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Abstract
Front Tracking Methods based on Wave Propagation
by Keh-Ming Shyue

Chairperson of Supervisory Committee:
Professor Randall J. LeVeque
Departments of Mathematics and Applied Mathematics

In this thesis, we develop and study a simple front tracking approach that models the
propagation of discontinuous solutions for nonlinear hyperbolic systems of conservation
laws with source terms,

in both one (N = 1) and two space dimensions (N = 2). In this approach, we use a uniform
underlying grid with some grid cells subdivided by tracked interfaces, made up of moving
points in one space dimension and curves in two space dimensions, approximately aligned
with discontinuities in the flow field. In each time step, we introduce a new set of interfaces
that are close to the expected locations of discontinuities in the solution at the end of the
time step. A conservative high resolution finite volume method based on the large time step
wave propagation approach is then applied on the resulting nonuniform grid to update the
cell values. A time-splitting method is employed to handle source terms.

Our error estimation results show that this front tracking method is stable even if some
of the small cells created by the tracked interfaces are orders of magnitude smaller than the
regular cell that is used to determine the time step. In addition, high resolution results can
be obtained for cells near the tracked discontinuities without oscillations.

A wide variety of problems have been solved to validate the method for problems in-
volving shock waves and interfaces (contact discontinuities and slip lines) arising in gas
dynamics. Typical examples we consider are a one-dimensional unstable detonation wave
problem, a two-dimensional shock-ramp interaction, and two-dimensional Kelvin-Helmholtz
and Rayleigh-Taylor instabilities. These results show the effectiveness of our front tracking
methods in both one and two space dimensions. They also show the importance of using
front tracking for these problems.

This thesis also describes an algorithm that can be used to solve a coupled system of
elliptic and hyperbolic partial differential equations arising in oil reservoir simulation. Our
preliminary results indicate that front tracking is a very useful tool for this problem.
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Chapter 1
INTRODUCTION

1.1 Preliminaries

Sharp fronts are commonly seen in the real world. In many applications, they typically move
as time evolves and often undergo some complicated physical processes, displaying a rich
variety of frontal structure, see [44],[77],[80],[103] for examples. Since in many instances the
behavior of this time-dependent front provides some useful information in understanding
the underlying physics, front tracking is of great importance in fluid dynamics and in other
branchs of research that study the nature of fronts in various physical situations.

In this thesis, we consider a simplified model for such an investigation in which viscosity,
heat conduction, and other physical aspects relating to the microscopic structure of fronts
are ignored, and the equations that describe front motion are a nonlinear hyperbolic system
of conservation laws, perhaps with source terms

ou XL 9
N +j§ aijj(U) = 1)(u) (1.1)

where N is the number of spatial dimensions. We develop and study a simple front tracking
approach that follows the discontinuous solutions explicitly for this model system in both
one (N = 1) and two space dimensions (N = 2). This gives us a good method for modeling
the propagation of fronts, and so is an important step toward studying problems involving
sharp fronts.

Here the system we consider has m equations, so u € R™. The homogeneous system
with ¢(u) = 0 in (1.1) is assumed to be hyperbolic in the sense that the Jacobian matrix
of any linear combination of the flux functions f;(u), i.e.,

o (N
™ a;fi(u) for arbitrary «; € R,
u\ =

is assumed to have real eigenvalues and a complete set of eigenvectors for each physically
relevant value of the conservative variables u. This is true, for example, for the Euler
equations of gas dynamics which we use as our model system (see Sections 3.2 and 7.2).
Other examples of practical interest may be found in [32] and [108].

Source terms of the form 4 (u) can arise in various ways. Geometric source terms arise if
a system in more than one space dimension is reduced to a one-dimensional problem using
symmetry (e.g., radially symmetric flow) or by assuming that the cross-sectional flow is
homogeneous, as in the “quasi one-dimensional nozzle” problem discussed in Section 5.2.1.
In another instance, gravitational source terms appear if gravity (which acts as a body
force in the system) is of importance in the simulation, for example, in the Rayleigh-Taylor
problem examined in Section 9.2.2.



Source terms that are more difficult to handle arise in the study of nonequilibrium or
chemically reacting flows (e.g., in combustion problems). Here the density is replaced by
several different density functions, one for each chemical species, and the fluid equations
are coupled to source terms for the production and consumption of individual species. Such
problems are often complicated by the fact that the time scale of the chemical reactions
may be orders of magnitude faster than the time scale for the fluid dynamics. Shock waves
in the flow may be coupled with thin reaction zones in which mesh refinement is required in
order to efficiently model the flow. A model system of this form is discussed in Section 5.2.2.

A number of front tracking algorithms have been proposed in the past and used to study
front propagation (see Section 1.3). Their results show that the front tracking algorithm is
an efficient way to compute flows involving discontinuities, but at a price of complicating
the methods. A list of difficulties that need to be overcome in the front tracking algorithm
is given in [17].

Here our work is different in that we use a conservative finite volume method based on
the large time step wave propagation approach[61] to overcome a major difficulty associated
with the limit on the time step in the presence of small cells created by the tracked front
cutting through the grid, while maintaining conservation of the algorithm. In addition,
we have investigated a variety of approaches to obtain high resolution in the grid cells
near the tracked interface and have done extensive tests of accuracy and stability. Various
approaches to propagating the front have also been studied and compared. This work of
analyzing the algorithm is one of the main features of this thesis. In fact, doing so gives
us a solid base in understanding solutions obtained from this algorithm, and this helps us
understand the physics when the algorithm is employed in various applications.

1.2 Our Approach — thesis work

The basic idea of our front tracking algorithm is quite simple. We choose a uniform under-
lying grid with some grid cells subdivided by tracked interfaces, made up of moving points
in one space dimension and curves in two space dimensions, approximately aligned with
discontinuities in the flow field. In each time step, we introduce a new set of interfaces that
are approximately aligned with the expected locations of discontinuities in the solution at
the end of the time step. A high resolution finite volume method is then applied on the
resulting nonuniform grid to update the cell values. If we have chosen the new interface
locations well, the resulting solution will remain sharp and be smooth away from these new
interfaces. The old interfaces can then be eliminated by recombining the adjacent cells.

Figure 1.1 shows a typical grid system for our front tracking algorithm. In Figure 1.1a,
we show a one-dimensional grid where moving points are introduced for the discontinuities,
and are inserted into an underlying uniform grid as grid interfaces. In Figure 1.1b, we show
a two-dimensional grid where piecewise linear curves are introduced for the discontinuities,
and are inserted into the grid.

To advance the tracked interfaces from the current time step to the next, we solve
a one-dimensional Riemann problem at each tracked interface using the values from the
adjacent cells as data, and follow strong waves to determine the new locations at the end
of a time step. In one space dimension, this can be accomplished quite easily as illustrated
in Figure 1.1a where £ = x¢ + A\pk is the new location of the old tracked point z¢ with
strong wave speed ), (obtained from solving the Riemann problem at z¢) over a time step
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Figure 1.1: A typical geid system for our front tracking algorithm. a) In one space di-
mension, moving points are introduced for the discontinuities, and are inserted into the
underlying uniform grid as grid interfaces. b) In two space dimensions, piecewise linear
curves are introduced for the discontinuities, and are inserted into the underlying grid.

k. This new interface location Z¢ is then inserted into the grid. This one-dimensional front
tracking algorithm is discussed in more detail in Chapter 3.

In two space dimensions, the new interface locations can be chosen by a technique analo-
gous to our one-dimensional approach. Since each tracked interface is the boundary between
two cells, we can use the values from the adjacent cells as data to solve one-dimensional
Riemann problems in directions normal and tangential to each interface. We expect the
solution to this Riemann problem to consist of only one strong wave, corresponding to the
shock or interface (contact discontinuity or slip line) being tracked, and other weaker waves.
Since we want the new tracked interfaces to form a continuous piecewise linear curve, as
shown in Figure 1.1b, we need to use the solutions of neighboring Riemann problems in
some coordinated manner to determine the new interfaces. There are various ways that this
can be done via some sort of curve fitting through points determined by the strong waves
from the Riemann solutions. In Chapter 7, we present one simple approach in more detail.
Our basic philosophy of tracking, however, gives us some flexibility on this score — we do
not view the interface we introduce as being the definitive location of a tracked front, but
rather as a grid interface that is sufficiently well located and aligned that the solution can
be well captured on the resulting grid.

Once the new grid is constructed, the solution is then advanced using a fully conservative
shock capturing method. This method must be able to deal with the irregular cells near
the tracked interface. In particular, we must maintain stability even if some of these cells
are very small relative to the underlying mesh size used to determine the time step. We
also hope to maintain second order accuracy in the smooth flow on either side. This is
accomplished using a high resolution method based on the large time step wave propagation
approach, developed by LeVeque[60],[61] (see also Chapters 2 and 6). The main idea is that
waves arising from the solution of Riemann problems at the cell boundaries are propagated
the appropriate distance determined by the wave speed and time step, and used to update
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cell averages in any grid cell they encounter. The wave may affect more than one cell if the
neighboring cell is very small. In this manner the stencil of the method adjusts automatically
so that the CFL (Courant-Friedrich-Lewy) condition is always satisfied regardless of the
configuration of the grid.

Source terms in the equations are currently handled using a Strang splitting[97]. The
source terms are used to solve the ordinary differential equations u; = 9 (u) in each grid
cell over a half time step. The homogeneous conservation laws are then solved using front
tracking with a full time step. Another half time step is then taken with the ODEs (see
Section 5.2).

Our goals here are to study the feasibility of this front-tracking procedure and explore
various finite volume approaches on the resulting nonuniform grid. We avoid stability
problems in the presence of small cells and achieve high resolution even in cells near the
tracked interfaces in a conservative manner. In the current formulation, we only consider
fronts with simple geometry. The approach we take here could alternatively be incorporated
into a more complicated algorithm for complex geometry. However, even this simple form
of front tracking can be very useful for certain classes of problems, as some of the examples
in this thesis illustrate.

1.3 Other Approaches — overview

A wide variety of approaches have been used over the years to develop shock tracking
or interface tracking methods. We will only mention a few of the main ideas and how
they relate to our method. A concise survey of several approaches for the two-dimensional
problem is given by Hyman[54] (see also Oran and Boris[77]).

With many methods, the conservation laws are solved separately on each side of the
discontinuity using a method designed for smooth flow, while the shock or interface is
handled in a different manner using the Rankine-Hugoniot jump conditions. This is the case,
for example, with the method pioneered by Moretti[73]. Similar methods have been used
by others, e.g., Di Giacinto and Valorani[34], and Salas[91]. These methods are typically
not conservative, which may be a problem if other shocks are present that are not being
tracked. However, very nice results have been obtained for problems with sufficiently simple
structure.

Maol[70],[71] has recently introduced a front tracking method in which two sets of data
near the interface are constructed by extrapolating the data from each side to the other side.
High resolution ENO (essentially non-oscillatory) methods are applied to the extrapolated
values which now define smooth functions. The method is not exactly conservative at the
interface, although errors in conservation appear to be small. Away from the interface the
method is fully conservative.

Glimm and coworkers, e.g., [17],[38],[42], have developed a very extensive set of tools for
shock and interface tracking that have been successfully applied to a wide variety of prob-
lems. This package includes procedures to deal with complicated interactions of interfaces,
Mach triple points, and other such structures in spite of the lack of conservation at the
tracked front. The structure of solutions to multi-dimensional Riemann problems is used
to determine the behavior of the solution near the intersection points. This complicated
algorithm is capable of dealing with some very complex problems.



The approach taken here is fully conservative and based on high resolution shock cap-
turing methods so that features not being tracked can still be accurately computed. The
method is quite simple conceptually and algorithmically, although it would be complicated
considerably by allowing the interaction of fronts.

We use a finite volume method on a grid consisting of a uniform fixed grid in which
some cells have been subdivided by tracked interfaces. Potential problems with stability
are avoided by the use of a “large time step” method. Another approach would be to
eliminate the problematical small grid cells by merging them with adjacent cells, temporarily
eliminating a “fixed” cell boundary in the process. This approach is used, for example,
in [75] and [98]. However, this may be impossible to do if several tracked fronts fall within
one fixed grid cell. Moreover, this seems to be unnecessary with our approach.

Swartz and Wendroff[98] also consider a method in which the flow is entirely represented
by a collection of discontinuities, all of which are explicitly tracked. Following Dafermos[26],
a piecewise linear equation of state is used to ensure that only discontinuities arise in
solutions to Riemann problems. A similar approach was investigated by Hedstrom[51]
and has more recently been adopted by Risebro and Tveito[87],[86]. Since every collision
must be explicitly handled by solving a Riemann problem, and the collision of two waves
typically gives rise to m new waves (for a system of m equations), this can clearly lead to
an explosion of information if m > 2, as in the Euler equations. (Although Wendroff[105]
has studied this method for a problem arising in chromatography and shows that for this
special system the number of waves remains bounded.) In general, at some point weak
waves must be suppressed in order to limit the amount of information retained, leading to
a loss of conservation. Another problem is that smooth flow is not represented with high
order accuracy. Finally, there is the obvious difficulty of extending such methods to more
than one dimension.

Our method is perhaps closest to that of Chern and Colella[16]. They also use a con-
servative method on a uniform grid, with some grid cells subdivided by the tracked front.
They avoid stability problems in small partial cells by a “flux redistribution” algorithm that
modifies fluxes at the boundaries of these and neighboring cells in such a way that stability
is restored while conservation is maintained. Our use of the wave propagation algorithm
described in Chapters 2 and 6 has the same effect. In addition, we believe it to be more
solidly based on the correct physical behavior of the waves, and more amenable to high
order extensions and theoretical analysis.

Another way that our algorithm differs from that of Chern and Colella is that we
explicitly track the discontinuities, while they use a fractional marker volume (or “volume of
fluid”) approach in which they keep track of the volume of fluid in each cell that is “behind”
the front and then dynamically reconstruct the front in each time step. This approach is
used in many interface methods, e.g., [18],[46],[58],[76]. In one space dimension there is little
difference in these approaches — determining the front location is trivial from the fractional
volume but on the other hand tracking the points explicitly is also quite simple. In two space
dimensions one must seriously weigh the tradeoffs. Hyman[54] discusses some of the pros
and cons. Our current two-dimensional implementation is based on explicitly tracking the
global interface, but the stable high resolution numerical methods we are developing could
be equally well used in the cells formed by locally reconstructing the front from fractional
volume information.

Another quite different approach to representing interface is proposed by Mulder, Osher,



and Sethian[74],[78]. They represent the front as a level set of an auxiliary function that
satisfies an equation of Hamilton-Jacobi type. This seems to be a promising approach since
it handles complicated changes of geometry quite easily.

Finally, we want to mention that there are also a number of shock capturing approaches
that are capable of improving the resolution of discontinuities. Methods of this type include
the self-adjusting grid methods of Harten and Hyman[49], and the ENO method with subcell
resolution of Harten[47].

1.4 Outline

This dissertation is divided into three parts. In Parts I and II, we develop, analyze, and
apply the front tracking algorithm for nonlinear hyperbolic systems of conservation laws in
one and two space dimensions, respectively. In Part III, we consider problems arising from
porous media flow where the hyperbolic conservation law is coupled with an elliptic partial
differential equation in order to correctly model the problem.

The organization for Parts I and IT is quite similar. In Chapters 2 and 6, we begin
describing numerical methods that can be used on a nonuniform grid generated by the front
tracking algorithm. In Chapters 3 and 7, we describe the front tracking algorithm, introduce
our model system (the Euler equations of gas dynamics), discuss the implementation of
boundary conditions for this system, and present preliminary results obtained using this
algorithm for this model system. In Chapters 4 and 8, we perform error estimation and
study accuracy and stability of the algorithm. Several approaches that can be used to
improve upon the algorithm have been discussed also. In Chapters 5 and 9, we present
more numerical results for various applications arising in gas dynamics.

In Part ITI, Chapter 10, we describe an algorithm that can be used to solve a coupled
system of elliptic and hyperbolic partial differential equations arising in oil reservoir sim-
ulation. Some preliminary results for this problem in both one and two space dimensions
are also shown. Finally, in Chapter 11, we summarize the thesis work and outline future
research.



Part 1

One Space Dimension



Chapter 2

FINITE VOLUME WAVE PROPAGATION METHODS

We begin our discussion by describing numerical methods that can be used to compute
the smooth solution for the homogeneous conservation laws

up + f(u)y = 0. (2.1)

Although these methods are related to various upwind or flux-limiter methods[20],[50] that
have been widely used for conservation laws, the formulation is somewhat different. We
use a wave-propagation viewpoint that allows us to interface the method easily with front
tracking and maintain stability even when very small cells are created.

2.1 Preliminaries

We describe the methods on a general nonuniform grid with grid spacing h; = z;1 — z;.
We use a finite-volume formulation in which the value UJ" approximates the cell average of
the solution over the grid cell [z, zj41] at time ¢,

1 Tj+1
Ui ~ —/ u(z,t,) dz.
hj Ja,

The time step is denoted by k. Note that the grid may vary from step to step but the
method involves only two time levels, so this presents no difficulty.

The methods we use are based on solving Riemann problems at each interface. A
Riemann problem consists of the original conservation laws (2.1) together with piecewise
constant data u; and u, to the left and right of a single discontinuity. The Riemann problem
for various systems of conservation laws has been extensively studied and the exact solution
can often be found [15],[57],[63]. Under certain conditions, satisfied for the Euler equations,
for example, the solution is a similarity solution (depending on z/t alone) that consists of
m waves for a system of m equations. Each wave is a shock wave, rarefaction wave, or
contact discontinuity.

At each interface z;, we solve the Riemann problem with data U, and U;". Rather
than computing the exact solution to the Riemann problem, which can be done but is rather
expensive, we use an approximate solver developed by Roe[88] at most interfaces. This is
much more efficient to compute than the exact Riemann solution and in smooth regions
of the flow provides a very accurate approximation. Only at front collision points do we
use the exact Riemann solver so that the nonlinear interaction is accurately computed (see
Section 3.1 for further discussions).

Roe’s approximate Riemann solver replaces the nonlinear equations (2.1) with data
and u, by a linear system

w4 A(ug, uy)ugy = 0. (2.2)



The matrix A(u;, u,) is chosen to have the following properties:

i) A, up) (ur —w) = f(ur) = f(w)
i) A(u,u,) is diagonalizable with real eigenvalues (2.3)

iii)  A(ug,uy) — f'(@) smoothly as wuy, u, — .

Such matrices have been derived for several systems of practical interest. For the Fuler
equations with a y-law gas, the form of the matrix is given by Roe[88].

The solution of the linear system (2.2) is a similarity solution that consists of m disconti-
nuities propagating at constant speeds. The jump across each discontinuity is an eigenvector
of the matrix A, and the propagation speed is the corresponding eigenvalue. We thus have

m
Up — U] = er, (2.4)
p=1

where r, € R™ is an eigenvector of 4,
Ary, = Xprp, p=1,2,..., m.

Wave propagation methods are based on using these propagating discontinuities to update
the cell averages in the cells neighboring each interface.

2.2 Godunov Method

To begin, we assume that waves resulting from the Riemann problems affect only the cells
adjacent to the discontinuity during the time step. This requires that the Courant number
be less than 1. The Courant number v is defined by

UV =

k
Api 2.5
Bt ngi.x| m‘ (2.5)

where
hmin = In]ln h]

and ), ; represents the pth eigenvalue obtained from the Riemann problem at x;. Note that
kMy; is the distance a wave propagates during the time step. If )\p; < 0, then we need
k| Xpj| < hj_1, while if X\p; > 0 we need kM,; < h; in order that the wave stays within the
adjacent cell. Condition (2.5) is sufficient to guarantee this.

A first order accurate version of the wave propagation method is then equivalent to
Godunov’s method, with the Roe Riemann solver, on a nonuniform grid. That is to say, we
solve the Riemann problems at each interface over a time step of length k& and then average
the resulting solution over the grid cells to obtain U™*!. By computing the effect of each
wave on the cell average, we obtain the following wave-propagation form of the algorithm:
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Algorithm 2.1

Initialize U7 := U for all j
For each j do begin
Solve the Riemann problem at z; based on data U;Ll,
jumps 7,; and speeds \p; (p =1,2,...,m)
For p =1,2,...,m do begin
# Update the cell average to the left or right of the interface
# depending on the speed:
If \pj <Otheni:=j—1elsei:=j
UP*h = UPFE = Npjkrys /b
# Apply second order corrections if desired (See Algorithm 2.2)
end

UJ” to obtain

end

The second order corrections will be discussed below. We can rewrite this method as a
standard finite difference method in conservation form if we look at the total contribution
to each grid cell. We find that

Ao ke Apir1k
Uptt = U - 3 T - Y Pen
Apj>0 7 Apj+1<0
n k n n ? 7
= U] — h—J[F(U] 3 j+1) - F(Ujfl’Uj )]

where the numerical flux function F' is given by

FUUS) = f(U]) + Z Apj+1Tp,j+1

Ap,j+1<0

and

F( ;thU]n) = f(UJT'lA)"‘ Z ApjTpj (2.6)
Apj <0

= f(U]n)_ Z ApjTpj-

Apj >0

The last equality follows from Property (2.37). This property guarantees that the wave-
propagation method is conservative.

The advantage of using the wave propagation form rather than the more traditional
flux differencing form is that the method can then be easily extended to the case where
the Courant number is larger than 1. In this case, waves propagate through more than
one grid cell. The flux differencing formula based on the above fluxes would then lead to
an unstable method, since the ratio \y;k/h; would be larger than 1 in magnitude for some
waves. On the other hand, using the wave propagation approach allows us to extend the
method easily in a stable manner. Note that it is also possible to write a flux differencing
method for this larger Courant number case, but the fluxes are more complicated[59].
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jg—1 g Jg+1

Figure 2.1: Wave propagation in the case k\,; > h;. The wave propagates entirely through
one cell and part way through the neighbor.

For example, if k|)\,;| > h; at some point in the algorithm, then the corresponding wave
should update more than one cell average, as shown in Figure 2.1. In this figure, U]“H is
updated by the entire jump 7p;,

n+1 ,__ n+1 .
U™ =U""" —rp,

while U;L_:rll is updated by

ntl._ o+l k>‘m‘ — hj ro
i+1 = Y41 I R ZE
! ! hjt1

The method remains conservative with this modification. This “large time step” version
of Godunov’s method is discussed in some detail in [60],[62]. Regarding stability, we note
that for a scalar nonlinear conservation law the method is total variation diminishing (TVD)
and hence is stable and convergent[59]. Also, for a linear system of conservation laws the
method reduces to a scalar large time step method on each characteristic field and again is
stable. For nonlinear systems of equations, some oscillation problems have been observed
when large Courant numbers on uniform grids are used in the context of shock capturing[60].
In this case, waves pass through several grid cells and the linearization of the nonlinear
interactions apparently results in difficulties.

However, in the context of front tracking, where the Courant number is large only due
to occasional small cells and we are capturing smooth flow, we have not observed stability
problems for most calculations. In one example presented in Section 5.1.2, the Woodward-
Colella blast wave interaction problem, we have experienced difficulties due to negative
pressures using the linear wave interactions. It is an extreme case, however, in which a
strong rarefaction wave overtakes a shock that has a very low pressure in front of it. The
pressure becomes negative when the rarefaction wave passes through the blast wave and
enters the low pressure region.

2.3 High Resolution Godunov Method

We now extend the method to a high resolution method, i.e., a method that achieves
second order accuracy on smooth flows (except perhaps near extrema) and also avoids
oscillations near discontinuities. The approach we use is similar to the MUSCL (standing for
“Monotonic Upstream-centered Scheme for Conservation Laws”) approach of van Leer[104]
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in that we introduce piecewise linear approximations to the solution in place of the piecewise
constant functions used in Godunov’s method, but the form of the method is quite different
and allows easy extension to the case where the Courant number is larger than 1. More
details of this approach can be found in [61],[62].

We begin our method by solving the Riemann problems as before, using the piecewise
constant data. The resulting jumps r,; are then used to obtain slope information in each
characteristic family. Let

1
hj_ 172 = §(hj—1 + hj)

be the distances between cell centers. Note that

> rpilhi—ip = (U} =Uy)/hj_1)
p=1
= uy(zj, ty) + O(h).

So each component rp;/h;_; /5 is the contribution to the slope arising from the pth family.
It is important to decompose the slope into components, since the waves in the different
families propagate at different speeds and perhaps in different directions. Moreover, when
we introduce slope limiting, we will do the limiting separately in each family. We wish to
limit slopes near a discontinuity in order to avoid oscillations, but wish to do this in the
family with the discontinuity without affecting accuracy in other families where the solution
may be smooth.

We will use 0,,; to denote the slope used in the pth family over the cell [z, z;11]. The
unlimited slope is taken to be

Toi[hi_ if Ay; <0

Upj = p]/ J h1/2 f )\p]' 0 (27)
Tpj+1/hjy1y2  if Apjr1 > 0.

To avoid oscillations, the slope 0,,; should be chosen based on a slope limiter. If we let o)

pj
be the ith component of 0,; (i = 1,2,...,m) and similarly let rl(,;) be the ith component of

Tpj, then we apply a slope limiter separately in each component, i.e., we take

(9) (4) s

j—1/2

where ¢ is some limiter function applied to the slope ratio

(1)

o) = Mi1/2 Tyt (2.9)
with s = —sgn(Xpj). One simple choice of limiter is the “minmod” slope limiter ¢, given
by

0 ife<0
60 = {6 ifo<h<1 (2.10)
1 ife>1

= max(0, min(1,6)).



13

Other choices of slopes can also be used, and a variety of limiter functions have been
developed that work better than “minmod”. Typical examples are the “superbee” limiter
of Roe[89]:

#(0) = max(0, min(1,26), min(0,2)), (2.11)
and the “MUSCL” limiter of van Leer[104]:
#(#) = max(0, min(2,26, (1 +6)/2). (2.12)

See Sweby[99] for a more general discussion of limiters.

This slope is used to modify the cell averages computed via the first order algorithm.
The modification is accomplished by shifting a certain mass between cells in a conservative
manner. The idea is best explained by considering the linear advection equation

ug + aug =0 (2.13)

on a grid with Courant number v = ak/hpin < 1, a > 0. Godunov’s method is then simply
the first order upwind method

1 ak
uptt =up - F(Uﬂn — U ). (2.14)
J
This can be interpreted as follows: view UJ' as defining a piecewise constant function
tij(x,t,). Shift this function at the propagation speed a to obtain u;(z — ak,t,). Now
average this function over the grid cells to obtain

1 [+
U;Hl = h_/ ’ tj(x — ak,t,) dx.
JJxj
It is easy to verify that this gives (2.14). So each cell average is updated by the shaded area
in Figure 2.2a divided by the cell length.
A natural way to extend this to second order accuracy is to replace the piecewise constant

function by a piecewise linear function of the form

~ Ur+ (r —x;11/9)0; xj <z <xjy

(2, tn) =4 I YT G = 2.15

(@ tn) { 0 otherwise, (2.15)
with slopes o; on each cell as obtained, for example, from (2.7). For the scalar equa-
tion (2.13), this reduces to

oj = Uiy = U} )/ hjy1/0- (2.16)

We then shift this function at speed a and average onto the grid. We thus obtain U;"H by
updating U}* according to the shaded area of Figure 2.2b.

An easy way to accomplish this is to split the procedure into two pieces. In the first
step we update cell averages using the piecewise constant wave as in Figure 2.2a (i.e., we
apply (2.14)), and in the second step we propagate the piecewise linear wave form shown
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j-1 j j+1 j—1 j j+1 j-1 3 j+1
Figure 2.2: a) Propagation of the piecewise constant wave. b) Propagation of a piecewise
linear wave form. c) Second order correction wave. The propagation shown in Figure b can
be decomposed into propagation of the piecewise constant wave of Figure a together with
propagation of this correction wave.

in Figure 2.2c¢, with zero mean value and slope o; over the cell. We then further update
U;"H by the shaded area in Figure 2.2c, i.e., we set

ak

ﬂj(h]’il - ak)O'jfl.

Uit = Ut

We also update U;lj'll by the area of the portion of the correction wave that overlaps this
cell,

n+1 ,__ n—+1 ak
Uj*l - U’fl -

J 2hj—1 (h]'*1 o ak)O'jfl.

Conservation is maintained in this correction step with any choice of slopes since the above
two corrections (weighted by cell size) sum to zero.

Of course, U™ will also be updated by the wave originating from Tji1/2. When all of
these updates are combined, we find that

11 ak
vt =0Uj - h_J(UJn -Ujy) +

;Tkj(hj_l - ak)aj_l - %(hg - ak)oj.
On a uniform grid with slopes (2.16), this reduces to the Lax-Wendroff method for the
linear advection equation (2.13) and is second order accurate.

The extension to nonlinear systems is straightforward. We apply Algorithm 2.1 but
now for each wave we also apply a correction step. In this algorithm we assume that the
Courant number is less than 1, and so the correction step takes the form in Algorithm 2.2.
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Algorithm 2.2 (Insert in Algorithm 2.1)

# Second order corrections:

If \yj <Otheni:=jelsei:=j5—-1
n+l . pn+l |)‘pj|k

Uy " =U;"+ —th

n+1 . rrn+l |>\pj|k
Uj—l e Uj—l - 2]77—_1

(hi — P‘m"k)api

(hi — |)‘pj‘k)0pi

Note that this correction can be easily translated into the flux differencing framework.
The first order flux F(U? |, U}') from (2.6) is simply replaced by

m

1
an—l/Q = F(U]n—la an) - Z E‘Apj‘(hi(p) - |>‘Pj|k)0p,i(p) (2-17)
p=1

where

o) a=1 it >0
ilp) = { j if Ap; <0.
Notice that the flux now depends on four neighboring points rather than two, so we use the
abbreviated notation F]?ZI/Q. This flux formulation will be useful in conjunction with grid
refinement in Section 5.1.
For a scalar nonlinear problem on a uniform grid with slopes (2.7), this again reduces to
a form of the Lax-Wendroff method and can easily be verified to be second order accurate.
For a nonlinear system of equations on a uniform grid, this method is quite comparable to
other slope limiter of flux limiter methods and yields similar high quality results.
The method can also be generalized quite easily to nonuniform grids with Courant
number greater than one by appropriately averaging the correction wave onto whatever
grid cells it overlaps. Algorithmic details may be found in [62].



Chapter 3
FRONT TRACKING ALGORITHM

Having described the numerical methods that can be used on the nonuniform grid for
the homogeneous conservation laws (2.1), we now discuss the front tracking algorithm for
this system. As we will see from the discussion, this algorithm is very simple and robust.
Moreover, it is a conservative algorithm with no stringent time step limitations in the
presence of small cells created by the tracked interfaces cutting through the grid. One
example will be given here for our model system, the Euler equations of gas dynamics, to
demonstrate the effectiveness of the algorithm. The implementation of boundary conditions
for this model system will also be discussed.

3.1 Algorithm

Our grid consists of two parts. We choose a uniform underlying grid with mesh size h that
remains fixed for all time, and we also introduce tracked points which vary from step to
step for discontinuities in the flow field. These tracked points subdivide some regular cells
into two or more subcells, creating some irregular cells. We then view the union of the
regular cells and irregular cells as our global grid (see Figure 3.1). In each grid cell the cell
average is denoted by U

In each time step our front tracking algorithm consists of the following steps:

Algorithm 3.1

1) Determine the size of the next time step and the location of the tracked points at the
next time step.

2) Modify the current grid by inserting these new tracked points. Some cells will be sub-
divided and the values in each subcell must be initialized.

3) Take a time step on this nonuniform grid using a finite volume method described in
Chapter 2 to update the cell averages.

4) Delete the old tracked points from the previous time step. Some subcells will be com-
bined and a value in the combined cell must be determined from the subcell values.

Before describing each of these steps in more detail, we first discuss some possible
approaches to setting up the data structure. One possibility is to use a doubly linked list
for the entire grid (see [1] or [55] for more information on the use of linked lists). Each
grid cell is an element of this list, with pointers to the previous and next grid cells. With
this data structure, it is easy to insert and delete grid points and the distinction between
regular and irregular cells disappears. This is reasonable in Step 3 of our algorithm, where
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little distinction is made between regular and irregular cells, although we will see that we
must be careful in our choice of slopes near tracked points. We also need to keep track of
which points must be deleted in Step 4. For these reasons we would also maintain a flag for
each point that tells whether it is a regular point, an old tracked point, or a new tracked
point.

The use of a doubly linked list does not extend very well to two space dimensions.
Another more general approach is to use a standard representation for the fixed grid together
with a flag for each grid cell that indicates whether the grid cell is subdivided by one or more
tracked points. For subdivided cells, this flag can be a pointer to another data structure
containing information on each subcell.

This latter data structure also interfaces more easily with the adaptive mesh refinement
algorithm we use, and so we have taken this approach in our code.

We now discuss each step of Algorithm 3.1 in more detail.

Step 1: We begin our algorithm by solving the Riemann problem at each interface
and obtain the resulting jumps r,; and speeds Ap;. Then at each interface we check each
jump 7p; to see if it should be tracked. This can be done by checking, for example, if
the max-norm of r,; is greater than some prescribed tolerance ¢, or if the jump in some
physically meaningful variable (e.g., density or entropy) is greater than the tolerance e.
The choice of the checking criterion and tolerance € for determining the tracked waves may
depend on the specific problem and should be adjusted accordingly. In order to capture
the shock formation, the jumps have to be checked at regular interfaces as well as at the
tracked interfaces so that new tracked points can be introduced. By examining the jumps
at tracked interfaces, decaying shocks can also be detected and hence ignored.

It should be noted that only waves corresponding to the physically relevant discon-
tinuities should be tracked, i.e., shocks or contact discontinuities. Although rarefaction
waves are also approximated by discontinuities in the Roe Riemann solver, we want them
to be smeared rather than remaining sharp and so they should not be tracked even if their
strength is greater than €. Moreover, due to this rarefaction wave approximation, we may
obtain an entropy-violating solution if the rarefaction wave is a transonic one. This entropy
violation can be fixed in various ways, for example, by replacing the single entropy-violating
discontinuity by two discontinuities traveling in opposite directions[49].

Before entering the front tracking algorithm, we have some basic time step k. In order
to avoid the interaction of tracked waves during this time step, we adjust our time step if
needed. It will be adjusted in such a way that the collision of two tracked waves occurs
exactly at the end of a time step (see Figure 3.1). This can be accomplished quite easily.
Assume that there are two tracked waves, one originating from z, with speed A, and the
other from z¢ with speed Aj,. Here p, q are the wave families, and 7, { are the indices of
the cell interfaces. Let Z,, Z¢ be the new locations of z,, z¢ under the current time step,
ie.,

Ty = xp+ Ak,
Te = $§+>\q§k.

If no interaction occurs, the product of the two relative distances (&, — Z¢)(x, — z¢) will be
greater than zero for each pair of tracked waves. If interaction happens, the time step for
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Figure 3.1: A typical grid in the z-t plane when front-tracking is used to model the collision
of two shocks with the Euler equations. The uniform grid is augmented by cell interfaces
at the discontinuities. The time step is adjusted so that the shock collision is correctly
resolved.

this pair of interaction can be computed by

k= (zy —x¢)/(Age — Apy)-

We choose the time step to be the minimum of all collision times found by checking adjacent
tracked waves.

If collision occurs, in the next time step the approximate Riemann solver is replaced by
the exact Riemann solver at the collision point to insure that the resulting waves in the
next time step are well resolved. By choosing the time step in this way and using the exact
Riemann solver, we guarantee that the collision of two tracked waves is always handled
correctly.

Step 2: After choosing the time step k, we can compute the locations of each tracked
wave at the end of the time step. Some of these locations may coincide if two waves
collide, or if the new locations are exactly at the old grid interfaces. Also, some waves may
pass outside of our computational domain at an outflow boundary. For each distinct wave
location in the domain, we insert a new cell interface into our old grid. Each new point
subdivides some cell into two subcells. We must assign a cell value on each of these subcells
(see Figure 3.2 for an example). The simplest approach is to assign the previous cell value
to each subcell. It would be preferable to use some form of interpolation to determine more
accurate values on these cells. However, doing so would change the solutions to neighboring
Riemann problems and perhaps the speed of the tracked waves. The location of the point
we are inserting might therefore be incorrect. For this reason we use the simpler approach.

Step 3: Once the new grid is constructed, the cell average values U are then updated
by applying the finite volume wave propagation method described in the previous chapter on
the resulting nonuniform grid, see Figure 3.3 for illustration. Since the new grid has been
chosen carefully so that all the strong waves are propagated exactly to cell boundaries,
there is no smearing of the tracked waves during the averaging process. Smooth flow is
captured as usual. Note that during this propagation process, all waves are propagated
independently, and in principle no distinction need be made between tracked points and
ordinary grid boundaries. Near tracked points, waves may propagate through several cells
due to the fact that we have created small subcells. A consequence of this is that waves pass
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Figure 3.2: A shock propagating from cell 7 to cell j =i + 1 leads to a subdivision of cells
v and j. In time step n we split cell j in two, setting U} = Uj = U}". In time step n + 1
we eliminate the old tracked point in cell 7 using (3.1).

tn+1 t : t

tn = i

Figure 3.3: Wave propagation in step 3. Each wave is propagated independently, and for
waves passing through each other the interaction is linearized. Note that the tracked wave
is propagated exactly to the new cell boundary Z¢ introduced in Step 2. (The solid lines
shown in the figure represent the tracked waves, while the dashed lines represent the weak
waves. )
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through one another as they would in a linear equation, without undergoing the nonlinear
interaction that should occur. For weak waves, this is a good approximation, as described
in [60]. For the interaction between a strong tracked wave and the weak waves arising
from the nearby Riemann problems, this linearization is less valid. In the next chapter, we
investigate the error introduced by this procedure, and discuss one possible approach that
may improve the accuracy.

Step 4: We now delete the old tracked points from the current grid. This corresponds
to merging two subcells into one, and the cell value in the combined cell is calculated by
the appropriate weighted combination of these two deleted subcells to maintain the correct
cell average. For example, in Figure 3.2, the old tracked point z¢ is deleted from the ith
regular cell, and so the ith cell average after deletion becomes

Te — T 1, Lid1 — Tg 1
T’U;}jr + ’TU;;JF (3.1)
where UZZH, Ui’;"'l are the cell averages in the first and second subcell of the ith cell

respectively, and h is the underlying fixed mesh size.

n+1 __
UZ' —

3.2 The Euler Equations and Boundary Conditions

Before presenting numerical results with this front tracking algorithm, we pause to introduce
the Euler equations of gas dynamics and discuss the implementation of boundary conditions
for this system.

The inviscid Euler equations of gas dynamics in one space dimension take the form

o ° 0 pv
il B Rl pv?+p | =0 (3.2)
pE (pE + p)v

where p, v, p, E are the density, velocity, pressure, and total energy of the gas per unit mass,
respectively. We assume a ~y-law gas, in which the internal energy satisfies e = ﬁp/ 0,
where v is the ratio of specific heats (y 2 1.4 for air). Then the total energy of the gas per
unit massis £ = e+ %02. The three components of equations (3.2) express the conservation
of mass, momentum, and energy, respectively[25].

Outflow boundary conditions are easily achieved with the wave propagation approach
by simply ignoring waves once they leave the computational domain, and by not introducing
any new waves at the boundary.

For periodic boundaries, we now allow all the outgoing waves which leave at one bound-
ary to return to the domain at the other boundary with the same speed \,;, jump rp,; and
slope 0,;, say for the pth wave from the z; interface. We can think of these “incoming”
waves as coming from the solution of the Riemann problems on an extended grid with
periodically extended data.

At a solid wall boundary, say at = 0, we have the no-flow boundary condition

v(0,t) = 0.

This boundary can be treated as a line of symmetry. If we reflect our grid near the boundary
to the region z < 0, we can assign grid values in the reflected cells using
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where R represents the operator that negates the second component of U (the velocity)
while leaving the first and third components (density and energy) unchanged. Applying
the algorithm over a slightly extended domain simulates the solid wall boundary condition.

Alternatively, we can avoid extending the grid if we note that each incoming wave (a
wave entering our true computational domain from z < 0) can be viewed as the reflection of
an outgoing wave (a wave crossing z = 0 with negative speed). This is illustrated in [61],[62].
It is easy to verify that the relation between the reflected jump 7,; and the outgoing jump
Tpj is simply

Tpj = —R(rp;)

and the speed of the reflected wave is ij = —\p;. So with this approach, we need only solve
Riemann problems on our original grid and then reflect any waves that hit the boundary.
In the high resolution version, we must also reflect the outgoing slope in the same way,

Opj = _R(Upj)-

In addition, we must solve a boundary Riemann problem with data u, = U}* given by the
cell adjacent to the boundary and u; = R(u,). With this data, there is one incoming wave
that affects the grid values (the contact discontinuity will have speed zero by symmetry and
the outgoing wave is ignored).

This wave reflection procedure is quite easy to implement, and is applicable for any
mesh size and any time step.

Finally, we will discuss how this reflection procedure can be applied to a moving bound-
ary, e.g., a moving piston. We approximate the piston motion by assuming that the velocity
is constant within each time step. Assume that the piston is located at z = 2z, at time
t, and is moving with speed s, for ¢, <t < ¢,41. Then the physically correct boundary
condition is

V(zn + Sp(t —tn),t) = sp

for t, <t < tp4+1. Using the Galilean transformation, we can derive that

p(zn—) = p(znt)
v(zn—) = 28p — v(2nt) (3.3)
p(zn—) = p(znt)

is the correct data for the boundary Riemann problem. This defines a generalization of the
reflection operator R. Determining the corresponding reflection of the energy, we find that
a jump which hits the boundary should now be reflected using the following relations:

) ()
1 =18 2] o
77](3) = —7“](3) + 2Sn7“1(,§) — 2(sn)2rz(,;)

For shorthand, we write 7,; = —Ry(rp;). The reflected slopes can be determined by the

same reflection, 6,; = —R, (). The reflected speed \,; is simply equal to 2s, — Ap;.
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Figure 3.4: Results for the double piston problem. a) Tracked fronts. b) Density contour
plot in the z-t plane up to time ¢t = 1.

3.3 A Double Piston Problem

Here we present our first test problem consisting of a double piston. The problem is formu-
lated as follows: take a shock tube with unit length and consider two pistons moving from
the left and right boundary individually into the stationary gas (y = 1.4) with p = 1.4 and
p = 1. We choose piston velocities sp(t) of the form

Iﬂt t S tl
Iig(tg—t)
Sp(t) = 77:27“27”2 t1 <t<to
0 t > to.

The parameters for each piston are given by:
left piston: k1 =5, ko =1, t1 = 0.31, t5 = 0.444
right piston: k1 = —4, kg = —1, t; = 0.42, t5 = 0.557
and r = 0.16 in each case.

Due to the piston motions, two compression waves arise from the left and right pistons,
and eventually form shock waves. These new shock waves travel toward one another and
subsequently interact. Two outgoing shocks result from the interaction, and begin to inter-
act with the rarefaction waves and the pistons. The rarefaction waves are the consequence
of stopping the pistons (see Figure 3.4b).

In the numerical method, we replace the piston path by a piecewise constant path using
the constant velocity s,(t) = s,(t, + 5k) over the time interval t,, < ¢ < t,41, where k is
the time step. Then the piston boundary conditions described in Section 3.2 are applied to
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Figure 3.5: Comparison plots for the double piston problem at time £ = 0.6. In each figure
the solid line is the fine grid solution with A = 1/800 and the points show the solution with
h =1/100.

each piston. In Figure 3.4a, we show the tracked points which include the location of the
tracked shocks and the pistons’ path, by using the high resolution front tracking algorithm
with mesh size h = 1/100 and Courant number v = 0.9. It is clearly seen that the shock
formation and the tracked wave interactions have been handled quite well by using our front
tracking algorithm.

For this problem, we track waves for which the density jump is greater than the tolerance
€ = 1. From now on, unless otherwise stated, we use this tracking criterion to determine
the tracked waves in the numerical examples given below.

The density contour plot in the z-t¢ plane is shown in Figure 3.4b for the same run.
From it, we can see that numerous wave interactions occur. The linear wave interaction
is used for the interaction of tracked shocks with the background smooth flow and gives
satisfactory results. In Figure 3.5, we compare our numerical result (b = 1/100) with the
fine grid solution (A = 1/800) at ¢ = 0.6, observing good agreement.

From this test problem, we see that our front tracking algorithm is capable of handling
shock formation, moving boundaries, and wave interactions.



Chapter 4
ERROR ANALYSIS

In our front tracking algorithm, we use a high resolution method that is essentially
second order accurate away from the tracked points. We use front tracking in order to
resolve discontinuities properly, and so our method does not suffer the standard loss of
accuracy due to smearing that a shock capturing method would suffer. Nevertheless, there
can be some loss of accuracy near the discontinuity due to the nonuniformity of the grid.
An isolated discontinuity separating two constant states is tracked perfectly, but in a more
realistic situation there is some smooth background flow with which the discontinuity in-
teracts. There are several factors that can then lead to loss of accuracy near the tracked
front, such as the choice of slopes in neighboring cells, loss of accuracy due to the use of
nonuniform and time-dependent grid, and the linearization of the interaction between the
tracked discontinuity and weak waves from the neighboring cell interfaces. Here we will
examine each of these problems in more detail. To begin, we report results on the order of
accuracy for some sample problems where exact solutions are available.

4.1 Preliminaries

We first describe some notation and terms for later use. Let u} = u(z;,1,) be the pointwise
value of the true solution at the discrete mesh point (z;,t,), and let uj be the true cell
average solution over the grid cell [z;, ;1] at time ¢,

—Nn
U

1 [+
—/ ’ u(z,t,) dz.
hj Ja,

The global error of a numerical method is defined to be the difference between the true and
computed solutions. Here we consider using either the pointwise error

B} =U!' —uj, (4.1)
or the cell average error
E} = U} - aj, (4.2)

to define the global error. Although for conservation laws it is preferable to consider the
latter error, pointwise error is more convenient to compute in practice. We will make it
clear what approach we use in due course, and for now we simply write E7' to denote the
error in both cases.

With these definitions, we define the order of accuracy of a method as the largest real
number p in some particular norm || - || for which

|| E" ||= O(hP) forallt, >0 ash — 0. (4.3)
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Clearly, if p is a positive number in (4.3), a method is convergent in the sense that
| E" ||= 0 as h — 0,

for any fixed ¢, > 0 and Courant number. Note that in the present context of front tracking
h is the underlying uniform mesh size.

Here the norm we consider is a discrete norm that can be applied to the discrete grid
function E™ having errors in both the regular and irregular cells as elements. For example,
in the 1-norm, we use

| B = 3 byl = u,
J

where h; is the mesh size of the jth grid cell, and in the max-norm, we use

7l
2,

| E" |lmax = m]ax U} —u

To compute the order of accuracy of a method, we employ a linear least-squares fit to
a sequence of mesh refinement data {(logh;,log| E™ ||),l = 1,---,m}, and take the slope
as the order of accuracy of the method.

Now let us consider some sample problems and investigate the order of accuracy that is
achieved by using our front tracking algorithm.

Example 4.1. We first consider a scalar linear problem consisting of the linear advec-
tion equation

ug +uy =0 for 0<z<1 (4.4)
with initial data
| 24 1.5¢20(2-0:32) z < 0.32
u(@,0) = { 1 + 0.5 tanh(67(0.36 — z)) otherwise, (4.5)

and outflow boundary conditions on the left and right boundaries. The exact solution for
this problem can be obtained by simply shifting this initial profile with speed 1 as illustrated
in Figure 4.1a. Note that this initial data gives a single discontinuity with an extreme point
just behind the discontinuity.

To examine the error behavior of the method as time evolves and as the mesh is refined,
we perform error estimation at 10 different times (at every integer multiple of the time
interval & = 0.04) with a mesh refinement sequence {h; = 2'71/25 k; = h;/2,1 =1,2,---,5}.
The result is shown in Figure 4.2 where the errors and order of accuracy in the 1-norm and
max-norm are presented for the Godunov method and the high resolution Godunov method
with various slope limiters, namely, with the “minmod” (2.10), the “superbee” (2.11), and
the “MUSCL” (2.12) limiters. From the figure, we observe that the accuracy of the methods
we employed here is far less than satisfactory, particularly, for the high resolution methods in
the max-norm; they are only slightly better than the Godunov method. This is expected,
however, because the use of a slope limiter tends to clip the extreme point behind the
discontinuity, and so the method is in fact first order accurate near the tracked point.
Notice that no matter what method we use the 1-norm error grows as time evolves. There



26

3.0
]
1.4

1.2

2.0

0.8
I

1.0

0.6
L

0.0 0.2 0.4 0.6 0.8 1.0 -1.0 -0.5 0.0 0.5 1.0

x x

Figure 4.1: Snap shots of the exact solution at three different times. a) For the scalar linear
problem, Example 4.1. b) For the scalar nonlinear problem, Example 4.2.

is little distinction between the results for different choices of the limiter. For convenience
in reading, the errors shown in the figure were plotted in the logarithmic scale with base
10. (This is also the case for other figures shown below relating to errors of a method.)

For comparison, it is interesting to see how the standard shock capturing methods work
on this problem. As seen from the result shown in Figure 4.3, our front tracking result is
clearly superior to that obtained from shock capturing.

Note that in the above calculations the Courant number v = 0.5 (i.e., k = h/2) is used,
and the error is calculated based on the cell average error (4.2). From now on, we use this
Courant number in all the test problems considered here. Although the computed order
of accuracy is slightly different from other choices of Courant number, the convergence
behavior of the method is quite similar.

Example 4.2. Next, we consider a scalar nonlinear problem consisting of the inviscid
Burgers’ equation

ug + (u?/2), =0 for —1<z<1 (4.6)
with initial data
u(z,0) =1+ 0.5sin(nz), (4.7

and periodic boundary conditions. With these initial and boundary conditions, it is easy
to show that the exact solution is smooth up to the shock formation time ¢ = 2/m = 0.64,
and is discontinuous afterward, see Whitham|[108] for the detail on the construction of the
exact solution. Figure 4.1b shows several snap shots of the exact solution.

In Figure 4.4, we show results for a similar accuracy study as the one performed in
the previous example up to time ¢ = 1.2. Now we observe that in the 1-norm the method
is convergent with first order and second order accuracy, respectively, for the Godunov
method and the high resolution methods we employed here. The result in the max-norm,
however, falls short of the desirable value to some extent, particularly for the high resolution
methods during the time when the solution is smooth. This loss of accuracy for the smooth
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Figure 4.2: An accuracy study of the front tracking algorithm for the linear advection
equation (4.4) with initial data (4.5) up to time ¢ = 0.4. Note that all the errors shown in
the figure are plotted in the logarithmic scale with base 10. Error estimation is performed
at 10 different times with a mesh refinement sequence {h; = 2'=//25,1 = 1,2,---,5}.



a

-
e
)

¥
i

T
e
)

¥
i
o

O
<
2w

¥
-

T
<
2w

Figure
Figure

) Godunov method

0.1 0.2 0.3 0.4

time

H En ||111ax

-0.5

-1.5

-25

0.1 0.2 0.3 0.4

time

order of accuracy

b) High resolution Godunov method with “minmod”

0.1 0.2 0.3 0.4

time

H En ||111ax

-0.5

-15

-25

c¢) High resolution Godunov

0.1 0.2 0.3 0.4

time

” En Hn]ax

-0.5

-1.5

-2.5

0.1 0.2 0.3 0.4

time

order of accuracy

method with “superbee”

0.1 0.2 0.3 0.4

time

order of accuracy

d) High resolution Godunov method with “MUSCL”

| e
js=ss2ssss

0.1 0.2 0.3 04

time

” En Hn]ax

4.3: An accuracy study

4.2 for comparison.)

-0.5

-1.5

-2.5

0.1 0.2 0.3 0.4

time

order of accuracy

v
it
s | o || E™ |y
- A | E™ [Imax
wn
S 16— —O
o |
=] A/r_,ﬂ___ﬂ——a—ﬁ——ﬂ—a—ﬁ—A
0.1 0.2 0.3 0.4
time
limiter
v
it
o |
=
0 ©
o
o |
o A/M_ﬁ—_e——a—A—A—ﬁ—A
0.1 0.2 0.3 0.4
time
limiter
w |
2
o |
S
B—’B——G‘—S——Q—G—Q—H—O
n |
o
o |
© A/A,_,A_——A—A—A—A—A—ﬁ—ﬁ
0.1 0.2 0.3 0.4
time
limiter
wn |
2
o |
S
o
w
3
o |
© A/r_ﬂ___ﬁ——.:\—a——ﬂ—ﬂ——ﬁ—ﬁ

0.1 0.2 0.3 0.4

time

of the shock capturing method for Example 4.1.

28

(See



29

solution results from using a slope limiter that gives a TVD method that clips solutions at
the extreme points[114].

Notice that the method is somewhat less accurate near the transition period from the
continuous solution to the discontinuous solution. This is reasonable, however, since correct
shock formation time is not built into the algorithm. The algorithm determines that a shock
has formed when the solution to some Riemann problem has a wave of sufficient strength.
This will not be inserted at precisely the correct time or location. The third column of
Figure 4.4 shows that the shock location tends to improve as time goes on. (Here the
tolerance we use is ¢ = 0.35 for the wave strength at which we start out tracking.) Once
the shock has been detected, the error decreases later on. Note that the error in the tracked
point location, defined by

n ) _.n
Efront = Ttrue ~ computed’

converges with high precision, O(1075) — O(10~7), for the high resolution methods.

To rule out the error due to dealing with the shock formation, we have also done
experiments using the exact (discontinuous) solution at time ¢y = 2/7 + 0.2 as initial data.
The results are shown in Figure 4.5. From it, we again observe the nice error behavior in
the 1-norm. The error in the max-norm tends to converge at a first order rate for the high
resolution methods, and the error in the tracked point location is convergent at a rate of
more than first order for the high resolution methods. Comparing our front tracking result
with the shock capturing result shown in Figure 4.6, our tracking result is again better than
the capturing result. Here the error is computed based on the pointwise error (4.1).

Example 4.3. We now consider a wave interaction problem arising from the nonlinear

isothermal equations
a( p 0 pv
v - = 4.
8t<pv>+8x<pv2+02p> 0 (4.8)

where ¢ is the speed of sound, a constant here for which we take ¢ = 1. The initial condition
we use consists of a leftward going simple wave with velocity profile

v(z,0) = tanh(67(z — 0.64)) for 04<z<1, (4.9)

traveling from the left to right, and a rightward going Mach 2.89 shock wave at = = 0.4
traveling from the right to left. The density of the simple wave is computed from the
Riemann invariant Ry = v + clog(p), which is constant on the entire Ay = v — ¢ wave
family, with pg = 0.5 and vy = 0 as the reference state (this determines the Riemann
invariant constant). Note another Riemann invariant for this system is R_ = v — clog(p),
which is constant on the Ay = v 4 ¢ family. Since these waves are approaching each other,
wave interactions occur subsequently, see Figure 4.7a.

For this nonlinear wave interaction problem, due to the fact that there is no new wave
family appearing after the head-on collision, we can compute the “exact” solution by em-
ploying the Rankine-Hugoniot jump conditions at the shock together with the simple wave
solutions on each side of the shock. Using this information would lead to a nonlinear ordi-
nary differential equation for the shock location with respect to time. This is solved using
a numerical ODE solver in the LSODE (Livermore Solver for Ordinary Differential Equa-
tions) Package. Once the shock location is known, the solution on both sides of the shock
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Figure 4.4: An accuracy study of the front tracking algorithm for the Burger’s equation (4.6)

with initial data (4.7

)

up to time t = 1.2.
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Figure 4.5: An accuracy study of the front tracking algorithm for Example 4.2 using the

exact (discontinuous) solution at time ¢y = 2/7 + 0.2 as initial data.
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Figure 4.6: An accuracy study of the shock capturing method for Example 4.2 using the
exact (discontinuous) solution at time ¢y = 2/7 + 0.2 as initial data. (See Figure 4.5 for
comparison. )
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Figure 4.7: The exact solution for a wave interaction problem arising from the isothermal
equations, Example 4.3. a) Density contour plot in the z-¢ plane, plotted in the logarithmic
scale. b) Snap shots of density at three different times.

can be found using the method of characteristics. Figure 4.7b shows several snap shots of
the exact solution.

Results for this problem using the front tracking algorithm are shown in Figure 4.8
where the front error, the 1-norm error, and the max-norm error of the Riemann invariant
R_ are presented. It is very encouraging that our method produces results that converge
at a fairly good rate in the 1-norm, despite the fact that the wave interaction of the strong
and weak waves is handled linearly by allowing them to pass through each other without
changing speed or magnitude. Nevertheless, it can be seen quite easily, particularly in the
max-norm, that there is some loss of accuracy due to the use of the linear wave interaction.
Looking at the max-norm error more closely, this loss of accuracy apparently depends on
the wave structure in the smooth flow that the shock interacts. That is, when the shock
interacts with the smooth flow of a steep gradient it results in a bigger error than the one
appearing in the interaction between the shock and a flatter profile. Note that the method
gives a very accurate result in the front location. Results for this problem obtained using
the shock capturing methods are shown in Figure 4.9. Here we again use the pointwise
error (4.1) to compute the global error.

4.2 Improved Slopes

In the above accuracy study, the high resolution method described in Section 2.3 was used
directly on the nonuniform grid generated by the uniform grid together with the appropriate
tracked points. It turns out that we can improve upon the method by taking advantage of
the fact that we know that large jumps in the solution should appear at the tracked points
whereas the nearby flow should be smooth. High resolution methods using limiters were
originally developed for shock capturing methods where a shock will typically be smeared
over several grid cells. Since reasonable slope information may be unavailable in this region,
limiting the slope to a value near zero may be appropriate. In the present context, however,
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4.8: An accuracy study of the front tracking algorithm for the isothermal equa-
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we might expect to have meaningful slope information in the cells near the discontinuity.

Consider a cell j, for example, where the interface to the right is a tracked point and
interfaces to the left are regular grid interfaces. The solution to the Riemann problem on
the right, at the tracked point, should clearly not be used to estimate a slope over this grid
cell for the family of the tracked wave. But the wave arising from the Riemann problem to
the left may give a very useful slope estimate. Since it is still valuable to compare adjacent
slopes via a limiter in case other discontinuities are present that are not being tracked, we
choose the slope o, based on a one-sided formula similar to (2.8) but using the wave ry; at
the boundary to the left and the wave rp j_1 at the left boundary of the adjacent cell.

This choice of slopes is particularly important if we wish to solve problems where the
solution has an extremum at the discontinuity. This occurs in many applications, e.g., in
Figures 5.6 and 5.7. If we are not careful about the choice of slopes near the discontinuity,
these extreme points will be severely clipped.

As an example, we consider the linear problem in Example 4.1, and we perform the same
accuracy study as before, but using the one-sided slopes for the high resolution method.
The result is shown in Figure 4.10. Notice that now errors in the 1-norm and the max-
norm have been reduced. More importantly the order of accuracy have been improved also,
particularly in the max-norm, see Figure 4.2 for comparison. It is interesting to note that
no matter what slopes we used, see Figures 4.2 and 4.10, results obtained using the high
resolution methods we employed here tend to converge only at the first order rate in the
1-norm. We have not yet achieved the desired second order accuracy for this problem with
this modification of the method.

For a nonlinear problem, such as Example 4.2 with discontinuous initial data, we also
examine the effect of accuracy by using this one-sided limited slopes in the high resolution
methods. The result is shown in Figure 4.11, see Figure 4.5 for comparison. From it, we
observe some improvement of the results, but the improvement is not significant. Note that
unlike the previous linear problem where the grid is exact, here the error on the grid due
to the discrepancy between the tracked point and the exact shock location contributes a
source of error for the accuracy. Also, for the nonlinear problem errors are swept into the
shock; so the slope improvement is not as important.

4.3 Nonuniform Grids and Accuracy

Although the underlying grid is uniform in our front tracking algorithm, the tracked points
subdivide some cells into irregular cells. The analysis of the accuracy of finite difference
method on nonuniform grids is more subtle than for uniform grids. A straightforward
truncation error analysis may be misleading. For example, a natural generalization of
Godunov’s method for the linear advection equation (4.4) to a fixed nonuniform grid takes
the form

k
n+1 __
U; —U}l—h—j(Uf_ 1)
where h; is the mesh size of the jth cell. A standard truncation analysis would show this
method to be inconsistent unless the grid is very smoothly varying (h;/hj—1 = 1+ O(h)),
and yet it can be shown that the global error remains first order accurate on arbitrary
grids. Similarly, generalizations of the Lax-Wendroff method to nonuniform grids has been
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using the high resolution methods with one-sided slopes.
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Figure 4.12: a) Grid system in the z-¢ plane for the linear advection equation (4.4) using
the front tracking algorithm with & = h/2. b) Grid system for the transformed equation
u; = 0 in the &-t plane.

shown to maintain global second order accuracy[64],[106]. We might therefore hope that
our method maintains second order accuracy on the smooth flow even in the irregular cells
containing tracked points. Here, however, we have an additional complication in that our
nonuniform grid varies with time. We will demonstrate with a simple example that loss of
accuracy can occur under certain conditions.

Consider the linear advection equation (4.4) and suppose we solve this with Godunov’s
method using k£ = h/2 on the grid shown in Figure 4.12a. We introduce a single tracked
point moving with speed 1 between cell interfaces and cell centers in alternating time steps.
Away from the tracked point, the method reduces to

1
Uit = Ui+ U7).
The method differs from this only in cells that are split in two. Suppose cell 7 is subdivided at

time ¢,,1 into two subcells i, and 4. According to the front tracking algorithm introduced
in Section 3.1, we then introduce cells i, and i, at time %,, initialized by

Ui’fl = Ui’; =U/. (4.10)
Therefore we set
k
Upt = Up = (U UL
= U - U7 - Uy)
= Uy
and
Un-l—l _ Un k UTL UTL
ip - iy h—/2( iy, ’ia)
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In the next time step, we have
n+1 1 n n
U; 25( i1 +U;)
and
n+1 1 n n
it = §(Uz‘b +Uit1)-

Notice that because the tracked point moves with the characteristic speed there is no transfer
of information across this curve. The solution on each side is independent of the data on
the other side.

Now consider a change of variable to ¢ = x — ¢. In the £- plane, the above method can
be viewed as a staggered grid method to solve the equation

UtZO

on the grid shown in Figure 4.12b. Restricting our attention to the right of the discontinuity,
the method is

Un-l-l: %( gn—l"i_Ugn) J>1
7 2 (U +U7) i=1
in time steps with n 4+ 1 even, and
1 .
Uptt = SU7+ U >0,

in time steps with n 4+ 1 odd. It is easy to verify that this method is second order accurate
on the “modified equation”

Ut = hu§§ (4.12)
with the boundary condition

ug(0,) = 0. (4.13)

This boundary condition results from the choice (4.11) for U/,

Had we taken

gt — gt = %(Uﬁl LU, (4.14)
we would simply have the heat equation (4.12) everywhere giving a first order accurate
approximation to the equation u; = 0. The choice (4.11) corresponds to setting U", = U}
in (4.14) which models the boundary condition (4.13). If we now take initial data u(¢,0)
that does not satisfy (4.13), it will rapidly flatten out at £ = 0 as time evolves, introducing
an error at this boundary that is bigger than O(h).

Returning to the original linear advection equation on the grid shown in Figure 4.12a,
we see that the same effect occurs if u, # 0 near the tracked point. As an example, we take
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smooth initial data (4.7) with periodic boundary conditions on the left and right boundaries;
z € [0,2]. We run this problem on a time-dependent grid as in Figure 4.12a with various
choices of the initial tracked point location z¢ at time ¢ = 0.5. Doing so gives us some
indications on how the accuracy is affected by the value of the u; near the tracked point at
this particular time.

Results of this accuracy study are shown in Figures 4.13 and 4.14 using not only the
Godunov method, but also the Lax-Wendroff method as for comparison. Figure 4.13 shows
the errors and the order of accuracy in the 1-norm and the max-norm. From it, for the
Godunov method, the accuracy near the tracked point has been verified to be less than first
order accurate in the max-norm, in the case where the boundary condition (4.13) is not
satisfied at z¢ # 0.5. Since the big error appears only for cells near the tracked point and
has relatively small magnitude, the method remains first order accurate in the 1-norm. In
Figure 4.14a, we plot the solution in two different cases, for z; = 0.5 and z; = 1 in that
the boundary condition (4.13) is satisfied and not satisfied, respectively. Note that in the
latter case the error near the tracked point is clearly seen.

It is interesting to note that for the Lax-Wendroff method on this model problem this
loss of accuracy near the tracked point occurs in the case that the boundary condition
uze = 0 is not satisfied there. Numerical results shown in Figures 4.13b and 4.13b confirm
this.

One way we might try to improve the method is to choose a better initialization of the
split cell values U and U}} in place of (4.10). We have tried introducing a linear function in
cell 1 at time ¢, with slope 0; and averaging this linear function over the subcells to obtain
initial values. For the case considered here, where the cell is split in half, this reduces to
taking

h
U,Ln = Uln — ZO'Z',
n n h
Uib = Ul + ZO'Z'.

This procedure maintains conservation. Unfortunately, it seems to give little improvement
in the results. For the particular problem considered here, other choices can be found
that do restore full accuracy but are either rather artificial for this problem or else do not
maintain conservation. Moreover for a nonlinear problem, any choice of U]’ and U, other
than (4.10) has a major difficulty in conjunction with our algorithm — the speed of the
tracked discontinuity is first computed using values U] ; and U;" and this determines the
location of the tracked point in the next time step. If we now choose a different value for
U, the solution of the Riemann problem between U;'; and U]’ will have a strong wave
traveling at a different speed than the speed used to choose the new tracked point location.
This means that the wave will no longer propagate exactly to the cell boundary, defeating
one of our main design goals.

Because of this difficulty, we currently use the initialization (4.10) in spite of this possible
loss of accuracy. On the other hand, the example shown here seems to be a worst case
scenario. The particular grid shown in Figure 4.12 is especially bad due to the regularity
of the nonuniformity. Moreover, in the linear advection equation all characteristics are
parallel and the error continuously grows near the discontinuity. In a nonlinear problem,
characteristics are swept into the shock, reducing the growth of errors. For the Euler
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Figure 4.13: An accuracy study of the front tracking algorithm for the linear advection
equation (4.4) with smooth initial data (4.7) on nonuniform grids. Results are shown with
various choices of the initial tracked point location z¢ at time ¢ = 0.5.
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Figure 4.14: Plot of the solution for the accuracy study shown in Figure 4.13 at two different
x¢. The solid line shown in the figure is the exact solution, while the dotted points are the
numerical solution.
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equations of gas dynamics, errors of the type seen here would most likely appear near
contact discontinuities rather than shocks.

4.4 Nonlinear Wave Interactions and Accuracy

In our front tracking algorithm, we employ a large time step approach that avoids the
stringent time step limitation in the presence of small cells created by the tracked points,
while maintaining stability of the algorithm. An important element of this approach is to
allow waves to pass through one another with no change in speed or magnitude, and continue
to have exactly the same effect on cell averages as if the collision had not occurred. That is,
the interaction is linearized during the wave propagation process. For a linear problem this
is in fact true, but for a nonlinear problem this linearization in general is not valid. The aim
of this section is therefore to investigate the error behavior introduced by this procedure
for nonlinear problems. For more information on this problem, one may consult [60],[62].

For illustration, Figure 4.15 shows a typical wave interaction for the nonlinear isothermal
equations (4.8). In Figure 4.15a, we see the solution of two Riemann problems in the z-¢
plane. When the 2-wave from the left hand Riemann problem meets the 1-wave from the
right hand Riemann problem, we have a new Riemann problem to solve with left state w;
and right state u,. The solution will again give two waves with some intermediate state
U, and will have different wave speeds and jumps across the wave. The locations of these
states in the phase plane is shown in Figure 4.15b in relation to the Hugoniot loci of the
states u; and u,.

In using the large time step method, we are linearizing the wave interaction. For the
example considered above, we therefore obtain the wave structure as shown in Figure 4.16
with the intermediate state uy,. It can be demonstrated quite easily, using linear theory for
the hyperbolic systems, see [62] for example, that the state ), has the value

%
Uy, = U] + Up — Uy,

In Figure 4.16b, we plot the location of wy, in the phase plane.

Notice that the error made in this approximation, which we might measure by u;, — @,
depends on the nonlinearity of the problem. In a linear problem, the Hugoniot loci are all
parallel to one another, and there is no error. As the nonlinearity increases, these curves
diverge more and more. The error also depends on the particular data u;, u,,, and u,. Even
for a highly nonlinear problem the error will be small if these values are close to each other,
since the Hugoniot loci in a small neighborhood of any given point have a nearly linear
structure. If u; — uy, = O(€) and u, — u, = O(€), then we may expect uf, — i, = O(€?)
as € — 0. In other words, since the interaction of weak waves is nearly linear anyway, our
linearization introduces small error in this case. It is only in approximating the interaction
of strong waves or the interaction of strong and weak waves that we might introduce large
errors.

In the present context of front tracking, since the strong wave interaction has been dealt
with carefully by choosing the time step so that the collision of two strong waves occurs
exactly at the end of a time step, there is no error caused by the interaction of strong waves.
There are errors, however, arising from the interaction of strong and weak waves. This is
clearly seen from the earlier results shown in Figure 4.8 where the interaction of a shock
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Figure 4.15: The interaction of two waves in a nonlinear problem. a) The z-¢ plane. b)
Location of states in the phase plane.

a) b)
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Figure 4.16: The linearized interaction of two waves in a nonlinear problem. a) The z-t
plane. b) Location of states in the phase plane.
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Figure 4.17: The interaction of strong and weak waves is handled “exactly” for a nonlinear
problem. a) The z-t plane. The solid lines represent the strong waves, and the dashed lines
represent the weak waves. b) Location of states in the phase plane.
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and a simple wave for the isothermal equations is considered. Note that since this error
occurs locally near the tracked point, the 1-norm error is only slightly affected by this loss
of accuracy.

The worst case scenario of linearizing wave interaction appears in dealing with the
interaction of the same wave family, e.g., a rarefaction wave overtaking a shock. In this
case, if the state variable (e.g., density or pressure) is very small in front of the region where
the wave interaction takes place, any small perturbation of the solution in that region caused
by linearizing the wave interaction can result in a negative value of the state variable which
is nonphysical. A situation like this can be seen in an example considered in Section 5.1.2
where a strong rarefaction wave overtakes a shock that has a very low pressure in front of
it. The pressure becomes negative when the rarefaction wave passes through the shock and
enters the low pressure region.

One possible approach to improve the method is to compute the interaction of the
tracked discontinuity with the weak wave “exactly”. This is not a new idea and was intro-
duced by Swartz and Wendroff in their front tracking method[98]. We do this within the
time step when the interaction occurs, modifying the strength and speed of these waves over
the latter portion of the time step. This is illustrated in Figure 4.17a where the interaction
of a shock and a rarefaction wave is handled by first propagating the pair of interacting
waves up to the collision time ¢., solving a Riemann problem using the appropriate initial
data (u; and u, in this case) at the collision point, and then propagating the resulting waves
over the remaining portion of the time step ¢, 11 —t.. Note that other waves are not affected
by this procedure and are propagated over the time step k as usual. The locations of the
state variable in the phase plane is shown in Figure 4.17b.

Using this modification of the method, we can overcome the stability problem mentioned
above. It is also interesting to see how the accuracy is improved by using this modification
of the wave interaction. This is still under study, however.



Chapter 5
APPLICATIONS

Having analyzed the front tracking algorithm, we now present more numerical results for
some sample problems involving shocks and contact discontinuities arising in gas dynamics.
Our aims here are to validate our results by comparing them to results (either exact or
numerical) which can be found in the literature. We also hope to demonstrate the potential
power of using our front tracking algorithm on more complex problems.

The problems we consider are the Woodard-Colella blast wave problem, the steady
quasi one-dimensional nozzle flow, and unstable detonation waves. To efficiently perform
computations on some of these problems, we first introduce an algorithm that combines
front tracking with adaptive mesh refinement to enhance the resolution produced by the
front tracking algorithm, particularly for the regions near tracked discontinuities. We then
discuss a simple approach to include source terms in the algorithm.

5.1 Front Tracking with Adaptive Mesh Refinement

5.1.1 Algorithm

For simplicity, we describe grid refinement for the case of a single fine grid superimposed
on a portion of the coarse grid. The refinement is performed in both space and time over
rectangular regions of the space-time grid. Figure 5.1 shows the typical grid system for grid
refinement with a mesh refinement ratio m, = h./hy = 4 where h, and hy are the coarse
and fine grid mesh sizes respectively. If there are several fine grid regions, each fine grid
can be handled in the same manner. Further nested levels of fine grids can also be handled.

In general, one would want to do error estimation on the approximate solution in order
to determine where fine grids are needed. This can be done using the techniques developed
by Berger[9], and should carry over to the front tracking method with little difficulty. Here
we demonstrate the potential power of grid refinement coupled with front tracking in two
test cases where we know a priori the region in which refinement should occur. We study
a model combustion problem in which refinement is needed in the neighborhood of the
single tracked discontinuity (see Section 5.2.2), and a blast wave interaction problem in
which refinement is introduced in the neighborhood of two colliding strong shocks against
a background smooth solution in order to better resolve the solution near the interaction
(see Section 5.1.2).

For simplicity, we also assume that tracked fronts remain within the fine or coarse grid
region and do not cross the interface between fine and coarse grids during a time step. The
fine grid region is adaptively adjusted so that there is a sufficient buffer zone that fronts will
not leave the refined region. This is accomplished by performing a regridding procedure at
certain fixed time intervals. In cells where the new grid overlaps the old fine grid, the old
fine grid value is carried over. In cells where a new fine grid is created where there was only
coarse grid before, the fine grid cell values are initialized by performing piecewise linear
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qg q+1 fine grid

coarse grid cell j cell 7 +1

Figure 5.1: Interface between coarse and fine grids. Dashed lines represents the two ad-
ditional coarse cells that are refined in order to generate fine grid fluxes at the interface.
Values at the virtual fine grid points indicated by large dots are calculated using the high
resolution method. We can compute only within a triangular region since the stencil of the
method requires data from two adjacent cells. This is sufficient to compute fluxes all along
the grid interface.

interpolation from the coarse cell values and evaluating this piecewise linear approximation
at the cell center of each fine grid cell. Note that this gives a conservative transfer of values
between grids. When a fine grid disappears in some region, the coarse grid values are set
equal to the average of the fine grid values, again maintaining conservation.

The high resolution front tracking algorithm described in the previous chapters can be
used on the fine grid and also on the coarse grid. The difficulty comes at the interface
between the grids. Since we are assuming that tracked fronts do not cross this interface,
we need only ensure that we maintain conservation and high accuracy with our underlying
method at the interface. See Berger[5] for a general discussion of this problem for methods
in conservation form with specified numerical flux functions. Although we normally use the
“wave propagation” form of our high resolution algorithm because of the ease of dealing with
irregular cells, near the grid interface we can reinterpret the method in terms of numerical
fluxes as described in Section 2.3. Recall that we can define fluxes Fj /o at each cell
interface in such a way that the wave propagation algorithm is equivalent to the standard
flux differencing formula

UPH = U = - (Fiyage = Fioapa)
with fluxes given by (2.17) for the high resolution method.

To handle the grid interface, we first extend the fine grid to cover two additional coarse
grid cells as indicated in Figure 5.1. Initial values at time %, in these cells are computed
using piecewise linear interpolation from the coarse grid values. The interface between cells
j and 741 on the coarse grid lies between cells ¢ and g+ 1 on the fine grid, where ¢ = 2m,..
Because our high resolution method involves a stencil of two grid cells on each side of an
interface, we can compute over a triangular array of cells as indicated by dots in Figure 5.1
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without noticing the lack of fine grid points to the left. In the process, we can compute
numerical fluxes at the ¢+ 1/2 interface using the formula (2.17). On the fine grid, we take
m, time steps within the one time step on the coarse grid. We denote the flux for each
time step [ = 1,2,---,m, by F -ﬁle These are the fluxes that have essentially been used
to update the fine grid cell ¢ + 1 to the right of the interface.

On the coarse grid, we can define fluxes F“"i?s; and ;_l"_‘i’fée in the process of updating
the coarse grid values via the high resolution method. We use these updated values as our
new values in each of the coarse grid cells that are not overlapped by the fine grid, with the
exception of cell 7, just at the boundary of the fine grid. Here we replace the provisional
value calculated with the coarse grid algorithm by the value

Ut =0y -

_( fcoarse goarse)
h,\ it1/2 i=1/2

with a modified flux F"’ﬂ%e defined to be the average of the fine grid fluxes

. 1
coarse _ _~ Ffme
i+ T ; q+1/2,0°

This ensures that the coarse grid flux at the right boundary of the coarse grid agrees with
the total fine grid flux over time step k at the left boundary of the fine grid, giving global
conservation.

This prescription for the interface has nothing to do with front tracking. With our front
tracking method a new difficulty arises. If two fronts collide then we wish to adjust the
time step so that collision occurs at the end of the time step. Since we assume that all
tracked waves are within the fine grid and we integrate the fine grid first, we can simply
truncate the fine grid time step during which collision occurs and then truncate the coarse
grid time step at this same point. Suppose we have taken m < m, fine grid steps of length
k/m, at this point plus a shorter step of length k< k/m,. We have corresponding fine grid

fluxes Fffﬁ% 1 =1,2,---,m + 1. At this point we take a coarse grid time step of length

k. = mk/m, + k < k. The interface coarse grid cell j is updated by

Ut = Up - E (B — R
where A].C_‘i’_‘i?%e is now given by the appropriate weighted combination of each fine grid flux,

taking into account that the last time step is shorter than the others,

frcoarse __ fine fine
j+1/2 = ZFq—I—l/Ql Fq+1/2 m+1

Since we never take more than m, fine grid time steps in each coarse step, refinement of an
extra two cells bordering the interface is sufficient to generate the fine grid fluxes needed
at the interface.

If we allowed tracked fronts on the coarse grid as well, we would need slightly more
complicated logic to truncate time steps appropriately if fronts collide on the coarse grid.
This is clearly no problem, however.
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Fronts moving between the coarse and fine grids could also be handled quite easily by
simply truncating the time step when a tracked front hits the interface. Then within a given
time step the front would be either on the fine grid or on the coarse grid and appropriate
fluxes at the interface could be calculated.

5.1.2 The Woodward-Colella problem

As a first example to demonstrate the capability of front tracking with adaptive mesh
refinement, we consider the blast wave interaction problem studied by Woodward and
Colella[109],[110]. In this problem, the initial condition consists of three constant states
with data

p 1 o) 1 o) 1

v = 0 , v = 0 , v = 0 ;
3 —2 2

P/, 10 p).. 10 p), 10

where [, m, and r are the states used for z € [0,0.1), z € [0.1,0.9), and =z € [0.9,1]
respectively. There are two solid walls at z = 0 and z = 1.

With this initial condition a shock wave, contact discontinuity, and rarefaction wave
develop at each discontinuity individually. The shock waves are moving toward each other
and then collide. A new contact discontinuity arises from the collision. Further collisions
then occur. A density contour plot in the z-¢ plane is shown in Figure 5.2 which indicates
the complex wave pattern of this problem.

One of the main difficulties for this problem is the very low pressure in the middle state,
and because of this any small perturbation caused by numerical error can lead to negative
pressures which are nonphysical. Another difficulty involves the proper treatment of the
strong wave interactions in a smooth background flow. Therefore this problem provides
a severe test of our front tracking algorithm, and especially tests our ability to handle
small cells and wave interactions. Furthermore, since complex wave interactions occur after
the shock waves’ collision, poor resolution will result near the interaction if the grid is not
sufficiently fine. For this reason, we have used mesh refinement in addition to front tracking
in order to better resolve the solution.

For this problem there is no mesh refinement initially. The mesh refinement is introduced
after the shock waves’ collision and used thereafter. For convenience, the refinement region
is chosen to contain all the tracked fronts within one fine grid with a buffer zone to prevent
them from moving onto the coarse grid. For the results shown below, we take coarse grid
mesh size h. = 1/100 as our underlying mesh size and use a mesh refinement ratio m, = 8
for the fine grid, so that hy = 1/800. The buffer zone has width 10A., and a regridding step
is done for every 16 time steps. Since the density jump is not prominent in this problem,
we choose the max-norm of the jump in conservative quantities as our tracking criterion
(with tolerance e = 50). Throughout the test Courant number v = 0.9 is used, and only
results obtained using the high resolution method are shown.

In Figure 5.2a, we show the density contour plot in the z-f plane over both the coarse
and fine grids; contour lines were plotted on a logarithmic scale. A blowup of the fine
grid solution is shown in Figure 5.2b. Notice the fine wave structure following the interac-
tion between the rightward going shock wave and the leftward going contact discontinuity.
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Figure 5.2: Density contour plot in the z-t plane (the contour lines are in the logarithmic
scale) for the Woodward-Colella problem up to time ¢ = 0.038 using the high resolution
front tracking with adaptive mesh refinement algorithm with A, = 1/100 and m, = 8. a)
Combined plot for both the coarse and fine grids. b) Blowup of the fine grid region.
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Figure 5.3: Tracked fronts for the Woodward-Colella problem.

Without mesh refinement, this wave pattern would not be clearly seen. Tracked points are
shown in Figure 5.3.

To investigate the accuracy, we show plots of the state variables p and v versus a
finer grid (“true”) solution, computed using h. = 1/800 in the time before refinement is
introduced, and then h, = 1/200, m, = 8 for refinement. Results at three different times are
shown in Figure 5.4. Note that they are plotted using the most accurate cell values at each
point. That is, if a grid cell is in the fine grid region, we use the fine grid solution; otherwise
we use the coarse grid solution. We see good agreement between the two solutions. Notice
the smooth transition between the coarse and fine grids. This indicates that our treatment
of the coarse-fine grid interfaces is working in a satisfactory way.

As mentioned above, this is a difficult problem due to the very low pressure in the middle
state. A rarefaction arising from the smooth flow behind the shock may move faster than
the tracked shock, carrying a negative jump in pressure into the low pressure region that is
of sufficient magnitude to result in a negative pressure. This is due to the linearization of
the interaction between waves.

We currently deal with this problem by computing the interaction of the rarefaction wave
with the strong shock wave exactly rather than using the wave linearization that is used
elsewhere. This has been discussed fully in Section 4.4. This leads to some complication
of the algorithm, but avoids the need to further restrict the time step and eliminates the
difficulties.

Naturally it would be preferable to find a more robust solution to this problem and
work is continuing in this direction. We note, however, that this is a particularly difficult
problem and that many production codes contain ad hoc procedures such as resetting
negative pressures to positive values in order to deal with such problems. This is not a
difficulty that arises solely from our front tracking methodology. On the contrary, our
approach has the advantage that it allows one to recognize these difficulties and deal with
the interaction correctly and conservatively. (See [29] for an interesting discussion of this
problem.)
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Figure 5.4: Comparison plots for the Woodward-Colella problem at three different times.
In each figure, the solid line is the fine grid solution computed by hy = 1/800 in the time
when no refinement is used, and h, = 1/200, m, = 8 when the refinement is used. The
points show the solution with h. = 1/100 and m, = 8. Density and velocity are shown.
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5.2 Source Terms

A wide variety of numerical methods have been developed for conservation laws with source
terms wy + f(u)y = ¥(u), e.g., [4],[37],[90],]96]. Here we will only consider one popular
approach, a time-splitting method in which we alternate between solving the homogeneous
conservation laws with no source terms

ug + f(u)x = 0, (51)
and solving the ordinary differential equations
u = (u) (5.2)

within each cell.
We use a “Strang splitting” [97], which is second order accurate for smooth solutions.
In the present context with front tracking, this consists of the following steps:

1. Take a half time step by solving the ODEs (5.2) in the old grid cells.

2. Take a full time step with the homogeneous equations (5.1) using the front tracking
algorithm. This generates new grid cells.

3. Take a half time step again with the ODEs (5.2) in the new grid cells after removing
the old tracked points.

Two examples will be given to demonstrate the ability to handle source terms by using this
splitting procedures together with the front tracking algorithm.
5.2.1 Quasi one-dimensional nozzle flow

As a first example with source terms, we consider the quasi one-dimensional nozzle flow.
The Euler equations now have the form

P pA P pvA , 0
5 pvA |+ g (p?’+p)A | = A | p (5.3)
pEA (pE +p)vA 0

where A = A(z) is the cross section of area, A = dA(z)/dz. The conservative variables
u, flux functions f(u), and source terms ¢ (u) are defined in the obvious way. In this
example, 1 (u) are called the “geometric” source terms since they result from the geometrical
simplification to a one-dimensional problem, see, e.g., [69] for more detail.

For incorporation into the front tracking algorithm, we rewrite these equations in an-
other form by moving all the area terms in (5.3) to the right hand side,

9 P pu A pv
— | pv |+ 3z (pv? +p) | = -1 pv? . (5.4)
pE (pE + p)v (pE + p)v
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Although these two sets of equations have different state variables and flux functions, they
share the same Rankine-Hugoniot jump conditions. This is simply due to the fact that the
variable area is continuous at the discontinuity, and so the area term drops out from each
side of the jump condition. In practice, it is interesting to see how numerical results are
affected by using these two different equations with the same numerical method. (See [107]
for an interesting example of such a comparison.)

In the following, we perform a standard test problem for the quasi one-dimensional
nozzle flow in the form (5.4), a steady state calculation[20]. Take a divergent nozzle with
area

A(z) = 1.398 4+ 0.347tanh(82z — 4), 0<z < 1.

Consider a supersonic inflow boundary condition at z = 0 with p;, = 0.502, v;, = 1.299,
and p;, = 0.3809 (Mach number = 1.26), and a subsonic outflow boundary condition at
x = 1 with pyy = 0.776. The steady state solution under these boundary conditions consists
of a stationary shock at z = 0.481991 with steady smooth flow in front and in back of this
stationary shock, see [95] for the detail on the construction of the exact solution.

To start the computation, we must also specify initial data in the interior region. For
the test we present here, the velocity and pressure in the interior region were initialized to
the inflow velocity and pressure respectively, and the density was initialized to be linearly
varying from the inflow boundary to the outflow boundary. At the outflow boundary the
unknown v,y and pey: are calculated using the numerical characteristic boundary condi-
tions.

The numerical characteristic boundary conditions can be described briefly as follows.
Suppose the outflow is subsonic, given p,,;. Let cell j be the closest cell to the outflow
boundary. The density, velocity, and pressure for the jth cell are denoted by p;, v;, and p;
respectively. Then since entropy is constant along the particle path dz/dt = v;, the outflow
pressure Py, can be computed as

Pout = pgut(pj/p;'y)'

Let R_ and Ry be the Riemann invariants for the Euler equations, i.e.,

R_=v-— 10 = constant along Ay = v — ¢ family,

-

and

R+=’U+

1¢= constant along A3 = v + ¢ family,

where ¢ = \/yp/p is the speed of sound. Using the constant Riemann invariant Ry along
dz/dt = vj + ¢j, we have

Vout + o Cout = Vj +

1 17

and then combining this equation with p,,; and py,: we can compute vyy;. In each time
step, the numerical characteristic boundary conditions are used at the outflow boundary to
update vy and poys.
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Figure 5.5: Results for the quasi one-dimensional nozzle flow. a) Mach number contour
plot in the z-t plane up to time ¢ = 14.35. b) Tracked shocks.

Results for this test using h = 1/50 and ¢ = 0.3 in density jump for tracking are shown in
Figures 5.5 and 5.6. Figure 5.5a and b show the Mach number contour plot in the z-¢ plane
and the tracked shocks, respectively. Figure 5.6 shows the converged numerical solution
together with the exact steady state solution. Here our converged numerical stationary
shock location is at # = 0.481714 & 10~ %, with an error of roughly 0.06% relative to the
exact location. The numerical result (Mach number) agrees well with the exact steady state
solution also.

It is interesting to note how our front tracking algorithm handles tracked waves for this
problem. For this test, there is no tracked shock in the beginning. When a shock is formed,
it is tracked. Since this tracked shock is not the stationary shock, the strength of the shock
begins to decay due to the geometric effect and boundary conditions. After sufficient decay,
it is no longer tracked. Meanwhile, a second shock forms which converges to the correct
stationary shock. A similar test is performed in [34] for their front tracking method.

We should note that we have made no attempt to accelerate convergence to steady state
in this code, since the current version is designed primarily for time-dependent calculations.

5.2.2 Unstable detonation waves

As a second example with source terms, we consider a simplified chemically reacting flow in
which viscosity, heat conduction, diffusion, and radiation effects are ignored. We consider
a model problem for combustion in which there are only two chemical species: “burnt gas”
and “unburnt gas”, and the unburnt gas is converted to burnt gas via a simple decay process
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Figure 5.6: The converged numerical solution for Mach number with the exact steady state
solution.

of the form

K(T
unburnt gas LQ burnt gas
where K (T') represents the reaction rate of the burning process. This model has been
extensively studied in the past, e.g., [12],[22],[23],[25],[31].
In general, the reaction rate depends on the temperature T' via some Arrhenius relation

K(T) = KoT% "/T (5.5)

where K is the rate multiplier, E* is the activation energy, and « is the order of the
reaction. Typically the reaction rate is very large when T is sufficiently high but negligible
for small T

For this combustion model, the Euler equations in one space dimension take the form

P pv 0
o[ pv 0 pv? +p 0
il - = — 5.6
ot | pE + oz | (pE+p)v 0 (5.6)
pZ pZv K(T)pZ

where Z is the mass fraction of the unburnt gas (Z = 1 for the unburnt gas and Z = 0 for
the burnt gas). For simplicity we assume that both the unburnt gas and burnt gas are ideal
gases with the same ratio of specific heats v. Then by the ideal gas law, the temperature
is given by

T =p/pR

where R is the universal gas constant. The equation of state is modified by the fact that
the unburnt gas contains chemical energy that is released as heat in the process of burning.
The total energy per unit mass takes the form

1 1
E=—— —p? 7 5.7
7_11?//0+2v + qo (5.7)
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Figure 5.7: Typical ZND structures for the reaction wave in the combustion model equa-
tions (5.6) with Arrhenius rate relation (5.5).

where qq is the heat release.

There are two distinct types of reaction waves for this combustion model, the “detona-
tion wave” and the “deflagration wave”. For a detonation wave, the pressure and density
across the wave jump to higher values, and the wave travels at supersonic speed relative to
the unburnt gas in front of it. For a deflagration wave, the pressure and density across the
wave jump to lower values, and the wave travels at subsonic speed relative to the unburnt
gas.

With the Arrhenius rate relation (5.5), the typical structure of the detonation wave con-
sists of an ordinary fluid dynamic shock followed by a finite length chemical reaction zone,
which gives the so-called ZND (Zel’dovich-von Neumann-Déring) structure (see Figure 5.7).
The steady ZND structures can be computed by dropping the time derivative terms in (5.6)
and integrating the first three equations explicitly in space for a given initial state. From
them and Equation (5.7), the density, velocity and pressure can be expressed in term of the
mass fraction Z at any point of the ZND structure. The fourth equation, after expanding
(pZv), and canceling the Z(pv), term, now gives a nonlinear ODE

for the mass fraction Z with respect to x, which can be solved numerically for Z as a
function of z. Note that K(T) is a function of Z also since the temperature T' depends
only on p and p. Having obtained the mass fraction Z for a given z, the remaining state
variables, p, v, and p can then be calculated.

This steady ZND structure is uniquely determined if the speed of the ZND structure
is specified[31]. In fact, for each given unburnt state, there is a minimal shock speed sy,
the speed of the Chapman-Jouguet detonation, which moves with the speed of sound with
respect to the burnt gas[25], and hence in this case a ZND structure can also be determined
without specifying any particular ZND speed.

A well-known difficulty in the detonation wave computation is that incorrect detonation
wave speeds can arise from numerical effects. This behavior is observed by Colella, Majda,
and Roytburd [22],[23] where a time-splitting method is used for the model Equations (5.6).
They assert that if the chemistry is not fully resolved due to the insufficiently fine grids,
incorrect detonation wave speeds will be obtained. Similar experiments have been reported
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in [62] and [67].

Another difficulty of modeling detonation waves is noticed by Bourlioux, Majda, and
Roytburd[12] in which classical one-dimensional stable and unstable detonation waves are
tested. They conclude that false predictions of stability in the regime of physical instability
as well as drastic predictions of instability for a physically stable detonation wave can be
obtained with standard shock capturing methods if the grid is not sufficiently fine. In their
paper, a front tracking method with adaptive mesh refinement is proposed for the detonation
wave computation, and by using this method they have obtained good results. (Their
method combines the piecewise-parabolic method[110] with conservative front tracking[16]
and adaptive mesh refinement[6].) This provides a good comparison problem for our front
tracking approach.

Let s be a speed of the given ZND structure. Then the parameter f = (s/scj)? measures
the degree of overdrive of the detonation wave and satisfies f > 1. Now the problem of
interest is to study the large time behavior of the overdriven detonation wave for a given
ZND structure under small perturbation. For comparison purposes, we choose the test
cases as used in [12], i.e., we take v = 1.2, R = 1 (the universal gas constant), o = 0,
qo = 50, and E* = 50. With these parameters, according to the linear stability results[11],
this detonation wave is unstable if the degree of overdrive f is greater than the critical
value f. = 1.73, for it is stable otherwise. Here we choose f = 1.8 for the stable detonation
computation and f = 1.6 for the unstable detonation computation. In the tests shown
below, a steady ZND structure is used as the initial data with the unburnt state p = 1,
v=20,p=1 Z =1, and degree of overdrive f. Note that by specifying the unburnt
state, the minimal shock speed scj can be calculated (see [100]). Then the speed of the
ZND structure s = scy+/f can be computed for a given f, and so this ZND structure is
uniquely defined. The destabilizing perturbation for each test is provided automatically by
the truncation error of the numerical method.

There are two characteristic length scales for this problem. They are the half reaction
length L;/; and the half reaction time #;/5, where L,/ is the distance required for half
the mass fraction to be released in the ZND structure and ;5 is the undergoing time
required for such a process to complete. These two values can be computed by evaluating
the following integrals numerically:

L v dz

L1/2 = — %m, (5.8)
Lz
by = —/ Rz (5.9)

For the purpose of studying the grid effect on the numerical solutions, we normalize the
length scale z by choosing Ko so that Ly, = 1. We find that Ko = 231.16 and ¢/, = 0.891
for f = 1.6, while Ko = 145.69 and ¢;/, = 0.856 for f = 1.8.

Following [12] and [31], we monitor the shock front pressure, the pressure right behind
the shock wave, as time evolves. This shock front pressure history will give us a clear
indication on the stability of a given ZND structure under small perturbation. Here to
investigate the grid effect on the numerical solutions, a convergence study for the shock
front pressure history with three different coarse-fine grid spacings is performed for each
stable and unstable case. The coarse-fine grid spacings we used are as follows:



99

1. coarse mesh h. =1 point /L, /5, fine mesh hy = 4 points/L s,
2. coarse mesh h. = 2 points/L; )y, fine mesh hy = 8 points/L, s,
3. coarse mesh h. =4 points/L; )5, fine mesh hy = 16 points/L ;.

Since there is only one tracked shock in this problem, the refinement region is chosen by
going out 20L; /5 on each side of the tracked shock. Courant number v = 0.5 is used for
all the test cases, and only results obtained using the high resolution method are shown.
Tolerance € = 3 in density jump is used for shock tracking.

Figures 5.8 and 5.9 show results for the convergence study up to time ¢ = 100 in the
computational domain 0 < x < 1000. After analyzing the results, our solution converges
to the initial steady state profile with about 0.008% oscillation in the shock front pressure
for the stable detonation case. For the unstable detonation case our solution converges to a
detonation wave with period 7.383 +0.110 (about 8.284t, ) and peak pressure 99.83 & 0.2.
Note that the unperturbed shock front pressure for the unstable detonation wave is 67.355,
and so the shock front pressure is magnified to a value nearly 50% higher than the initial
value. Our solutions agree very well with values taken from the figures in [12].

To show the spatial resolution for the unstable detonation wave problem, we plot the
pressure at six different times within one complete pressure front oscillation cycle as illus-
trated in the second plot of Figure 5.9, where the large dots indicate the plotting time.
The results are shown in Figure 5.10 for both the coarse and fine grid solutions, where a
region between the dashed lines above the x-axis is the mesh refinement region. A blow-up
of the solution in the fine grid region is shown in Figure 5.11. Note that an oscillatory wave
structure appears behind the shock. This is not seen in the stable detonation problem.

Figure 5.12 shows the shock speed as a function of time in the unstable case, also
showing periodic oscillatory behavior. An earlier results given by Fickett and Wood[31]
shows that under certain assumptions the averaged shock speed s, in both stable and
unstable detonation waves, should essentially remain the same as the steady-solution shock
speed. In our calculations, we have observed that for the unstable detonation wave problem
the time-averaged shock speed 5 is equal to 8.655, while the steady-solution shock speed is
8.613. So there is about 0.5% discrepancy from the predicted value. On the other hand,
for the stable detonation wave problem 3 is 9.1369, while the steady-solution shock speed
is 9.1359.

Finally, Figure 5.13 shows the result in the regime of transition to instability. We also
observe good agreement with the linear stability result. Recall that for the parameters we
used here f = 1.73 is the critical value for stability of detonation waves.
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Figure 5.8: A convergence study for the shock front pressure history on the stable detona-
tion wave problem (f = 1.8) using the high resolution front tracking with adaptive mesh
refinement algorithm. The dashed line shown in the figure is the front pressure of the steady
ZND solution.



61

coarse: 1 peint/Ly 4o, fine: [ points L1/2
IS
a
¢ 8 A
3
I
0
o
1
2 8 49
-1
S
3
&
o
R
o
3
T T T T T T
0 20 40 60 80 100
time
coarse: 2 points/L1/2, fine: 8 points/L1/2
g
]
¢ 8 A
= 0]
@
g’) (0]
|
2 g 4
-
]
<
&
o
R
0]
8 - @
4
T T T T T T
0 20 40 60 80 100
time
coarse: 4 points/Ll/Q, fine: 16 points/Ll/2
g
3
z 3
3
@
@
@
[
a8 49
-
]
o
&
o
Q
s
©

time

Figure 5.9: A convergence study for the shock front pressure history on the unstable deto-
nation wave problem (f = 1.6) using the high resolution front tracking with adaptive mesh
refinement algorithm. The dashed line shown in the figure is the front pressure of the steady
ZND solution.
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Blow up of the fine grid region for the solution shown in Figure 5.10.
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Figure 5.12: Shock speed history for the unstable detonation wave problem using the coarse-
fine grid spacing: h. = 2 points/L; /5, hy = 8 points/L; /5, where the dashed line is the
time-averaged shock speed.
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Chapter 6
FINITE VOLUME WAVE PROPAGATION METHODS

Here we begin by considering numerical methods that can be used to compute the
solution for the homogeneous conservation laws

w+ () + glu), = 0 (6.1)

on the grid determined by the front tracking algorithm. We again describe methods based on
the wave propagation approach, because of the ease of dealing with small cells and boundary
conditions in a stable manner. The approach we present here follows closely ideas from the
one-dimensional wave propagation approach discussed in the previous chapter, though some
modification of the methods will be considered to take into account the two-dimensional
effects, particularly for the high resolution methods. In the discussions, special attention
will be given to the treatments of the irregular cells, and a rotated Godunov method will
also be explained.

6.1 Preliminaries

We describe the methods on a very special grid as illustrated in Figure 6.1, in which addi-
tional cell interfaces are introduced for the tracked discontinuities in a uniform underlying
Cartesian grid subdividing some cells into pieces. Let C; denote each grid cell, and let I;;
denote the cell interface between cells C; and C;. We use a finite-volume formulation in
which the value U;" approximates the cell average of the solution over the grid cell C; at
time t,,

1
U”z—/um, ) dd
A (2,y,tn) dz dy

where A; is the area of the cell C;j. For convenience, the additional cell interface is called
an irreqular cell interface to distinguish it from the regular cell interfaces, and the cell it
subdivides is called an irreqular cell to distinguish it from the regular cells.

The methods we use are based on solving one-dimensional Riemann problems at each
cell interface. Consider, for example, the one-dimensional Riemann problem normal to the
interface separating cells C; and Cj in Figure 6.1. Define the new variables ¢ (normal to
the interface) and 71 (tangential to the interface) by

=ar+Py, n=-Pr+ay (6.2)

with o = cos 6, 8 = sinf, where 0 is the angle of the cell interface. Then the conservation
laws (6.1) can be written as

w + f(u)e + g(u)y = 0 (6.3)
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with

flu) = af(u) +Bg(u),  §(u) = =Bf(u) + ag(w).

Assume that in the new coordinates u is constant in 5, and so (6.3) reduces to a one-
dimensional Riemann problem

w+ flu)e = 0 (6.4)

with left and right states U; and U;. For rotationally invariant equations such as the Euler
equations this is particularly simple since, after a change of dependent variables to rotate
the velocity field, the form of f(u) agrees with f(u) and hence a single Riemann solver
suffices for all angles 6.

As in the one-dimensional method, we use Roe’s approximate Riemann solver and obtain

a set of waves traveling with speeds A1, Ao, -+, Ay, in the -direction. As before, we denote
the jumps in u across these waves by the vectors 71,79, -+, 7y, so that
m
Uj — Ul = Z 7’p.
p=1

Finite volume wave propagation methods are based on using these propagating discontinu-
ities to update the cell averages in the cells neighboring each interface.

6.2 Godunov Method

In a standard finite volume method, fluxes across the cell interfaces are defined and used
to update the cell values on either side of the interface. In particular, in the Godunov
method, fluxes are computed based on solving the Riemann problems at each interface in
the direction normal to the interface over a time step of length k. Then a conservative
flux-differencing method is used to obtain the solution at the next time step U"T!, see [63]
for more general discussion on the conservative flux-differencing methods.

Following convention, the normal direction for a regular cell interface is defined in the
usual manner pointing to the positive z- or y-direction. At an irregular cell interface it
is defined by the following rules: if the irregular interface represents a boundary segment,
the normal direction is chosen pointing toward the interior region, while if it represents a
tracked discontinuity, the normal direction is chosen pointing to a state with lower density
or other physically meaningful quantity, such as entropy.

A first order accurate version of the finite volume wave propagation method is a variant
of the Godunov method, with the Roe Riemann solver, on a nonuniform grid. That is to say,
we solve the Riemann problems at each interface in the direction normal to each interface
as well, but now waves which result from solving the Riemann problems are propagated
over the time step k to update whichever cell values they affect. Since this approach has
been discussed fully in the past [61],[62], here we only briefly describe the method.

Figure 6.1a shows an example in which waves are propagated from the regular and
irregular cell interfaces. Then in the method the cell average U;" is updated by

hii Ak
U +1 U JIp
]T’ — Y (7 47> Tp
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Hq

kA,

Figure 6.1: a) Godunov method. Waves obtained from solving the normal Riemann problem
at each interface is used to update the cell values (only one family of waves is shown). b)
Godunov method with tangential splitting. Waves shown in a) are split into subwaves in
the tangential direction, and used to update the cell values (only one subwave is shown for
each wave family).

since h;j|Ap|k is the area the wave sweeps out over the time step &, and so the value should
be changed by the jump r, in this portion of the cell. Similarly, due to the g-wave, the cell
average UJ' should be updated by

(6.5)

Uln+1 — Uln _ <Area(Wq N Cl)) Tq

A

where W, is the region that the g-wave affects (the rectangular region in the figure), and
Area(W, N () is the area of the intersection between W, and cell Cj. Note that other cells
which are affected by the g-wave should also be modified by the appropriate amount. By
computing the effect of each wave on the cell average, we obtain the finite volume wave
propagation Godunov method.

As in the one-dimensional method, it is also possible to reformulate this method in a
standard conservation form by computing fluxes appropriately at each interface. In fact, if
we do so, on a uniform grid the resulting method is equivalent to the standard Godunov
method. On a nonuniform grid, however, the form of the method becomes very complicated
due to the fact that waves may cross many cell interfaces as seen in Figure 6.1a. This is
also the case in dealing with the boundary conditions. Because of the complications we do
not discuss this flux formulation here.

Regarding stability, it is well known that on a uniform grid in two space dimensions the
Godunov method has a Courant number restriction vy < 1/2 where

k
vy = o rr;éjijl; (6.6)
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ho = min(hy, hy) is the minimum mesh size of the uniform grid cell in both the z- and
y-directions. On a nonuniform grid, the Courant number is defined by

k
max Xy (6.7)

min PsJ

UV =

where Anyin = min; A;. Note that because of the presence of irregular cells, the time step & is
severely reduced if Apin < hg. From numerical experience, because the waves are allowed
to affect more than one neighboring cell, the wave propagation version of the Godunov
method is more stable than the standard flux version Godunov method, and v < 1/2 is not
required on the nonuniform grid. Instead we can use the Courant number vy < 1/2 with
mesh size based on the underlying uniform grid.

6.3 Godunov Method with Tangential Splitting

Another variant of the Godunov method is the Godunov method with tangential splitting
introduced by LeVeque[61],[65] in which the waves obtained from solving the normal Rie-
mann problem at a cell interface are split into subwaves in the tangential direction with
appropriate tangential speeds. In this approach, a tangential Riemann problem is solved
for each wave using the data on the left and on the right of the wave. Since this approach
has been discussed in more detail in [61], here we only briefly describe the method.

Figure 6.1b shows an example in which we split the p-wave from the I;; interface. For
the equation, we take the tangential portion of (6.1), i.e., the portion of equation in the
y-direction:

up + g(“)y =0, (6.8)

and for the initial data we take

Ui"—i-qu

q<p

as the left state and

U;L—qu

q9>p

as the right state. Taking these as the left and right states for the equation (6.8) gives a
discontinuity of magnitude r,, and the solution will be resolved into waves wy, wa, -, wn,
propagating in the y-direction with speeds 1, po, - -, i, as illustrated in Figure 6.1b. The
splitting of waves in the z-direction can also be dealt with in the similar manner. By
computing the effect of each tangential wave on the cell average, we obtain the Godunov
method with tangential splitting.

Note that with this tangential splitting the method remains conservative because the
total contribution of the subwaves satisfies

m
qu =7p, (6.9)
q=1
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and the area swept out by each subwave is the same as the area of the original wave.
Moreover, doing so approximates the transverse derivative (BAuy),, since

A(U]n - U")/h~ Aum(xi+1/2: Yj» tn)
and splitting waves in the tangential direction gives an approximation to

B Aty (Tit1/2,Yj41/25 tn)

which is a linearized version of the term. Analogously, the splitting of waves in the z-
direction gives an approximation of the (ABuy), term. We will see in Section 6.5 that the
ability of handling the (BAu,), and (ABuy), terms is an essential step toward achieving
high resolution.

It is not difficult to verify that for the linear advection equation

ug + aug + buy =0 (6.10)

this method gives exact propagation of waves for any time step k, except for the error
introduced by the averaging process. For linear hyperbolic systems

u; + Aug + Buy =0 (6.11)

this is also the case, if A and B have identical eigenvectors and hence are simultaneously
diagonalizable in which case A and B commute, AB = BA. In this instance, the equations
can be decoupled into different characteristic fields, and by employing the wave propagation
approach, this method can be viewed as the method of characteristics since here each wave
family is propagated exactly for any time step k& and only averaging error is introduced
in the method. If the matrices A and B do not commute, or for nonlinear problems, this
method, in general, will not produce results that are stable for arbitrarily large time steps.
However, all of our numerical results indicate that the method is stable for the Courant
number vy up to 1.

6.4 Rotated Godunov Method

In a rotated Godunov method, we solve the Riemann problems in some physically relevant
directions rather than the directions normal to the grid interfaces. Various approaches have
been introduced in the past that determine the rotation direction as well as the way that
fluxes are computed in the method. Typical examples of the rotation direction are: the
flow direction, the pressure-gradient direction, the velocity-magnitude-gradient direction,
and the direction of the irregular cell interface[8],[27],[68]. In the flux version of the rotated
method, it is quite often the case that the Riemann data is obtained from some form
of interpolation of the cell values to maintain stability and achieve high accuracy of the
method, see [7],[68] for examples.

The idea of the rotated method is best explained by considering the linear advection
equation (6.10), and describing the method based on the wave propagation approach on a
uniform grid. As the first step in the method, we need to choose the rotation direction 6
and transform (6.10) to the new £-n coordinate system using (6.2), which leads to

g + dug + buy = 0 (6.12)
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Figure 6.2: Rotated Godunov method. a) Waves obtained from solving the Riemann prob-
lem in the flow direction (a, b) of the linear advection equation (6.10) is used to update the
cell values. An interpolated value U; obtained from taking averages of cell values over the
parallelogram box, is used in a flux version rotated scheme. b) On the irregular cell, the
rotation direction based on the direction of the irregular cell interface is used in solving the
Riemann problem for the conservation laws (6.1) (only one family of waves is shown).

with & = aa + b and b = —Ba + ab. (Recall that « = cosf, 8 = sinf.) For this model
equation (6.10), it is clear that we should use the flow direction (a, b), or the solution gradient
(ug,uy), in the normalized form as the rotation direction in the method. Suppose that we
take the normalized flow direction as the rotation direction for the Riemann problem, (6.12)
simply reduces to the one-dimensional linear advection equation in the flow direction (¢-
direction):

ug + aug =0 (6.13)

with @ = v/a? + b2. Then in the second step of the method, we solve the Riemann problem
for (6.13) at each interface using the values from adjacent cells as data. Doing so results in
waves propagating with speed @ in the ¢-direction with a shape shown in Figure 6.2a. The
cells it overlaps are updated during the wave propagation.

Figure 6.2a shows an example in which the cell average U}" is updated by

n ak n n
U]n-i—l =U" - ﬁ(h - bk/2)(U}" = U),

while the cell average U}" is updated by

abk?

Uln+1 =U" - 242

Uj = U{)

where h is the mesh side in both the z- and y-directions. By computing the effect of each
wave on the cell average, we obtain the rotated Godunov method via wave propagation. It
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is easy to see that this method gives exact propagation of waves for any time step k, except
for the error introduced by the averaging process. In fact, for this model problem, the result
obtained from this method is identical to that obtained from the Godunov method with
tangential splitting.

It is worth noting that for this model problem, in the standard flux version rotated
Godunov method, the flux at the I;; interface is computed as

FU}, U]") =alU} (6.14)
if the values from adjacent cells are used as Riemann data, whereas the flux is computed as
F(U;, U]”‘) = aU;} (6.15)

if the values from some interpolation method are used as Riemann data, see Figure 6.2a for
illustration. It is easy to see that flux (6.14) is simply the flux obtained from the unrotated
Godunov method, while flux (6.15) is the modified version of the flux (6.14) which takes
more information from the upwind direction. Evidently, no matter which flux is used in
practice, the resulting flux differencing method will not produce results that give the exact
propagation for any time step k as in our wave propagation method.

On uniform grids, the extension of the rotated wave propagation method to linear
hyperbolic systems (6.11) is straightforward if A and B commute, since we can take each
characteristic direction as the rotation direction for the Riemann problem and propagate
the resulting wave as the way we did for the linear advection equation. If A and B do not
commute or for nonlinear problems, this method is still applicable, but now the rotation
direction should be chosen on a problem by problem basis and will vary from cell to cell.

The extension of the method to nonuniform grids can be made quite easily also, but
now a formula similar to (6.5) should be used to update the cell values, see Figure 6.2b for
illustration. It can be demonstrated that by propagating waves exactly and allowing waves
to affect the neighboring cells, this method is not only stable in the presence of small cells,
but also with Courant number vy up to 1, for most of the equations of practical interest.

It should be noted that, in general, for conservation the cell values should be updated
not only based on the solutions of the rotated Riemann problem in the ¢-direction, but also
based on the Riemann solutions in the n-direction as well.

6.5 High Resolution Godunov Method

Here we discuss the high resolution modifications of the Godunov method. To illustrate
the idea, let us look at the derivation of the Lax-Wendroff method for the conservation
laws (6.1) on a uniform grid. In deriving the Lax-Wendroff method, we start with the
Taylor series expansion
k2
u(xayat + k) = u(x,y,t) + kut(xa Y, t) + Eutt(xa Y, t) o (616)

From the governing equation (6.1) we can compute

up = —f(u)gy — g(u)y = —Au, — Buy
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and

up = (=f(u)e —g(u)y)t = —f (e — g(u)yy = —(Aur)y — (Buy)y
= (A%uy), + (ABuy), + (BAug), + (B2uy)y,

where A = 0f(u)/0u and B = dg(u)/du, so that (6.16) becomes

k2
u(z,y,t +k) = u(z,yt) —k(Aug + Buy)(z,y,t) + 7((A2ux)x +

(ABuy); + (BAug)y + (B*uy)y) (z,y,t) + - - (6.17)

The Lax-Wendroff method then results from retaining all the terms up to O(k?) and using
centered difference approximation for the derivatives appearing there.

From (6.17), it is clear that to achieve second order accuracy we need to deal with
the second order derivative terms (A%uy)y, (ABuy)z, (BAug)y, and (B?uy),. Here the
approach we use follows ideas from the previous work of LeVeque on wave propagation
methods[61] in that we introduce piecewise linear approximations to the solution in place
of the piecewise constant functions in Godunov’s method and handle transverse derivatives
by splitting waves in the direction tangential to the cell interface. On uniform grids, this
method is in fact very similar to the unsplit multi-dimensional upwind method of Colella[21]
as discussed in [65]. The approach we employ here, however, has the advantage of easy
extension in dealing with the irregular cells.

We begin our method by solving the Riemann problems in the direction normal to the
cell interface as before, using the piecewise constant data. The resulting waves are then
split into subwaves using the tangential splitting approach discussed in Section 6.3. As
mentioned previously, doing so gives an approximation of the transverse derivative terms
(ABuy), and (BAug),.

To handle the (A%uy;), and (B?u,), terms, we use the approach similar to our one-
dimensional high resolution method in that a slope is introduced for each wave and used to
construct the piecewise linear wave in place of the piecewise constant wave.

On the regular cells, slopes and piecewise linear waves can be defined quite easily in
both the z- and y-directions. Let op; be the slope vector used in the pth family over the
C; cell. In this case, as in the one-dimensional method, o,; can be obtained easily from
using either the unlimited slope (2.7) or a slope limiter (2.8). Then, with this slope o,
the piecewise linear wave, moving in the z-direction, is now made as a three-dimensional
profile that is constant in y and piecewise linear in z over the grid cell C;, as illustrated in
Figure 6.3a.

To modify the cell values, this piecewise linear wave is advanced with speed \,, obtained
from solving the normal Riemann problem at the I;; interface, over the time step k, and
the cells it overlaps are updated. For example, cells U;* and U}" are updated by

Mplk(h = (Xl
grtl o g <| k(A = Dyl )U

Aplk(h = [Aplk)R
yrtt .= prtl 4 <| P L Opis
J J 24; b

where §|A,|k(h — |Ap|k)op;h is the volumetric region that the piecewise linear wave overlaps
the grid cell. Piecewise linear wave propagation in the y-direction can be handled in an
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opih/2

Figure 6.3: Piecewise linear wave propagation. a) Wave arising from the interface between
the regular cells C; and Cj in the z-direction. b) Wave arising from the interface between
the irregular cells C; and Cj in the {-direction.

analogous manner. It is easy to check that doing so gives an approximation to the linearized
version of the (A%uy), and (B?uy), terms, and the method remains conservative with any
choice of slopes.

On the irregular cells, say for the C cell shown in Figure 6.3b, one simple choice of
slope is to take the unlimited slope

qu = ’I“q/h* (6.18)

where h, is some measure of the normal distance between two cells, such as the difference in
the ¢-coordinate (normal to the irregular cell interface) of the centers of mass of these two
neighboring cells sharing the same interface. Then a piecewise linear wave with this slope in
the ¢-direction and total integral zero can be made and propagated in the &-direction with
velocity A,. This is illustrated in Figure 6.3b where a piecewise linear wave is constructed
for the C; cell of the g-wave arising from the interface between cells C; and (. Similarly,
for waves arising from the other side of the irregular cell, piecewise linear waves can also be
constructed.

More generally, if we want to use slopes based on a slope limiter, we may need to
employ an interpolation scheme that determines another slope to compare with in the slope
limiter (2.8). For instance, for the example shown in Figure 6.3b, one possible approach is
to first compute cell values by averaging the neighboring cell values on two artificial cells
of size h x h, each, solve the Riemann problem in the &-direction using this data, and then
take the resulting jump in the pth family divided by A as the slope used for the limiter.
Note that special attention needs to be taken to avoid using information from the opposite
side of the irregular interface, i.e., across the shock, and so, as in one dimension, we can do
slope limiting based on a one-sided differencing formula.

As usual, cell values on the irregular cells are updated by the propagation of piecewise



76

linear waves. Since this amounts to computing the intersection between three-dimensional
wave structures and grid cells, we write the formula for updating the cell values in a de-
scriptive form

Volume(S,; N C;)
Aj

Urtlh=urtt 4+ (6.19)

where S;; is the piecewise linear wave in the g-family for the C; cell, and Volume(Sy; N C})
is the volume of the intersection between Sy; and C;. For the example shown in Figure 6.3b,
this formula should be applied to not only the two neighboring cells of the wave, C; and
C), but to other cells where the wave S;; is affected. Notice that the work involved in
the method increases a great deal by introducing this piecewise linear approximations to
the irregular cells. Naturally, it would be desirable to find a better way to do this. The
performance of the method and other approaches are still under investigation.



Chapter 7
FRONT TRACKING ALGORITHM

Having described the numerical methods that can be used on a grid which contains
tracked discontinuities for the conservation laws (6.1), we now discuss the front tracking
algorithm for this system. We will see from the discussion that this algorithm is in spirit
similar to our one-dimensional front tracking algorithm, and is also very simple and robust.
Here we will focus our attention on describing ideas of advancing tracked fronts from one
time step to the next. Some possible approaches to setting up the data structure will also be
discussed. Results obtained using this front tracking algorithm for radially symmetric shock
waves will be presented for the Euler equations, and the implementation of the solid wall
boundary conditions for this model system will be discussed. For ease of comparison, the
format of this chapter is organized analogous to the one-dimensional counterpart Chapter 3.

7.1 Algorithm

As in the one-dimensional front tracking algorithm, our grid consists of two parts. We
choose a uniform underlying grid that remains fixed for all time, and we also introduce
tracked interfaces which vary from step to step for the discontinuities in the flow field.
These tracked interfaces subdivide some regular cells into two or more subcells, creating
some irregular cells. We then view the union of the regular cells and irregular cells as our
global grid. In each grid cell, the cell average is denoted by U

For the representation of the tracked interfaces, we use the simplest piecewise linear
approach in which an interface is represented by a straight line within each cell that is formed
by connecting two poinits lying on the underlying fixed grid; a point is an (z,y) location in
the computational domain. In addition, the interfaces belonging to the same discontinuity
are joined together into a continuous piecewise linear curve as shown in Figure 7.2, for
example. We assume that the curve does not cross itself or the other curves.

In each time step our front tracking algorithm consists of the following steps:

Algorithm 7.1

1) Determine the new location of the tracked interfaces at the next time step.

2) Insert these new tracked interfaces into the grid. Some cells will be subdivided and the
values in each subcell must be initialized.

3) Take a time step on this nonuniform grid using a finite volume method described in
Chapter 6 to update the cell averages.

4) Delete the old tracked interfaces from the previous time step. Some subcells will be
combined, and a value in the combined cell must be determined from the subcell
values.
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Figure 7.1: Data structure of the tracked interfaces in the front tracking code.

From the algorithm, it is clear that we have to deal with both the grid and tracked
interfaces to a great extent. So before describing each of these steps in more detail, we
first discuss some possible approaches to setting up the data structure. Some terms will be
defined accordingly and used later on.

For the data structure of the grid, we can use an approach analogous to our one-
dimensional front tracking code by employing a standard representation for the fixed grid
together with a flag for each grid cell that indicates whether the grid cell is subdivided by
one or more tracked interfaces. For subdivided cells, this flag is a pointer to another data
structure containing information on each subcell.

There are, however, two possibilities in defining the data structure of the subdivided
cells. The first possibility is to view the old and new tracked interfaces as being located
in the same grid cell. There is no distinction between the grid system before and after
inserting the new tracked interfaces. This is a reasonable approach as motivated by our
one-dimensional algorithm, and in practice this approach works fine for problems consisting
of well separated old and new tracked interfaces. But it turns out that this grid setup is of
limited use because of the fact that the old and new tracked interfaces might cross each other
as seen in many problems, e.g., Figures 8.6 and 8.7, causing an unnecessary complication
of the data structure.

The second, more reliable, approach is to view the old and new tracked interfaces as
being located in two different grid systems; the old grid system and the new grid system.
The old grid system contains only the old tracked interfaces, and the new grid system
contains only the new tracked interfaces. The global information of the grid can still be
recovered by maintaining a flag for the grid cell which encloses both the old and new tracked
interfaces. Given these two distinct grid systems, there is no problem dealing with old and
new tracked interfaces which cross.

Concerning the data structure of the tracked interfaces, one simple approach is to use
a tree-like structure as presented in Figure 7.1. On the top level, we have a structure
curve which includes a pointer to another data structure indicating the first element of
the next level. On the next level, we have a structure interface which consists of two next
level structure points (recall a point is an (x,y) location in the computational domain),
its beginning and its end, and a pointer to the next interface. Then a doubly linked list
is used for the curve to maintain the overall information on the tracked front. Note that
the interfaces are linked for each curve individually. Since we need to keep track of which
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tracked interfaces must be deleted in Step 4, we would also maintain a flag for each curve
that tells whether it is an old curve or a new curve. In addition, it would be very useful in
Step 1 to include a flag for each curve that indicates the physical type of curve, e.g., shock,
interface, or boundary curve.

We now discuss each step of Algorithm 7.1 in more detail.

Step 1: We begin our algorithm by solving a one-dimensional Riemann problem in a
direction normal to each tracked interface using the values from the adjacent cells as data
and obtain a set of waves traveling with speeds Ay;, Aoy, - -+, Apyy and jumps ry;, rop, -+ -, Toni-
Here the first and second subscripts on the speeds and jumps stand for the wave family and
the index of the interface respectively. We expect the solution to this Riemann problem to
consist of only one strong wave, corresponding to the shock or interface being tracked, and
m — 1 weaker waves. The strong wave is used to help choose the new interface location.

To be more precise, we discuss one simple approach in more detail. (Other ways to
advancing fronts may be found in [3],[16],[17].) Let (zf,y/), * = 1,2, be points of the
interface [. Assume that the strong wave is in the pth wave family, and so Ay is the speed
of the strong wave on the interface I. Then the new location (5},&}) of the point (z,y;),
under the current time step k, can be calculated by simply using the formula

ﬁ _ x] o
(w) (yf)““’“(@) (1)

where (ag,8;)7 is the normal direction to the interface I, ¥ = 1,2. Performing the same
calculation as in (7.1) on all the interfaces in a given curve, we obtain an ordered set of

points {((E,gﬁ), x =1,2),l =1,2,---,n} where n is the number of interfaces in a curve.
Here we assume that the original set of points, {((z},y;),* = 1,2),l =1,2,---,n}, is an

ordered set.

Note that in many problems, e.g., when there is strong shear layer flow along the dis-
continuities, the tracked interfaces should be advanced not only in the normal direction to
the interface as illustrated in Figure 7.2a, but also in the tangential direction. This can
be done quite easily by moving points tangential to the interface using, for example, an
average tangential velocity from the data of the normal Riemann problem. It is easy to
show that doing so gives exact front propagation for linear advection equations and for
simultaneously diagonalizable linear hyperbolic systems. For general linear hyperbolic sys-
tems, or for nonlinear equations, this front moving procedure gives a good approximation
to the front motion. P L

Connecting each pair of points (z},y}) and (z7, y?) with a straight line using (7.1) or the
modified locations which take account of the tangential effect of the flow, for [ =1,2,--- . n,
we then obtain the new location of the tracked interfaces at the next time step. Notice that
in general these new interfaces would not join together into a continuous curve as seen in
Figure 7.2a.

To fo/r\m a continuous curve, one simple approach is to take an average of two neighboring
points (z7,y?) and (%,y/,\ln), where m is the interface next to the interface I, for | =
2,3,---,n — 1, and collect the set of averaged points together with appropriate endpoints
to form a new ordered set. Let (Z;,y;) be the averaged point location. This results in the
following set:

o~ o~ o~

(=L yD), (0,91), (B2, 52) -+ (Fn 1, Gn 1), (22, 52) ). (7.2)



80

N

Pl old ﬁrontT

Figure 7.2: Front propagation. a) Tracked interfaces after propagating the original inter-
faces using the strong wave speeds obtained from the normal Riemann problems under
the current time step. b) New tracked interfaces after taking an average of two neighbor-
ing points on the new interface location shown in a), and connecting the resulting points
(indicated by large dots) consecutively by straight lines.

old frontT

For simplicity, we write the set (7.2) as

{(xla yl)a (anyQ)a (:Eg, y3)7 T (QL‘n, yn)a (xn-l-la yn-l—l)}- (73)

Finally, a continuous piecewise linear curve, the new location of the tracked interface, is
obtained by connecting the points in set (7.3) consecutively by straight lines as shown in
Figure 7.2b.

Mathematically, this piecewise linear curve is represented by a parametric form

P(s) = (X(s), Y(s)) (7.4)

where z = X(s) and y = Y(s) are piecewise linear polynomials, and s is the parameter
along the curve. Assume that s is in [0, 1]. To assign the parametric value s to each point
(zk,yk), we use the simplest approach by choosing a uniform mesh size, As = 1/n, and
setting s, = (k — 1) A s. Then from points (z,yx) in (7.3) and the parametric variables
sk, the piecewise linear polynomials take the form

Xk(s) = ap + bgs

Vi(s) = ¢ +dys (7.5)

where

LSk+1 — Lk4+15k
Sk+1 — Sk

Tk+1 — Tk

Sk+1 — Sk
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Figure 7.3: A new tracked interface is created in the front propagation procedure, in Step 2,
that leads to a subdivision of cells. a) Grid at time step n before inserting the new tracked
interface to the grid. b) One-grid approach. In time step n, we split C;, in two, setting
U = U;;. In time step n+ 1, we eliminate the old tracked interface, and merge the C;, and
C;, to C;, using (7.7). ¢) Two-grids approach. In time step n, we split the original regular
cell i in two, setting U’ using (7.7) and U] = UJ'. Our grid system consists of both the

old grid in a) and the new grid in c).

S — S
= YkSk+1 — Yk+15k (7.6)
Sk+1 — Sk
4, = 1Yk
Sk+1 — Sk
for s, < s<sgy; and k=1,2,---,n, and hence we get the parametric representation of

the piecewise linear curve P(s) = (X(s),Y(s)) with

x = X(s)={X(s),k=1,2,---,n}
= Y(s) ={Wk(s),k=1,2,--- ,n}.

More generally, based on the data (zy, yk, sx) we could use some sort of curve fitting pro-
cedures or the reconstruction technique of the ENO (essentially nonoscillatory) method[48]
to construct a smoother parametric curve P(s) to any desired order. The possibility of
using this higher order representation of the tracked front, in particular constructed by the
ENO method, will be discussed further in the next chapter.

Step 2: Having gotten the new location of the tracked front P(s) at the next time step,
we then insert it into the underlying grid. This can be done quite easily by marching along
the parametric curve P(s) from s; to s,41 and looking for the intersections of each of the
piecewise linear polynomials (X% (s), Vk(s)) with the underlying fixed grid. This determines
points for interface. Connecting the resulting points by a straight line in an orderly way, we
obtain the curve and also the new grid at the next time step.

Now since each new tracked interface subdivides some cell into two subcells, we must
assign a cell value to each of these subcells. As mentioned earlier, there are two approaches
to setting up the data structure for the subdivided cell, and hence there are two ways to
assign the subcell values. If we adopt the first approach, i.e., we treat the old and new
tracked interfaces as being in the same grid cell, as in the one-dimensional front tracking
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old front T

Figure 7.4: Wave propagation in Step 3 (only some of the waves are drawn). Each wave
is propagated independently. For waves passing through each other the interaction is lin-
earized. Note that the tracked waves are propagated close to the tracked interface intro-
duced in Step 2.

algorithm, the simplest way to do this is to assign the previous cell value to each subcell, see
Figure 7.3b. Whereas, if we adopt the second approach, treating the old and new tracked
interfaces as being in two different grid cells, the old cell and the new cell, each subcell
would be initialized by a value based on the appropriate weighted combination of the old
cell values, see Figure 7.3c.

Step 3: Once the new grid is constructed, we then update the cell average UJ' by
applying the finite volume wave propagation methods described in Chapter 6, see Figure 7.4
for illustration. As in the one-dimensional algorithm, because of the carefully chosen grid,
the tracked discontinuity is propagated close to the tracked interfaces. There is little or
no smearing of the tracked wave during the averaging process. Smooth flow is captured
as usual. Again, near tracked interfaces, waves may propagate through several cells due
to the fact that we have created small subcells. In the next chapter, we perform error
estimation to study stability properties of this wave propagation method using various
finite volume approaches. The error behavior and accuracy near the tracked interface will
also be examined.

It should be mentioned that, in principle, we can use any finite volume method to update
the solution on this nonuniform grid created by the front tracking algorithm. The best way
to do this that achieves higher order of accuracy, even for cells near the tracked interfaces,
is still under study. We will show some preliminary results in the next chapter that give
some indications of what one should do to accomplish this, however.

Step 4: We now delete the old tracked interfaces from the grid system. Again, we
have to discuss two different situations. First, in the one-grid approach, to delete the old
tracked interfaces would correspond to merging two subcells into one, and the cell value in
the combined cell would be calculated by the appropriate weighted combination of these
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two deleted subcells to maintain the correct cell average. For example, in Figure 7.3b the
old tracked interface is deleted from the grid cell. Let Cj, denote the cell after deletion.
Then the cell average of the C;, cell becomes
n+1 __ A'a n+1 Aib n+1
v = A—idUia + A—idUib (7.7)

where UZH, U{;H are the cell averages in the C;, and Cj, cells respectively; A;, and A;,
are the corresponding areas of the subcell, and A;, is the area of the C;, cell.

Alternatively with the two-grids approach, only grid cells which contain exclusively old
tracked interfaces need to apply the above averaging procedure, because on grid cells which
consist of both old and new tracked interfaces this procedure has already been used in Step
3 to assign new subcell values.

7.2 The Euler Equations and Boundary Conditions

Before presenting numerical results with this front tracking algorithm, we introduce the two-
dimensional version of the Euler equations of gas dynamics and discuss the implementation
of the solid wall boundary conditions for this system.

The inviscid Euler equations of gas dynamics in two dimensions have the form

p ,gu pv
0 0
9 pu o pu”+p g ;;uv —0, (7.8)
ot | pv oz puv oy pv- +p
pE (pE +plu (pE + p)v

where p, u, v, p, E are the density, velocity in the z-direction, velocity in the y-direction,
pressure, and total energy of gas per unit mass, respectively. We again assume the equation
of state satisfies the y—law; so the internal energy is e = %p/p and the total energy of
gas per unit mass is E = e + £ (u® + v?).

As in one space dimension, the wave propagation approach is very easy to apply for
various boundary conditions. Nonreflecting-outflow boundaries and periodic boundaries
can be handled in a manner quite similar to the one-dimensional case. Here we devote our
discussion solely to the most interesting case, the solid wall boundary.

At a solid wall boundary, the proper boundary condition for the Euler equations is
zero normal velocity. Now consider the grid configuration shown in Figure 7.5a where a
Cartesian grid is cut off by an irregular boundary. In the wave propagation approach, waves
resulting from solving one-dimensional Riemann problems at the cell boundaries are used
to update cell values. To achieve the solid wall boundary condition, waves which leave at
the boundary are now reflected to the interior domain, as in the one-dimensional case, see
Section 3.2.

For example, Figure 7.5a shows a wave originating from the Riemann problem between
cells (7,7) and (i 4+ 1,7) that passes all the way through the irregular cell (i + 1,5). The
portion of this wave that lies beyond the boundary is then reflected normal to the boundary
segment and back into the computational domain, as shown in Figure 7.5b. This reflected
wave carries a reflected jump 7, and is used to update cell averages that overlap with the
reflected wave, in this case cells (i+1, j) and (i+1,7—1). The relation between the reflected



84

S
— v\

Y

1 t+1 1 1+ 1

Figure 7.5: a) Wave propagating through a small boundary cell and out of computational
domain. b) Reflected wave actually used.

jump 7, and the outgoing jump r, that fulfills the solid wall boundary condition can be
obtained by first rotating r, to the &n (normal-tangential) coordinates at the boundary,
negating the normal velocity, and then rotating the resulting jumps back to the Cartesian
coordinates[61],[62].

For convenience we use an operator O, called the rotation operator, to denote the
coordinate transformation of the velocity field from the Cartesian coordinates to the &-n
coordinates. For the Euler equations (7.8),

o= o (7.9)

Recall that @ = cosf, = sinf. It is also convenient to define the inverse of the rota-
tion operator, ©~', which maps the velocities in the -1 coordinates back to the original
coordinates. With these notations, we may simply write

Tp = —R(rp)

to express the above wave reflection procedure, where R is an operator of the form
R=0""! 0. (7.10)

Similarly, the reflected slope 7, is related to the outgoing slope o, by

op = —R(op).
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Figure 7.6: Grid used for the radially symmetric expanding shock wave. a) Grid for the
initial data. b) Final grid after 14 time steps (time ¢ = 0.1).

In addition to reflecting waves, we need to solve a one-dimensional Riemann problem
normal to the boundary with data u, = ©(U) and u; = R(u,), where U can be obtained
either from data in the adjacent cell or from some interpolation method[7]. With this initial
data there is only one incoming wave that affects the cell values. Of the other three waves,
the two contact discontinuities will have zero strength and zero velocity, while the outgoing
image of the incoming wave is ignored.

7.3 Radially Symmetric Shock Waves

We now show results obtained using this front tracking algorithm. As a first example, we
consider a radially symmetric expanding shock wave. Outside of a circle of radius ¢ = 0.2,
we set

p=14 u=0, v=0, p=1.

Inside the circle, the initial data is:

p(z,y,0) = 5.143204
u(z,y,0) = 2.045108 (z — zo)r/r?
v(z,y,0) 2.045108 (y — yo)r/re
p(z,y,0) = 9.045462

where 72 = (z — x9)? + (y — yo)? is the distance from the center (zq,%0) = (0.5,0.5). The

initial grid is shown in Figure 7.6a where the initial shock is inserted as an interface that
subdivides some cells in the underlying 40 x 40 grid.

After 14 time steps (time ¢ = 0.1 and Courant number v = 0.9), we obtain the results
shown in Figure 7.7 on the grid shown in Figure 7.6b. Notice that the tracked shock
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Figure 7.7: Results for the radially symmetric expanding shock wave. a) Density contours
at time ¢ = 0.1. b) Cross section of density along line y = 0.5. The solid line is the “true”
solution obtained from solving the system wu; + f(u), = 1 (u) with appropriate source terms
for the radial symmetry using the one-dimensional front tracking algorithm. The dotted
points are the two-dimensional result.

remains smooth and circular and appears to be very well located. The density contour
plot in Figure 7.7a is not very sharp due to the graphics routine which plots the solution
projected onto a uniform grid. The cross-section along y = 0.5 shown in Figure 7.7b shows
the sharpness of our result (dotted points) much more clearly.

Note the solid line in this figure is the “true” solution as calculated with our one-
dimensional front tracking algorithm on the system u; + f(u), = 9(u) with appropriate
source terms for the radial symmetry, using h = 0.001. The two-dimensional results shown
above were obtained using the high resolution Godunov method on the regular cells and
the Godunov method with tangential splitting on the irregular cells, with v = 1.4 on a unit
square domain ([0, 1] x [0, 1]). No slope is introduced for the irregular cells.

Next, we consider a radially symmetric converging shock wave. The initial data now
consists of two circular regions. Inside of a circle of radius ro = 0.36, we have density 1.4,
zero velocity, and pressure p = 1. Outside the circle of radius r¢ and inside a circle of radius
r1 = 0.46, the initial data is:

p(z,y,0) = 5.143204
u(z,y,0) = —2.045108 ((r —r1)/(ro —1))* (& — x0) /7
v(z,y,0) = —2.045108 ((r —r1)/(ro —r1))*(y — yo)/r
p(z,y,0) = 9.045462

The outer circle is introduced to maintain the radial symmetry of the flow. Results are
shown in Figure 7.8. We again observe good agreement of the results. In this calculation,
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Density

density

Figure 7.8: Results for the radially symmetric converging shock wave. a) Density contours
at time ¢ = 0.1. The outer circle shown in the figure is a solid wall boundary. b) Cross
section of density along line y = 0.5.

the high resolution method used in the previous example was employed to update the cell
values, and the wave reflection procedure, described in Section 7.2, was used to handle the
solid wall boundary at the outer circular boundary.



Chapter 8
ERROR ANALYSIS

As in our one-dimensional front tracking algorithm, we use a high resolution method that
is essentially second order accurate away from the tracked interfaces. We use front tracking
in order to resolve discontinuities properly, and so our method does not suffer the standard
loss of accuracy due to smearing that a shock capturing method would suffer. Nevertheless,
there can be some loss of accuracy near the discontinuity due to the nonuniformity of the
grid and the piecewise linear representation of the tracked discontinuity. A planar isolated
discontinuity separating two constant states is tracked perfectly, but in a more realistic
situation the discontinuity may have some curved structure and interact with some smooth
background flow. There are several factors that can then lead to loss of accuracy near the
tracked discontinuity, such as the piecewise linear representation of the discontinuity, loss of
accuracy due to the use of the nonuniform and time-dependent grid, the choice of slopes in
neighboring cells, and the linearization of the interaction between the tracked discontinuity
and weak waves from the neighboring cell interfaces. Since it is difficult to analyze errors
arising in some of these instances, here we will only examine the first two problems in some
detail, and leave other problems as future work. To begin, we report results on the order
of accuracy for some sample problems where exact or “true” solutions are available.

8.1 Preliminaries

As in the one-dimensional case, see Section 4.1, we use E} to denote the global error of the
grid cell j at time t,. We assume that the global error in some particular norm, || E™ ||,
can be expressed in relation to O(h?), in which the largest real number p is called the order
of accuracy of a method as h approaches zero for all £, > 0. Here h is the mesh size in both
the z- and y-directions of the underlying uniform grid cells. The norms we use here are:
the 1-norm,

IE™ [l =3 A|U7 =i,
J

where Aj; is the area of the jth grid cell, and the max-norm,

7|
n,

| E" ||max = m]ax \U]” —u
In addition to computing errors over the entire grid cells using the above norms, we also
compute errors for cells near the tracked discontinuity. This is done using the following
1-norm,

1
1B =1 S AU - .
kex*



89

where now the sum is over the set of irregular cells in either the state behind the discon-
tinuity x, or the state ahead the discontinuity x*. The order of accuracy of a method is
computed in a manner similar to what is described in Section 4.1.

We now consider some sample problems and investigate the order of accuracy that is
achieved by using our front tracking algorithm.

Example 8.1. We first consider a scalar linear problem consisting of the linear advec-
tion equation

up + aug + buy =0 for 0<x2<1,0<y<1 (8.1)
with initial data

w(@.9.0) = { 2 4 1.5¢20(6-0:32) £ <0.32 (82)
e 1+ 0.5tanh(67(0.36 — &)) otherwise

where a = cos 5%, b = sin5°, and £ = ax+by. This initial data gives an oblique discontinuity
at an angle § = 5° to the y-coordinate with an extreme point just behind the discontinuity.
The exact solution for this problem can be obtained by simply shifting this initial profile
in the flow direction (cos 5°,sin 5°) with speed 1. Note that if we view this problem in the
direction of (a,b), this is essentially a one-dimensional problem; the same one as we have
studied previously in Example 4.1, but now the problem is solved on a two-dimensional grid
with an oblique profile.

As in the one-dimensional error estimation performed in Section 4.1, we examine the
error behavior of the method as time evolves and as the mesh is refined. For this problem,
we perform error estimation up to time ¢ = 0.1 at 5 different times (at every integer multiple
of the time interval £ = 0.02) with a mesh refinement sequence {h; = 2'71/25, &k = h; /2,1 =
1,2,3}. The result is shown in Figure 8.1 where the errors and order of accuracy in the 1-
norm and max-norm are presented for the Godunov method, the rotated Godunov method,
and the high resolution Godunov method. From the figure, we observe the poor order of
accuracy of the methods we employed here, particularly, in the max-norm. This is also
the case for the one-dimensional test as seen in Figure 4.2, and has been discussed in some
detail previously, see Chapter 4. Notice that there is little distinction between the results
obtained by using the Godunov method and the rotated Godunov method. For convenience
in reading, we again plot the errors in the logarithmic scale with base 10. (This is also the
case for other figures shown below relating to errors of a method.)

It should be mentioned that because the work increases a great deal by introducing
slopes for the irregular cells, for simplicity, in the experiments performed here we do not
incorporate the slope information for the high resolution method on these cells. We use the
“MUSCL” limiter (2.12) to determine slopes of the regular cells.

Example 8.2. Next, we consider a radially symmetric problem arising from the Euler
equations (7.8). As initial conditions, we take the data from the example of an expanding
shock wave discussed in Section 7.3. For this problem, we compute the “true” solution by
first applying the one-dimensional front tracking algorithm to the system wu; + f(u), = 9 (u)
with the appropriate source terms for the radial symmetry, using h = 0.001, and then
interpolating this one-dimensional result on a two-dimensional grid.

Table 8.1 shows results in density of an accuracy study up to time ¢ = 0.1 using the
Godunov method, the rotated Godunov method, the Godunov method with tangential
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Figure 8.1: An accuracy study of the front tracking algorithm for the linear advection
equation (8.1) with initial data (8.2) up to time ¢ = 0.1. All the errors shown in the
figure are plotted in the logarithmic scale with base 10. Error estimation is performed at 5
different times with a mesh refinement sequence {h; = 2'71/25,1 = 1,2, 3}.
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splitting, and the high resolution Godunov method. From it, we see that in the 1-norm the
Godunov method and the rotated Godunov method are first order accurate, the Godunov
method with tangential splitting is order p = 0.92, and the high resolution Godunov method
is order p = 1.65. In the max-norm, the order of accuracy for the methods used here is not
as good as we might hope to obtain. This is expected, however, because unlike the previous
linear problem where the grid is exact, here the error on the grid due to the discrepancy
between the tracked interfaces and the exact shock location contributes a source of error.
Note in the table the number in the parenthesis represents the exponent of the base 10, for
example, 9.9149(—2) stands for 9.9149 x 102,

In the same table, we also show the errors and accuracy for the irregular cells and the
tracked shock position. We observe reasonable results using our front tracking algorithm.
For example, for the high resolution method we have order p = 1.43 in the post-shock
density, order p = 0.84 in the pre-shock density, and order p = 1.72 in the shock position.
Note that the error for the tracked front location at time ¢, is defined by

n _.n =N
Efront = Ttrue "computed’

where 7. is the “true” shock location in the radial direction from the center (zo,y0) =

(0.5,0.5), and Fgomputed is the averaged shock location obtained by averaging the radial

distances of the points on the tracked shock.

To examine more closely the error behavior of the irregular cells and the tracked shock,
in Figures 8.2, 8.3, and 8.4, we plot the data that is used to compute the errors and accuracy
shown in the table. It is clearly seen that our solutions converge to the “true” solution as
the mesh is refined, and the solution varies from angle to angle in an oscillatory way. Notice
that there are big spikes appearing in some of the figures, particularly, in the pre-shock state
in Figure 8.3. One of the reasons for the occurrence of the spikes is due to the fact that
we use the large time step approach on a grid which contains the approximate location of
the tracked discontinuity, see Figure 7.4. Because of this, it is unavoidable to have some
numerical diffusion of the solution. Even though the amount of diffusion is small, when the
grid cell is tiny the contribution of this to the cell value will be significant. This causes
a big spike of the error. Despite this fact, our numerical result is still convergent with a
reasonable rate. No stability problem has been observed for this test.

For comparison, we have also done experiments using the standard shock capturing
methods. The results are shown in Table 8.2. It is clear that our front tracking result is
superior to that obtained from shock capturing. For this problem, Courant number vy = 0.5
was used in the experiments.

8.2 Tracked Front Representation and Accuracy

In the above accuracy study, we used the piecewise linear parametric curve P(s) in (7.5)
to approximate the tracked front position after propagating the front in Step 1 of the front
tracking algorithm 7.1. We find the intersections of this curve P(s) with the underlying grid,
and use piecewise linear segments that connect the resulting intersecting points to make the
tracked front and also the grid at the next time step, Step 2 of the algorithm 7.1. For planar
discontinuities, this is a good approximation, but more generally for curved discontinuities
this piecewise linear approximation of the front is less desirable. In this section, we consider



Table 8.1: An accuracy study in density of the front tracking algorithm for a radially

symmetric expanding shock wave.

a) Godunov method

h FE" i | I E" lmax | [ EY- | 1BV I | [BE ]
0.04 |9.9149(-2) | 6.3076(-1) | 8.8315(-1) | 1.1592(-1) | 1.1127(-2)
0.02 | 4.5955(-2) | 4.2825(-1) | 4.3967(-1) | 6.1691(-2) | 6.3594(-3)
0.01 | 2.3739(-2) | 4.5908(-1) | 2.1463(-1) | 4.3657(-2) | 3.5389(-3)
order p 1.03 0.23 1.02 0.70 0.83
b) Rotated Godunov method
h FE" i | E" lmax | [ E- | T BRI | BRG]
0.04 | 1.1368(-1) | 5.9339(-1) | 9.1022(-1) | 1.4420(-1) | 9.9987(-3)
0.02 | 5.1797(-2) | 1.3328(0) | 5.0736(-1) | 8.8274(-2) | 6.3172(-3)
0.01 | 2.6670(-2) | 4.1488(-1) | 2.2343(-1) | 4.5132(-2) | 3.8698(-3)
order p 1.05 0.26 1.01 0.84 0.68
¢) Godunov method with tangential splitting
h FE" i | I E" lmax | [ EY- | 1BV I | [BE ]
0.04 | 1.0565(-1) | 5.3912(-1) | 8.2659(-1) | 1.2996(-1) | 1.3031(-2)
0.02 | 5.5341(-2) | 3.1151(-1) | 4.9793(-1) | 7.3319(-2) | 7.9232(-3)
0.01 | 2.9540(-2) | 9.6968(-1) | 2.1376(-1) | 3.8686(-2) | 4.6351(-3)
order p 0.92 - 0.98 0.87 0.75
d) High resolution Godunov method
h FE" i | E" lmax | Bl | ITER W | BRG]
0.04 | 9.0823(-2) | 4.5326(-1) | 7.3904(-1) | 1.2855(-1) | 1.0123(-2)
0.02 | 2.7692(-2) | 4.5839(-1) | 2.4489(-1) | 7.8437(-2) | 3.6884(-3)
0.01 | 9.2866(-3) | 1.4665(-1) | 1.0243(-1) | 3.9976(-2) | 9.3533(-4)
order p 1.65 0.81 1.43 0.84 1.72
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Figure 8.2: A comparison of the density in the post-shock irregular cells, p_, for a radially
symmetric expanding shock wave. The straight line shown in the figure is the “true”
solution.
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Figure 8.3: A comparison of the density in the pre-shock irregular cells, p,, for a radially
symmetric expanding shock wave. The straight line shown in the figure is the “true”
solution.
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Figure 8.4: A comparison of the radius of the tracked shock for a radially symmetric
expanding shock wave. The straight line shown in the figure is the “true” solution.
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Table 8.2: An accuracy study in density of the shock capturing method for a radially
symmetric expanding shock wave.

a) Godunov method

¢) Godunov with tangential splitting

b) Rotated Godunov method

L 1E T 1F T L 1E T 1P T
0.04 | 2.1519(-1) | 1.3109(0) 0.04 | 2.6508(-1) | 1.2737(0)
0.02 1.2980(-1) | 1.2179(0) 0.02 1.5829(-1) | 1.1269(0)
0.01 7.0001(-2) | 1.3261(0) 0.01 9.1466(-2) | 1.1853(0)

order p 0.81 - order p 0.77 -

d) High resolution Godunov method

R R T TE T 1P T
0.04 | 2.2844(-1) | 1.3172(0) 0.04 1.5172(-1) | 1.2577(0)
0.02 1.4063(-1) | 1.1829(0) 0.02 8.3530(-2) | 1.2973(0)
0.01 7.6326(-2) | 1.2346(0) 0.01 4.1517(-2) | 1.3778(0)

order p 0.79 - order p 0.93 -

one simple modification of the algorithm that uses a piecewise quadratic parametric curve
P(s) for the front position. Doing so should give us a more accurate front position, and so
a more accurate grid when this curve is inserted into the grid. For simplicity, we still use
piecewise linear segments as the grid interfaces. We will compare results obtained using
these two different parametric representation of the fronts.

Recall that in Step 1 of the front tracking algorithm, we move each tracked interface in
directions normal and tangential to the interface. We apply an interpolation scheme that
determines a set of points (z, Y, sx) for the new tracked front position. In Section 7.1, these
points were used to construct the piecewise linear parametric curve P(s). Here, instead,
we use this set of data to make a piecewise quadratic parametric curve. In particular, we
employ the reconstruction technique of the ENO method[48] to do this in which we make
a divided difference table from the data and use the adaptive stencils which only select the
smallest values from the divided difference table to form P(s) in Newton form.

Let x[sj,sj11, -+, 84| be the divided difference of order k. Then by the above ENO
construction, we get the piecewise quadratic polynomial

Xy (s) = zp + a(s — sg) + br(s — si)(s — s5) (8.3)
where
ap = [k, Skt1]
be = G(Ok)z[sk—1, Sk, Sk41]
with

Or = x[sk, Sk+1, Sk+2]/T[Sk—1, Sk, Sk+1];
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and ¢ is some limiter function, say the “minmod” limiter (2.10). The stencils 7 and j
in (8.3) are chosen to interpolate points which have the smallest values of the second
order divided difference from the neighboring points. Note that the divided difference

T[S, Sj41.++ Sjyk+1] of order (k+1) is related to the divided differences z[s;, sj41, -, ;4]
and z[sj41,542,  *, Sj+k+1) of order k by the equation
_ fE[SjH, Sj+2, " Sj+k+1] - x[sjastrla T 75j+k]
T[$j, Sj41,0 0, Sjk41] = . , )
Sj+k+1 — Sj

see Powell[85]. Similarly, V(s) can be constructed in the same manner. Hence we get the
piecewise quadratic curve P(s).

We now consider two examples and examine the front accuracy of our front tracking
algorithm. As a first example, we consider evolving a circular front

in the constant velocity field (u,v) = (1,1) on a unit square domain. For this problem, in
each time step, we get the exact front position after Step 1 of the front tracking algorithm.
There are some errors introduced in the front position, however, after Step 2 of the algorithm
where we insert the new front position into the underlying grid. This makes the grid that
is used in Step 3 to update the cell values.

Results of an accuracy study in the front position up to time ¢ = 0.4 is shown in
Figure 8.5 where the piecewise linear and piecewise quadratic curves P(s) are used in the
test. It is interesting to see that the results are indistinguishable from these two different
representations of the tracked front; they all converge roughly at the same rate with the
same error magnitude. Notice that in each case the error grows as time evolves which yields
the reduction of the order of accuracy. This is expected, however, because in each time step
the tracked front is inserted into the grid, and that tends to clip the front, see Figure 8.6
where the grids constructed in the front tracking algorithm are shown. Here the time step
is chosen by k = h;/2 where hy = 217!/25, 1 = 1,2,3. Note that for this problem, it is
possible to improve the front accuracy by taking a larger time step since doing so reduces
the number of time steps in the experiments and hence the errors due to inserting the
tracked front into the grid.

Our next example of examining the front accuracy concerns evolving an elliptical front

Lo 3 5 1o
(fE—§) TaY _(Z)
in a rotating velocity field, (u,v) = (—y, z) on a square domain, [—1, 1] x [—1,1]. This front
rotates counterclockwise about the origin.

Figure 8.7 shows the evolution of the tracked fronts up to time ¢ = 5.375 using both
the piecewise linear and piecewise quadratic representation of the fronts. We now observe
some errors of the tracked front; the size of the interface shrinks, and the shape becomes
circular. This result is expected because, as in the previous circular front problem, the
insertion of the front into the grid leads to some loss of accuracy. In addition, there are
errors introduced in the front-moving procedure, in which the speed of the tracked front is
obtained via some interpolation method. Here we use one simple approach that takes the
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Figure 8.5: An accuracy study in the front position of the front tracking algorithm using
the piecewise linear and piecewise quadratic curves P(s). Results for advancing a circular
front in the constant velocity field (u,v) = (1,1) are shown.

average speed on the two sides of the tracked front as the front propagation speed. (It is
possible to obtain a more accurate result if we employ a more sophisticated interpolation
method for the front speed.) Note that there is little distinction between the results for
these two different representations of the tracked front.

Based on the results shown in this section, we conclude that the use of a higher order
representation of the front in Step 1 of the algorithm is not enough to improve the accuracy
of the tracked front location. Work is in progress to find an efficient way to do this. Tt
should be mentioned that even with the simplest piecewise linear approach, we still get
reasonable front structure for many complicated problems, see Chapters 9 and 10.

8.3 Nonuniform Grids and Accuracy

As we have seen from the previous examples, the grid used in our front tracking algorithm
is nonuniform and varies with time. Since in this instance it is difficult to do theoretical
analysis of the tracking algorithm, here we perform error estimation and demonstrate a
potential problem of loss of accuracy near the tracked interfaces due to the use of nonuniform
and time-dependent grids. Our aim is to identify one possible source of error arising from
our tracking algorithm, and hopefully pave the way for future algorithm development.

As an example, we consider the linear advection equation

U+ ugp +uy =0 for 0<z<1,0<y<1 (8.4)
with smooth initial data
u(z,y,0) =1+ 0.5sin(27z) sin(27y) (8.5)

and periodic boundary conditions. We ran this problem on a time-dependent grid where a
circular interface is inserted as an interface in the underlying uniform grid, and advanced
in the flow direction (1,1) with speed v/2, see Figures 8.6 and 8.8.
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Figure 8.6: Grids constructed in the front tracking algorithm for the evolution of a circular
front in the constant velocity field (u,v) = (1,1) using the piecewise linear and piecewise

quadratic curves P(s). The underlying uniform grid is 25 x 25.
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Figure 8.7: Evolution of an elliptical front in a rotating velocity field (u,v) = (—y, z) using
the front tracking algorithm with the piecewise linear and piecewise quadratic curves P(s).

The underlying uniform grid is 80 x 80.
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Figure 8.8: Initial conditions for an accuracy study of the linear advection equation (8.4)
on nonuniform grids.

Results of an accuracy study in the state variable u up to time ¢ = 0.4 are shown in
Figure 8.9 where various finite volume methods are tested. From the figure, we observe
some loss of accuracy in the max-norm, and for cells near the tracked interfaces. Because
of this, we see some reduction of the order of accuracy in the 1-norm. It is not significant,
however. Figure 8.10 shows the true solution and the snap shot of the solutions for the
accuracy study shown in Figure 8.9 at time ¢ = 0.4, using h = 0.02. Big errors near the
tracked interfaces are clearly seen using the Godunov and rotated Godunov methods. This
is expected, however, because for this problem the tracked interface is moving with exactly
the same speed as the flow, and so the solution on each side of the interface is independent
of the data on the other side, except for small errors due to the grid constructed in the front
tracking algorithm. This situation is similar to what we have seen in the one-dimensional
case, see Section 4.3, Figure 4.14.

Notice that the error for the high resolution method is somewhat smaller than for the
Godunov methods, even though we used piecewise constant functions for the irregular cells,
and piecewise linear functions only for the uniform cells. We would expect to obtain better
results if slopes are introduced also in the irregular cells.

For comparison, we also ran this problem using the shock capturing methods on uniform
grids and fixed nonuniform grids (the grid shown in Figure 8.8). Figure 8.11 shows results
for the uniform grids, in which we observe first order accuracy in the 1-norm and max-
norm for the Godunov and rotated Godunov methods, and second order accuracy for the
Lax-Wendroff method.

Figure 8.12 shows results on a nonuniform grids where the location of the “front” is fixed
rather than moving at the advection velocity, so that the smooth solution moves through
the grid irregularity rather than moving with it. There is still some loss of accuracy relative
to the uniform grid but not as bad as what was seen with the moving irregularity, as would
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be expected.

These results show that nonuniformities in the grid can cause a loss of accuracy in the
smooth structure of the solution near the interface. The results seen here look particularly
bad for two reasons. First, since there is only smooth flow and no discontinuities the errors
in the smooth flow are quite obvious and much worse than what is obtained on a uniform
grid. For a problem with discontinuities across the interface (which is always the case
in practice) the uniform grid method introduces huge errors near the discontinuity which
are not incurred with the front-tracking method, so that the balance shifts. Second, the
problems illustrated here are for the linear advection equation which is much less forgiving
of errors than a nonlinear problem with shocks.
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Figure 8.9: An accuracy study of the front tracking algorithm for the linear advection
equation (8.4) with smooth initial data (8.5) on time-dependent nonuniform grids.
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Chapter 9

APPLICATIONS

Having analyzed the front tracking algorithm and finite volume approaches on the
nonuniform grid, we now present more numerical results for some sample problems involving
shocks and interfaces arising in gas dynamics. As in the one-dimensional tests performed
in Chapter 5, our aims here are to validate our results by comparing them to results (either
exact, numerical or experimental) which have already appeared in the literature. We also
hope to demonstrate the potential power of using our front tracking algorithm on more
complex problems.

The problems we consider are a shock-vortex interaction and a shock-ramp interaction
for shocks, and the Kelvin-Helmholtz and Rayleigh-Taylor instabilities for interfaces. In ad-
dition, we show one preliminary result for a steady state problem. The finite volume method
we use in these calculations (except for the steady steady problem) is the high resolution
Godunov method on the regular cells, and the Godunov method with tangential splitting
on the irregular cells; no slope is introduced for the irregular cells. This method gives the
overall best performance in the error estimations performed in the previous chapter.

9.1 Shock Diffraction

In many applications, shock waves undergo complicated physical processes and display rich
shock diffraction phenomena. Some interesting diffraction structures have been observed
and documented in some instances from both laboratory experiments and numerical simu-
lations, e.g., for shock-bubble interaction[45],[83] and shock-ramp interaction[35],[36],[103].
Here we consider two typical examples: the shock-vortex interaction and the shock-ramp
interaction, and demonstrate the usefulness of using front tracking for investigating the
shock diffraction structure.

9.1.1 Shock-vortex interaction problem

As a first example to examine shock diffraction using our front tracking algorithm, we
consider a shock wave interacting with a vortex pair. As noted in [30], this problem and
the related subject have been an area of active research for many years. Most of the work
was motivated by an interest in the noise produced by rockets and high-speed aircrafts, and
therefore the research emphasized the generation of acoustic waves. For these problems,
the interaction of shocks with turbulent flows is a significant source of noise[115]. This
shock-vortex system is an important element of these more complex processes, see [28],[30],
and references therein for more detail.

As initial conditions, we take a planar rightward moving Mach 1.5 shock at z = 0.175
with density p = 1.4, zero velocity, and pressure p = 1 in the pre-shock state, and in
addition we put a pair of counter-rotating isothermal composite vortices in the pre-shock
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state. Since this shock is approaching the vortices, interaction occurs subsequently, see
Figure 9.2.
The composite vortex we use is a vortex with velocity field
vor /Ty 0<r<m
= 9.1
ve {Ar—i—B/r ri<r<ry (9-1)

where vy is a constant which characterizes the strength and rotation direction of the vortex,
r? = (z — 20)? + (y — yo)? is the distance from the vortex center (zg,%q), and A and B are
constants so that the velocities are continuous at r = r; and r = r3. Inside the vortex, the
pressure field is specified so that the pressure gradient balances the centripetal force

dp vg

il et (9.2)
Notice that since the vortex is assumed to be isothermal, the density p inside the vortex
only differs from the pressure p by a constant, i.e., p = p/Ty where Ty is the constant
temperature in the pre-shock state; assuming the universal gas constant R = 1. So the
above pressure equation (9.2) can be integrated, and hence p can be obtained explicitly.

The parameters we use for the vortex pair are given by:

upper vortex: (zg,yo) = (0.4,0.7), vg = 0.6944, A = —2.3148, B = 0.09259

lower vortex: (zg,y0) = (0.4,0.3), vg = —0.3472, A = 1.1574, B = —0.04629
and r; = 0.1 and r9 = 0.2 in each case. Following the naming used in [30], a vortex is called
a “strong” vortex if the maximum velocity vg in the vortex core is exactly equal to the flow
velocity vy behind the shock, and is called a “weak” vortex if vy < vy. Here the above
parameters are chosen so that the upper vortex is a “strong” vortex while the lower vortex
is a “weak” vortex. The upper vortex is rotating in a counter-clockwise manner, whereas
the lower vortex is rotating clockwise.

Figures 9.1 and 9.2 show results for this problem after 100 time steps (time ¢ = 0.387).
In Figure 9.1a, we show the tracked shocks, plotted every 4 time steps. From it, we observe
that the shock structure is not significantly diffracted by its interaction with a weak vortex,
while it is affected by its interaction with a strong vortex.

To make use of the tracked shock information to diagnosis the shock diffraction as
time evolves, one popular approach is to produce a history of the amplitude of the front
perturbation, particularly producing the so-called min-max front history[11]. In the present
case, at each time step, we monitor the minimum and maximum horizontal distance (zin
and Z;q;) from the shock to the left boundary x = 0. The result is shown in Figure 9.1b
where we have run the problem for the interaction of a shock with a single vortex so as to
distinguish the difference in the front perturbation with different vortex strengths. Note the
perturbation of the shock grows weaker, as the shock moves farther away from the vortex.

Figure 9.2 shows the density contour plot at six different times, plotted every 20 time
steps. Now we can see more differences in the wave structure as the shock passes through the
strong and weak vortices. Although there are acoustic waves generated in front and in back
of the shock in each of the vortices, the waves appearing near the strong vortex apparently
are more compressive than the ones appearing near the weak vortex, and eventually form
a shock wave, inducing complex wave patterns. Notice that the shape of the vortex is
severely distorted during the stage of wave interaction; it tends to form an ellipse afterward.
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Figure 9.1: Results in the shock structure for the shock-vortex interaction problem. a)
Tracked shocks, plotted every 4 time steps. b) A comparison of the history of shock positions
Tmin and Tye, from the results of the shock-strong vortex interaction and the shock-weak
vortex interaction.

Qualitatively, our results agree well with the experimental and numerical results shown
in [28],[30]. It can also be demonstrated that some vorticity is generated in this case.
A similar situation in the interaction between a shock and bubble is reported in several
references, see, e.g., [83].

In this example, a 100 x 100 grid was used on a unit square domain, non-reflecting outflow
boundary conditions were used on the left and right boundaries, and solid wall boundary
conditions were used on the top and bottom boundaries; Courant number vy = 0.9 was
employed here.

9.1.2  Shock-ramp interaction problem

Our next example on shock diffraction concerns an oblique shock reflection in which an
incident shock wave interacts with a solid wall ramp. This problem has been extensively
studied over the years because it simulates various typical and also important shock diffrac-
tion patterns, e.g., regular reflections, single Mach reflections, complex Mach reflections,
and double Mach reflections, depending on the Mach number of the incident shock and the
ramp angle, see [35],[36] for both numerical and experimental results. Here we consider one
such example involving a double Mach reflection.

The structure of a double Mach reflection consists of the incident shock, the first Mach
stem, the first regular shock reflection, the second Mach stem, and the second regular shock
reflection. The first three waves form a triple point, and so do the last three waves. In
addition, at each triple point, there is a slip line separating flow between the Mach stem
and reflected shock[36].
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Figure 9.2: Density contours for the shock-vortex interaction problem up to time ¢ = 0.387,
plotted every 20 time steps.
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To start the computation, an oblique Mach 4.62 shock with an angle normal to a 40°
ramp is initialized at the ramp corner (x = 0.7) with density p = 1.4, zero velocity, and
pressure p = 1 on the left to the shock. (This shock is moving leftward.) For convenience,
the ramp is arranged so that it is aligned with the grid in front of the shock and cuts
through the underlying Cartesian grid in back of the shock as seen in Figure 9.3a.

Figure 9.3a shows the evolution of the tracked shock, plotted every 10 time steps. It
is easy to observe that due to the shock-ramp interaction a kink which corresponds to the
location of a triple point is formed. Since, for the moment, we are not able to handle the
triple point explicitly, we only track the incident shock (above the kink) and the Mach stem
(below the kink), and leave the regular shock reflection to be captured.

Figure 9.3b shows the density contour plot for the same run at time ¢ = 0.1. From
it, we can clearly see the wave structure around the first triple point as described above,
and can also observe some structure in the downstream triple point. The density cross-
section along the ramp is shown in Figure 9.3¢c where we compare our front tracking result
(drawn in dotted points) with the shock capturing result (drawn in solid line) obtained by
using the non-tracked version of the high resolution Godunov method with the same mesh
size. We observe good agreement with these two results. Here we used a 160 x 80 grid on
a rectangular region ([0,0.8] x [0,0.4]). The solid wall boundary conditions described in
Section 7.2 was applied for the ramp, and the non-reflecting outflow boundary conditions
were applied for the other boundaries.

9.2 Interface Instability

Interfaces are commonly seen in the real world. In many applications, their behaviors under
small perturbation are of great importance. Here we consider two standard problems asso-
ciated with unstable interfaces: the Kelvin-Helmholtz and the Rayleigh-Taylor instabilities,
and study the growth of interfaces using our front tracking algorithm.

9.2.1 Kelvin-Helmholtz instability

As a first example of tracking an interface for the Euler equations, we consider the Kelvin-
Helmholtz instability in which there is an interface separating two fluids of different tan-
gential velocities. This interface is unstable with respect to any sinusoidal perturbation,
and often rolls up into large vortical structures which serve to entrap the fluid. Typical
examples where this instability can occur are seen in many applications, e.g., in jet flow
and shear layer flow[103].

Here we consider one simple setup of the Kelvin-Helmholtz instability. We take constant
density pg and pressure py with zero vertical velocity in the computational domain. Above
the interface, we have horizontal velocity © = ug, and below the interface, we have horizontal
velocity 4 = —wug. For this model problem, there is one dimensionless parameter which
controls the behavior of this Kelvin-Helmholtz unstable interface, namely, the Mach number
U / Co [84].

The initial perturbation of the interface is given by

y = yo + esin(kx) (9.3)
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Figure 9.3: Results for a Mach 4.62 shock reflection off a 40° ramp. a) Tracked shocks,
plotted every 10 time steps. b) Density contours at time ¢ = 0.1. ¢) Cross section of density
along the ramp. The solid line is the shock capturing result, while the points are the shock
tracking result.
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Figure 9.4: A convergence study of the interface for the Kelvin-Helmholtz instability. Re-
sults for two different mesh spacings, 40 x 40 and 80 x 80 grids, are shown at time ¢ = 0.48.
In each figure, curve A is the initial tracked interface at time ¢ = 0, and curve B is the final
tracked interface at time ¢ = 0.48. Note the velocity field is superimposed on the figure.

where ¢ is the amplitude of the perturbation, and & is the wave number. By performing the
standard linear stability analysis, we can derive the perturbed state and use it to initialize
the flow, see Appendix A.1 for the analysis and solution. For comparison, in the run shown
below, we choose the same parameters as used in Chern et al.[17], i.e., we take pg = 1.4,
po =1, ug = 0.2 (Mach 0.2), yo = 0.5, ¢ = 0.1, and k£ = 4w. The computational domain is
a unit square with solid walls on the top and bottom and periodic boundaries on the left
and right.

Figure 9.4 shows a convergence study of the interface using two different mesh spacings,
40 x 40 and 80 x 80 grids. From the figure, roll-up of the interface is clearly seen on the
80 x 80 grid. Note that the initial tracked interface is also shown in the figure and the
velocity field is superimposed. Comparing our results with the one shown in [17], we see
good agreement on the global structure, but not on the fine structure around the roll-up
on the same grid. In fact, our result on the 80 x 80 grid is very similar to their result on
the 40 x 40 grid. So this indicates that their front tracking method gives a better resolution
near the tracked interface than the result obtained using our method.

9.2.2  Rayleigh- Taylor instability

Our next example of interface tracking concerns the Rayleigh-Taylor instability in which
the interface separates two fluids of different densities. Assume that gravity is directed
downwards. This interface is unstable under any perturbation if the light fluid lies below
the heavy fluid. As mentioned in [93], typical examples where this instability can occur
are in the collapse of a massive star, the formation of high luminosity jets in rotating gas
clouds in an external gravitational potential, the laser implosion of deuterium-tritium fusion
targets, and the electromagnetic implosion of a metal liner. An overview of this problem
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can be found in Sharp[93] and Youngs[113]. For more background information on fluid
interface stabilities, one may consult, for example, Chandrasekhar[14] and Shivamoggi[94].

Here we consider one simple model for the compressible flow in which the viscosity,
surface tension, and heterogeneity can be ignored. Then the governing equations for the
compressible Rayleigh-Taylor instability take the form

P oU pv 0
0 2 0
o | pu L+ 2 pu” +p o ,(;UU _ 0 (9.4)
at | pv ox puv dy pv°+p Pg
pE (pE + p)u (pE +p)v pvg

where g is the gravitational acceleration. Note that source terms on the right hand side of
the equations are a result of gravity acting on a unit mass of fluid. Hence they are called
the “gravitational” source terms.

For this model, it is known that there are many factors which may influence the behavior
of the Rayleigh-Taylor unstable interfaces[93]. Among them the following dimensionless
parameters are of great importance. The first parameter is the density ratio D = pp/p;
(or the Atwood number A = (p, — p1)/(pn + p1)), which governs the growth rate of small
amplitude perturbation; p; and p; are the density of the heavy fluid and the light fluid just
below and above the unperturbed interface respectively. The second parameter is the ratio
of specific heats « or other information to describe the equation of state for the fluids. The
third parameter is a constant M? = g\/ c% defining as the ratio of a gravitational time scale
to a sound speed time scale (this indicates the compressibility of the fluids), which has the
effect of reducing the growth rate; X is the wavelength of the interface perturbation, and ¢
is the sound speed in the unperturbed heavy fluid.

For comparison purposes, we choose the same initial setup as used in Gardner et al.[33],
namely, we introduce a small perturbation of an isothermal equilibrium flow with a flat
interface separating exponentially stratified flow above and below the interface. As in the
laboratory experiments, the heavy fluid lies below the light fluid and gravity is directed
upwards. For simplicity, we take the same gas with v = 1.4 for both the heavy and light
fluids.

The unperturbed isothermal equilibrium we use, for flow in both the heavy and lighted
fluids, is specified by

p = poeﬁo(y—yo)’
p = po+(p—po)g/Po

where pg is equal to pj, (in the heavy fluid) or p; (in the light fluid), By = vg/c¢ (co sound
speed), yo is the location of the unperturbed interface, and pg is the pressure at yo. As
in the previous example, we introduce a sinusoidal perturbation (9.3) on the interface to
trigger the instability, and we incorporate the linear stability result for the perturbed states
to initialize the flow, see Appendix A.2 for the analysis and solution.

Here we choose the following parameters in the run: density ratio D = 10 with density
pn = 1 and p; = 0.1, M? = 0.5 with ¢, = 1, yo = 2, k = 7, and ¢ = 0.037/k. The
computational domain is a rectangular region ([0, 1] x [0,4]) with solid wall boundaries on
the top and bottom and periodic boundaries on the left and right. Source terms in the
equations are handled in a way similar to what is described in Section 5.2.
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Density Pressure

Figure 9.5: Contour plots in density and pressure for the Rayleigh-Taylor instability at
time ¢ = 6. Here the heavy fluid lies below the light fluid, and gravity is directed upwards.
Parameters D = 10, M? = 0.5, and ¢ = 0.03 were used in the run.

The results are shown in Figures 9.5 and 9.6 up to time ¢ = 6 using a 40 x 160 grid.
Figure 9.5 shows the density and pressure contour plots, and Figure 9.6a shows the tracked
interfaces at time ¢ = 0 and £ = 6. From these figures, the growth of the interface and
the formation of a rising bubble and falling spike can be easily seen. In Figure 9.6b, we
compare the history of the interface positions, ¥min and ymax — the minimum and maximum
vertical distance of the interface from the bottom boundary y = 0, showing the results of
the numerical simulation and the linear theory. We observe good agreement of results in
the small amplitude regime. In the large amplitude regime, qualitatively, our result agrees
with the result shown in [33], at least as far as the dominant unstable mode is concerned.
The results of [33] also show a secondary instability below the rising bubble. It is not clear
which result is correct and work is continuing to clear up the discrepancy of the results.

It should be mentioned that this problem (and in general any unstable interface problem)
is very sensitive to small perturbations arising from either the physics or numerics, and the
solution may not converge when a mesh refinement study is performed in the absence
of physical viscosity[33],[74]. This scenario of nonconvergence of unstable interfaces (for
both the Rayleigh-Taylor and Kelvin-Helmholtz instabilities) has been further explored by
Mulder, Osher, and Sethian[74]. They use the “Hamilton-Jacobi” level set formulation to
evolve interfaces and add physical viscosity to the equations to study the zero (physical)
viscosity limit of the Navier-Stokes equations. They observe improvement of convergence of
results with larger values of the physical viscosity. They also demonstrate that given some
amount of physical viscosity, there exists a fine enough grid so that the physical viscosity
dominates the numerical viscosity, and so the results are unchanged with respect to further
grid refinement.
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Curve A1t =0 Curve A: linear theory
Curve B: t =6 Curve B: numerical simulation
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0
L

Figure 9.6: Results in the interface structure for the Rayleigh-Taylor instability. a) Tracked
interfaces at time ¢ = 0 and ¢ = 6. b) A comparison of the history of interface positions
Ymaz aNd Ymin from the results of numerical simulation and linear theory.

9.3 Steady State Calculation

Finally, we apply our front tracking algorithm to another problem of great engineering
interest: a steady state calculation for the Euler equations, and illustrate the potential
power of using front tracking for steady state problems.

The problem we consider is a Mach 3 inflow over a 20° ramp. It can be shown that, under
certain assumptions on the boundary conditions, the steady state solution for this problem
is an oblique shock with an angle § = 37.8° attached at the corner of the ramp[25]. This
is an interesting and also difficult problem because the steady shock attaches at the ramp
corner. Several other people have run similar problems using standard shock capturing
methods with either body-fitted or Cartesian grids[10],[102]. They observe that difficulties
at the ramp corner lead to extra entropy production near the wall giving an entropy layer
near the wall and nonconvergence.

To simplify the problem, our calculation is based on a fixed “exact” grid in the sense
that the exact shock location is inserted into an underlying grid. To make the grid even
better, we use a body-fitted grid as the underlying grid, see Figure 9.7a. In this case, we
are studying the accuracy of our numerical method on an “ideal” grid.

It is very encouraging that the numerical results obtained using our tracking algorithm
on this particular grid do converge to the correct solution without spurious numerical ar-
tifacts at the tracked shock or along the boundary. An example is presented in Figure 9.7
with a 20 x 10 grid. In this run, a first order Godunov’s method is employed for updating
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Figure 9.7: Steady state calculation for a Mach 3 inflow over a 20° ramp. a) Grid system.
b) Cross section of Mach number along the ramp. The solid line is the exact solution, and
the dotted points are the numerical result.

the cell values in both regular and irregular cells, solid wall boundary conditions are used
on the bottom boundary, and nonreflection-outflow boundary conditions are used on the
remaining boundaries. Uniform Mach 3 flow (p = 1, u = 1, v = 0) is used as the initial
condition for all grid cells, and the iteration is halted when the density variation from the
previous time step to the current time step is less than the prescribed tolerance, 10~* in
this case, after 191 time steps (time ¢ = 3.57). Here we have made no attempt to accelerate
the convergence to steady state.

Extensions of this code to a Cartesian grid cut by the exact shock location and the
boundary (following Berger and LeVeque|[7]) is still in progress. In this case, the treatment
of the solid wall boundary becomes complicated due to the fact that the cell which contains
the ramp corner is subdivided by both the tracked shock and boundary segment.
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Chapter 10
OIL RESERVOIR SIMULATION

In many applications, the hyperbolic conservation laws may be combined with other
types of partial differential equations, e.g., an elliptic or parabolic PDE, in order to correctly
describe the problem. In this instance, front tracking in the hyperbolic part of the entire
system can still be a very useful tool to provide some vital information for solving the
remaining part of the equations. Here we consider one such example: oil reservoir simulation
in porous media, in which a hyperbolic conservation equation is coupled with an elliptic
PDE. We will show some preliminary results for sample problems in both one and two space
dimensions, and demonstrate the usefulness of using front tracking for this problem.

10.1 Preliminaries

We consider a simplified two phase flow in a porous medium in which diffusion, surface
tension, gravity, and heterogeneity of the reservoir can be ignored. We consider a model
problem for oil reservoir simulation in which the fluids are oil and water for immiscible
displacement, or oil and solvent, such as CO,, for miscible displacement. This model has
been extensively studied in the past, particularly in the oil industry, because it simulates
a process of secondary oil recovery where water or solvent is pumped into the oil field to
force oil out of the wells, see, for example, Aziz and Settari[2], Peaceman[79], Glimm et
al.[39],[40], and references therein for more detail.

For this two phase flow model, the governing equations consist of the following equations:

s+ V- (df(s)) = (s), (10.1)
qd= —k(s)Vp, (10.2)
V-qd=1(s). (10.3)

Here s denotes the saturation of the injected fluid (s = 1 for the injected fluid and s = 0 for
the oil), ¢, a vector, is the total velocity (oil velocity plus the injected fluid velocity), f(s)
is the so-called fractional flow function defined as the ratio in magnitude of the injected
fluid velocity to the total velocity, v(s) is the source term corresponding to the injection
of fluid in wells and/or production of oil from wells, x(s) represents permeability divided
by viscosity, and p is the pressure. In the above system, Equation (10.1) expresses the
conservation of mass of the injected fluid, Equation (10.2) is Darcy’s law which states that
the total velocity is proportional to the pressure gradient, and Equation (10.3) expresses
that the underlying fluids are incompressible. The derivation of these equations along with
other physics of flow through porous media can be found in Scheidegger[92].
In practice, the functions (s), f(s) we use are

K(s) =8 +p (1 —s)? (10.4)
f(s) = s%/kls), (10.5)
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for immiscible displacement, and

K(s) = (s +pu~ /(1= 9))", (10.6)
f(s) =s, (10.7)

for miscible displacement where p is the viscosity ratio of the underlying fluid; the oil
viscosity over the injected fluid viscosity.

It is interesting to note that in this model there is a dimensionless parameter called the
frontal mobility ratio M defining as M = k(s;)/(s,) which characterizes the stability of
the interface (for M < 1 the interface is stable, while for M > 1 the interface is unstable,
see, for example, [19],[39],[41],[52],[111]); s; and s, are the saturations behind and ahead of
the interface respectively (s; > s,). It is easy to verify that the relationship between the
mobility ratio M and the viscosity ratio y is simply M = 2(1 — (1 4 p)~/2) for immiscible
displacement and M = yu for miscible displacement[58].

Notice that using the incompressibility condition (10.3), the conservation equation (10.1)
can be rewritten as a nonconservative hyperbolic PDE

st+q- Vf(s)=1(s) (10.8)

with velocity ¢ considered as known. In fact, if 4(s) = 0, with the above mentioned
fractional flow function, Equation (10.8) is simply the Buckley-Leverett equation for the
immiscible displacement and the linear advection equation for the miscible displacement.
Because of the ease in solving the Riemann problems for these equations (see [24] for the
construction of Riemann solution for the Buckley-Leverett equation), this nonconservative
form of the saturation equation is always used in practice. Nevertheless to obtain the
velocity ¢, from Equation (10.2), we need to know the pressure p. It is easy, however, to
derive the governing equation for p by simply substituting (10.2) into (10.3), which yields
an elliptic PDE

V- (=£(s)Vp) = (s). (10.9)

Note that in general this elliptic equation (10.9) would have discontinuous coefficients
k(s) across the discontinuities because of the jumps in saturation and also the viscosity. In
this case, for a material interface, from the dynamic boundary condition the pressure should
be continuous at the discontinuity, and from the kinematic boundary condition the normal
velocity at the discontinuity should be continuous also. Based on this fact and others, we
can easily show that the tangential component of the pressure gradient is continuous as is
the normal derivative of x(s)p, but the normal component of the pressure gradient is not
since £(s) is not[41].

10.2  Algorithm

To solve this two phase flow model, a very popular approach is the so-called IMPES (im-
plicit pressure and explicit saturation) procedure in which in each time step the hyperbolic
saturation equation (10.8) and the elliptic pressure equation (10.9) are dealt with separately
and sequentially. It is described in the following algorithm in the context of using front
tracking algorithm to handle the hyperbolic part of the equation:
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Algorithm 10.1

1) Given the saturation s, solve the elliptic PDE (10.9), obtaining the pressure p.

2) Compute the total velocity ¢ by differencing the pressure p obtained from Step 1 and
substituting into the velocity equation (10.2).

3) Solve the hyperbolic equation (10.8) using the front tracking algorithm to update the
saturation s.

Since the front tracking algorithm introduced in the previous chapters is very easy to
apply for the hyperbolic saturation equation (10.8), here we focus our discussions on Steps
1 and 2 of the algorithm.

Step 1: In solving the elliptic pressure equation (10.9) with possibly discontinuous
coefficients k(s), the conventional approach is to employ a finite element method having
elements aligned with the interface. In one space dimension, this can be done quite easily
and we describe one approach below. In two space dimensions, however, this is difficult to
do as seen in the work done by McBryan and others[43],[72]. Here as a first attempt to
tackle this problem in two space dimensions, we adopt a simpler approach by employing
a standard five-point stencil finite difference method on a uniform grid, i.e., we ignore the
appearance of the discontinuities, even though we know their location explicitly. Doing so
causes some smearing of the pressure profile, and so less accurate result as we might hope to
obtain. As seen from the results shown below, we still obtain reasonable solutions, however.
In future work, we hope to improve upon this method by using, for example, the immersed
interface method developed by LeVeque and Li[66].

To be more specific, let us discuss some examples. We first consider a one-dimensional
example. Consider the Dirichlet boundary condition at each side of the boundary and
source terms 1(s) = 0 in the entire computational domain; z € [0,1]. The elliptic pressure
equation (10.9) then corresponds to a second order ordinary differential equation

(—£(8)pg)z =0 (10.10)

in one space dimension with boundary conditions p(z=0) = ¢ and p(z=1) = b, where £(s)
is known spatially. For simplicity, we take a and b to be constants for all time, although in
general they can vary with time.

To discretize (10.10), we use a three-point finite difference method on a nonuniform grid
by first taking a backward difference for the outer derivative and then a forward difference
for the inner derivative; collecting terms, we get the following difference formula

1

AT (10.11)

h;

for node ¢, where Fi_1 = K(S(mi_%)), pi—1 = p(xi—1), and h; is the mesh size, see Figure 10.1a
for the notation used here. Going through all the nodal points for i = 1,2,---, N, and using
the boundary conditions, we obtain a symmetric positive definite tridiagonal linear system
for the unknown pressure p.

Note that in the above discretization we have used a staggered grid representation for

the pressure p and saturation s, i.e., p is defined at the cell interface, and s is defined
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Figure 10.1: The computational grid used for solving the elliptic pressure equation (10.9)
at Step 1 of the algorithm. a) A nonuniform grid in one space dimension. b) A uniform
grid in two space dimensions where we ignore the appearance of the tracked discontinuity
(shown as dashed line) on the grid. Note that the pressure in each figure is defined at the
grid point, while the velocity and saturation are defined at the cell center; a staggered grid
approach.

at the cell center. In addition, it was discretized on a nonuniform grid rather than on a
uniform grid. Doing so prevents us from differencing across discontinuities, and hence yields
accurate pressures and hence velocities. This finite difference discretization (10.11) reduces
to the standard three-point stencil finite difference method if tracked points disappear.

Now we consider a two-dimensional example. We consider a model problem in which
the geometry is a standard five-spot pattern with fluid (water or solvent) being injected
into the center of a unit square domain (Q = [0,1] x [0, 1]) and the oil being recovered from
the four corners. For this model problem, we use the Neumann boundary conditions

dp/dn =0 (10.12)

on the boundaries 92, where n is the direction normal to the boundary pointing toward the
outside of the computational domain. (This gives zero normal velocities on the boundaries.)
We must then solve the elliptic equation

(=#(s)pa)z + (=K (s)py)y = 9 (s) (10.13)

with an appropriate choice of source terms 1(s) for the injection and production of fluid at
the wells.

Denote by 1); and 1o the source terms for the injection fluid and production of oil
respectively. The source v; centered at (xg,%o) is taken of the form

(14 cos(nr/rs))/2rs T <74

¥i(x — 20,y — Yo) = { 0 r>rs (10.14)
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where 7 is a constant (we choose 75 = 0.05 in the numerical results shown below.) and r? =
(z—20)%+ (y—yo)? is the distance from the center (zg,yo). With 4; in this form, the source
is spread to a circular region of radius ry with center (zg,yo); it has the biggest strength
with magnitude 1/r; at the center. Analogously, source (or more appropriately sink) o
centered at (g, yo) is defined by putting a minus sign in front of the function (10.14). Source
terms of the above form were introduced by Peskin[81] and used widely in the immersed
boundary method for representing singular sources.

It is well known that the solution for this problem (the elliptic equation with zero
Neumann boundary conditions) may fail to exist if the consistency condition

/ b(s) dA =0 (10.15)
Q

is not satisfied. In our model problem with the above chosen source terms 1; and g, it is
easy to check that condition (10.15) is satisfied, and hence there is a solution. Although the
solution is determined only up to an additive constant, this causes no additional problem
because only its first derivative will be used in the algorithm to compute the velocity.

We use a staggered grid in which the pressure p is defined at grid points, and the satu-
ration s is defined at cell centers (see Figure 10.1). To discretize (10.13), we use a standard
five-point stencil finite difference method on a uniform grid. This is done using a similar
procedure to what we used for discretizing the one-dimensional pressure equation (10.10).
Applying this in both the z- and y-directions, and collecting terms, yields the following
difference formula

aij Pij—1 + bij Pi—1,5 + Cij Pij + dij Pit1,5 + €ij Pijj+1 = Tij (10.16)
with

aij = _’%(si,j—%)/hQ

bij = —n(si_%’j)/hQ

dij = _“(31‘4—%,7‘)/}12

eij = —,%(si’jJr%)/h2

cij = —(aij + bij + dij + eij)

iy = ¢i($i —Te,Yj — Yo) — Z Yo(wi — TosYj — Yo)

V(zo,y0)

for node (4, j), see Figure 10.1b for the notation used here. Here k(s.o) = K(s(z«,ys)) is
defined using the harmonic average of the neighboring cells, e.g.,

-1
1 1

1) =2 + ’

i) (%(si%,jy “%H))

(%, ys) denotes the center of the injection well which is at the center of the domain, and
(25, ye) denotes the centers of the production wells which are at the corners of the domain,
in our case.




123

Because of the boundary conditions (10.12), the above difference formula (10.16) needs
to be modified for nodes at the boundaries. It is easy to show that by introducing fictitious
nodes outside the computational domain and approximating the boundary conditions with
a central difference formula at the boundary, the pressure at a fictitious node is simply
equal to the pressure at the interior node adjacent to the boundary, e.g., p; 2 = p; o for all
the i on the y = 0 boundary. Since we have ds/dn = 0 at the boundaries, the coefficient of
the pressure in (10.16) at the fictitious node is also the same as the pressure at the interior
node adjacent to the boundary. Having known this, we can then modify the difference
equation (10.16) by ignoring nodes outside the domain and multiplying the coefficient of
the related interior nodes by two. Alternatively, the above result can be derived more
directly by approximating the boundary condition with a one-sided difference formula,
expanding this difference formula at the boundary using the Taylor series expansion, and
employing the elliptic equation (10.13) that takes into account the differential equation at
the boundary node[112].

Going through all the nodal points for ¢ = 1,2,---, N and j = 1,2,---, N, using row-
wise ordering, we obtain a block-tridiagonal linear system for the unknown pressure p. For
illustration purposes, we display the coefficient matrix A in the case where k(s) =1 in the
elliptic equation (10.13) and N = 3, i.e.,

4 -2 -2
-1 4 -1 -2
-2 4 -2
1 -1 4 -2 -1
A=—= -1 -1 4 -1 -1
B2
-1 -2 4 -1
-2 4 =2
-2 -1 4 -1
-2 -2 4

where h is the underlying uniform grid size, assuming that a square grid is used. Analogous
to the original differential equation, the solution to this linear system may not exist, unless
the sum on the right hand side of the linear system equals zero to satisfy a discrete version
of the consistency condition (10.15) for this problem. It is easy to check that the sum on the
right hand side of our linear system does satisfy this condition. Here this linear system is
solved using the incomplete LU generalized minimum residual method in the SLAP (Sparse
Linear Algebra Package) Library.

Step 2: Having calculated the pressure p, we can compute the total velocity ¢ by
differencing p and putting the result back in the velocity equation (10.2). In one space
dimension with ¢ = wu, this results in

Ujpl = —H(8i+%)(pz'+1 = pi)/hi

when a forward difference on p is employed, where u, = u(z.) is defined at the cell center.
Since the method we use for updating the saturation is based on solving the Riemann
problem at each cell interface, it is necessary to also compute the velocity u at the cell
interface. One simple approach is to take an average of two neighboring velocities and
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assign it to the cell interface, namely, set

u; = E(UZ_% +“i+%)-

In two space dimensions with ¢ = (u,v), we do the same thing as in one dimension by
computing the cell averaged velocity defined at the cell center as follows:

( Uiyl jt+l ) _ _i ( K(qu-%,j)(pi-l-l,j - Ppij) + K(Si+%,j+1)(pi+1,j+1 — Pij+1) )

Vil jrd 2h “(Si,jJr%)(pi,jH - pi,j) + “(3¢+1,j+%)(pi+1,j+1 - pi+1,j)

where k(s,) is computed using the harmonic average of the neighboring cells. This gives
the velocities for the regular cells. Since the grid we used for updating the saturation
consists of not only the regular cells, but also the irregular cells, we need to compute
the velocities for the irregular cells also. This can be done by employing an interpolation
scheme that makes use of the cell averaged velocities on the neighboring regular cells, e.g.,
by interpolating data based on a rectangular box over the neighboring cells. The velocity at
the cell interface for both regular and irregular cells can be computed in a manner similar
to the one-dimensional case.

Before presenting numerical results, we make two remarks on Step 3 of the algorithm.
First, in solving the Riemann problem at the each cell interface, the cell interface velocity
described above is used for the velocity ¢ appearing in the saturation equation (10.8).
Second, the source term appearing in the saturation equation (10.8), only the 1); term
exists, is treated as a boundary condition in each time step, i.e., we reset saturation s =1
in the region where the injection source ; is in effect.

10.3 Numerical Results

We now show some preliminary results for this two phase model.

One space dimension. We first show some one-dimensional results for our one-
dimensional model problem discussed in the previous section. As initial conditions, we
take saturation s = 0 (pure oil) in the entire computational domain, except for the first
grid cell (z € [0,h], where h = 0.01 is the mesh size) which has s = 1 (pure water or
solvent). As boundary conditions, we use Dirichlet data, p(z=0) = 1 and p(z=1) = 0, for
the elliptic pressure equation, and fixed boundary conditions with s = 1 on the left hand
side boundary and outflow boundary condition on the right hand side boundary for the
hyperbolic saturation equation.

Results are shown in Figure 10.2. In Figure 10.2a and ¢, we show results for the immis-
cible displacement calculations where the saturation and pressure are shown, respectively,
with three different viscosity ratios, p = 1, 2,10, at time ¢ = 0.8. It is clearly seen that as
the viscosity ratio increases the saturation profile behind the discontinuity becomes more
and more depressed, and it becomes harder and harder to displace the resident oil. It can
also be observed in Figure 10.2c¢ that the pressure profile has a kink at the discontinuity for
some viscosity ratios. This is a consequence of the jumps in saturation and the viscosity
there. Tt is easy to check that as the frontal mobility ratio M approaches one, the jump in
the pressure gradient approaches zero. This can be seen in Figure 10.2c where the frontal
mobility ratios we use are M = 0.586 for y =1, M = 0.845 for y = 2, and M = 1.397 for
w=10.
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In Figure 10.2b and d, we show results for the miscible displacement calculations with
the same viscosity ratios and stopping time as for the immiscible displacement calculations.
Notice that the saturation profile remains the same shape for all the viscosity ratios. This is
due to the fact that only a single phase of fluid (solvent or oil) can exist in a volume of the
miscible porous medium. This is not so for fluids in an immiscible environment, however.
In Figure 10.2d, kinks are clearly seen at the discontinuities in the case where the frontal
mobility ratio is not equal to one there. (Recall that for miscible displacement M = pu.)

The above results were obtained using the high resolution front tracking method with
Courant number v = 0.9.

Two space dimensions. We now show two-dimensional results for our two-dimensional
model problem with the five-spot pattern. Here the problem of interest is to study stability
of the interfaces under various mobility ratios. As initial saturation, we use s = 1 (pure
water or solvent) inside a perturbed circular interface and s = 0 (pure oil) outside the per-
turbed interface. As boundary conditions, we have Neumann boundary conditions (10.12)
for the elliptic equation, and reflecting boundary conditions ds/dn = 0 for the saturation
equation. The source ); that corresponds to the injection of fluid at the wells is located at
the center of the domain, and sinks 1o that correspond to the production of oil from the
wells are located at the corners of the domain.

Results are shown in Figures 10.3 and 10.4. In Figure 10.3a and b, we show results
for the immiscible displacement calculations where the evolution of the tracked interfaces
are shown with viscosity ratio 4 = 2 and p = 10, respectively. Note that with y = 2 we
have frontal mobility ratio M = 0.845. So based on the stability criterion mentioned in
the beginning of this chapter this interface is stable under small perturbations. Note that
our numerical result shown in Figure 10.3a reflects this fact. Moreover, our result shown in
Figure 10.3b also predicts the right behavior of an unstable front where M = 1.397 there.

In Figure 10.4a and b, we show results for the miscible displacement calculations where
the evolution of the tracked fronts are shown with viscosity ratio 4 = 1 and pu = 10,
respectively. Again, based on the mobility ratio we can readily predict that the interface is
stable for y =1 (M = 1), while the interface is unstable for y = 10 (M = 10). Our results
give a correct indication of the stability of the interface.

The above two-dimensional calculations were run on a 50 x 50 grid. For updating the
saturation, we use the high resolution front tracking method with Courant number 1y = 0.9.
For similar calculations, see [39],[58].

Finally, in Table 10.1, we report results on the timing (the CPU time) of the two-
dimensional oil reservoir simulations. It is easy to observe that Step 1 of solving the elliptic
equation leads the usage of the CPU time (the case for the miscible calculation with p =1
is a special situation where the pressure is constant for all time), Step 3 of solving the
hyperbolic equation is the second most expensive, and Step 2 of evaluating the velocity is
the last. Hence it is desirable to use a fast Poisson solver for this problem so as to improve
the performance of this algorithm. Note that the CPU time on the second column of the
table consists of time for the integration step (three basic steps in Algorithm 10.1) and the
IO (input and output). The above calculations were run on a DEC station 5000/200 using
a Fortran 77 complier under the Ultrix operating system.
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Figure 10.2: Results for the one-dimensional oil reservoir simulation. Figures a) and c) show
results for the immiscible displacement computations. Figures b) and d) show results for
the miscible displacement computation. In each figure, three viscosity ratios, u = 1, 2, 10,
were used in the test up to time ¢ = 0.8.
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Figure 10.3: Evolution of the tracked interfaces for the immiscible displacement oil reservoir
simulation, plotted every other time step. a) p = 2 (M = 0.845) up to time ¢ = 10.5. b)
p=10 (M = 1.397) up to time t = 5.75.

Figure 10.4: Evolution of the tracked interfaces for the miscible displacement oil reservoir
simulation, plotted every 5 time steps. a) u =1 (M = 1) up to time ¢ = 15. b) p = 10
(M =10) up to time ¢ = 9.4.
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Table 10.1: Timing of the two-dimensional oil reservoir simulations on a DEC station
5000,/200.

CPU time CPU time/step Time steps
(seconds) | Step 1 | Step 2 | Step 3
immiscible p = 2 810 15 1 7.8 34
immiscible p = 10 738 15.1 1 8.4 30
miscible p =1 1350 2.6 1.3 5 150
miscible p = 10 2360 16.5 2.6 5.7 95




Chapter 11

CONCLUSIONS

11.1 Thesis Summary

In this thesis, we have developed and studied a simple front tracking approach that models
the propagation of discontinuous solutions for nonlinear hyperbolic systems of conservation
laws with source terms in both one and two space dimensions. In this approach, we use a
uniform underlying grid with some grid cells subdivided by tracked interfaces, made up of
moving points in one space dimension and curves in two space dimensions, approximately
aligned with the discontinuities in the flow field. In each time step, we solve Riemann
problems at the tracked interfaces using the values from adjacent cells as data, and follow
strong waves (shocks or interfaces) to determine a new set of tracked interfaces at the end
of the time step. A conservative high resolution finite volume method based on the wave
propagation approach is then applied on the resulting nonuniform grid to update the cell
values. Potential problems with stability are dealt with by the use of a “large time step”
method (see Chapters 2 and 6). Since the new interface locations have been chosen carefully,
the resulting solution remains sharp and is smooth away from these new interfaces. The
old interfaces can then be eliminated by recombining the adjacent cells. This front tracking
algorithm is described in more detail in Chapters 3 and 7 for the one- and two-dimensional
cases, respectively.

Error analysis. To examine stability and accuracy of the algorithm, in Chapters 4
and 8 we performed error estimation for the one- and two-dimensional algorithms. The
results presented there show that our algorithm is stable even if some of the small cells
are orders of magnitude smaller than the regular cell that is used to determine the time
step. In addition, our algorithm is first order and almost second order accurate in the
1-norm for problems involving contact discontinuities and shocks, respectively, in which a
high resolution method is used in the experiments (see Sections 4.1 and 8.1). Note the
above results hold for both the one- and two-dimensional algorithms. As noted there, our
tracking results are much better than what is obtained with shock capturing.

Concerning the error behavior in cells near the tracked interfaces, we have also inves-
tigated several issues that can lead to loss of accuracy, such as the choice of slopes in
neighboring cells, the use of nonuniform and time-dependent grid, and the linearization of
wave interactions due to the use of the large time step method. From this study, we found
that significant improvement of the errors in cells near tracked contact discontinuities can
be obtained using “one-sided” slopes, though this gives much less improvement in cells near
tracked shocks (see Section 4.2). In addition, there is some loss of accuracy due to the
use of time-dependent nonuniform grids, particularly in the max-norm for the first order
method (see Sections 4.3 and 8.3). It has been seen from a one-dimensional model problem
that the errors introduced by the linearization of wave interactions in the large time step
method are of magnitude O(h), and they only occur locally near the tracked interfaces.
Because of this, the 1-norm error of the method has not been severely affected by this loss
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of accuracy (see Section 4.1). For stability, there is no problems with the linear wave inter-
action approach for most calculations, except in an extreme case where a strong rarefaction
wave overtakes a shock. In that case, we modify the method so that the interaction of the
tracked discontinuity and the weak waves is handled “exactly” (see Section 4.4).

Lastly, we have observed very nice results in the accuracy of the tracked front location
using our front-tracking algorithm in both the one- and two-dimensional cases (see, e.g.,
Figures 4.8 and 4.11, and Table 8.1). An approach that replaces the piecewise linear repre-
sentation of the tracked front by a piecewise quadratic representation did not significantly
improve the tracked front accuracy (see Section 8.2).

Applications. To demonstrate the potential power of our front tracking algorithm
on more complex problems, a wide variety of problems have been solved to validate the
algorithm for problems involving shock waves and interfaces arising in gas dynamics. In
one space dimension, the examples considered are a double piston problem, the Woodward-
Colella blast wave problem, the steady quasi one-dimensional nozzle flow, and unstable
detonation waves. In two space dimensions, they are radially symmetric shock waves, a
shock-vortex interaction, a shock-ramp interaction, the Kelvin-Helmholtz and Rayleigh-
Taylor instabilities, and a steady state calculation for a supersonic flow over a ramp. These
results show the effectiveness of our front tracking algorithms in both one and two space
dimensions. They also show the importance of using front tracking for these problems (see
Section 3.3, Chapter 5, Section 7.3, and Chapter 9).

To further test the capability of our front tracking algorithm, we also considered a model
problem arising from oil reservoir simulation. In this case, we need to solve a coupled system
of elliptic and hyperbolic partial differential equations. We use an IMPES procedure to do
this, in which the hyperbolic equation and the elliptic equation are dealt with separately
and sequentially in each time step. Here the hyperbolic equation is solved using the front
tracking algorithm and the elliptic equation is solved using a standard five-point finite
difference method on a uniform grid. Our preliminary results for some sample problems
indicate that front tracking is a very useful tool for this problem also (see Chapter 10).

11.2 Future Research

Even though our front tracking algorithm is quite successful in solving many practical
problems, there are many aspects that have not been handled as well as we might hope,
particularly for two-dimensional problems. Here we sketch some of them, and describe
future work.

Improve resolution near the tracked interfaces. As we have seen from the two-
dimensional error analysis performed in Chapter 8, there is some loss of accuracy of our
front tracking algorithm in cells near the tracked interfaces. From the Kelvin-Helmholtz
unstable interface problem in Section 9.2.1, we also see that our result is not as sharp as
that obtained from another front tracking method. Because of this resolution discrepancy
near the tracked interfaces, we observe different solution behavior for the Rayleigh-Taylor
problem (see Section 9.2.2) obtained from our method vs. another tracking method. For
the purpose of clearing up the difference as well as improving the algorithm, we plan to do
the following work:
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1) Explore various approaches that take account of slopes information for the irregular
cells. Some possible approaches has been mentioned in Section 6.5. Although the
work will increase a great deal by considering these approaches to the method, it is
still worth while studying them in depth. Ultimately, we would like to find an efficient
way to do this.

2) Explore various approaches that achieve high resolution of the tracked front. In this
case, we may want to use curve-fitting or other interpolation technique to construct a
smoother parametric curve to higher order, and also use a higher order representation
for the grid interfaces.

It is important to note that we should consider this work as a whole, because the
resolution near the tracked interfaces depends not only on the accuracy of the grid we
construct, but also on the accuracy of the finite volume method we use on the grid. We
should also keep in mind that we want to modify the method so that the numerical diffusion
is as small as possible. For some interface problems, we might need to put more restrictions
on the method so that the mass of each of two distinct fluids is conserved independently,
with no leaking across the interface.

Code development. So far, to simplify programming, our current version of the
two-dimensional front tracking code is only capable of dealing with discontinuities that
have sufficiently smooth structure; the splitting of fronts as well as the collision of fronts
are not allowed in the program. Because of this, the applicability of this code is limited
to simple front geometries. As a first step toward tackling more complex problems, we
need to consider using more general data structures in the code that can take account of
complicated topological changes in the front structure. Some ideas suggested in [38],[42]
are very valuable here. Another modification of the code that would enhance our ability to
solve complex problems is to couple front tracking with local adaptive mesh refinement as
has already been done for some one-dimensional problems. Doing so would be particularly
useful for problems involving some internal structures near the tracked discontinuities, such
as in the detonation wave computation.

Finally, work is continuing in the application of our front tracking algorithm to real
applications. In particular, we are interested in studying physical effects, such as surface
tension, viscosity, chemically reactions, moving sources, and more general equations of state,
on the solutions of hyperbolic conservation laws arising in various situations (e.g., in gas,
water, porous media, or elastic and plastic materials).
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Appendix A
LINEAR THEORY REVIEW

Here we review the linear stability analysis for the Kelvin-Helmholtz and Rayleigh-
Taylor problems, see also [33] and [84]. Results obtained from this analysis were used to
initialize the flow in the numerical simulation performed in Sections 9.2.1 and 9.2.2. These
results also provide comparison solutions in the regime where the amplitude of the interface
is small.

A.1 Kelvin-Helmholtz instability

In Section 9.2.1, we consider the Kelvin-Helmholtz unstable interface problem in which the
interface separates two fluids of different tangential velocities. We take constant density
po and pressure pg with zero vertical velocity in the computational domain. Above the
interface, we have horizontal velocity u = ug, and below the interface, we have horizontal
velocity u = —ug. We introduce a sinusoidal perturbation (9.3) on the interface to trigger
the instability.

In the standard linear stability analysis, we study the solution behavior on the short time
scale, while the amplitude of the interface is small. In the present case, it is then reasonable
to assume that the flow is irrotational away from the interface, and the entropy is constant
in the domain. Let ® denote the velocity potential with u = 0®/0z and v = 9P /9y so that
the irrotationality condition V x § =V x (V®) = 0 holds, where § = (u,v) is the velocity
vector. It is easy to show that the governing equations, in the regions above and below the
interface, are the following;:

op 9 [ 0D § ( 90\
E+%<p%>+a_y(f’a—y>—°’ (A.1)
6_(1) 1 6_(1)2 6_(1)2 . 1,

ot +2< o) +(ay)>+H(P)—H(po)+2uo, (A.2)

where H = e + p/p is the enthalpy (for polytropic gas H = 7—'}1])/,0). Note that H is

a function of density p only. This is due to the fact that the entropy, so = popy ', is
constant throughout the domain, and so pressure p = sgp”. In the above system, the first
equation is the conservation of mass, and the second equation is the Bernoulli’s equation
for compressible flows, see [25] and [84].

For the boundary conditions, we have solid walls on the top and bottom, and periodic
boundaries on the left and right. On the interface, we have the kinematic boundary condi-
tion which states that particles at the interface should remain at the interface, namely, on
the interface

Vo i=q- i (A.3)
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where 7 is the direction normal to the interface. Let n be the interface position. After some
algebra, (A.3) can be written in the following form

0P on 0P on
90\ _on, (0% On Ad
(ay>y_,7 at+<ax>y_n 82 (A4)

To derive the linearized equations for (A.1) and (A.2), we write the solution as its zeroth
order (equilibrium) solution and a first order correction,

(I)(l‘,y,t) ~ ﬂ33+<1>1(x,y,t) '1)1 <L uz,
plz,y,t) =~ po+pi(z,y,1) p1 < po,
and substitute it to (A.1) and (A.2). Retaining only the first order terms, we obtain

o 0 9*®, 9P,

(& +u83:)p1 ol 0z? * dy? ) =0, (4.5)
g  _0 ’

(& + u_ax)q)l + H (,00),01 = 0, (AG)

where H' (pg) = ¢2/po, and ¢ is the sound speed. Eliminating p; in (A.5) and (A.6), we
get the wave equation for the velocity potential @4,
0 0 .9 ?d,  0°®,
(g +uz=)"P1+co(—5—5 + 55
(Bt U&E) 1+ o 0x? Oy?
Note that 4 = ug in the region above the interface, while 4 = —uy in the region below the
interface. To simplify the expressions, we ignore the subscript for the velocity potential.
Since our initial interface (9.3) is perturbed sinusoidally with varying interface position
in the y-direction, we can write the solution as

® = f(y)exp (ot + ikzx) (A.8)

) = 0. (A7)

where o is the growth rate (a real number in this case), and £ is the wave number. Sub-
stituting (A.8) to (A.7), combining terms, we obtain a second order ordinary differential
equation for the magnitude function f(y),

F (W) = (a+iB)f(y) =0 (A.9)
where
a=(Méo)? — (M?-1)k*> and B =2M?%iko

with M = |u|/¢y (Mach number) and § = 1/4u.

Note that with the appropriate u, (A.9) is valid in both the region above and below
the interface. In each region, its solution can be determined explicitly when the solid wall
and kinematic (a linearized version) boundary conditions are used, see [84]. Since these
solutions are rather complicated in expression, we do not present them in detail here. It
should be mentioned that using the dynamic boundary condition on the interface, which
states that the pressure is continuous across the interface, we obtain a nonlinear equation
for the growth rate o. This is solved numerically using a root-finding routine. In Figure A.1,

we plot the solutions obtained from this linear stability analysis with two different Mach
numbers, M = 0.2 and M = 0.5.
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Figure A.1: Typical solutions of the linear theory for the Kelvin-Helmhotlz unstable in-
terface problem. Results with two different Mach numbers, M = 0.2 and M = 0.5, are
shown.

A.2 Rayleigh-Taylor instability

In Section 9.2.2, we consider the Rayleigh-Taylor unstable interface problem in which the

interface separates two fluids of different densities. We introduce a small perturbation of

an isothermal equilibrium flow with a flat interface separating exponentially stratified flow

above and below the interface. Let pg, po, and ey be the density, pressure, and internal

energy of this equilibrium state, respectively. The equations governing these states are
Ipo

8—y = P09, (A.10)

0
a—y(eo +po/po) =0, (A.11)

see [33] and [108].
As in the Kelvin-Helmholtz problem, we look for solutions in the small amplitude regime,
and we write the solutions as

p(z,y,t) ~ poly) + p1(z.y.1),
u(z,y,t) ~ wui(z,y,t),
v(z,y,t) ~ wvi(z,y,t),
p(z,y.t) = po(y) +pi(z,y,t).

Substituting them into the Euler equations with gravitational sources (9.4), we can derive
the linearized equations for the first order correction terms. For polytropic gas, they are

(9,01 ouq ovi  Jdpg

— 4+ — = A.12

gy ero8 +P08y+8yvl 0, ( )
3U1 Op1

SRt A1l

gt Tar 0 (A.13)
37)1 Op1

— 4+ — A.14

05 + a9y 9P (A.14)

—cg \ 9; 1 >% _
(7_1> ot +< ) ot = pog?1. (A.15)
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Assume that the solutions of these equations take the form,

P1 P1
- exp (ot + ikx) w (y). (A.16)
U1 U1
P1 p1

Substituting (A.16) to (A.12)-(A.15), we obtain equations governing the magnitude func-
tions p1, U1, U1, and py:

) o 0v;  Opo .
op1 +ikpoty + po—=— + —01 =0, A17
41 POUL T PO y dy ! ( )
opot1 + 1kp; = 0, (A.18)
opoly + %—I;l = gp1, (A.19)

2
—c5o\ . o . .
— = . A2

(7_1>Pl+<7_1>;01 Pogu1 (A.20)

We now eliminate 4; and 91 from the above equations, which yields the following two
equations,
0p1
24 2.
+9—-+ + k°p1 — = =0,
R R op
~(cfo® + (7 1)) + 0% + (= Dg k=0,

Finally, we eliminate p; from the above two equations, and obtain a second order ordinary
differential equation for py,

aQA oD 2 —1 2k2
O _ 2990 _ AL i P (A.21)
cHo

This can be solved explicitly with the appropriate boundary conditions, such as solid walls
on the top and bottom, and kinematic boundary on the interface, see [33].
We assume that the position of the perturbed interface has the form

n =y + cexp (ot + ikx),

where g is the unperturbed position, and ¢ is the amplitude of the perturbation. It is easy
to check that the solution is

. poe(g*(y — 1) + c§o?)

Pr = xp (0 (Wndry — 90)) — exD(t (Yodry — %0)) X (A.22)
exp (—ay (Y = Yniry))  exp (== (y — Ybary))
< (y=1)g+a_c (Y= 1)g + oy 2 ) ; (A.23)

where 9/p4ry is the location of the solid wall, and

1/2
ap= 294 (T8 e (= DR
2c3 4c 61 % cto? '
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Figure A.2: Typical solutions of the linear theory for the Rayleigh-Taylor unstable interface
problem. Results with two different dimensionless parameters, M? = 0.5 and M? = 2, are
shown. This parameter measures the compressibility of the fluids.

Having obtained the p;, other variables can also be determined,

N 1 < 2 A 8151>
p1 = opr+(y-1)g— |, A.24
coo? + (v — 1g? =1, (429
ik
io= . (A.25)
N 1, . Op
v = — - —). A.26
1 p— (901 8y) (A.26)

The requirement on the continuity of the pressure at the interface leads to a nonlinear
equation,

(D1 + P0gE)ytyo = (P1 + P0IE)yiyo

that determines the growth rate o.

In Figure A.2, we plot the solutions obtained from this linear stability analysis with two
different dimensionless parameters, M2 = 0.5 and M? = 2, where M2 = (27g)/(kc3). This
parameter measures the compressibility of the fluids.



