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Objective

-

Describe simple Lagrangian-like moving grid approach for
numerical resolution of nonlinear hyperbolic balance laws of

the form
N

5D+ 0 D) = e

g=1

with discontinuous initial data in general N > 1 rectangular
or non-rectangular geometry

7= (x1,20,...,2y). SPatial vector, t: time
g € R™: vector of m state quantities
fi e R™: flux vector, j =1,2,...,N, v € R™: source term

© o o o

Model equation is hyperbolic if - o, (9f;/9q) is
L diagonalizable with real eigenvalues, o; ¢ R J
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Outline

Mathematical model for general balance laws

o Eulerian formulation

s Generalized Lagrangian formulation
» Example to single component compressible flow

Wave-propagation based finite volume methods

» Generalized Riemann problem & approximate solver
» Flux-based wave decomposition method

Sample numerical examples

Extension to compressible two-phase flow

Future work

|
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Mathematical Model

E

0 begin with, consider a general non-rectangular domain €2
(N = 2 shown below) & introduce coordinate change

(7, t) — (&, 7) via

—

€:(€17€27'°'7€N)7 ‘szfj(fvt)? T =1,

that maps a physical domain 2 to a logical one
logical domain

physical domain

0 -0.5
mapping
Q05 0N — & -1 0O
-1 & =&z, x2) 15
-1.5 §2 = a(w1, @2)
-1 0 1 ol
L1
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Mathematical Model (Cont.)

E

0 derive hyperbolic balance laws in this generalized

coordinate (¢, ), using chain rule of partial differentiation,
derivatives in physical space become

o N
A
yielding the equation

dq 0&; 0q 08 0f; \
or +; ( i € Z . 9z, agﬁ) ¥la)

;i 0 .
f =1,2,...,N
Zaxjagz Or] ) < ’ )

8& (9

Note this is not in divergence form, and hence is not
conservative, in case the source term ) Is ignored.

o

|
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Mathematical Model (Cont.)

fTo obtain a strong conservation-law form as

for some G, f;, & 1, we first multiply . = det (aé’/af) to the
aforementioned non-conservative equations, and have

9€; O0q 06 of;\
Z‘] ( 8753 ¢ Z; O (%Z) = Jvl)

~ with g = Jg, fJ—J(q €J+Zk1f§§i), b=Jy, & G(seenex)
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Mathematical Model (Cont.)

H

ere we have

0 <N 9 [ .0, al Y9 /.08
5=a|5+ 3 (V5)| + 2 [Zask(*fax)

Note with the use of basic grid-metric relations (see next),
It is known that

g_i + ; ({% ( %) =0 (geometrical conservation law)

N

Z 9 (J%> =0 Vj=1,2,...,N (compatibility condition)
—1 &Sk &Ej

and hence ¢ =0

o

|
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Basic Grid-Metric Relations

fAssume existence of inverse transformation
t =T, xj:a:j(g,t) for 17=1,2,..., N,

To find basic grid-metric relations between different
coordinates, employ elementary differential rule

a(r,€) ot @)
a(t, T

SN—— | N~

yielding in N = 3 case, for example, as

(1 0 0 0 ) (J 0 0 0)
O&1 0z,&1 05,61 0.8 Jor Ji1 Jor I3
Ola 01,8 05,6 03,8 Joz  Ji2 Joa  J32

L \01553 03,83 02,83 33:353) \Jos Jis Ja3 J33) J
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Grid-Metric Relations (Cont.)
fHere

0(x1, 2, T3) 0(x1, 2, T3)
/= 0(&1,62,83) | et 0(81,82,83) ) ’
Ty — 0(x2, x3) Tyt — O(x1,13) Tay — (1, x2)
0(£2,8&3) |’ 0(&3,&2) | 0(&2,83) |’
Ty — O0(xo, 3) Ty — d(x1,3) Ty — O(x1,x2)
0(&3,81) | 9(£1,€3) | 0(&3,&1) |
Ty — 0(x2, x3) oy — 0(x1,13) oy — 0(x1,x2)
9(&1,62) | 0(&2,€1) | 9(&1,82) |
Ny
Joj = — Z Jij0- T4, j=1,2,3,
i=1

and so grid-metric relations between different coordinates

1
vaj = (01, V&) = (015, 00,85, 00,5, 05,85) = 7 (Joj, Jijs J25, J35) J
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Grid-Metric Relations (Cont.)

fNote In two dimensions N = 2, we have

(851 851 8§1> . 1 ( 85131 65132 1 65132 85131 65132 8$1>

ot dzxy’ Oy J\ 01 0& ' 01 0& 08 0&

0 0% 0%\ _ 1 (0 0z Orp0my Oy On
875’ (91’1’ (92132 J ot 851 ot 8617 861’ 051
89@1 8952 8%1 8952

0¢, 0¢, 0 06

J

Thus to have G = 0 fulfilled, grid-metrics should obey

97 8 [ 06\ o [ .06\
aT+ag1(‘]at +6§2(J8t)_0

o (06N 0 (.06\_ 0 (0 O [ On
0—51(J0—331)+3§2 (Jafl)_0§1(0§2)+3§2< 051) ’
0
2

0 051 862 - 0 —(9331 0 (9331
L 3_&(J5—$2>+£(J3—962>_5€1( 082 )+3§2 (351) ! J
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Mathematical Model (Cont.)

fAs an example, with gravity effect included, Euler equationsj
for single component compressible gas flow take

® Cartesian coordinate case

5 7 N pU; 0
_ o -
ot | P Z 0:13] PU; U5 + D04 — —pai , t=1,...,N
E =1 Eu; + pu; —pu - Vo

® Generalized coordinate case

pJ N pU; 0
0 0 9¢;
I pJu; -I-Za—ng puiU; +pa2t = —pJaxz
JE =1 EU; +pU; — pa(ftj —pJu - Vo
p' density, p=p(p,e). pressure, e: internal energy

= pe+p> i u?/2: total energy, ¢ gravitational potential
LU = 0,6 + Yo, w0, &0 contravariant velocity in &;-direction J
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Mathematical Model (Cont.)

N

1. make clear the transformation (, t) — (¢, 7) initially

# Depending on how complex the geometry is, this can
be done by various numerical means

ote that to complete the model, we must

o |
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Mathematical Model (Cont.)

N

1. make clear the transformation (, t) — (¢, 7) initially

# Depending on how complex the geometry is, this can
be done by various numerical means

ote that to complete the model, we must

2. choose a moving grid strategy for 0.7

o |
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Mathematical Model (Cont.)

N

1. make clear the transformation (, t) — (¢, 7) initially

# Depending on how complex the geometry is, this can
be done by various numerical means

ote that to complete the model, we must

2. choose a moving grid strategy for 0.7
® When 0.7 = 0 or 0,7 = uy(t) (rigid-body motion)

s 06 & V=€ are time-independent; no need to have
more additional condition

o |
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Mathematical Model (Cont.)

N

1. make clear the transformation (, t) — (¢, 7) initially

# Depending on how complex the geometry is, this can
be done by various numerical means

ote that to complete the model, we must

2. choose a moving grid strategy for 0.7
® When 0.7 = 0 or 0,7 = uy(t) (rigid-body motion)

s 06 & V=€ are time-independent; no need to have
more additional condition

#® While 0.7 # 0 (flow-dependent motion) (see next)

s 0 & V¢ would be time-dependent; require
additional conditions to determine ng (N? of them

L In total) over time (see below) J
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Lagrangian-Like Moving Grid

-

For compressible flow, to improve numerical resolution of
iInterfaces (material or slip lines), it is popular to take 0, % as
# lLagrangian case: 0,1 = u (flow velocity)
# Lagrangian-like case: 0,7 = hou (pseudo velocity)

s hg€0,1] (fixed piecewise const.)
#® Unified coordinate case: 0.1 = hu

s h € [0,1] but is determined from a PDE constraint
arising from such as grid-angle or grid-Jacobian
preserving condition

® ALE-like case: 9.7 = U (arbitrary velocity)

o |
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Lagrangian-Like Moving Grid

-

For compressible flow, to improve numerical resolution of
iInterfaces (material or slip lines), it is popular to take 0, % as
# lLagrangian case: 0,1 = u (flow velocity)
# Lagrangian-like case: 0,7 = hou (pseudo velocity)

s hg€0,1] (fixed piecewise const.)
#® Unified coordinate case: 0.1 = hu

s h € [0,1] but is determined from a PDE constraint
arising from such as grid-angle or grid-Jacobian
preserving condition

® ALE-like case: 9.7 = U (arbitrary velocity)

LHere we will focus on the simple Lagrangian-like case J
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Unified Coordinate System

-

Consider N = 2 case, for example, and use simplified

notation Z = (z, y), £ = (£, n). At given time instance, free
parameter i can be chosen based on

# Grid-angle preserving condition (Hui et al. JCP 1999)

2(3os (V{ LV ) = gcos —Yntn — YETe
o W o) "o\ g et s a2

= Ahg + Bh, + Ch =0 (1st order PDE )

A=\ Jo2 +y2 (vze —uye), B= . a2+ y2 (uy, — vay)
C = \/ZEQ -+ yg (unyn — Unxn) BRY. ZE% + y% (’LLgyg - U'SZES)
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Unified Coordinate System

-

Consider N = 2 case, for example, and use simplified

—

notation 7 = (z, y), £ = (£, n). Or alternatively, based on
# Grid-Jacobian preserving condition

oJ 9,
- = 97 (Teyn — TnYe)

= Ter Yn + Tg Ynr — Typr Ye — Ty Yer

= Ah¢ + Bh,y+Ch =0 (1storder PDE )
with

A =uy, —vx,, B=uvre—uye, C=uglyy+vyTe— Upye — VeTy

o |
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Lagrangian-Like Grid (Cont.)

-

Now with the temporal motion of the coordinate system
governed by 0,7 = hou. We should impose conditions on

grid metrics 0,¢ & V¢ to have the fulfillment of geometrical
conservation law

Here we are interested in an approach that is based on the
compatibility condition of 0,.0¢ x; & 0¢, 0,24, ie.,

0 (Ox; 0 0x;
- — == = fori,j=1,2,...,N.
af<a§j)+agj( (97) Voo trny =L

- for unknowns 9z;/9¢;, yielding easy computation of J & V¢; |
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Mathematical Model (Cont.)

-

In summary, our Lagrangina-like model system for single
component compressible flow problems consists of

# Physical balance laws

9 pJ N5 pU; 0
I pJu; Z 0— pu;Uj + 1085‘7 = —pJ gfi
JE = EU; + pU; — p%i —pJit-V¢

® Geometrical conservation laws

87(8£j>+6—§j(_87>_0 fori, 7 =1,2,..., N.
# Moving grid condition 0,7 = hou & pressure law p(p, e)

o |
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Axisymmetric Compressible Flow(

A
W .

f.ﬁ Physical balance laws (£;: axisymmetric direction) T

9 pJ 25 pU;
& _
E pJuz- + 1 a—gjj puin —I—pa—xi —

JE ' EU; + pU; — p9si

<

_%PJ’LH

—LpJuu, _Png- fori=1,2

—LJ(E + p)us — pJu -V

» Geometrical conservation laws

0 (0x; 0 ox;
)4 () = fori,j =1,2.
or (5&') +5€j ( 57) oo Rrsg=t,

® Moving grid condition 0.7 = hgu & pressure law p(p, e)

o |
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-

For single component compressible flow model mentioned

Mathematical Models: Remarks

above, it is known that under some thermodynamic stability
conditions

9

o

when hg = 0 (Eulerian case), the model is hyperbolic

when hy = 1 (Lagrangian case), the model is weakly
hyperbolic (do not possess complete eigenvectors)

when hg € (0, 1) (Lagrangian-like case), the model is
hyperbolic

|
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Mathematical Models: Remarks

-

For single component compressible flow model mentioned
above, it is known that under some thermodynamic stability
conditions

# when hg = 0 (Eulerian case), the model is hyperbolic

# when hy = 1 (Lagrangian case), the model is weakly
hyperbolic (do not possess complete eigenvectors)

® when hy € (0,1) (Lagrangian-like case), the model is
hyperbolic

If a prescribed velocity ; for a rigid body motion is included
In the formulation i.e., with 0.7 = hou + 1, we should be able
to use the model to solve some moving body problems as

Lwell. J
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Review of Previous Work

E

# W.H. Huietal. (JCP 1999, 2001): Unified coordinated
system for Euler equations

# W.H. Hui (Comm. Phys. Sci. 2007): Unified coordinate
system in CFD

#® C.Jin & K. Xu (JCP 2007): Moving grid gas-kinetic
method for viscous flow

# P Jiaetal. (Computers and Fluids 2006) Unified
coordinated system for compressible milti-material flow

#® Z.Chenetal (Int J. Numer. Meth Fluids 2007): Wave
speed based moving coordinates for compressible flow

equations
| -
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Numerical Methods

fEmploy finite volume formulation of numerical solution

;" : ,/Cijk Q(€17€27€377—n) dVv

kAL AL Al

that gives approximate value of cell average of solution ¢
over cell C;;;, at time 7, (sample case in 2D shown below)

logical domain

physical domain

mapping i1 A&

L1 — 5131(51752)
T2 T2 = 12(&1,82) g

‘—wli—l 0 ] . Cij
B i—1 T
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Numerical Methods (Cont.)

hn three dimensions N = 3, equations to be solved take

sra (&) + X 50t (2. 8) =v (4 €)

A simple dimensional-splitting method based on f-wave
approach of LeVeque et al. Is used for approximation, i.e.,

# Solve one-dimensional generalized Riemann problem
defined below) at each cell interfaces

e

# Use resulting jJumps of fluxes (decomposed into each
wave family) of Riemann solution to update cell
averages

# Introduce limited jumps of fluxes to achieve high

resolution
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Numerical Methods (cont.)

-

Basic steps of a dimensional-splitting scheme
® £-sweeps: solve

0 0 - i
4+ h (a_gv 0 vf> =0 updating Q7 10 Qi

® &H-sweeps: solve

aq 0 3 i * * %
- + /2 (a—&,q, Vf) = (0 updating Qijk to Q7

® &3-sweeps: solve

0 0 - - n
i, <—, q Vg) =0 updating Q7 to Q77"

L oT 0&3

|
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Numerical Methods (cont.)

-

Consider &;-sweeps, for example,

® First order update is

. . AT
ngk: ijk Ag |:(A+AQ) —1/2,5k (A AQ)z—l—l/iji|

with the fluctuations

(ATAQ)?—jx/z,jk — Z (Zl m)? 1/2,5k

m:(A1,m)} —1/2, k>0

and
(AIAQ)?H/ZM — Z (Zl m)z+1/2 jk

m:(An,m)i g g k<0

(M) /2 1 & (Z1,m)] /5 4, @r€ in turn wave speed and f-waves
L for the mth family of the 1D Riemann problem solutions J
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Numerical Methods (cont.)

-

® High resolution correction is

* * AT = \" =\ -
Qijk = Qijk — A—& [(J:1>z'—|—1/2,jk — (]:1>z'—1/2,jk_
| ~ 1< [ AT - "
with (fl)?—l/Q,jk = 5 Z [5|gn ()‘Lm) (1 — E |)\1,m|) Zl,m
— 1 li—1/2,5k

~

Z, m Is alimited value of Z, ,,

It is clear that this method belongs to a class of upwind schemes, and is
stable when the typical CFL (Courant-Friedrichs-Lewy) condition:
AT max, (>\1,m7 >‘2,m7 >\3,m)

v = <1,

min (ASM A£27 A&S) -

o |
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Generalized Riemann Problem

fGeneralized Riemann problem for our model equations at T
cell interface ¢;_, , consists of the equation

di—1,jk s (6_&’%_1"10 — 0 if &1 < (&1)iz1/2,

ot
0qijk 0 .
\ aTJ +h (a—glaqz‘jk> =0 if &1 > (§1)im1/2,

together with piecewise constant initial data

v for <
Q(gl,o) _ { 1,9k 1/2

e for §>& 1)

Gijk = Q| (0,7, 0c,7) ;e & J1(0¢1, Gigi) = J1(Oe1s D (oe, 7, 0c, 7111

o |
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Generalized Riemann Problem ()

-

Generalized Riemann problem attime 7 = 0

-
i1k ik
‘ &1
L Orqr, + f1(0e,,q) =0 + Orqr + f1(0¢,,qr) =0 J



Generalized Riemann Problem ()

-

Exact generalized Riemann solution: basic structure

-
i1,k ik
\ €1
L Orqr + fi (551,%) =0 - O0:qr + f1 (5517QR) =0 J



Generalized Riemann Problem ¢

-

Shock-only approximate Riemann solution: basic structure

_ n T
Z' = fr(qnp) — fu(QF 1 i) 2% = fr(gmnr) = fr(gL)
)\1 )\0 )\2
A3
dmR
?—1,]’!{: Zk
\ &1

Orqr + f1 (351,%) =0 '« O.qr+ f1 (5517(11%) =0

o |
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o

Shock-only Riemann Solver

Rotate velocity vector in Riemann data normal to each cell interface
Find midstate velocity v,,, and pressure p,,, by solving

¢(pm) — UmR(pm) — UmL(pm) =0
derived from Rankine-Hugoniot relation iteratively, where

P —DPL
My, (p)’

P — PR
Mg(p)

Umr(p) = vp — Umr(p) = VR +

Propagation speed of each moving discontinuity is determined by

My (pm
oL (Pm) ]‘VX&‘@ 1/2,5k

(A12);_ 1/2,jk — = (1 _hO)UmWX’fl}i 1/2,jk

()i = | (1= o) =

M
(A1,3)i 1950 = [(1—ho)vm+ AP ]‘ngl‘z 12,5k J

PmR (pm

HYP2008, June 9-13, 2008, U. of Maryland, College Park — p. 27/51



L ax’s Riemann Problem

-

# l|ldeal gas EOS withy =14
® hy = 0 Eulerian result

® ho = 0.99 Lagrangian-like result
s sharper resolution for contact discontinuity

Exact

0 0.5 1 0 0.5 1 0 0.5 1

B x x I
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L ax’s Riemann Problem

-

# Physical grid coordinates at selected times

s Each little dashed line gives a cell-center location of
the proposed Lagrange-like grid system

0.157 L A T AR R RN MR N AN AN AR
O o A A R R R R R A RN NN
O I B A A R R R R R R R AN RN
01— L o A A R R N AN AR R R RN RN RN AN
O R R A A AR R RN NN RRR RN NN AR
LN o A R R R RN RN NN N NN RN AR ANNY
NN AN AR A AR RN RN R RN N NN NN RO AN
O.05 = [ LLEEEEEEEECEEEE TR T LT e rEEE T T
LECEEEEEEEEEEEEEE PR EEEE R EE LR e e e e e e e e e e e e e e e e e e e e e e e
LECCCREEREEEEEEEE e E R R PR LT e e E e e e e e e e e e e e e e e e e e e e
0 — L ||||||| ||||||||||||| ||||||| ||||||||||||| ||||||| ||||||| L ||||||| ||||||| ||||||||||||| ||I|

time

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

o |
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Woodward-Colella’s Problem
=

# l|deal gas EOS withy =14
® hy = 0 Eulerian result

® hp = 0.99 Lagrangian-like result
s sharper resolution for contact discontinuity

t =0.016 ~ t=0.016 ~ t=0.016
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Woodward-Colella’s Problem

-

® hy = 0 Eulerian result

® hp = 0.99 Lagrangian-like result
» sharper resolution for contact discontinuity

t = 0.032 t = 0.032 t = 0.032
20| 15 600 p

Fine grid | 4
15/ o Ny=0

400

A h0=0.99

200
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Woodward-Colella’s Problem
=

® hy = 0 Eulerian result

® hp = 0.99 Lagrangian-like result
» sharper resolution for contact discontinuity

t = 0.038 - t=10.038 - t=10.038
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Woodward-Colella’s Problem ()
- -

# Physical grid coordinates at selected times

s Each little dashed line gives a cell-center location of
the proposed Lagrange-like grid system

0.04—1 | | | | N T T O T
I I I O O O TR e .
003! 11 U TR ] i e AN R

e s e O T LN [N R R
T A L TTAARMTIRNIATHA . (RN R AR R AR

aé oo -2 I O O O A O 1t TTTTitel | SRR AR RN AR AR
. I e I A A O A O O A OO Y T TRTH UM SRR AR RN R A
CEEEEE T EEr e e TR ERATEEEERRAEACERRCCRERRRRCCEOTAR T FOPEFTEEUEETT i
OO =1 1 f /FE 0 EE T LU 0000000000000 0000000000000 0000000000000 00080 0100
RRRRRAR AR T T AT TR IR AR AR RTTTE
0 — LN ||||||||||||| LI ||||||||||||| LI} ||||||| Y ||||||| I ||||||| [T ||||||| LY ||||||| [ ||||||||||||| LI ||||||||||||| 11 ||||||
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

o |
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2D Riemann Problem

-

With initial 4-shock wave pattern

. (0.532) (p\ (1.5\ |
08} 1.206 u |l 0 |-
0 vl | 0|
o\ 03/ | \p/ \135)
(0.138\ (0.532\
1.206 0
1.206 1.206
\0.029/ \ 0.3

1 1 1 1 1 1
04 0.5 0.6 0.7 0.8 0.9 1
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2D Riemann Problem

W

# Lagrangian-like result
» Occurrence of simple Mach reflection

ith initial 4-shock wave pattern

Density Physical grio
_ J 0.8f 0.8 s
0.6 0.6
0.4} 0.4 T
0.2 0.2

02 04 06
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2D Riemann Problem

W

# Eulerian result
» Poor resolution around simple Mach reflection

ith initial 4-shock wave pattern

Density Pressure Physical grid

————— S ] St

0.8 0.8 (77~ I 0.8¢

.......

~

NN
N
Y

0.6 0.6 777

A 0.6}

0.4 0.4}

S
QA4 /A A AAAAAS L
AT S A

7 o
0.2} - Q.21 /AP AAAAAAAA A A7 27kt 1t 1] 0.2k

| | | | Wil : : : :
0.2 04 0.6 0.8 0.2 04 06 0.8 0.2 04 0.6 0.8

o |
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Radially Symmetric Problem

@) hp =.0.99. . o

Density Pressure nysical gric
0.5 : 0.5
0.4 0.4
0.3 03::
0.2 0.2 [
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Radially Symmetric Prob. (Cont.) (
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Extension to Multifluid

-

#® Assume homogeneous (1-pressure & 1-velocity) flow;
i.e., across interfaces p, = p & u, = u, V fluid phase

| |
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a-based Multifluid Model

f.ﬁ Physical balance laws

9 pJ N5 pU; 0
9¢; _ s,
P pJu; -I-Za—ng pu;U; +pa2t = —pJa;i
JE )= EU; 4 pU; — p%i —pJi -V

®» Geometrical conservation laws

0 ( 0Oz, 0 Ox;
o7 (agj) " g; ( aT) ooty = g

$ \olume fraction transport equation

Z UJ 8{7

\_.. Moving grid condition 0,.Z = hou & pressure law p(p, e, «) J

HYP2008, June 9-13, 2008, U. of Maryland, College Park — p. 40/51



Underwater Explosions

-

# Solution with Ay = 0.9, 800 x 500 grid

time=0ms
air
0.5
0
-0.5
water
-1

| -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
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Underwater Explosions

f.’ Solution Comparison between hg = 0.9 & hg =0 T

h=0.9 h=0

air




Underwater Explosions

f’ Solution Comparison between hg = 0.9 & hg =0 T

Pressure
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water
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Underwater Explosions (Cont.) @

Grid system (coarsen by factor 5) with hg = 0.9
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3D Underwater Explosions

-

® Numerical schlieren images hg = 0.6, 100° grid

time=0ms




3D Underwater Explosions

-

# Numerical schlieren images o = 0.6, 100° grid

time=0.25ms
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3D Underwater Explosions
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# Numerical schlieren images o = 0.6, 100° grid




3D Underwater Explosions
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# Numerical schlieren images o = 0.6, 100° grid
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# Grid system (coarsen by factor 2) with hg = 0.6

time =0
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3D Underwater Explosions (Cont. )}

-

# Grid system (coarsen by factor 2) with hg = 0.6

time = 1.0ms
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iy

3D Underwater Explosions (Cont.

# Grid system (coarsen by factor 2) with hg = 0.6

time = 1.5ms
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Blast Wave Computation

# Two sample grid systems used in computation with
hog =0

mapped grid Cartesian grid
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Density

Pressure

Blast Wave Computation

mapped grid Cartesian grid
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Density

Pressure

Blast Wave Computation

mapped grid Cartesian grid
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Cartesian grid

mapped grid
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Blast Wave Computation

-

t=0.8

Density

Pressure




Blast Wave Computation







Moving Cylindrical Vessel

w

apped grid results with hg = 0 & u, = (1,0)

Initial condition

air helium
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Moving Cylindrical Vessel

-

Cartesian grid results with embedded moving boundary

Initial condition

air
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Automatic Time-Marching Grid

-

#® Supersonic NACAOO012 over heavier gas
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Automatic Time-Marching Grid

-

#® Supersonic NACAOO12 over heavier gas
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Grid system Density Pressure
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Automatic Time-Marching Grid )

-

#® Supersonic NACAOO12 over heavier gas

Pressure
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Conclusion

f # Have described Lagrangian-like moving grid methods
for hyperbolic balance laws

® Have shown results in 1, 2 & 3D to demonstrate
feasibility of method for inviscid compressible flow

problems

o |
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Conclusion

-

# Have described Lagrangian-like moving grid methods
for hyperbolic balance laws

# Have shown results in 1, 2 & 3D to demonstrate
feasibility of method for inviscid compressible flow
problems

# Future direction
s Efficient & accurate grid movement strategy

Static & Moving 3D geometry problems

Weakly compressible flow

Viscous flow extension
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Conclusion

-

# Have described Lagrangian-like moving grid methods
for hyperbolic balance laws

# Have shown results in 1, 2 & 3D to demonstrate
feasibility of method for inviscid compressible flow
problems

# Future direction
s Efficient & accurate grid movement strategy
s Static & Moving 3D geometry problems
» Weakly compressible flow

» Viscous flow extension

L

- Thank You .
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