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University of WashingtonAbstratFront Traking Methods based on Wave Propagationby Keh-Ming ShyueChairperson of Supervisory Committee:Professor Randall J. LeVequeDepartments of Mathematis and Applied MathematisIn this thesis, we develop and study a simple front traking approah that models thepropagation of disontinuous solutions for nonlinear hyperboli systems of onservationlaws with soure terms, �u�t + NXj=1 ��xj fj(u) =  (u);in both one (N = 1) and two spae dimensions (N = 2). In this approah, we use a uniformunderlying grid with some grid ells subdivided by traked interfaes, made up of movingpoints in one spae dimension and urves in two spae dimensions, approximately alignedwith disontinuities in the ow �eld. In eah time step, we introdue a new set of interfaesthat are lose to the expeted loations of disontinuities in the solution at the end of thetime step. A onservative high resolution �nite volume method based on the large time stepwave propagation approah is then applied on the resulting nonuniform grid to update theell values. A time-splitting method is employed to handle soure terms.Our error estimation results show that this front traking method is stable even if someof the small ells reated by the traked interfaes are orders of magnitude smaller than theregular ell that is used to determine the time step. In addition, high resolution results anbe obtained for ells near the traked disontinuities without osillations.A wide variety of problems have been solved to validate the method for problems in-volving shok waves and interfaes (ontat disontinuities and slip lines) arising in gasdynamis. Typial examples we onsider are a one-dimensional unstable detonation waveproblem, a two-dimensional shok-ramp interation, and two-dimensional Kelvin-Helmholtzand Rayleigh-Taylor instabilities. These results show the e�etiveness of our front trakingmethods in both one and two spae dimensions. They also show the importane of usingfront traking for these problems.This thesis also desribes an algorithm that an be used to solve a oupled system ofellipti and hyperboli partial di�erential equations arising in oil reservoir simulation. Ourpreliminary results indiate that front traking is a very useful tool for this problem.
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Chapter 1INTRODUCTION1.1 PreliminariesSharp fronts are ommonly seen in the real world. In many appliations, they typially moveas time evolves and often undergo some ompliated physial proesses, displaying a rihvariety of frontal struture, see [44℄,[77℄,[80℄,[103℄ for examples. Sine in many instanes thebehavior of this time-dependent front provides some useful information in understandingthe underlying physis, front traking is of great importane in uid dynamis and in otherbranhs of researh that study the nature of fronts in various physial situations.In this thesis, we onsider a simpli�ed model for suh an investigation in whih visosity,heat ondution, and other physial aspets relating to the mirosopi struture of frontsare ignored, and the equations that desribe front motion are a nonlinear hyperboli systemof onservation laws, perhaps with soure terms�u�t + NXj=1 ��xj fj(u) =  (u) (1:1)where N is the number of spatial dimensions. We develop and study a simple front trakingapproah that follows the disontinuous solutions expliitly for this model system in bothone (N = 1) and two spae dimensions (N = 2). This gives us a good method for modelingthe propagation of fronts, and so is an important step toward studying problems involvingsharp fronts.Here the system we onsider has m equations, so u 2 lRm. The homogeneous systemwith  (u) = 0 in (1.1) is assumed to be hyperboli in the sense that the Jaobian matrixof any linear ombination of the ux funtions fj(u), i.e.,��u 0� NXj=1�jfj(u)1A for arbitrary �j 2 lR;is assumed to have real eigenvalues and a omplete set of eigenvetors for eah physiallyrelevant value of the onservative variables u. This is true, for example, for the Eulerequations of gas dynamis whih we use as our model system (see Setions 3.2 and 7.2).Other examples of pratial interest may be found in [32℄ and [108℄.Soure terms of the form  (u) an arise in various ways. Geometri soure terms arise ifa system in more than one spae dimension is redued to a one-dimensional problem usingsymmetry (e.g., radially symmetri ow) or by assuming that the ross-setional ow ishomogeneous, as in the \quasi one-dimensional nozzle" problem disussed in Setion 5.2.1.In another instane, gravitational soure terms appear if gravity (whih ats as a bodyfore in the system) is of importane in the simulation, for example, in the Rayleigh-Taylorproblem examined in Setion 9.2.2.



2Soure terms that are more diÆult to handle arise in the study of nonequilibrium orhemially reating ows (e.g., in ombustion problems). Here the density is replaed byseveral di�erent density funtions, one for eah hemial speies, and the uid equationsare oupled to soure terms for the prodution and onsumption of individual speies. Suhproblems are often ompliated by the fat that the time sale of the hemial reationsmay be orders of magnitude faster than the time sale for the uid dynamis. Shok wavesin the ow may be oupled with thin reation zones in whih mesh re�nement is required inorder to eÆiently model the ow. A model system of this form is disussed in Setion 5.2.2.A number of front traking algorithms have been proposed in the past and used to studyfront propagation (see Setion 1.3). Their results show that the front traking algorithm isan eÆient way to ompute ows involving disontinuities, but at a prie of ompliatingthe methods. A list of diÆulties that need to be overome in the front traking algorithmis given in [17℄.Here our work is di�erent in that we use a onservative �nite volume method based onthe large time step wave propagation approah[61℄ to overome a major diÆulty assoiatedwith the limit on the time step in the presene of small ells reated by the traked frontutting through the grid, while maintaining onservation of the algorithm. In addition,we have investigated a variety of approahes to obtain high resolution in the grid ellsnear the traked interfae and have done extensive tests of auray and stability. Variousapproahes to propagating the front have also been studied and ompared. This work ofanalyzing the algorithm is one of the main features of this thesis. In fat, doing so givesus a solid base in understanding solutions obtained from this algorithm, and this helps usunderstand the physis when the algorithm is employed in various appliations.1.2 Our Approah { thesis workThe basi idea of our front traking algorithm is quite simple. We hoose a uniform under-lying grid with some grid ells subdivided by traked interfaes, made up of moving pointsin one spae dimension and urves in two spae dimensions, approximately aligned withdisontinuities in the ow �eld. In eah time step, we introdue a new set of interfaes thatare approximately aligned with the expeted loations of disontinuities in the solution atthe end of the time step. A high resolution �nite volume method is then applied on theresulting nonuniform grid to update the ell values. If we have hosen the new interfaeloations well, the resulting solution will remain sharp and be smooth away from these newinterfaes. The old interfaes an then be eliminated by reombining the adjaent ells.Figure 1.1 shows a typial grid system for our front traking algorithm. In Figure 1.1a,we show a one-dimensional grid where moving points are introdued for the disontinuities,and are inserted into an underlying uniform grid as grid interfaes. In Figure 1.1b, we showa two-dimensional grid where pieewise linear urves are introdued for the disontinuities,and are inserted into the grid.To advane the traked interfaes from the urrent time step to the next, we solvea one-dimensional Riemann problem at eah traked interfae using the values from theadjaent ells as data, and follow strong waves to determine the new loations at the endof a time step. In one spae dimension, this an be aomplished quite easily as illustratedin Figure 1.1a where x̂� = x� + �pk is the new loation of the old traked point x� withstrong wave speed �p (obtained from solving the Riemann problem at x�) over a time step
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Figure 1.1: A typial grid system for our front traking algorithm. a) In one spae di-mension, moving points are introdued for the disontinuities, and are inserted into theunderlying uniform grid as grid interfaes. b) In two spae dimensions, pieewise linearurves are introdued for the disontinuities, and are inserted into the underlying grid.k. This new interfae loation x̂� is then inserted into the grid. This one-dimensional fronttraking algorithm is disussed in more detail in Chapter 3.In two spae dimensions, the new interfae loations an be hosen by a tehnique analo-gous to our one-dimensional approah. Sine eah traked interfae is the boundary betweentwo ells, we an use the values from the adjaent ells as data to solve one-dimensionalRiemann problems in diretions normal and tangential to eah interfae. We expet thesolution to this Riemann problem to onsist of only one strong wave, orresponding to theshok or interfae (ontat disontinuity or slip line) being traked, and other weaker waves.Sine we want the new traked interfaes to form a ontinuous pieewise linear urve, asshown in Figure 1.1b, we need to use the solutions of neighboring Riemann problems insome oordinated manner to determine the new interfaes. There are various ways that thisan be done via some sort of urve �tting through points determined by the strong wavesfrom the Riemann solutions. In Chapter 7, we present one simple approah in more detail.Our basi philosophy of traking, however, gives us some exibility on this sore { we donot view the interfae we introdue as being the de�nitive loation of a traked front, butrather as a grid interfae that is suÆiently well loated and aligned that the solution anbe well aptured on the resulting grid.One the new grid is onstruted, the solution is then advaned using a fully onservativeshok apturing method. This method must be able to deal with the irregular ells nearthe traked interfae. In partiular, we must maintain stability even if some of these ellsare very small relative to the underlying mesh size used to determine the time step. Wealso hope to maintain seond order auray in the smooth ow on either side. This isaomplished using a high resolution method based on the large time step wave propagationapproah, developed by LeVeque[60℄,[61℄ (see also Chapters 2 and 6). The main idea is thatwaves arising from the solution of Riemann problems at the ell boundaries are propagatedthe appropriate distane determined by the wave speed and time step, and used to update



4ell averages in any grid ell they enounter. The wave may a�et more than one ell if theneighboring ell is very small. In this manner the stenil of the method adjusts automatiallyso that the CFL (Courant-Friedrih-Lewy) ondition is always satis�ed regardless of theon�guration of the grid.Soure terms in the equations are urrently handled using a Strang splitting[97℄. Thesoure terms are used to solve the ordinary di�erential equations ut =  (u) in eah gridell over a half time step. The homogeneous onservation laws are then solved using fronttraking with a full time step. Another half time step is then taken with the ODEs (seeSetion 5.2).Our goals here are to study the feasibility of this front-traking proedure and explorevarious �nite volume approahes on the resulting nonuniform grid. We avoid stabilityproblems in the presene of small ells and ahieve high resolution even in ells near thetraked interfaes in a onservative manner. In the urrent formulation, we only onsiderfronts with simple geometry. The approah we take here ould alternatively be inorporatedinto a more ompliated algorithm for omplex geometry. However, even this simple formof front traking an be very useful for ertain lasses of problems, as some of the examplesin this thesis illustrate.1.3 Other Approahes { overviewA wide variety of approahes have been used over the years to develop shok trakingor interfae traking methods. We will only mention a few of the main ideas and howthey relate to our method. A onise survey of several approahes for the two-dimensionalproblem is given by Hyman[54℄ (see also Oran and Boris[77℄).With many methods, the onservation laws are solved separately on eah side of thedisontinuity using a method designed for smooth ow, while the shok or interfae ishandled in a di�erent manner using the Rankine-Hugoniot jump onditions. This is the ase,for example, with the method pioneered by Moretti[73℄. Similar methods have been usedby others, e.g., Di Giainto and Valorani[34℄, and Salas[91℄. These methods are typiallynot onservative, whih may be a problem if other shoks are present that are not beingtraked. However, very nie results have been obtained for problems with suÆiently simplestruture.Mao[70℄,[71℄ has reently introdued a front traking method in whih two sets of datanear the interfae are onstruted by extrapolating the data from eah side to the other side.High resolution ENO (essentially non-osillatory) methods are applied to the extrapolatedvalues whih now de�ne smooth funtions. The method is not exatly onservative at theinterfae, although errors in onservation appear to be small. Away from the interfae themethod is fully onservative.Glimm and oworkers, e.g., [17℄,[38℄,[42℄, have developed a very extensive set of tools forshok and interfae traking that have been suessfully applied to a wide variety of prob-lems. This pakage inludes proedures to deal with ompliated interations of interfaes,Mah triple points, and other suh strutures in spite of the lak of onservation at thetraked front. The struture of solutions to multi-dimensional Riemann problems is usedto determine the behavior of the solution near the intersetion points. This ompliatedalgorithm is apable of dealing with some very omplex problems.



5The approah taken here is fully onservative and based on high resolution shok ap-turing methods so that features not being traked an still be aurately omputed. Themethod is quite simple oneptually and algorithmially, although it would be ompliatedonsiderably by allowing the interation of fronts.We use a �nite volume method on a grid onsisting of a uniform �xed grid in whihsome ells have been subdivided by traked interfaes. Potential problems with stabilityare avoided by the use of a \large time step" method. Another approah would be toeliminate the problematial small grid ells by merging them with adjaent ells, temporarilyeliminating a \�xed" ell boundary in the proess. This approah is used, for example,in [75℄ and [98℄. However, this may be impossible to do if several traked fronts fall withinone �xed grid ell. Moreover, this seems to be unneessary with our approah.Swartz and Wendro�[98℄ also onsider a method in whih the ow is entirely representedby a olletion of disontinuities, all of whih are expliitly traked. Following Dafermos[26℄,a pieewise linear equation of state is used to ensure that only disontinuities arise insolutions to Riemann problems. A similar approah was investigated by Hedstrom[51℄and has more reently been adopted by Risebro and Tveito[87℄,[86℄. Sine every ollisionmust be expliitly handled by solving a Riemann problem, and the ollision of two wavestypially gives rise to m new waves (for a system of m equations), this an learly lead toan explosion of information if m > 2, as in the Euler equations. (Although Wendro�[105℄has studied this method for a problem arising in hromatography and shows that for thisspeial system the number of waves remains bounded.) In general, at some point weakwaves must be suppressed in order to limit the amount of information retained, leading toa loss of onservation. Another problem is that smooth ow is not represented with highorder auray. Finally, there is the obvious diÆulty of extending suh methods to morethan one dimension.Our method is perhaps losest to that of Chern and Colella[16℄. They also use a on-servative method on a uniform grid, with some grid ells subdivided by the traked front.They avoid stability problems in small partial ells by a \ux redistribution" algorithm thatmodi�es uxes at the boundaries of these and neighboring ells in suh a way that stabilityis restored while onservation is maintained. Our use of the wave propagation algorithmdesribed in Chapters 2 and 6 has the same e�et. In addition, we believe it to be moresolidly based on the orret physial behavior of the waves, and more amenable to highorder extensions and theoretial analysis.Another way that our algorithm di�ers from that of Chern and Colella is that weexpliitly trak the disontinuities, while they use a frational marker volume (or \volume ofuid") approah in whih they keep trak of the volume of uid in eah ell that is \behind"the front and then dynamially reonstrut the front in eah time step. This approah isused in many interfae methods, e.g., [18℄,[46℄,[58℄,[76℄. In one spae dimension there is littledi�erene in these approahes { determining the front loation is trivial from the frationalvolume but on the other hand traking the points expliitly is also quite simple. In two spaedimensions one must seriously weigh the tradeo�s. Hyman[54℄ disusses some of the prosand ons. Our urrent two-dimensional implementation is based on expliitly traking theglobal interfae, but the stable high resolution numerial methods we are developing ouldbe equally well used in the ells formed by loally reonstruting the front from frationalvolume information.Another quite di�erent approah to representing interfae is proposed by Mulder, Osher,



6and Sethian[74℄,[78℄. They represent the front as a level set of an auxiliary funtion thatsatis�es an equation of Hamilton-Jaobi type. This seems to be a promising approah sineit handles ompliated hanges of geometry quite easily.Finally, we want to mention that there are also a number of shok apturing approahesthat are apable of improving the resolution of disontinuities. Methods of this type inludethe self-adjusting grid methods of Harten and Hyman[49℄, and the ENOmethod with subellresolution of Harten[47℄.1.4 OutlineThis dissertation is divided into three parts. In Parts I and II, we develop, analyze, andapply the front traking algorithm for nonlinear hyperboli systems of onservation laws inone and two spae dimensions, respetively. In Part III, we onsider problems arising fromporous media ow where the hyperboli onservation law is oupled with an ellipti partialdi�erential equation in order to orretly model the problem.The organization for Parts I and II is quite similar. In Chapters 2 and 6, we begindesribing numerial methods that an be used on a nonuniform grid generated by the fronttraking algorithm. In Chapters 3 and 7, we desribe the front traking algorithm, introdueour model system (the Euler equations of gas dynamis), disuss the implementation ofboundary onditions for this system, and present preliminary results obtained using thisalgorithm for this model system. In Chapters 4 and 8, we perform error estimation andstudy auray and stability of the algorithm. Several approahes that an be used toimprove upon the algorithm have been disussed also. In Chapters 5 and 9, we presentmore numerial results for various appliations arising in gas dynamis.In Part III, Chapter 10, we desribe an algorithm that an be used to solve a oupledsystem of ellipti and hyperboli partial di�erential equations arising in oil reservoir sim-ulation. Some preliminary results for this problem in both one and two spae dimensionsare also shown. Finally, in Chapter 11, we summarize the thesis work and outline futureresearh.
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Chapter 2FINITE VOLUME WAVE PROPAGATION METHODSWe begin our disussion by desribing numerial methods that an be used to omputethe smooth solution for the homogeneous onservation lawsut + f(u)x = 0: (2:1)Although these methods are related to various upwind or ux-limiter methods[20℄,[50℄ thathave been widely used for onservation laws, the formulation is somewhat di�erent. Weuse a wave-propagation viewpoint that allows us to interfae the method easily with fronttraking and maintain stability even when very small ells are reated.2.1 PreliminariesWe desribe the methods on a general nonuniform grid with grid spaing hj = xj+1 � xj.We use a �nite-volume formulation in whih the value Unj approximates the ell average ofthe solution over the grid ell [xj ; xj+1℄ at time tn,Unj � 1hj Z xj+1xj u(x; tn) dx:The time step is denoted by k. Note that the grid may vary from step to step but themethod involves only two time levels, so this presents no diÆulty.The methods we use are based on solving Riemann problems at eah interfae. ARiemann problem onsists of the original onservation laws (2.1) together with pieewiseonstant data ul and ur to the left and right of a single disontinuity. The Riemann problemfor various systems of onservation laws has been extensively studied and the exat solutionan often be found [15℄,[57℄,[63℄. Under ertain onditions, satis�ed for the Euler equations,for example, the solution is a similarity solution (depending on x=t alone) that onsists ofm waves for a system of m equations. Eah wave is a shok wave, rarefation wave, orontat disontinuity.At eah interfae xj , we solve the Riemann problem with data Unj�1 and Unj . Ratherthan omputing the exat solution to the Riemann problem, whih an be done but is ratherexpensive, we use an approximate solver developed by Roe[88℄ at most interfaes. This ismuh more eÆient to ompute than the exat Riemann solution and in smooth regionsof the ow provides a very aurate approximation. Only at front ollision points do weuse the exat Riemann solver so that the nonlinear interation is aurately omputed (seeSetion 3.1 for further disussions).Roe's approximate Riemann solver replaes the nonlinear equations (2.1) with data uland ur by a linear system ut + Â(ul; ur)ux = 0: (2:2)



9The matrix Â(ul; ur) is hosen to have the following properties:i) Â(ul; ur)(ur � ul) = f(ur)� f(ul)ii) Â(ul; ur) is diagonalizable with real eigenvalues (2.3)iii) Â(ul; ur)! f 0(�u) smoothly as ul; ur ! �u:Suh matries have been derived for several systems of pratial interest. For the Eulerequations with a -law gas, the form of the matrix is given by Roe[88℄.The solution of the linear system (2.2) is a similarity solution that onsists ofm disonti-nuities propagating at onstant speeds. The jump aross eah disontinuity is an eigenvetorof the matrix Â, and the propagation speed is the orresponding eigenvalue. We thus haveur � ul = mXp=1 rp; (2:4)where rp 2 lRm is an eigenvetor of Â,Ârp = �prp; p = 1; 2; : : : ; m:Wave propagation methods are based on using these propagating disontinuities to updatethe ell averages in the ells neighboring eah interfae.2.2 Godunov MethodTo begin, we assume that waves resulting from the Riemann problems a�et only the ellsadjaent to the disontinuity during the time step. This requires that the Courant numberbe less than 1. The Courant number � is de�ned by� = khmin maxp;j j�pj j (2:5)where hmin = minj hjand �pj represents the pth eigenvalue obtained from the Riemann problem at xj. Note thatk�pj is the distane a wave propagates during the time step. If �pj < 0, then we needkj�pjj < hj�1, while if �pj > 0 we need k�pj < hj in order that the wave stays within theadjaent ell. Condition (2.5) is suÆient to guarantee this.A �rst order aurate version of the wave propagation method is then equivalent toGodunov's method, with the Roe Riemann solver, on a nonuniform grid. That is to say, wesolve the Riemann problems at eah interfae over a time step of length k and then averagethe resulting solution over the grid ells to obtain Un+1. By omputing the e�et of eahwave on the ell average, we obtain the following wave-propagation form of the algorithm:



10Algorithm 2.1Initialize Un+1j := Unj for all jFor eah j do beginSolve the Riemann problem at xj based on data Unj�1; Unj to obtainjumps rpj and speeds �pj (p = 1; 2; : : : ;m)For p = 1; 2; : : : ;m do begin# Update the ell average to the left or right of the interfae# depending on the speed:If �pj < 0 then i := j � 1 else i := jUn+1i := Un+1i � �pjkrpj=hi# Apply seond order orretions if desired (See Algorithm 2.2)endendThe seond order orretions will be disussed below. We an rewrite this method as astandard �nite di�erene method in onservation form if we look at the total ontributionto eah grid ell. We �nd thatUn+1j = Unj � X�pj>0 �pjkhj rpj � X�p;j+1<0 �p;j+1khj rp;j+1= Unj � khj [F (Unj ; Unj+1)� F (Unj�1; Unj )℄where the numerial ux funtion F is given byF (Unj ; Unj+1) = f(Unj ) + X�p;j+1<0�p;j+1rp;j+1and F (Unj�1; Unj ) = f(Unj�1) + X�pj<0 �pjrpj (2.6)= f(Unj )� X�pj>0 �pjrpj:The last equality follows from Property (2.3i). This property guarantees that the wave-propagation method is onservative.The advantage of using the wave propagation form rather than the more traditionalux di�erening form is that the method an then be easily extended to the ase wherethe Courant number is larger than 1. In this ase, waves propagate through more thanone grid ell. The ux di�erening formula based on the above uxes would then lead toan unstable method, sine the ratio �pjk=hj would be larger than 1 in magnitude for somewaves. On the other hand, using the wave propagation approah allows us to extend themethod easily in a stable manner. Note that it is also possible to write a ux di�ereningmethod for this larger Courant number ase, but the uxes are more ompliated[59℄.



11
j � 1 j j + 1

k�pj
Figure 2.1: Wave propagation in the ase k�pj > hj . The wave propagates entirely throughone ell and part way through the neighbor.For example, if kj�pjj > hj at some point in the algorithm, then the orresponding waveshould update more than one ell average, as shown in Figure 2.1. In this �gure, Un+1j isupdated by the entire jump rpj, Un+1j := Un+1j � rpj;while Un+1j+1 is updated by Un+1j+1 := Un+1j+1 �  k�pj � hjhj+1 ! rpj:The method remains onservative with this modi�ation. This \large time step" versionof Godunov's method is disussed in some detail in [60℄,[62℄. Regarding stability, we notethat for a salar nonlinear onservation law the method is total variation diminishing (TVD)and hene is stable and onvergent[59℄. Also, for a linear system of onservation laws themethod redues to a salar large time step method on eah harateristi �eld and again isstable. For nonlinear systems of equations, some osillation problems have been observedwhen large Courant numbers on uniform grids are used in the ontext of shok apturing[60℄.In this ase, waves pass through several grid ells and the linearization of the nonlinearinterations apparently results in diÆulties.However, in the ontext of front traking, where the Courant number is large only dueto oasional small ells and we are apturing smooth ow, we have not observed stabilityproblems for most alulations. In one example presented in Setion 5.1.2, the Woodward-Colella blast wave interation problem, we have experiened diÆulties due to negativepressures using the linear wave interations. It is an extreme ase, however, in whih astrong rarefation wave overtakes a shok that has a very low pressure in front of it. Thepressure beomes negative when the rarefation wave passes through the blast wave andenters the low pressure region.2.3 High Resolution Godunov MethodWe now extend the method to a high resolution method, i.e., a method that ahievesseond order auray on smooth ows (exept perhaps near extrema) and also avoidsosillations near disontinuities. The approah we use is similar to the MUSCL (standing for\Monotoni Upstream-entered Sheme for Conservation Laws") approah of van Leer[104℄



12in that we introdue pieewise linear approximations to the solution in plae of the pieewiseonstant funtions used in Godunov's method, but the form of the method is quite di�erentand allows easy extension to the ase where the Courant number is larger than 1. Moredetails of this approah an be found in [61℄,[62℄.We begin our method by solving the Riemann problems as before, using the pieewiseonstant data. The resulting jumps rpj are then used to obtain slope information in eahharateristi family. Let hj�1=2 = 12(hj�1 + hj)be the distanes between ell enters. Note thatmXp=1 rpj=hj�1=2 = (Unj � Unj�1)=hj�1=2= ux(xj ; tn) +O(h):So eah omponent rpj=hj�1=2 is the ontribution to the slope arising from the pth family.It is important to deompose the slope into omponents, sine the waves in the di�erentfamilies propagate at di�erent speeds and perhaps in di�erent diretions. Moreover, whenwe introdue slope limiting, we will do the limiting separately in eah family. We wish tolimit slopes near a disontinuity in order to avoid osillations, but wish to do this in thefamily with the disontinuity without a�eting auray in other families where the solutionmay be smooth.We will use �pj to denote the slope used in the pth family over the ell [xj ; xj+1℄. Theunlimited slope is taken to be�pj = ( rpj=hj�1=2 if �pj < 0rp;j+1=hj+1=2 if �p;j+1 > 0: (2:7)To avoid osillations, the slope �pj should be hosen based on a slope limiter. If we let �(i)pjbe the ith omponent of �pj (i = 1; 2; : : : ;m) and similarly let r(i)pj be the ith omponent ofrpj, then we apply a slope limiter separately in eah omponent, i.e., we take�(i)pj = �(�(i)pj )0� r(i)pjhj�1=21A (2:8)where � is some limiter funtion applied to the slope ratio�(i)pj = hj�1=2 r(i)p;j+shj+s�1=2 r(i)pj ; (2:9)with s = �sgn(�pj). One simple hoie of limiter is the \minmod" slope limiter �, givenby �(�) = 8<: 0 if � � 0� if 0 � � � 11 if � � 1 (2.10)= max(0; min(1; �)):



13Other hoies of slopes an also be used, and a variety of limiter funtions have beendeveloped that work better than \minmod". Typial examples are the \superbee" limiterof Roe[89℄: �(�) = max(0; min(1; 2�); min(�; 2)); (2:11)and the \MUSCL" limiter of van Leer[104℄:�(�) = max(0; min(2; 2�; (1 + �)=2): (2:12)See Sweby[99℄ for a more general disussion of limiters.This slope is used to modify the ell averages omputed via the �rst order algorithm.The modi�ation is aomplished by shifting a ertain mass between ells in a onservativemanner. The idea is best explained by onsidering the linear advetion equationut + aux = 0 (2:13)on a grid with Courant number � = ak=hmin � 1, a > 0. Godunov's method is then simplythe �rst order upwind methodUn+1j = Unj � akhj (Unj � Unj�1): (2:14)This an be interpreted as follows: view Unj as de�ning a pieewise onstant funtion~uj(x; tn). Shift this funtion at the propagation speed a to obtain ~uj(x � ak; tn). Nowaverage this funtion over the grid ells to obtainUn+1j = 1hj Z xj+1xj ~uj(x� ak; tn) dx:It is easy to verify that this gives (2.14). So eah ell average is updated by the shaded areain Figure 2.2a divided by the ell length.A natural way to extend this to seond order auray is to replae the pieewise onstantfuntion by a pieewise linear funtion of the form~uj(x; tn) = ( Unj + (x� xj+1=2)�j xj � x < xj+10 otherwise; (2:15)with slopes �j on eah ell as obtained, for example, from (2.7). For the salar equa-tion (2.13), this redues to �j = (Unj+1 � Unj )=hj+1=2: (2:16)We then shift this funtion at speed a and average onto the grid. We thus obtain Un+1j byupdating Unj aording to the shaded area of Figure 2.2b.An easy way to aomplish this is to split the proedure into two piees. In the �rststep we update ell averages using the pieewise onstant wave as in Figure 2.2a (i.e., weapply (2.14)), and in the seond step we propagate the pieewise linear wave form shown



14

j � 1 j

a)

j + 1 j � 1 j j + 1

b)

j � 1 j

)

j + 1Figure 2.2: a) Propagation of the pieewise onstant wave. b) Propagation of a pieewiselinear wave form. ) Seond order orretion wave. The propagation shown in Figure b anbe deomposed into propagation of the pieewise onstant wave of Figure a together withpropagation of this orretion wave.in Figure 2.2, with zero mean value and slope �j over the ell. We then further updateUn+1j by the shaded area in Figure 2.2, i.e., we setUn+1j := Un+1j + ak2hj (hj�1 � ak)�j�1:We also update Un+1j�1 by the area of the portion of the orretion wave that overlaps thisell, Un+1j�1 := Un+1j�1 � ak2hj�1 (hj�1 � ak)�j�1:Conservation is maintained in this orretion step with any hoie of slopes sine the abovetwo orretions (weighted by ell size) sum to zero.Of ourse, Un+1j will also be updated by the wave originating from xj+1=2. When all ofthese updates are ombined, we �nd thatUn+1j = Unj � akhj (Unj � Unj�1) + ak2hj (hj�1 � ak)�j�1 � ak2hj (hj � ak)�j :On a uniform grid with slopes (2.16), this redues to the Lax-Wendro� method for thelinear advetion equation (2.13) and is seond order aurate.The extension to nonlinear systems is straightforward. We apply Algorithm 2.1 butnow for eah wave we also apply a orretion step. In this algorithm we assume that theCourant number is less than 1, and so the orretion step takes the form in Algorithm 2.2.



15Algorithm 2.2 (Insert in Algorithm 2.1)# Seond order orretions:If �pj < 0 then i := j else i := j � 1Un+1j := Un+1j + j�pjjk2hj (hi � j�pj jk)�piUn+1j�1 := Un+1j�1 � j�pjjk2hj�1 (hi � j�pj jk)�piNote that this orretion an be easily translated into the ux di�erening framework.The �rst order ux F (Unj�1; Unj ) from (2.6) is simply replaed byF nj�1=2 = F (Unj�1; Unj )� mXp=1 12 j�pjj(hi(p) � j�pjjk)�p;i(p) (2:17)where i(p) = ( j � 1 if �pj > 0j if �pj � 0:Notie that the ux now depends on four neighboring points rather than two, so we use theabbreviated notation F nj�1=2. This ux formulation will be useful in onjuntion with gridre�nement in Setion 5.1.For a salar nonlinear problem on a uniform grid with slopes (2.7), this again redues toa form of the Lax-Wendro� method and an easily be veri�ed to be seond order aurate.For a nonlinear system of equations on a uniform grid, this method is quite omparable toother slope limiter of ux limiter methods and yields similar high quality results.The method an also be generalized quite easily to nonuniform grids with Courantnumber greater than one by appropriately averaging the orretion wave onto whatevergrid ells it overlaps. Algorithmi details may be found in [62℄.



Chapter 3FRONT TRACKING ALGORITHMHaving desribed the numerial methods that an be used on the nonuniform grid forthe homogeneous onservation laws (2.1), we now disuss the front traking algorithm forthis system. As we will see from the disussion, this algorithm is very simple and robust.Moreover, it is a onservative algorithm with no stringent time step limitations in thepresene of small ells reated by the traked interfaes utting through the grid. Oneexample will be given here for our model system, the Euler equations of gas dynamis, todemonstrate the e�etiveness of the algorithm. The implementation of boundary onditionsfor this model system will also be disussed.3.1 AlgorithmOur grid onsists of two parts. We hoose a uniform underlying grid with mesh size h thatremains �xed for all time, and we also introdue traked points whih vary from step tostep for disontinuities in the ow �eld. These traked points subdivide some regular ellsinto two or more subells, reating some irregular ells. We then view the union of theregular ells and irregular ells as our global grid (see Figure 3.1). In eah grid ell the ellaverage is denoted by Unj .In eah time step our front traking algorithm onsists of the following steps:Algorithm 3.11) Determine the size of the next time step and the loation of the traked points at thenext time step.2) Modify the urrent grid by inserting these new traked points. Some ells will be sub-divided and the values in eah subell must be initialized.3) Take a time step on this nonuniform grid using a �nite volume method desribed inChapter 2 to update the ell averages.4) Delete the old traked points from the previous time step. Some subells will be om-bined and a value in the ombined ell must be determined from the subell values.Before desribing eah of these steps in more detail, we �rst disuss some possibleapproahes to setting up the data struture. One possibility is to use a doubly linked listfor the entire grid (see [1℄ or [55℄ for more information on the use of linked lists). Eahgrid ell is an element of this list, with pointers to the previous and next grid ells. Withthis data struture, it is easy to insert and delete grid points and the distintion betweenregular and irregular ells disappears. This is reasonable in Step 3 of our algorithm, where



17little distintion is made between regular and irregular ells, although we will see that wemust be areful in our hoie of slopes near traked points. We also need to keep trak ofwhih points must be deleted in Step 4. For these reasons we would also maintain a ag foreah point that tells whether it is a regular point, an old traked point, or a new trakedpoint.The use of a doubly linked list does not extend very well to two spae dimensions.Another more general approah is to use a standard representation for the �xed grid togetherwith a ag for eah grid ell that indiates whether the grid ell is subdivided by one or moretraked points. For subdivided ells, this ag an be a pointer to another data strutureontaining information on eah subell.This latter data struture also interfaes more easily with the adaptive mesh re�nementalgorithm we use, and so we have taken this approah in our ode.We now disuss eah step of Algorithm 3.1 in more detail.Step 1: We begin our algorithm by solving the Riemann problem at eah interfaeand obtain the resulting jumps rpj and speeds �pj. Then at eah interfae we hek eahjump rpj to see if it should be traked. This an be done by heking, for example, ifthe max-norm of rpj is greater than some presribed tolerane ", or if the jump in somephysially meaningful variable (e.g., density or entropy) is greater than the tolerane ".The hoie of the heking riterion and tolerane " for determining the traked waves maydepend on the spei� problem and should be adjusted aordingly. In order to apturethe shok formation, the jumps have to be heked at regular interfaes as well as at thetraked interfaes so that new traked points an be introdued. By examining the jumpsat traked interfaes, deaying shoks an also be deteted and hene ignored.It should be noted that only waves orresponding to the physially relevant dison-tinuities should be traked, i.e., shoks or ontat disontinuities. Although rarefationwaves are also approximated by disontinuities in the Roe Riemann solver, we want themto be smeared rather than remaining sharp and so they should not be traked even if theirstrength is greater than ". Moreover, due to this rarefation wave approximation, we mayobtain an entropy-violating solution if the rarefation wave is a transoni one. This entropyviolation an be �xed in various ways, for example, by replaing the single entropy-violatingdisontinuity by two disontinuities traveling in opposite diretions[49℄.Before entering the front traking algorithm, we have some basi time step k. In orderto avoid the interation of traked waves during this time step, we adjust our time step ifneeded. It will be adjusted in suh a way that the ollision of two traked waves oursexatly at the end of a time step (see Figure 3.1). This an be aomplished quite easily.Assume that there are two traked waves, one originating from x� with speed �p� and theother from x� with speed �q�. Here p, q are the wave families, and �, � are the indies ofthe ell interfaes. Let x̂�, x̂� be the new loations of x�, x� under the urrent time step,i.e., x̂� = x� + �p�k;x̂� = x� + �q�k:If no interation ours, the produt of the two relative distanes (x̂� � x̂�)(x� �x�) will begreater than zero for eah pair of traked waves. If interation happens, the time step for
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Figure 3.1: A typial grid in the x-t plane when front-traking is used to model the ollisionof two shoks with the Euler equations. The uniform grid is augmented by ell interfaesat the disontinuities. The time step is adjusted so that the shok ollision is orretlyresolved.this pair of interation an be omputed byk = (x� � x�)=(�q� � �p�):We hoose the time step to be the minimum of all ollision times found by heking adjaenttraked waves.If ollision ours, in the next time step the approximate Riemann solver is replaed bythe exat Riemann solver at the ollision point to insure that the resulting waves in thenext time step are well resolved. By hoosing the time step in this way and using the exatRiemann solver, we guarantee that the ollision of two traked waves is always handledorretly.Step 2: After hoosing the time step k, we an ompute the loations of eah trakedwave at the end of the time step. Some of these loations may oinide if two wavesollide, or if the new loations are exatly at the old grid interfaes. Also, some waves maypass outside of our omputational domain at an outow boundary. For eah distint waveloation in the domain, we insert a new ell interfae into our old grid. Eah new pointsubdivides some ell into two subells. We must assign a ell value on eah of these subells(see Figure 3.2 for an example). The simplest approah is to assign the previous ell valueto eah subell. It would be preferable to use some form of interpolation to determine moreaurate values on these ells. However, doing so would hange the solutions to neighboringRiemann problems and perhaps the speed of the traked waves. The loation of the pointwe are inserting might therefore be inorret. For this reason we use the simpler approah.Step 3: One the new grid is onstruted, the ell average values Unj are then updatedby applying the �nite volume wave propagation method desribed in the previous hapter onthe resulting nonuniform grid, see Figure 3.3 for illustration. Sine the new grid has beenhosen arefully so that all the strong waves are propagated exatly to ell boundaries,there is no smearing of the traked waves during the averaging proess. Smooth ow isaptured as usual. Note that during this propagation proess, all waves are propagatedindependently, and in priniple no distintion need be made between traked points andordinary grid boundaries. Near traked points, waves may propagate through several ellsdue to the fat that we have reated small subells. A onsequene of this is that waves pass
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tn+1
tn x� x̂�

ell i ell j
ia ib ja jbFigure 3.2: A shok propagating from ell i to ell j = i+ 1 leads to a subdivision of ellsi and j. In time step n we split ell j in two, setting Unja = Unjb = Unj . In time step n+ 1we eliminate the old traked point in ell i using (3.1).

tn+1
tn

�p
x� x̂�Figure 3.3: Wave propagation in step 3. Eah wave is propagated independently, and forwaves passing through eah other the interation is linearized. Note that the traked waveis propagated exatly to the new ell boundary x̂� introdued in Step 2. (The solid linesshown in the �gure represent the traked waves, while the dashed lines represent the weakwaves.)



20through one another as they would in a linear equation, without undergoing the nonlinearinteration that should our. For weak waves, this is a good approximation, as desribedin [60℄. For the interation between a strong traked wave and the weak waves arisingfrom the nearby Riemann problems, this linearization is less valid. In the next hapter, weinvestigate the error introdued by this proedure, and disuss one possible approah thatmay improve the auray.Step 4: We now delete the old traked points from the urrent grid. This orrespondsto merging two subells into one, and the ell value in the ombined ell is alulated bythe appropriate weighted ombination of these two deleted subells to maintain the orretell average. For example, in Figure 3.2, the old traked point x� is deleted from the ithregular ell, and so the ith ell average after deletion beomesUn+1i = x� � xih Un+1ia + xi+1 � x�h Un+1ib (3:1)where Un+1ia , Un+1ib are the ell averages in the �rst and seond subell of the ith ellrespetively, and h is the underlying �xed mesh size.3.2 The Euler Equations and Boundary ConditionsBefore presenting numerial results with this front traking algorithm, we pause to introduethe Euler equations of gas dynamis and disuss the implementation of boundary onditionsfor this system.The invisid Euler equations of gas dynamis in one spae dimension take the form��t 0B� ��v�E 1CA+ ��x 0B� �v�v2 + p(�E + p)v 1CA = 0 (3:2)where �; v; p; E are the density, veloity, pressure, and total energy of the gas per unit mass,respetively. We assume a -law gas, in whih the internal energy satis�es e = 1�1p=�,where  is the ratio of spei� heats ( �= 1:4 for air). Then the total energy of the gas perunit mass is E = e+ 12v2. The three omponents of equations (3.2) express the onservationof mass, momentum, and energy, respetively[25℄.Outow boundary onditions are easily ahieved with the wave propagation approahby simply ignoring waves one they leave the omputational domain, and by not introduingany new waves at the boundary.For periodi boundaries, we now allow all the outgoing waves whih leave at one bound-ary to return to the domain at the other boundary with the same speed �pj, jump rpj andslope �pj, say for the pth wave from the xj interfae. We an think of these \inoming"waves as oming from the solution of the Riemann problems on an extended grid withperiodially extended data.At a solid wall boundary, say at x = 0, we have the no-ow boundary onditionv(0; t) = 0:This boundary an be treated as a line of symmetry. If we reet our grid near the boundaryto the region x < 0, we an assign grid values in the reeted ells usingUn�j = R(Unj ); j = 1; 2; � � �



21where R represents the operator that negates the seond omponent of U (the veloity)while leaving the �rst and third omponents (density and energy) unhanged. Applyingthe algorithm over a slightly extended domain simulates the solid wall boundary ondition.Alternatively, we an avoid extending the grid if we note that eah inoming wave (awave entering our true omputational domain from x < 0) an be viewed as the reetion ofan outgoing wave (a wave rossing x = 0 with negative speed). This is illustrated in [61℄,[62℄.It is easy to verify that the relation between the reeted jump �rpj and the outgoing jumprpj is simply �rpj = �R(rpj)and the speed of the reeted wave is ��pj = ��pj. So with this approah, we need only solveRiemann problems on our original grid and then reet any waves that hit the boundary.In the high resolution version, we must also reet the outgoing slope in the same way,��pj = �R(�pj):In addition, we must solve a boundary Riemann problem with data ur = Un1 given by theell adjaent to the boundary and ul = R(ur). With this data, there is one inoming wavethat a�ets the grid values (the ontat disontinuity will have speed zero by symmetry andthe outgoing wave is ignored).This wave reetion proedure is quite easy to implement, and is appliable for anymesh size and any time step.Finally, we will disuss how this reetion proedure an be applied to a moving bound-ary, e.g., a moving piston. We approximate the piston motion by assuming that the veloityis onstant within eah time step. Assume that the piston is loated at x = zn at timetn and is moving with speed sn for tn � t � tn+1. Then the physially orret boundaryondition is v(zn + sn(t� tn); t) = snfor tn � t � tn+1. Using the Galilean transformation, we an derive that�(zn�) = �(zn+)v(zn�) = 2sn � v(zn+)p(zn�) = p(zn+) (3:3)is the orret data for the boundary Riemann problem. This de�nes a generalization of thereetion operator R. Determining the orresponding reetion of the energy, we �nd thata jump whih hits the boundary should now be reeted using the following relations:�r(1)pj = �r(1)pj�r(2)pj = r(2)pj � 2snr(1)pj�r(3)pj = �r(3)pj + 2snr(2)pj � 2(sn)2r(1)pj : (3:4)For shorthand, we write �rpj = �Rn(rpj). The reeted slopes an be determined by thesame reetion, ��pj = �Rn(�pj). The reeted speed ��pj is simply equal to 2sn � �pj .
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Figure 3.4: Results for the double piston problem. a) Traked fronts. b) Density ontourplot in the x-t plane up to time t = 1.3.3 A Double Piston ProblemHere we present our �rst test problem onsisting of a double piston. The problem is formu-lated as follows: take a shok tube with unit length and onsider two pistons moving fromthe left and right boundary individually into the stationary gas ( = 1:4) with � = 1:4 andp = 1. We hoose piston veloities sp(t) of the formsp(t) = 8>><>>: �1t t � t1�2(t2�t)pr2�(t2�t)2 t1 < t � t20 t > t2:The parameters for eah piston are given by:left piston: �1 = 5, �2 = 1, t1 = 0:31, t2 = 0:444right piston: �1 = �4, �2 = �1, t1 = 0:42, t2 = 0:557and r = 0:16 in eah ase.Due to the piston motions, two ompression waves arise from the left and right pistons,and eventually form shok waves. These new shok waves travel toward one another andsubsequently interat. Two outgoing shoks result from the interation, and begin to inter-at with the rarefation waves and the pistons. The rarefation waves are the onsequeneof stopping the pistons (see Figure 3.4b).In the numerial method, we replae the piston path by a pieewise onstant path usingthe onstant veloity sp(t) = sp(tn + 12k) over the time interval tn � t � tn+1, where k isthe time step. Then the piston boundary onditions desribed in Setion 3.2 are applied to
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Figure 3.5: Comparison plots for the double piston problem at time t = 0:6. In eah �gurethe solid line is the �ne grid solution with h = 1=800 and the points show the solution withh = 1=100.eah piston. In Figure 3.4a, we show the traked points whih inlude the loation of thetraked shoks and the pistons' path, by using the high resolution front traking algorithmwith mesh size h = 1=100 and Courant number � = 0:9. It is learly seen that the shokformation and the traked wave interations have been handled quite well by using our fronttraking algorithm.For this problem, we trak waves for whih the density jump is greater than the tolerane" = 1. From now on, unless otherwise stated, we use this traking riterion to determinethe traked waves in the numerial examples given below.The density ontour plot in the x-t plane is shown in Figure 3.4b for the same run.From it, we an see that numerous wave interations our. The linear wave interationis used for the interation of traked shoks with the bakground smooth ow and givessatisfatory results. In Figure 3.5, we ompare our numerial result (h = 1=100) with the�ne grid solution (h = 1=800) at t = 0:6, observing good agreement.From this test problem, we see that our front traking algorithm is apable of handlingshok formation, moving boundaries, and wave interations.



Chapter 4ERROR ANALYSISIn our front traking algorithm, we use a high resolution method that is essentiallyseond order aurate away from the traked points. We use front traking in order toresolve disontinuities properly, and so our method does not su�er the standard loss ofauray due to smearing that a shok apturing method would su�er. Nevertheless, therean be some loss of auray near the disontinuity due to the nonuniformity of the grid.An isolated disontinuity separating two onstant states is traked perfetly, but in a morerealisti situation there is some smooth bakground ow with whih the disontinuity in-terats. There are several fators that an then lead to loss of auray near the trakedfront, suh as the hoie of slopes in neighboring ells, loss of auray due to the use ofnonuniform and time-dependent grid, and the linearization of the interation between thetraked disontinuity and weak waves from the neighboring ell interfaes. Here we willexamine eah of these problems in more detail. To begin, we report results on the order ofauray for some sample problems where exat solutions are available.4.1 PreliminariesWe �rst desribe some notation and terms for later use. Let unj = u(xj ; tn) be the pointwisevalue of the true solution at the disrete mesh point (xj ; tn), and let �unj be the true ellaverage solution over the grid ell [xj ; xj+1℄ at time tn,�unj � 1hj Z xj+1xj u(x; tn) dx:The global error of a numerial method is de�ned to be the di�erene between the true andomputed solutions. Here we onsider using either the pointwise errorEnj = Unj � unj ; (4:1)or the ell average error �Enj = Unj � �unj ; (4:2)to de�ne the global error. Although for onservation laws it is preferable to onsider thelatter error, pointwise error is more onvenient to ompute in pratie. We will make itlear what approah we use in due ourse, and for now we simply write Enj to denote theerror in both ases.With these de�nitions, we de�ne the order of auray of a method as the largest realnumber p in some partiular norm k � k for whihk En k= O(hp) for all tn � 0 as h ! 0: (4:3)



25Clearly, if p is a positive number in (4.3), a method is onvergent in the sense thatk En k! 0 as h ! 0,for any �xed tn � 0 and Courant number. Note that in the present ontext of front trakingh is the underlying uniform mesh size.Here the norm we onsider is a disrete norm that an be applied to the disrete gridfuntion En having errors in both the regular and irregular ells as elements. For example,in the 1-norm, we use k En k1 =Xj hj jUnj � unj j;where hj is the mesh size of the jth grid ell, and in the max-norm, we usek En kmax = maxj jUnj � unj j:To ompute the order of auray of a method, we employ a linear least-squares �t toa sequene of mesh re�nement data f(log hl; log k En k); l = 1; � � � ;mg, and take the slopeas the order of auray of the method.Now let us onsider some sample problems and investigate the order of auray that isahieved by using our front traking algorithm.Example 4.1. We �rst onsider a salar linear problem onsisting of the linear adve-tion equation ut + ux = 0 for 0 � x � 1 (4:4)with initial data u(x; 0) = ( 2 + 1:5e20(x�0:32) x < 0:321 + 0:5 tanh(6�(0:36 � x)) otherwise; (4:5)and outow boundary onditions on the left and right boundaries. The exat solution forthis problem an be obtained by simply shifting this initial pro�le with speed 1 as illustratedin Figure 4.1a. Note that this initial data gives a single disontinuity with an extreme pointjust behind the disontinuity.To examine the error behavior of the method as time evolves and as the mesh is re�ned,we perform error estimation at 10 di�erent times (at every integer multiple of the timeinterval k = 0:04) with a mesh re�nement sequene fhl = 21�l=25; kl = hl=2; l = 1; 2; � � � ; 5g.The result is shown in Figure 4.2 where the errors and order of auray in the 1-norm andmax-norm are presented for the Godunov method and the high resolution Godunov methodwith various slope limiters, namely, with the \minmod" (2.10), the \superbee" (2.11), andthe \MUSCL" (2.12) limiters. From the �gure, we observe that the auray of the methodswe employed here is far less than satisfatory, partiularly, for the high resolution methods inthe max-norm; they are only slightly better than the Godunov method. This is expeted,however, beause the use of a slope limiter tends to lip the extreme point behind thedisontinuity, and so the method is in fat �rst order aurate near the traked point.Notie that no matter what method we use the 1-norm error grows as time evolves. There
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Figure 4.1: Snap shots of the exat solution at three di�erent times. a) For the salar linearproblem, Example 4.1. b) For the salar nonlinear problem, Example 4.2.is little distintion between the results for di�erent hoies of the limiter. For onvenienein reading, the errors shown in the �gure were plotted in the logarithmi sale with base10. (This is also the ase for other �gures shown below relating to errors of a method.)For omparison, it is interesting to see how the standard shok apturing methods workon this problem. As seen from the result shown in Figure 4.3, our front traking result islearly superior to that obtained from shok apturing.Note that in the above alulations the Courant number � = 0:5 (i.e., k = h=2) is used,and the error is alulated based on the ell average error (4.2). From now on, we use thisCourant number in all the test problems onsidered here. Although the omputed orderof auray is slightly di�erent from other hoies of Courant number, the onvergenebehavior of the method is quite similar.Example 4.2. Next, we onsider a salar nonlinear problem onsisting of the invisidBurgers' equation ut + (u2=2)x = 0 for �1 � x � 1 (4:6)with initial data u(x; 0) = 1 + 0:5 sin(�x); (4:7)and periodi boundary onditions. With these initial and boundary onditions, it is easyto show that the exat solution is smooth up to the shok formation time t = 2=� � 0:64,and is disontinuous afterward, see Whitham[108℄ for the detail on the onstrution of theexat solution. Figure 4.1b shows several snap shots of the exat solution.In Figure 4.4, we show results for a similar auray study as the one performed inthe previous example up to time t = 1:2. Now we observe that in the 1-norm the methodis onvergent with �rst order and seond order auray, respetively, for the Godunovmethod and the high resolution methods we employed here. The result in the max-norm,however, falls short of the desirable value to some extent, partiularly for the high resolutionmethods during the time when the solution is smooth. This loss of auray for the smooth
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a) Godunov method
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b) High resolution Godunov method with \minmod" limiter
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timekEn k max timeorderofaurayFigure 4.2: An auray study of the front traking algorithm for the linear advetionequation (4.4) with initial data (4.5) up to time t = 0:4. Note that all the errors shown inthe �gure are plotted in the logarithmi sale with base 10. Error estimation is performedat 10 di�erent times with a mesh re�nement sequene fhl = 21�l=25; l = 1; 2; � � � ; 5g.
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Figure 4.3: An auray study of the shok apturing method for Example 4.1. (SeeFigure 4.2 for omparison.)



29solution results from using a slope limiter that gives a TVD method that lips solutions atthe extreme points[114℄.Notie that the method is somewhat less aurate near the transition period from theontinuous solution to the disontinuous solution. This is reasonable, however, sine orretshok formation time is not built into the algorithm. The algorithm determines that a shokhas formed when the solution to some Riemann problem has a wave of suÆient strength.This will not be inserted at preisely the orret time or loation. The third olumn ofFigure 4.4 shows that the shok loation tends to improve as time goes on. (Here thetolerane we use is " = 0:35 for the wave strength at whih we start out traking.) Onethe shok has been deteted, the error dereases later on. Note that the error in the trakedpoint loation, de�ned by Enfront = xntrue � xnomputed;onverges with high preision, O(10�6)�O(10�7), for the high resolution methods.To rule out the error due to dealing with the shok formation, we have also doneexperiments using the exat (disontinuous) solution at time t0 = 2=�+0:2 as initial data.The results are shown in Figure 4.5. From it, we again observe the nie error behavior inthe 1-norm. The error in the max-norm tends to onverge at a �rst order rate for the highresolution methods, and the error in the traked point loation is onvergent at a rate ofmore than �rst order for the high resolution methods. Comparing our front traking resultwith the shok apturing result shown in Figure 4.6, our traking result is again better thanthe apturing result. Here the error is omputed based on the pointwise error (4.1).Example 4.3. We now onsider a wave interation problem arising from the nonlinearisothermal equations ��t  ��v !+ ��x  �v�v2 + 2� ! = 0 (4:8)where  is the speed of sound, a onstant here for whih we take  = 1. The initial onditionwe use onsists of a leftward going simple wave with veloity pro�lev(x; 0) = tanh(6�(x � 0:64)) for 0:4 � x � 1; (4:9)traveling from the left to right, and a rightward going Mah 2:89 shok wave at x = 0:4traveling from the right to left. The density of the simple wave is omputed from theRiemann invariant R+ = v +  log(�), whih is onstant on the entire �1 = v �  wavefamily, with �0 = 0:5 and v0 = 0 as the referene state (this determines the Riemanninvariant onstant). Note another Riemann invariant for this system is R� = v �  log(�),whih is onstant on the �2 = v +  family. Sine these waves are approahing eah other,wave interations our subsequently, see Figure 4.7a.For this nonlinear wave interation problem, due to the fat that there is no new wavefamily appearing after the head-on ollision, we an ompute the \exat" solution by em-ploying the Rankine-Hugoniot jump onditions at the shok together with the simple wavesolutions on eah side of the shok. Using this information would lead to a nonlinear ordi-nary di�erential equation for the shok loation with respet to time. This is solved usinga numerial ODE solver in the LSODE (Livermore Solver for Ordinary Di�erential Equa-tions) Pakage. One the shok loation is known, the solution on both sides of the shok
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Figure 4.4: An auray study of the front traking algorithm for the Burger's equation (4.6)with initial data (4.7) up to time t = 1:2.



31
0.1 0.3 0.5

-6
-5

-4
-3

-2

1
1 1 1 1 1 1 1 1 1

2
2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3

4 4 4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5 5 5

0.1 0.3 0.5

-4
-3

-2
-1

1 1
1

1

1

1

1

1

1

1

2
2 2

2
2

2 2 2 2 2

3
3 3

3
3

3 3 3 3 3

4
4

4

4
4

4 4 4 4 4

5
5 5

5
5

5 5 5 5 5

0.1 0.3 0.5

-8
-7

-6
-5

-4
-3

1
1

1
1

1 1 1 1 1 1

2 2 2

2
2 2 2 2 2 2

3 3
3

3
3 3 3 3 3 3

4 4
4

4
4 4 4 4 4 4

5 5
5

5
5 5 5 5 5 5

0.1 0.3 0.5

0.
0

1.
0

2.
0

0.1 0.3 0.5

-6
-5

-4
-3

-2

1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3

4
4

4 4 4 4 4 4 4 4

5 5
5 5 5 5 5 5 5 5

0.1 0.3 0.5

-4
-3

-2
-1

1 1 1

1

1

1

1

1

1

1

2
2 2

2
2 2 2 2

2 2

3 3 3

3
3 3

3
3

3
3

4 4

4
4 4

4
4 4 4 4

5 5 5 5 5
5 5 5

5 5

0.1 0.3 0.5

-8
-7

-6
-5

-4
-3

1
1 1

1
1 1 1 1 1

1

2 2
2

2 2 2 2 2
2

23 3

3
3

3
3

3
3

3
3

4 4
4 4 4

4
4

4 4 4
5 5 5

5 5
5 5 5

5 5

0.1 0.3 0.5

0.
0

1.
0

2.
0

0.1 0.3 0.5

-6
-5

-4
-3

-2

1 1 1 1 1 1 1 1 1 1

2
2 2 2 2 2 2 2 2 2

3
3 3 3 3 3 3 3 3 3

4 4
4 4 4 4 4 4 4 4

5 5
5 5 5 5 5 5 5 5

0.1 0.3 0.5

-4
-3

-2
-1

1
1 1

1
1

1

1

1
1 1

2

2 2
2 2 2 2 2 2 23

3
3

3
3 3 3 3

3
3

4
4

4

4 4 4
4

4 4 4
5

5

5

5 5 5 5 5
5 5

0.1 0.3 0.5

-8
-7

-6
-5

-4
-3

1
1

1

1
1 1 1 1

1

1

2
2

2

2
2 2 2 2

2
2

3

3

3

3
3 3 3

3
3

3
4

4

4

4
4 4

4
4 4 4

5
5

5

5 5 5 5
5

5
5

0.1 0.3 0.5

0.
0

1.
0

2.
0

0.1 0.3 0.5

-6
-5

-4
-3

-2

1 1 1 1 1 1 1 1 1 1

2
2 2 2 2 2 2 2 2 2

3 3
3 3 3 3 3 3 3 3

4 4
4 4 4 4 4 4 4 4

5 5
5

5 5 5 5 5 5 5

0.1 0.3 0.5

-4
-3

-2
-1

1
1 1

1
1

1

1

1

1 1
2

2
2

2
2 2

2
2

2 23
3

3

3 3 3 3 3 3 3
4

4
4

4
4

4 4
4

4
45

5 5

5 5 5 5 5
5

5

0.1 0.3 0.5

-8
-7

-6
-5

-4
-3

1
1

1
1

1 1
1 1 1

1

2

2

2 2 2
2

2
2

2
2

3 3
3

3
3 3

3 3 3
3

4
4

4
4

4
4

4

4

4
4

5

5

5

5 5 5 5 5
5

5

0.1 0.3 0.5

0.
0

1.
0

2.
0

timekEn k 1
a) Godunov method

timekEn k max timejEn frontj timeorderofauray k En k1k En kmaxjEnfrontj

timekEn k 1
b) High resolution Godunov method with \minmod" limiter

timekEn k max timejEn frontj timeorderofauray

timekEn k 1
) High resolution Godunov method with \superbee" limiter

timekEn k max timejEn frontj timeorderofauray

timekEn k 1
d) High resolution Godunov method with \MUSCL" limiter

timekEn k max timejEn frontj timeorderofauray
Figure 4.5: An auray study of the front traking algorithm for Example 4.2 using theexat (disontinuous) solution at time t0 = 2=� + 0:2 as initial data.
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Figure 4.6: An auray study of the shok apturing method for Example 4.2 using theexat (disontinuous) solution at time t0 = 2=� + 0:2 as initial data. (See Figure 4.5 foromparison.)
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Figure 4.8: An auray study of the front traking algorithm for the isothermal equa-tion (4.8) with initial data (4.9) up to time t = 0:16. (Riemann invariant R� is shown.)



35
0.02 0.06 0.10 0.14

-4
-3

-2
-1

1 1 1 1 1 1 1 1 1 1

2
2 2 2 2 2 2 2 2 2

3 3 3 3 3 3 3 3 3 3

4
4 4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5 5 5

0.02 0.06 0.10 0.14

-3
-2

-1
0

1 1 1

1
1 1 1 1

1 1

2 2 2
2 2 2

2 2 2 2

3 3
3

3

3 3
3 3 3

34 4 4 4
4

4
4 4

4
4

5
5 5 5

5
5 5

5
5 5

0.02 0.06 0.10 0.14

0.
0

1.
0

2.
0

3.
0

0.02 0.06 0.10 0.14

-4
-3

-2
-1

1 1 1 1 1 1 1 1 1 1

2 2
2 2 2 2 2 2 2 2

3 3
3 3 3 3 3 3 3 3

4
4 4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5 5 5

0.02 0.06 0.10 0.14

-3
-2

-1
0

1 1
1

1 1 1
1 1

1 1
2

2
2

2 2
2

2 2
2 2

3 3

3
3

3 3
3 3 3

3
4

4 4 4 4
4

4 4
4

4
5

5 5 5
5

5 5
5 5 5

0.02 0.06 0.10 0.14

0.
0

1.
0

2.
0

3.
0

0.02 0.06 0.10 0.14

-4
-3

-2
-1

1 1 1 1 1 1 1 1 1 1

2 2
2 2 2 2 2 2 2 2

3 3
3 3 3 3 3 3 3 3

4
4 4 4 4 4 4 4 4 4

5 5 5
5 5 5 5 5 5 5

0.02 0.06 0.10 0.14

-3
-2

-1
0

1 1
1

1 1
1

1 1 1 12
2

2
2

2
2

2

2 2 2

3 3

3
3

3 3 3 3 3
3

4

4 4 4
4

4

4
4

4

4
5 5 5 5 5 5 5 5 5 5

0.02 0.06 0.10 0.14

0.
0

1.
0

2.
0

3.
0

0.02 0.06 0.10 0.14

-4
-3

-2
-1

1 1
1 1 1 1 1 1 1 1

2 2
2 2 2 2 2 2 2 2

3 3
3 3 3 3 3 3 3 3

4
4 4 4 4 4 4 4 4 4

5 5 5 5 5 5 5 5 5 5

0.02 0.06 0.10 0.14

-3
-2

-1
0

1 1
1

1 1
1

1 1 1
12

2
2

2 2
2

2

2 2 2

3 3

3
3

3 3 3 3 3
3

4

4 4
4

4
4

4 4

4

4
5

5 5 5 5 5 5
5

5 5

0.02 0.06 0.10 0.14

0.
0

1.
0

2.
0

3.
0

timekEn k 1
a) Godunov method

timekEn k max timeorderofauray k En k1k En kmax

timekEn k 1
b) High resolution Godunov method with \minmod" limiter

timekEn k max timeorderofauray

timekEn k 1
) High resolution Godunov method with \superbee" limiter

timekEn k max timeorderofauray

timekEn k 1
d) High resolution Godunov method with \MUSCL" limiter

timekEn k max timeorderofauray
Figure 4.9: An auray study in Riemann invariant R� of the shok apturing method forExample 4.3. (See Figure 4.8 for omparison.)



36we might expet to have meaningful slope information in the ells near the disontinuity.Consider a ell j, for example, where the interfae to the right is a traked point andinterfaes to the left are regular grid interfaes. The solution to the Riemann problem onthe right, at the traked point, should learly not be used to estimate a slope over this gridell for the family of the traked wave. But the wave arising from the Riemann problem tothe left may give a very useful slope estimate. Sine it is still valuable to ompare adjaentslopes via a limiter in ase other disontinuities are present that are not being traked, wehoose the slope �j based on a one-sided formula similar to (2.8) but using the wave rpj atthe boundary to the left and the wave rp;j�1 at the left boundary of the adjaent ell.This hoie of slopes is partiularly important if we wish to solve problems where thesolution has an extremum at the disontinuity. This ours in many appliations, e.g., inFigures 5.6 and 5.7. If we are not areful about the hoie of slopes near the disontinuity,these extreme points will be severely lipped.As an example, we onsider the linear problem in Example 4.1, and we perform the sameauray study as before, but using the one-sided slopes for the high resolution method.The result is shown in Figure 4.10. Notie that now errors in the 1-norm and the max-norm have been redued. More importantly the order of auray have been improved also,partiularly in the max-norm, see Figure 4.2 for omparison. It is interesting to note thatno matter what slopes we used, see Figures 4.2 and 4.10, results obtained using the highresolution methods we employed here tend to onverge only at the �rst order rate in the1-norm. We have not yet ahieved the desired seond order auray for this problem withthis modi�ation of the method.For a nonlinear problem, suh as Example 4.2 with disontinuous initial data, we alsoexamine the e�et of auray by using this one-sided limited slopes in the high resolutionmethods. The result is shown in Figure 4.11, see Figure 4.5 for omparison. From it, weobserve some improvement of the results, but the improvement is not signi�ant. Note thatunlike the previous linear problem where the grid is exat, here the error on the grid dueto the disrepany between the traked point and the exat shok loation ontributes asoure of error for the auray. Also, for the nonlinear problem errors are swept into theshok; so the slope improvement is not as important.4.3 Nonuniform Grids and AurayAlthough the underlying grid is uniform in our front traking algorithm, the traked pointssubdivide some ells into irregular ells. The analysis of the auray of �nite di�erenemethod on nonuniform grids is more subtle than for uniform grids. A straightforwardtrunation error analysis may be misleading. For example, a natural generalization ofGodunov's method for the linear advetion equation (4.4) to a �xed nonuniform grid takesthe form Un+1j = Unj � khj (Unj � Unj�1)where hj is the mesh size of the jth ell. A standard trunation analysis would show thismethod to be inonsistent unless the grid is very smoothly varying (hj=hj�1 = 1 + O(h)),and yet it an be shown that the global error remains �rst order aurate on arbitrarygrids. Similarly, generalizations of the Lax-Wendro� method to nonuniform grids has been
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Figure 4.10: Revisit Example 4.1 using the high resolution methods with one-sided slopes.(See Figure 4.2 for omparison.)
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Figure 4.11: Revisit Example 4.2 using the high resolution methods with one-sided slopes.(See Figure 4.5 for omparison.)
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Figure 4.12: a) Grid system in the x-t plane for the linear advetion equation (4.4) usingthe front traking algorithm with k = h=2. b) Grid system for the transformed equationut = 0 in the �-t plane.shown to maintain global seond order auray[64℄,[106℄. We might therefore hope thatour method maintains seond order auray on the smooth ow even in the irregular ellsontaining traked points. Here, however, we have an additional ompliation in that ournonuniform grid varies with time. We will demonstrate with a simple example that loss ofauray an our under ertain onditions.Consider the linear advetion equation (4.4) and suppose we solve this with Godunov'smethod using k = h=2 on the grid shown in Figure 4.12a. We introdue a single trakedpoint moving with speed 1 between ell interfaes and ell enters in alternating time steps.Away from the traked point, the method redues toUn+1j = 12(Unj�1 + Unj ):The method di�ers from this only in ells that are split in two. Suppose ell i is subdivided attime tn+1 into two subells ia and ib. Aording to the front traking algorithm introduedin Setion 3.1, we then introdue ells ia and ib at time tn, initialized byUnia = Unib = Uni : (4:10)Therefore we set Un+1ia = Unia � kh=2(Unia � Uni�1)= Uni � (Uni � Uni�1)= Uni�1and Un+1ib = Unib � kh=2(Unib � Unia)= Uni :



40In the next time step, we have Un+1i = 12(Uni�1 + Unia)and Un+1i+1 = 12(Unib + Uni+1):Notie that beause the traked point moves with the harateristi speed there is no transferof information aross this urve. The solution on eah side is independent of the data onthe other side.Now onsider a hange of variable to � = x� t. In the �-t plane, the above method anbe viewed as a staggered grid method to solve the equationut = 0on the grid shown in Figure 4.12b. Restriting our attention to the right of the disontinuity,the method is Un+1j = ( 12 (Unj�1 + Unj ) j > 112 (Unb + Un1 ) j = 1in time steps with n+ 1 even, andUn+1j = 12(Unj + Unj+1) j � 1;Un+1b = Un1 (4.11)in time steps with n+1 odd. It is easy to verify that this method is seond order aurateon the \modi�ed equation" ut = hu�� (4:12)with the boundary ondition u�(0; t) = 0: (4:13)This boundary ondition results from the hoie (4.11) for Un+1b .Had we taken Un+1a = Un+1b = 12(Un�1 + Un1 ); (4:14)we would simply have the heat equation (4.12) everywhere giving a �rst order aurateapproximation to the equation ut = 0. The hoie (4.11) orresponds to setting Un�1 = Un1in (4.14) whih models the boundary ondition (4.13). If we now take initial data u(�; 0)that does not satisfy (4.13), it will rapidly atten out at � = 0 as time evolves, introduingan error at this boundary that is bigger than O(h).Returning to the original linear advetion equation on the grid shown in Figure 4.12a,we see that the same e�et ours if ux 6= 0 near the traked point. As an example, we take



41smooth initial data (4.7) with periodi boundary onditions on the left and right boundaries;x 2 [0; 2℄. We run this problem on a time-dependent grid as in Figure 4.12a with varioushoies of the initial traked point loation x� at time t = 0:5. Doing so gives us someindiations on how the auray is a�eted by the value of the ux near the traked point atthis partiular time.Results of this auray study are shown in Figures 4.13 and 4.14 using not only theGodunov method, but also the Lax-Wendro� method as for omparison. Figure 4.13 showsthe errors and the order of auray in the 1-norm and the max-norm. From it, for theGodunov method, the auray near the traked point has been veri�ed to be less than �rstorder aurate in the max-norm, in the ase where the boundary ondition (4.13) is notsatis�ed at x� 6= 0:5. Sine the big error appears only for ells near the traked point andhas relatively small magnitude, the method remains �rst order aurate in the 1-norm. InFigure 4.14a, we plot the solution in two di�erent ases, for x� = 0:5 and x� = 1 in thatthe boundary ondition (4.13) is satis�ed and not satis�ed, respetively. Note that in thelatter ase the error near the traked point is learly seen.It is interesting to note that for the Lax-Wendro� method on this model problem thisloss of auray near the traked point ours in the ase that the boundary onditionuxx = 0 is not satis�ed there. Numerial results shown in Figures 4.13b and 4.13b on�rmthis.One way we might try to improve the method is to hoose a better initialization of thesplit ell values Unia and Unib in plae of (4.10). We have tried introduing a linear funtion inell i at time tn with slope �i and averaging this linear funtion over the subells to obtaininitial values. For the ase onsidered here, where the ell is split in half, this redues totaking Unia = Uni � h4�i;Unib = Uni + h4�i:This proedure maintains onservation. Unfortunately, it seems to give little improvementin the results. For the partiular problem onsidered here, other hoies an be foundthat do restore full auray but are either rather arti�ial for this problem or else do notmaintain onservation. Moreover for a nonlinear problem, any hoie of Unia and Unib otherthan (4.10) has a major diÆulty in onjuntion with our algorithm { the speed of thetraked disontinuity is �rst omputed using values Uni�1 and Uni and this determines theloation of the traked point in the next time step. If we now hoose a di�erent value forUnia , the solution of the Riemann problem between Uni�1 and Unia will have a strong wavetraveling at a di�erent speed than the speed used to hoose the new traked point loation.This means that the wave will no longer propagate exatly to the ell boundary, defeatingone of our main design goals.Beause of this diÆulty, we urrently use the initialization (4.10) in spite of this possibleloss of auray. On the other hand, the example shown here seems to be a worst asesenario. The partiular grid shown in Figure 4.12 is espeially bad due to the regularityof the nonuniformity. Moreover, in the linear advetion equation all harateristis areparallel and the error ontinuously grows near the disontinuity. In a nonlinear problem,harateristis are swept into the shok, reduing the growth of errors. For the Euler
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Figure 4.13: An auray study of the front traking algorithm for the linear advetionequation (4.4) with smooth initial data (4.7) on nonuniform grids. Results are shown withvarious hoies of the initial traked point loation x� at time t = 0:5.
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Figure 4.14: Plot of the solution for the auray study shown in Figure 4.13 at two di�erentx�. The solid line shown in the �gure is the exat solution, while the dotted points are thenumerial solution.



43equations of gas dynamis, errors of the type seen here would most likely appear nearontat disontinuities rather than shoks.4.4 Nonlinear Wave Interations and AurayIn our front traking algorithm, we employ a large time step approah that avoids thestringent time step limitation in the presene of small ells reated by the traked points,while maintaining stability of the algorithm. An important element of this approah is toallow waves to pass through one another with no hange in speed or magnitude, and ontinueto have exatly the same e�et on ell averages as if the ollision had not ourred. That is,the interation is linearized during the wave propagation proess. For a linear problem thisis in fat true, but for a nonlinear problem this linearization in general is not valid. The aimof this setion is therefore to investigate the error behavior introdued by this proedurefor nonlinear problems. For more information on this problem, one may onsult [60℄,[62℄.For illustration, Figure 4.15 shows a typial wave interation for the nonlinear isothermalequations (4.8). In Figure 4.15a, we see the solution of two Riemann problems in the x-tplane. When the 2-wave from the left hand Riemann problem meets the 1-wave from theright hand Riemann problem, we have a new Riemann problem to solve with left state uland right state ur. The solution will again give two waves with some intermediate state�um, and will have di�erent wave speeds and jumps aross the wave. The loations of thesestates in the phase plane is shown in Figure 4.15b in relation to the Hugoniot loi of thestates ul and ur.In using the large time step method, we are linearizing the wave interation. For theexample onsidered above, we therefore obtain the wave struture as shown in Figure 4.16with the intermediate state u�m. It an be demonstrated quite easily, using linear theory forthe hyperboli systems, see [62℄ for example, that the state u�m has the valueu�m = ul + ur � um:In Figure 4.16b, we plot the loation of u�m in the phase plane.Notie that the error made in this approximation, whih we might measure by u�m� �um,depends on the nonlinearity of the problem. In a linear problem, the Hugoniot loi are allparallel to one another, and there is no error. As the nonlinearity inreases, these urvesdiverge more and more. The error also depends on the partiular data ul; um, and ur. Evenfor a highly nonlinear problem the error will be small if these values are lose to eah other,sine the Hugoniot loi in a small neighborhood of any given point have a nearly linearstruture. If ul � um = O(�) and ur � um = O(�), then we may expet u�m � �um = O(�2)as � ! 0. In other words, sine the interation of weak waves is nearly linear anyway, ourlinearization introdues small error in this ase. It is only in approximating the interationof strong waves or the interation of strong and weak waves that we might introdue largeerrors.In the present ontext of front traking, sine the strong wave interation has been dealtwith arefully by hoosing the time step so that the ollision of two strong waves oursexatly at the end of a time step, there is no error aused by the interation of strong waves.There are errors, however, arising from the interation of strong and weak waves. This islearly seen from the earlier results shown in Figure 4.8 where the interation of a shok
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Figure 4.15: The interation of two waves in a nonlinear problem. a) The x-t plane. b)Loation of states in the phase plane.
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Figure 4.16: The linearized interation of two waves in a nonlinear problem. a) The x-tplane. b) Loation of states in the phase plane.
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Figure 4.17: The interation of strong and weak waves is handled \exatly" for a nonlinearproblem. a) The x-t plane. The solid lines represent the strong waves, and the dashed linesrepresent the weak waves. b) Loation of states in the phase plane.



45and a simple wave for the isothermal equations is onsidered. Note that sine this errorours loally near the traked point, the 1-norm error is only slightly a�eted by this lossof auray.The worst ase senario of linearizing wave interation appears in dealing with theinteration of the same wave family, e.g., a rarefation wave overtaking a shok. In thisase, if the state variable (e.g., density or pressure) is very small in front of the region wherethe wave interation takes plae, any small perturbation of the solution in that region ausedby linearizing the wave interation an result in a negative value of the state variable whihis nonphysial. A situation like this an be seen in an example onsidered in Setion 5.1.2where a strong rarefation wave overtakes a shok that has a very low pressure in front ofit. The pressure beomes negative when the rarefation wave passes through the shok andenters the low pressure region.One possible approah to improve the method is to ompute the interation of thetraked disontinuity with the weak wave \exatly". This is not a new idea and was intro-dued by Swartz and Wendro� in their front traking method[98℄. We do this within thetime step when the interation ours, modifying the strength and speed of these waves overthe latter portion of the time step. This is illustrated in Figure 4.17a where the interationof a shok and a rarefation wave is handled by �rst propagating the pair of interatingwaves up to the ollision time t, solving a Riemann problem using the appropriate initialdata (ul and ur in this ase) at the ollision point, and then propagating the resulting wavesover the remaining portion of the time step tn+1�t. Note that other waves are not a�etedby this proedure and are propagated over the time step k as usual. The loations of thestate variable in the phase plane is shown in Figure 4.17b.Using this modi�ation of the method, we an overome the stability problem mentionedabove. It is also interesting to see how the auray is improved by using this modi�ationof the wave interation. This is still under study, however.



Chapter 5APPLICATIONSHaving analyzed the front traking algorithm, we now present more numerial results forsome sample problems involving shoks and ontat disontinuities arising in gas dynamis.Our aims here are to validate our results by omparing them to results (either exat ornumerial) whih an be found in the literature. We also hope to demonstrate the potentialpower of using our front traking algorithm on more omplex problems.The problems we onsider are the Woodard-Colella blast wave problem, the steadyquasi one-dimensional nozzle ow, and unstable detonation waves. To eÆiently performomputations on some of these problems, we �rst introdue an algorithm that ombinesfront traking with adaptive mesh re�nement to enhane the resolution produed by thefront traking algorithm, partiularly for the regions near traked disontinuities. We thendisuss a simple approah to inlude soure terms in the algorithm.5.1 Front Traking with Adaptive Mesh Re�nement5.1.1 AlgorithmFor simpliity, we desribe grid re�nement for the ase of a single �ne grid superimposedon a portion of the oarse grid. The re�nement is performed in both spae and time overretangular regions of the spae-time grid. Figure 5.1 shows the typial grid system for gridre�nement with a mesh re�nement ratio mr = h=hf = 4 where h and hf are the oarseand �ne grid mesh sizes respetively. If there are several �ne grid regions, eah �ne gridan be handled in the same manner. Further nested levels of �ne grids an also be handled.In general, one would want to do error estimation on the approximate solution in orderto determine where �ne grids are needed. This an be done using the tehniques developedby Berger[9℄, and should arry over to the front traking method with little diÆulty. Herewe demonstrate the potential power of grid re�nement oupled with front traking in twotest ases where we know a priori the region in whih re�nement should our. We studya model ombustion problem in whih re�nement is needed in the neighborhood of thesingle traked disontinuity (see Setion 5.2.2), and a blast wave interation problem inwhih re�nement is introdued in the neighborhood of two olliding strong shoks againsta bakground smooth solution in order to better resolve the solution near the interation(see Setion 5.1.2).For simpliity, we also assume that traked fronts remain within the �ne or oarse gridregion and do not ross the interfae between �ne and oarse grids during a time step. The�ne grid region is adaptively adjusted so that there is a suÆient bu�er zone that fronts willnot leave the re�ned region. This is aomplished by performing a regridding proedure atertain �xed time intervals. In ells where the new grid overlaps the old �ne grid, the old�ne grid value is arried over. In ells where a new �ne grid is reated where there was onlyoarse grid before, the �ne grid ell values are initialized by performing pieewise linear
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oarse grid ell j ell j + 1

q q + 1 �ne grid

Figure 5.1: Interfae between oarse and �ne grids. Dashed lines represents the two ad-ditional oarse ells that are re�ned in order to generate �ne grid uxes at the interfae.Values at the virtual �ne grid points indiated by large dots are alulated using the highresolution method. We an ompute only within a triangular region sine the stenil of themethod requires data from two adjaent ells. This is suÆient to ompute uxes all alongthe grid interfae.interpolation from the oarse ell values and evaluating this pieewise linear approximationat the ell enter of eah �ne grid ell. Note that this gives a onservative transfer of valuesbetween grids. When a �ne grid disappears in some region, the oarse grid values are setequal to the average of the �ne grid values, again maintaining onservation.The high resolution front traking algorithm desribed in the previous hapters an beused on the �ne grid and also on the oarse grid. The diÆulty omes at the interfaebetween the grids. Sine we are assuming that traked fronts do not ross this interfae,we need only ensure that we maintain onservation and high auray with our underlyingmethod at the interfae. See Berger[5℄ for a general disussion of this problem for methodsin onservation form with spei�ed numerial ux funtions. Although we normally use the\wave propagation" form of our high resolution algorithm beause of the ease of dealing withirregular ells, near the grid interfae we an reinterpret the method in terms of numerialuxes as desribed in Setion 2.3. Reall that we an de�ne uxes Fi+1=2 at eah ellinterfae in suh a way that the wave propagation algorithm is equivalent to the standardux di�erening formula Un+1i = Uni � khi (Fi+1=2 � Fi�1=2)with uxes given by (2.17) for the high resolution method.To handle the grid interfae, we �rst extend the �ne grid to over two additional oarsegrid ells as indiated in Figure 5.1. Initial values at time tn in these ells are omputedusing pieewise linear interpolation from the oarse grid values. The interfae between ellsj and j+1 on the oarse grid lies between ells q and q+1 on the �ne grid, where q = 2mr.Beause our high resolution method involves a stenil of two grid ells on eah side of aninterfae, we an ompute over a triangular array of ells as indiated by dots in Figure 5.1



48without notiing the lak of �ne grid points to the left. In the proess, we an omputenumerial uxes at the q+1=2 interfae using the formula (2.17). On the �ne grid, we takemr time steps within the one time step on the oarse grid. We denote the ux for eahtime step l = 1; 2; � � � ;mr by F fineq+1=2;l. These are the uxes that have essentially been usedto update the �ne grid ell q + 1 to the right of the interfae.On the oarse grid, we an de�ne uxes F oarsej�1=2 and F oarsej+1=2 in the proess of updatingthe oarse grid values via the high resolution method. We use these updated values as ournew values in eah of the oarse grid ells that are not overlapped by the �ne grid, with theexeption of ell j, just at the boundary of the �ne grid. Here we replae the provisionalvalue alulated with the oarse grid algorithm by the valueUn+1j = Unj � kh (F̂ oarsej+1=2 � F oarsej�1=2 )with a modi�ed ux F̂ oarsej+1=2 de�ned to be the average of the �ne grid uxesF̂ oarsej+1=2 = 1mr mrXl=1 F fineq+1=2;l:This ensures that the oarse grid ux at the right boundary of the oarse grid agrees withthe total �ne grid ux over time step k at the left boundary of the �ne grid, giving globalonservation.This presription for the interfae has nothing to do with front traking. With our fronttraking method a new diÆulty arises. If two fronts ollide then we wish to adjust thetime step so that ollision ours at the end of the time step. Sine we assume that alltraked waves are within the �ne grid and we integrate the �ne grid �rst, we an simplytrunate the �ne grid time step during whih ollision ours and then trunate the oarsegrid time step at this same point. Suppose we have taken m < mr �ne grid steps of lengthk=mr at this point plus a shorter step of length ~k � k=mr. We have orresponding �ne griduxes F fineq+1=2;l, l = 1; 2; � � � ;m + 1. At this point we take a oarse grid time step of lengthk = mk=mr + ~k � k. The interfae oarse grid ell j is updated byUn+1j = Unj � kh (F̂ oarsej+1=2 � F oarsej�1=2 )where F̂ oarsej+1=2 is now given by the appropriate weighted ombination of eah �ne grid ux,taking into aount that the last time step is shorter than the others,F̂ oarsej+1=2 = 1k " kmr mXl=1 F fineq+1=2;l + ~kF fineq+1=2;m+1# :Sine we never take more than mr �ne grid time steps in eah oarse step, re�nement of anextra two ells bordering the interfae is suÆient to generate the �ne grid uxes neededat the interfae.If we allowed traked fronts on the oarse grid as well, we would need slightly moreompliated logi to trunate time steps appropriately if fronts ollide on the oarse grid.This is learly no problem, however.



49Fronts moving between the oarse and �ne grids ould also be handled quite easily bysimply trunating the time step when a traked front hits the interfae. Then within a giventime step the front would be either on the �ne grid or on the oarse grid and appropriateuxes at the interfae ould be alulated.5.1.2 The Woodward-Colella problemAs a �rst example to demonstrate the apability of front traking with adaptive meshre�nement, we onsider the blast wave interation problem studied by Woodward andColella[109℄,[110℄. In this problem, the initial ondition onsists of three onstant stateswith data 0B� �vp 1CAl= 0B� 10103 1CA; 0B� �vp 1CAm= 0B� 1010�2 1CA; 0B� �vp 1CAr= 0B� 10102 1CA ;where l, m, and r are the states used for x 2 [0; 0:1), x 2 [0:1; 0:9), and x 2 [0:9; 1℄respetively. There are two solid walls at x = 0 and x = 1.With this initial ondition a shok wave, ontat disontinuity, and rarefation wavedevelop at eah disontinuity individually. The shok waves are moving toward eah otherand then ollide. A new ontat disontinuity arises from the ollision. Further ollisionsthen our. A density ontour plot in the x-t plane is shown in Figure 5.2 whih indiatesthe omplex wave pattern of this problem.One of the main diÆulties for this problem is the very low pressure in the middle state,and beause of this any small perturbation aused by numerial error an lead to negativepressures whih are nonphysial. Another diÆulty involves the proper treatment of thestrong wave interations in a smooth bakground ow. Therefore this problem providesa severe test of our front traking algorithm, and espeially tests our ability to handlesmall ells and wave interations. Furthermore, sine omplex wave interations our afterthe shok waves' ollision, poor resolution will result near the interation if the grid is notsuÆiently �ne. For this reason, we have used mesh re�nement in addition to front trakingin order to better resolve the solution.For this problem there is no mesh re�nement initially. The mesh re�nement is introduedafter the shok waves' ollision and used thereafter. For onveniene, the re�nement regionis hosen to ontain all the traked fronts within one �ne grid with a bu�er zone to preventthem from moving onto the oarse grid. For the results shown below, we take oarse gridmesh size h = 1=100 as our underlying mesh size and use a mesh re�nement ratio mr = 8for the �ne grid, so that hf = 1=800. The bu�er zone has width 10h, and a regridding stepis done for every 16 time steps. Sine the density jump is not prominent in this problem,we hoose the max-norm of the jump in onservative quantities as our traking riterion(with tolerane " = 50). Throughout the test Courant number � = 0:9 is used, and onlyresults obtained using the high resolution method are shown.In Figure 5.2a, we show the density ontour plot in the x-t plane over both the oarseand �ne grids; ontour lines were plotted on a logarithmi sale. A blowup of the �negrid solution is shown in Figure 5.2b. Notie the �ne wave struture following the intera-tion between the rightward going shok wave and the leftward going ontat disontinuity.
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Figure 5.2: Density ontour plot in the x-t plane (the ontour lines are in the logarithmisale) for the Woodward-Colella problem up to time t = 0:038 using the high resolutionfront traking with adaptive mesh re�nement algorithm with h = 1=100 and mr = 8. a)Combined plot for both the oarse and �ne grids. b) Blowup of the �ne grid region.
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Figure 5.3: Traked fronts for the Woodward-Colella problem.Without mesh re�nement, this wave pattern would not be learly seen. Traked points areshown in Figure 5.3.To investigate the auray, we show plots of the state variables � and v versus a�ner grid (\true") solution, omputed using h = 1=800 in the time before re�nement isintrodued, and then h = 1=200, mr = 8 for re�nement. Results at three di�erent times areshown in Figure 5.4. Note that they are plotted using the most aurate ell values at eahpoint. That is, if a grid ell is in the �ne grid region, we use the �ne grid solution; otherwisewe use the oarse grid solution. We see good agreement between the two solutions. Notiethe smooth transition between the oarse and �ne grids. This indiates that our treatmentof the oarse-�ne grid interfaes is working in a satisfatory way.As mentioned above, this is a diÆult problem due to the very low pressure in the middlestate. A rarefation arising from the smooth ow behind the shok may move faster thanthe traked shok, arrying a negative jump in pressure into the low pressure region that isof suÆient magnitude to result in a negative pressure. This is due to the linearization ofthe interation between waves.We urrently deal with this problem by omputing the interation of the rarefation wavewith the strong shok wave exatly rather than using the wave linearization that is usedelsewhere. This has been disussed fully in Setion 4.4. This leads to some ompliationof the algorithm, but avoids the need to further restrit the time step and eliminates thediÆulties.Naturally it would be preferable to �nd a more robust solution to this problem andwork is ontinuing in this diretion. We note, however, that this is a partiularly diÆultproblem and that many prodution odes ontain ad ho proedures suh as resettingnegative pressures to positive values in order to deal with suh problems. This is not adiÆulty that arises solely from our front traking methodology. On the ontrary, ourapproah has the advantage that it allows one to reognize these diÆulties and deal withthe interation orretly and onservatively. (See [29℄ for an interesting disussion of thisproblem.)
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Figure 5.4: Comparison plots for the Woodward-Colella problem at three di�erent times.In eah �gure, the solid line is the �ne grid solution omputed by hf = 1=800 in the timewhen no re�nement is used, and h = 1=200, mr = 8 when the re�nement is used. Thepoints show the solution with h = 1=100 and mr = 8. Density and veloity are shown.



535.2 Soure TermsA wide variety of numerial methods have been developed for onservation laws with soureterms ut + f(u)x =  (u), e.g., [4℄,[37℄,[90℄,[96℄. Here we will only onsider one popularapproah, a time-splitting method in whih we alternate between solving the homogeneousonservation laws with no soure termsut + f(u)x = 0; (5:1)and solving the ordinary di�erential equationsut =  (u) (5:2)within eah ell.We use a \Strang splitting" [97℄, whih is seond order aurate for smooth solutions.In the present ontext with front traking, this onsists of the following steps:1. Take a half time step by solving the ODEs (5.2) in the old grid ells.2. Take a full time step with the homogeneous equations (5.1) using the front trakingalgorithm. This generates new grid ells.3. Take a half time step again with the ODEs (5.2) in the new grid ells after removingthe old traked points.Two examples will be given to demonstrate the ability to handle soure terms by using thissplitting proedures together with the front traking algorithm.5.2.1 Quasi one-dimensional nozzle owAs a �rst example with soure terms, we onsider the quasi one-dimensional nozzle ow.The Euler equations now have the form��t 0B� �A�vA�EA 1CA+ ��x 0B� �vA(�v2 + p)A(�E + p)vA 1CA = A0 0B� 0p0 1CA (5:3)where A � A(x) is the ross setion of area, A0 � dA(x)=dx. The onservative variablesu, ux funtions f(u), and soure terms  (u) are de�ned in the obvious way. In thisexample,  (u) are alled the \geometri" soure terms sine they result from the geometrialsimpli�ation to a one-dimensional problem, see, e.g., [69℄ for more detail.For inorporation into the front traking algorithm, we rewrite these equations in an-other form by moving all the area terms in (5.3) to the right hand side,��t 0B� ��v�E 1CA+ ��x 0B� �v(�v2 + p)(�E + p)v 1CA = �A0A 0B� �v�v2(�E + p)v 1CA : (5:4)



54Although these two sets of equations have di�erent state variables and ux funtions, theyshare the same Rankine-Hugoniot jump onditions. This is simply due to the fat that thevariable area is ontinuous at the disontinuity, and so the area term drops out from eahside of the jump ondition. In pratie, it is interesting to see how numerial results area�eted by using these two di�erent equations with the same numerial method. (See [107℄for an interesting example of suh a omparison.)In the following, we perform a standard test problem for the quasi one-dimensionalnozzle ow in the form (5.4), a steady state alulation[20℄. Take a divergent nozzle witharea A(x) = 1:398 + 0:347 tanh(8x� 4); 0 � x � 1:Consider a supersoni inow boundary ondition at x = 0 with �in = 0:502, vin = 1:299,and pin = 0:3809 (Mah number = 1:26), and a subsoni outow boundary ondition atx = 1 with �out = 0:776. The steady state solution under these boundary onditions onsistsof a stationary shok at x = 0:481991 with steady smooth ow in front and in bak of thisstationary shok, see [95℄ for the detail on the onstrution of the exat solution.To start the omputation, we must also speify initial data in the interior region. Forthe test we present here, the veloity and pressure in the interior region were initialized tothe inow veloity and pressure respetively, and the density was initialized to be linearlyvarying from the inow boundary to the outow boundary. At the outow boundary theunknown vout and pout are alulated using the numerial harateristi boundary ondi-tions.The numerial harateristi boundary onditions an be desribed briey as follows.Suppose the outow is subsoni, given �out. Let ell j be the losest ell to the outowboundary. The density, veloity, and pressure for the jth ell are denoted by �j, vj, and pjrespetively. Then sine entropy is onstant along the partile path dx=dt = vj , the outowpressure pout an be omputed as pout = �out(pj=�j ):Let R� and R+ be the Riemann invariants for the Euler equations, i.e.,R� = v � 2 � 1 = onstant along �1 = v �  family;and R+ = v + 2 � 1 = onstant along �3 = v +  family;where  = pp=� is the speed of sound. Using the onstant Riemann invariant R+ alongdx=dt = vj + j , we have vout + 2 � 1out = vj + 2 � 1j ;and then ombining this equation with �out and pout we an ompute vout. In eah timestep, the numerial harateristi boundary onditions are used at the outow boundary toupdate vout and pout.
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Figure 5.5: Results for the quasi one-dimensional nozzle ow. a) Mah number ontourplot in the x-t plane up to time t = 14:35. b) Traked shoks.Results for this test using h = 1=50 and " = 0:3 in density jump for traking are shown inFigures 5.5 and 5.6. Figure 5.5a and b show the Mah number ontour plot in the x-t planeand the traked shoks, respetively. Figure 5.6 shows the onverged numerial solutiontogether with the exat steady state solution. Here our onverged numerial stationaryshok loation is at x = 0:481714 � 10�6, with an error of roughly 0:06% relative to theexat loation. The numerial result (Mah number) agrees well with the exat steady statesolution also.It is interesting to note how our front traking algorithm handles traked waves for thisproblem. For this test, there is no traked shok in the beginning. When a shok is formed,it is traked. Sine this traked shok is not the stationary shok, the strength of the shokbegins to deay due to the geometri e�et and boundary onditions. After suÆient deay,it is no longer traked. Meanwhile, a seond shok forms whih onverges to the orretstationary shok. A similar test is performed in [34℄ for their front traking method.We should note that we have made no attempt to aelerate onvergene to steady statein this ode, sine the urrent version is designed primarily for time-dependent alulations.5.2.2 Unstable detonation wavesAs a seond example with soure terms, we onsider a simpli�ed hemially reating ow inwhih visosity, heat ondution, di�usion, and radiation e�ets are ignored. We onsidera model problem for ombustion in whih there are only two hemial speies: \burnt gas"and \unburnt gas", and the unburnt gas is onverted to burnt gas via a simple deay proess
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Figure 5.6: The onverged numerial solution for Mah number with the exat steady statesolution.of the form unburnt gas K(T )�! burnt gaswhere K(T ) represents the reation rate of the burning proess. This model has beenextensively studied in the past, e.g., [12℄,[22℄,[23℄,[25℄,[31℄.In general, the reation rate depends on the temperature T via some Arrhenius relationK(T ) = K0T�e�E+=T (5:5)where K0 is the rate multiplier, E+ is the ativation energy, and � is the order of thereation. Typially the reation rate is very large when T is suÆiently high but negligiblefor small T .For this ombustion model, the Euler equations in one spae dimension take the form��t 0BBB� ��v�E�Z 1CCCA+ ��x 0BBB� �v�v2 + p(�E + p)v�Zv 1CCCA = �0BBB� 000K(T )�Z 1CCCA (5:6)where Z is the mass fration of the unburnt gas (Z = 1 for the unburnt gas and Z = 0 forthe burnt gas). For simpliity we assume that both the unburnt gas and burnt gas are idealgases with the same ratio of spei� heats . Then by the ideal gas law, the temperatureis given by T = p=�Rwhere R is the universal gas onstant. The equation of state is modi�ed by the fat thatthe unburnt gas ontains hemial energy that is released as heat in the proess of burning.The total energy per unit mass takes the formE = 1 � 1p=�+ 12v2 + q0Z (5:7)
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Figure 5.7: Typial ZND strutures for the reation wave in the ombustion model equa-tions (5.6) with Arrhenius rate relation (5.5).where q0 is the heat release.There are two distint types of reation waves for this ombustion model, the \detona-tion wave" and the \deagration wave". For a detonation wave, the pressure and densityaross the wave jump to higher values, and the wave travels at supersoni speed relative tothe unburnt gas in front of it. For a deagration wave, the pressure and density aross thewave jump to lower values, and the wave travels at subsoni speed relative to the unburntgas.With the Arrhenius rate relation (5.5), the typial struture of the detonation wave on-sists of an ordinary uid dynami shok followed by a �nite length hemial reation zone,whih gives the so-alled ZND (Zel'dovih-von Neumann-D�oring) struture (see Figure 5.7).The steady ZND strutures an be omputed by dropping the time derivative terms in (5.6)and integrating the �rst three equations expliitly in spae for a given initial state. Fromthem and Equation (5.7), the density, veloity and pressure an be expressed in term of themass fration Z at any point of the ZND struture. The fourth equation, after expanding(�Zv)x and aneling the Z(�v)x term, now gives a nonlinear ODEZx = �K(T )Zvfor the mass fration Z with respet to x, whih an be solved numerially for Z as afuntion of x. Note that K(T ) is a funtion of Z also sine the temperature T dependsonly on � and p. Having obtained the mass fration Z for a given x, the remaining statevariables, �, v, and p an then be alulated.This steady ZND struture is uniquely determined if the speed of the ZND strutureis spei�ed[31℄. In fat, for eah given unburnt state, there is a minimal shok speed sj,the speed of the Chapman-Jouguet detonation, whih moves with the speed of sound withrespet to the burnt gas[25℄, and hene in this ase a ZND struture an also be determinedwithout speifying any partiular ZND speed.A well-known diÆulty in the detonation wave omputation is that inorret detonationwave speeds an arise from numerial e�ets. This behavior is observed by Colella, Majda,and Roytburd [22℄,[23℄ where a time-splitting method is used for the model Equations (5.6).They assert that if the hemistry is not fully resolved due to the insuÆiently �ne grids,inorret detonation wave speeds will be obtained. Similar experiments have been reported



58in [62℄ and [67℄.Another diÆulty of modeling detonation waves is notied by Bourlioux, Majda, andRoytburd[12℄ in whih lassial one-dimensional stable and unstable detonation waves aretested. They onlude that false preditions of stability in the regime of physial instabilityas well as drasti preditions of instability for a physially stable detonation wave an beobtained with standard shok apturing methods if the grid is not suÆiently �ne. In theirpaper, a front traking method with adaptive mesh re�nement is proposed for the detonationwave omputation, and by using this method they have obtained good results. (Theirmethod ombines the pieewise-paraboli method[110℄ with onservative front traking[16℄and adaptive mesh re�nement[6℄.) This provides a good omparison problem for our fronttraking approah.Let s be a speed of the given ZND struture. Then the parameter f = (s=sj)2 measuresthe degree of overdrive of the detonation wave and satis�es f � 1. Now the problem ofinterest is to study the large time behavior of the overdriven detonation wave for a givenZND struture under small perturbation. For omparison purposes, we hoose the testases as used in [12℄, i.e., we take  = 1:2, R = 1 (the universal gas onstant), � = 0,q0 = 50, and E+ = 50. With these parameters, aording to the linear stability results[11℄,this detonation wave is unstable if the degree of overdrive f is greater than the ritialvalue f = 1:73, for it is stable otherwise. Here we hoose f = 1:8 for the stable detonationomputation and f = 1:6 for the unstable detonation omputation. In the tests shownbelow, a steady ZND struture is used as the initial data with the unburnt state � = 1,v = 0, p = 1, Z = 1, and degree of overdrive f . Note that by speifying the unburntstate, the minimal shok speed sj an be alulated (see [100℄). Then the speed of theZND struture s = sCJpf an be omputed for a given f , and so this ZND struture isuniquely de�ned. The destabilizing perturbation for eah test is provided automatially bythe trunation error of the numerial method.There are two harateristi length sales for this problem. They are the half reationlength L1=2 and the half reation time t1=2, where L1=2 is the distane required for halfthe mass fration to be released in the ZND struture and t1=2 is the undergoing timerequired for suh a proess to omplete. These two values an be omputed by evaluatingthe following integrals numerially:L1=2 = � Z 112 v dZK(T )Z ; (5.8)t1=2 = � Z 112 dZK(T )Z : (5.9)For the purpose of studying the grid e�et on the numerial solutions, we normalize thelength sale x by hoosing K0 so that L1=2 = 1. We �nd that K0 = 231:16 and t1=2 = 0:891for f = 1:6, while K0 = 145:69 and t1=2 = 0:856 for f = 1:8.Following [12℄ and [31℄, we monitor the shok front pressure, the pressure right behindthe shok wave, as time evolves. This shok front pressure history will give us a learindiation on the stability of a given ZND struture under small perturbation. Here toinvestigate the grid e�et on the numerial solutions, a onvergene study for the shokfront pressure history with three di�erent oarse-�ne grid spaings is performed for eahstable and unstable ase. The oarse-�ne grid spaings we used are as follows:



591. oarse mesh h = 1 point /L1=2, �ne mesh hf = 4 points/L1=2,2. oarse mesh h = 2 points/L1=2, �ne mesh hf = 8 points/L1=2,3. oarse mesh h = 4 points/L1=2, �ne mesh hf = 16 points/L1=2.Sine there is only one traked shok in this problem, the re�nement region is hosen bygoing out 20L1=2 on eah side of the traked shok. Courant number � = 0:5 is used forall the test ases, and only results obtained using the high resolution method are shown.Tolerane " = 3 in density jump is used for shok traking.Figures 5.8 and 5.9 show results for the onvergene study up to time t = 100 in theomputational domain 0 � x � 1000. After analyzing the results, our solution onvergesto the initial steady state pro�le with about 0:008% osillation in the shok front pressurefor the stable detonation ase. For the unstable detonation ase our solution onverges to adetonation wave with period 7:383� 0:110 (about 8:284t1=2) and peak pressure 99:83� 0:2.Note that the unperturbed shok front pressure for the unstable detonation wave is 67:355,and so the shok front pressure is magni�ed to a value nearly 50% higher than the initialvalue. Our solutions agree very well with values taken from the �gures in [12℄.To show the spatial resolution for the unstable detonation wave problem, we plot thepressure at six di�erent times within one omplete pressure front osillation yle as illus-trated in the seond plot of Figure 5.9, where the large dots indiate the plotting time.The results are shown in Figure 5.10 for both the oarse and �ne grid solutions, where aregion between the dashed lines above the x-axis is the mesh re�nement region. A blow-upof the solution in the �ne grid region is shown in Figure 5.11. Note that an osillatory wavestruture appears behind the shok. This is not seen in the stable detonation problem.Figure 5.12 shows the shok speed as a funtion of time in the unstable ase, alsoshowing periodi osillatory behavior. An earlier results given by Fikett and Wood[31℄shows that under ertain assumptions the averaged shok speed �s, in both stable andunstable detonation waves, should essentially remain the same as the steady-solution shokspeed. In our alulations, we have observed that for the unstable detonation wave problemthe time-averaged shok speed �s is equal to 8:655, while the steady-solution shok speed is8:613. So there is about 0:5% disrepany from the predited value. On the other hand,for the stable detonation wave problem �s is 9:1369, while the steady-solution shok speedis 9:1359.Finally, Figure 5.13 shows the result in the regime of transition to instability. We alsoobserve good agreement with the linear stability result. Reall that for the parameters weused here f = 1:73 is the ritial value for stability of detonation waves.
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Figure 5.8: A onvergene study for the shok front pressure history on the stable detona-tion wave problem (f = 1:8) using the high resolution front traking with adaptive meshre�nement algorithm. The dashed line shown in the �gure is the front pressure of the steadyZND solution.
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Figure 5.11: Blow up of the �ne grid region for the solution shown in Figure 5.10.
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Chapter 6FINITE VOLUME WAVE PROPAGATION METHODSHere we begin by onsidering numerial methods that an be used to ompute thesolution for the homogeneous onservation lawsut + f(u)x + g(u)y = 0 (6:1)on the grid determined by the front traking algorithm. We again desribe methods based onthe wave propagation approah, beause of the ease of dealing with small ells and boundaryonditions in a stable manner. The approah we present here follows losely ideas from theone-dimensional wave propagation approah disussed in the previous hapter, though somemodi�ation of the methods will be onsidered to take into aount the two-dimensionale�ets, partiularly for the high resolution methods. In the disussions, speial attentionwill be given to the treatments of the irregular ells, and a rotated Godunov method willalso be explained.6.1 PreliminariesWe desribe the methods on a very speial grid as illustrated in Figure 6.1, in whih addi-tional ell interfaes are introdued for the traked disontinuities in a uniform underlyingCartesian grid subdividing some ells into piees. Let Cj denote eah grid ell, and let Iijdenote the ell interfae between ells Ci and Cj. We use a �nite-volume formulation inwhih the value Unj approximates the ell average of the solution over the grid ell Cj attime tn, Unj � 1Aj ZCj u(x; y; tn) dx dywhere Aj is the area of the ell Cj . For onveniene, the additional ell interfae is alledan irregular ell interfae to distinguish it from the regular ell interfaes, and the ell itsubdivides is alled an irregular ell to distinguish it from the regular ells.The methods we use are based on solving one-dimensional Riemann problems at eahell interfae. Consider, for example, the one-dimensional Riemann problem normal to theinterfae separating ells Cj and Cl in Figure 6.1. De�ne the new variables � (normal tothe interfae) and � (tangential to the interfae) by� = �x+ �y; � = ��x+ �y (6:2)with � = os �, � = sin �, where � is the angle of the ell interfae. Then the onservationlaws (6.1) an be written as ut + f̂(u)� + ĝ(u)� = 0 (6:3)



68with f̂(u) = �f(u) + �g(u); ĝ(u) = ��f(u) + �g(u):Assume that in the new oordinates u is onstant in �, and so (6.3) redues to a one-dimensional Riemann problem ut + f̂(u)� = 0 (6:4)with left and right states Uj and Ul. For rotationally invariant equations suh as the Eulerequations this is partiularly simple sine, after a hange of dependent variables to rotatethe veloity �eld, the form of f̂(u) agrees with f(u) and hene a single Riemann solversuÆes for all angles �.As in the one-dimensional method, we use Roe's approximate Riemann solver and obtaina set of waves traveling with speeds �1; �2; � � � ; �m in the �-diretion. As before, we denotethe jumps in u aross these waves by the vetors r1; r2; � � � ; rm, so thatUj � Ul = mXp=1 rp:Finite volume wave propagation methods are based on using these propagating disontinu-ities to update the ell averages in the ells neighboring eah interfae.6.2 Godunov MethodIn a standard �nite volume method, uxes aross the ell interfaes are de�ned and usedto update the ell values on either side of the interfae. In partiular, in the Godunovmethod, uxes are omputed based on solving the Riemann problems at eah interfae inthe diretion normal to the interfae over a time step of length k. Then a onservativeux-di�erening method is used to obtain the solution at the next time step Un+1, see [63℄for more general disussion on the onservative ux-di�erening methods.Following onvention, the normal diretion for a regular ell interfae is de�ned in theusual manner pointing to the positive x- or y-diretion. At an irregular ell interfae itis de�ned by the following rules: if the irregular interfae represents a boundary segment,the normal diretion is hosen pointing toward the interior region, while if it represents atraked disontinuity, the normal diretion is hosen pointing to a state with lower densityor other physially meaningful quantity, suh as entropy.A �rst order aurate version of the �nite volume wave propagation method is a variantof the Godunov method, with the Roe Riemann solver, on a nonuniform grid. That is to say,we solve the Riemann problems at eah interfae in the diretion normal to eah interfaeas well, but now waves whih result from solving the Riemann problems are propagatedover the time step k to update whihever ell values they a�et. Sine this approah hasbeen disussed fully in the past [61℄,[62℄, here we only briey desribe the method.Figure 6.1a shows an example in whih waves are propagated from the regular andirregular ell interfaes. Then in the method the ell average Unj is updated byUn+1j = Unj �  hij j�pjkAj ! rp
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Figure 6.1: a) Godunov method. Waves obtained from solving the normal Riemann problemat eah interfae is used to update the ell values (only one family of waves is shown). b)Godunov method with tangential splitting. Waves shown in a) are split into subwaves inthe tangential diretion, and used to update the ell values (only one subwave is shown foreah wave family).sine hij j�pjk is the area the wave sweeps out over the time step k, and so the value shouldbe hanged by the jump rp in this portion of the ell. Similarly, due to the q-wave, the ellaverage Unl should be updated byUn+1l = Unl � �Area(Wq \ Cl)Al � rq (6:5)where Wq is the region that the q-wave a�ets (the retangular region in the �gure), andArea(Wq \Cl) is the area of the intersetion between Wq and ell Cl. Note that other ellswhih are a�eted by the q-wave should also be modi�ed by the appropriate amount. Byomputing the e�et of eah wave on the ell average, we obtain the �nite volume wavepropagation Godunov method.As in the one-dimensional method, it is also possible to reformulate this method in astandard onservation form by omputing uxes appropriately at eah interfae. In fat, ifwe do so, on a uniform grid the resulting method is equivalent to the standard Godunovmethod. On a nonuniform grid, however, the form of the method beomes very ompliateddue to the fat that waves may ross many ell interfaes as seen in Figure 6.1a. This isalso the ase in dealing with the boundary onditions. Beause of the ompliations we donot disuss this ux formulation here.Regarding stability, it is well known that on a uniform grid in two spae dimensions theGodunov method has a Courant number restrition �0 � 1=2 where�0 = kh0 maxp;j j�pj j; (6:6)



70h0 = min(hx; hy) is the minimum mesh size of the uniform grid ell in both the x- andy-diretions. On a nonuniform grid, the Courant number is de�ned by� = kAmin maxp;j j�pj j (6:7)where Amin = minj Aj . Note that beause of the presene of irregular ells, the time step k isseverely redued if Amin � h0. From numerial experiene, beause the waves are allowedto a�et more than one neighboring ell, the wave propagation version of the Godunovmethod is more stable than the standard ux version Godunov method, and � � 1=2 is notrequired on the nonuniform grid. Instead we an use the Courant number �0 � 1=2 withmesh size based on the underlying uniform grid.6.3 Godunov Method with Tangential SplittingAnother variant of the Godunov method is the Godunov method with tangential splittingintrodued by LeVeque[61℄,[65℄ in whih the waves obtained from solving the normal Rie-mann problem at a ell interfae are split into subwaves in the tangential diretion withappropriate tangential speeds. In this approah, a tangential Riemann problem is solvedfor eah wave using the data on the left and on the right of the wave. Sine this approahhas been disussed in more detail in [61℄, here we only briey desribe the method.Figure 6.1b shows an example in whih we split the p-wave from the Iij interfae. Forthe equation, we take the tangential portion of (6.1), i.e., the portion of equation in they-diretion: ut + g(u)y = 0; (6:8)and for the initial data we take Uni +Xq<p rqas the left state and Unj �Xq>p rqas the right state. Taking these as the left and right states for the equation (6.8) gives adisontinuity of magnitude rp, and the solution will be resolved into waves w1; w2; � � � ; wmpropagating in the y-diretion with speeds �1; �2; � � � ; �m as illustrated in Figure 6.1b. Thesplitting of waves in the x-diretion an also be dealt with in the similar manner. Byomputing the e�et of eah tangential wave on the ell average, we obtain the Godunovmethod with tangential splitting.Note that with this tangential splitting the method remains onservative beause thetotal ontribution of the subwaves satis�esmXq=1wq = rp; (6:9)



71and the area swept out by eah subwave is the same as the area of the original wave.Moreover, doing so approximates the transverse derivative (BAux)y, sineA(Unj � Uni )=h � Aux(xi+1=2; yj ; tn)and splitting waves in the tangential diretion gives an approximation toBAuxy(xi+1=2; yj+1=2; tn)whih is a linearized version of the term. Analogously, the splitting of waves in the x-diretion gives an approximation of the (ABuy)x term. We will see in Setion 6.5 that theability of handling the (BAux)y and (ABuy)x terms is an essential step toward ahievinghigh resolution.It is not diÆult to verify that for the linear advetion equationut + aux + buy = 0 (6:10)this method gives exat propagation of waves for any time step k, exept for the errorintrodued by the averaging proess. For linear hyperboli systemsut +Aux +Buy = 0 (6:11)this is also the ase, if A and B have idential eigenvetors and hene are simultaneouslydiagonalizable in whih ase A and B ommute, AB = BA. In this instane, the equationsan be deoupled into di�erent harateristi �elds, and by employing the wave propagationapproah, this method an be viewed as the method of harateristis sine here eah wavefamily is propagated exatly for any time step k and only averaging error is introduedin the method. If the matries A and B do not ommute, or for nonlinear problems, thismethod, in general, will not produe results that are stable for arbitrarily large time steps.However, all of our numerial results indiate that the method is stable for the Courantnumber �0 up to 1.6.4 Rotated Godunov MethodIn a rotated Godunov method, we solve the Riemann problems in some physially relevantdiretions rather than the diretions normal to the grid interfaes. Various approahes havebeen introdued in the past that determine the rotation diretion as well as the way thatuxes are omputed in the method. Typial examples of the rotation diretion are: theow diretion, the pressure-gradient diretion, the veloity-magnitude-gradient diretion,and the diretion of the irregular ell interfae[8℄,[27℄,[68℄. In the ux version of the rotatedmethod, it is quite often the ase that the Riemann data is obtained from some formof interpolation of the ell values to maintain stability and ahieve high auray of themethod, see [7℄,[68℄ for examples.The idea of the rotated method is best explained by onsidering the linear advetionequation (6.10), and desribing the method based on the wave propagation approah on auniform grid. As the �rst step in the method, we need to hoose the rotation diretion �and transform (6.10) to the new �-� oordinate system using (6.2), whih leads tout + âu� + b̂u� = 0 (6:12)
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Figure 6.2: Rotated Godunov method. a) Waves obtained from solving the Riemann prob-lem in the ow diretion (a; b) of the linear advetion equation (6.10) is used to update theell values. An interpolated value U�i obtained from taking averages of ell values over theparallelogram box, is used in a ux version rotated sheme. b) On the irregular ell, therotation diretion based on the diretion of the irregular ell interfae is used in solving theRiemann problem for the onservation laws (6.1) (only one family of waves is shown).with â = �a + �b and b̂ = ��a + �b. (Reall that � = os �, � = sin �.) For this modelequation (6.10), it is lear that we should use the ow diretion (a; b), or the solution gradient(ux; uy), in the normalized form as the rotation diretion in the method. Suppose that wetake the normalized ow diretion as the rotation diretion for the Riemann problem, (6.12)simply redues to the one-dimensional linear advetion equation in the ow diretion (�-diretion): ut + âu� = 0 (6:13)with â = pa2 + b2. Then in the seond step of the method, we solve the Riemann problemfor (6.13) at eah interfae using the values from adjaent ells as data. Doing so results inwaves propagating with speed â in the �-diretion with a shape shown in Figure 6.2a. Theells it overlaps are updated during the wave propagation.Figure 6.2a shows an example in whih the ell average Unj is updated byUn+1j = Unj � akh2 (h� bk=2)(Unj � Uni );while the ell average Unl is updated byUn+1l = Unl � abk22h2 (Unj � Uni )where h is the mesh side in both the x- and y-diretions. By omputing the e�et of eahwave on the ell average, we obtain the rotated Godunov method via wave propagation. It



73is easy to see that this method gives exat propagation of waves for any time step k, exeptfor the error introdued by the averaging proess. In fat, for this model problem, the resultobtained from this method is idential to that obtained from the Godunov method withtangential splitting.It is worth noting that for this model problem, in the standard ux version rotatedGodunov method, the ux at the Iij interfae is omputed asF (Uni ; Unj ) = aUni (6:14)if the values from adjaent ells are used as Riemann data, whereas the ux is omputed asF (U�i ; U�j ) = aU�i (6:15)if the values from some interpolation method are used as Riemann data, see Figure 6.2a forillustration. It is easy to see that ux (6.14) is simply the ux obtained from the unrotatedGodunov method, while ux (6.15) is the modi�ed version of the ux (6.14) whih takesmore information from the upwind diretion. Evidently, no matter whih ux is used inpratie, the resulting ux di�erening method will not produe results that give the exatpropagation for any time step k as in our wave propagation method.On uniform grids, the extension of the rotated wave propagation method to linearhyperboli systems (6.11) is straightforward if A and B ommute, sine we an take eahharateristi diretion as the rotation diretion for the Riemann problem and propagatethe resulting wave as the way we did for the linear advetion equation. If A and B do notommute or for nonlinear problems, this method is still appliable, but now the rotationdiretion should be hosen on a problem by problem basis and will vary from ell to ell.The extension of the method to nonuniform grids an be made quite easily also, butnow a formula similar to (6.5) should be used to update the ell values, see Figure 6.2b forillustration. It an be demonstrated that by propagating waves exatly and allowing wavesto a�et the neighboring ells, this method is not only stable in the presene of small ells,but also with Courant number �0 up to 1, for most of the equations of pratial interest.It should be noted that, in general, for onservation the ell values should be updatednot only based on the solutions of the rotated Riemann problem in the �-diretion, but alsobased on the Riemann solutions in the �-diretion as well.6.5 High Resolution Godunov MethodHere we disuss the high resolution modi�ations of the Godunov method. To illustratethe idea, let us look at the derivation of the Lax-Wendro� method for the onservationlaws (6.1) on a uniform grid. In deriving the Lax-Wendro� method, we start with theTaylor series expansionu(x; y; t+ k) = u(x; y; t) + kut(x; y; t) + k22 utt(x; y; t) + � � � : (6:16)From the governing equation (6.1) we an omputeut = �f(u)x � g(u)y = �Aux �Buy



74and utt = (�f(u)x � g(u)y)t = �f(u)tx � g(u)ty = �(Aut)x � (But)y= (A2ux)x + (ABuy)x + (BAux)y + (B2uy)y;where A = �f(u)=�u and B = �g(u)=�u, so that (6.16) beomesu(x; y; t+ k) = u(x; y; t)� k(Aux +Buy)(x; y; t) + k22 ((A2ux)x +(ABuy)x + (BAux)y + (B2uy)y)(x; y; t) + � � � (6.17)The Lax-Wendro� method then results from retaining all the terms up to O(k2) and usingentered di�erene approximation for the derivatives appearing there.From (6.17), it is lear that to ahieve seond order auray we need to deal withthe seond order derivative terms (A2ux)x, (ABuy)x, (BAux)y, and (B2uy)y. Here theapproah we use follows ideas from the previous work of LeVeque on wave propagationmethods[61℄ in that we introdue pieewise linear approximations to the solution in plaeof the pieewise onstant funtions in Godunov's method and handle transverse derivativesby splitting waves in the diretion tangential to the ell interfae. On uniform grids, thismethod is in fat very similar to the unsplit multi-dimensional upwind method of Colella[21℄as disussed in [65℄. The approah we employ here, however, has the advantage of easyextension in dealing with the irregular ells.We begin our method by solving the Riemann problems in the diretion normal to theell interfae as before, using the pieewise onstant data. The resulting waves are thensplit into subwaves using the tangential splitting approah disussed in Setion 6.3. Asmentioned previously, doing so gives an approximation of the transverse derivative terms(ABuy)x and (BAux)y.To handle the (A2ux)x and (B2uy)y terms, we use the approah similar to our one-dimensional high resolution method in that a slope is introdued for eah wave and used toonstrut the pieewise linear wave in plae of the pieewise onstant wave.On the regular ells, slopes and pieewise linear waves an be de�ned quite easily inboth the x- and y-diretions. Let �pi be the slope vetor used in the pth family over theCi ell. In this ase, as in the one-dimensional method, �pi an be obtained easily fromusing either the unlimited slope (2.7) or a slope limiter (2.8). Then, with this slope �pithe pieewise linear wave, moving in the x-diretion, is now made as a three-dimensionalpro�le that is onstant in y and pieewise linear in x over the grid ell Ci, as illustrated inFigure 6.3a.To modify the ell values, this pieewise linear wave is advaned with speed �p, obtainedfrom solving the normal Riemann problem at the Iij interfae, over the time step k, andthe ells it overlaps are updated. For example, ells Uni and Unj are updated byUn+1i := Un+1i � � j�pjk(h� j�pjk)h2Ai ��pi;Un+1j := Un+1j +  j�pjk(h � j�pjk)h2Aj !�pi;where 12 j�pjk(h�j�pjk)�pih is the volumetri region that the pieewise linear wave overlapsthe grid ell. Pieewise linear wave propagation in the y-diretion an be handled in an
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Figure 6.3: Pieewise linear wave propagation. a) Wave arising from the interfae betweenthe regular ells Ci and Cj in the x-diretion. b) Wave arising from the interfae betweenthe irregular ells Cj and Cl in the �-diretion.analogous manner. It is easy to hek that doing so gives an approximation to the linearizedversion of the (A2ux)x and (B2uy)y terms, and the method remains onservative with anyhoie of slopes.On the irregular ells, say for the Cj ell shown in Figure 6.3b, one simple hoie ofslope is to take the unlimited slope �qj = rq=h� (6:18)where h� is some measure of the normal distane between two ells, suh as the di�erene inthe �-oordinate (normal to the irregular ell interfae) of the enters of mass of these twoneighboring ells sharing the same interfae. Then a pieewise linear wave with this slope inthe �-diretion and total integral zero an be made and propagated in the �-diretion withveloity �q. This is illustrated in Figure 6.3b where a pieewise linear wave is onstrutedfor the Cj ell of the q-wave arising from the interfae between ells Cj and Cl. Similarly,for waves arising from the other side of the irregular ell, pieewise linear waves an also beonstruted.More generally, if we want to use slopes based on a slope limiter, we may need toemploy an interpolation sheme that determines another slope to ompare with in the slopelimiter (2.8). For instane, for the example shown in Figure 6.3b, one possible approah isto �rst ompute ell values by averaging the neighboring ell values on two arti�ial ellsof size h� h� eah, solve the Riemann problem in the �-diretion using this data, and thentake the resulting jump in the pth family divided by h as the slope used for the limiter.Note that speial attention needs to be taken to avoid using information from the oppositeside of the irregular interfae, i.e., aross the shok, and so, as in one dimension, we an doslope limiting based on a one-sided di�erening formula.As usual, ell values on the irregular ells are updated by the propagation of pieewise



76linear waves. Sine this amounts to omputing the intersetion between three-dimensionalwave strutures and grid ells, we write the formula for updating the ell values in a de-sriptive form Un+1j := Un+1j + Volume(Sqj \ Cj)Aj (6:19)where Sqj is the pieewise linear wave in the q-family for the Cj ell, and Volume(Sqj \Cj)is the volume of the intersetion between Sqj and Cj . For the example shown in Figure 6.3b,this formula should be applied to not only the two neighboring ells of the wave, Cj andCl, but to other ells where the wave Sqj is a�eted. Notie that the work involved inthe method inreases a great deal by introduing this pieewise linear approximations tothe irregular ells. Naturally, it would be desirable to �nd a better way to do this. Theperformane of the method and other approahes are still under investigation.



Chapter 7FRONT TRACKING ALGORITHMHaving desribed the numerial methods that an be used on a grid whih ontainstraked disontinuities for the onservation laws (6.1), we now disuss the front trakingalgorithm for this system. We will see from the disussion that this algorithm is in spiritsimilar to our one-dimensional front traking algorithm, and is also very simple and robust.Here we will fous our attention on desribing ideas of advaning traked fronts from onetime step to the next. Some possible approahes to setting up the data struture will also bedisussed. Results obtained using this front traking algorithm for radially symmetri shokwaves will be presented for the Euler equations, and the implementation of the solid wallboundary onditions for this model system will be disussed. For ease of omparison, theformat of this hapter is organized analogous to the one-dimensional ounterpart Chapter 3.7.1 AlgorithmAs in the one-dimensional front traking algorithm, our grid onsists of two parts. Wehoose a uniform underlying grid that remains �xed for all time, and we also introduetraked interfaes whih vary from step to step for the disontinuities in the ow �eld.These traked interfaes subdivide some regular ells into two or more subells, reatingsome irregular ells. We then view the union of the regular ells and irregular ells as ourglobal grid. In eah grid ell, the ell average is denoted by Unj .For the representation of the traked interfaes, we use the simplest pieewise linearapproah in whih an interfae is represented by a straight line within eah ell that is formedby onneting two points lying on the underlying �xed grid; a point is an (x; y) loation inthe omputational domain. In addition, the interfaes belonging to the same disontinuityare joined together into a ontinuous pieewise linear urve as shown in Figure 7.2, forexample. We assume that the urve does not ross itself or the other urves.In eah time step our front traking algorithm onsists of the following steps:Algorithm 7.11) Determine the new loation of the traked interfaes at the next time step.2) Insert these new traked interfaes into the grid. Some ells will be subdivided and thevalues in eah subell must be initialized.3) Take a time step on this nonuniform grid using a �nite volume method desribed inChapter 6 to update the ell averages.4) Delete the old traked interfaes from the previous time step. Some subells will beombined, and a value in the ombined ell must be determined from the subellvalues.



78urve urveinterfae interfae interfae interfae interfaepoint point point point point pointFigure 7.1: Data struture of the traked interfaes in the front traking ode.From the algorithm, it is lear that we have to deal with both the grid and trakedinterfaes to a great extent. So before desribing eah of these steps in more detail, we�rst disuss some possible approahes to setting up the data struture. Some terms will bede�ned aordingly and used later on.For the data struture of the grid, we an use an approah analogous to our one-dimensional front traking ode by employing a standard representation for the �xed gridtogether with a ag for eah grid ell that indiates whether the grid ell is subdivided byone or more traked interfaes. For subdivided ells, this ag is a pointer to another datastruture ontaining information on eah subell.There are, however, two possibilities in de�ning the data struture of the subdividedells. The �rst possibility is to view the old and new traked interfaes as being loatedin the same grid ell. There is no distintion between the grid system before and afterinserting the new traked interfaes. This is a reasonable approah as motivated by ourone-dimensional algorithm, and in pratie this approah works �ne for problems onsistingof well separated old and new traked interfaes. But it turns out that this grid setup is oflimited use beause of the fat that the old and new traked interfaes might ross eah otheras seen in many problems, e.g., Figures 8.6 and 8.7, ausing an unneessary ompliationof the data struture.The seond, more reliable, approah is to view the old and new traked interfaes asbeing loated in two di�erent grid systems; the old grid system and the new grid system.The old grid system ontains only the old traked interfaes, and the new grid systemontains only the new traked interfaes. The global information of the grid an still bereovered by maintaining a ag for the grid ell whih enloses both the old and new trakedinterfaes. Given these two distint grid systems, there is no problem dealing with old andnew traked interfaes whih ross.Conerning the data struture of the traked interfaes, one simple approah is to usea tree-like struture as presented in Figure 7.1. On the top level, we have a strutureurve whih inludes a pointer to another data struture indiating the �rst element ofthe next level. On the next level, we have a struture interfae whih onsists of two nextlevel struture points (reall a point is an (x; y) loation in the omputational domain),its beginning and its end, and a pointer to the next interfae. Then a doubly linked listis used for the urve to maintain the overall information on the traked front. Note thatthe interfaes are linked for eah urve individually. Sine we need to keep trak of whih



79traked interfaes must be deleted in Step 4, we would also maintain a ag for eah urvethat tells whether it is an old urve or a new urve. In addition, it would be very useful inStep 1 to inlude a ag for eah urve that indiates the physial type of urve, e.g., shok,interfae, or boundary urve.We now disuss eah step of Algorithm 7.1 in more detail.Step 1: We begin our algorithm by solving a one-dimensional Riemann problem in adiretion normal to eah traked interfae using the values from the adjaent ells as dataand obtain a set of waves traveling with speeds �1l; �2l; � � � ; �ml and jumps r1l; r2l; � � � ; rml.Here the �rst and seond subsripts on the speeds and jumps stand for the wave family andthe index of the interfae respetively. We expet the solution to this Riemann problem toonsist of only one strong wave, orresponding to the shok or interfae being traked, andm� 1 weaker waves. The strong wave is used to help hoose the new interfae loation.To be more preise, we disuss one simple approah in more detail. (Other ways toadvaning fronts may be found in [3℄,[16℄,[17℄.) Let (x�l ; y�l ), � = 1; 2, be points of theinterfae l. Assume that the strong wave is in the pth wave family, and so �pl is the speedof the strong wave on the interfae l. Then the new loation (x�l ;y�l ) of the point (x�l ; y�l ),under the urrent time step k, an be alulated by simply using the formula x�ly�l !=  x�ly�l !+ �pl k �l�l ! (7:1)where (�l; �l)T is the normal diretion to the interfae l, � = 1; 2. Performing the samealulation as in (7.1) on all the interfaes in a given urve, we obtain an ordered set ofpoints f((x�l ;y�l ); � = 1; 2); l = 1; 2; � � � ; ng where n is the number of interfaes in a urve.Here we assume that the original set of points, f((x�l ; y�l ); � = 1; 2); l = 1; 2; � � � ; ng, is anordered set.Note that in many problems, e.g., when there is strong shear layer ow along the dis-ontinuities, the traked interfaes should be advaned not only in the normal diretion tothe interfae as illustrated in Figure 7.2a, but also in the tangential diretion. This anbe done quite easily by moving points tangential to the interfae using, for example, anaverage tangential veloity from the data of the normal Riemann problem. It is easy toshow that doing so gives exat front propagation for linear advetion equations and forsimultaneously diagonalizable linear hyperboli systems. For general linear hyperboli sys-tems, or for nonlinear equations, this front moving proedure gives a good approximationto the front motion.Conneting eah pair of points (x1l ;y1l ) and (x2l ;y2l ) with a straight line using (7.1) or themodi�ed loations whih take aount of the tangential e�et of the ow, for l = 1; 2; � � � ; n,we then obtain the new loation of the traked interfaes at the next time step. Notie thatin general these new interfaes would not join together into a ontinuous urve as seen inFigure 7.2a.To form a ontinuous urve, one simple approah is to take an average of two neighboringpoints (x2l ;y2l ) and (x1m; y1m), where m is the interfae next to the interfae l, for l =2; 3; � � � ; n � 1, and ollet the set of averaged points together with appropriate endpointsto form a new ordered set. Let (�xl; �yl) be the averaged point loation. This results in thefollowing set: f(x11;y11); (�x1; �y1); (�x2; �y2); � � � ; (�xn�1; �yn�1); (x2n;y2n)g: (7:2)



80a)
"old front

b)
o

o

o

o

o

o

"old front
Figure 7.2: Front propagation. a) Traked interfaes after propagating the original inter-faes using the strong wave speeds obtained from the normal Riemann problems underthe urrent time step. b) New traked interfaes after taking an average of two neighbor-ing points on the new interfae loation shown in a), and onneting the resulting points(indiated by large dots) onseutively by straight lines.For simpliity, we write the set (7.2) asf(x1; y1); (x2; y2); (x3; y3); � � � ; (xn; yn); (xn+1; yn+1)g: (7:3)Finally, a ontinuous pieewise linear urve, the new loation of the traked interfae, isobtained by onneting the points in set (7.3) onseutively by straight lines as shown inFigure 7.2b.Mathematially, this pieewise linear urve is represented by a parametri formP(s) = (X (s);Y(s)) (7:4)where x = X (s) and y = Y(s) are pieewise linear polynomials, and s is the parameteralong the urve. Assume that s is in [0; 1℄. To assign the parametri value s to eah point(xk; yk), we use the simplest approah by hoosing a uniform mesh size, 4s = 1=n, andsetting sk = (k � 1)4 s. Then from points (xk; yk) in (7.3) and the parametri variablessk, the pieewise linear polynomials take the formXk(s) = ak + bksYk(s) = k + dks (7:5)where ak = xksk+1 � xk+1sksk+1 � skbk = xk+1 � xksk+1 � sk
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Figure 7.3: A new traked interfae is reated in the front propagation proedure, in Step 2,that leads to a subdivision of ells. a) Grid at time step n before inserting the new trakedinterfae to the grid. b) One-grid approah. In time step n, we split Cib in two, settingUni = Unib . In time step n+1, we eliminate the old traked interfae, and merge the Cia andCib to Cid using (7.7). ) Two-grids approah. In time step n, we split the original regularell i in two, setting Unid using (7.7) and Uni = Unib . Our grid system onsists of both theold grid in a) and the new grid in ).k = yksk+1 � yk+1sksk+1 � sk (7.6)dk = yk+1 � yksk+1 � skfor sk � s � sk+1 and k = 1; 2; � � � ; n, and hene we get the parametri representation ofthe pieewise linear urve P(s) = (X (s);Y(s)) withx = X (s) = fXk(s); k = 1; 2; � � � ; ngy = Y(s) = fYk(s); k = 1; 2; � � � ; ng:More generally, based on the data (xk; yk; sk) we ould use some sort of urve �tting pro-edures or the reonstrution tehnique of the ENO (essentially nonosillatory) method[48℄to onstrut a smoother parametri urve P(s) to any desired order. The possibility ofusing this higher order representation of the traked front, in partiular onstruted by theENO method, will be disussed further in the next hapter.Step 2: Having gotten the new loation of the traked front P(s) at the next time step,we then insert it into the underlying grid. This an be done quite easily by marhing alongthe parametri urve P(s) from s1 to sn+1 and looking for the intersetions of eah of thepieewise linear polynomials (Xk(s);Yk(s)) with the underlying �xed grid. This determinespoints for interfae. Conneting the resulting points by a straight line in an orderly way, weobtain the urve and also the new grid at the next time step.Now sine eah new traked interfae subdivides some ell into two subells, we mustassign a ell value to eah of these subells. As mentioned earlier, there are two approahesto setting up the data struture for the subdivided ell, and hene there are two ways toassign the subell values. If we adopt the �rst approah, i.e., we treat the old and newtraked interfaes as being in the same grid ell, as in the one-dimensional front traking
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Figure 7.4: Wave propagation in Step 3 (only some of the waves are drawn). Eah waveis propagated independently. For waves passing through eah other the interation is lin-earized. Note that the traked waves are propagated lose to the traked interfae intro-dued in Step 2.algorithm, the simplest way to do this is to assign the previous ell value to eah subell, seeFigure 7.3b. Whereas, if we adopt the seond approah, treating the old and new trakedinterfaes as being in two di�erent grid ells, the old ell and the new ell, eah subellwould be initialized by a value based on the appropriate weighted ombination of the oldell values, see Figure 7.3.Step 3: One the new grid is onstruted, we then update the ell average Unj byapplying the �nite volume wave propagation methods desribed in Chapter 6, see Figure 7.4for illustration. As in the one-dimensional algorithm, beause of the arefully hosen grid,the traked disontinuity is propagated lose to the traked interfaes. There is little orno smearing of the traked wave during the averaging proess. Smooth ow is apturedas usual. Again, near traked interfaes, waves may propagate through several ells dueto the fat that we have reated small subells. In the next hapter, we perform errorestimation to study stability properties of this wave propagation method using various�nite volume approahes. The error behavior and auray near the traked interfae willalso be examined.It should be mentioned that, in priniple, we an use any �nite volume method to updatethe solution on this nonuniform grid reated by the front traking algorithm. The best wayto do this that ahieves higher order of auray, even for ells near the traked interfaes,is still under study. We will show some preliminary results in the next hapter that givesome indiations of what one should do to aomplish this, however.Step 4: We now delete the old traked interfaes from the grid system. Again, wehave to disuss two di�erent situations. First, in the one-grid approah, to delete the oldtraked interfaes would orrespond to merging two subells into one, and the ell value inthe ombined ell would be alulated by the appropriate weighted ombination of these



83two deleted subells to maintain the orret ell average. For example, in Figure 7.3b theold traked interfae is deleted from the grid ell. Let Cid denote the ell after deletion.Then the ell average of the Cid ell beomesUn+1id = AiaAid Un+1ia + AibAidUn+1ib (7:7)where Un+1ia , Un+1ib are the ell averages in the Cia and Cib ells respetively; Aia and Aibare the orresponding areas of the subell, and Aid is the area of the Cid ell.Alternatively with the two-grids approah, only grid ells whih ontain exlusively oldtraked interfaes need to apply the above averaging proedure, beause on grid ells whihonsist of both old and new traked interfaes this proedure has already been used in Step3 to assign new subell values.7.2 The Euler Equations and Boundary ConditionsBefore presenting numerial results with this front traking algorithm, we introdue the two-dimensional version of the Euler equations of gas dynamis and disuss the implementationof the solid wall boundary onditions for this system.The invisid Euler equations of gas dynamis in two dimensions have the form��t 0BBB� ��u�v�E 1CCCA+ ��x 0BBB� �u�u2 + p�uv(�E + p)u 1CCCA+ ��y 0BBB� �v�uv�v2 + p(�E + p)v 1CCCA = 0; (7:8)where �, u, v, p, E are the density, veloity in the x-diretion, veloity in the y-diretion,pressure, and total energy of gas per unit mass, respetively. We again assume the equationof state satis�es the �law; so the internal energy is e = 1�1p=� and the total energy ofgas per unit mass is E = e+ 12(u2 + v2).As in one spae dimension, the wave propagation approah is very easy to apply forvarious boundary onditions. Nonreeting-outow boundaries and periodi boundariesan be handled in a manner quite similar to the one-dimensional ase. Here we devote ourdisussion solely to the most interesting ase, the solid wall boundary.At a solid wall boundary, the proper boundary ondition for the Euler equations iszero normal veloity. Now onsider the grid on�guration shown in Figure 7.5a where aCartesian grid is ut o� by an irregular boundary. In the wave propagation approah, wavesresulting from solving one-dimensional Riemann problems at the ell boundaries are usedto update ell values. To ahieve the solid wall boundary ondition, waves whih leave atthe boundary are now reeted to the interior domain, as in the one-dimensional ase, seeSetion 3.2.For example, Figure 7.5a shows a wave originating from the Riemann problem betweenells (i; j) and (i + 1; j) that passes all the way through the irregular ell (i + 1; j). Theportion of this wave that lies beyond the boundary is then reeted normal to the boundarysegment and bak into the omputational domain, as shown in Figure 7.5b. This reetedwave arries a reeted jump �rp and is used to update ell averages that overlap with thereeted wave, in this ase ells (i+1; j) and (i+1; j�1). The relation between the reeted
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i i+ 1Figure 7.5: a) Wave propagating through a small boundary ell and out of omputationaldomain. b) Reeted wave atually used.jump �rp and the outgoing jump rp that ful�lls the solid wall boundary ondition an beobtained by �rst rotating rp to the �-� (normal-tangential) oordinates at the boundary,negating the normal veloity, and then rotating the resulting jumps bak to the Cartesianoordinates[61℄,[62℄.For onveniene we use an operator �, alled the rotation operator, to denote theoordinate transformation of the veloity �eld from the Cartesian oordinates to the �-�oordinates. For the Euler equations (7.8),� = 0BBB� 1 � ��� � 1 1CCCA : (7:9)Reall that � = os �, � = sin �. It is also onvenient to de�ne the inverse of the rota-tion operator, ��1, whih maps the veloities in the �-� oordinates bak to the originaloordinates. With these notations, we may simply write�rp = �R(rp)to express the above wave reetion proedure, where R is an operator of the formR = ��10BBB� 1 �1 1 1 1CCCA�: (7:10)Similarly, the reeted slope ��p is related to the outgoing slope �p by��p = �R(�p):
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Figure 7.6: Grid used for the radially symmetri expanding shok wave. a) Grid for theinitial data. b) Final grid after 14 time steps (time t = 0:1).In addition to reeting waves, we need to solve a one-dimensional Riemann problemnormal to the boundary with data ur = �( ~U) and ul = R(ur), where ~U an be obtainedeither from data in the adjaent ell or from some interpolation method[7℄. With this initialdata there is only one inoming wave that a�ets the ell values. Of the other three waves,the two ontat disontinuities will have zero strength and zero veloity, while the outgoingimage of the inoming wave is ignored.7.3 Radially Symmetri Shok WavesWe now show results obtained using this front traking algorithm. As a �rst example, weonsider a radially symmetri expanding shok wave. Outside of a irle of radius r0 = 0:2,we set � = 1:4; u = 0; v = 0; p = 1:Inside the irle, the initial data is:�(x; y; 0) = 5:143204u(x; y; 0) = 2:045108 (x� x0)r=r20v(x; y; 0) = 2:045108 (y � y0)r=r20p(x; y; 0) = 9:045462where r2 = (x � x0)2 + (y � y0)2 is the distane from the enter (x0; y0) = (0:5; 0:5). Theinitial grid is shown in Figure 7.6a where the initial shok is inserted as an interfae thatsubdivides some ells in the underlying 40 � 40 grid.After 14 time steps (time t = 0:1 and Courant number � = 0:9), we obtain the resultsshown in Figure 7.7 on the grid shown in Figure 7.6b. Notie that the traked shok
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Figure 7.7: Results for the radially symmetri expanding shok wave. a) Density ontoursat time t = 0:1. b) Cross setion of density along line y = 0:5. The solid line is the \true"solution obtained from solving the system ut+ f(u)r =  (u) with appropriate soure termsfor the radial symmetry using the one-dimensional front traking algorithm. The dottedpoints are the two-dimensional result.remains smooth and irular and appears to be very well loated. The density ontourplot in Figure 7.7a is not very sharp due to the graphis routine whih plots the solutionprojeted onto a uniform grid. The ross-setion along y = 0:5 shown in Figure 7.7b showsthe sharpness of our result (dotted points) muh more learly.Note the solid line in this �gure is the \true" solution as alulated with our one-dimensional front traking algorithm on the system ut + f(u)r =  (u) with appropriatesoure terms for the radial symmetry, using h = 0:001. The two-dimensional results shownabove were obtained using the high resolution Godunov method on the regular ells andthe Godunov method with tangential splitting on the irregular ells, with  = 1:4 on a unitsquare domain ([0; 1℄ � [0; 1℄). No slope is introdued for the irregular ells.Next, we onsider a radially symmetri onverging shok wave. The initial data nowonsists of two irular regions. Inside of a irle of radius r0 = 0:36, we have density 1:4,zero veloity, and pressure p = 1. Outside the irle of radius r0 and inside a irle of radiusr1 = 0:46, the initial data is:�(x; y; 0) = 5:143204u(x; y; 0) = �2:045108 ((r � r1)=(r0 � r1))2(x� x0)=rv(x; y; 0) = �2:045108 ((r � r1)=(r0 � r1))2(y � y0)=rp(x; y; 0) = 9:045462The outer irle is introdued to maintain the radial symmetry of the ow. Results areshown in Figure 7.8. We again observe good agreement of the results. In this alulation,
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Figure 7.8: Results for the radially symmetri onverging shok wave. a) Density ontoursat time t = 0:1. The outer irle shown in the �gure is a solid wall boundary. b) Crosssetion of density along line y = 0:5.the high resolution method used in the previous example was employed to update the ellvalues, and the wave reetion proedure, desribed in Setion 7.2, was used to handle thesolid wall boundary at the outer irular boundary.



Chapter 8ERROR ANALYSISAs in our one-dimensional front traking algorithm, we use a high resolution method thatis essentially seond order aurate away from the traked interfaes. We use front trakingin order to resolve disontinuities properly, and so our method does not su�er the standardloss of auray due to smearing that a shok apturing method would su�er. Nevertheless,there an be some loss of auray near the disontinuity due to the nonuniformity of thegrid and the pieewise linear representation of the traked disontinuity. A planar isolateddisontinuity separating two onstant states is traked perfetly, but in a more realistisituation the disontinuity may have some urved struture and interat with some smoothbakground ow. There are several fators that an then lead to loss of auray near thetraked disontinuity, suh as the pieewise linear representation of the disontinuity, loss ofauray due to the use of the nonuniform and time-dependent grid, the hoie of slopes inneighboring ells, and the linearization of the interation between the traked disontinuityand weak waves from the neighboring ell interfaes. Sine it is diÆult to analyze errorsarising in some of these instanes, here we will only examine the �rst two problems in somedetail, and leave other problems as future work. To begin, we report results on the orderof auray for some sample problems where exat or \true" solutions are available.8.1 PreliminariesAs in the one-dimensional ase, see Setion 4.1, we use Enj to denote the global error of thegrid ell j at time tn. We assume that the global error in some partiular norm, k En k,an be expressed in relation to O(hp), in whih the largest real number p is alled the orderof auray of a method as h approahes zero for all tn � 0. Here h is the mesh size in boththe x- and y-diretions of the underlying uniform grid ells. The norms we use here are:the 1-norm, k En k1 =Xj AjjUnj � unj j;where Aj is the area of the jth grid ell, and the max-norm,k En kmax = maxj jUnj � unj j:In addition to omputing errors over the entire grid ells using the above norms, we alsoompute errors for ells near the traked disontinuity. This is done using the following1-norm, k En�� k1 = 1h Xk2��AkjUnk � unk j;



89where now the sum is over the set of irregular ells in either the state behind the dison-tinuity ��, or the state ahead the disontinuity �+. The order of auray of a method isomputed in a manner similar to what is desribed in Setion 4.1.We now onsider some sample problems and investigate the order of auray that isahieved by using our front traking algorithm.Example 8.1. We �rst onsider a salar linear problem onsisting of the linear adve-tion equation ut + aux + buy = 0 for 0 � x � 1, 0 � y � 1 (8:1)with initial data u(x; y; 0) = ( 2 + 1:5e20(��0:32) � < 0:321 + 0:5 tanh(6�(0:36 � �)) otherwise (8:2)where a = os 5o, b = sin 5o, and � = ax+by. This initial data gives an oblique disontinuityat an angle � = 5o to the y-oordinate with an extreme point just behind the disontinuity.The exat solution for this problem an be obtained by simply shifting this initial pro�lein the ow diretion (os 5o; sin 5o) with speed 1. Note that if we view this problem in thediretion of (a; b), this is essentially a one-dimensional problem; the same one as we havestudied previously in Example 4.1, but now the problem is solved on a two-dimensional gridwith an oblique pro�le.As in the one-dimensional error estimation performed in Setion 4.1, we examine theerror behavior of the method as time evolves and as the mesh is re�ned. For this problem,we perform error estimation up to time t = 0:1 at 5 di�erent times (at every integer multipleof the time interval k = 0:02) with a mesh re�nement sequene fhl = 21�l=25; kl = hl=2; l =1; 2; 3g. The result is shown in Figure 8.1 where the errors and order of auray in the 1-norm and max-norm are presented for the Godunov method, the rotated Godunov method,and the high resolution Godunov method. From the �gure, we observe the poor order ofauray of the methods we employed here, partiularly, in the max-norm. This is alsothe ase for the one-dimensional test as seen in Figure 4.2, and has been disussed in somedetail previously, see Chapter 4. Notie that there is little distintion between the resultsobtained by using the Godunov method and the rotated Godunov method. For onvenienein reading, we again plot the errors in the logarithmi sale with base 10. (This is also thease for other �gures shown below relating to errors of a method.)It should be mentioned that beause the work inreases a great deal by introduingslopes for the irregular ells, for simpliity, in the experiments performed here we do notinorporate the slope information for the high resolution method on these ells. We use the\MUSCL" limiter (2.12) to determine slopes of the regular ells.Example 8.2. Next, we onsider a radially symmetri problem arising from the Eulerequations (7.8). As initial onditions, we take the data from the example of an expandingshok wave disussed in Setion 7.3. For this problem, we ompute the \true" solution by�rst applying the one-dimensional front traking algorithm to the system ut+f(u)r =  (u)with the appropriate soure terms for the radial symmetry, using h = 0:001, and theninterpolating this one-dimensional result on a two-dimensional grid.Table 8.1 shows results in density of an auray study up to time t = 0:1 using theGodunov method, the rotated Godunov method, the Godunov method with tangential
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Figure 8.1: An auray study of the front traking algorithm for the linear advetionequation (8.1) with initial data (8.2) up to time t = 0:1. All the errors shown in the�gure are plotted in the logarithmi sale with base 10. Error estimation is performed at 5di�erent times with a mesh re�nement sequene fhl = 21�l=25; l = 1; 2; 3g.



91splitting, and the high resolution Godunov method. From it, we see that in the 1-norm theGodunov method and the rotated Godunov method are �rst order aurate, the Godunovmethod with tangential splitting is order p = 0:92, and the high resolution Godunov methodis order p = 1:65. In the max-norm, the order of auray for the methods used here is notas good as we might hope to obtain. This is expeted, however, beause unlike the previouslinear problem where the grid is exat, here the error on the grid due to the disrepanybetween the traked interfaes and the exat shok loation ontributes a soure of error.Note in the table the number in the parenthesis represents the exponent of the base 10, forexample, 9:9149(�2) stands for 9:9149 � 10�2.In the same table, we also show the errors and auray for the irregular ells and thetraked shok position. We observe reasonable results using our front traking algorithm.For example, for the high resolution method we have order p = 1:43 in the post-shokdensity, order p = 0:84 in the pre-shok density, and order p = 1:72 in the shok position.Note that the error for the traked front loation at time tn is de�ned byEnfront = rntrue � �rnomputed;where rntrue is the \true" shok loation in the radial diretion from the enter (x0; y0) =(0:5; 0:5), and �rnomputed is the averaged shok loation obtained by averaging the radialdistanes of the points on the traked shok.To examine more losely the error behavior of the irregular ells and the traked shok,in Figures 8.2, 8.3, and 8.4, we plot the data that is used to ompute the errors and aurayshown in the table. It is learly seen that our solutions onverge to the \true" solution asthe mesh is re�ned, and the solution varies from angle to angle in an osillatory way. Notiethat there are big spikes appearing in some of the �gures, partiularly, in the pre-shok statein Figure 8.3. One of the reasons for the ourrene of the spikes is due to the fat thatwe use the large time step approah on a grid whih ontains the approximate loation ofthe traked disontinuity, see Figure 7.4. Beause of this, it is unavoidable to have somenumerial di�usion of the solution. Even though the amount of di�usion is small, when thegrid ell is tiny the ontribution of this to the ell value will be signi�ant. This ausesa big spike of the error. Despite this fat, our numerial result is still onvergent with areasonable rate. No stability problem has been observed for this test.For omparison, we have also done experiments using the standard shok apturingmethods. The results are shown in Table 8.2. It is lear that our front traking result issuperior to that obtained from shok apturing. For this problem, Courant number �0 = 0:5was used in the experiments.8.2 Traked Front Representation and AurayIn the above auray study, we used the pieewise linear parametri urve P(s) in (7.5)to approximate the traked front position after propagating the front in Step 1 of the fronttraking algorithm 7.1. We �nd the intersetions of this urve P(s) with the underlying grid,and use pieewise linear segments that onnet the resulting interseting points to make thetraked front and also the grid at the next time step, Step 2 of the algorithm 7.1. For planardisontinuities, this is a good approximation, but more generally for urved disontinuitiesthis pieewise linear approximation of the front is less desirable. In this setion, we onsider
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Table 8.1: An auray study in density of the front traking algorithm for a radiallysymmetri expanding shok wave.a) Godunov methodh k En k1 k En kmax k En�� k1 k En�+ k1 jEnfrontj0.04 9.9149(-2) 6.3076(-1) 8.8315(-1) 1.1592(-1) 1.1127(-2)0.02 4.5955(-2) 4.2825(-1) 4.3967(-1) 6.1691(-2) 6.3594(-3)0.01 2.3739(-2) 4.5908(-1) 2.1463(-1) 4.3657(-2) 3.5389(-3)order p 1.03 0.23 1.02 0.70 0.83b) Rotated Godunov methodh k En k1 k En kmax k En�� k1 k En�+ k1 jEnfrontj0.04 1.1368(-1) 5.9339(-1) 9.1022(-1) 1.4420(-1) 9.9987(-3)0.02 5.1797(-2) 1.3328(0) 5.0736(-1) 8.8274(-2) 6.3172(-3)0.01 2.6670(-2) 4.1488(-1) 2.2343(-1) 4.5132(-2) 3.8698(-3)order p 1.05 0.26 1.01 0.84 0.68) Godunov method with tangential splittingh k En k1 k En kmax k En�� k1 k En�+ k1 jEnfrontj0.04 1.0565(-1) 5.3912(-1) 8.2659(-1) 1.2996(-1) 1.3031(-2)0.02 5.5341(-2) 3.1151(-1) 4.9793(-1) 7.3319(-2) 7.9232(-3)0.01 2.9540(-2) 9.6968(-1) 2.1376(-1) 3.8686(-2) 4.6351(-3)order p 0.92 { 0.98 0.87 0.75d) High resolution Godunov methodh k En k1 k En kmax k En�� k1 k En�+ k1 jEnfrontj0.04 9.0823(-2) 4.5326(-1) 7.3904(-1) 1.2855(-1) 1.0123(-2)0.02 2.7692(-2) 4.5839(-1) 2.4489(-1) 7.8437(-2) 3.6884(-3)0.01 9.2866(-3) 1.4665(-1) 1.0243(-1) 3.9976(-2) 9.3533(-4)order p 1.65 0.81 1.43 0.84 1.72
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Figure 8.2: A omparison of the density in the post-shok irregular ells, ��, for a radiallysymmetri expanding shok wave. The straight line shown in the �gure is the \true"solution.
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Figure 8.3: A omparison of the density in the pre-shok irregular ells, �+, for a radiallysymmetri expanding shok wave. The straight line shown in the �gure is the \true"solution.
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96Table 8.2: An auray study in density of the shok apturing method for a radiallysymmetri expanding shok wave.a) Godunov method b) Rotated Godunov methodh k En k1 k En kmax h k En k1 k En kmax0.04 2.1519(-1) 1.3109(0) 0.04 2.6508(-1) 1.2737(0)0.02 1.2980(-1) 1.2179(0) 0.02 1.5829(-1) 1.1269(0)0.01 7.0001(-2) 1.3261(0) 0.01 9.1466(-2) 1.1853(0)order p 0.81 { order p 0.77 {) Godunov with tangential splitting d) High resolution Godunov methodh k En k1 k En kmax h k En k1 k En kmax0.04 2.2844(-1) 1.3172(0) 0.04 1.5172(-1) 1.2577(0)0.02 1.4063(-1) 1.1829(0) 0.02 8.3530(-2) 1.2973(0)0.01 7.6326(-2) 1.2346(0) 0.01 4.1517(-2) 1.3778(0)order p 0.79 { order p 0.93 {one simple modi�ation of the algorithm that uses a pieewise quadrati parametri urveP(s) for the front position. Doing so should give us a more aurate front position, and soa more aurate grid when this urve is inserted into the grid. For simpliity, we still usepieewise linear segments as the grid interfaes. We will ompare results obtained usingthese two di�erent parametri representation of the fronts.Reall that in Step 1 of the front traking algorithm, we move eah traked interfae indiretions normal and tangential to the interfae. We apply an interpolation sheme thatdetermines a set of points (xk; yk; sk) for the new traked front position. In Setion 7.1, thesepoints were used to onstrut the pieewise linear parametri urve P(s). Here, instead,we use this set of data to make a pieewise quadrati parametri urve. In partiular, weemploy the reonstrution tehnique of the ENO method[48℄ to do this in whih we makea divided di�erene table from the data and use the adaptive stenils whih only selet thesmallest values from the divided di�erene table to form P(s) in Newton form.Let x[sj ; sj+1; � � � ; sj+k℄ be the divided di�erene of order k. Then by the above ENOonstrution, we get the pieewise quadrati polynomialXk(s) = xk + ak(s� sk) + bk(s� si)(s� sj) (8:3)where ak = x[sk; sk+1℄bk = �(�k)x[sk�1; sk; sk+1℄with �k = x[sk; sk+1; sk+2℄=x[sk�1; sk; sk+1℄;



97and � is some limiter funtion, say the \minmod" limiter (2.10). The stenils i and jin (8.3) are hosen to interpolate points whih have the smallest values of the seondorder divided di�erene from the neighboring points. Note that the divided di�erenex[sj; sj+1; � � � ; sj+k+1℄ of order (k+1) is related to the divided di�erenes x[sj; sj+1; � � � ; sj+k℄and x[sj+1; sj+2; � � � ; sj+k+1℄ of order k by the equationx[sj; sj+1; � � � ; sj+k+1℄ = x[sj+1; sj+2; � � � ; sj+k+1℄� x[sj; sj+1; � � � ; sj+k℄sj+k+1 � sj ;see Powell[85℄. Similarly, Yk(s) an be onstruted in the same manner. Hene we get thepieewise quadrati urve P(s).We now onsider two examples and examine the front auray of our front trakingalgorithm. As a �rst example, we onsider evolving a irular front(x� 14)2 + (y � 14)2 = (15)2in the onstant veloity �eld (u; v) = (1; 1) on a unit square domain. For this problem, ineah time step, we get the exat front position after Step 1 of the front traking algorithm.There are some errors introdued in the front position, however, after Step 2 of the algorithmwhere we insert the new front position into the underlying grid. This makes the grid thatis used in Step 3 to update the ell values.Results of an auray study in the front position up to time t = 0:4 is shown inFigure 8.5 where the pieewise linear and pieewise quadrati urves P(s) are used in thetest. It is interesting to see that the results are indistinguishable from these two di�erentrepresentations of the traked front; they all onverge roughly at the same rate with thesame error magnitude. Notie that in eah ase the error grows as time evolves whih yieldsthe redution of the order of auray. This is expeted, however, beause in eah time stepthe traked front is inserted into the grid, and that tends to lip the front, see Figure 8.6where the grids onstruted in the front traking algorithm are shown. Here the time stepis hosen by k = hl=2 where hl = 21�l=25, l = 1; 2; 3. Note that for this problem, it ispossible to improve the front auray by taking a larger time step sine doing so reduesthe number of time steps in the experiments and hene the errors due to inserting thetraked front into the grid.Our next example of examining the front auray onerns evolving an elliptial front(x� 12)2 + 32 y2 = (14)2in a rotating veloity �eld, (u; v) = (�y; x) on a square domain, [�1; 1℄� [�1; 1℄. This frontrotates ounterlokwise about the origin.Figure 8.7 shows the evolution of the traked fronts up to time t = 5:375 using boththe pieewise linear and pieewise quadrati representation of the fronts. We now observesome errors of the traked front; the size of the interfae shrinks, and the shape beomesirular. This result is expeted beause, as in the previous irular front problem, theinsertion of the front into the grid leads to some loss of auray. In addition, there areerrors introdued in the front-moving proedure, in whih the speed of the traked front isobtained via some interpolation method. Here we use one simple approah that takes the



98

0.10 0.20 0.30 0.40

-3
.0

-2
.8

-2
.6

-2
.4

-2
.2

1

1

1 1 1

2

2

2
2

2

3

3

3
3 3

0.10 0.20 0.30 0.40
-3

.0
-2

.8
-2

.6
-2

.4
-2

.2

1

1

1 1 1

2

2

2
2 2

3

3

3
3

3

0.10 0.20 0.30 0.40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time
jEn frontj

Pieewise linear

time
jEn frontj

Pieewise quadrati

time
orderofauray linearquadrati

Figure 8.5: An auray study in the front position of the front traking algorithm usingthe pieewise linear and pieewise quadrati urves P(s). Results for advaning a irularfront in the onstant veloity �eld (u; v) = (1; 1) are shown.average speed on the two sides of the traked front as the front propagation speed. (It ispossible to obtain a more aurate result if we employ a more sophistiated interpolationmethod for the front speed.) Note that there is little distintion between the results forthese two di�erent representations of the traked front.Based on the results shown in this setion, we onlude that the use of a higher orderrepresentation of the front in Step 1 of the algorithm is not enough to improve the aurayof the traked front loation. Work is in progress to �nd an eÆient way to do this. Itshould be mentioned that even with the simplest pieewise linear approah, we still getreasonable front struture for many ompliated problems, see Chapters 9 and 10.8.3 Nonuniform Grids and AurayAs we have seen from the previous examples, the grid used in our front traking algorithmis nonuniform and varies with time. Sine in this instane it is diÆult to do theoretialanalysis of the traking algorithm, here we perform error estimation and demonstrate apotential problem of loss of auray near the traked interfaes due to the use of nonuniformand time-dependent grids. Our aim is to identify one possible soure of error arising fromour traking algorithm, and hopefully pave the way for future algorithm development.As an example, we onsider the linear advetion equationut + ux + uy = 0 for 0 � x � 1, 0 � y � 1 (8:4)with smooth initial data u(x; y; 0) = 1 + 0:5 sin(2�x) sin(2�y) (8:5)and periodi boundary onditions. We ran this problem on a time-dependent grid where airular interfae is inserted as an interfae in the underlying uniform grid, and advanedin the ow diretion (1; 1) with speed p2, see Figures 8.6 and 8.8.
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t = 0 t = 0:2t = 0:4Pieewise linear
t = 0 t = 0:2t = 0:4Pieewise quadrati

Figure 8.6: Grids onstruted in the front traking algorithm for the evolution of a irularfront in the onstant veloity �eld (u; v) = (1; 1) using the pieewise linear and pieewisequadrati urves P(s). The underlying uniform grid is 25� 25.
t = 0t = 5:375

Pieewise linear
t = 0t = 5:375

Pieewise quadrati

Figure 8.7: Evolution of an elliptial front in a rotating veloity �eld (u; v) = (�y; x) usingthe front traking algorithm with the pieewise linear and pieewise quadrati urves P(s).The underlying uniform grid is 80� 80.



100Grid system State variable u

Figure 8.8: Initial onditions for an auray study of the linear advetion equation (8.4)on nonuniform grids.Results of an auray study in the state variable u up to time t = 0:4 are shown inFigure 8.9 where various �nite volume methods are tested. From the �gure, we observesome loss of auray in the max-norm, and for ells near the traked interfaes. Beauseof this, we see some redution of the order of auray in the 1-norm. It is not signi�ant,however. Figure 8.10 shows the true solution and the snap shot of the solutions for theauray study shown in Figure 8.9 at time t = 0:4, using h = 0:02. Big errors near thetraked interfaes are learly seen using the Godunov and rotated Godunov methods. Thisis expeted, however, beause for this problem the traked interfae is moving with exatlythe same speed as the ow, and so the solution on eah side of the interfae is independentof the data on the other side, exept for small errors due to the grid onstruted in the fronttraking algorithm. This situation is similar to what we have seen in the one-dimensionalase, see Setion 4.3, Figure 4.14.Notie that the error for the high resolution method is somewhat smaller than for theGodunov methods, even though we used pieewise onstant funtions for the irregular ells,and pieewise linear funtions only for the uniform ells. We would expet to obtain betterresults if slopes are introdued also in the irregular ells.For omparison, we also ran this problem using the shok apturing methods on uniformgrids and �xed nonuniform grids (the grid shown in Figure 8.8). Figure 8.11 shows resultsfor the uniform grids, in whih we observe �rst order auray in the 1-norm and max-norm for the Godunov and rotated Godunov methods, and seond order auray for theLax-Wendro� method.Figure 8.12 shows results on a nonuniform grids where the loation of the \front" is �xedrather than moving at the advetion veloity, so that the smooth solution moves throughthe grid irregularity rather than moving with it. There is still some loss of auray relativeto the uniform grid but not as bad as what was seen with the moving irregularity, as would



101be expeted.These results show that nonuniformities in the grid an ause a loss of auray in thesmooth struture of the solution near the interfae. The results seen here look partiularlybad for two reasons. First, sine there is only smooth ow and no disontinuities the errorsin the smooth ow are quite obvious and muh worse than what is obtained on a uniformgrid. For a problem with disontinuities aross the interfae (whih is always the asein pratie) the uniform grid method introdues huge errors near the disontinuity whihare not inurred with the front-traking method, so that the balane shifts. Seond, theproblems illustrated here are for the linear advetion equation whih is muh less forgivingof errors than a nonlinear problem with shoks.
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Figure 8.9: An auray study of the front traking algorithm for the linear advetionequation (8.4) with smooth initial data (8.5) on time-dependent nonuniform grids.
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Figure 8.10: Plot of the true solution and the snap shot of the solution for the auraystudy shown in Figure 8.9 at time t = 0:4, using h = 0:02.
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Figure 8.11: An auray study of the shok apturing method for the linear advetionequation (8.4) with initial data (8.5) on uniform grids.
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Figure 8.12: An auray study of the shok apturing method for the linear advetionequation (8.4) with initial data (8.5) on �xed nonuniform grids.



Chapter 9APPLICATIONSHaving analyzed the front traking algorithm and �nite volume approahes on thenonuniform grid, we now present more numerial results for some sample problems involvingshoks and interfaes arising in gas dynamis. As in the one-dimensional tests performedin Chapter 5, our aims here are to validate our results by omparing them to results (eitherexat, numerial or experimental) whih have already appeared in the literature. We alsohope to demonstrate the potential power of using our front traking algorithm on moreomplex problems.The problems we onsider are a shok-vortex interation and a shok-ramp interationfor shoks, and the Kelvin-Helmholtz and Rayleigh-Taylor instabilities for interfaes. In ad-dition, we show one preliminary result for a steady state problem. The �nite volume methodwe use in these alulations (exept for the steady steady problem) is the high resolutionGodunov method on the regular ells, and the Godunov method with tangential splittingon the irregular ells; no slope is introdued for the irregular ells. This method gives theoverall best performane in the error estimations performed in the previous hapter.9.1 Shok Di�rationIn many appliations, shok waves undergo ompliated physial proesses and display rihshok di�ration phenomena. Some interesting di�ration strutures have been observedand doumented in some instanes from both laboratory experiments and numerial simu-lations, e.g., for shok-bubble interation[45℄,[83℄ and shok-ramp interation[35℄,[36℄,[103℄.Here we onsider two typial examples: the shok-vortex interation and the shok-rampinteration, and demonstrate the usefulness of using front traking for investigating theshok di�ration struture.9.1.1 Shok-vortex interation problemAs a �rst example to examine shok di�ration using our front traking algorithm, weonsider a shok wave interating with a vortex pair. As noted in [30℄, this problem andthe related subjet have been an area of ative researh for many years. Most of the workwas motivated by an interest in the noise produed by rokets and high-speed airrafts, andtherefore the researh emphasized the generation of aousti waves. For these problems,the interation of shoks with turbulent ows is a signi�ant soure of noise[115℄. Thisshok-vortex system is an important element of these more omplex proesses, see [28℄,[30℄,and referenes therein for more detail.As initial onditions, we take a planar rightward moving Mah 1:5 shok at x = 0:175with density � = 1:4, zero veloity, and pressure p = 1 in the pre-shok state, and inaddition we put a pair of ounter-rotating isothermal omposite vorties in the pre-shok



107state. Sine this shok is approahing the vorties, interation ours subsequently, seeFigure 9.2.The omposite vortex we use is a vortex with veloity �eldv� = ( v0r=r1 0 < r � r1Ar +B=r r1 < r � r2 (9:1)where v0 is a onstant whih haraterizes the strength and rotation diretion of the vortex,r2 = (x� x0)2 + (y � y0)2 is the distane from the vortex enter (x0; y0), and A and B areonstants so that the veloities are ontinuous at r = r1 and r = r2. Inside the vortex, thepressure �eld is spei�ed so that the pressure gradient balanes the entripetal foredpdr = �v2�r : (9:2)Notie that sine the vortex is assumed to be isothermal, the density � inside the vortexonly di�ers from the pressure p by a onstant, i.e., � = p=T0 where T0 is the onstanttemperature in the pre-shok state; assuming the universal gas onstant R = 1. So theabove pressure equation (9.2) an be integrated, and hene p an be obtained expliitly.The parameters we use for the vortex pair are given by:upper vortex: (x0; y0) = (0:4; 0:7), v0 = 0:6944, A = �2:3148, B = 0:09259lower vortex: (x0; y0) = (0:4; 0:3), v0 = �0:3472, A = 1:1574, B = �0:04629and r1 = 0:1 and r2 = 0:2 in eah ase. Following the naming used in [30℄, a vortex is alleda \strong" vortex if the maximum veloity v0 in the vortex ore is exatly equal to the owveloity vf behind the shok, and is alled a \weak" vortex if v0 � vf . Here the aboveparameters are hosen so that the upper vortex is a \strong" vortex while the lower vortexis a \weak" vortex. The upper vortex is rotating in a ounter-lokwise manner, whereasthe lower vortex is rotating lokwise.Figures 9.1 and 9.2 show results for this problem after 100 time steps (time t = 0:387).In Figure 9.1a, we show the traked shoks, plotted every 4 time steps. From it, we observethat the shok struture is not signi�antly di�rated by its interation with a weak vortex,while it is a�eted by its interation with a strong vortex.To make use of the traked shok information to diagnosis the shok di�ration astime evolves, one popular approah is to produe a history of the amplitude of the frontperturbation, partiularly produing the so-alled min-max front history[11℄. In the presentase, at eah time step, we monitor the minimum and maximum horizontal distane (xminand xmax) from the shok to the left boundary x = 0. The result is shown in Figure 9.1bwhere we have run the problem for the interation of a shok with a single vortex so as todistinguish the di�erene in the front perturbation with di�erent vortex strengths. Note theperturbation of the shok grows weaker, as the shok moves farther away from the vortex.Figure 9.2 shows the density ontour plot at six di�erent times, plotted every 20 timesteps. Now we an see more di�erenes in the wave struture as the shok passes through thestrong and weak vorties. Although there are aousti waves generated in front and in bakof the shok in eah of the vorties, the waves appearing near the strong vortex apparentlyare more ompressive than the ones appearing near the weak vortex, and eventually forma shok wave, induing omplex wave patterns. Notie that the shape of the vortex isseverely distorted during the stage of wave interation; it tends to form an ellipse afterward.
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Figure 9.1: Results in the shok struture for the shok-vortex interation problem. a)Traked shoks, plotted every 4 time steps. b) A omparison of the history of shok positionsxmin and xmax from the results of the shok-strong vortex interation and the shok-weakvortex interation.Qualitatively, our results agree well with the experimental and numerial results shownin [28℄,[30℄. It an also be demonstrated that some vortiity is generated in this ase.A similar situation in the interation between a shok and bubble is reported in severalreferenes, see, e.g., [83℄.In this example, a 100�100 grid was used on a unit square domain, non-reeting outowboundary onditions were used on the left and right boundaries, and solid wall boundaryonditions were used on the top and bottom boundaries; Courant number �0 = 0:9 wasemployed here.9.1.2 Shok-ramp interation problemOur next example on shok di�ration onerns an oblique shok reetion in whih aninident shok wave interats with a solid wall ramp. This problem has been extensivelystudied over the years beause it simulates various typial and also important shok di�ra-tion patterns, e.g., regular reetions, single Mah reetions, omplex Mah reetions,and double Mah reetions, depending on the Mah number of the inident shok and theramp angle, see [35℄,[36℄ for both numerial and experimental results. Here we onsider onesuh example involving a double Mah reetion.The struture of a double Mah reetion onsists of the inident shok, the �rst Mahstem, the �rst regular shok reetion, the seond Mah stem, and the seond regular shokreetion. The �rst three waves form a triple point, and so do the last three waves. Inaddition, at eah triple point, there is a slip line separating ow between the Mah stemand reeted shok[36℄.
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Figure 9.2: Density ontours for the shok-vortex interation problem up to time t = 0:387,plotted every 20 time steps.



110To start the omputation, an oblique Mah 4:62 shok with an angle normal to a 40oramp is initialized at the ramp orner (x = 0:7) with density � = 1:4, zero veloity, andpressure p = 1 on the left to the shok. (This shok is moving leftward.) For onveniene,the ramp is arranged so that it is aligned with the grid in front of the shok and utsthrough the underlying Cartesian grid in bak of the shok as seen in Figure 9.3a.Figure 9.3a shows the evolution of the traked shok, plotted every 10 time steps. Itis easy to observe that due to the shok-ramp interation a kink whih orresponds to theloation of a triple point is formed. Sine, for the moment, we are not able to handle thetriple point expliitly, we only trak the inident shok (above the kink) and the Mah stem(below the kink), and leave the regular shok reetion to be aptured.Figure 9.3b shows the density ontour plot for the same run at time t = 0:1. Fromit, we an learly see the wave struture around the �rst triple point as desribed above,and an also observe some struture in the downstream triple point. The density ross-setion along the ramp is shown in Figure 9.3 where we ompare our front traking result(drawn in dotted points) with the shok apturing result (drawn in solid line) obtained byusing the non-traked version of the high resolution Godunov method with the same meshsize. We observe good agreement with these two results. Here we used a 160 � 80 grid ona retangular region ([0; 0:8℄ � [0; 0:4℄). The solid wall boundary onditions desribed inSetion 7.2 was applied for the ramp, and the non-reeting outow boundary onditionswere applied for the other boundaries.9.2 Interfae InstabilityInterfaes are ommonly seen in the real world. In many appliations, their behaviors undersmall perturbation are of great importane. Here we onsider two standard problems asso-iated with unstable interfaes: the Kelvin-Helmholtz and the Rayleigh-Taylor instabilities,and study the growth of interfaes using our front traking algorithm.9.2.1 Kelvin-Helmholtz instabilityAs a �rst example of traking an interfae for the Euler equations, we onsider the Kelvin-Helmholtz instability in whih there is an interfae separating two uids of di�erent tan-gential veloities. This interfae is unstable with respet to any sinusoidal perturbation,and often rolls up into large vortial strutures whih serve to entrap the uid. Typialexamples where this instability an our are seen in many appliations, e.g., in jet owand shear layer ow[103℄.Here we onsider one simple setup of the Kelvin-Helmholtz instability. We take onstantdensity �0 and pressure p0 with zero vertial veloity in the omputational domain. Abovethe interfae, we have horizontal veloity u = u0, and below the interfae, we have horizontalveloity u = �u0. For this model problem, there is one dimensionless parameter whihontrols the behavior of this Kelvin-Helmholtz unstable interfae, namely, the Mah numberu0=0[84℄.The initial perturbation of the interfae is given byy = y0 + " sin(kx) (9:3)



111

0.0 0.2 0.4 0.6 0.8

5
10

15

Traked shoksa)

Densityb)

x
�
)
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11240� 40 grid
A B

80� 80 grid
A B

Figure 9.4: A onvergene study of the interfae for the Kelvin-Helmholtz instability. Re-sults for two di�erent mesh spaings, 40� 40 and 80� 80 grids, are shown at time t = 0:48.In eah �gure, urve A is the initial traked interfae at time t = 0, and urve B is the �naltraked interfae at time t = 0:48. Note the veloity �eld is superimposed on the �gure.where " is the amplitude of the perturbation, and k is the wave number. By performing thestandard linear stability analysis, we an derive the perturbed state and use it to initializethe ow, see Appendix A.1 for the analysis and solution. For omparison, in the run shownbelow, we hoose the same parameters as used in Chern et al.[17℄, i.e., we take �0 = 1:4,p0 = 1, u0 = 0:2 (Mah 0:2), y0 = 0:5, " = 0:1, and k = 4�. The omputational domain isa unit square with solid walls on the top and bottom and periodi boundaries on the leftand right.Figure 9.4 shows a onvergene study of the interfae using two di�erent mesh spaings,40 � 40 and 80 � 80 grids. From the �gure, roll-up of the interfae is learly seen on the80 � 80 grid. Note that the initial traked interfae is also shown in the �gure and theveloity �eld is superimposed. Comparing our results with the one shown in [17℄, we seegood agreement on the global struture, but not on the �ne struture around the roll-upon the same grid. In fat, our result on the 80 � 80 grid is very similar to their result onthe 40�40 grid. So this indiates that their front traking method gives a better resolutionnear the traked interfae than the result obtained using our method.9.2.2 Rayleigh-Taylor instabilityOur next example of interfae traking onerns the Rayleigh-Taylor instability in whihthe interfae separates two uids of di�erent densities. Assume that gravity is direteddownwards. This interfae is unstable under any perturbation if the light uid lies belowthe heavy uid. As mentioned in [93℄, typial examples where this instability an ourare in the ollapse of a massive star, the formation of high luminosity jets in rotating gaslouds in an external gravitational potential, the laser implosion of deuterium-tritium fusiontargets, and the eletromagneti implosion of a metal liner. An overview of this problem



113an be found in Sharp[93℄ and Youngs[113℄. For more bakground information on uidinterfae stabilities, one may onsult, for example, Chandrasekhar[14℄ and Shivamoggi[94℄.Here we onsider one simple model for the ompressible ow in whih the visosity,surfae tension, and heterogeneity an be ignored. Then the governing equations for theompressible Rayleigh-Taylor instability take the form��t 0BBB� ��u�v�E 1CCCA+ ��x 0BBB� �u�u2 + p�uv(�E + p)u 1CCCA+ ��y 0BBB� �v�uv�v2 + p(�E + p)v 1CCCA = 0BBB� 00�g�vg 1CCCA (9:4)where g is the gravitational aeleration. Note that soure terms on the right hand side ofthe equations are a result of gravity ating on a unit mass of uid. Hene they are alledthe \gravitational" soure terms.For this model, it is known that there are many fators whih may inuene the behaviorof the Rayleigh-Taylor unstable interfaes[93℄. Among them the following dimensionlessparameters are of great importane. The �rst parameter is the density ratio D = �h=�l(or the Atwood number A = (�h � �l)=(�h + �l)), whih governs the growth rate of smallamplitude perturbation; �h and �l are the density of the heavy uid and the light uid justbelow and above the unperturbed interfae respetively. The seond parameter is the ratioof spei� heats  or other information to desribe the equation of state for the uids. Thethird parameter is a onstant M2 = g�=2h de�ning as the ratio of a gravitational time saleto a sound speed time sale (this indiates the ompressibility of the uids), whih has thee�et of reduing the growth rate; � is the wavelength of the interfae perturbation, and his the sound speed in the unperturbed heavy uid.For omparison purposes, we hoose the same initial setup as used in Gardner et al.[33℄,namely, we introdue a small perturbation of an isothermal equilibrium ow with a atinterfae separating exponentially strati�ed ow above and below the interfae. As in thelaboratory experiments, the heavy uid lies below the light uid and gravity is diretedupwards. For simpliity, we take the same gas with  = 1:4 for both the heavy and lightuids.The unperturbed isothermal equilibrium we use, for ow in both the heavy and lighteduids, is spei�ed by � = �0e�0(y�y0);p = p0 + (�� �0)g=�0;where �0 is equal to �h (in the heavy uid) or �l (in the light uid), �0 = g=20 (0 soundspeed), y0 is the loation of the unperturbed interfae, and p0 is the pressure at y0. Asin the previous example, we introdue a sinusoidal perturbation (9.3) on the interfae totrigger the instability, and we inorporate the linear stability result for the perturbed statesto initialize the ow, see Appendix A.2 for the analysis and solution.Here we hoose the following parameters in the run: density ratio D = 10 with density�h = 1 and �l = 0:1, M2 = 0:5 with h = 1, y0 = 2, k = �, and " = 0:03�=k. Theomputational domain is a retangular region ([0; 1℄ � [0; 4℄) with solid wall boundaries onthe top and bottom and periodi boundaries on the left and right. Soure terms in theequations are handled in a way similar to what is desribed in Setion 5.2.



114Density Pressure

Figure 9.5: Contour plots in density and pressure for the Rayleigh-Taylor instability attime t = 6. Here the heavy uid lies below the light uid, and gravity is direted upwards.Parameters D = 10, M2 = 0:5, and " = 0:03 were used in the run.The results are shown in Figures 9.5 and 9.6 up to time t = 6 using a 40 � 160 grid.Figure 9.5 shows the density and pressure ontour plots, and Figure 9.6a shows the trakedinterfaes at time t = 0 and t = 6. From these �gures, the growth of the interfae andthe formation of a rising bubble and falling spike an be easily seen. In Figure 9.6b, weompare the history of the interfae positions, ymin and ymax { the minimum and maximumvertial distane of the interfae from the bottom boundary y = 0, showing the results ofthe numerial simulation and the linear theory. We observe good agreement of results inthe small amplitude regime. In the large amplitude regime, qualitatively, our result agreeswith the result shown in [33℄, at least as far as the dominant unstable mode is onerned.The results of [33℄ also show a seondary instability below the rising bubble. It is not learwhih result is orret and work is ontinuing to lear up the disrepany of the results.It should be mentioned that this problem (and in general any unstable interfae problem)is very sensitive to small perturbations arising from either the physis or numeris, and thesolution may not onverge when a mesh re�nement study is performed in the abseneof physial visosity[33℄,[74℄. This senario of nononvergene of unstable interfaes (forboth the Rayleigh-Taylor and Kelvin-Helmholtz instabilities) has been further explored byMulder, Osher, and Sethian[74℄. They use the \Hamilton-Jaobi" level set formulation toevolve interfaes and add physial visosity to the equations to study the zero (physial)visosity limit of the Navier-Stokes equations. They observe improvement of onvergene ofresults with larger values of the physial visosity. They also demonstrate that given someamount of physial visosity, there exists a �ne enough grid so that the physial visositydominates the numerial visosity, and so the results are unhanged with respet to furthergrid re�nement.
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Figure 9.6: Results in the interfae struture for the Rayleigh-Taylor instability. a) Trakedinterfaes at time t = 0 and t = 6. b) A omparison of the history of interfae positionsymax and ymin from the results of numerial simulation and linear theory.9.3 Steady State CalulationFinally, we apply our front traking algorithm to another problem of great engineeringinterest: a steady state alulation for the Euler equations, and illustrate the potentialpower of using front traking for steady state problems.The problem we onsider is a Mah 3 inow over a 20o ramp. It an be shown that, underertain assumptions on the boundary onditions, the steady state solution for this problemis an oblique shok with an angle � = 37:8o attahed at the orner of the ramp[25℄. Thisis an interesting and also diÆult problem beause the steady shok attahes at the ramporner. Several other people have run similar problems using standard shok apturingmethods with either body-�tted or Cartesian grids[10℄,[102℄. They observe that diÆultiesat the ramp orner lead to extra entropy prodution near the wall giving an entropy layernear the wall and nononvergene.To simplify the problem, our alulation is based on a �xed \exat" grid in the sensethat the exat shok loation is inserted into an underlying grid. To make the grid evenbetter, we use a body-�tted grid as the underlying grid, see Figure 9.7a. In this ase, weare studying the auray of our numerial method on an \ideal" grid.It is very enouraging that the numerial results obtained using our traking algorithmon this partiular grid do onverge to the orret solution without spurious numerial ar-tifats at the traked shok or along the boundary. An example is presented in Figure 9.7with a 20� 10 grid. In this run, a �rst order Godunov's method is employed for updating
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Figure 9.7: Steady state alulation for a Mah 3 inow over a 20o ramp. a) Grid system.b) Cross setion of Mah number along the ramp. The solid line is the exat solution, andthe dotted points are the numerial result.the ell values in both regular and irregular ells, solid wall boundary onditions are usedon the bottom boundary, and nonreetion-outow boundary onditions are used on theremaining boundaries. Uniform Mah 3 ow (� = 1, u = 1, v = 0) is used as the initialondition for all grid ells, and the iteration is halted when the density variation from theprevious time step to the urrent time step is less than the presribed tolerane, 10�4 inthis ase, after 191 time steps (time t = 3:57). Here we have made no attempt to aeleratethe onvergene to steady state.Extensions of this ode to a Cartesian grid ut by the exat shok loation and theboundary (following Berger and LeVeque[7℄) is still in progress. In this ase, the treatmentof the solid wall boundary beomes ompliated due to the fat that the ell whih ontainsthe ramp orner is subdivided by both the traked shok and boundary segment.



Part IIIPorous Media Flow



Chapter 10OIL RESERVOIR SIMULATIONIn many appliations, the hyperboli onservation laws may be ombined with othertypes of partial di�erential equations, e.g., an ellipti or paraboli PDE, in order to orretlydesribe the problem. In this instane, front traking in the hyperboli part of the entiresystem an still be a very useful tool to provide some vital information for solving theremaining part of the equations. Here we onsider one suh example: oil reservoir simulationin porous media, in whih a hyperboli onservation equation is oupled with an elliptiPDE. We will show some preliminary results for sample problems in both one and two spaedimensions, and demonstrate the usefulness of using front traking for this problem.10.1 PreliminariesWe onsider a simpli�ed two phase ow in a porous medium in whih di�usion, surfaetension, gravity, and heterogeneity of the reservoir an be ignored. We onsider a modelproblem for oil reservoir simulation in whih the uids are oil and water for immisibledisplaement, or oil and solvent, suh as CO2, for misible displaement. This model hasbeen extensively studied in the past, partiularly in the oil industry, beause it simulatesa proess of seondary oil reovery where water or solvent is pumped into the oil �eld tofore oil out of the wells, see, for example, Aziz and Settari[2℄, Peaeman[79℄, Glimm etal.[39℄,[40℄, and referenes therein for more detail.For this two phase ow model, the governing equations onsist of the following equations:st +r � (~qf(s)) =  (s); (10.1)~q = ��(s)rp; (10.2)r � ~q =  (s): (10.3)Here s denotes the saturation of the injeted uid (s = 1 for the injeted uid and s = 0 forthe oil), ~q, a vetor, is the total veloity (oil veloity plus the injeted uid veloity), f(s)is the so-alled frational ow funtion de�ned as the ratio in magnitude of the injeteduid veloity to the total veloity,  (s) is the soure term orresponding to the injetionof uid in wells and/or prodution of oil from wells, �(s) represents permeability dividedby visosity, and p is the pressure. In the above system, Equation (10.1) expresses theonservation of mass of the injeted uid, Equation (10.2) is Dary's law whih states thatthe total veloity is proportional to the pressure gradient, and Equation (10.3) expressesthat the underlying uids are inompressible. The derivation of these equations along withother physis of ow through porous media an be found in Sheidegger[92℄.In pratie, the funtions �(s), f(s) we use are�(s) = s2 + ��1(1� s)2; (10.4)f(s) = s2=�(s); (10.5)



119for immisible displaement, and �(s) = (s+ ��1=4(1� s))4; (10.6)f(s) = s; (10.7)for misible displaement where � is the visosity ratio of the underlying uid; the oilvisosity over the injeted uid visosity.It is interesting to note that in this model there is a dimensionless parameter alled thefrontal mobility ratio M de�ning as M = �(sl)=�(sr) whih haraterizes the stability ofthe interfae (for M � 1 the interfae is stable, while for M > 1 the interfae is unstable,see, for example, [19℄,[39℄,[41℄,[52℄,[111℄); sl and sr are the saturations behind and ahead ofthe interfae respetively (sl > sr). It is easy to verify that the relationship between themobility ratio M and the visosity ratio � is simply M = 2(1� (1 + �)�1=2) for immisibledisplaement and M = � for misible displaement[58℄.Notie that using the inompressibility ondition (10.3), the onservation equation (10.1)an be rewritten as a nononservative hyperboli PDEst + ~q � rf(s) =  (s) (10:8)with veloity ~q onsidered as known. In fat, if  (s) = 0, with the above mentionedfrational ow funtion, Equation (10.8) is simply the Bukley-Leverett equation for theimmisible displaement and the linear advetion equation for the misible displaement.Beause of the ease in solving the Riemann problems for these equations (see [24℄ for theonstrution of Riemann solution for the Bukley-Leverett equation), this nononservativeform of the saturation equation is always used in pratie. Nevertheless to obtain theveloity ~q, from Equation (10.2), we need to know the pressure p. It is easy, however, toderive the governing equation for p by simply substituting (10.2) into (10.3), whih yieldsan ellipti PDE r � (��(s)rp) =  (s): (10:9)Note that in general this ellipti equation (10.9) would have disontinuous oeÆients�(s) aross the disontinuities beause of the jumps in saturation and also the visosity. Inthis ase, for a material interfae, from the dynami boundary ondition the pressure shouldbe ontinuous at the disontinuity, and from the kinemati boundary ondition the normalveloity at the disontinuity should be ontinuous also. Based on this fat and others, wean easily show that the tangential omponent of the pressure gradient is ontinuous as isthe normal derivative of �(s)p, but the normal omponent of the pressure gradient is notsine �(s) is not[41℄.10.2 AlgorithmTo solve this two phase ow model, a very popular approah is the so-alled IMPES (im-pliit pressure and expliit saturation) proedure in whih in eah time step the hyperbolisaturation equation (10.8) and the ellipti pressure equation (10.9) are dealt with separatelyand sequentially. It is desribed in the following algorithm in the ontext of using fronttraking algorithm to handle the hyperboli part of the equation:



120Algorithm 10.11) Given the saturation s, solve the ellipti PDE (10.9), obtaining the pressure p.2) Compute the total veloity ~q by di�erening the pressure p obtained from Step 1 andsubstituting into the veloity equation (10.2).3) Solve the hyperboli equation (10.8) using the front traking algorithm to update thesaturation s.Sine the front traking algorithm introdued in the previous hapters is very easy toapply for the hyperboli saturation equation (10.8), here we fous our disussions on Steps1 and 2 of the algorithm.Step 1: In solving the ellipti pressure equation (10.9) with possibly disontinuousoeÆients �(s), the onventional approah is to employ a �nite element method havingelements aligned with the interfae. In one spae dimension, this an be done quite easilyand we desribe one approah below. In two spae dimensions, however, this is diÆult todo as seen in the work done by MBryan and others[43℄,[72℄. Here as a �rst attempt totakle this problem in two spae dimensions, we adopt a simpler approah by employinga standard �ve-point stenil �nite di�erene method on a uniform grid, i.e., we ignore theappearane of the disontinuities, even though we know their loation expliitly. Doing soauses some smearing of the pressure pro�le, and so less aurate result as we might hope toobtain. As seen from the results shown below, we still obtain reasonable solutions, however.In future work, we hope to improve upon this method by using, for example, the immersedinterfae method developed by LeVeque and Li[66℄.To be more spei�, let us disuss some examples. We �rst onsider a one-dimensionalexample. Consider the Dirihlet boundary ondition at eah side of the boundary andsoure terms  (s) = 0 in the entire omputational domain; x 2 [0; 1℄. The ellipti pressureequation (10.9) then orresponds to a seond order ordinary di�erential equation(��(s)px)x = 0 (10:10)in one spae dimension with boundary onditions p(x=0) = a and p(x=1) = b, where �(s)is known spatially. For simpliity, we take a and b to be onstants for all time, although ingeneral they an vary with time.To disretize (10.10), we use a three-point �nite di�erene method on a nonuniform gridby �rst taking a bakward di�erene for the outer derivative and then a forward di�erenefor the inner derivative; olleting terms, we get the following di�erene formula� �i� 12hi�1 pi�1 + (�i� 12hi�1 + �i+ 12hi ) pi � �i+ 12hi pi+1 = 0 (10:11)for node i, where �i� 12 = �(s(xi� 12 )), pi�1 = p(xi�1), and hi is the mesh size, see Figure 10.1afor the notation used here. Going through all the nodal points for i = 1; 2; � � � ; N , and usingthe boundary onditions, we obtain a symmetri positive de�nite tridiagonal linear systemfor the unknown pressure p.Note that in the above disretization we have used a staggered grid representation forthe pressure p and saturation s, i.e., p is de�ned at the ell interfae, and s is de�ned
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Figure 10.1: The omputational grid used for solving the ellipti pressure equation (10.9)at Step 1 of the algorithm. a) A nonuniform grid in one spae dimension. b) A uniformgrid in two spae dimensions where we ignore the appearane of the traked disontinuity(shown as dashed line) on the grid. Note that the pressure in eah �gure is de�ned at thegrid point, while the veloity and saturation are de�ned at the ell enter; a staggered gridapproah.at the ell enter. In addition, it was disretized on a nonuniform grid rather than on auniform grid. Doing so prevents us from di�erening aross disontinuities, and hene yieldsaurate pressures and hene veloities. This �nite di�erene disretization (10.11) reduesto the standard three-point stenil �nite di�erene method if traked points disappear.Now we onsider a two-dimensional example. We onsider a model problem in whihthe geometry is a standard �ve-spot pattern with uid (water or solvent) being injetedinto the enter of a unit square domain (
 = [0; 1℄� [0; 1℄) and the oil being reovered fromthe four orners. For this model problem, we use the Neumann boundary onditions�p=�n = 0 (10:12)on the boundaries �
, where n is the diretion normal to the boundary pointing toward theoutside of the omputational domain. (This gives zero normal veloities on the boundaries.)We must then solve the ellipti equation(��(s)px)x + (��(s)py)y =  (s) (10:13)with an appropriate hoie of soure terms  (s) for the injetion and prodution of uid atthe wells.Denote by  i and  o the soure terms for the injetion uid and prodution of oilrespetively. The soure  i entered at (x0; y0) is taken of the form i(x� x0; y � y0) = ( (1 + os(�r=rÆ))=2rÆ r � rÆ0 r > rÆ (10:14)



122where rÆ is a onstant (we hoose rÆ = 0:05 in the numerial results shown below.) and r2 =(x�x0)2+(y�y0)2 is the distane from the enter (x0; y0). With  i in this form, the soureis spread to a irular region of radius rÆ with enter (x0; y0); it has the biggest strengthwith magnitude 1=rÆ at the enter. Analogously, soure (or more appropriately sink)  oentered at (x0; y0) is de�ned by putting a minus sign in front of the funtion (10.14). Soureterms of the above form were introdued by Peskin[81℄ and used widely in the immersedboundary method for representing singular soures.It is well known that the solution for this problem (the ellipti equation with zeroNeumann boundary onditions) may fail to exist if the onsisteny onditionZ
  (s) dA = 0 (10:15)is not satis�ed. In our model problem with the above hosen soure terms  i and  o, it iseasy to hek that ondition (10.15) is satis�ed, and hene there is a solution. Although thesolution is determined only up to an additive onstant, this auses no additional problembeause only its �rst derivative will be used in the algorithm to ompute the veloity.We use a staggered grid in whih the pressure p is de�ned at grid points, and the satu-ration s is de�ned at ell enters (see Figure 10.1). To disretize (10.13), we use a standard�ve-point stenil �nite di�erene method on a uniform grid. This is done using a similarproedure to what we used for disretizing the one-dimensional pressure equation (10.10).Applying this in both the x- and y-diretions, and olleting terms, yields the followingdi�erene formulaaij pi;j�1 + bij pi�1;j + ij pij + dij pi+1;j + eij pi;j+1 = rij (10:16)with aij = ��(si;j� 12 )=h2bij = ��(si� 12 ;j)=h2dij = ��(si+ 12 ;j)=h2eij = ��(si;j+ 12 )=h2ij = �(aij + bij + dij + eij)rij =  i(xi � x
; yj � y
)� X8(x�;y�) o(xi � x�; yj � y�)for node (i; j), see Figure 10.1b for the notation used here. Here �(s�;�) = �(s(x�; y�)) isde�ned using the harmoni average of the neighboring ells, e.g.,�(si;j� 12 ) = 20� 1�(si� 12 ;j� 12 ) + 1�(si+ 12 ;j� 12 )1A�1 ;(x
; y
) denotes the enter of the injetion well whih is at the enter of the domain, and(x�; y�) denotes the enters of the prodution wells whih are at the orners of the domain,in our ase.



123Beause of the boundary onditions (10.12), the above di�erene formula (10.16) needsto be modi�ed for nodes at the boundaries. It is easy to show that by introduing �titiousnodes outside the omputational domain and approximating the boundary onditions witha entral di�erene formula at the boundary, the pressure at a �titious node is simplyequal to the pressure at the interior node adjaent to the boundary, e.g., pi;2 = pi;0 for allthe i on the y = 0 boundary. Sine we have �s=�n = 0 at the boundaries, the oeÆient ofthe pressure in (10.16) at the �titious node is also the same as the pressure at the interiornode adjaent to the boundary. Having known this, we an then modify the di�ereneequation (10.16) by ignoring nodes outside the domain and multiplying the oeÆient ofthe related interior nodes by two. Alternatively, the above result an be derived morediretly by approximating the boundary ondition with a one-sided di�erene formula,expanding this di�erene formula at the boundary using the Taylor series expansion, andemploying the ellipti equation (10.13) that takes into aount the di�erential equation atthe boundary node[112℄.Going through all the nodal points for i = 1; 2; � � � ; N and j = 1; 2; � � � ; N , using row-wise ordering, we obtain a blok-tridiagonal linear system for the unknown pressure p. Forillustration purposes, we display the oeÆient matrix A in the ase where �(s) = 1 in theellipti equation (10.13) and N = 3, i.e.,
A = 1h2

0BBBBBBBBBBBBBB�
4 �2 �2�1 4 �1 �2�2 4 �2�1 4 �2 �1�1 �1 4 �1 �1�1 �2 4 �1�2 4 �2�2 �1 4 �1�2 �2 4

1CCCCCCCCCCCCCCAwhere h is the underlying uniform grid size, assuming that a square grid is used. Analogousto the original di�erential equation, the solution to this linear system may not exist, unlessthe sum on the right hand side of the linear system equals zero to satisfy a disrete versionof the onsisteny ondition (10.15) for this problem. It is easy to hek that the sum on theright hand side of our linear system does satisfy this ondition. Here this linear system issolved using the inomplete LU generalized minimum residual method in the SLAP (SparseLinear Algebra Pakage) Library.Step 2: Having alulated the pressure p, we an ompute the total veloity ~q bydi�erening p and putting the result bak in the veloity equation (10.2). In one spaedimension with ~q = u, this results inui+ 12 = ��(si+ 12 )(pi+1 � pi)=hiwhen a forward di�erene on p is employed, where u� = u(x�) is de�ned at the ell enter.Sine the method we use for updating the saturation is based on solving the Riemannproblem at eah ell interfae, it is neessary to also ompute the veloity u at the ellinterfae. One simple approah is to take an average of two neighboring veloities and



124assign it to the ell interfae, namely, setui = 12(ui� 12 + ui+ 12 ):In two spae dimensions with ~q = (u; v), we do the same thing as in one dimension byomputing the ell averaged veloity de�ned at the ell enter as follows: ui+ 12 ;j+ 12vi+ 12 ;j+ 12 != � 12h  �(si+ 12 ;j)(pi+1;j � pi;j) + �(si+ 12 ;j+1)(pi+1;j+1 � pi;j+1)�(si;j+ 12 )(pi;j+1 � pi;j) + �(si+1;j+ 12 )(pi+1;j+1 � pi+1;j) !where �(s�;�) is omputed using the harmoni average of the neighboring ells. This givesthe veloities for the regular ells. Sine the grid we used for updating the saturationonsists of not only the regular ells, but also the irregular ells, we need to omputethe veloities for the irregular ells also. This an be done by employing an interpolationsheme that makes use of the ell averaged veloities on the neighboring regular ells, e.g.,by interpolating data based on a retangular box over the neighboring ells. The veloity atthe ell interfae for both regular and irregular ells an be omputed in a manner similarto the one-dimensional ase.Before presenting numerial results, we make two remarks on Step 3 of the algorithm.First, in solving the Riemann problem at the eah ell interfae, the ell interfae veloitydesribed above is used for the veloity ~q appearing in the saturation equation (10.8).Seond, the soure term appearing in the saturation equation (10.8), only the  i termexists, is treated as a boundary ondition in eah time step, i.e., we reset saturation s = 1in the region where the injetion soure  i is in e�et.10.3 Numerial ResultsWe now show some preliminary results for this two phase model.One spae dimension. We �rst show some one-dimensional results for our one-dimensional model problem disussed in the previous setion. As initial onditions, wetake saturation s = 0 (pure oil) in the entire omputational domain, exept for the �rstgrid ell (x 2 [0; h℄, where h = 0:01 is the mesh size) whih has s = 1 (pure water orsolvent). As boundary onditions, we use Dirihlet data, p(x=0) = 1 and p(x=1) = 0, forthe ellipti pressure equation, and �xed boundary onditions with s = 1 on the left handside boundary and outow boundary ondition on the right hand side boundary for thehyperboli saturation equation.Results are shown in Figure 10.2. In Figure 10.2a and , we show results for the immis-ible displaement alulations where the saturation and pressure are shown, respetively,with three di�erent visosity ratios, � = 1; 2; 10, at time t = 0:8. It is learly seen that asthe visosity ratio inreases the saturation pro�le behind the disontinuity beomes moreand more depressed, and it beomes harder and harder to displae the resident oil. It analso be observed in Figure 10.2 that the pressure pro�le has a kink at the disontinuity forsome visosity ratios. This is a onsequene of the jumps in saturation and the visositythere. It is easy to hek that as the frontal mobility ratio M approahes one, the jump inthe pressure gradient approahes zero. This an be seen in Figure 10.2 where the frontalmobility ratios we use are M = 0:586 for � = 1, M = 0:845 for � = 2, and M = 1:397 for� = 10.



125In Figure 10.2b and d, we show results for the misible displaement alulations withthe same visosity ratios and stopping time as for the immisible displaement alulations.Notie that the saturation pro�le remains the same shape for all the visosity ratios. This isdue to the fat that only a single phase of uid (solvent or oil) an exist in a volume of themisible porous medium. This is not so for uids in an immisible environment, however.In Figure 10.2d, kinks are learly seen at the disontinuities in the ase where the frontalmobility ratio is not equal to one there. (Reall that for misible displaement M = �.)The above results were obtained using the high resolution front traking method withCourant number � = 0:9.Two spae dimensions. We now show two-dimensional results for our two-dimensionalmodel problem with the �ve-spot pattern. Here the problem of interest is to study stabilityof the interfaes under various mobility ratios. As initial saturation, we use s = 1 (purewater or solvent) inside a perturbed irular interfae and s = 0 (pure oil) outside the per-turbed interfae. As boundary onditions, we have Neumann boundary onditions (10.12)for the ellipti equation, and reeting boundary onditions �s=�n = 0 for the saturationequation. The soure  i that orresponds to the injetion of uid at the wells is loated atthe enter of the domain, and sinks  o that orrespond to the prodution of oil from thewells are loated at the orners of the domain.Results are shown in Figures 10.3 and 10.4. In Figure 10.3a and b, we show resultsfor the immisible displaement alulations where the evolution of the traked interfaesare shown with visosity ratio � = 2 and � = 10, respetively. Note that with � = 2 wehave frontal mobility ratio M = 0:845. So based on the stability riterion mentioned inthe beginning of this hapter this interfae is stable under small perturbations. Note thatour numerial result shown in Figure 10.3a reets this fat. Moreover, our result shown inFigure 10.3b also predits the right behavior of an unstable front where M = 1:397 there.In Figure 10.4a and b, we show results for the misible displaement alulations wherethe evolution of the traked fronts are shown with visosity ratio � = 1 and � = 10,respetively. Again, based on the mobility ratio we an readily predit that the interfae isstable for � = 1 (M = 1), while the interfae is unstable for � = 10 (M = 10). Our resultsgive a orret indiation of the stability of the interfae.The above two-dimensional alulations were run on a 50 � 50 grid. For updating thesaturation, we use the high resolution front traking method with Courant number �0 = 0:9.For similar alulations, see [39℄,[58℄.Finally, in Table 10.1, we report results on the timing (the CPU time) of the two-dimensional oil reservoir simulations. It is easy to observe that Step 1 of solving the elliptiequation leads the usage of the CPU time (the ase for the misible alulation with � = 1is a speial situation where the pressure is onstant for all time), Step 3 of solving thehyperboli equation is the seond most expensive, and Step 2 of evaluating the veloity isthe last. Hene it is desirable to use a fast Poisson solver for this problem so as to improvethe performane of this algorithm. Note that the CPU time on the seond olumn of thetable onsists of time for the integration step (three basi steps in Algorithm 10.1) and theIO (input and output). The above alulations were run on a DEC station 5000/200 usinga Fortran 77 omplier under the Ultrix operating system.
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Figure 10.2: Results for the one-dimensional oil reservoir simulation. Figures a) and ) showresults for the immisible displaement omputations. Figures b) and d) show results forthe misible displaement omputation. In eah �gure, three visosity ratios, � = 1; 2; 10,were used in the test up to time t = 0:8.



127a) � = 2 b) � = 10

Figure 10.3: Evolution of the traked interfaes for the immisible displaement oil reservoirsimulation, plotted every other time step. a) � = 2 (M = 0:845) up to time t = 10:5. b)� = 10 (M = 1:397) up to time t = 5:75.a) � = 1 b) � = 10

Figure 10.4: Evolution of the traked interfaes for the misible displaement oil reservoirsimulation, plotted every 5 time steps. a) � = 1 (M = 1) up to time t = 15. b) � = 10(M = 10) up to time t = 9:4.
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Table 10.1: Timing of the two-dimensional oil reservoir simulations on a DEC station5000/200. CPU time CPU time/step Time steps(seonds) Step 1 Step 2 Step 3immisible � = 2 810 15 1 7.8 34immisible � = 10 738 15.1 1 8.4 30misible � = 1 1350 2.6 1.3 5 150misible � = 10 2360 16.5 2.6 5.7 95



Chapter 11CONCLUSIONS11.1 Thesis SummaryIn this thesis, we have developed and studied a simple front traking approah that modelsthe propagation of disontinuous solutions for nonlinear hyperboli systems of onservationlaws with soure terms in both one and two spae dimensions. In this approah, we use auniform underlying grid with some grid ells subdivided by traked interfaes, made up ofmoving points in one spae dimension and urves in two spae dimensions, approximatelyaligned with the disontinuities in the ow �eld. In eah time step, we solve Riemannproblems at the traked interfaes using the values from adjaent ells as data, and followstrong waves (shoks or interfaes) to determine a new set of traked interfaes at the endof the time step. A onservative high resolution �nite volume method based on the wavepropagation approah is then applied on the resulting nonuniform grid to update the ellvalues. Potential problems with stability are dealt with by the use of a \large time step"method (see Chapters 2 and 6). Sine the new interfae loations have been hosen arefully,the resulting solution remains sharp and is smooth away from these new interfaes. Theold interfaes an then be eliminated by reombining the adjaent ells. This front trakingalgorithm is desribed in more detail in Chapters 3 and 7 for the one- and two-dimensionalases, respetively.Error analysis. To examine stability and auray of the algorithm, in Chapters 4and 8 we performed error estimation for the one- and two-dimensional algorithms. Theresults presented there show that our algorithm is stable even if some of the small ellsare orders of magnitude smaller than the regular ell that is used to determine the timestep. In addition, our algorithm is �rst order and almost seond order aurate in the1-norm for problems involving ontat disontinuities and shoks, respetively, in whih ahigh resolution method is used in the experiments (see Setions 4.1 and 8.1). Note theabove results hold for both the one- and two-dimensional algorithms. As noted there, ourtraking results are muh better than what is obtained with shok apturing.Conerning the error behavior in ells near the traked interfaes, we have also inves-tigated several issues that an lead to loss of auray, suh as the hoie of slopes inneighboring ells, the use of nonuniform and time-dependent grid, and the linearization ofwave interations due to the use of the large time step method. From this study, we foundthat signi�ant improvement of the errors in ells near traked ontat disontinuities anbe obtained using \one-sided" slopes, though this gives muh less improvement in ells neartraked shoks (see Setion 4.2). In addition, there is some loss of auray due to theuse of time-dependent nonuniform grids, partiularly in the max-norm for the �rst ordermethod (see Setions 4.3 and 8.3). It has been seen from a one-dimensional model problemthat the errors introdued by the linearization of wave interations in the large time stepmethod are of magnitude O(h), and they only our loally near the traked interfaes.Beause of this, the 1-norm error of the method has not been severely a�eted by this loss



130of auray (see Setion 4.1). For stability, there is no problems with the linear wave inter-ation approah for most alulations, exept in an extreme ase where a strong rarefationwave overtakes a shok. In that ase, we modify the method so that the interation of thetraked disontinuity and the weak waves is handled \exatly" (see Setion 4.4).Lastly, we have observed very nie results in the auray of the traked front loationusing our front-traking algorithm in both the one- and two-dimensional ases (see, e.g.,Figures 4.8 and 4.11, and Table 8.1). An approah that replaes the pieewise linear repre-sentation of the traked front by a pieewise quadrati representation did not signi�antlyimprove the traked front auray (see Setion 8.2).Appliations. To demonstrate the potential power of our front traking algorithmon more omplex problems, a wide variety of problems have been solved to validate thealgorithm for problems involving shok waves and interfaes arising in gas dynamis. Inone spae dimension, the examples onsidered are a double piston problem, the Woodward-Colella blast wave problem, the steady quasi one-dimensional nozzle ow, and unstabledetonation waves. In two spae dimensions, they are radially symmetri shok waves, ashok-vortex interation, a shok-ramp interation, the Kelvin-Helmholtz and Rayleigh-Taylor instabilities, and a steady state alulation for a supersoni ow over a ramp. Theseresults show the e�etiveness of our front traking algorithms in both one and two spaedimensions. They also show the importane of using front traking for these problems (seeSetion 3.3, Chapter 5, Setion 7.3, and Chapter 9).To further test the apability of our front traking algorithm, we also onsidered a modelproblem arising from oil reservoir simulation. In this ase, we need to solve a oupled systemof ellipti and hyperboli partial di�erential equations. We use an IMPES proedure to dothis, in whih the hyperboli equation and the ellipti equation are dealt with separatelyand sequentially in eah time step. Here the hyperboli equation is solved using the fronttraking algorithm and the ellipti equation is solved using a standard �ve-point �nitedi�erene method on a uniform grid. Our preliminary results for some sample problemsindiate that front traking is a very useful tool for this problem also (see Chapter 10).11.2 Future ResearhEven though our front traking algorithm is quite suessful in solving many pratialproblems, there are many aspets that have not been handled as well as we might hope,partiularly for two-dimensional problems. Here we sketh some of them, and desribefuture work.Improve resolution near the traked interfaes. As we have seen from the two-dimensional error analysis performed in Chapter 8, there is some loss of auray of ourfront traking algorithm in ells near the traked interfaes. From the Kelvin-Helmholtzunstable interfae problem in Setion 9.2.1, we also see that our result is not as sharp asthat obtained from another front traking method. Beause of this resolution disrepanynear the traked interfaes, we observe di�erent solution behavior for the Rayleigh-Taylorproblem (see Setion 9.2.2) obtained from our method vs. another traking method. Forthe purpose of learing up the di�erene as well as improving the algorithm, we plan to dothe following work:



1311) Explore various approahes that take aount of slopes information for the irregularells. Some possible approahes has been mentioned in Setion 6.5. Although thework will inrease a great deal by onsidering these approahes to the method, it isstill worth while studying them in depth. Ultimately, we would like to �nd an eÆientway to do this.2) Explore various approahes that ahieve high resolution of the traked front. In thisase, we may want to use urve-�tting or other interpolation tehnique to onstrut asmoother parametri urve to higher order, and also use a higher order representationfor the grid interfaes.It is important to note that we should onsider this work as a whole, beause theresolution near the traked interfaes depends not only on the auray of the grid weonstrut, but also on the auray of the �nite volume method we use on the grid. Weshould also keep in mind that we want to modify the method so that the numerial di�usionis as small as possible. For some interfae problems, we might need to put more restritionson the method so that the mass of eah of two distint uids is onserved independently,with no leaking aross the interfae.Code development. So far, to simplify programming, our urrent version of thetwo-dimensional front traking ode is only apable of dealing with disontinuities thathave suÆiently smooth struture; the splitting of fronts as well as the ollision of frontsare not allowed in the program. Beause of this, the appliability of this ode is limitedto simple front geometries. As a �rst step toward takling more omplex problems, weneed to onsider using more general data strutures in the ode that an take aount ofompliated topologial hanges in the front struture. Some ideas suggested in [38℄,[42℄are very valuable here. Another modi�ation of the ode that would enhane our ability tosolve omplex problems is to ouple front traking with loal adaptive mesh re�nement ashas already been done for some one-dimensional problems. Doing so would be partiularlyuseful for problems involving some internal strutures near the traked disontinuities, suhas in the detonation wave omputation.Finally, work is ontinuing in the appliation of our front traking algorithm to realappliations. In partiular, we are interested in studying physial e�ets, suh as surfaetension, visosity, hemially reations, moving soures, and more general equations of state,on the solutions of hyperboli onservation laws arising in various situations (e.g., in gas,water, porous media, or elasti and plasti materials).
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Appendix ALINEAR THEORY REVIEWHere we review the linear stability analysis for the Kelvin-Helmholtz and Rayleigh-Taylor problems, see also [33℄ and [84℄. Results obtained from this analysis were used toinitialize the ow in the numerial simulation performed in Setions 9.2.1 and 9.2.2. Theseresults also provide omparison solutions in the regime where the amplitude of the interfaeis small.A.1 Kelvin-Helmholtz instabilityIn Setion 9.2.1, we onsider the Kelvin-Helmholtz unstable interfae problem in whih theinterfae separates two uids of di�erent tangential veloities. We take onstant density�0 and pressure p0 with zero vertial veloity in the omputational domain. Above theinterfae, we have horizontal veloity u = u0, and below the interfae, we have horizontalveloity u = �u0. We introdue a sinusoidal perturbation (9.3) on the interfae to triggerthe instability.In the standard linear stability analysis, we study the solution behavior on the short timesale, while the amplitude of the interfae is small. In the present ase, it is then reasonableto assume that the ow is irrotational away from the interfae, and the entropy is onstantin the domain. Let � denote the veloity potential with u = ��=�x and v = ��=�y so thatthe irrotationality ondition r� ~q = r� (r�) = 0 holds, where ~q = (u; v) is the veloityvetor. It is easy to show that the governing equations, in the regions above and below theinterfae, are the following:���t + ��x �����x�+ ��y �����y � = 0; (A.1)���t + 12 �(���x )2 + (���y )2�+H(�) = H(�0) + 12u20; (A.2)where H = e + p=� is the enthalpy (for polytropi gas H = �1p=�). Note that H isa funtion of density � only. This is due to the fat that the entropy, s0 = p0��0 , isonstant throughout the domain, and so pressure p = s0� . In the above system, the �rstequation is the onservation of mass, and the seond equation is the Bernoulli's equationfor ompressible ows, see [25℄ and [84℄.For the boundary onditions, we have solid walls on the top and bottom, and periodiboundaries on the left and right. On the interfae, we have the kinemati boundary ondi-tion whih states that partiles at the interfae should remain at the interfae, namely, onthe interfae r� � ~n = ~q � ~n (A:3)



141where ~n is the diretion normal to the interfae. Let � be the interfae position. After somealgebra, (A.3) an be written in the following form����y �y=� = ���t + ����x�y=� ���x: (A:4)To derive the linearized equations for (A.1) and (A.2), we write the solution as its zerothorder (equilibrium) solution and a �rst order orretion,�(x; y; t) � �ux+�1(x; y; t) �1 � �ux;�(x; y; t) � �0 + �1(x; y; t) �1 � �0;and substitute it to (A.1) and (A.2). Retaining only the �rst order terms, we obtain( ��t + �u ��x)�1 + �0(�2�1�x2 + �2�1�y2 ) = 0; (A.5)( ��t + �u ��x)�1 +H 0(�0)�1 = 0; (A.6)where H 0(�0) = 20=�0, and 0 is the sound speed. Eliminating �1 in (A.5) and (A.6), weget the wave equation for the veloity potential �1,� ( ��t + �u ��x)2�1 + 0(�2�1�x2 + �2�1�y2 ) = 0: (A:7)Note that �u = u0 in the region above the interfae, while �u = �u0 in the region below theinterfae. To simplify the expressions, we ignore the subsript for the veloity potential.Sine our initial interfae (9.3) is perturbed sinusoidally with varying interfae positionin the y-diretion, we an write the solution as� = f(y) exp (�t+ ikx) (A:8)where � is the growth rate (a real number in this ase), and k is the wave number. Sub-stituting (A.8) to (A.7), ombining terms, we obtain a seond order ordinary di�erentialequation for the magnitude funtion f(y),f 00(y)� (�+ i�)f(y) = 0 (A:9)where � = (MÆ�)2 � (M2 � 1)k2 and � = 2M2Æk�with M = j�uj=0 (Mah number) and Æ = 1=�u.Note that with the appropriate �u, (A.9) is valid in both the region above and belowthe interfae. In eah region, its solution an be determined expliitly when the solid walland kinemati (a linearized version) boundary onditions are used, see [84℄. Sine thesesolutions are rather ompliated in expression, we do not present them in detail here. Itshould be mentioned that using the dynami boundary ondition on the interfae, whihstates that the pressure is ontinuous aross the interfae, we obtain a nonlinear equationfor the growth rate �. This is solved numerially using a root-�nding routine. In Figure A.1,we plot the solutions obtained from this linear stability analysis with two di�erent Mahnumbers, M = 0:2 and M = 0:5.
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Figure A.1: Typial solutions of the linear theory for the Kelvin-Helmhotlz unstable in-terfae problem. Results with two di�erent Mah numbers, M = 0:2 and M = 0:5, areshown.A.2 Rayleigh-Taylor instabilityIn Setion 9.2.2, we onsider the Rayleigh-Taylor unstable interfae problem in whih theinterfae separates two uids of di�erent densities. We introdue a small perturbation ofan isothermal equilibrium ow with a at interfae separating exponentially strati�ed owabove and below the interfae. Let �0, p0, and e0 be the density, pressure, and internalenergy of this equilibrium state, respetively. The equations governing these states are�p0�y = �0g; (A.10)��y (e0 + p0=�0) = 0; (A.11)see [33℄ and [108℄.As in the Kelvin-Helmholtz problem, we look for solutions in the small amplitude regime,and we write the solutions as�(x; y; t) � �0(y) + �1(x; y; t);u(x; y; t) � u1(x; y; t);v(x; y; t) � v1(x; y; t);p(x; y; t) � p0(y) + p1(x; y; t):Substituting them into the Euler equations with gravitational soures (9.4), we an derivethe linearized equations for the �rst order orretion terms. For polytropi gas, they are��1�t + �0 �u1�x + �0�v1�y + ��0�y v1 = 0; (A.12)�0�u1�t + �p1�x = 0; (A.13)�0�v1�t + �p1�y = g�1; (A.14) �20 � 1! ��1�t + � 1 � 1� �p1�t = �0gv1: (A.15)



143Assume that the solutions of these equations take the form,0BBB� �1u1v1p1 1CCCA= exp (�t+ ikx)0BBB� �̂1û1v̂1̂p1 1CCCA (y): (A:16)Substituting (A.16) to (A.12){(A.15), we obtain equations governing the magnitude fun-tions �̂1, û1, v̂1, and p̂1: ��̂1 + ik�0û1 + �0�v̂1�y + ��0�y v̂1 = 0; (A.17)��0û1 + ikp̂1 = 0; (A.18)��0v̂1 + �p̂1�y = g�̂1; (A.19) �20� � 1! �̂1 + � � � 1� p̂1 = �0gv̂1: (A.20)We now eliminate û1 and v̂1 from the above equations, whih yields the following twoequations, �2�̂1 + g��̂1�y + k2p̂1 � �2p̂1�y2 = 0;�(20�2 + ( � 1)g2)�̂1 + �2p̂1 + ( � 1)g�p̂1�y = 0:Finally, we eliminate �̂1 from the above two equations, and obtain a seond order ordinarydi�erential equation for p̂1,�2p̂1�y2 � g20 �p̂1�y �  �220 + k2 + ( � 1)g2k220�2 ! p̂1 = 0: (A:21)This an be solved expliitly with the appropriate boundary onditions, suh as solid wallson the top and bottom, and kinemati boundary on the interfae, see [33℄.We assume that the position of the perturbed interfae has the form� = y0 + " exp (�t+ ikx);where y0 is the unperturbed position, and " is the amplitude of the perturbation. It is easyto hek that the solution isp̂1 = �0"(g2( � 1) + 20�2)exp(��(ybdry � y0))� exp(�+(ybdry � y0)) � (A.22)�exp (��+(y � ybdry))( � 1)g + ��20 � exp (���(y � ybdry))( � 1)g + �+20 � ; (A.23)where ybdry is the loation of the solid wall, and�� = � g220 �  2g2440 + �220 + k2 + ( � 1)g2k220�2 !1=2 :
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