radially Symmetric Prob. (Cont.)
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Extension to Multifluid

Assume homogeneous (1-pressure & 1-velocity) flow;
i.e., across interfaces pι = p & ~uι = ~u, ∀ fluid phase ι

gas

gas

gas

gas

gas

gas

gas

gas

gas

gas

liquid

HYP2008, June 9-13, 2008, U. of Maryland, College Park – p. 39/51



α-based Multifluid Model
Physical balance laws

∂

∂τ









ρJ

ρJui

JE









+
N
∑

j=1

∂

∂ξj
J









ρUj

ρuiUj + p
∂ξj

∂xi

EUj + pUj − p
∂ξj

∂t









=









0

−ρJ ∂φ
∂xi

−ρJ~u · ∇φ









Geometrical conservation laws

∂

∂τ

(

∂xi

∂ξj

)

+
∂

∂ξj

(

−
∂xi

∂τ

)

= 0 for i, j = 1, 2, . . . , N .

Volume fraction transport equation

∂α

∂τ
+

N
∑

j=1

Uj
∂α

∂ξj
= 0

Moving grid condition ∂τ~x = h0~u & pressure law p(ρ, e, α)
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Underwater Explosions

Solution with h0 = 0.9, 800× 500 grid

HYP2008, June 9-13, 2008, U. of Maryland, College Park – p. 41/51
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Underwater Explosions

Solution Comparison between h0 = 0.9 & h0 = 0
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Underwater Explosions

Solution Comparison between h0 = 0.9 & h0 = 0
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Underwater Explosions (Cont.)

Grid system (coarsen by factor 5) with h0 = 0.9
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3D Underwater Explosions

Numerical schlieren images h0 = 0.6, 1003 grid

HYP2008, June 9-13, 2008, U. of Maryland, College Park – p. 44/51



3D Underwater Explosions

Numerical schlieren images h0 = 0.6, 1003 grid
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3D Underwater Explosions

Numerical schlieren images h0 = 0.6, 1003 grid
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3D Underwater Explosions

Numerical schlieren images h0 = 0.6, 1003 grid
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3D Underwater Explosions

Numerical schlieren images h0 = 0.6, 1003 grid
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3D Underwater Explosions (Cont.)

Grid system (coarsen by factor 2) with h0 = 0.6
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3D Underwater Explosions (Cont.)

Grid system (coarsen by factor 2) with h0 = 0.6
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3D Underwater Explosions (Cont.)

Grid system (coarsen by factor 2) with h0 = 0.6
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3D Underwater Explosions (Cont.)

Grid system (coarsen by factor 2) with h0 = 0.6
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3D Underwater Explosions (Cont.)

Grid system (coarsen by factor 2) with h0 = 0.6
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Blast Wave Computation

Two sample grid systems used in computation with
h0 = 0

mapped grid Cartesian grid
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Blast Wave Computation

mapped grid
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Blast Wave Computation

mapped grid
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Blast Wave Computation

mapped grid
t=0.6
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Blast Wave Computation

mapped grid
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Blast Wave Computation

mapped grid
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Blast Wave Computation

mapped grid
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Moving Cylindrical Vessel

Mapped grid results with h0 = 0 & ~ub = (1, 0)

initial condition

interface

air helium
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Moving Cylindrical Vessel

Cartesian grid results with embedded moving boundary

initial condition

interface

air helium
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Automatic Time-Marching Grid

Supersonic NACA0012 over heavier gas
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Automatic Time-Marching Grid

Supersonic NACA0012 over heavier gas
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Automatic Time-Marching Grid

Supersonic NACA0012 over heavier gas
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Conclusion

Have described Lagrangian-like moving grid methods
for hyperbolic balance laws

Have shown results in 1, 2 & 3D to demonstrate
feasibility of method for inviscid compressible flow
problems
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Conclusion

Have described Lagrangian-like moving grid methods
for hyperbolic balance laws

Have shown results in 1, 2 & 3D to demonstrate
feasibility of method for inviscid compressible flow
problems

Future direction
Efficient & accurate grid movement strategy
Static & Moving 3D geometry problems
Weakly compressible flow
Viscous flow extension
· · ·
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Conclusion

Have described Lagrangian-like moving grid methods
for hyperbolic balance laws

Have shown results in 1, 2 & 3D to demonstrate
feasibility of method for inviscid compressible flow
problems

Future direction
Efficient & accurate grid movement strategy
Static & Moving 3D geometry problems
Weakly compressible flow
Viscous flow extension
· · ·

Thank You
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