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University of WashingtonAbstra
tFront Tra
king Methods based on Wave Propagationby Keh-Ming ShyueChairperson of Supervisory Committee:Professor Randall J. LeVequeDepartments of Mathemati
s and Applied Mathemati
sIn this thesis, we develop and study a simple front tra
king approa
h that models thepropagation of dis
ontinuous solutions for nonlinear hyperboli
 systems of 
onservationlaws with sour
e terms, �u�t + NXj=1 ��xj fj(u) =  (u);in both one (N = 1) and two spa
e dimensions (N = 2). In this approa
h, we use a uniformunderlying grid with some grid 
ells subdivided by tra
ked interfa
es, made up of movingpoints in one spa
e dimension and 
urves in two spa
e dimensions, approximately alignedwith dis
ontinuities in the 
ow �eld. In ea
h time step, we introdu
e a new set of interfa
esthat are 
lose to the expe
ted lo
ations of dis
ontinuities in the solution at the end of thetime step. A 
onservative high resolution �nite volume method based on the large time stepwave propagation approa
h is then applied on the resulting nonuniform grid to update the
ell values. A time-splitting method is employed to handle sour
e terms.Our error estimation results show that this front tra
king method is stable even if someof the small 
ells 
reated by the tra
ked interfa
es are orders of magnitude smaller than theregular 
ell that is used to determine the time step. In addition, high resolution results 
anbe obtained for 
ells near the tra
ked dis
ontinuities without os
illations.A wide variety of problems have been solved to validate the method for problems in-volving sho
k waves and interfa
es (
onta
t dis
ontinuities and slip lines) arising in gasdynami
s. Typi
al examples we 
onsider are a one-dimensional unstable detonation waveproblem, a two-dimensional sho
k-ramp intera
tion, and two-dimensional Kelvin-Helmholtzand Rayleigh-Taylor instabilities. These results show the e�e
tiveness of our front tra
kingmethods in both one and two spa
e dimensions. They also show the importan
e of usingfront tra
king for these problems.This thesis also des
ribes an algorithm that 
an be used to solve a 
oupled system ofellipti
 and hyperboli
 partial di�erential equations arising in oil reservoir simulation. Ourpreliminary results indi
ate that front tra
king is a very useful tool for this problem.
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Chapter 1INTRODUCTION1.1 PreliminariesSharp fronts are 
ommonly seen in the real world. In many appli
ations, they typi
ally moveas time evolves and often undergo some 
ompli
ated physi
al pro
esses, displaying a ri
hvariety of frontal stru
ture, see [44℄,[77℄,[80℄,[103℄ for examples. Sin
e in many instan
es thebehavior of this time-dependent front provides some useful information in understandingthe underlying physi
s, front tra
king is of great importan
e in 
uid dynami
s and in otherbran
hs of resear
h that study the nature of fronts in various physi
al situations.In this thesis, we 
onsider a simpli�ed model for su
h an investigation in whi
h vis
osity,heat 
ondu
tion, and other physi
al aspe
ts relating to the mi
ros
opi
 stru
ture of frontsare ignored, and the equations that des
ribe front motion are a nonlinear hyperboli
 systemof 
onservation laws, perhaps with sour
e terms�u�t + NXj=1 ��xj fj(u) =  (u) (1:1)where N is the number of spatial dimensions. We develop and study a simple front tra
kingapproa
h that follows the dis
ontinuous solutions expli
itly for this model system in bothone (N = 1) and two spa
e dimensions (N = 2). This gives us a good method for modelingthe propagation of fronts, and so is an important step toward studying problems involvingsharp fronts.Here the system we 
onsider has m equations, so u 2 lRm. The homogeneous systemwith  (u) = 0 in (1.1) is assumed to be hyperboli
 in the sense that the Ja
obian matrixof any linear 
ombination of the 
ux fun
tions fj(u), i.e.,��u 0� NXj=1�jfj(u)1A for arbitrary �j 2 lR;is assumed to have real eigenvalues and a 
omplete set of eigenve
tors for ea
h physi
allyrelevant value of the 
onservative variables u. This is true, for example, for the Eulerequations of gas dynami
s whi
h we use as our model system (see Se
tions 3.2 and 7.2).Other examples of pra
ti
al interest may be found in [32℄ and [108℄.Sour
e terms of the form  (u) 
an arise in various ways. Geometri
 sour
e terms arise ifa system in more than one spa
e dimension is redu
ed to a one-dimensional problem usingsymmetry (e.g., radially symmetri
 
ow) or by assuming that the 
ross-se
tional 
ow ishomogeneous, as in the \quasi one-dimensional nozzle" problem dis
ussed in Se
tion 5.2.1.In another instan
e, gravitational sour
e terms appear if gravity (whi
h a
ts as a bodyfor
e in the system) is of importan
e in the simulation, for example, in the Rayleigh-Taylorproblem examined in Se
tion 9.2.2.



2Sour
e terms that are more diÆ
ult to handle arise in the study of nonequilibrium or
hemi
ally rea
ting 
ows (e.g., in 
ombustion problems). Here the density is repla
ed byseveral di�erent density fun
tions, one for ea
h 
hemi
al spe
ies, and the 
uid equationsare 
oupled to sour
e terms for the produ
tion and 
onsumption of individual spe
ies. Su
hproblems are often 
ompli
ated by the fa
t that the time s
ale of the 
hemi
al rea
tionsmay be orders of magnitude faster than the time s
ale for the 
uid dynami
s. Sho
k wavesin the 
ow may be 
oupled with thin rea
tion zones in whi
h mesh re�nement is required inorder to eÆ
iently model the 
ow. A model system of this form is dis
ussed in Se
tion 5.2.2.A number of front tra
king algorithms have been proposed in the past and used to studyfront propagation (see Se
tion 1.3). Their results show that the front tra
king algorithm isan eÆ
ient way to 
ompute 
ows involving dis
ontinuities, but at a pri
e of 
ompli
atingthe methods. A list of diÆ
ulties that need to be over
ome in the front tra
king algorithmis given in [17℄.Here our work is di�erent in that we use a 
onservative �nite volume method based onthe large time step wave propagation approa
h[61℄ to over
ome a major diÆ
ulty asso
iatedwith the limit on the time step in the presen
e of small 
ells 
reated by the tra
ked front
utting through the grid, while maintaining 
onservation of the algorithm. In addition,we have investigated a variety of approa
hes to obtain high resolution in the grid 
ellsnear the tra
ked interfa
e and have done extensive tests of a

ura
y and stability. Variousapproa
hes to propagating the front have also been studied and 
ompared. This work ofanalyzing the algorithm is one of the main features of this thesis. In fa
t, doing so givesus a solid base in understanding solutions obtained from this algorithm, and this helps usunderstand the physi
s when the algorithm is employed in various appli
ations.1.2 Our Approa
h { thesis workThe basi
 idea of our front tra
king algorithm is quite simple. We 
hoose a uniform under-lying grid with some grid 
ells subdivided by tra
ked interfa
es, made up of moving pointsin one spa
e dimension and 
urves in two spa
e dimensions, approximately aligned withdis
ontinuities in the 
ow �eld. In ea
h time step, we introdu
e a new set of interfa
es thatare approximately aligned with the expe
ted lo
ations of dis
ontinuities in the solution atthe end of the time step. A high resolution �nite volume method is then applied on theresulting nonuniform grid to update the 
ell values. If we have 
hosen the new interfa
elo
ations well, the resulting solution will remain sharp and be smooth away from these newinterfa
es. The old interfa
es 
an then be eliminated by re
ombining the adja
ent 
ells.Figure 1.1 shows a typi
al grid system for our front tra
king algorithm. In Figure 1.1a,we show a one-dimensional grid where moving points are introdu
ed for the dis
ontinuities,and are inserted into an underlying uniform grid as grid interfa
es. In Figure 1.1b, we showa two-dimensional grid where pie
ewise linear 
urves are introdu
ed for the dis
ontinuities,and are inserted into the grid.To advan
e the tra
ked interfa
es from the 
urrent time step to the next, we solvea one-dimensional Riemann problem at ea
h tra
ked interfa
e using the values from theadja
ent 
ells as data, and follow strong waves to determine the new lo
ations at the endof a time step. In one spa
e dimension, this 
an be a

omplished quite easily as illustratedin Figure 1.1a where x̂� = x� + �pk is the new lo
ation of the old tra
ked point x� withstrong wave speed �p (obtained from solving the Riemann problem at x�) over a time step
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Figure 1.1: A typi
al grid system for our front tra
king algorithm. a) In one spa
e di-mension, moving points are introdu
ed for the dis
ontinuities, and are inserted into theunderlying uniform grid as grid interfa
es. b) In two spa
e dimensions, pie
ewise linear
urves are introdu
ed for the dis
ontinuities, and are inserted into the underlying grid.k. This new interfa
e lo
ation x̂� is then inserted into the grid. This one-dimensional fronttra
king algorithm is dis
ussed in more detail in Chapter 3.In two spa
e dimensions, the new interfa
e lo
ations 
an be 
hosen by a te
hnique analo-gous to our one-dimensional approa
h. Sin
e ea
h tra
ked interfa
e is the boundary betweentwo 
ells, we 
an use the values from the adja
ent 
ells as data to solve one-dimensionalRiemann problems in dire
tions normal and tangential to ea
h interfa
e. We expe
t thesolution to this Riemann problem to 
onsist of only one strong wave, 
orresponding to thesho
k or interfa
e (
onta
t dis
ontinuity or slip line) being tra
ked, and other weaker waves.Sin
e we want the new tra
ked interfa
es to form a 
ontinuous pie
ewise linear 
urve, asshown in Figure 1.1b, we need to use the solutions of neighboring Riemann problems insome 
oordinated manner to determine the new interfa
es. There are various ways that this
an be done via some sort of 
urve �tting through points determined by the strong wavesfrom the Riemann solutions. In Chapter 7, we present one simple approa
h in more detail.Our basi
 philosophy of tra
king, however, gives us some 
exibility on this s
ore { we donot view the interfa
e we introdu
e as being the de�nitive lo
ation of a tra
ked front, butrather as a grid interfa
e that is suÆ
iently well lo
ated and aligned that the solution 
anbe well 
aptured on the resulting grid.On
e the new grid is 
onstru
ted, the solution is then advan
ed using a fully 
onservativesho
k 
apturing method. This method must be able to deal with the irregular 
ells nearthe tra
ked interfa
e. In parti
ular, we must maintain stability even if some of these 
ellsare very small relative to the underlying mesh size used to determine the time step. Wealso hope to maintain se
ond order a

ura
y in the smooth 
ow on either side. This isa

omplished using a high resolution method based on the large time step wave propagationapproa
h, developed by LeVeque[60℄,[61℄ (see also Chapters 2 and 6). The main idea is thatwaves arising from the solution of Riemann problems at the 
ell boundaries are propagatedthe appropriate distan
e determined by the wave speed and time step, and used to update
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ell averages in any grid 
ell they en
ounter. The wave may a�e
t more than one 
ell if theneighboring 
ell is very small. In this manner the sten
il of the method adjusts automati
allyso that the CFL (Courant-Friedri
h-Lewy) 
ondition is always satis�ed regardless of the
on�guration of the grid.Sour
e terms in the equations are 
urrently handled using a Strang splitting[97℄. Thesour
e terms are used to solve the ordinary di�erential equations ut =  (u) in ea
h grid
ell over a half time step. The homogeneous 
onservation laws are then solved using fronttra
king with a full time step. Another half time step is then taken with the ODEs (seeSe
tion 5.2).Our goals here are to study the feasibility of this front-tra
king pro
edure and explorevarious �nite volume approa
hes on the resulting nonuniform grid. We avoid stabilityproblems in the presen
e of small 
ells and a
hieve high resolution even in 
ells near thetra
ked interfa
es in a 
onservative manner. In the 
urrent formulation, we only 
onsiderfronts with simple geometry. The approa
h we take here 
ould alternatively be in
orporatedinto a more 
ompli
ated algorithm for 
omplex geometry. However, even this simple formof front tra
king 
an be very useful for 
ertain 
lasses of problems, as some of the examplesin this thesis illustrate.1.3 Other Approa
hes { overviewA wide variety of approa
hes have been used over the years to develop sho
k tra
kingor interfa
e tra
king methods. We will only mention a few of the main ideas and howthey relate to our method. A 
on
ise survey of several approa
hes for the two-dimensionalproblem is given by Hyman[54℄ (see also Oran and Boris[77℄).With many methods, the 
onservation laws are solved separately on ea
h side of thedis
ontinuity using a method designed for smooth 
ow, while the sho
k or interfa
e ishandled in a di�erent manner using the Rankine-Hugoniot jump 
onditions. This is the 
ase,for example, with the method pioneered by Moretti[73℄. Similar methods have been usedby others, e.g., Di Gia
into and Valorani[34℄, and Salas[91℄. These methods are typi
allynot 
onservative, whi
h may be a problem if other sho
ks are present that are not beingtra
ked. However, very ni
e results have been obtained for problems with suÆ
iently simplestru
ture.Mao[70℄,[71℄ has re
ently introdu
ed a front tra
king method in whi
h two sets of datanear the interfa
e are 
onstru
ted by extrapolating the data from ea
h side to the other side.High resolution ENO (essentially non-os
illatory) methods are applied to the extrapolatedvalues whi
h now de�ne smooth fun
tions. The method is not exa
tly 
onservative at theinterfa
e, although errors in 
onservation appear to be small. Away from the interfa
e themethod is fully 
onservative.Glimm and 
oworkers, e.g., [17℄,[38℄,[42℄, have developed a very extensive set of tools forsho
k and interfa
e tra
king that have been su

essfully applied to a wide variety of prob-lems. This pa
kage in
ludes pro
edures to deal with 
ompli
ated intera
tions of interfa
es,Ma
h triple points, and other su
h stru
tures in spite of the la
k of 
onservation at thetra
ked front. The stru
ture of solutions to multi-dimensional Riemann problems is usedto determine the behavior of the solution near the interse
tion points. This 
ompli
atedalgorithm is 
apable of dealing with some very 
omplex problems.



5The approa
h taken here is fully 
onservative and based on high resolution sho
k 
ap-turing methods so that features not being tra
ked 
an still be a

urately 
omputed. Themethod is quite simple 
on
eptually and algorithmi
ally, although it would be 
ompli
ated
onsiderably by allowing the intera
tion of fronts.We use a �nite volume method on a grid 
onsisting of a uniform �xed grid in whi
hsome 
ells have been subdivided by tra
ked interfa
es. Potential problems with stabilityare avoided by the use of a \large time step" method. Another approa
h would be toeliminate the problemati
al small grid 
ells by merging them with adja
ent 
ells, temporarilyeliminating a \�xed" 
ell boundary in the pro
ess. This approa
h is used, for example,in [75℄ and [98℄. However, this may be impossible to do if several tra
ked fronts fall withinone �xed grid 
ell. Moreover, this seems to be unne
essary with our approa
h.Swartz and Wendro�[98℄ also 
onsider a method in whi
h the 
ow is entirely representedby a 
olle
tion of dis
ontinuities, all of whi
h are expli
itly tra
ked. Following Dafermos[26℄,a pie
ewise linear equation of state is used to ensure that only dis
ontinuities arise insolutions to Riemann problems. A similar approa
h was investigated by Hedstrom[51℄and has more re
ently been adopted by Risebro and Tveito[87℄,[86℄. Sin
e every 
ollisionmust be expli
itly handled by solving a Riemann problem, and the 
ollision of two wavestypi
ally gives rise to m new waves (for a system of m equations), this 
an 
learly lead toan explosion of information if m > 2, as in the Euler equations. (Although Wendro�[105℄has studied this method for a problem arising in 
hromatography and shows that for thisspe
ial system the number of waves remains bounded.) In general, at some point weakwaves must be suppressed in order to limit the amount of information retained, leading toa loss of 
onservation. Another problem is that smooth 
ow is not represented with highorder a

ura
y. Finally, there is the obvious diÆ
ulty of extending su
h methods to morethan one dimension.Our method is perhaps 
losest to that of Chern and Colella[16℄. They also use a 
on-servative method on a uniform grid, with some grid 
ells subdivided by the tra
ked front.They avoid stability problems in small partial 
ells by a \
ux redistribution" algorithm thatmodi�es 
uxes at the boundaries of these and neighboring 
ells in su
h a way that stabilityis restored while 
onservation is maintained. Our use of the wave propagation algorithmdes
ribed in Chapters 2 and 6 has the same e�e
t. In addition, we believe it to be moresolidly based on the 
orre
t physi
al behavior of the waves, and more amenable to highorder extensions and theoreti
al analysis.Another way that our algorithm di�ers from that of Chern and Colella is that weexpli
itly tra
k the dis
ontinuities, while they use a fra
tional marker volume (or \volume of
uid") approa
h in whi
h they keep tra
k of the volume of 
uid in ea
h 
ell that is \behind"the front and then dynami
ally re
onstru
t the front in ea
h time step. This approa
h isused in many interfa
e methods, e.g., [18℄,[46℄,[58℄,[76℄. In one spa
e dimension there is littledi�eren
e in these approa
hes { determining the front lo
ation is trivial from the fra
tionalvolume but on the other hand tra
king the points expli
itly is also quite simple. In two spa
edimensions one must seriously weigh the tradeo�s. Hyman[54℄ dis
usses some of the prosand 
ons. Our 
urrent two-dimensional implementation is based on expli
itly tra
king theglobal interfa
e, but the stable high resolution numeri
al methods we are developing 
ouldbe equally well used in the 
ells formed by lo
ally re
onstru
ting the front from fra
tionalvolume information.Another quite di�erent approa
h to representing interfa
e is proposed by Mulder, Osher,



6and Sethian[74℄,[78℄. They represent the front as a level set of an auxiliary fun
tion thatsatis�es an equation of Hamilton-Ja
obi type. This seems to be a promising approa
h sin
eit handles 
ompli
ated 
hanges of geometry quite easily.Finally, we want to mention that there are also a number of sho
k 
apturing approa
hesthat are 
apable of improving the resolution of dis
ontinuities. Methods of this type in
ludethe self-adjusting grid methods of Harten and Hyman[49℄, and the ENOmethod with sub
ellresolution of Harten[47℄.1.4 OutlineThis dissertation is divided into three parts. In Parts I and II, we develop, analyze, andapply the front tra
king algorithm for nonlinear hyperboli
 systems of 
onservation laws inone and two spa
e dimensions, respe
tively. In Part III, we 
onsider problems arising fromporous media 
ow where the hyperboli
 
onservation law is 
oupled with an ellipti
 partialdi�erential equation in order to 
orre
tly model the problem.The organization for Parts I and II is quite similar. In Chapters 2 and 6, we begindes
ribing numeri
al methods that 
an be used on a nonuniform grid generated by the fronttra
king algorithm. In Chapters 3 and 7, we des
ribe the front tra
king algorithm, introdu
eour model system (the Euler equations of gas dynami
s), dis
uss the implementation ofboundary 
onditions for this system, and present preliminary results obtained using thisalgorithm for this model system. In Chapters 4 and 8, we perform error estimation andstudy a

ura
y and stability of the algorithm. Several approa
hes that 
an be used toimprove upon the algorithm have been dis
ussed also. In Chapters 5 and 9, we presentmore numeri
al results for various appli
ations arising in gas dynami
s.In Part III, Chapter 10, we des
ribe an algorithm that 
an be used to solve a 
oupledsystem of ellipti
 and hyperboli
 partial di�erential equations arising in oil reservoir sim-ulation. Some preliminary results for this problem in both one and two spa
e dimensionsare also shown. Finally, in Chapter 11, we summarize the thesis work and outline futureresear
h.



Part IOne Spa
e Dimension



Chapter 2FINITE VOLUME WAVE PROPAGATION METHODSWe begin our dis
ussion by des
ribing numeri
al methods that 
an be used to 
omputethe smooth solution for the homogeneous 
onservation lawsut + f(u)x = 0: (2:1)Although these methods are related to various upwind or 
ux-limiter methods[20℄,[50℄ thathave been widely used for 
onservation laws, the formulation is somewhat di�erent. Weuse a wave-propagation viewpoint that allows us to interfa
e the method easily with fronttra
king and maintain stability even when very small 
ells are 
reated.2.1 PreliminariesWe des
ribe the methods on a general nonuniform grid with grid spa
ing hj = xj+1 � xj.We use a �nite-volume formulation in whi
h the value Unj approximates the 
ell average ofthe solution over the grid 
ell [xj ; xj+1℄ at time tn,Unj � 1hj Z xj+1xj u(x; tn) dx:The time step is denoted by k. Note that the grid may vary from step to step but themethod involves only two time levels, so this presents no diÆ
ulty.The methods we use are based on solving Riemann problems at ea
h interfa
e. ARiemann problem 
onsists of the original 
onservation laws (2.1) together with pie
ewise
onstant data ul and ur to the left and right of a single dis
ontinuity. The Riemann problemfor various systems of 
onservation laws has been extensively studied and the exa
t solution
an often be found [15℄,[57℄,[63℄. Under 
ertain 
onditions, satis�ed for the Euler equations,for example, the solution is a similarity solution (depending on x=t alone) that 
onsists ofm waves for a system of m equations. Ea
h wave is a sho
k wave, rarefa
tion wave, or
onta
t dis
ontinuity.At ea
h interfa
e xj , we solve the Riemann problem with data Unj�1 and Unj . Ratherthan 
omputing the exa
t solution to the Riemann problem, whi
h 
an be done but is ratherexpensive, we use an approximate solver developed by Roe[88℄ at most interfa
es. This ismu
h more eÆ
ient to 
ompute than the exa
t Riemann solution and in smooth regionsof the 
ow provides a very a

urate approximation. Only at front 
ollision points do weuse the exa
t Riemann solver so that the nonlinear intera
tion is a

urately 
omputed (seeSe
tion 3.1 for further dis
ussions).Roe's approximate Riemann solver repla
es the nonlinear equations (2.1) with data uland ur by a linear system ut + Â(ul; ur)ux = 0: (2:2)



9The matrix Â(ul; ur) is 
hosen to have the following properties:i) Â(ul; ur)(ur � ul) = f(ur)� f(ul)ii) Â(ul; ur) is diagonalizable with real eigenvalues (2.3)iii) Â(ul; ur)! f 0(�u) smoothly as ul; ur ! �u:Su
h matri
es have been derived for several systems of pra
ti
al interest. For the Eulerequations with a 
-law gas, the form of the matrix is given by Roe[88℄.The solution of the linear system (2.2) is a similarity solution that 
onsists ofm dis
onti-nuities propagating at 
onstant speeds. The jump a
ross ea
h dis
ontinuity is an eigenve
torof the matrix Â, and the propagation speed is the 
orresponding eigenvalue. We thus haveur � ul = mXp=1 rp; (2:4)where rp 2 lRm is an eigenve
tor of Â,Ârp = �prp; p = 1; 2; : : : ; m:Wave propagation methods are based on using these propagating dis
ontinuities to updatethe 
ell averages in the 
ells neighboring ea
h interfa
e.2.2 Godunov MethodTo begin, we assume that waves resulting from the Riemann problems a�e
t only the 
ellsadja
ent to the dis
ontinuity during the time step. This requires that the Courant numberbe less than 1. The Courant number � is de�ned by� = khmin maxp;j j�pj j (2:5)where hmin = minj hjand �pj represents the pth eigenvalue obtained from the Riemann problem at xj. Note thatk�pj is the distan
e a wave propagates during the time step. If �pj < 0, then we needkj�pjj < hj�1, while if �pj > 0 we need k�pj < hj in order that the wave stays within theadja
ent 
ell. Condition (2.5) is suÆ
ient to guarantee this.A �rst order a

urate version of the wave propagation method is then equivalent toGodunov's method, with the Roe Riemann solver, on a nonuniform grid. That is to say, wesolve the Riemann problems at ea
h interfa
e over a time step of length k and then averagethe resulting solution over the grid 
ells to obtain Un+1. By 
omputing the e�e
t of ea
hwave on the 
ell average, we obtain the following wave-propagation form of the algorithm:



10Algorithm 2.1Initialize Un+1j := Unj for all jFor ea
h j do beginSolve the Riemann problem at xj based on data Unj�1; Unj to obtainjumps rpj and speeds �pj (p = 1; 2; : : : ;m)For p = 1; 2; : : : ;m do begin# Update the 
ell average to the left or right of the interfa
e# depending on the speed:If �pj < 0 then i := j � 1 else i := jUn+1i := Un+1i � �pjkrpj=hi# Apply se
ond order 
orre
tions if desired (See Algorithm 2.2)endendThe se
ond order 
orre
tions will be dis
ussed below. We 
an rewrite this method as astandard �nite di�eren
e method in 
onservation form if we look at the total 
ontributionto ea
h grid 
ell. We �nd thatUn+1j = Unj � X�pj>0 �pjkhj rpj � X�p;j+1<0 �p;j+1khj rp;j+1= Unj � khj [F (Unj ; Unj+1)� F (Unj�1; Unj )℄where the numeri
al 
ux fun
tion F is given byF (Unj ; Unj+1) = f(Unj ) + X�p;j+1<0�p;j+1rp;j+1and F (Unj�1; Unj ) = f(Unj�1) + X�pj<0 �pjrpj (2.6)= f(Unj )� X�pj>0 �pjrpj:The last equality follows from Property (2.3i). This property guarantees that the wave-propagation method is 
onservative.The advantage of using the wave propagation form rather than the more traditional
ux di�eren
ing form is that the method 
an then be easily extended to the 
ase wherethe Courant number is larger than 1. In this 
ase, waves propagate through more thanone grid 
ell. The 
ux di�eren
ing formula based on the above 
uxes would then lead toan unstable method, sin
e the ratio �pjk=hj would be larger than 1 in magnitude for somewaves. On the other hand, using the wave propagation approa
h allows us to extend themethod easily in a stable manner. Note that it is also possible to write a 
ux di�eren
ingmethod for this larger Courant number 
ase, but the 
uxes are more 
ompli
ated[59℄.



11
j � 1 j j + 1

k�pj
Figure 2.1: Wave propagation in the 
ase k�pj > hj . The wave propagates entirely throughone 
ell and part way through the neighbor.For example, if kj�pjj > hj at some point in the algorithm, then the 
orresponding waveshould update more than one 
ell average, as shown in Figure 2.1. In this �gure, Un+1j isupdated by the entire jump rpj, Un+1j := Un+1j � rpj;while Un+1j+1 is updated by Un+1j+1 := Un+1j+1 �  k�pj � hjhj+1 ! rpj:The method remains 
onservative with this modi�
ation. This \large time step" versionof Godunov's method is dis
ussed in some detail in [60℄,[62℄. Regarding stability, we notethat for a s
alar nonlinear 
onservation law the method is total variation diminishing (TVD)and hen
e is stable and 
onvergent[59℄. Also, for a linear system of 
onservation laws themethod redu
es to a s
alar large time step method on ea
h 
hara
teristi
 �eld and again isstable. For nonlinear systems of equations, some os
illation problems have been observedwhen large Courant numbers on uniform grids are used in the 
ontext of sho
k 
apturing[60℄.In this 
ase, waves pass through several grid 
ells and the linearization of the nonlinearintera
tions apparently results in diÆ
ulties.However, in the 
ontext of front tra
king, where the Courant number is large only dueto o

asional small 
ells and we are 
apturing smooth 
ow, we have not observed stabilityproblems for most 
al
ulations. In one example presented in Se
tion 5.1.2, the Woodward-Colella blast wave intera
tion problem, we have experien
ed diÆ
ulties due to negativepressures using the linear wave intera
tions. It is an extreme 
ase, however, in whi
h astrong rarefa
tion wave overtakes a sho
k that has a very low pressure in front of it. Thepressure be
omes negative when the rarefa
tion wave passes through the blast wave andenters the low pressure region.2.3 High Resolution Godunov MethodWe now extend the method to a high resolution method, i.e., a method that a
hievesse
ond order a

ura
y on smooth 
ows (ex
ept perhaps near extrema) and also avoidsos
illations near dis
ontinuities. The approa
h we use is similar to the MUSCL (standing for\Monotoni
 Upstream-
entered S
heme for Conservation Laws") approa
h of van Leer[104℄



12in that we introdu
e pie
ewise linear approximations to the solution in pla
e of the pie
ewise
onstant fun
tions used in Godunov's method, but the form of the method is quite di�erentand allows easy extension to the 
ase where the Courant number is larger than 1. Moredetails of this approa
h 
an be found in [61℄,[62℄.We begin our method by solving the Riemann problems as before, using the pie
ewise
onstant data. The resulting jumps rpj are then used to obtain slope information in ea
h
hara
teristi
 family. Let hj�1=2 = 12(hj�1 + hj)be the distan
es between 
ell 
enters. Note thatmXp=1 rpj=hj�1=2 = (Unj � Unj�1)=hj�1=2= ux(xj ; tn) +O(h):So ea
h 
omponent rpj=hj�1=2 is the 
ontribution to the slope arising from the pth family.It is important to de
ompose the slope into 
omponents, sin
e the waves in the di�erentfamilies propagate at di�erent speeds and perhaps in di�erent dire
tions. Moreover, whenwe introdu
e slope limiting, we will do the limiting separately in ea
h family. We wish tolimit slopes near a dis
ontinuity in order to avoid os
illations, but wish to do this in thefamily with the dis
ontinuity without a�e
ting a

ura
y in other families where the solutionmay be smooth.We will use �pj to denote the slope used in the pth family over the 
ell [xj ; xj+1℄. Theunlimited slope is taken to be�pj = ( rpj=hj�1=2 if �pj < 0rp;j+1=hj+1=2 if �p;j+1 > 0: (2:7)To avoid os
illations, the slope �pj should be 
hosen based on a slope limiter. If we let �(i)pjbe the ith 
omponent of �pj (i = 1; 2; : : : ;m) and similarly let r(i)pj be the ith 
omponent ofrpj, then we apply a slope limiter separately in ea
h 
omponent, i.e., we take�(i)pj = �(�(i)pj )0� r(i)pjhj�1=21A (2:8)where � is some limiter fun
tion applied to the slope ratio�(i)pj = hj�1=2 r(i)p;j+shj+s�1=2 r(i)pj ; (2:9)with s = �sgn(�pj). One simple 
hoi
e of limiter is the \minmod" slope limiter �, givenby �(�) = 8<: 0 if � � 0� if 0 � � � 11 if � � 1 (2.10)= max(0; min(1; �)):



13Other 
hoi
es of slopes 
an also be used, and a variety of limiter fun
tions have beendeveloped that work better than \minmod". Typi
al examples are the \superbee" limiterof Roe[89℄: �(�) = max(0; min(1; 2�); min(�; 2)); (2:11)and the \MUSCL" limiter of van Leer[104℄:�(�) = max(0; min(2; 2�; (1 + �)=2): (2:12)See Sweby[99℄ for a more general dis
ussion of limiters.This slope is used to modify the 
ell averages 
omputed via the �rst order algorithm.The modi�
ation is a

omplished by shifting a 
ertain mass between 
ells in a 
onservativemanner. The idea is best explained by 
onsidering the linear adve
tion equationut + aux = 0 (2:13)on a grid with Courant number � = ak=hmin � 1, a > 0. Godunov's method is then simplythe �rst order upwind methodUn+1j = Unj � akhj (Unj � Unj�1): (2:14)This 
an be interpreted as follows: view Unj as de�ning a pie
ewise 
onstant fun
tion~uj(x; tn). Shift this fun
tion at the propagation speed a to obtain ~uj(x � ak; tn). Nowaverage this fun
tion over the grid 
ells to obtainUn+1j = 1hj Z xj+1xj ~uj(x� ak; tn) dx:It is easy to verify that this gives (2.14). So ea
h 
ell average is updated by the shaded areain Figure 2.2a divided by the 
ell length.A natural way to extend this to se
ond order a

ura
y is to repla
e the pie
ewise 
onstantfun
tion by a pie
ewise linear fun
tion of the form~uj(x; tn) = ( Unj + (x� xj+1=2)�j xj � x < xj+10 otherwise; (2:15)with slopes �j on ea
h 
ell as obtained, for example, from (2.7). For the s
alar equa-tion (2.13), this redu
es to �j = (Unj+1 � Unj )=hj+1=2: (2:16)We then shift this fun
tion at speed a and average onto the grid. We thus obtain Un+1j byupdating Unj a

ording to the shaded area of Figure 2.2b.An easy way to a

omplish this is to split the pro
edure into two pie
es. In the �rststep we update 
ell averages using the pie
ewise 
onstant wave as in Figure 2.2a (i.e., weapply (2.14)), and in the se
ond step we propagate the pie
ewise linear wave form shown
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j � 1 j

a)

j + 1 j � 1 j j + 1

b)

j � 1 j


)

j + 1Figure 2.2: a) Propagation of the pie
ewise 
onstant wave. b) Propagation of a pie
ewiselinear wave form. 
) Se
ond order 
orre
tion wave. The propagation shown in Figure b 
anbe de
omposed into propagation of the pie
ewise 
onstant wave of Figure a together withpropagation of this 
orre
tion wave.in Figure 2.2
, with zero mean value and slope �j over the 
ell. We then further updateUn+1j by the shaded area in Figure 2.2
, i.e., we setUn+1j := Un+1j + ak2hj (hj�1 � ak)�j�1:We also update Un+1j�1 by the area of the portion of the 
orre
tion wave that overlaps this
ell, Un+1j�1 := Un+1j�1 � ak2hj�1 (hj�1 � ak)�j�1:Conservation is maintained in this 
orre
tion step with any 
hoi
e of slopes sin
e the abovetwo 
orre
tions (weighted by 
ell size) sum to zero.Of 
ourse, Un+1j will also be updated by the wave originating from xj+1=2. When all ofthese updates are 
ombined, we �nd thatUn+1j = Unj � akhj (Unj � Unj�1) + ak2hj (hj�1 � ak)�j�1 � ak2hj (hj � ak)�j :On a uniform grid with slopes (2.16), this redu
es to the Lax-Wendro� method for thelinear adve
tion equation (2.13) and is se
ond order a

urate.The extension to nonlinear systems is straightforward. We apply Algorithm 2.1 butnow for ea
h wave we also apply a 
orre
tion step. In this algorithm we assume that theCourant number is less than 1, and so the 
orre
tion step takes the form in Algorithm 2.2.



15Algorithm 2.2 (Insert in Algorithm 2.1)# Se
ond order 
orre
tions:If �pj < 0 then i := j else i := j � 1Un+1j := Un+1j + j�pjjk2hj (hi � j�pj jk)�piUn+1j�1 := Un+1j�1 � j�pjjk2hj�1 (hi � j�pj jk)�piNote that this 
orre
tion 
an be easily translated into the 
ux di�eren
ing framework.The �rst order 
ux F (Unj�1; Unj ) from (2.6) is simply repla
ed byF nj�1=2 = F (Unj�1; Unj )� mXp=1 12 j�pjj(hi(p) � j�pjjk)�p;i(p) (2:17)where i(p) = ( j � 1 if �pj > 0j if �pj � 0:Noti
e that the 
ux now depends on four neighboring points rather than two, so we use theabbreviated notation F nj�1=2. This 
ux formulation will be useful in 
onjun
tion with gridre�nement in Se
tion 5.1.For a s
alar nonlinear problem on a uniform grid with slopes (2.7), this again redu
es toa form of the Lax-Wendro� method and 
an easily be veri�ed to be se
ond order a

urate.For a nonlinear system of equations on a uniform grid, this method is quite 
omparable toother slope limiter of 
ux limiter methods and yields similar high quality results.The method 
an also be generalized quite easily to nonuniform grids with Courantnumber greater than one by appropriately averaging the 
orre
tion wave onto whatevergrid 
ells it overlaps. Algorithmi
 details may be found in [62℄.



Chapter 3FRONT TRACKING ALGORITHMHaving des
ribed the numeri
al methods that 
an be used on the nonuniform grid forthe homogeneous 
onservation laws (2.1), we now dis
uss the front tra
king algorithm forthis system. As we will see from the dis
ussion, this algorithm is very simple and robust.Moreover, it is a 
onservative algorithm with no stringent time step limitations in thepresen
e of small 
ells 
reated by the tra
ked interfa
es 
utting through the grid. Oneexample will be given here for our model system, the Euler equations of gas dynami
s, todemonstrate the e�e
tiveness of the algorithm. The implementation of boundary 
onditionsfor this model system will also be dis
ussed.3.1 AlgorithmOur grid 
onsists of two parts. We 
hoose a uniform underlying grid with mesh size h thatremains �xed for all time, and we also introdu
e tra
ked points whi
h vary from step tostep for dis
ontinuities in the 
ow �eld. These tra
ked points subdivide some regular 
ellsinto two or more sub
ells, 
reating some irregular 
ells. We then view the union of theregular 
ells and irregular 
ells as our global grid (see Figure 3.1). In ea
h grid 
ell the 
ellaverage is denoted by Unj .In ea
h time step our front tra
king algorithm 
onsists of the following steps:Algorithm 3.11) Determine the size of the next time step and the lo
ation of the tra
ked points at thenext time step.2) Modify the 
urrent grid by inserting these new tra
ked points. Some 
ells will be sub-divided and the values in ea
h sub
ell must be initialized.3) Take a time step on this nonuniform grid using a �nite volume method des
ribed inChapter 2 to update the 
ell averages.4) Delete the old tra
ked points from the previous time step. Some sub
ells will be 
om-bined and a value in the 
ombined 
ell must be determined from the sub
ell values.Before des
ribing ea
h of these steps in more detail, we �rst dis
uss some possibleapproa
hes to setting up the data stru
ture. One possibility is to use a doubly linked listfor the entire grid (see [1℄ or [55℄ for more information on the use of linked lists). Ea
hgrid 
ell is an element of this list, with pointers to the previous and next grid 
ells. Withthis data stru
ture, it is easy to insert and delete grid points and the distin
tion betweenregular and irregular 
ells disappears. This is reasonable in Step 3 of our algorithm, where



17little distin
tion is made between regular and irregular 
ells, although we will see that wemust be 
areful in our 
hoi
e of slopes near tra
ked points. We also need to keep tra
k ofwhi
h points must be deleted in Step 4. For these reasons we would also maintain a 
ag forea
h point that tells whether it is a regular point, an old tra
ked point, or a new tra
kedpoint.The use of a doubly linked list does not extend very well to two spa
e dimensions.Another more general approa
h is to use a standard representation for the �xed grid togetherwith a 
ag for ea
h grid 
ell that indi
ates whether the grid 
ell is subdivided by one or moretra
ked points. For subdivided 
ells, this 
ag 
an be a pointer to another data stru
ture
ontaining information on ea
h sub
ell.This latter data stru
ture also interfa
es more easily with the adaptive mesh re�nementalgorithm we use, and so we have taken this approa
h in our 
ode.We now dis
uss ea
h step of Algorithm 3.1 in more detail.Step 1: We begin our algorithm by solving the Riemann problem at ea
h interfa
eand obtain the resulting jumps rpj and speeds �pj. Then at ea
h interfa
e we 
he
k ea
hjump rpj to see if it should be tra
ked. This 
an be done by 
he
king, for example, ifthe max-norm of rpj is greater than some pres
ribed toleran
e ", or if the jump in somephysi
ally meaningful variable (e.g., density or entropy) is greater than the toleran
e ".The 
hoi
e of the 
he
king 
riterion and toleran
e " for determining the tra
ked waves maydepend on the spe
i�
 problem and should be adjusted a

ordingly. In order to 
apturethe sho
k formation, the jumps have to be 
he
ked at regular interfa
es as well as at thetra
ked interfa
es so that new tra
ked points 
an be introdu
ed. By examining the jumpsat tra
ked interfa
es, de
aying sho
ks 
an also be dete
ted and hen
e ignored.It should be noted that only waves 
orresponding to the physi
ally relevant dis
on-tinuities should be tra
ked, i.e., sho
ks or 
onta
t dis
ontinuities. Although rarefa
tionwaves are also approximated by dis
ontinuities in the Roe Riemann solver, we want themto be smeared rather than remaining sharp and so they should not be tra
ked even if theirstrength is greater than ". Moreover, due to this rarefa
tion wave approximation, we mayobtain an entropy-violating solution if the rarefa
tion wave is a transoni
 one. This entropyviolation 
an be �xed in various ways, for example, by repla
ing the single entropy-violatingdis
ontinuity by two dis
ontinuities traveling in opposite dire
tions[49℄.Before entering the front tra
king algorithm, we have some basi
 time step k. In orderto avoid the intera
tion of tra
ked waves during this time step, we adjust our time step ifneeded. It will be adjusted in su
h a way that the 
ollision of two tra
ked waves o

ursexa
tly at the end of a time step (see Figure 3.1). This 
an be a

omplished quite easily.Assume that there are two tra
ked waves, one originating from x� with speed �p� and theother from x� with speed �q�. Here p, q are the wave families, and �, � are the indi
es ofthe 
ell interfa
es. Let x̂�, x̂� be the new lo
ations of x�, x� under the 
urrent time step,i.e., x̂� = x� + �p�k;x̂� = x� + �q�k:If no intera
tion o

urs, the produ
t of the two relative distan
es (x̂� � x̂�)(x� �x�) will begreater than zero for ea
h pair of tra
ked waves. If intera
tion happens, the time step for
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Figure 3.1: A typi
al grid in the x-t plane when front-tra
king is used to model the 
ollisionof two sho
ks with the Euler equations. The uniform grid is augmented by 
ell interfa
esat the dis
ontinuities. The time step is adjusted so that the sho
k 
ollision is 
orre
tlyresolved.this pair of intera
tion 
an be 
omputed byk = (x� � x�)=(�q� � �p�):We 
hoose the time step to be the minimum of all 
ollision times found by 
he
king adja
enttra
ked waves.If 
ollision o

urs, in the next time step the approximate Riemann solver is repla
ed bythe exa
t Riemann solver at the 
ollision point to insure that the resulting waves in thenext time step are well resolved. By 
hoosing the time step in this way and using the exa
tRiemann solver, we guarantee that the 
ollision of two tra
ked waves is always handled
orre
tly.Step 2: After 
hoosing the time step k, we 
an 
ompute the lo
ations of ea
h tra
kedwave at the end of the time step. Some of these lo
ations may 
oin
ide if two waves
ollide, or if the new lo
ations are exa
tly at the old grid interfa
es. Also, some waves maypass outside of our 
omputational domain at an out
ow boundary. For ea
h distin
t wavelo
ation in the domain, we insert a new 
ell interfa
e into our old grid. Ea
h new pointsubdivides some 
ell into two sub
ells. We must assign a 
ell value on ea
h of these sub
ells(see Figure 3.2 for an example). The simplest approa
h is to assign the previous 
ell valueto ea
h sub
ell. It would be preferable to use some form of interpolation to determine morea

urate values on these 
ells. However, doing so would 
hange the solutions to neighboringRiemann problems and perhaps the speed of the tra
ked waves. The lo
ation of the pointwe are inserting might therefore be in
orre
t. For this reason we use the simpler approa
h.Step 3: On
e the new grid is 
onstru
ted, the 
ell average values Unj are then updatedby applying the �nite volume wave propagation method des
ribed in the previous 
hapter onthe resulting nonuniform grid, see Figure 3.3 for illustration. Sin
e the new grid has been
hosen 
arefully so that all the strong waves are propagated exa
tly to 
ell boundaries,there is no smearing of the tra
ked waves during the averaging pro
ess. Smooth 
ow is
aptured as usual. Note that during this propagation pro
ess, all waves are propagatedindependently, and in prin
iple no distin
tion need be made between tra
ked points andordinary grid boundaries. Near tra
ked points, waves may propagate through several 
ellsdue to the fa
t that we have 
reated small sub
ells. A 
onsequen
e of this is that waves pass
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tn+1
tn x� x̂�


ell i 
ell j
ia ib ja jbFigure 3.2: A sho
k propagating from 
ell i to 
ell j = i+ 1 leads to a subdivision of 
ellsi and j. In time step n we split 
ell j in two, setting Unja = Unjb = Unj . In time step n+ 1we eliminate the old tra
ked point in 
ell i using (3.1).

tn+1
tn

�p
x� x̂�Figure 3.3: Wave propagation in step 3. Ea
h wave is propagated independently, and forwaves passing through ea
h other the intera
tion is linearized. Note that the tra
ked waveis propagated exa
tly to the new 
ell boundary x̂� introdu
ed in Step 2. (The solid linesshown in the �gure represent the tra
ked waves, while the dashed lines represent the weakwaves.)



20through one another as they would in a linear equation, without undergoing the nonlinearintera
tion that should o

ur. For weak waves, this is a good approximation, as des
ribedin [60℄. For the intera
tion between a strong tra
ked wave and the weak waves arisingfrom the nearby Riemann problems, this linearization is less valid. In the next 
hapter, weinvestigate the error introdu
ed by this pro
edure, and dis
uss one possible approa
h thatmay improve the a

ura
y.Step 4: We now delete the old tra
ked points from the 
urrent grid. This 
orrespondsto merging two sub
ells into one, and the 
ell value in the 
ombined 
ell is 
al
ulated bythe appropriate weighted 
ombination of these two deleted sub
ells to maintain the 
orre
t
ell average. For example, in Figure 3.2, the old tra
ked point x� is deleted from the ithregular 
ell, and so the ith 
ell average after deletion be
omesUn+1i = x� � xih Un+1ia + xi+1 � x�h Un+1ib (3:1)where Un+1ia , Un+1ib are the 
ell averages in the �rst and se
ond sub
ell of the ith 
ellrespe
tively, and h is the underlying �xed mesh size.3.2 The Euler Equations and Boundary ConditionsBefore presenting numeri
al results with this front tra
king algorithm, we pause to introdu
ethe Euler equations of gas dynami
s and dis
uss the implementation of boundary 
onditionsfor this system.The invis
id Euler equations of gas dynami
s in one spa
e dimension take the form��t 0B� ��v�E 1CA+ ��x 0B� �v�v2 + p(�E + p)v 1CA = 0 (3:2)where �; v; p; E are the density, velo
ity, pressure, and total energy of the gas per unit mass,respe
tively. We assume a 
-law gas, in whi
h the internal energy satis�es e = 1
�1p=�,where 
 is the ratio of spe
i�
 heats (
 �= 1:4 for air). Then the total energy of the gas perunit mass is E = e+ 12v2. The three 
omponents of equations (3.2) express the 
onservationof mass, momentum, and energy, respe
tively[25℄.Out
ow boundary 
onditions are easily a
hieved with the wave propagation approa
hby simply ignoring waves on
e they leave the 
omputational domain, and by not introdu
ingany new waves at the boundary.For periodi
 boundaries, we now allow all the outgoing waves whi
h leave at one bound-ary to return to the domain at the other boundary with the same speed �pj, jump rpj andslope �pj, say for the pth wave from the xj interfa
e. We 
an think of these \in
oming"waves as 
oming from the solution of the Riemann problems on an extended grid withperiodi
ally extended data.At a solid wall boundary, say at x = 0, we have the no-
ow boundary 
onditionv(0; t) = 0:This boundary 
an be treated as a line of symmetry. If we re
e
t our grid near the boundaryto the region x < 0, we 
an assign grid values in the re
e
ted 
ells usingUn�j = R(Unj ); j = 1; 2; � � �



21where R represents the operator that negates the se
ond 
omponent of U (the velo
ity)while leaving the �rst and third 
omponents (density and energy) un
hanged. Applyingthe algorithm over a slightly extended domain simulates the solid wall boundary 
ondition.Alternatively, we 
an avoid extending the grid if we note that ea
h in
oming wave (awave entering our true 
omputational domain from x < 0) 
an be viewed as the re
e
tion ofan outgoing wave (a wave 
rossing x = 0 with negative speed). This is illustrated in [61℄,[62℄.It is easy to verify that the relation between the re
e
ted jump �rpj and the outgoing jumprpj is simply �rpj = �R(rpj)and the speed of the re
e
ted wave is ��pj = ��pj. So with this approa
h, we need only solveRiemann problems on our original grid and then re
e
t any waves that hit the boundary.In the high resolution version, we must also re
e
t the outgoing slope in the same way,��pj = �R(�pj):In addition, we must solve a boundary Riemann problem with data ur = Un1 given by the
ell adja
ent to the boundary and ul = R(ur). With this data, there is one in
oming wavethat a�e
ts the grid values (the 
onta
t dis
ontinuity will have speed zero by symmetry andthe outgoing wave is ignored).This wave re
e
tion pro
edure is quite easy to implement, and is appli
able for anymesh size and any time step.Finally, we will dis
uss how this re
e
tion pro
edure 
an be applied to a moving bound-ary, e.g., a moving piston. We approximate the piston motion by assuming that the velo
ityis 
onstant within ea
h time step. Assume that the piston is lo
ated at x = zn at timetn and is moving with speed sn for tn � t � tn+1. Then the physi
ally 
orre
t boundary
ondition is v(zn + sn(t� tn); t) = snfor tn � t � tn+1. Using the Galilean transformation, we 
an derive that�(zn�) = �(zn+)v(zn�) = 2sn � v(zn+)p(zn�) = p(zn+) (3:3)is the 
orre
t data for the boundary Riemann problem. This de�nes a generalization of there
e
tion operator R. Determining the 
orresponding re
e
tion of the energy, we �nd thata jump whi
h hits the boundary should now be re
e
ted using the following relations:�r(1)pj = �r(1)pj�r(2)pj = r(2)pj � 2snr(1)pj�r(3)pj = �r(3)pj + 2snr(2)pj � 2(sn)2r(1)pj : (3:4)For shorthand, we write �rpj = �Rn(rpj). The re
e
ted slopes 
an be determined by thesame re
e
tion, ��pj = �Rn(�pj). The re
e
ted speed ��pj is simply equal to 2sn � �pj .
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Figure 3.4: Results for the double piston problem. a) Tra
ked fronts. b) Density 
ontourplot in the x-t plane up to time t = 1.3.3 A Double Piston ProblemHere we present our �rst test problem 
onsisting of a double piston. The problem is formu-lated as follows: take a sho
k tube with unit length and 
onsider two pistons moving fromthe left and right boundary individually into the stationary gas (
 = 1:4) with � = 1:4 andp = 1. We 
hoose piston velo
ities sp(t) of the formsp(t) = 8>><>>: �1t t � t1�2(t2�t)pr2�(t2�t)2 t1 < t � t20 t > t2:The parameters for ea
h piston are given by:left piston: �1 = 5, �2 = 1, t1 = 0:31, t2 = 0:444right piston: �1 = �4, �2 = �1, t1 = 0:42, t2 = 0:557and r = 0:16 in ea
h 
ase.Due to the piston motions, two 
ompression waves arise from the left and right pistons,and eventually form sho
k waves. These new sho
k waves travel toward one another andsubsequently intera
t. Two outgoing sho
ks result from the intera
tion, and begin to inter-a
t with the rarefa
tion waves and the pistons. The rarefa
tion waves are the 
onsequen
eof stopping the pistons (see Figure 3.4b).In the numeri
al method, we repla
e the piston path by a pie
ewise 
onstant path usingthe 
onstant velo
ity sp(t) = sp(tn + 12k) over the time interval tn � t � tn+1, where k isthe time step. Then the piston boundary 
onditions des
ribed in Se
tion 3.2 are applied to
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Figure 3.5: Comparison plots for the double piston problem at time t = 0:6. In ea
h �gurethe solid line is the �ne grid solution with h = 1=800 and the points show the solution withh = 1=100.ea
h piston. In Figure 3.4a, we show the tra
ked points whi
h in
lude the lo
ation of thetra
ked sho
ks and the pistons' path, by using the high resolution front tra
king algorithmwith mesh size h = 1=100 and Courant number � = 0:9. It is 
learly seen that the sho
kformation and the tra
ked wave intera
tions have been handled quite well by using our fronttra
king algorithm.For this problem, we tra
k waves for whi
h the density jump is greater than the toleran
e" = 1. From now on, unless otherwise stated, we use this tra
king 
riterion to determinethe tra
ked waves in the numeri
al examples given below.The density 
ontour plot in the x-t plane is shown in Figure 3.4b for the same run.From it, we 
an see that numerous wave intera
tions o

ur. The linear wave intera
tionis used for the intera
tion of tra
ked sho
ks with the ba
kground smooth 
ow and givessatisfa
tory results. In Figure 3.5, we 
ompare our numeri
al result (h = 1=100) with the�ne grid solution (h = 1=800) at t = 0:6, observing good agreement.From this test problem, we see that our front tra
king algorithm is 
apable of handlingsho
k formation, moving boundaries, and wave intera
tions.



Chapter 4ERROR ANALYSISIn our front tra
king algorithm, we use a high resolution method that is essentiallyse
ond order a

urate away from the tra
ked points. We use front tra
king in order toresolve dis
ontinuities properly, and so our method does not su�er the standard loss ofa

ura
y due to smearing that a sho
k 
apturing method would su�er. Nevertheless, there
an be some loss of a

ura
y near the dis
ontinuity due to the nonuniformity of the grid.An isolated dis
ontinuity separating two 
onstant states is tra
ked perfe
tly, but in a morerealisti
 situation there is some smooth ba
kground 
ow with whi
h the dis
ontinuity in-tera
ts. There are several fa
tors that 
an then lead to loss of a

ura
y near the tra
kedfront, su
h as the 
hoi
e of slopes in neighboring 
ells, loss of a

ura
y due to the use ofnonuniform and time-dependent grid, and the linearization of the intera
tion between thetra
ked dis
ontinuity and weak waves from the neighboring 
ell interfa
es. Here we willexamine ea
h of these problems in more detail. To begin, we report results on the order ofa

ura
y for some sample problems where exa
t solutions are available.4.1 PreliminariesWe �rst des
ribe some notation and terms for later use. Let unj = u(xj ; tn) be the pointwisevalue of the true solution at the dis
rete mesh point (xj ; tn), and let �unj be the true 
ellaverage solution over the grid 
ell [xj ; xj+1℄ at time tn,�unj � 1hj Z xj+1xj u(x; tn) dx:The global error of a numeri
al method is de�ned to be the di�eren
e between the true and
omputed solutions. Here we 
onsider using either the pointwise errorEnj = Unj � unj ; (4:1)or the 
ell average error �Enj = Unj � �unj ; (4:2)to de�ne the global error. Although for 
onservation laws it is preferable to 
onsider thelatter error, pointwise error is more 
onvenient to 
ompute in pra
ti
e. We will make it
lear what approa
h we use in due 
ourse, and for now we simply write Enj to denote theerror in both 
ases.With these de�nitions, we de�ne the order of a

ura
y of a method as the largest realnumber p in some parti
ular norm k � k for whi
hk En k= O(hp) for all tn � 0 as h ! 0: (4:3)



25Clearly, if p is a positive number in (4.3), a method is 
onvergent in the sense thatk En k! 0 as h ! 0,for any �xed tn � 0 and Courant number. Note that in the present 
ontext of front tra
kingh is the underlying uniform mesh size.Here the norm we 
onsider is a dis
rete norm that 
an be applied to the dis
rete gridfun
tion En having errors in both the regular and irregular 
ells as elements. For example,in the 1-norm, we use k En k1 =Xj hj jUnj � unj j;where hj is the mesh size of the jth grid 
ell, and in the max-norm, we usek En kmax = maxj jUnj � unj j:To 
ompute the order of a

ura
y of a method, we employ a linear least-squares �t toa sequen
e of mesh re�nement data f(log hl; log k En k); l = 1; � � � ;mg, and take the slopeas the order of a

ura
y of the method.Now let us 
onsider some sample problems and investigate the order of a

ura
y that isa
hieved by using our front tra
king algorithm.Example 4.1. We �rst 
onsider a s
alar linear problem 
onsisting of the linear adve
-tion equation ut + ux = 0 for 0 � x � 1 (4:4)with initial data u(x; 0) = ( 2 + 1:5e20(x�0:32) x < 0:321 + 0:5 tanh(6�(0:36 � x)) otherwise; (4:5)and out
ow boundary 
onditions on the left and right boundaries. The exa
t solution forthis problem 
an be obtained by simply shifting this initial pro�le with speed 1 as illustratedin Figure 4.1a. Note that this initial data gives a single dis
ontinuity with an extreme pointjust behind the dis
ontinuity.To examine the error behavior of the method as time evolves and as the mesh is re�ned,we perform error estimation at 10 di�erent times (at every integer multiple of the timeinterval k = 0:04) with a mesh re�nement sequen
e fhl = 21�l=25; kl = hl=2; l = 1; 2; � � � ; 5g.The result is shown in Figure 4.2 where the errors and order of a

ura
y in the 1-norm andmax-norm are presented for the Godunov method and the high resolution Godunov methodwith various slope limiters, namely, with the \minmod" (2.10), the \superbee" (2.11), andthe \MUSCL" (2.12) limiters. From the �gure, we observe that the a

ura
y of the methodswe employed here is far less than satisfa
tory, parti
ularly, for the high resolution methods inthe max-norm; they are only slightly better than the Godunov method. This is expe
ted,however, be
ause the use of a slope limiter tends to 
lip the extreme point behind thedis
ontinuity, and so the method is in fa
t �rst order a

urate near the tra
ked point.Noti
e that no matter what method we use the 1-norm error grows as time evolves. There
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Figure 4.1: Snap shots of the exa
t solution at three di�erent times. a) For the s
alar linearproblem, Example 4.1. b) For the s
alar nonlinear problem, Example 4.2.is little distin
tion between the results for di�erent 
hoi
es of the limiter. For 
onvenien
ein reading, the errors shown in the �gure were plotted in the logarithmi
 s
ale with base10. (This is also the 
ase for other �gures shown below relating to errors of a method.)For 
omparison, it is interesting to see how the standard sho
k 
apturing methods workon this problem. As seen from the result shown in Figure 4.3, our front tra
king result is
learly superior to that obtained from sho
k 
apturing.Note that in the above 
al
ulations the Courant number � = 0:5 (i.e., k = h=2) is used,and the error is 
al
ulated based on the 
ell average error (4.2). From now on, we use thisCourant number in all the test problems 
onsidered here. Although the 
omputed orderof a

ura
y is slightly di�erent from other 
hoi
es of Courant number, the 
onvergen
ebehavior of the method is quite similar.Example 4.2. Next, we 
onsider a s
alar nonlinear problem 
onsisting of the invis
idBurgers' equation ut + (u2=2)x = 0 for �1 � x � 1 (4:6)with initial data u(x; 0) = 1 + 0:5 sin(�x); (4:7)and periodi
 boundary 
onditions. With these initial and boundary 
onditions, it is easyto show that the exa
t solution is smooth up to the sho
k formation time t = 2=� � 0:64,and is dis
ontinuous afterward, see Whitham[108℄ for the detail on the 
onstru
tion of theexa
t solution. Figure 4.1b shows several snap shots of the exa
t solution.In Figure 4.4, we show results for a similar a

ura
y study as the one performed inthe previous example up to time t = 1:2. Now we observe that in the 1-norm the methodis 
onvergent with �rst order and se
ond order a

ura
y, respe
tively, for the Godunovmethod and the high resolution methods we employed here. The result in the max-norm,however, falls short of the desirable value to some extent, parti
ularly for the high resolutionmethods during the time when the solution is smooth. This loss of a

ura
y for the smooth
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d) High resolution Godunov method with \MUSCL" limiter

timekEn k max timeorderofa
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yFigure 4.2: An a

ura
y study of the front tra
king algorithm for the linear adve
tionequation (4.4) with initial data (4.5) up to time t = 0:4. Note that all the errors shown inthe �gure are plotted in the logarithmi
 s
ale with base 10. Error estimation is performedat 10 di�erent times with a mesh re�nement sequen
e fhl = 21�l=25; l = 1; 2; � � � ; 5g.
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Figure 4.3: An a

ura
y study of the sho
k 
apturing method for Example 4.1. (SeeFigure 4.2 for 
omparison.)



29solution results from using a slope limiter that gives a TVD method that 
lips solutions atthe extreme points[114℄.Noti
e that the method is somewhat less a

urate near the transition period from the
ontinuous solution to the dis
ontinuous solution. This is reasonable, however, sin
e 
orre
tsho
k formation time is not built into the algorithm. The algorithm determines that a sho
khas formed when the solution to some Riemann problem has a wave of suÆ
ient strength.This will not be inserted at pre
isely the 
orre
t time or lo
ation. The third 
olumn ofFigure 4.4 shows that the sho
k lo
ation tends to improve as time goes on. (Here thetoleran
e we use is " = 0:35 for the wave strength at whi
h we start out tra
king.) On
ethe sho
k has been dete
ted, the error de
reases later on. Note that the error in the tra
kedpoint lo
ation, de�ned by Enfront = xntrue � xn
omputed;
onverges with high pre
ision, O(10�6)�O(10�7), for the high resolution methods.To rule out the error due to dealing with the sho
k formation, we have also doneexperiments using the exa
t (dis
ontinuous) solution at time t0 = 2=�+0:2 as initial data.The results are shown in Figure 4.5. From it, we again observe the ni
e error behavior inthe 1-norm. The error in the max-norm tends to 
onverge at a �rst order rate for the highresolution methods, and the error in the tra
ked point lo
ation is 
onvergent at a rate ofmore than �rst order for the high resolution methods. Comparing our front tra
king resultwith the sho
k 
apturing result shown in Figure 4.6, our tra
king result is again better thanthe 
apturing result. Here the error is 
omputed based on the pointwise error (4.1).Example 4.3. We now 
onsider a wave intera
tion problem arising from the nonlinearisothermal equations ��t  ��v !+ ��x  �v�v2 + 
2� ! = 0 (4:8)where 
 is the speed of sound, a 
onstant here for whi
h we take 
 = 1. The initial 
onditionwe use 
onsists of a leftward going simple wave with velo
ity pro�lev(x; 0) = tanh(6�(x � 0:64)) for 0:4 � x � 1; (4:9)traveling from the left to right, and a rightward going Ma
h 2:89 sho
k wave at x = 0:4traveling from the right to left. The density of the simple wave is 
omputed from theRiemann invariant R+ = v + 
 log(�), whi
h is 
onstant on the entire �1 = v � 
 wavefamily, with �0 = 0:5 and v0 = 0 as the referen
e state (this determines the Riemanninvariant 
onstant). Note another Riemann invariant for this system is R� = v � 
 log(�),whi
h is 
onstant on the �2 = v + 
 family. Sin
e these waves are approa
hing ea
h other,wave intera
tions o

ur subsequently, see Figure 4.7a.For this nonlinear wave intera
tion problem, due to the fa
t that there is no new wavefamily appearing after the head-on 
ollision, we 
an 
ompute the \exa
t" solution by em-ploying the Rankine-Hugoniot jump 
onditions at the sho
k together with the simple wavesolutions on ea
h side of the sho
k. Using this information would lead to a nonlinear ordi-nary di�erential equation for the sho
k lo
ation with respe
t to time. This is solved usinga numeri
al ODE solver in the LSODE (Livermore Solver for Ordinary Di�erential Equa-tions) Pa
kage. On
e the sho
k lo
ation is known, the solution on both sides of the sho
k
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Figure 4.4: An a

ura
y study of the front tra
king algorithm for the Burger's equation (4.6)with initial data (4.7) up to time t = 1:2.
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Figure 4.5: An a

ura
y study of the front tra
king algorithm for Example 4.2 using theexa
t (dis
ontinuous) solution at time t0 = 2=� + 0:2 as initial data.
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Figure 4.6: An a

ura
y study of the sho
k 
apturing method for Example 4.2 using theexa
t (dis
ontinuous) solution at time t0 = 2=� + 0:2 as initial data. (See Figure 4.5 for
omparison.)
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Figure 4.7: The exa
t solution for a wave intera
tion problem arising from the isothermalequations, Example 4.3. a) Density 
ontour plot in the x-t plane, plotted in the logarithmi
s
ale. b) Snap shots of density at three di�erent times.
an be found using the method of 
hara
teristi
s. Figure 4.7b shows several snap shots ofthe exa
t solution.Results for this problem using the front tra
king algorithm are shown in Figure 4.8where the front error, the 1-norm error, and the max-norm error of the Riemann invariantR� are presented. It is very en
ouraging that our method produ
es results that 
onvergeat a fairly good rate in the 1-norm, despite the fa
t that the wave intera
tion of the strongand weak waves is handled linearly by allowing them to pass through ea
h other without
hanging speed or magnitude. Nevertheless, it 
an be seen quite easily, parti
ularly in themax-norm, that there is some loss of a

ura
y due to the use of the linear wave intera
tion.Looking at the max-norm error more 
losely, this loss of a

ura
y apparently depends onthe wave stru
ture in the smooth 
ow that the sho
k intera
ts. That is, when the sho
kintera
ts with the smooth 
ow of a steep gradient it results in a bigger error than the oneappearing in the intera
tion between the sho
k and a 
atter pro�le. Note that the methodgives a very a

urate result in the front lo
ation. Results for this problem obtained usingthe sho
k 
apturing methods are shown in Figure 4.9. Here we again use the pointwiseerror (4.1) to 
ompute the global error.4.2 Improved SlopesIn the above a

ura
y study, the high resolution method des
ribed in Se
tion 2.3 was useddire
tly on the nonuniform grid generated by the uniform grid together with the appropriatetra
ked points. It turns out that we 
an improve upon the method by taking advantage ofthe fa
t that we know that large jumps in the solution should appear at the tra
ked pointswhereas the nearby 
ow should be smooth. High resolution methods using limiters wereoriginally developed for sho
k 
apturing methods where a sho
k will typi
ally be smearedover several grid 
ells. Sin
e reasonable slope information may be unavailable in this region,limiting the slope to a value near zero may be appropriate. In the present 
ontext, however,
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Figure 4.8: An a

ura
y study of the front tra
king algorithm for the isothermal equa-tion (4.8) with initial data (4.9) up to time t = 0:16. (Riemann invariant R� is shown.)
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Figure 4.9: An a

ura
y study in Riemann invariant R� of the sho
k 
apturing method forExample 4.3. (See Figure 4.8 for 
omparison.)



36we might expe
t to have meaningful slope information in the 
ells near the dis
ontinuity.Consider a 
ell j, for example, where the interfa
e to the right is a tra
ked point andinterfa
es to the left are regular grid interfa
es. The solution to the Riemann problem onthe right, at the tra
ked point, should 
learly not be used to estimate a slope over this grid
ell for the family of the tra
ked wave. But the wave arising from the Riemann problem tothe left may give a very useful slope estimate. Sin
e it is still valuable to 
ompare adja
entslopes via a limiter in 
ase other dis
ontinuities are present that are not being tra
ked, we
hoose the slope �j based on a one-sided formula similar to (2.8) but using the wave rpj atthe boundary to the left and the wave rp;j�1 at the left boundary of the adja
ent 
ell.This 
hoi
e of slopes is parti
ularly important if we wish to solve problems where thesolution has an extremum at the dis
ontinuity. This o

urs in many appli
ations, e.g., inFigures 5.6 and 5.7. If we are not 
areful about the 
hoi
e of slopes near the dis
ontinuity,these extreme points will be severely 
lipped.As an example, we 
onsider the linear problem in Example 4.1, and we perform the samea

ura
y study as before, but using the one-sided slopes for the high resolution method.The result is shown in Figure 4.10. Noti
e that now errors in the 1-norm and the max-norm have been redu
ed. More importantly the order of a

ura
y have been improved also,parti
ularly in the max-norm, see Figure 4.2 for 
omparison. It is interesting to note thatno matter what slopes we used, see Figures 4.2 and 4.10, results obtained using the highresolution methods we employed here tend to 
onverge only at the �rst order rate in the1-norm. We have not yet a
hieved the desired se
ond order a

ura
y for this problem withthis modi�
ation of the method.For a nonlinear problem, su
h as Example 4.2 with dis
ontinuous initial data, we alsoexamine the e�e
t of a

ura
y by using this one-sided limited slopes in the high resolutionmethods. The result is shown in Figure 4.11, see Figure 4.5 for 
omparison. From it, weobserve some improvement of the results, but the improvement is not signi�
ant. Note thatunlike the previous linear problem where the grid is exa
t, here the error on the grid dueto the dis
repan
y between the tra
ked point and the exa
t sho
k lo
ation 
ontributes asour
e of error for the a

ura
y. Also, for the nonlinear problem errors are swept into thesho
k; so the slope improvement is not as important.4.3 Nonuniform Grids and A

ura
yAlthough the underlying grid is uniform in our front tra
king algorithm, the tra
ked pointssubdivide some 
ells into irregular 
ells. The analysis of the a

ura
y of �nite di�eren
emethod on nonuniform grids is more subtle than for uniform grids. A straightforwardtrun
ation error analysis may be misleading. For example, a natural generalization ofGodunov's method for the linear adve
tion equation (4.4) to a �xed nonuniform grid takesthe form Un+1j = Unj � khj (Unj � Unj�1)where hj is the mesh size of the jth 
ell. A standard trun
ation analysis would show thismethod to be in
onsistent unless the grid is very smoothly varying (hj=hj�1 = 1 + O(h)),and yet it 
an be shown that the global error remains �rst order a

urate on arbitrarygrids. Similarly, generalizations of the Lax-Wendro� method to nonuniform grids has been
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Figure 4.10: Revisit Example 4.1 using the high resolution methods with one-sided slopes.(See Figure 4.2 for 
omparison.)
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Figure 4.11: Revisit Example 4.2 using the high resolution methods with one-sided slopes.(See Figure 4.5 for 
omparison.)
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ia ib

b)

� = 0�2 �1 1 2�2 �1 a b 1 21 2b 1 2

Figure 4.12: a) Grid system in the x-t plane for the linear adve
tion equation (4.4) usingthe front tra
king algorithm with k = h=2. b) Grid system for the transformed equationut = 0 in the �-t plane.shown to maintain global se
ond order a

ura
y[64℄,[106℄. We might therefore hope thatour method maintains se
ond order a

ura
y on the smooth 
ow even in the irregular 
ells
ontaining tra
ked points. Here, however, we have an additional 
ompli
ation in that ournonuniform grid varies with time. We will demonstrate with a simple example that loss ofa

ura
y 
an o

ur under 
ertain 
onditions.Consider the linear adve
tion equation (4.4) and suppose we solve this with Godunov'smethod using k = h=2 on the grid shown in Figure 4.12a. We introdu
e a single tra
kedpoint moving with speed 1 between 
ell interfa
es and 
ell 
enters in alternating time steps.Away from the tra
ked point, the method redu
es toUn+1j = 12(Unj�1 + Unj ):The method di�ers from this only in 
ells that are split in two. Suppose 
ell i is subdivided attime tn+1 into two sub
ells ia and ib. A

ording to the front tra
king algorithm introdu
edin Se
tion 3.1, we then introdu
e 
ells ia and ib at time tn, initialized byUnia = Unib = Uni : (4:10)Therefore we set Un+1ia = Unia � kh=2(Unia � Uni�1)= Uni � (Uni � Uni�1)= Uni�1and Un+1ib = Unib � kh=2(Unib � Unia)= Uni :



40In the next time step, we have Un+1i = 12(Uni�1 + Unia)and Un+1i+1 = 12(Unib + Uni+1):Noti
e that be
ause the tra
ked point moves with the 
hara
teristi
 speed there is no transferof information a
ross this 
urve. The solution on ea
h side is independent of the data onthe other side.Now 
onsider a 
hange of variable to � = x� t. In the �-t plane, the above method 
anbe viewed as a staggered grid method to solve the equationut = 0on the grid shown in Figure 4.12b. Restri
ting our attention to the right of the dis
ontinuity,the method is Un+1j = ( 12 (Unj�1 + Unj ) j > 112 (Unb + Un1 ) j = 1in time steps with n+ 1 even, andUn+1j = 12(Unj + Unj+1) j � 1;Un+1b = Un1 (4.11)in time steps with n+1 odd. It is easy to verify that this method is se
ond order a

urateon the \modi�ed equation" ut = hu�� (4:12)with the boundary 
ondition u�(0; t) = 0: (4:13)This boundary 
ondition results from the 
hoi
e (4.11) for Un+1b .Had we taken Un+1a = Un+1b = 12(Un�1 + Un1 ); (4:14)we would simply have the heat equation (4.12) everywhere giving a �rst order a

urateapproximation to the equation ut = 0. The 
hoi
e (4.11) 
orresponds to setting Un�1 = Un1in (4.14) whi
h models the boundary 
ondition (4.13). If we now take initial data u(�; 0)that does not satisfy (4.13), it will rapidly 
atten out at � = 0 as time evolves, introdu
ingan error at this boundary that is bigger than O(h).Returning to the original linear adve
tion equation on the grid shown in Figure 4.12a,we see that the same e�e
t o

urs if ux 6= 0 near the tra
ked point. As an example, we take



41smooth initial data (4.7) with periodi
 boundary 
onditions on the left and right boundaries;x 2 [0; 2℄. We run this problem on a time-dependent grid as in Figure 4.12a with various
hoi
es of the initial tra
ked point lo
ation x� at time t = 0:5. Doing so gives us someindi
ations on how the a

ura
y is a�e
ted by the value of the ux near the tra
ked point atthis parti
ular time.Results of this a

ura
y study are shown in Figures 4.13 and 4.14 using not only theGodunov method, but also the Lax-Wendro� method as for 
omparison. Figure 4.13 showsthe errors and the order of a

ura
y in the 1-norm and the max-norm. From it, for theGodunov method, the a

ura
y near the tra
ked point has been veri�ed to be less than �rstorder a

urate in the max-norm, in the 
ase where the boundary 
ondition (4.13) is notsatis�ed at x� 6= 0:5. Sin
e the big error appears only for 
ells near the tra
ked point andhas relatively small magnitude, the method remains �rst order a

urate in the 1-norm. InFigure 4.14a, we plot the solution in two di�erent 
ases, for x� = 0:5 and x� = 1 in thatthe boundary 
ondition (4.13) is satis�ed and not satis�ed, respe
tively. Note that in thelatter 
ase the error near the tra
ked point is 
learly seen.It is interesting to note that for the Lax-Wendro� method on this model problem thisloss of a

ura
y near the tra
ked point o

urs in the 
ase that the boundary 
onditionuxx = 0 is not satis�ed there. Numeri
al results shown in Figures 4.13b and 4.13b 
on�rmthis.One way we might try to improve the method is to 
hoose a better initialization of thesplit 
ell values Unia and Unib in pla
e of (4.10). We have tried introdu
ing a linear fun
tion in
ell i at time tn with slope �i and averaging this linear fun
tion over the sub
ells to obtaininitial values. For the 
ase 
onsidered here, where the 
ell is split in half, this redu
es totaking Unia = Uni � h4�i;Unib = Uni + h4�i:This pro
edure maintains 
onservation. Unfortunately, it seems to give little improvementin the results. For the parti
ular problem 
onsidered here, other 
hoi
es 
an be foundthat do restore full a

ura
y but are either rather arti�
ial for this problem or else do notmaintain 
onservation. Moreover for a nonlinear problem, any 
hoi
e of Unia and Unib otherthan (4.10) has a major diÆ
ulty in 
onjun
tion with our algorithm { the speed of thetra
ked dis
ontinuity is �rst 
omputed using values Uni�1 and Uni and this determines thelo
ation of the tra
ked point in the next time step. If we now 
hoose a di�erent value forUnia , the solution of the Riemann problem between Uni�1 and Unia will have a strong wavetraveling at a di�erent speed than the speed used to 
hoose the new tra
ked point lo
ation.This means that the wave will no longer propagate exa
tly to the 
ell boundary, defeatingone of our main design goals.Be
ause of this diÆ
ulty, we 
urrently use the initialization (4.10) in spite of this possibleloss of a

ura
y. On the other hand, the example shown here seems to be a worst 
ases
enario. The parti
ular grid shown in Figure 4.12 is espe
ially bad due to the regularityof the nonuniformity. Moreover, in the linear adve
tion equation all 
hara
teristi
s areparallel and the error 
ontinuously grows near the dis
ontinuity. In a nonlinear problem,
hara
teristi
s are swept into the sho
k, redu
ing the growth of errors. For the Euler
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Figure 4.13: An a

ura
y study of the front tra
king algorithm for the linear adve
tionequation (4.4) with smooth initial data (4.7) on nonuniform grids. Results are shown withvarious 
hoi
es of the initial tra
ked point lo
ation x� at time t = 0:5.
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al solution.



43equations of gas dynami
s, errors of the type seen here would most likely appear near
onta
t dis
ontinuities rather than sho
ks.4.4 Nonlinear Wave Intera
tions and A

ura
yIn our front tra
king algorithm, we employ a large time step approa
h that avoids thestringent time step limitation in the presen
e of small 
ells 
reated by the tra
ked points,while maintaining stability of the algorithm. An important element of this approa
h is toallow waves to pass through one another with no 
hange in speed or magnitude, and 
ontinueto have exa
tly the same e�e
t on 
ell averages as if the 
ollision had not o

urred. That is,the intera
tion is linearized during the wave propagation pro
ess. For a linear problem thisis in fa
t true, but for a nonlinear problem this linearization in general is not valid. The aimof this se
tion is therefore to investigate the error behavior introdu
ed by this pro
edurefor nonlinear problems. For more information on this problem, one may 
onsult [60℄,[62℄.For illustration, Figure 4.15 shows a typi
al wave intera
tion for the nonlinear isothermalequations (4.8). In Figure 4.15a, we see the solution of two Riemann problems in the x-tplane. When the 2-wave from the left hand Riemann problem meets the 1-wave from theright hand Riemann problem, we have a new Riemann problem to solve with left state uland right state ur. The solution will again give two waves with some intermediate state�um, and will have di�erent wave speeds and jumps a
ross the wave. The lo
ations of thesestates in the phase plane is shown in Figure 4.15b in relation to the Hugoniot lo
i of thestates ul and ur.In using the large time step method, we are linearizing the wave intera
tion. For theexample 
onsidered above, we therefore obtain the wave stru
ture as shown in Figure 4.16with the intermediate state u�m. It 
an be demonstrated quite easily, using linear theory forthe hyperboli
 systems, see [62℄ for example, that the state u�m has the valueu�m = ul + ur � um:In Figure 4.16b, we plot the lo
ation of u�m in the phase plane.Noti
e that the error made in this approximation, whi
h we might measure by u�m� �um,depends on the nonlinearity of the problem. In a linear problem, the Hugoniot lo
i are allparallel to one another, and there is no error. As the nonlinearity in
reases, these 
urvesdiverge more and more. The error also depends on the parti
ular data ul; um, and ur. Evenfor a highly nonlinear problem the error will be small if these values are 
lose to ea
h other,sin
e the Hugoniot lo
i in a small neighborhood of any given point have a nearly linearstru
ture. If ul � um = O(�) and ur � um = O(�), then we may expe
t u�m � �um = O(�2)as � ! 0. In other words, sin
e the intera
tion of weak waves is nearly linear anyway, ourlinearization introdu
es small error in this 
ase. It is only in approximating the intera
tionof strong waves or the intera
tion of strong and weak waves that we might introdu
e largeerrors.In the present 
ontext of front tra
king, sin
e the strong wave intera
tion has been dealtwith 
arefully by 
hoosing the time step so that the 
ollision of two strong waves o

ursexa
tly at the end of a time step, there is no error 
aused by the intera
tion of strong waves.There are errors, however, arising from the intera
tion of strong and weak waves. This is
learly seen from the earlier results shown in Figure 4.8 where the intera
tion of a sho
k
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a)
�v um �umul ur�
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Figure 4.15: The intera
tion of two waves in a nonlinear problem. a) The x-t plane. b)Lo
ation of states in the phase plane.
um
u�mul ur

a)
�v um �umul uru�m�
b)

Figure 4.16: The linearized intera
tion of two waves in a nonlinear problem. a) The x-tplane. b) Lo
ation of states in the phase plane.
um�umul ur

a)
tn
tn+1 t
 �v ul urum �um�
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Figure 4.17: The intera
tion of strong and weak waves is handled \exa
tly" for a nonlinearproblem. a) The x-t plane. The solid lines represent the strong waves, and the dashed linesrepresent the weak waves. b) Lo
ation of states in the phase plane.



45and a simple wave for the isothermal equations is 
onsidered. Note that sin
e this erroro

urs lo
ally near the tra
ked point, the 1-norm error is only slightly a�e
ted by this lossof a

ura
y.The worst 
ase s
enario of linearizing wave intera
tion appears in dealing with theintera
tion of the same wave family, e.g., a rarefa
tion wave overtaking a sho
k. In this
ase, if the state variable (e.g., density or pressure) is very small in front of the region wherethe wave intera
tion takes pla
e, any small perturbation of the solution in that region 
ausedby linearizing the wave intera
tion 
an result in a negative value of the state variable whi
his nonphysi
al. A situation like this 
an be seen in an example 
onsidered in Se
tion 5.1.2where a strong rarefa
tion wave overtakes a sho
k that has a very low pressure in front ofit. The pressure be
omes negative when the rarefa
tion wave passes through the sho
k andenters the low pressure region.One possible approa
h to improve the method is to 
ompute the intera
tion of thetra
ked dis
ontinuity with the weak wave \exa
tly". This is not a new idea and was intro-du
ed by Swartz and Wendro� in their front tra
king method[98℄. We do this within thetime step when the intera
tion o

urs, modifying the strength and speed of these waves overthe latter portion of the time step. This is illustrated in Figure 4.17a where the intera
tionof a sho
k and a rarefa
tion wave is handled by �rst propagating the pair of intera
tingwaves up to the 
ollision time t
, solving a Riemann problem using the appropriate initialdata (ul and ur in this 
ase) at the 
ollision point, and then propagating the resulting wavesover the remaining portion of the time step tn+1�t
. Note that other waves are not a�e
tedby this pro
edure and are propagated over the time step k as usual. The lo
ations of thestate variable in the phase plane is shown in Figure 4.17b.Using this modi�
ation of the method, we 
an over
ome the stability problem mentionedabove. It is also interesting to see how the a

ura
y is improved by using this modi�
ationof the wave intera
tion. This is still under study, however.



Chapter 5APPLICATIONSHaving analyzed the front tra
king algorithm, we now present more numeri
al results forsome sample problems involving sho
ks and 
onta
t dis
ontinuities arising in gas dynami
s.Our aims here are to validate our results by 
omparing them to results (either exa
t ornumeri
al) whi
h 
an be found in the literature. We also hope to demonstrate the potentialpower of using our front tra
king algorithm on more 
omplex problems.The problems we 
onsider are the Woodard-Colella blast wave problem, the steadyquasi one-dimensional nozzle 
ow, and unstable detonation waves. To eÆ
iently perform
omputations on some of these problems, we �rst introdu
e an algorithm that 
ombinesfront tra
king with adaptive mesh re�nement to enhan
e the resolution produ
ed by thefront tra
king algorithm, parti
ularly for the regions near tra
ked dis
ontinuities. We thendis
uss a simple approa
h to in
lude sour
e terms in the algorithm.5.1 Front Tra
king with Adaptive Mesh Re�nement5.1.1 AlgorithmFor simpli
ity, we des
ribe grid re�nement for the 
ase of a single �ne grid superimposedon a portion of the 
oarse grid. The re�nement is performed in both spa
e and time overre
tangular regions of the spa
e-time grid. Figure 5.1 shows the typi
al grid system for gridre�nement with a mesh re�nement ratio mr = h
=hf = 4 where h
 and hf are the 
oarseand �ne grid mesh sizes respe
tively. If there are several �ne grid regions, ea
h �ne grid
an be handled in the same manner. Further nested levels of �ne grids 
an also be handled.In general, one would want to do error estimation on the approximate solution in orderto determine where �ne grids are needed. This 
an be done using the te
hniques developedby Berger[9℄, and should 
arry over to the front tra
king method with little diÆ
ulty. Herewe demonstrate the potential power of grid re�nement 
oupled with front tra
king in twotest 
ases where we know a priori the region in whi
h re�nement should o

ur. We studya model 
ombustion problem in whi
h re�nement is needed in the neighborhood of thesingle tra
ked dis
ontinuity (see Se
tion 5.2.2), and a blast wave intera
tion problem inwhi
h re�nement is introdu
ed in the neighborhood of two 
olliding strong sho
ks againsta ba
kground smooth solution in order to better resolve the solution near the intera
tion(see Se
tion 5.1.2).For simpli
ity, we also assume that tra
ked fronts remain within the �ne or 
oarse gridregion and do not 
ross the interfa
e between �ne and 
oarse grids during a time step. The�ne grid region is adaptively adjusted so that there is a suÆ
ient bu�er zone that fronts willnot leave the re�ned region. This is a

omplished by performing a regridding pro
edure at
ertain �xed time intervals. In 
ells where the new grid overlaps the old �ne grid, the old�ne grid value is 
arried over. In 
ells where a new �ne grid is 
reated where there was only
oarse grid before, the �ne grid 
ell values are initialized by performing pie
ewise linear
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oarse grid 
ell j 
ell j + 1

q q + 1 �ne grid

Figure 5.1: Interfa
e between 
oarse and �ne grids. Dashed lines represents the two ad-ditional 
oarse 
ells that are re�ned in order to generate �ne grid 
uxes at the interfa
e.Values at the virtual �ne grid points indi
ated by large dots are 
al
ulated using the highresolution method. We 
an 
ompute only within a triangular region sin
e the sten
il of themethod requires data from two adja
ent 
ells. This is suÆ
ient to 
ompute 
uxes all alongthe grid interfa
e.interpolation from the 
oarse 
ell values and evaluating this pie
ewise linear approximationat the 
ell 
enter of ea
h �ne grid 
ell. Note that this gives a 
onservative transfer of valuesbetween grids. When a �ne grid disappears in some region, the 
oarse grid values are setequal to the average of the �ne grid values, again maintaining 
onservation.The high resolution front tra
king algorithm des
ribed in the previous 
hapters 
an beused on the �ne grid and also on the 
oarse grid. The diÆ
ulty 
omes at the interfa
ebetween the grids. Sin
e we are assuming that tra
ked fronts do not 
ross this interfa
e,we need only ensure that we maintain 
onservation and high a

ura
y with our underlyingmethod at the interfa
e. See Berger[5℄ for a general dis
ussion of this problem for methodsin 
onservation form with spe
i�ed numeri
al 
ux fun
tions. Although we normally use the\wave propagation" form of our high resolution algorithm be
ause of the ease of dealing withirregular 
ells, near the grid interfa
e we 
an reinterpret the method in terms of numeri
al
uxes as des
ribed in Se
tion 2.3. Re
all that we 
an de�ne 
uxes Fi+1=2 at ea
h 
ellinterfa
e in su
h a way that the wave propagation algorithm is equivalent to the standard
ux di�eren
ing formula Un+1i = Uni � khi (Fi+1=2 � Fi�1=2)with 
uxes given by (2.17) for the high resolution method.To handle the grid interfa
e, we �rst extend the �ne grid to 
over two additional 
oarsegrid 
ells as indi
ated in Figure 5.1. Initial values at time tn in these 
ells are 
omputedusing pie
ewise linear interpolation from the 
oarse grid values. The interfa
e between 
ellsj and j+1 on the 
oarse grid lies between 
ells q and q+1 on the �ne grid, where q = 2mr.Be
ause our high resolution method involves a sten
il of two grid 
ells on ea
h side of aninterfa
e, we 
an 
ompute over a triangular array of 
ells as indi
ated by dots in Figure 5.1



48without noti
ing the la
k of �ne grid points to the left. In the pro
ess, we 
an 
omputenumeri
al 
uxes at the q+1=2 interfa
e using the formula (2.17). On the �ne grid, we takemr time steps within the one time step on the 
oarse grid. We denote the 
ux for ea
htime step l = 1; 2; � � � ;mr by F fineq+1=2;l. These are the 
uxes that have essentially been usedto update the �ne grid 
ell q + 1 to the right of the interfa
e.On the 
oarse grid, we 
an de�ne 
uxes F 
oarsej�1=2 and F 
oarsej+1=2 in the pro
ess of updatingthe 
oarse grid values via the high resolution method. We use these updated values as ournew values in ea
h of the 
oarse grid 
ells that are not overlapped by the �ne grid, with theex
eption of 
ell j, just at the boundary of the �ne grid. Here we repla
e the provisionalvalue 
al
ulated with the 
oarse grid algorithm by the valueUn+1j = Unj � kh
 (F̂ 
oarsej+1=2 � F 
oarsej�1=2 )with a modi�ed 
ux F̂ 
oarsej+1=2 de�ned to be the average of the �ne grid 
uxesF̂ 
oarsej+1=2 = 1mr mrXl=1 F fineq+1=2;l:This ensures that the 
oarse grid 
ux at the right boundary of the 
oarse grid agrees withthe total �ne grid 
ux over time step k at the left boundary of the �ne grid, giving global
onservation.This pres
ription for the interfa
e has nothing to do with front tra
king. With our fronttra
king method a new diÆ
ulty arises. If two fronts 
ollide then we wish to adjust thetime step so that 
ollision o

urs at the end of the time step. Sin
e we assume that alltra
ked waves are within the �ne grid and we integrate the �ne grid �rst, we 
an simplytrun
ate the �ne grid time step during whi
h 
ollision o

urs and then trun
ate the 
oarsegrid time step at this same point. Suppose we have taken m < mr �ne grid steps of lengthk=mr at this point plus a shorter step of length ~k � k=mr. We have 
orresponding �ne grid
uxes F fineq+1=2;l, l = 1; 2; � � � ;m + 1. At this point we take a 
oarse grid time step of lengthk
 = mk=mr + ~k � k. The interfa
e 
oarse grid 
ell j is updated byUn+1j = Unj � k
h
 (F̂ 
oarsej+1=2 � F 
oarsej�1=2 )where F̂ 
oarsej+1=2 is now given by the appropriate weighted 
ombination of ea
h �ne grid 
ux,taking into a

ount that the last time step is shorter than the others,F̂ 
oarsej+1=2 = 1k
 " kmr mXl=1 F fineq+1=2;l + ~kF fineq+1=2;m+1# :Sin
e we never take more than mr �ne grid time steps in ea
h 
oarse step, re�nement of anextra two 
ells bordering the interfa
e is suÆ
ient to generate the �ne grid 
uxes neededat the interfa
e.If we allowed tra
ked fronts on the 
oarse grid as well, we would need slightly more
ompli
ated logi
 to trun
ate time steps appropriately if fronts 
ollide on the 
oarse grid.This is 
learly no problem, however.



49Fronts moving between the 
oarse and �ne grids 
ould also be handled quite easily bysimply trun
ating the time step when a tra
ked front hits the interfa
e. Then within a giventime step the front would be either on the �ne grid or on the 
oarse grid and appropriate
uxes at the interfa
e 
ould be 
al
ulated.5.1.2 The Woodward-Colella problemAs a �rst example to demonstrate the 
apability of front tra
king with adaptive meshre�nement, we 
onsider the blast wave intera
tion problem studied by Woodward andColella[109℄,[110℄. In this problem, the initial 
ondition 
onsists of three 
onstant stateswith data 0B� �vp 1CAl= 0B� 10103 1CA; 0B� �vp 1CAm= 0B� 1010�2 1CA; 0B� �vp 1CAr= 0B� 10102 1CA ;where l, m, and r are the states used for x 2 [0; 0:1), x 2 [0:1; 0:9), and x 2 [0:9; 1℄respe
tively. There are two solid walls at x = 0 and x = 1.With this initial 
ondition a sho
k wave, 
onta
t dis
ontinuity, and rarefa
tion wavedevelop at ea
h dis
ontinuity individually. The sho
k waves are moving toward ea
h otherand then 
ollide. A new 
onta
t dis
ontinuity arises from the 
ollision. Further 
ollisionsthen o

ur. A density 
ontour plot in the x-t plane is shown in Figure 5.2 whi
h indi
atesthe 
omplex wave pattern of this problem.One of the main diÆ
ulties for this problem is the very low pressure in the middle state,and be
ause of this any small perturbation 
aused by numeri
al error 
an lead to negativepressures whi
h are nonphysi
al. Another diÆ
ulty involves the proper treatment of thestrong wave intera
tions in a smooth ba
kground 
ow. Therefore this problem providesa severe test of our front tra
king algorithm, and espe
ially tests our ability to handlesmall 
ells and wave intera
tions. Furthermore, sin
e 
omplex wave intera
tions o

ur afterthe sho
k waves' 
ollision, poor resolution will result near the intera
tion if the grid is notsuÆ
iently �ne. For this reason, we have used mesh re�nement in addition to front tra
kingin order to better resolve the solution.For this problem there is no mesh re�nement initially. The mesh re�nement is introdu
edafter the sho
k waves' 
ollision and used thereafter. For 
onvenien
e, the re�nement regionis 
hosen to 
ontain all the tra
ked fronts within one �ne grid with a bu�er zone to preventthem from moving onto the 
oarse grid. For the results shown below, we take 
oarse gridmesh size h
 = 1=100 as our underlying mesh size and use a mesh re�nement ratio mr = 8for the �ne grid, so that hf = 1=800. The bu�er zone has width 10h
, and a regridding stepis done for every 16 time steps. Sin
e the density jump is not prominent in this problem,we 
hoose the max-norm of the jump in 
onservative quantities as our tra
king 
riterion(with toleran
e " = 50). Throughout the test Courant number � = 0:9 is used, and onlyresults obtained using the high resolution method are shown.In Figure 5.2a, we show the density 
ontour plot in the x-t plane over both the 
oarseand �ne grids; 
ontour lines were plotted on a logarithmi
 s
ale. A blowup of the �negrid solution is shown in Figure 5.2b. Noti
e the �ne wave stru
ture following the intera
-tion between the rightward going sho
k wave and the leftward going 
onta
t dis
ontinuity.
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Figure 5.2: Density 
ontour plot in the x-t plane (the 
ontour lines are in the logarithmi
s
ale) for the Woodward-Colella problem up to time t = 0:038 using the high resolutionfront tra
king with adaptive mesh re�nement algorithm with h
 = 1=100 and mr = 8. a)Combined plot for both the 
oarse and �ne grids. b) Blowup of the �ne grid region.
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Figure 5.3: Tra
ked fronts for the Woodward-Colella problem.Without mesh re�nement, this wave pattern would not be 
learly seen. Tra
ked points areshown in Figure 5.3.To investigate the a

ura
y, we show plots of the state variables � and v versus a�ner grid (\true") solution, 
omputed using h
 = 1=800 in the time before re�nement isintrodu
ed, and then h
 = 1=200, mr = 8 for re�nement. Results at three di�erent times areshown in Figure 5.4. Note that they are plotted using the most a

urate 
ell values at ea
hpoint. That is, if a grid 
ell is in the �ne grid region, we use the �ne grid solution; otherwisewe use the 
oarse grid solution. We see good agreement between the two solutions. Noti
ethe smooth transition between the 
oarse and �ne grids. This indi
ates that our treatmentof the 
oarse-�ne grid interfa
es is working in a satisfa
tory way.As mentioned above, this is a diÆ
ult problem due to the very low pressure in the middlestate. A rarefa
tion arising from the smooth 
ow behind the sho
k may move faster thanthe tra
ked sho
k, 
arrying a negative jump in pressure into the low pressure region that isof suÆ
ient magnitude to result in a negative pressure. This is due to the linearization ofthe intera
tion between waves.We 
urrently deal with this problem by 
omputing the intera
tion of the rarefa
tion wavewith the strong sho
k wave exa
tly rather than using the wave linearization that is usedelsewhere. This has been dis
ussed fully in Se
tion 4.4. This leads to some 
ompli
ationof the algorithm, but avoids the need to further restri
t the time step and eliminates thediÆ
ulties.Naturally it would be preferable to �nd a more robust solution to this problem andwork is 
ontinuing in this dire
tion. We note, however, that this is a parti
ularly diÆ
ultproblem and that many produ
tion 
odes 
ontain ad ho
 pro
edures su
h as resettingnegative pressures to positive values in order to deal with su
h problems. This is not adiÆ
ulty that arises solely from our front tra
king methodology. On the 
ontrary, ourapproa
h has the advantage that it allows one to re
ognize these diÆ
ulties and deal withthe intera
tion 
orre
tly and 
onservatively. (See [29℄ for an interesting dis
ussion of thisproblem.)
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Figure 5.4: Comparison plots for the Woodward-Colella problem at three di�erent times.In ea
h �gure, the solid line is the �ne grid solution 
omputed by hf = 1=800 in the timewhen no re�nement is used, and h
 = 1=200, mr = 8 when the re�nement is used. Thepoints show the solution with h
 = 1=100 and mr = 8. Density and velo
ity are shown.



535.2 Sour
e TermsA wide variety of numeri
al methods have been developed for 
onservation laws with sour
eterms ut + f(u)x =  (u), e.g., [4℄,[37℄,[90℄,[96℄. Here we will only 
onsider one popularapproa
h, a time-splitting method in whi
h we alternate between solving the homogeneous
onservation laws with no sour
e termsut + f(u)x = 0; (5:1)and solving the ordinary di�erential equationsut =  (u) (5:2)within ea
h 
ell.We use a \Strang splitting" [97℄, whi
h is se
ond order a

urate for smooth solutions.In the present 
ontext with front tra
king, this 
onsists of the following steps:1. Take a half time step by solving the ODEs (5.2) in the old grid 
ells.2. Take a full time step with the homogeneous equations (5.1) using the front tra
kingalgorithm. This generates new grid 
ells.3. Take a half time step again with the ODEs (5.2) in the new grid 
ells after removingthe old tra
ked points.Two examples will be given to demonstrate the ability to handle sour
e terms by using thissplitting pro
edures together with the front tra
king algorithm.5.2.1 Quasi one-dimensional nozzle 
owAs a �rst example with sour
e terms, we 
onsider the quasi one-dimensional nozzle 
ow.The Euler equations now have the form��t 0B� �A�vA�EA 1CA+ ��x 0B� �vA(�v2 + p)A(�E + p)vA 1CA = A0 0B� 0p0 1CA (5:3)where A � A(x) is the 
ross se
tion of area, A0 � dA(x)=dx. The 
onservative variablesu, 
ux fun
tions f(u), and sour
e terms  (u) are de�ned in the obvious way. In thisexample,  (u) are 
alled the \geometri
" sour
e terms sin
e they result from the geometri
alsimpli�
ation to a one-dimensional problem, see, e.g., [69℄ for more detail.For in
orporation into the front tra
king algorithm, we rewrite these equations in an-other form by moving all the area terms in (5.3) to the right hand side,��t 0B� ��v�E 1CA+ ��x 0B� �v(�v2 + p)(�E + p)v 1CA = �A0A 0B� �v�v2(�E + p)v 1CA : (5:4)



54Although these two sets of equations have di�erent state variables and 
ux fun
tions, theyshare the same Rankine-Hugoniot jump 
onditions. This is simply due to the fa
t that thevariable area is 
ontinuous at the dis
ontinuity, and so the area term drops out from ea
hside of the jump 
ondition. In pra
ti
e, it is interesting to see how numeri
al results area�e
ted by using these two di�erent equations with the same numeri
al method. (See [107℄for an interesting example of su
h a 
omparison.)In the following, we perform a standard test problem for the quasi one-dimensionalnozzle 
ow in the form (5.4), a steady state 
al
ulation[20℄. Take a divergent nozzle witharea A(x) = 1:398 + 0:347 tanh(8x� 4); 0 � x � 1:Consider a supersoni
 in
ow boundary 
ondition at x = 0 with �in = 0:502, vin = 1:299,and pin = 0:3809 (Ma
h number = 1:26), and a subsoni
 out
ow boundary 
ondition atx = 1 with �out = 0:776. The steady state solution under these boundary 
onditions 
onsistsof a stationary sho
k at x = 0:481991 with steady smooth 
ow in front and in ba
k of thisstationary sho
k, see [95℄ for the detail on the 
onstru
tion of the exa
t solution.To start the 
omputation, we must also spe
ify initial data in the interior region. Forthe test we present here, the velo
ity and pressure in the interior region were initialized tothe in
ow velo
ity and pressure respe
tively, and the density was initialized to be linearlyvarying from the in
ow boundary to the out
ow boundary. At the out
ow boundary theunknown vout and pout are 
al
ulated using the numeri
al 
hara
teristi
 boundary 
ondi-tions.The numeri
al 
hara
teristi
 boundary 
onditions 
an be des
ribed brie
y as follows.Suppose the out
ow is subsoni
, given �out. Let 
ell j be the 
losest 
ell to the out
owboundary. The density, velo
ity, and pressure for the jth 
ell are denoted by �j, vj, and pjrespe
tively. Then sin
e entropy is 
onstant along the parti
le path dx=dt = vj , the out
owpressure pout 
an be 
omputed as pout = �
out(pj=�
j ):Let R� and R+ be the Riemann invariants for the Euler equations, i.e.,R� = v � 2
 � 1
 = 
onstant along �1 = v � 
 family;and R+ = v + 2
 � 1
 = 
onstant along �3 = v + 
 family;where 
 = p
p=� is the speed of sound. Using the 
onstant Riemann invariant R+ alongdx=dt = vj + 
j , we have vout + 2
 � 1
out = vj + 2
 � 1
j ;and then 
ombining this equation with �out and pout we 
an 
ompute vout. In ea
h timestep, the numeri
al 
hara
teristi
 boundary 
onditions are used at the out
ow boundary toupdate vout and pout.
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Figure 5.5: Results for the quasi one-dimensional nozzle 
ow. a) Ma
h number 
ontourplot in the x-t plane up to time t = 14:35. b) Tra
ked sho
ks.Results for this test using h = 1=50 and " = 0:3 in density jump for tra
king are shown inFigures 5.5 and 5.6. Figure 5.5a and b show the Ma
h number 
ontour plot in the x-t planeand the tra
ked sho
ks, respe
tively. Figure 5.6 shows the 
onverged numeri
al solutiontogether with the exa
t steady state solution. Here our 
onverged numeri
al stationarysho
k lo
ation is at x = 0:481714 � 10�6, with an error of roughly 0:06% relative to theexa
t lo
ation. The numeri
al result (Ma
h number) agrees well with the exa
t steady statesolution also.It is interesting to note how our front tra
king algorithm handles tra
ked waves for thisproblem. For this test, there is no tra
ked sho
k in the beginning. When a sho
k is formed,it is tra
ked. Sin
e this tra
ked sho
k is not the stationary sho
k, the strength of the sho
kbegins to de
ay due to the geometri
 e�e
t and boundary 
onditions. After suÆ
ient de
ay,it is no longer tra
ked. Meanwhile, a se
ond sho
k forms whi
h 
onverges to the 
orre
tstationary sho
k. A similar test is performed in [34℄ for their front tra
king method.We should note that we have made no attempt to a

elerate 
onvergen
e to steady statein this 
ode, sin
e the 
urrent version is designed primarily for time-dependent 
al
ulations.5.2.2 Unstable detonation wavesAs a se
ond example with sour
e terms, we 
onsider a simpli�ed 
hemi
ally rea
ting 
ow inwhi
h vis
osity, heat 
ondu
tion, di�usion, and radiation e�e
ts are ignored. We 
onsidera model problem for 
ombustion in whi
h there are only two 
hemi
al spe
ies: \burnt gas"and \unburnt gas", and the unburnt gas is 
onverted to burnt gas via a simple de
ay pro
ess
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Figure 5.6: The 
onverged numeri
al solution for Ma
h number with the exa
t steady statesolution.of the form unburnt gas K(T )�! burnt gaswhere K(T ) represents the rea
tion rate of the burning pro
ess. This model has beenextensively studied in the past, e.g., [12℄,[22℄,[23℄,[25℄,[31℄.In general, the rea
tion rate depends on the temperature T via some Arrhenius relationK(T ) = K0T�e�E+=T (5:5)where K0 is the rate multiplier, E+ is the a
tivation energy, and � is the order of therea
tion. Typi
ally the rea
tion rate is very large when T is suÆ
iently high but negligiblefor small T .For this 
ombustion model, the Euler equations in one spa
e dimension take the form��t 0BBB� ��v�E�Z 1CCCA+ ��x 0BBB� �v�v2 + p(�E + p)v�Zv 1CCCA = �0BBB� 000K(T )�Z 1CCCA (5:6)where Z is the mass fra
tion of the unburnt gas (Z = 1 for the unburnt gas and Z = 0 forthe burnt gas). For simpli
ity we assume that both the unburnt gas and burnt gas are idealgases with the same ratio of spe
i�
 heats 
. Then by the ideal gas law, the temperatureis given by T = p=�Rwhere R is the universal gas 
onstant. The equation of state is modi�ed by the fa
t thatthe unburnt gas 
ontains 
hemi
al energy that is released as heat in the pro
ess of burning.The total energy per unit mass takes the formE = 1
 � 1p=�+ 12v2 + q0Z (5:7)
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Figure 5.7: Typi
al ZND stru
tures for the rea
tion wave in the 
ombustion model equa-tions (5.6) with Arrhenius rate relation (5.5).where q0 is the heat release.There are two distin
t types of rea
tion waves for this 
ombustion model, the \detona-tion wave" and the \de
agration wave". For a detonation wave, the pressure and densitya
ross the wave jump to higher values, and the wave travels at supersoni
 speed relative tothe unburnt gas in front of it. For a de
agration wave, the pressure and density a
ross thewave jump to lower values, and the wave travels at subsoni
 speed relative to the unburntgas.With the Arrhenius rate relation (5.5), the typi
al stru
ture of the detonation wave 
on-sists of an ordinary 
uid dynami
 sho
k followed by a �nite length 
hemi
al rea
tion zone,whi
h gives the so-
alled ZND (Zel'dovi
h-von Neumann-D�oring) stru
ture (see Figure 5.7).The steady ZND stru
tures 
an be 
omputed by dropping the time derivative terms in (5.6)and integrating the �rst three equations expli
itly in spa
e for a given initial state. Fromthem and Equation (5.7), the density, velo
ity and pressure 
an be expressed in term of themass fra
tion Z at any point of the ZND stru
ture. The fourth equation, after expanding(�Zv)x and 
an
eling the Z(�v)x term, now gives a nonlinear ODEZx = �K(T )Zvfor the mass fra
tion Z with respe
t to x, whi
h 
an be solved numeri
ally for Z as afun
tion of x. Note that K(T ) is a fun
tion of Z also sin
e the temperature T dependsonly on � and p. Having obtained the mass fra
tion Z for a given x, the remaining statevariables, �, v, and p 
an then be 
al
ulated.This steady ZND stru
ture is uniquely determined if the speed of the ZND stru
tureis spe
i�ed[31℄. In fa
t, for ea
h given unburnt state, there is a minimal sho
k speed s
j,the speed of the Chapman-Jouguet detonation, whi
h moves with the speed of sound withrespe
t to the burnt gas[25℄, and hen
e in this 
ase a ZND stru
ture 
an also be determinedwithout spe
ifying any parti
ular ZND speed.A well-known diÆ
ulty in the detonation wave 
omputation is that in
orre
t detonationwave speeds 
an arise from numeri
al e�e
ts. This behavior is observed by Colella, Majda,and Roytburd [22℄,[23℄ where a time-splitting method is used for the model Equations (5.6).They assert that if the 
hemistry is not fully resolved due to the insuÆ
iently �ne grids,in
orre
t detonation wave speeds will be obtained. Similar experiments have been reported



58in [62℄ and [67℄.Another diÆ
ulty of modeling detonation waves is noti
ed by Bourlioux, Majda, andRoytburd[12℄ in whi
h 
lassi
al one-dimensional stable and unstable detonation waves aretested. They 
on
lude that false predi
tions of stability in the regime of physi
al instabilityas well as drasti
 predi
tions of instability for a physi
ally stable detonation wave 
an beobtained with standard sho
k 
apturing methods if the grid is not suÆ
iently �ne. In theirpaper, a front tra
king method with adaptive mesh re�nement is proposed for the detonationwave 
omputation, and by using this method they have obtained good results. (Theirmethod 
ombines the pie
ewise-paraboli
 method[110℄ with 
onservative front tra
king[16℄and adaptive mesh re�nement[6℄.) This provides a good 
omparison problem for our fronttra
king approa
h.Let s be a speed of the given ZND stru
ture. Then the parameter f = (s=s
j)2 measuresthe degree of overdrive of the detonation wave and satis�es f � 1. Now the problem ofinterest is to study the large time behavior of the overdriven detonation wave for a givenZND stru
ture under small perturbation. For 
omparison purposes, we 
hoose the test
ases as used in [12℄, i.e., we take 
 = 1:2, R = 1 (the universal gas 
onstant), � = 0,q0 = 50, and E+ = 50. With these parameters, a

ording to the linear stability results[11℄,this detonation wave is unstable if the degree of overdrive f is greater than the 
riti
alvalue f
 = 1:73, for it is stable otherwise. Here we 
hoose f = 1:8 for the stable detonation
omputation and f = 1:6 for the unstable detonation 
omputation. In the tests shownbelow, a steady ZND stru
ture is used as the initial data with the unburnt state � = 1,v = 0, p = 1, Z = 1, and degree of overdrive f . Note that by spe
ifying the unburntstate, the minimal sho
k speed s
j 
an be 
al
ulated (see [100℄). Then the speed of theZND stru
ture s = sCJpf 
an be 
omputed for a given f , and so this ZND stru
ture isuniquely de�ned. The destabilizing perturbation for ea
h test is provided automati
ally bythe trun
ation error of the numeri
al method.There are two 
hara
teristi
 length s
ales for this problem. They are the half rea
tionlength L1=2 and the half rea
tion time t1=2, where L1=2 is the distan
e required for halfthe mass fra
tion to be released in the ZND stru
ture and t1=2 is the undergoing timerequired for su
h a pro
ess to 
omplete. These two values 
an be 
omputed by evaluatingthe following integrals numeri
ally:L1=2 = � Z 112 v dZK(T )Z ; (5.8)t1=2 = � Z 112 dZK(T )Z : (5.9)For the purpose of studying the grid e�e
t on the numeri
al solutions, we normalize thelength s
ale x by 
hoosing K0 so that L1=2 = 1. We �nd that K0 = 231:16 and t1=2 = 0:891for f = 1:6, while K0 = 145:69 and t1=2 = 0:856 for f = 1:8.Following [12℄ and [31℄, we monitor the sho
k front pressure, the pressure right behindthe sho
k wave, as time evolves. This sho
k front pressure history will give us a 
learindi
ation on the stability of a given ZND stru
ture under small perturbation. Here toinvestigate the grid e�e
t on the numeri
al solutions, a 
onvergen
e study for the sho
kfront pressure history with three di�erent 
oarse-�ne grid spa
ings is performed for ea
hstable and unstable 
ase. The 
oarse-�ne grid spa
ings we used are as follows:



591. 
oarse mesh h
 = 1 point /L1=2, �ne mesh hf = 4 points/L1=2,2. 
oarse mesh h
 = 2 points/L1=2, �ne mesh hf = 8 points/L1=2,3. 
oarse mesh h
 = 4 points/L1=2, �ne mesh hf = 16 points/L1=2.Sin
e there is only one tra
ked sho
k in this problem, the re�nement region is 
hosen bygoing out 20L1=2 on ea
h side of the tra
ked sho
k. Courant number � = 0:5 is used forall the test 
ases, and only results obtained using the high resolution method are shown.Toleran
e " = 3 in density jump is used for sho
k tra
king.Figures 5.8 and 5.9 show results for the 
onvergen
e study up to time t = 100 in the
omputational domain 0 � x � 1000. After analyzing the results, our solution 
onvergesto the initial steady state pro�le with about 0:008% os
illation in the sho
k front pressurefor the stable detonation 
ase. For the unstable detonation 
ase our solution 
onverges to adetonation wave with period 7:383� 0:110 (about 8:284t1=2) and peak pressure 99:83� 0:2.Note that the unperturbed sho
k front pressure for the unstable detonation wave is 67:355,and so the sho
k front pressure is magni�ed to a value nearly 50% higher than the initialvalue. Our solutions agree very well with values taken from the �gures in [12℄.To show the spatial resolution for the unstable detonation wave problem, we plot thepressure at six di�erent times within one 
omplete pressure front os
illation 
y
le as illus-trated in the se
ond plot of Figure 5.9, where the large dots indi
ate the plotting time.The results are shown in Figure 5.10 for both the 
oarse and �ne grid solutions, where aregion between the dashed lines above the x-axis is the mesh re�nement region. A blow-upof the solution in the �ne grid region is shown in Figure 5.11. Note that an os
illatory wavestru
ture appears behind the sho
k. This is not seen in the stable detonation problem.Figure 5.12 shows the sho
k speed as a fun
tion of time in the unstable 
ase, alsoshowing periodi
 os
illatory behavior. An earlier results given by Fi
kett and Wood[31℄shows that under 
ertain assumptions the averaged sho
k speed �s, in both stable andunstable detonation waves, should essentially remain the same as the steady-solution sho
kspeed. In our 
al
ulations, we have observed that for the unstable detonation wave problemthe time-averaged sho
k speed �s is equal to 8:655, while the steady-solution sho
k speed is8:613. So there is about 0:5% dis
repan
y from the predi
ted value. On the other hand,for the stable detonation wave problem �s is 9:1369, while the steady-solution sho
k speedis 9:1359.Finally, Figure 5.13 shows the result in the regime of transition to instability. We alsoobserve good agreement with the linear stability result. Re
all that for the parameters weused here f = 1:73 is the 
riti
al value for stability of detonation waves.
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Figure 5.8: A 
onvergen
e study for the sho
k front pressure history on the stable detona-tion wave problem (f = 1:8) using the high resolution front tra
king with adaptive meshre�nement algorithm. The dashed line shown in the �gure is the front pressure of the steadyZND solution.
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Chapter 6FINITE VOLUME WAVE PROPAGATION METHODSHere we begin by 
onsidering numeri
al methods that 
an be used to 
ompute thesolution for the homogeneous 
onservation lawsut + f(u)x + g(u)y = 0 (6:1)on the grid determined by the front tra
king algorithm. We again des
ribe methods based onthe wave propagation approa
h, be
ause of the ease of dealing with small 
ells and boundary
onditions in a stable manner. The approa
h we present here follows 
losely ideas from theone-dimensional wave propagation approa
h dis
ussed in the previous 
hapter, though somemodi�
ation of the methods will be 
onsidered to take into a

ount the two-dimensionale�e
ts, parti
ularly for the high resolution methods. In the dis
ussions, spe
ial attentionwill be given to the treatments of the irregular 
ells, and a rotated Godunov method willalso be explained.6.1 PreliminariesWe des
ribe the methods on a very spe
ial grid as illustrated in Figure 6.1, in whi
h addi-tional 
ell interfa
es are introdu
ed for the tra
ked dis
ontinuities in a uniform underlyingCartesian grid subdividing some 
ells into pie
es. Let Cj denote ea
h grid 
ell, and let Iijdenote the 
ell interfa
e between 
ells Ci and Cj. We use a �nite-volume formulation inwhi
h the value Unj approximates the 
ell average of the solution over the grid 
ell Cj attime tn, Unj � 1Aj ZCj u(x; y; tn) dx dywhere Aj is the area of the 
ell Cj . For 
onvenien
e, the additional 
ell interfa
e is 
alledan irregular 
ell interfa
e to distinguish it from the regular 
ell interfa
es, and the 
ell itsubdivides is 
alled an irregular 
ell to distinguish it from the regular 
ells.The methods we use are based on solving one-dimensional Riemann problems at ea
h
ell interfa
e. Consider, for example, the one-dimensional Riemann problem normal to theinterfa
e separating 
ells Cj and Cl in Figure 6.1. De�ne the new variables � (normal tothe interfa
e) and � (tangential to the interfa
e) by� = �x+ �y; � = ��x+ �y (6:2)with � = 
os �, � = sin �, where � is the angle of the 
ell interfa
e. Then the 
onservationlaws (6.1) 
an be written as ut + f̂(u)� + ĝ(u)� = 0 (6:3)



68with f̂(u) = �f(u) + �g(u); ĝ(u) = ��f(u) + �g(u):Assume that in the new 
oordinates u is 
onstant in �, and so (6.3) redu
es to a one-dimensional Riemann problem ut + f̂(u)� = 0 (6:4)with left and right states Uj and Ul. For rotationally invariant equations su
h as the Eulerequations this is parti
ularly simple sin
e, after a 
hange of dependent variables to rotatethe velo
ity �eld, the form of f̂(u) agrees with f(u) and hen
e a single Riemann solversuÆ
es for all angles �.As in the one-dimensional method, we use Roe's approximate Riemann solver and obtaina set of waves traveling with speeds �1; �2; � � � ; �m in the �-dire
tion. As before, we denotethe jumps in u a
ross these waves by the ve
tors r1; r2; � � � ; rm, so thatUj � Ul = mXp=1 rp:Finite volume wave propagation methods are based on using these propagating dis
ontinu-ities to update the 
ell averages in the 
ells neighboring ea
h interfa
e.6.2 Godunov MethodIn a standard �nite volume method, 
uxes a
ross the 
ell interfa
es are de�ned and usedto update the 
ell values on either side of the interfa
e. In parti
ular, in the Godunovmethod, 
uxes are 
omputed based on solving the Riemann problems at ea
h interfa
e inthe dire
tion normal to the interfa
e over a time step of length k. Then a 
onservative
ux-di�eren
ing method is used to obtain the solution at the next time step Un+1, see [63℄for more general dis
ussion on the 
onservative 
ux-di�eren
ing methods.Following 
onvention, the normal dire
tion for a regular 
ell interfa
e is de�ned in theusual manner pointing to the positive x- or y-dire
tion. At an irregular 
ell interfa
e itis de�ned by the following rules: if the irregular interfa
e represents a boundary segment,the normal dire
tion is 
hosen pointing toward the interior region, while if it represents atra
ked dis
ontinuity, the normal dire
tion is 
hosen pointing to a state with lower densityor other physi
ally meaningful quantity, su
h as entropy.A �rst order a

urate version of the �nite volume wave propagation method is a variantof the Godunov method, with the Roe Riemann solver, on a nonuniform grid. That is to say,we solve the Riemann problems at ea
h interfa
e in the dire
tion normal to ea
h interfa
eas well, but now waves whi
h result from solving the Riemann problems are propagatedover the time step k to update whi
hever 
ell values they a�e
t. Sin
e this approa
h hasbeen dis
ussed fully in the past [61℄,[62℄, here we only brie
y des
ribe the method.Figure 6.1a shows an example in whi
h waves are propagated from the regular andirregular 
ell interfa
es. Then in the method the 
ell average Unj is updated byUn+1j = Unj �  hij j�pjkAj ! rp
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Figure 6.1: a) Godunov method. Waves obtained from solving the normal Riemann problemat ea
h interfa
e is used to update the 
ell values (only one family of waves is shown). b)Godunov method with tangential splitting. Waves shown in a) are split into subwaves inthe tangential dire
tion, and used to update the 
ell values (only one subwave is shown forea
h wave family).sin
e hij j�pjk is the area the wave sweeps out over the time step k, and so the value shouldbe 
hanged by the jump rp in this portion of the 
ell. Similarly, due to the q-wave, the 
ellaverage Unl should be updated byUn+1l = Unl � �Area(Wq \ Cl)Al � rq (6:5)where Wq is the region that the q-wave a�e
ts (the re
tangular region in the �gure), andArea(Wq \Cl) is the area of the interse
tion between Wq and 
ell Cl. Note that other 
ellswhi
h are a�e
ted by the q-wave should also be modi�ed by the appropriate amount. By
omputing the e�e
t of ea
h wave on the 
ell average, we obtain the �nite volume wavepropagation Godunov method.As in the one-dimensional method, it is also possible to reformulate this method in astandard 
onservation form by 
omputing 
uxes appropriately at ea
h interfa
e. In fa
t, ifwe do so, on a uniform grid the resulting method is equivalent to the standard Godunovmethod. On a nonuniform grid, however, the form of the method be
omes very 
ompli
ateddue to the fa
t that waves may 
ross many 
ell interfa
es as seen in Figure 6.1a. This isalso the 
ase in dealing with the boundary 
onditions. Be
ause of the 
ompli
ations we donot dis
uss this 
ux formulation here.Regarding stability, it is well known that on a uniform grid in two spa
e dimensions theGodunov method has a Courant number restri
tion �0 � 1=2 where�0 = kh0 maxp;j j�pj j; (6:6)



70h0 = min(hx; hy) is the minimum mesh size of the uniform grid 
ell in both the x- andy-dire
tions. On a nonuniform grid, the Courant number is de�ned by� = kAmin maxp;j j�pj j (6:7)where Amin = minj Aj . Note that be
ause of the presen
e of irregular 
ells, the time step k isseverely redu
ed if Amin � h0. From numeri
al experien
e, be
ause the waves are allowedto a�e
t more than one neighboring 
ell, the wave propagation version of the Godunovmethod is more stable than the standard 
ux version Godunov method, and � � 1=2 is notrequired on the nonuniform grid. Instead we 
an use the Courant number �0 � 1=2 withmesh size based on the underlying uniform grid.6.3 Godunov Method with Tangential SplittingAnother variant of the Godunov method is the Godunov method with tangential splittingintrodu
ed by LeVeque[61℄,[65℄ in whi
h the waves obtained from solving the normal Rie-mann problem at a 
ell interfa
e are split into subwaves in the tangential dire
tion withappropriate tangential speeds. In this approa
h, a tangential Riemann problem is solvedfor ea
h wave using the data on the left and on the right of the wave. Sin
e this approa
hhas been dis
ussed in more detail in [61℄, here we only brie
y des
ribe the method.Figure 6.1b shows an example in whi
h we split the p-wave from the Iij interfa
e. Forthe equation, we take the tangential portion of (6.1), i.e., the portion of equation in they-dire
tion: ut + g(u)y = 0; (6:8)and for the initial data we take Uni +Xq<p rqas the left state and Unj �Xq>p rqas the right state. Taking these as the left and right states for the equation (6.8) gives adis
ontinuity of magnitude rp, and the solution will be resolved into waves w1; w2; � � � ; wmpropagating in the y-dire
tion with speeds �1; �2; � � � ; �m as illustrated in Figure 6.1b. Thesplitting of waves in the x-dire
tion 
an also be dealt with in the similar manner. By
omputing the e�e
t of ea
h tangential wave on the 
ell average, we obtain the Godunovmethod with tangential splitting.Note that with this tangential splitting the method remains 
onservative be
ause thetotal 
ontribution of the subwaves satis�esmXq=1wq = rp; (6:9)



71and the area swept out by ea
h subwave is the same as the area of the original wave.Moreover, doing so approximates the transverse derivative (BAux)y, sin
eA(Unj � Uni )=h � Aux(xi+1=2; yj ; tn)and splitting waves in the tangential dire
tion gives an approximation toBAuxy(xi+1=2; yj+1=2; tn)whi
h is a linearized version of the term. Analogously, the splitting of waves in the x-dire
tion gives an approximation of the (ABuy)x term. We will see in Se
tion 6.5 that theability of handling the (BAux)y and (ABuy)x terms is an essential step toward a
hievinghigh resolution.It is not diÆ
ult to verify that for the linear adve
tion equationut + aux + buy = 0 (6:10)this method gives exa
t propagation of waves for any time step k, ex
ept for the errorintrodu
ed by the averaging pro
ess. For linear hyperboli
 systemsut +Aux +Buy = 0 (6:11)this is also the 
ase, if A and B have identi
al eigenve
tors and hen
e are simultaneouslydiagonalizable in whi
h 
ase A and B 
ommute, AB = BA. In this instan
e, the equations
an be de
oupled into di�erent 
hara
teristi
 �elds, and by employing the wave propagationapproa
h, this method 
an be viewed as the method of 
hara
teristi
s sin
e here ea
h wavefamily is propagated exa
tly for any time step k and only averaging error is introdu
edin the method. If the matri
es A and B do not 
ommute, or for nonlinear problems, thismethod, in general, will not produ
e results that are stable for arbitrarily large time steps.However, all of our numeri
al results indi
ate that the method is stable for the Courantnumber �0 up to 1.6.4 Rotated Godunov MethodIn a rotated Godunov method, we solve the Riemann problems in some physi
ally relevantdire
tions rather than the dire
tions normal to the grid interfa
es. Various approa
hes havebeen introdu
ed in the past that determine the rotation dire
tion as well as the way that
uxes are 
omputed in the method. Typi
al examples of the rotation dire
tion are: the
ow dire
tion, the pressure-gradient dire
tion, the velo
ity-magnitude-gradient dire
tion,and the dire
tion of the irregular 
ell interfa
e[8℄,[27℄,[68℄. In the 
ux version of the rotatedmethod, it is quite often the 
ase that the Riemann data is obtained from some formof interpolation of the 
ell values to maintain stability and a
hieve high a

ura
y of themethod, see [7℄,[68℄ for examples.The idea of the rotated method is best explained by 
onsidering the linear adve
tionequation (6.10), and des
ribing the method based on the wave propagation approa
h on auniform grid. As the �rst step in the method, we need to 
hoose the rotation dire
tion �and transform (6.10) to the new �-� 
oordinate system using (6.2), whi
h leads tout + âu� + b̂u� = 0 (6:12)
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Figure 6.2: Rotated Godunov method. a) Waves obtained from solving the Riemann prob-lem in the 
ow dire
tion (a; b) of the linear adve
tion equation (6.10) is used to update the
ell values. An interpolated value U�i obtained from taking averages of 
ell values over theparallelogram box, is used in a 
ux version rotated s
heme. b) On the irregular 
ell, therotation dire
tion based on the dire
tion of the irregular 
ell interfa
e is used in solving theRiemann problem for the 
onservation laws (6.1) (only one family of waves is shown).with â = �a + �b and b̂ = ��a + �b. (Re
all that � = 
os �, � = sin �.) For this modelequation (6.10), it is 
lear that we should use the 
ow dire
tion (a; b), or the solution gradient(ux; uy), in the normalized form as the rotation dire
tion in the method. Suppose that wetake the normalized 
ow dire
tion as the rotation dire
tion for the Riemann problem, (6.12)simply redu
es to the one-dimensional linear adve
tion equation in the 
ow dire
tion (�-dire
tion): ut + âu� = 0 (6:13)with â = pa2 + b2. Then in the se
ond step of the method, we solve the Riemann problemfor (6.13) at ea
h interfa
e using the values from adja
ent 
ells as data. Doing so results inwaves propagating with speed â in the �-dire
tion with a shape shown in Figure 6.2a. The
ells it overlaps are updated during the wave propagation.Figure 6.2a shows an example in whi
h the 
ell average Unj is updated byUn+1j = Unj � akh2 (h� bk=2)(Unj � Uni );while the 
ell average Unl is updated byUn+1l = Unl � abk22h2 (Unj � Uni )where h is the mesh side in both the x- and y-dire
tions. By 
omputing the e�e
t of ea
hwave on the 
ell average, we obtain the rotated Godunov method via wave propagation. It



73is easy to see that this method gives exa
t propagation of waves for any time step k, ex
eptfor the error introdu
ed by the averaging pro
ess. In fa
t, for this model problem, the resultobtained from this method is identi
al to that obtained from the Godunov method withtangential splitting.It is worth noting that for this model problem, in the standard 
ux version rotatedGodunov method, the 
ux at the Iij interfa
e is 
omputed asF (Uni ; Unj ) = aUni (6:14)if the values from adja
ent 
ells are used as Riemann data, whereas the 
ux is 
omputed asF (U�i ; U�j ) = aU�i (6:15)if the values from some interpolation method are used as Riemann data, see Figure 6.2a forillustration. It is easy to see that 
ux (6.14) is simply the 
ux obtained from the unrotatedGodunov method, while 
ux (6.15) is the modi�ed version of the 
ux (6.14) whi
h takesmore information from the upwind dire
tion. Evidently, no matter whi
h 
ux is used inpra
ti
e, the resulting 
ux di�eren
ing method will not produ
e results that give the exa
tpropagation for any time step k as in our wave propagation method.On uniform grids, the extension of the rotated wave propagation method to linearhyperboli
 systems (6.11) is straightforward if A and B 
ommute, sin
e we 
an take ea
h
hara
teristi
 dire
tion as the rotation dire
tion for the Riemann problem and propagatethe resulting wave as the way we did for the linear adve
tion equation. If A and B do not
ommute or for nonlinear problems, this method is still appli
able, but now the rotationdire
tion should be 
hosen on a problem by problem basis and will vary from 
ell to 
ell.The extension of the method to nonuniform grids 
an be made quite easily also, butnow a formula similar to (6.5) should be used to update the 
ell values, see Figure 6.2b forillustration. It 
an be demonstrated that by propagating waves exa
tly and allowing wavesto a�e
t the neighboring 
ells, this method is not only stable in the presen
e of small 
ells,but also with Courant number �0 up to 1, for most of the equations of pra
ti
al interest.It should be noted that, in general, for 
onservation the 
ell values should be updatednot only based on the solutions of the rotated Riemann problem in the �-dire
tion, but alsobased on the Riemann solutions in the �-dire
tion as well.6.5 High Resolution Godunov MethodHere we dis
uss the high resolution modi�
ations of the Godunov method. To illustratethe idea, let us look at the derivation of the Lax-Wendro� method for the 
onservationlaws (6.1) on a uniform grid. In deriving the Lax-Wendro� method, we start with theTaylor series expansionu(x; y; t+ k) = u(x; y; t) + kut(x; y; t) + k22 utt(x; y; t) + � � � : (6:16)From the governing equation (6.1) we 
an 
omputeut = �f(u)x � g(u)y = �Aux �Buy



74and utt = (�f(u)x � g(u)y)t = �f(u)tx � g(u)ty = �(Aut)x � (But)y= (A2ux)x + (ABuy)x + (BAux)y + (B2uy)y;where A = �f(u)=�u and B = �g(u)=�u, so that (6.16) be
omesu(x; y; t+ k) = u(x; y; t)� k(Aux +Buy)(x; y; t) + k22 ((A2ux)x +(ABuy)x + (BAux)y + (B2uy)y)(x; y; t) + � � � (6.17)The Lax-Wendro� method then results from retaining all the terms up to O(k2) and using
entered di�eren
e approximation for the derivatives appearing there.From (6.17), it is 
lear that to a
hieve se
ond order a

ura
y we need to deal withthe se
ond order derivative terms (A2ux)x, (ABuy)x, (BAux)y, and (B2uy)y. Here theapproa
h we use follows ideas from the previous work of LeVeque on wave propagationmethods[61℄ in that we introdu
e pie
ewise linear approximations to the solution in pla
eof the pie
ewise 
onstant fun
tions in Godunov's method and handle transverse derivativesby splitting waves in the dire
tion tangential to the 
ell interfa
e. On uniform grids, thismethod is in fa
t very similar to the unsplit multi-dimensional upwind method of Colella[21℄as dis
ussed in [65℄. The approa
h we employ here, however, has the advantage of easyextension in dealing with the irregular 
ells.We begin our method by solving the Riemann problems in the dire
tion normal to the
ell interfa
e as before, using the pie
ewise 
onstant data. The resulting waves are thensplit into subwaves using the tangential splitting approa
h dis
ussed in Se
tion 6.3. Asmentioned previously, doing so gives an approximation of the transverse derivative terms(ABuy)x and (BAux)y.To handle the (A2ux)x and (B2uy)y terms, we use the approa
h similar to our one-dimensional high resolution method in that a slope is introdu
ed for ea
h wave and used to
onstru
t the pie
ewise linear wave in pla
e of the pie
ewise 
onstant wave.On the regular 
ells, slopes and pie
ewise linear waves 
an be de�ned quite easily inboth the x- and y-dire
tions. Let �pi be the slope ve
tor used in the pth family over theCi 
ell. In this 
ase, as in the one-dimensional method, �pi 
an be obtained easily fromusing either the unlimited slope (2.7) or a slope limiter (2.8). Then, with this slope �pithe pie
ewise linear wave, moving in the x-dire
tion, is now made as a three-dimensionalpro�le that is 
onstant in y and pie
ewise linear in x over the grid 
ell Ci, as illustrated inFigure 6.3a.To modify the 
ell values, this pie
ewise linear wave is advan
ed with speed �p, obtainedfrom solving the normal Riemann problem at the Iij interfa
e, over the time step k, andthe 
ells it overlaps are updated. For example, 
ells Uni and Unj are updated byUn+1i := Un+1i � � j�pjk(h� j�pjk)h2Ai ��pi;Un+1j := Un+1j +  j�pjk(h � j�pjk)h2Aj !�pi;where 12 j�pjk(h�j�pjk)�pih is the volumetri
 region that the pie
ewise linear wave overlapsthe grid 
ell. Pie
ewise linear wave propagation in the y-dire
tion 
an be handled in an
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Figure 6.3: Pie
ewise linear wave propagation. a) Wave arising from the interfa
e betweenthe regular 
ells Ci and Cj in the x-dire
tion. b) Wave arising from the interfa
e betweenthe irregular 
ells Cj and Cl in the �-dire
tion.analogous manner. It is easy to 
he
k that doing so gives an approximation to the linearizedversion of the (A2ux)x and (B2uy)y terms, and the method remains 
onservative with any
hoi
e of slopes.On the irregular 
ells, say for the Cj 
ell shown in Figure 6.3b, one simple 
hoi
e ofslope is to take the unlimited slope �qj = rq=h� (6:18)where h� is some measure of the normal distan
e between two 
ells, su
h as the di�eren
e inthe �-
oordinate (normal to the irregular 
ell interfa
e) of the 
enters of mass of these twoneighboring 
ells sharing the same interfa
e. Then a pie
ewise linear wave with this slope inthe �-dire
tion and total integral zero 
an be made and propagated in the �-dire
tion withvelo
ity �q. This is illustrated in Figure 6.3b where a pie
ewise linear wave is 
onstru
tedfor the Cj 
ell of the q-wave arising from the interfa
e between 
ells Cj and Cl. Similarly,for waves arising from the other side of the irregular 
ell, pie
ewise linear waves 
an also be
onstru
ted.More generally, if we want to use slopes based on a slope limiter, we may need toemploy an interpolation s
heme that determines another slope to 
ompare with in the slopelimiter (2.8). For instan
e, for the example shown in Figure 6.3b, one possible approa
h isto �rst 
ompute 
ell values by averaging the neighboring 
ell values on two arti�
ial 
ellsof size h� h� ea
h, solve the Riemann problem in the �-dire
tion using this data, and thentake the resulting jump in the pth family divided by h as the slope used for the limiter.Note that spe
ial attention needs to be taken to avoid using information from the oppositeside of the irregular interfa
e, i.e., a
ross the sho
k, and so, as in one dimension, we 
an doslope limiting based on a one-sided di�eren
ing formula.As usual, 
ell values on the irregular 
ells are updated by the propagation of pie
ewise



76linear waves. Sin
e this amounts to 
omputing the interse
tion between three-dimensionalwave stru
tures and grid 
ells, we write the formula for updating the 
ell values in a de-s
riptive form Un+1j := Un+1j + Volume(Sqj \ Cj)Aj (6:19)where Sqj is the pie
ewise linear wave in the q-family for the Cj 
ell, and Volume(Sqj \Cj)is the volume of the interse
tion between Sqj and Cj . For the example shown in Figure 6.3b,this formula should be applied to not only the two neighboring 
ells of the wave, Cj andCl, but to other 
ells where the wave Sqj is a�e
ted. Noti
e that the work involved inthe method in
reases a great deal by introdu
ing this pie
ewise linear approximations tothe irregular 
ells. Naturally, it would be desirable to �nd a better way to do this. Theperforman
e of the method and other approa
hes are still under investigation.



Chapter 7FRONT TRACKING ALGORITHMHaving des
ribed the numeri
al methods that 
an be used on a grid whi
h 
ontainstra
ked dis
ontinuities for the 
onservation laws (6.1), we now dis
uss the front tra
kingalgorithm for this system. We will see from the dis
ussion that this algorithm is in spiritsimilar to our one-dimensional front tra
king algorithm, and is also very simple and robust.Here we will fo
us our attention on des
ribing ideas of advan
ing tra
ked fronts from onetime step to the next. Some possible approa
hes to setting up the data stru
ture will also bedis
ussed. Results obtained using this front tra
king algorithm for radially symmetri
 sho
kwaves will be presented for the Euler equations, and the implementation of the solid wallboundary 
onditions for this model system will be dis
ussed. For ease of 
omparison, theformat of this 
hapter is organized analogous to the one-dimensional 
ounterpart Chapter 3.7.1 AlgorithmAs in the one-dimensional front tra
king algorithm, our grid 
onsists of two parts. We
hoose a uniform underlying grid that remains �xed for all time, and we also introdu
etra
ked interfa
es whi
h vary from step to step for the dis
ontinuities in the 
ow �eld.These tra
ked interfa
es subdivide some regular 
ells into two or more sub
ells, 
reatingsome irregular 
ells. We then view the union of the regular 
ells and irregular 
ells as ourglobal grid. In ea
h grid 
ell, the 
ell average is denoted by Unj .For the representation of the tra
ked interfa
es, we use the simplest pie
ewise linearapproa
h in whi
h an interfa
e is represented by a straight line within ea
h 
ell that is formedby 
onne
ting two points lying on the underlying �xed grid; a point is an (x; y) lo
ation inthe 
omputational domain. In addition, the interfa
es belonging to the same dis
ontinuityare joined together into a 
ontinuous pie
ewise linear 
urve as shown in Figure 7.2, forexample. We assume that the 
urve does not 
ross itself or the other 
urves.In ea
h time step our front tra
king algorithm 
onsists of the following steps:Algorithm 7.11) Determine the new lo
ation of the tra
ked interfa
es at the next time step.2) Insert these new tra
ked interfa
es into the grid. Some 
ells will be subdivided and thevalues in ea
h sub
ell must be initialized.3) Take a time step on this nonuniform grid using a �nite volume method des
ribed inChapter 6 to update the 
ell averages.4) Delete the old tra
ked interfa
es from the previous time step. Some sub
ells will be
ombined, and a value in the 
ombined 
ell must be determined from the sub
ellvalues.
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urve 
urveinterfa
e interfa
e interfa
e interfa
e interfa
epoint point point point point pointFigure 7.1: Data stru
ture of the tra
ked interfa
es in the front tra
king 
ode.From the algorithm, it is 
lear that we have to deal with both the grid and tra
kedinterfa
es to a great extent. So before des
ribing ea
h of these steps in more detail, we�rst dis
uss some possible approa
hes to setting up the data stru
ture. Some terms will bede�ned a

ordingly and used later on.For the data stru
ture of the grid, we 
an use an approa
h analogous to our one-dimensional front tra
king 
ode by employing a standard representation for the �xed gridtogether with a 
ag for ea
h grid 
ell that indi
ates whether the grid 
ell is subdivided byone or more tra
ked interfa
es. For subdivided 
ells, this 
ag is a pointer to another datastru
ture 
ontaining information on ea
h sub
ell.There are, however, two possibilities in de�ning the data stru
ture of the subdivided
ells. The �rst possibility is to view the old and new tra
ked interfa
es as being lo
atedin the same grid 
ell. There is no distin
tion between the grid system before and afterinserting the new tra
ked interfa
es. This is a reasonable approa
h as motivated by ourone-dimensional algorithm, and in pra
ti
e this approa
h works �ne for problems 
onsistingof well separated old and new tra
ked interfa
es. But it turns out that this grid setup is oflimited use be
ause of the fa
t that the old and new tra
ked interfa
es might 
ross ea
h otheras seen in many problems, e.g., Figures 8.6 and 8.7, 
ausing an unne
essary 
ompli
ationof the data stru
ture.The se
ond, more reliable, approa
h is to view the old and new tra
ked interfa
es asbeing lo
ated in two di�erent grid systems; the old grid system and the new grid system.The old grid system 
ontains only the old tra
ked interfa
es, and the new grid system
ontains only the new tra
ked interfa
es. The global information of the grid 
an still bere
overed by maintaining a 
ag for the grid 
ell whi
h en
loses both the old and new tra
kedinterfa
es. Given these two distin
t grid systems, there is no problem dealing with old andnew tra
ked interfa
es whi
h 
ross.Con
erning the data stru
ture of the tra
ked interfa
es, one simple approa
h is to usea tree-like stru
ture as presented in Figure 7.1. On the top level, we have a stru
ture
urve whi
h in
ludes a pointer to another data stru
ture indi
ating the �rst element ofthe next level. On the next level, we have a stru
ture interfa
e whi
h 
onsists of two nextlevel stru
ture points (re
all a point is an (x; y) lo
ation in the 
omputational domain),its beginning and its end, and a pointer to the next interfa
e. Then a doubly linked listis used for the 
urve to maintain the overall information on the tra
ked front. Note thatthe interfa
es are linked for ea
h 
urve individually. Sin
e we need to keep tra
k of whi
h



79tra
ked interfa
es must be deleted in Step 4, we would also maintain a 
ag for ea
h 
urvethat tells whether it is an old 
urve or a new 
urve. In addition, it would be very useful inStep 1 to in
lude a 
ag for ea
h 
urve that indi
ates the physi
al type of 
urve, e.g., sho
k,interfa
e, or boundary 
urve.We now dis
uss ea
h step of Algorithm 7.1 in more detail.Step 1: We begin our algorithm by solving a one-dimensional Riemann problem in adire
tion normal to ea
h tra
ked interfa
e using the values from the adja
ent 
ells as dataand obtain a set of waves traveling with speeds �1l; �2l; � � � ; �ml and jumps r1l; r2l; � � � ; rml.Here the �rst and se
ond subs
ripts on the speeds and jumps stand for the wave family andthe index of the interfa
e respe
tively. We expe
t the solution to this Riemann problem to
onsist of only one strong wave, 
orresponding to the sho
k or interfa
e being tra
ked, andm� 1 weaker waves. The strong wave is used to help 
hoose the new interfa
e lo
ation.To be more pre
ise, we dis
uss one simple approa
h in more detail. (Other ways toadvan
ing fronts may be found in [3℄,[16℄,[17℄.) Let (x�l ; y�l ), � = 1; 2, be points of theinterfa
e l. Assume that the strong wave is in the pth wave family, and so �pl is the speedof the strong wave on the interfa
e l. Then the new lo
ation (
x�l ;
y�l ) of the point (x�l ; y�l ),under the 
urrent time step k, 
an be 
al
ulated by simply using the formula 
x�l
y�l !=  x�ly�l !+ �pl k �l�l ! (7:1)where (�l; �l)T is the normal dire
tion to the interfa
e l, � = 1; 2. Performing the same
al
ulation as in (7.1) on all the interfa
es in a given 
urve, we obtain an ordered set ofpoints f((
x�l ;
y�l ); � = 1; 2); l = 1; 2; � � � ; ng where n is the number of interfa
es in a 
urve.Here we assume that the original set of points, f((x�l ; y�l ); � = 1; 2); l = 1; 2; � � � ; ng, is anordered set.Note that in many problems, e.g., when there is strong shear layer 
ow along the dis-
ontinuities, the tra
ked interfa
es should be advan
ed not only in the normal dire
tion tothe interfa
e as illustrated in Figure 7.2a, but also in the tangential dire
tion. This 
anbe done quite easily by moving points tangential to the interfa
e using, for example, anaverage tangential velo
ity from the data of the normal Riemann problem. It is easy toshow that doing so gives exa
t front propagation for linear adve
tion equations and forsimultaneously diagonalizable linear hyperboli
 systems. For general linear hyperboli
 sys-tems, or for nonlinear equations, this front moving pro
edure gives a good approximationto the front motion.Conne
ting ea
h pair of points (
x1l ;
y1l ) and (
x2l ;
y2l ) with a straight line using (7.1) or themodi�ed lo
ations whi
h take a

ount of the tangential e�e
t of the 
ow, for l = 1; 2; � � � ; n,we then obtain the new lo
ation of the tra
ked interfa
es at the next time step. Noti
e thatin general these new interfa
es would not join together into a 
ontinuous 
urve as seen inFigure 7.2a.To form a 
ontinuous 
urve, one simple approa
h is to take an average of two neighboringpoints (
x2l ;
y2l ) and (
x1m; 
y1m), where m is the interfa
e next to the interfa
e l, for l =2; 3; � � � ; n � 1, and 
olle
t the set of averaged points together with appropriate endpointsto form a new ordered set. Let (�xl; �yl) be the averaged point lo
ation. This results in thefollowing set: f(
x11;
y11); (�x1; �y1); (�x2; �y2); � � � ; (�xn�1; �yn�1); (
x2n;
y2n)g: (7:2)
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Figure 7.2: Front propagation. a) Tra
ked interfa
es after propagating the original inter-fa
es using the strong wave speeds obtained from the normal Riemann problems underthe 
urrent time step. b) New tra
ked interfa
es after taking an average of two neighbor-ing points on the new interfa
e lo
ation shown in a), and 
onne
ting the resulting points(indi
ated by large dots) 
onse
utively by straight lines.For simpli
ity, we write the set (7.2) asf(x1; y1); (x2; y2); (x3; y3); � � � ; (xn; yn); (xn+1; yn+1)g: (7:3)Finally, a 
ontinuous pie
ewise linear 
urve, the new lo
ation of the tra
ked interfa
e, isobtained by 
onne
ting the points in set (7.3) 
onse
utively by straight lines as shown inFigure 7.2b.Mathemati
ally, this pie
ewise linear 
urve is represented by a parametri
 formP(s) = (X (s);Y(s)) (7:4)where x = X (s) and y = Y(s) are pie
ewise linear polynomials, and s is the parameteralong the 
urve. Assume that s is in [0; 1℄. To assign the parametri
 value s to ea
h point(xk; yk), we use the simplest approa
h by 
hoosing a uniform mesh size, 4s = 1=n, andsetting sk = (k � 1)4 s. Then from points (xk; yk) in (7.3) and the parametri
 variablessk, the pie
ewise linear polynomials take the formXk(s) = ak + bksYk(s) = 
k + dks (7:5)where ak = xksk+1 � xk+1sksk+1 � skbk = xk+1 � xksk+1 � sk
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Figure 7.3: A new tra
ked interfa
e is 
reated in the front propagation pro
edure, in Step 2,that leads to a subdivision of 
ells. a) Grid at time step n before inserting the new tra
kedinterfa
e to the grid. b) One-grid approa
h. In time step n, we split Cib in two, settingUni
 = Unib . In time step n+1, we eliminate the old tra
ked interfa
e, and merge the Cia andCib to Cid using (7.7). 
) Two-grids approa
h. In time step n, we split the original regular
ell i in two, setting Unid using (7.7) and Uni
 = Unib . Our grid system 
onsists of both theold grid in a) and the new grid in 
).
k = yksk+1 � yk+1sksk+1 � sk (7.6)dk = yk+1 � yksk+1 � skfor sk � s � sk+1 and k = 1; 2; � � � ; n, and hen
e we get the parametri
 representation ofthe pie
ewise linear 
urve P(s) = (X (s);Y(s)) withx = X (s) = fXk(s); k = 1; 2; � � � ; ngy = Y(s) = fYk(s); k = 1; 2; � � � ; ng:More generally, based on the data (xk; yk; sk) we 
ould use some sort of 
urve �tting pro-
edures or the re
onstru
tion te
hnique of the ENO (essentially nonos
illatory) method[48℄to 
onstru
t a smoother parametri
 
urve P(s) to any desired order. The possibility ofusing this higher order representation of the tra
ked front, in parti
ular 
onstru
ted by theENO method, will be dis
ussed further in the next 
hapter.Step 2: Having gotten the new lo
ation of the tra
ked front P(s) at the next time step,we then insert it into the underlying grid. This 
an be done quite easily by mar
hing alongthe parametri
 
urve P(s) from s1 to sn+1 and looking for the interse
tions of ea
h of thepie
ewise linear polynomials (Xk(s);Yk(s)) with the underlying �xed grid. This determinespoints for interfa
e. Conne
ting the resulting points by a straight line in an orderly way, weobtain the 
urve and also the new grid at the next time step.Now sin
e ea
h new tra
ked interfa
e subdivides some 
ell into two sub
ells, we mustassign a 
ell value to ea
h of these sub
ells. As mentioned earlier, there are two approa
hesto setting up the data stru
ture for the subdivided 
ell, and hen
e there are two ways toassign the sub
ell values. If we adopt the �rst approa
h, i.e., we treat the old and newtra
ked interfa
es as being in the same grid 
ell, as in the one-dimensional front tra
king
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Figure 7.4: Wave propagation in Step 3 (only some of the waves are drawn). Ea
h waveis propagated independently. For waves passing through ea
h other the intera
tion is lin-earized. Note that the tra
ked waves are propagated 
lose to the tra
ked interfa
e intro-du
ed in Step 2.algorithm, the simplest way to do this is to assign the previous 
ell value to ea
h sub
ell, seeFigure 7.3b. Whereas, if we adopt the se
ond approa
h, treating the old and new tra
kedinterfa
es as being in two di�erent grid 
ells, the old 
ell and the new 
ell, ea
h sub
ellwould be initialized by a value based on the appropriate weighted 
ombination of the old
ell values, see Figure 7.3
.Step 3: On
e the new grid is 
onstru
ted, we then update the 
ell average Unj byapplying the �nite volume wave propagation methods des
ribed in Chapter 6, see Figure 7.4for illustration. As in the one-dimensional algorithm, be
ause of the 
arefully 
hosen grid,the tra
ked dis
ontinuity is propagated 
lose to the tra
ked interfa
es. There is little orno smearing of the tra
ked wave during the averaging pro
ess. Smooth 
ow is 
apturedas usual. Again, near tra
ked interfa
es, waves may propagate through several 
ells dueto the fa
t that we have 
reated small sub
ells. In the next 
hapter, we perform errorestimation to study stability properties of this wave propagation method using various�nite volume approa
hes. The error behavior and a

ura
y near the tra
ked interfa
e willalso be examined.It should be mentioned that, in prin
iple, we 
an use any �nite volume method to updatethe solution on this nonuniform grid 
reated by the front tra
king algorithm. The best wayto do this that a
hieves higher order of a

ura
y, even for 
ells near the tra
ked interfa
es,is still under study. We will show some preliminary results in the next 
hapter that givesome indi
ations of what one should do to a

omplish this, however.Step 4: We now delete the old tra
ked interfa
es from the grid system. Again, wehave to dis
uss two di�erent situations. First, in the one-grid approa
h, to delete the oldtra
ked interfa
es would 
orrespond to merging two sub
ells into one, and the 
ell value inthe 
ombined 
ell would be 
al
ulated by the appropriate weighted 
ombination of these



83two deleted sub
ells to maintain the 
orre
t 
ell average. For example, in Figure 7.3b theold tra
ked interfa
e is deleted from the grid 
ell. Let Cid denote the 
ell after deletion.Then the 
ell average of the Cid 
ell be
omesUn+1id = AiaAid Un+1ia + AibAidUn+1ib (7:7)where Un+1ia , Un+1ib are the 
ell averages in the Cia and Cib 
ells respe
tively; Aia and Aibare the 
orresponding areas of the sub
ell, and Aid is the area of the Cid 
ell.Alternatively with the two-grids approa
h, only grid 
ells whi
h 
ontain ex
lusively oldtra
ked interfa
es need to apply the above averaging pro
edure, be
ause on grid 
ells whi
h
onsist of both old and new tra
ked interfa
es this pro
edure has already been used in Step3 to assign new sub
ell values.7.2 The Euler Equations and Boundary ConditionsBefore presenting numeri
al results with this front tra
king algorithm, we introdu
e the two-dimensional version of the Euler equations of gas dynami
s and dis
uss the implementationof the solid wall boundary 
onditions for this system.The invis
id Euler equations of gas dynami
s in two dimensions have the form��t 0BBB� ��u�v�E 1CCCA+ ��x 0BBB� �u�u2 + p�uv(�E + p)u 1CCCA+ ��y 0BBB� �v�uv�v2 + p(�E + p)v 1CCCA = 0; (7:8)where �, u, v, p, E are the density, velo
ity in the x-dire
tion, velo
ity in the y-dire
tion,pressure, and total energy of gas per unit mass, respe
tively. We again assume the equationof state satis�es the 
�law; so the internal energy is e = 1
�1p=� and the total energy ofgas per unit mass is E = e+ 12(u2 + v2).As in one spa
e dimension, the wave propagation approa
h is very easy to apply forvarious boundary 
onditions. Nonre
e
ting-out
ow boundaries and periodi
 boundaries
an be handled in a manner quite similar to the one-dimensional 
ase. Here we devote ourdis
ussion solely to the most interesting 
ase, the solid wall boundary.At a solid wall boundary, the proper boundary 
ondition for the Euler equations iszero normal velo
ity. Now 
onsider the grid 
on�guration shown in Figure 7.5a where aCartesian grid is 
ut o� by an irregular boundary. In the wave propagation approa
h, wavesresulting from solving one-dimensional Riemann problems at the 
ell boundaries are usedto update 
ell values. To a
hieve the solid wall boundary 
ondition, waves whi
h leave atthe boundary are now re
e
ted to the interior domain, as in the one-dimensional 
ase, seeSe
tion 3.2.For example, Figure 7.5a shows a wave originating from the Riemann problem between
ells (i; j) and (i + 1; j) that passes all the way through the irregular 
ell (i + 1; j). Theportion of this wave that lies beyond the boundary is then re
e
ted normal to the boundarysegment and ba
k into the 
omputational domain, as shown in Figure 7.5b. This re
e
tedwave 
arries a re
e
ted jump �rp and is used to update 
ell averages that overlap with there
e
ted wave, in this 
ase 
ells (i+1; j) and (i+1; j�1). The relation between the re
e
ted



84a) AA ����HHHHPPXX-
i i+ 1

jj � 1
b) AA ����HHHHPPXXSSSSS SS��SSSw

i i+ 1Figure 7.5: a) Wave propagating through a small boundary 
ell and out of 
omputationaldomain. b) Re
e
ted wave a
tually used.jump �rp and the outgoing jump rp that ful�lls the solid wall boundary 
ondition 
an beobtained by �rst rotating rp to the �-� (normal-tangential) 
oordinates at the boundary,negating the normal velo
ity, and then rotating the resulting jumps ba
k to the Cartesian
oordinates[61℄,[62℄.For 
onvenien
e we use an operator �, 
alled the rotation operator, to denote the
oordinate transformation of the velo
ity �eld from the Cartesian 
oordinates to the �-�
oordinates. For the Euler equations (7.8),� = 0BBB� 1 � ��� � 1 1CCCA : (7:9)Re
all that � = 
os �, � = sin �. It is also 
onvenient to de�ne the inverse of the rota-tion operator, ��1, whi
h maps the velo
ities in the �-� 
oordinates ba
k to the original
oordinates. With these notations, we may simply write�rp = �R(rp)to express the above wave re
e
tion pro
edure, where R is an operator of the formR = ��10BBB� 1 �1 1 1 1CCCA�: (7:10)Similarly, the re
e
ted slope ��p is related to the outgoing slope �p by��p = �R(�p):
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Figure 7.6: Grid used for the radially symmetri
 expanding sho
k wave. a) Grid for theinitial data. b) Final grid after 14 time steps (time t = 0:1).In addition to re
e
ting waves, we need to solve a one-dimensional Riemann problemnormal to the boundary with data ur = �( ~U) and ul = R(ur), where ~U 
an be obtainedeither from data in the adja
ent 
ell or from some interpolation method[7℄. With this initialdata there is only one in
oming wave that a�e
ts the 
ell values. Of the other three waves,the two 
onta
t dis
ontinuities will have zero strength and zero velo
ity, while the outgoingimage of the in
oming wave is ignored.7.3 Radially Symmetri
 Sho
k WavesWe now show results obtained using this front tra
king algorithm. As a �rst example, we
onsider a radially symmetri
 expanding sho
k wave. Outside of a 
ir
le of radius r0 = 0:2,we set � = 1:4; u = 0; v = 0; p = 1:Inside the 
ir
le, the initial data is:�(x; y; 0) = 5:143204u(x; y; 0) = 2:045108 (x� x0)r=r20v(x; y; 0) = 2:045108 (y � y0)r=r20p(x; y; 0) = 9:045462where r2 = (x � x0)2 + (y � y0)2 is the distan
e from the 
enter (x0; y0) = (0:5; 0:5). Theinitial grid is shown in Figure 7.6a where the initial sho
k is inserted as an interfa
e thatsubdivides some 
ells in the underlying 40 � 40 grid.After 14 time steps (time t = 0:1 and Courant number � = 0:9), we obtain the resultsshown in Figure 7.7 on the grid shown in Figure 7.6b. Noti
e that the tra
ked sho
k
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Figure 7.7: Results for the radially symmetri
 expanding sho
k wave. a) Density 
ontoursat time t = 0:1. b) Cross se
tion of density along line y = 0:5. The solid line is the \true"solution obtained from solving the system ut+ f(u)r =  (u) with appropriate sour
e termsfor the radial symmetry using the one-dimensional front tra
king algorithm. The dottedpoints are the two-dimensional result.remains smooth and 
ir
ular and appears to be very well lo
ated. The density 
ontourplot in Figure 7.7a is not very sharp due to the graphi
s routine whi
h plots the solutionproje
ted onto a uniform grid. The 
ross-se
tion along y = 0:5 shown in Figure 7.7b showsthe sharpness of our result (dotted points) mu
h more 
learly.Note the solid line in this �gure is the \true" solution as 
al
ulated with our one-dimensional front tra
king algorithm on the system ut + f(u)r =  (u) with appropriatesour
e terms for the radial symmetry, using h = 0:001. The two-dimensional results shownabove were obtained using the high resolution Godunov method on the regular 
ells andthe Godunov method with tangential splitting on the irregular 
ells, with 
 = 1:4 on a unitsquare domain ([0; 1℄ � [0; 1℄). No slope is introdu
ed for the irregular 
ells.Next, we 
onsider a radially symmetri
 
onverging sho
k wave. The initial data now
onsists of two 
ir
ular regions. Inside of a 
ir
le of radius r0 = 0:36, we have density 1:4,zero velo
ity, and pressure p = 1. Outside the 
ir
le of radius r0 and inside a 
ir
le of radiusr1 = 0:46, the initial data is:�(x; y; 0) = 5:143204u(x; y; 0) = �2:045108 ((r � r1)=(r0 � r1))2(x� x0)=rv(x; y; 0) = �2:045108 ((r � r1)=(r0 � r1))2(y � y0)=rp(x; y; 0) = 9:045462The outer 
ir
le is introdu
ed to maintain the radial symmetry of the 
ow. Results areshown in Figure 7.8. We again observe good agreement of the results. In this 
al
ulation,
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Figure 7.8: Results for the radially symmetri
 
onverging sho
k wave. a) Density 
ontoursat time t = 0:1. The outer 
ir
le shown in the �gure is a solid wall boundary. b) Crossse
tion of density along line y = 0:5.the high resolution method used in the previous example was employed to update the 
ellvalues, and the wave re
e
tion pro
edure, des
ribed in Se
tion 7.2, was used to handle thesolid wall boundary at the outer 
ir
ular boundary.



Chapter 8ERROR ANALYSISAs in our one-dimensional front tra
king algorithm, we use a high resolution method thatis essentially se
ond order a

urate away from the tra
ked interfa
es. We use front tra
kingin order to resolve dis
ontinuities properly, and so our method does not su�er the standardloss of a

ura
y due to smearing that a sho
k 
apturing method would su�er. Nevertheless,there 
an be some loss of a

ura
y near the dis
ontinuity due to the nonuniformity of thegrid and the pie
ewise linear representation of the tra
ked dis
ontinuity. A planar isolateddis
ontinuity separating two 
onstant states is tra
ked perfe
tly, but in a more realisti
situation the dis
ontinuity may have some 
urved stru
ture and intera
t with some smoothba
kground 
ow. There are several fa
tors that 
an then lead to loss of a

ura
y near thetra
ked dis
ontinuity, su
h as the pie
ewise linear representation of the dis
ontinuity, loss ofa

ura
y due to the use of the nonuniform and time-dependent grid, the 
hoi
e of slopes inneighboring 
ells, and the linearization of the intera
tion between the tra
ked dis
ontinuityand weak waves from the neighboring 
ell interfa
es. Sin
e it is diÆ
ult to analyze errorsarising in some of these instan
es, here we will only examine the �rst two problems in somedetail, and leave other problems as future work. To begin, we report results on the orderof a

ura
y for some sample problems where exa
t or \true" solutions are available.8.1 PreliminariesAs in the one-dimensional 
ase, see Se
tion 4.1, we use Enj to denote the global error of thegrid 
ell j at time tn. We assume that the global error in some parti
ular norm, k En k,
an be expressed in relation to O(hp), in whi
h the largest real number p is 
alled the orderof a

ura
y of a method as h approa
hes zero for all tn � 0. Here h is the mesh size in boththe x- and y-dire
tions of the underlying uniform grid 
ells. The norms we use here are:the 1-norm, k En k1 =Xj AjjUnj � unj j;where Aj is the area of the jth grid 
ell, and the max-norm,k En kmax = maxj jUnj � unj j:In addition to 
omputing errors over the entire grid 
ells using the above norms, we also
ompute errors for 
ells near the tra
ked dis
ontinuity. This is done using the following1-norm, k En�� k1 = 1h Xk2��AkjUnk � unk j;



89where now the sum is over the set of irregular 
ells in either the state behind the dis
on-tinuity ��, or the state ahead the dis
ontinuity �+. The order of a

ura
y of a method is
omputed in a manner similar to what is des
ribed in Se
tion 4.1.We now 
onsider some sample problems and investigate the order of a

ura
y that isa
hieved by using our front tra
king algorithm.Example 8.1. We �rst 
onsider a s
alar linear problem 
onsisting of the linear adve
-tion equation ut + aux + buy = 0 for 0 � x � 1, 0 � y � 1 (8:1)with initial data u(x; y; 0) = ( 2 + 1:5e20(��0:32) � < 0:321 + 0:5 tanh(6�(0:36 � �)) otherwise (8:2)where a = 
os 5o, b = sin 5o, and � = ax+by. This initial data gives an oblique dis
ontinuityat an angle � = 5o to the y-
oordinate with an extreme point just behind the dis
ontinuity.The exa
t solution for this problem 
an be obtained by simply shifting this initial pro�lein the 
ow dire
tion (
os 5o; sin 5o) with speed 1. Note that if we view this problem in thedire
tion of (a; b), this is essentially a one-dimensional problem; the same one as we havestudied previously in Example 4.1, but now the problem is solved on a two-dimensional gridwith an oblique pro�le.As in the one-dimensional error estimation performed in Se
tion 4.1, we examine theerror behavior of the method as time evolves and as the mesh is re�ned. For this problem,we perform error estimation up to time t = 0:1 at 5 di�erent times (at every integer multipleof the time interval k = 0:02) with a mesh re�nement sequen
e fhl = 21�l=25; kl = hl=2; l =1; 2; 3g. The result is shown in Figure 8.1 where the errors and order of a

ura
y in the 1-norm and max-norm are presented for the Godunov method, the rotated Godunov method,and the high resolution Godunov method. From the �gure, we observe the poor order ofa

ura
y of the methods we employed here, parti
ularly, in the max-norm. This is alsothe 
ase for the one-dimensional test as seen in Figure 4.2, and has been dis
ussed in somedetail previously, see Chapter 4. Noti
e that there is little distin
tion between the resultsobtained by using the Godunov method and the rotated Godunov method. For 
onvenien
ein reading, we again plot the errors in the logarithmi
 s
ale with base 10. (This is also the
ase for other �gures shown below relating to errors of a method.)It should be mentioned that be
ause the work in
reases a great deal by introdu
ingslopes for the irregular 
ells, for simpli
ity, in the experiments performed here we do notin
orporate the slope information for the high resolution method on these 
ells. We use the\MUSCL" limiter (2.12) to determine slopes of the regular 
ells.Example 8.2. Next, we 
onsider a radially symmetri
 problem arising from the Eulerequations (7.8). As initial 
onditions, we take the data from the example of an expandingsho
k wave dis
ussed in Se
tion 7.3. For this problem, we 
ompute the \true" solution by�rst applying the one-dimensional front tra
king algorithm to the system ut+f(u)r =  (u)with the appropriate sour
e terms for the radial symmetry, using h = 0:001, and theninterpolating this one-dimensional result on a two-dimensional grid.Table 8.1 shows results in density of an a

ura
y study up to time t = 0:1 using theGodunov method, the rotated Godunov method, the Godunov method with tangential
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Figure 8.1: An a

ura
y study of the front tra
king algorithm for the linear adve
tionequation (8.1) with initial data (8.2) up to time t = 0:1. All the errors shown in the�gure are plotted in the logarithmi
 s
ale with base 10. Error estimation is performed at 5di�erent times with a mesh re�nement sequen
e fhl = 21�l=25; l = 1; 2; 3g.



91splitting, and the high resolution Godunov method. From it, we see that in the 1-norm theGodunov method and the rotated Godunov method are �rst order a

urate, the Godunovmethod with tangential splitting is order p = 0:92, and the high resolution Godunov methodis order p = 1:65. In the max-norm, the order of a

ura
y for the methods used here is notas good as we might hope to obtain. This is expe
ted, however, be
ause unlike the previouslinear problem where the grid is exa
t, here the error on the grid due to the dis
repan
ybetween the tra
ked interfa
es and the exa
t sho
k lo
ation 
ontributes a sour
e of error.Note in the table the number in the parenthesis represents the exponent of the base 10, forexample, 9:9149(�2) stands for 9:9149 � 10�2.In the same table, we also show the errors and a

ura
y for the irregular 
ells and thetra
ked sho
k position. We observe reasonable results using our front tra
king algorithm.For example, for the high resolution method we have order p = 1:43 in the post-sho
kdensity, order p = 0:84 in the pre-sho
k density, and order p = 1:72 in the sho
k position.Note that the error for the tra
ked front lo
ation at time tn is de�ned byEnfront = rntrue � �rn
omputed;where rntrue is the \true" sho
k lo
ation in the radial dire
tion from the 
enter (x0; y0) =(0:5; 0:5), and �rn
omputed is the averaged sho
k lo
ation obtained by averaging the radialdistan
es of the points on the tra
ked sho
k.To examine more 
losely the error behavior of the irregular 
ells and the tra
ked sho
k,in Figures 8.2, 8.3, and 8.4, we plot the data that is used to 
ompute the errors and a

ura
yshown in the table. It is 
learly seen that our solutions 
onverge to the \true" solution asthe mesh is re�ned, and the solution varies from angle to angle in an os
illatory way. Noti
ethat there are big spikes appearing in some of the �gures, parti
ularly, in the pre-sho
k statein Figure 8.3. One of the reasons for the o

urren
e of the spikes is due to the fa
t thatwe use the large time step approa
h on a grid whi
h 
ontains the approximate lo
ation ofthe tra
ked dis
ontinuity, see Figure 7.4. Be
ause of this, it is unavoidable to have somenumeri
al di�usion of the solution. Even though the amount of di�usion is small, when thegrid 
ell is tiny the 
ontribution of this to the 
ell value will be signi�
ant. This 
ausesa big spike of the error. Despite this fa
t, our numeri
al result is still 
onvergent with areasonable rate. No stability problem has been observed for this test.For 
omparison, we have also done experiments using the standard sho
k 
apturingmethods. The results are shown in Table 8.2. It is 
lear that our front tra
king result issuperior to that obtained from sho
k 
apturing. For this problem, Courant number �0 = 0:5was used in the experiments.8.2 Tra
ked Front Representation and A

ura
yIn the above a

ura
y study, we used the pie
ewise linear parametri
 
urve P(s) in (7.5)to approximate the tra
ked front position after propagating the front in Step 1 of the fronttra
king algorithm 7.1. We �nd the interse
tions of this 
urve P(s) with the underlying grid,and use pie
ewise linear segments that 
onne
t the resulting interse
ting points to make thetra
ked front and also the grid at the next time step, Step 2 of the algorithm 7.1. For planardis
ontinuities, this is a good approximation, but more generally for 
urved dis
ontinuitiesthis pie
ewise linear approximation of the front is less desirable. In this se
tion, we 
onsider
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Table 8.1: An a

ura
y study in density of the front tra
king algorithm for a radiallysymmetri
 expanding sho
k wave.a) Godunov methodh k En k1 k En kmax k En�� k1 k En�+ k1 jEnfrontj0.04 9.9149(-2) 6.3076(-1) 8.8315(-1) 1.1592(-1) 1.1127(-2)0.02 4.5955(-2) 4.2825(-1) 4.3967(-1) 6.1691(-2) 6.3594(-3)0.01 2.3739(-2) 4.5908(-1) 2.1463(-1) 4.3657(-2) 3.5389(-3)order p 1.03 0.23 1.02 0.70 0.83b) Rotated Godunov methodh k En k1 k En kmax k En�� k1 k En�+ k1 jEnfrontj0.04 1.1368(-1) 5.9339(-1) 9.1022(-1) 1.4420(-1) 9.9987(-3)0.02 5.1797(-2) 1.3328(0) 5.0736(-1) 8.8274(-2) 6.3172(-3)0.01 2.6670(-2) 4.1488(-1) 2.2343(-1) 4.5132(-2) 3.8698(-3)order p 1.05 0.26 1.01 0.84 0.68
) Godunov method with tangential splittingh k En k1 k En kmax k En�� k1 k En�+ k1 jEnfrontj0.04 1.0565(-1) 5.3912(-1) 8.2659(-1) 1.2996(-1) 1.3031(-2)0.02 5.5341(-2) 3.1151(-1) 4.9793(-1) 7.3319(-2) 7.9232(-3)0.01 2.9540(-2) 9.6968(-1) 2.1376(-1) 3.8686(-2) 4.6351(-3)order p 0.92 { 0.98 0.87 0.75d) High resolution Godunov methodh k En k1 k En kmax k En�� k1 k En�+ k1 jEnfrontj0.04 9.0823(-2) 4.5326(-1) 7.3904(-1) 1.2855(-1) 1.0123(-2)0.02 2.7692(-2) 4.5839(-1) 2.4489(-1) 7.8437(-2) 3.6884(-3)0.01 9.2866(-3) 1.4665(-1) 1.0243(-1) 3.9976(-2) 9.3533(-4)order p 1.65 0.81 1.43 0.84 1.72
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�=�� � a) Godunov methodtrue solutionh = 0:04 �=�� � h = 0:02 �=�� � h = 0:01

�=�� � b) Rotated Godunov method
h = 0:04 �=�� � h = 0:02 �=�� � h = 0:01

�=�� � 
) Godunov method with tangential splitting
h = 0:04 �=�� � h = 0:02 �=�� � h = 0:01

�=�� � d) High resolution Godunov method
h = 0:04 �=�� � h = 0:02 �=�� � h = 0:01

Figure 8.2: A 
omparison of the density in the post-sho
k irregular 
ells, ��, for a radiallysymmetri
 expanding sho
k wave. The straight line shown in the �gure is the \true"solution.
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�=�� + a) Godunov method
true solution
h = 0:04

�=�� + h = 0:02
�=�� + h = 0:01

�=�� + b) Rotated Godunov methodh = 0:04
�=�� + h = 0:02

�=�� + h = 0:01

�=�� + 
) Godunov method with tangential splittingh = 0:04
�=�� + h = 0:02

�=�� + h = 0:01

�=�� + d) High resolution Godunov methodh = 0:04
�=�� + h = 0:02

�=�� + h = 0:01
Figure 8.3: A 
omparison of the density in the pre-sho
k irregular 
ells, �+, for a radiallysymmetri
 expanding sho
k wave. The straight line shown in the �gure is the \true"solution.



95
0.0 0.5 1.0 1.5 2.0

0.
41

5
0.

42
0

0.
42

5

0.0 0.5 1.0 1.5 2.0

0.
41

5
0.

42
0

0.
42

5

0.0 0.5 1.0 1.5 2.0

0.
41

5
0.

42
0

0.
42

5

0.0 0.5 1.0 1.5 2.0

0.
41

5
0.

42
0

0.
42

5
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k
a) Godunov methodtrue positionh = 0:04h = 0:02h = 0:01

�=�radiusofsho
k
b) Rotated Godunov method
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�=�radiusofsho
k

) Godunov method with tangential splitting
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d) High resolution Godunov method

h = 0:04h = 0:02h = 0:01
Figure 8.4: A 
omparison of the radius of the tra
ked sho
k for a radially symmetri
expanding sho
k wave. The straight line shown in the �gure is the \true" solution.



96Table 8.2: An a

ura
y study in density of the sho
k 
apturing method for a radiallysymmetri
 expanding sho
k wave.a) Godunov method b) Rotated Godunov methodh k En k1 k En kmax h k En k1 k En kmax0.04 2.1519(-1) 1.3109(0) 0.04 2.6508(-1) 1.2737(0)0.02 1.2980(-1) 1.2179(0) 0.02 1.5829(-1) 1.1269(0)0.01 7.0001(-2) 1.3261(0) 0.01 9.1466(-2) 1.1853(0)order p 0.81 { order p 0.77 {
) Godunov with tangential splitting d) High resolution Godunov methodh k En k1 k En kmax h k En k1 k En kmax0.04 2.2844(-1) 1.3172(0) 0.04 1.5172(-1) 1.2577(0)0.02 1.4063(-1) 1.1829(0) 0.02 8.3530(-2) 1.2973(0)0.01 7.6326(-2) 1.2346(0) 0.01 4.1517(-2) 1.3778(0)order p 0.79 { order p 0.93 {one simple modi�
ation of the algorithm that uses a pie
ewise quadrati
 parametri
 
urveP(s) for the front position. Doing so should give us a more a

urate front position, and soa more a

urate grid when this 
urve is inserted into the grid. For simpli
ity, we still usepie
ewise linear segments as the grid interfa
es. We will 
ompare results obtained usingthese two di�erent parametri
 representation of the fronts.Re
all that in Step 1 of the front tra
king algorithm, we move ea
h tra
ked interfa
e indire
tions normal and tangential to the interfa
e. We apply an interpolation s
heme thatdetermines a set of points (xk; yk; sk) for the new tra
ked front position. In Se
tion 7.1, thesepoints were used to 
onstru
t the pie
ewise linear parametri
 
urve P(s). Here, instead,we use this set of data to make a pie
ewise quadrati
 parametri
 
urve. In parti
ular, weemploy the re
onstru
tion te
hnique of the ENO method[48℄ to do this in whi
h we makea divided di�eren
e table from the data and use the adaptive sten
ils whi
h only sele
t thesmallest values from the divided di�eren
e table to form P(s) in Newton form.Let x[sj ; sj+1; � � � ; sj+k℄ be the divided di�eren
e of order k. Then by the above ENO
onstru
tion, we get the pie
ewise quadrati
 polynomialXk(s) = xk + ak(s� sk) + bk(s� si)(s� sj) (8:3)where ak = x[sk; sk+1℄bk = �(�k)x[sk�1; sk; sk+1℄with �k = x[sk; sk+1; sk+2℄=x[sk�1; sk; sk+1℄;



97and � is some limiter fun
tion, say the \minmod" limiter (2.10). The sten
ils i and jin (8.3) are 
hosen to interpolate points whi
h have the smallest values of the se
ondorder divided di�eren
e from the neighboring points. Note that the divided di�eren
ex[sj; sj+1; � � � ; sj+k+1℄ of order (k+1) is related to the divided di�eren
es x[sj; sj+1; � � � ; sj+k℄and x[sj+1; sj+2; � � � ; sj+k+1℄ of order k by the equationx[sj; sj+1; � � � ; sj+k+1℄ = x[sj+1; sj+2; � � � ; sj+k+1℄� x[sj; sj+1; � � � ; sj+k℄sj+k+1 � sj ;see Powell[85℄. Similarly, Yk(s) 
an be 
onstru
ted in the same manner. Hen
e we get thepie
ewise quadrati
 
urve P(s).We now 
onsider two examples and examine the front a

ura
y of our front tra
kingalgorithm. As a �rst example, we 
onsider evolving a 
ir
ular front(x� 14)2 + (y � 14)2 = (15)2in the 
onstant velo
ity �eld (u; v) = (1; 1) on a unit square domain. For this problem, inea
h time step, we get the exa
t front position after Step 1 of the front tra
king algorithm.There are some errors introdu
ed in the front position, however, after Step 2 of the algorithmwhere we insert the new front position into the underlying grid. This makes the grid thatis used in Step 3 to update the 
ell values.Results of an a

ura
y study in the front position up to time t = 0:4 is shown inFigure 8.5 where the pie
ewise linear and pie
ewise quadrati
 
urves P(s) are used in thetest. It is interesting to see that the results are indistinguishable from these two di�erentrepresentations of the tra
ked front; they all 
onverge roughly at the same rate with thesame error magnitude. Noti
e that in ea
h 
ase the error grows as time evolves whi
h yieldsthe redu
tion of the order of a

ura
y. This is expe
ted, however, be
ause in ea
h time stepthe tra
ked front is inserted into the grid, and that tends to 
lip the front, see Figure 8.6where the grids 
onstru
ted in the front tra
king algorithm are shown. Here the time stepis 
hosen by k = hl=2 where hl = 21�l=25, l = 1; 2; 3. Note that for this problem, it ispossible to improve the front a

ura
y by taking a larger time step sin
e doing so redu
esthe number of time steps in the experiments and hen
e the errors due to inserting thetra
ked front into the grid.Our next example of examining the front a

ura
y 
on
erns evolving an ellipti
al front(x� 12)2 + 32 y2 = (14)2in a rotating velo
ity �eld, (u; v) = (�y; x) on a square domain, [�1; 1℄� [�1; 1℄. This frontrotates 
ounter
lo
kwise about the origin.Figure 8.7 shows the evolution of the tra
ked fronts up to time t = 5:375 using boththe pie
ewise linear and pie
ewise quadrati
 representation of the fronts. We now observesome errors of the tra
ked front; the size of the interfa
e shrinks, and the shape be
omes
ir
ular. This result is expe
ted be
ause, as in the previous 
ir
ular front problem, theinsertion of the front into the grid leads to some loss of a

ura
y. In addition, there areerrors introdu
ed in the front-moving pro
edure, in whi
h the speed of the tra
ked front isobtained via some interpolation method. Here we use one simple approa
h that takes the
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Figure 8.5: An a

ura
y study in the front position of the front tra
king algorithm usingthe pie
ewise linear and pie
ewise quadrati
 
urves P(s). Results for advan
ing a 
ir
ularfront in the 
onstant velo
ity �eld (u; v) = (1; 1) are shown.average speed on the two sides of the tra
ked front as the front propagation speed. (It ispossible to obtain a more a

urate result if we employ a more sophisti
ated interpolationmethod for the front speed.) Note that there is little distin
tion between the results forthese two di�erent representations of the tra
ked front.Based on the results shown in this se
tion, we 
on
lude that the use of a higher orderrepresentation of the front in Step 1 of the algorithm is not enough to improve the a

ura
yof the tra
ked front lo
ation. Work is in progress to �nd an eÆ
ient way to do this. Itshould be mentioned that even with the simplest pie
ewise linear approa
h, we still getreasonable front stru
ture for many 
ompli
ated problems, see Chapters 9 and 10.8.3 Nonuniform Grids and A

ura
yAs we have seen from the previous examples, the grid used in our front tra
king algorithmis nonuniform and varies with time. Sin
e in this instan
e it is diÆ
ult to do theoreti
alanalysis of the tra
king algorithm, here we perform error estimation and demonstrate apotential problem of loss of a

ura
y near the tra
ked interfa
es due to the use of nonuniformand time-dependent grids. Our aim is to identify one possible sour
e of error arising fromour tra
king algorithm, and hopefully pave the way for future algorithm development.As an example, we 
onsider the linear adve
tion equationut + ux + uy = 0 for 0 � x � 1, 0 � y � 1 (8:4)with smooth initial data u(x; y; 0) = 1 + 0:5 sin(2�x) sin(2�y) (8:5)and periodi
 boundary 
onditions. We ran this problem on a time-dependent grid where a
ir
ular interfa
e is inserted as an interfa
e in the underlying uniform grid, and advan
edin the 
ow dire
tion (1; 1) with speed p2, see Figures 8.6 and 8.8.
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t = 0 t = 0:2t = 0:4Pie
ewise linear
t = 0 t = 0:2t = 0:4Pie
ewise quadrati


Figure 8.6: Grids 
onstru
ted in the front tra
king algorithm for the evolution of a 
ir
ularfront in the 
onstant velo
ity �eld (u; v) = (1; 1) using the pie
ewise linear and pie
ewisequadrati
 
urves P(s). The underlying uniform grid is 25� 25.
t = 0t = 5:375

Pie
ewise linear
t = 0t = 5:375

Pie
ewise quadrati


Figure 8.7: Evolution of an ellipti
al front in a rotating velo
ity �eld (u; v) = (�y; x) usingthe front tra
king algorithm with the pie
ewise linear and pie
ewise quadrati
 
urves P(s).The underlying uniform grid is 80� 80.



100Grid system State variable u

Figure 8.8: Initial 
onditions for an a

ura
y study of the linear adve
tion equation (8.4)on nonuniform grids.Results of an a

ura
y study in the state variable u up to time t = 0:4 are shown inFigure 8.9 where various �nite volume methods are tested. From the �gure, we observesome loss of a

ura
y in the max-norm, and for 
ells near the tra
ked interfa
es. Be
auseof this, we see some redu
tion of the order of a

ura
y in the 1-norm. It is not signi�
ant,however. Figure 8.10 shows the true solution and the snap shot of the solutions for thea

ura
y study shown in Figure 8.9 at time t = 0:4, using h = 0:02. Big errors near thetra
ked interfa
es are 
learly seen using the Godunov and rotated Godunov methods. Thisis expe
ted, however, be
ause for this problem the tra
ked interfa
e is moving with exa
tlythe same speed as the 
ow, and so the solution on ea
h side of the interfa
e is independentof the data on the other side, ex
ept for small errors due to the grid 
onstru
ted in the fronttra
king algorithm. This situation is similar to what we have seen in the one-dimensional
ase, see Se
tion 4.3, Figure 4.14.Noti
e that the error for the high resolution method is somewhat smaller than for theGodunov methods, even though we used pie
ewise 
onstant fun
tions for the irregular 
ells,and pie
ewise linear fun
tions only for the uniform 
ells. We would expe
t to obtain betterresults if slopes are introdu
ed also in the irregular 
ells.For 
omparison, we also ran this problem using the sho
k 
apturing methods on uniformgrids and �xed nonuniform grids (the grid shown in Figure 8.8). Figure 8.11 shows resultsfor the uniform grids, in whi
h we observe �rst order a

ura
y in the 1-norm and max-norm for the Godunov and rotated Godunov methods, and se
ond order a

ura
y for theLax-Wendro� method.Figure 8.12 shows results on a nonuniform grids where the lo
ation of the \front" is �xedrather than moving at the adve
tion velo
ity, so that the smooth solution moves throughthe grid irregularity rather than moving with it. There is still some loss of a

ura
y relativeto the uniform grid but not as bad as what was seen with the moving irregularity, as would



101be expe
ted.These results show that nonuniformities in the grid 
an 
ause a loss of a

ura
y in thesmooth stru
ture of the solution near the interfa
e. The results seen here look parti
ularlybad for two reasons. First, sin
e there is only smooth 
ow and no dis
ontinuities the errorsin the smooth 
ow are quite obvious and mu
h worse than what is obtained on a uniformgrid. For a problem with dis
ontinuities a
ross the interfa
e (whi
h is always the 
asein pra
ti
e) the uniform grid method introdu
es huge errors near the dis
ontinuity whi
hare not in
urred with the front-tra
king method, so that the balan
e shifts. Se
ond, theproblems illustrated here are for the linear adve
tion equation whi
h is mu
h less forgivingof errors than a nonlinear problem with sho
ks.
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Figure 8.9: An a

ura
y study of the front tra
king algorithm for the linear adve
tionequation (8.4) with smooth initial data (8.5) on time-dependent nonuniform grids.
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Figure 8.10: Plot of the true solution and the snap shot of the solution for the a

ura
ystudy shown in Figure 8.9 at time t = 0:4, using h = 0:02.
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Figure 8.11: An a
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y study of the sho
k 
apturing method for the linear adve
tionequation (8.4) with initial data (8.5) on uniform grids.
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Figure 8.12: An a

ura
y study of the sho
k 
apturing method for the linear adve
tionequation (8.4) with initial data (8.5) on �xed nonuniform grids.



Chapter 9APPLICATIONSHaving analyzed the front tra
king algorithm and �nite volume approa
hes on thenonuniform grid, we now present more numeri
al results for some sample problems involvingsho
ks and interfa
es arising in gas dynami
s. As in the one-dimensional tests performedin Chapter 5, our aims here are to validate our results by 
omparing them to results (eitherexa
t, numeri
al or experimental) whi
h have already appeared in the literature. We alsohope to demonstrate the potential power of using our front tra
king algorithm on more
omplex problems.The problems we 
onsider are a sho
k-vortex intera
tion and a sho
k-ramp intera
tionfor sho
ks, and the Kelvin-Helmholtz and Rayleigh-Taylor instabilities for interfa
es. In ad-dition, we show one preliminary result for a steady state problem. The �nite volume methodwe use in these 
al
ulations (ex
ept for the steady steady problem) is the high resolutionGodunov method on the regular 
ells, and the Godunov method with tangential splittingon the irregular 
ells; no slope is introdu
ed for the irregular 
ells. This method gives theoverall best performan
e in the error estimations performed in the previous 
hapter.9.1 Sho
k Di�ra
tionIn many appli
ations, sho
k waves undergo 
ompli
ated physi
al pro
esses and display ri
hsho
k di�ra
tion phenomena. Some interesting di�ra
tion stru
tures have been observedand do
umented in some instan
es from both laboratory experiments and numeri
al simu-lations, e.g., for sho
k-bubble intera
tion[45℄,[83℄ and sho
k-ramp intera
tion[35℄,[36℄,[103℄.Here we 
onsider two typi
al examples: the sho
k-vortex intera
tion and the sho
k-rampintera
tion, and demonstrate the usefulness of using front tra
king for investigating thesho
k di�ra
tion stru
ture.9.1.1 Sho
k-vortex intera
tion problemAs a �rst example to examine sho
k di�ra
tion using our front tra
king algorithm, we
onsider a sho
k wave intera
ting with a vortex pair. As noted in [30℄, this problem andthe related subje
t have been an area of a
tive resear
h for many years. Most of the workwas motivated by an interest in the noise produ
ed by ro
kets and high-speed air
rafts, andtherefore the resear
h emphasized the generation of a
ousti
 waves. For these problems,the intera
tion of sho
ks with turbulent 
ows is a signi�
ant sour
e of noise[115℄. Thissho
k-vortex system is an important element of these more 
omplex pro
esses, see [28℄,[30℄,and referen
es therein for more detail.As initial 
onditions, we take a planar rightward moving Ma
h 1:5 sho
k at x = 0:175with density � = 1:4, zero velo
ity, and pressure p = 1 in the pre-sho
k state, and inaddition we put a pair of 
ounter-rotating isothermal 
omposite vorti
es in the pre-sho
k



107state. Sin
e this sho
k is approa
hing the vorti
es, intera
tion o

urs subsequently, seeFigure 9.2.The 
omposite vortex we use is a vortex with velo
ity �eldv� = ( v0r=r1 0 < r � r1Ar +B=r r1 < r � r2 (9:1)where v0 is a 
onstant whi
h 
hara
terizes the strength and rotation dire
tion of the vortex,r2 = (x� x0)2 + (y � y0)2 is the distan
e from the vortex 
enter (x0; y0), and A and B are
onstants so that the velo
ities are 
ontinuous at r = r1 and r = r2. Inside the vortex, thepressure �eld is spe
i�ed so that the pressure gradient balan
es the 
entripetal for
edpdr = �v2�r : (9:2)Noti
e that sin
e the vortex is assumed to be isothermal, the density � inside the vortexonly di�ers from the pressure p by a 
onstant, i.e., � = p=T0 where T0 is the 
onstanttemperature in the pre-sho
k state; assuming the universal gas 
onstant R = 1. So theabove pressure equation (9.2) 
an be integrated, and hen
e p 
an be obtained expli
itly.The parameters we use for the vortex pair are given by:upper vortex: (x0; y0) = (0:4; 0:7), v0 = 0:6944, A = �2:3148, B = 0:09259lower vortex: (x0; y0) = (0:4; 0:3), v0 = �0:3472, A = 1:1574, B = �0:04629and r1 = 0:1 and r2 = 0:2 in ea
h 
ase. Following the naming used in [30℄, a vortex is 
alleda \strong" vortex if the maximum velo
ity v0 in the vortex 
ore is exa
tly equal to the 
owvelo
ity vf behind the sho
k, and is 
alled a \weak" vortex if v0 � vf . Here the aboveparameters are 
hosen so that the upper vortex is a \strong" vortex while the lower vortexis a \weak" vortex. The upper vortex is rotating in a 
ounter-
lo
kwise manner, whereasthe lower vortex is rotating 
lo
kwise.Figures 9.1 and 9.2 show results for this problem after 100 time steps (time t = 0:387).In Figure 9.1a, we show the tra
ked sho
ks, plotted every 4 time steps. From it, we observethat the sho
k stru
ture is not signi�
antly di�ra
ted by its intera
tion with a weak vortex,while it is a�e
ted by its intera
tion with a strong vortex.To make use of the tra
ked sho
k information to diagnosis the sho
k di�ra
tion astime evolves, one popular approa
h is to produ
e a history of the amplitude of the frontperturbation, parti
ularly produ
ing the so-
alled min-max front history[11℄. In the present
ase, at ea
h time step, we monitor the minimum and maximum horizontal distan
e (xminand xmax) from the sho
k to the left boundary x = 0. The result is shown in Figure 9.1bwhere we have run the problem for the intera
tion of a sho
k with a single vortex so as todistinguish the di�eren
e in the front perturbation with di�erent vortex strengths. Note theperturbation of the sho
k grows weaker, as the sho
k moves farther away from the vortex.Figure 9.2 shows the density 
ontour plot at six di�erent times, plotted every 20 timesteps. Now we 
an see more di�eren
es in the wave stru
ture as the sho
k passes through thestrong and weak vorti
es. Although there are a
ousti
 waves generated in front and in ba
kof the sho
k in ea
h of the vorti
es, the waves appearing near the strong vortex apparentlyare more 
ompressive than the ones appearing near the weak vortex, and eventually forma sho
k wave, indu
ing 
omplex wave patterns. Noti
e that the shape of the vortex isseverely distorted during the stage of wave intera
tion; it tends to form an ellipse afterward.
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Figure 9.1: Results in the sho
k stru
ture for the sho
k-vortex intera
tion problem. a)Tra
ked sho
ks, plotted every 4 time steps. b) A 
omparison of the history of sho
k positionsxmin and xmax from the results of the sho
k-strong vortex intera
tion and the sho
k-weakvortex intera
tion.Qualitatively, our results agree well with the experimental and numeri
al results shownin [28℄,[30℄. It 
an also be demonstrated that some vorti
ity is generated in this 
ase.A similar situation in the intera
tion between a sho
k and bubble is reported in severalreferen
es, see, e.g., [83℄.In this example, a 100�100 grid was used on a unit square domain, non-re
e
ting out
owboundary 
onditions were used on the left and right boundaries, and solid wall boundary
onditions were used on the top and bottom boundaries; Courant number �0 = 0:9 wasemployed here.9.1.2 Sho
k-ramp intera
tion problemOur next example on sho
k di�ra
tion 
on
erns an oblique sho
k re
e
tion in whi
h anin
ident sho
k wave intera
ts with a solid wall ramp. This problem has been extensivelystudied over the years be
ause it simulates various typi
al and also important sho
k di�ra
-tion patterns, e.g., regular re
e
tions, single Ma
h re
e
tions, 
omplex Ma
h re
e
tions,and double Ma
h re
e
tions, depending on the Ma
h number of the in
ident sho
k and theramp angle, see [35℄,[36℄ for both numeri
al and experimental results. Here we 
onsider onesu
h example involving a double Ma
h re
e
tion.The stru
ture of a double Ma
h re
e
tion 
onsists of the in
ident sho
k, the �rst Ma
hstem, the �rst regular sho
k re
e
tion, the se
ond Ma
h stem, and the se
ond regular sho
kre
e
tion. The �rst three waves form a triple point, and so do the last three waves. Inaddition, at ea
h triple point, there is a slip line separating 
ow between the Ma
h stemand re
e
ted sho
k[36℄.
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Figure 9.2: Density 
ontours for the sho
k-vortex intera
tion problem up to time t = 0:387,plotted every 20 time steps.



110To start the 
omputation, an oblique Ma
h 4:62 sho
k with an angle normal to a 40oramp is initialized at the ramp 
orner (x = 0:7) with density � = 1:4, zero velo
ity, andpressure p = 1 on the left to the sho
k. (This sho
k is moving leftward.) For 
onvenien
e,the ramp is arranged so that it is aligned with the grid in front of the sho
k and 
utsthrough the underlying Cartesian grid in ba
k of the sho
k as seen in Figure 9.3a.Figure 9.3a shows the evolution of the tra
ked sho
k, plotted every 10 time steps. Itis easy to observe that due to the sho
k-ramp intera
tion a kink whi
h 
orresponds to thelo
ation of a triple point is formed. Sin
e, for the moment, we are not able to handle thetriple point expli
itly, we only tra
k the in
ident sho
k (above the kink) and the Ma
h stem(below the kink), and leave the regular sho
k re
e
tion to be 
aptured.Figure 9.3b shows the density 
ontour plot for the same run at time t = 0:1. Fromit, we 
an 
learly see the wave stru
ture around the �rst triple point as des
ribed above,and 
an also observe some stru
ture in the downstream triple point. The density 
ross-se
tion along the ramp is shown in Figure 9.3
 where we 
ompare our front tra
king result(drawn in dotted points) with the sho
k 
apturing result (drawn in solid line) obtained byusing the non-tra
ked version of the high resolution Godunov method with the same meshsize. We observe good agreement with these two results. Here we used a 160 � 80 grid ona re
tangular region ([0; 0:8℄ � [0; 0:4℄). The solid wall boundary 
onditions des
ribed inSe
tion 7.2 was applied for the ramp, and the non-re
e
ting out
ow boundary 
onditionswere applied for the other boundaries.9.2 Interfa
e InstabilityInterfa
es are 
ommonly seen in the real world. In many appli
ations, their behaviors undersmall perturbation are of great importan
e. Here we 
onsider two standard problems asso-
iated with unstable interfa
es: the Kelvin-Helmholtz and the Rayleigh-Taylor instabilities,and study the growth of interfa
es using our front tra
king algorithm.9.2.1 Kelvin-Helmholtz instabilityAs a �rst example of tra
king an interfa
e for the Euler equations, we 
onsider the Kelvin-Helmholtz instability in whi
h there is an interfa
e separating two 
uids of di�erent tan-gential velo
ities. This interfa
e is unstable with respe
t to any sinusoidal perturbation,and often rolls up into large vorti
al stru
tures whi
h serve to entrap the 
uid. Typi
alexamples where this instability 
an o

ur are seen in many appli
ations, e.g., in jet 
owand shear layer 
ow[103℄.Here we 
onsider one simple setup of the Kelvin-Helmholtz instability. We take 
onstantdensity �0 and pressure p0 with zero verti
al velo
ity in the 
omputational domain. Abovethe interfa
e, we have horizontal velo
ity u = u0, and below the interfa
e, we have horizontalvelo
ity u = �u0. For this model problem, there is one dimensionless parameter whi
h
ontrols the behavior of this Kelvin-Helmholtz unstable interfa
e, namely, the Ma
h numberu0=
0[84℄.The initial perturbation of the interfa
e is given byy = y0 + " sin(kx) (9:3)
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Figure 9.3: Results for a Ma
h 4:62 sho
k re
e
tion o� a 40o ramp. a) Tra
ked sho
ks,plotted every 10 time steps. b) Density 
ontours at time t = 0:1. 
) Cross se
tion of densityalong the ramp. The solid line is the sho
k 
apturing result, while the points are the sho
ktra
king result.
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Figure 9.4: A 
onvergen
e study of the interfa
e for the Kelvin-Helmholtz instability. Re-sults for two di�erent mesh spa
ings, 40� 40 and 80� 80 grids, are shown at time t = 0:48.In ea
h �gure, 
urve A is the initial tra
ked interfa
e at time t = 0, and 
urve B is the �naltra
ked interfa
e at time t = 0:48. Note the velo
ity �eld is superimposed on the �gure.where " is the amplitude of the perturbation, and k is the wave number. By performing thestandard linear stability analysis, we 
an derive the perturbed state and use it to initializethe 
ow, see Appendix A.1 for the analysis and solution. For 
omparison, in the run shownbelow, we 
hoose the same parameters as used in Chern et al.[17℄, i.e., we take �0 = 1:4,p0 = 1, u0 = 0:2 (Ma
h 0:2), y0 = 0:5, " = 0:1, and k = 4�. The 
omputational domain isa unit square with solid walls on the top and bottom and periodi
 boundaries on the leftand right.Figure 9.4 shows a 
onvergen
e study of the interfa
e using two di�erent mesh spa
ings,40 � 40 and 80 � 80 grids. From the �gure, roll-up of the interfa
e is 
learly seen on the80 � 80 grid. Note that the initial tra
ked interfa
e is also shown in the �gure and thevelo
ity �eld is superimposed. Comparing our results with the one shown in [17℄, we seegood agreement on the global stru
ture, but not on the �ne stru
ture around the roll-upon the same grid. In fa
t, our result on the 80 � 80 grid is very similar to their result onthe 40�40 grid. So this indi
ates that their front tra
king method gives a better resolutionnear the tra
ked interfa
e than the result obtained using our method.9.2.2 Rayleigh-Taylor instabilityOur next example of interfa
e tra
king 
on
erns the Rayleigh-Taylor instability in whi
hthe interfa
e separates two 
uids of di�erent densities. Assume that gravity is dire
teddownwards. This interfa
e is unstable under any perturbation if the light 
uid lies belowthe heavy 
uid. As mentioned in [93℄, typi
al examples where this instability 
an o

urare in the 
ollapse of a massive star, the formation of high luminosity jets in rotating gas
louds in an external gravitational potential, the laser implosion of deuterium-tritium fusiontargets, and the ele
tromagneti
 implosion of a metal liner. An overview of this problem
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an be found in Sharp[93℄ and Youngs[113℄. For more ba
kground information on 
uidinterfa
e stabilities, one may 
onsult, for example, Chandrasekhar[14℄ and Shivamoggi[94℄.Here we 
onsider one simple model for the 
ompressible 
ow in whi
h the vis
osity,surfa
e tension, and heterogeneity 
an be ignored. Then the governing equations for the
ompressible Rayleigh-Taylor instability take the form��t 0BBB� ��u�v�E 1CCCA+ ��x 0BBB� �u�u2 + p�uv(�E + p)u 1CCCA+ ��y 0BBB� �v�uv�v2 + p(�E + p)v 1CCCA = 0BBB� 00�g�vg 1CCCA (9:4)where g is the gravitational a

eleration. Note that sour
e terms on the right hand side ofthe equations are a result of gravity a
ting on a unit mass of 
uid. Hen
e they are 
alledthe \gravitational" sour
e terms.For this model, it is known that there are many fa
tors whi
h may in
uen
e the behaviorof the Rayleigh-Taylor unstable interfa
es[93℄. Among them the following dimensionlessparameters are of great importan
e. The �rst parameter is the density ratio D = �h=�l(or the Atwood number A = (�h � �l)=(�h + �l)), whi
h governs the growth rate of smallamplitude perturbation; �h and �l are the density of the heavy 
uid and the light 
uid justbelow and above the unperturbed interfa
e respe
tively. The se
ond parameter is the ratioof spe
i�
 heats 
 or other information to des
ribe the equation of state for the 
uids. Thethird parameter is a 
onstant M2 = g�=
2h de�ning as the ratio of a gravitational time s
aleto a sound speed time s
ale (this indi
ates the 
ompressibility of the 
uids), whi
h has thee�e
t of redu
ing the growth rate; � is the wavelength of the interfa
e perturbation, and 
his the sound speed in the unperturbed heavy 
uid.For 
omparison purposes, we 
hoose the same initial setup as used in Gardner et al.[33℄,namely, we introdu
e a small perturbation of an isothermal equilibrium 
ow with a 
atinterfa
e separating exponentially strati�ed 
ow above and below the interfa
e. As in thelaboratory experiments, the heavy 
uid lies below the light 
uid and gravity is dire
tedupwards. For simpli
ity, we take the same gas with 
 = 1:4 for both the heavy and light
uids.The unperturbed isothermal equilibrium we use, for 
ow in both the heavy and lighted
uids, is spe
i�ed by � = �0e�0(y�y0);p = p0 + (�� �0)g=�0;where �0 is equal to �h (in the heavy 
uid) or �l (in the light 
uid), �0 = 
g=
20 (
0 soundspeed), y0 is the lo
ation of the unperturbed interfa
e, and p0 is the pressure at y0. Asin the previous example, we introdu
e a sinusoidal perturbation (9.3) on the interfa
e totrigger the instability, and we in
orporate the linear stability result for the perturbed statesto initialize the 
ow, see Appendix A.2 for the analysis and solution.Here we 
hoose the following parameters in the run: density ratio D = 10 with density�h = 1 and �l = 0:1, M2 = 0:5 with 
h = 1, y0 = 2, k = �, and " = 0:03�=k. The
omputational domain is a re
tangular region ([0; 1℄ � [0; 4℄) with solid wall boundaries onthe top and bottom and periodi
 boundaries on the left and right. Sour
e terms in theequations are handled in a way similar to what is des
ribed in Se
tion 5.2.
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Figure 9.5: Contour plots in density and pressure for the Rayleigh-Taylor instability attime t = 6. Here the heavy 
uid lies below the light 
uid, and gravity is dire
ted upwards.Parameters D = 10, M2 = 0:5, and " = 0:03 were used in the run.The results are shown in Figures 9.5 and 9.6 up to time t = 6 using a 40 � 160 grid.Figure 9.5 shows the density and pressure 
ontour plots, and Figure 9.6a shows the tra
kedinterfa
es at time t = 0 and t = 6. From these �gures, the growth of the interfa
e andthe formation of a rising bubble and falling spike 
an be easily seen. In Figure 9.6b, we
ompare the history of the interfa
e positions, ymin and ymax { the minimum and maximumverti
al distan
e of the interfa
e from the bottom boundary y = 0, showing the results ofthe numeri
al simulation and the linear theory. We observe good agreement of results inthe small amplitude regime. In the large amplitude regime, qualitatively, our result agreeswith the result shown in [33℄, at least as far as the dominant unstable mode is 
on
erned.The results of [33℄ also show a se
ondary instability below the rising bubble. It is not 
learwhi
h result is 
orre
t and work is 
ontinuing to 
lear up the dis
repan
y of the results.It should be mentioned that this problem (and in general any unstable interfa
e problem)is very sensitive to small perturbations arising from either the physi
s or numeri
s, and thesolution may not 
onverge when a mesh re�nement study is performed in the absen
eof physi
al vis
osity[33℄,[74℄. This s
enario of non
onvergen
e of unstable interfa
es (forboth the Rayleigh-Taylor and Kelvin-Helmholtz instabilities) has been further explored byMulder, Osher, and Sethian[74℄. They use the \Hamilton-Ja
obi" level set formulation toevolve interfa
es and add physi
al vis
osity to the equations to study the zero (physi
al)vis
osity limit of the Navier-Stokes equations. They observe improvement of 
onvergen
e ofresults with larger values of the physi
al vis
osity. They also demonstrate that given someamount of physi
al vis
osity, there exists a �ne enough grid so that the physi
al vis
ositydominates the numeri
al vis
osity, and so the results are un
hanged with respe
t to furthergrid re�nement.



115a)
AB

Curve A: t = 0Curve B: t = 6Tra
ked interfa
es b)

0 1 2 3 4 5 6

0
2

4
time

interfa
epositions
(y minandy max)

ABB
A

Curve A: linear theoryCurve B: numeri
al simulation

Figure 9.6: Results in the interfa
e stru
ture for the Rayleigh-Taylor instability. a) Tra
kedinterfa
es at time t = 0 and t = 6. b) A 
omparison of the history of interfa
e positionsymax and ymin from the results of numeri
al simulation and linear theory.9.3 Steady State Cal
ulationFinally, we apply our front tra
king algorithm to another problem of great engineeringinterest: a steady state 
al
ulation for the Euler equations, and illustrate the potentialpower of using front tra
king for steady state problems.The problem we 
onsider is a Ma
h 3 in
ow over a 20o ramp. It 
an be shown that, under
ertain assumptions on the boundary 
onditions, the steady state solution for this problemis an oblique sho
k with an angle � = 37:8o atta
hed at the 
orner of the ramp[25℄. Thisis an interesting and also diÆ
ult problem be
ause the steady sho
k atta
hes at the ramp
orner. Several other people have run similar problems using standard sho
k 
apturingmethods with either body-�tted or Cartesian grids[10℄,[102℄. They observe that diÆ
ultiesat the ramp 
orner lead to extra entropy produ
tion near the wall giving an entropy layernear the wall and non
onvergen
e.To simplify the problem, our 
al
ulation is based on a �xed \exa
t" grid in the sensethat the exa
t sho
k lo
ation is inserted into an underlying grid. To make the grid evenbetter, we use a body-�tted grid as the underlying grid, see Figure 9.7a. In this 
ase, weare studying the a

ura
y of our numeri
al method on an \ideal" grid.It is very en
ouraging that the numeri
al results obtained using our tra
king algorithmon this parti
ular grid do 
onverge to the 
orre
t solution without spurious numeri
al ar-tifa
ts at the tra
ked sho
k or along the boundary. An example is presented in Figure 9.7with a 20� 10 grid. In this run, a �rst order Godunov's method is employed for updating
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Figure 9.7: Steady state 
al
ulation for a Ma
h 3 in
ow over a 20o ramp. a) Grid system.b) Cross se
tion of Ma
h number along the ramp. The solid line is the exa
t solution, andthe dotted points are the numeri
al result.the 
ell values in both regular and irregular 
ells, solid wall boundary 
onditions are usedon the bottom boundary, and nonre
e
tion-out
ow boundary 
onditions are used on theremaining boundaries. Uniform Ma
h 3 
ow (� = 1, u = 1, v = 0) is used as the initial
ondition for all grid 
ells, and the iteration is halted when the density variation from theprevious time step to the 
urrent time step is less than the pres
ribed toleran
e, 10�4 inthis 
ase, after 191 time steps (time t = 3:57). Here we have made no attempt to a

eleratethe 
onvergen
e to steady state.Extensions of this 
ode to a Cartesian grid 
ut by the exa
t sho
k lo
ation and theboundary (following Berger and LeVeque[7℄) is still in progress. In this 
ase, the treatmentof the solid wall boundary be
omes 
ompli
ated due to the fa
t that the 
ell whi
h 
ontainsthe ramp 
orner is subdivided by both the tra
ked sho
k and boundary segment.



Part IIIPorous Media Flow



Chapter 10OIL RESERVOIR SIMULATIONIn many appli
ations, the hyperboli
 
onservation laws may be 
ombined with othertypes of partial di�erential equations, e.g., an ellipti
 or paraboli
 PDE, in order to 
orre
tlydes
ribe the problem. In this instan
e, front tra
king in the hyperboli
 part of the entiresystem 
an still be a very useful tool to provide some vital information for solving theremaining part of the equations. Here we 
onsider one su
h example: oil reservoir simulationin porous media, in whi
h a hyperboli
 
onservation equation is 
oupled with an ellipti
PDE. We will show some preliminary results for sample problems in both one and two spa
edimensions, and demonstrate the usefulness of using front tra
king for this problem.10.1 PreliminariesWe 
onsider a simpli�ed two phase 
ow in a porous medium in whi
h di�usion, surfa
etension, gravity, and heterogeneity of the reservoir 
an be ignored. We 
onsider a modelproblem for oil reservoir simulation in whi
h the 
uids are oil and water for immis
ibledispla
ement, or oil and solvent, su
h as CO2, for mis
ible displa
ement. This model hasbeen extensively studied in the past, parti
ularly in the oil industry, be
ause it simulatesa pro
ess of se
ondary oil re
overy where water or solvent is pumped into the oil �eld tofor
e oil out of the wells, see, for example, Aziz and Settari[2℄, Pea
eman[79℄, Glimm etal.[39℄,[40℄, and referen
es therein for more detail.For this two phase 
ow model, the governing equations 
onsist of the following equations:st +r � (~qf(s)) =  (s); (10.1)~q = ��(s)rp; (10.2)r � ~q =  (s): (10.3)Here s denotes the saturation of the inje
ted 
uid (s = 1 for the inje
ted 
uid and s = 0 forthe oil), ~q, a ve
tor, is the total velo
ity (oil velo
ity plus the inje
ted 
uid velo
ity), f(s)is the so-
alled fra
tional 
ow fun
tion de�ned as the ratio in magnitude of the inje
ted
uid velo
ity to the total velo
ity,  (s) is the sour
e term 
orresponding to the inje
tionof 
uid in wells and/or produ
tion of oil from wells, �(s) represents permeability dividedby vis
osity, and p is the pressure. In the above system, Equation (10.1) expresses the
onservation of mass of the inje
ted 
uid, Equation (10.2) is Dar
y's law whi
h states thatthe total velo
ity is proportional to the pressure gradient, and Equation (10.3) expressesthat the underlying 
uids are in
ompressible. The derivation of these equations along withother physi
s of 
ow through porous media 
an be found in S
heidegger[92℄.In pra
ti
e, the fun
tions �(s), f(s) we use are�(s) = s2 + ��1(1� s)2; (10.4)f(s) = s2=�(s); (10.5)



119for immis
ible displa
ement, and �(s) = (s+ ��1=4(1� s))4; (10.6)f(s) = s; (10.7)for mis
ible displa
ement where � is the vis
osity ratio of the underlying 
uid; the oilvis
osity over the inje
ted 
uid vis
osity.It is interesting to note that in this model there is a dimensionless parameter 
alled thefrontal mobility ratio M de�ning as M = �(sl)=�(sr) whi
h 
hara
terizes the stability ofthe interfa
e (for M � 1 the interfa
e is stable, while for M > 1 the interfa
e is unstable,see, for example, [19℄,[39℄,[41℄,[52℄,[111℄); sl and sr are the saturations behind and ahead ofthe interfa
e respe
tively (sl > sr). It is easy to verify that the relationship between themobility ratio M and the vis
osity ratio � is simply M = 2(1� (1 + �)�1=2) for immis
ibledispla
ement and M = � for mis
ible displa
ement[58℄.Noti
e that using the in
ompressibility 
ondition (10.3), the 
onservation equation (10.1)
an be rewritten as a non
onservative hyperboli
 PDEst + ~q � rf(s) =  (s) (10:8)with velo
ity ~q 
onsidered as known. In fa
t, if  (s) = 0, with the above mentionedfra
tional 
ow fun
tion, Equation (10.8) is simply the Bu
kley-Leverett equation for theimmis
ible displa
ement and the linear adve
tion equation for the mis
ible displa
ement.Be
ause of the ease in solving the Riemann problems for these equations (see [24℄ for the
onstru
tion of Riemann solution for the Bu
kley-Leverett equation), this non
onservativeform of the saturation equation is always used in pra
ti
e. Nevertheless to obtain thevelo
ity ~q, from Equation (10.2), we need to know the pressure p. It is easy, however, toderive the governing equation for p by simply substituting (10.2) into (10.3), whi
h yieldsan ellipti
 PDE r � (��(s)rp) =  (s): (10:9)Note that in general this ellipti
 equation (10.9) would have dis
ontinuous 
oeÆ
ients�(s) a
ross the dis
ontinuities be
ause of the jumps in saturation and also the vis
osity. Inthis 
ase, for a material interfa
e, from the dynami
 boundary 
ondition the pressure shouldbe 
ontinuous at the dis
ontinuity, and from the kinemati
 boundary 
ondition the normalvelo
ity at the dis
ontinuity should be 
ontinuous also. Based on this fa
t and others, we
an easily show that the tangential 
omponent of the pressure gradient is 
ontinuous as isthe normal derivative of �(s)p, but the normal 
omponent of the pressure gradient is notsin
e �(s) is not[41℄.10.2 AlgorithmTo solve this two phase 
ow model, a very popular approa
h is the so-
alled IMPES (im-pli
it pressure and expli
it saturation) pro
edure in whi
h in ea
h time step the hyperboli
saturation equation (10.8) and the ellipti
 pressure equation (10.9) are dealt with separatelyand sequentially. It is des
ribed in the following algorithm in the 
ontext of using fronttra
king algorithm to handle the hyperboli
 part of the equation:



120Algorithm 10.11) Given the saturation s, solve the ellipti
 PDE (10.9), obtaining the pressure p.2) Compute the total velo
ity ~q by di�eren
ing the pressure p obtained from Step 1 andsubstituting into the velo
ity equation (10.2).3) Solve the hyperboli
 equation (10.8) using the front tra
king algorithm to update thesaturation s.Sin
e the front tra
king algorithm introdu
ed in the previous 
hapters is very easy toapply for the hyperboli
 saturation equation (10.8), here we fo
us our dis
ussions on Steps1 and 2 of the algorithm.Step 1: In solving the ellipti
 pressure equation (10.9) with possibly dis
ontinuous
oeÆ
ients �(s), the 
onventional approa
h is to employ a �nite element method havingelements aligned with the interfa
e. In one spa
e dimension, this 
an be done quite easilyand we des
ribe one approa
h below. In two spa
e dimensions, however, this is diÆ
ult todo as seen in the work done by M
Bryan and others[43℄,[72℄. Here as a �rst attempt tota
kle this problem in two spa
e dimensions, we adopt a simpler approa
h by employinga standard �ve-point sten
il �nite di�eren
e method on a uniform grid, i.e., we ignore theappearan
e of the dis
ontinuities, even though we know their lo
ation expli
itly. Doing so
auses some smearing of the pressure pro�le, and so less a

urate result as we might hope toobtain. As seen from the results shown below, we still obtain reasonable solutions, however.In future work, we hope to improve upon this method by using, for example, the immersedinterfa
e method developed by LeVeque and Li[66℄.To be more spe
i�
, let us dis
uss some examples. We �rst 
onsider a one-dimensionalexample. Consider the Diri
hlet boundary 
ondition at ea
h side of the boundary andsour
e terms  (s) = 0 in the entire 
omputational domain; x 2 [0; 1℄. The ellipti
 pressureequation (10.9) then 
orresponds to a se
ond order ordinary di�erential equation(��(s)px)x = 0 (10:10)in one spa
e dimension with boundary 
onditions p(x=0) = a and p(x=1) = b, where �(s)is known spatially. For simpli
ity, we take a and b to be 
onstants for all time, although ingeneral they 
an vary with time.To dis
retize (10.10), we use a three-point �nite di�eren
e method on a nonuniform gridby �rst taking a ba
kward di�eren
e for the outer derivative and then a forward di�eren
efor the inner derivative; 
olle
ting terms, we get the following di�eren
e formula� �i� 12hi�1 pi�1 + (�i� 12hi�1 + �i+ 12hi ) pi � �i+ 12hi pi+1 = 0 (10:11)for node i, where �i� 12 = �(s(xi� 12 )), pi�1 = p(xi�1), and hi is the mesh size, see Figure 10.1afor the notation used here. Going through all the nodal points for i = 1; 2; � � � ; N , and usingthe boundary 
onditions, we obtain a symmetri
 positive de�nite tridiagonal linear systemfor the unknown pressure p.Note that in the above dis
retization we have used a staggered grid representation forthe pressure p and saturation s, i.e., p is de�ned at the 
ell interfa
e, and s is de�ned
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Figure 10.1: The 
omputational grid used for solving the ellipti
 pressure equation (10.9)at Step 1 of the algorithm. a) A nonuniform grid in one spa
e dimension. b) A uniformgrid in two spa
e dimensions where we ignore the appearan
e of the tra
ked dis
ontinuity(shown as dashed line) on the grid. Note that the pressure in ea
h �gure is de�ned at thegrid point, while the velo
ity and saturation are de�ned at the 
ell 
enter; a staggered gridapproa
h.at the 
ell 
enter. In addition, it was dis
retized on a nonuniform grid rather than on auniform grid. Doing so prevents us from di�eren
ing a
ross dis
ontinuities, and hen
e yieldsa

urate pressures and hen
e velo
ities. This �nite di�eren
e dis
retization (10.11) redu
esto the standard three-point sten
il �nite di�eren
e method if tra
ked points disappear.Now we 
onsider a two-dimensional example. We 
onsider a model problem in whi
hthe geometry is a standard �ve-spot pattern with 
uid (water or solvent) being inje
tedinto the 
enter of a unit square domain (
 = [0; 1℄� [0; 1℄) and the oil being re
overed fromthe four 
orners. For this model problem, we use the Neumann boundary 
onditions�p=�n = 0 (10:12)on the boundaries �
, where n is the dire
tion normal to the boundary pointing toward theoutside of the 
omputational domain. (This gives zero normal velo
ities on the boundaries.)We must then solve the ellipti
 equation(��(s)px)x + (��(s)py)y =  (s) (10:13)with an appropriate 
hoi
e of sour
e terms  (s) for the inje
tion and produ
tion of 
uid atthe wells.Denote by  i and  o the sour
e terms for the inje
tion 
uid and produ
tion of oilrespe
tively. The sour
e  i 
entered at (x0; y0) is taken of the form i(x� x0; y � y0) = ( (1 + 
os(�r=rÆ))=2rÆ r � rÆ0 r > rÆ (10:14)



122where rÆ is a 
onstant (we 
hoose rÆ = 0:05 in the numeri
al results shown below.) and r2 =(x�x0)2+(y�y0)2 is the distan
e from the 
enter (x0; y0). With  i in this form, the sour
eis spread to a 
ir
ular region of radius rÆ with 
enter (x0; y0); it has the biggest strengthwith magnitude 1=rÆ at the 
enter. Analogously, sour
e (or more appropriately sink)  o
entered at (x0; y0) is de�ned by putting a minus sign in front of the fun
tion (10.14). Sour
eterms of the above form were introdu
ed by Peskin[81℄ and used widely in the immersedboundary method for representing singular sour
es.It is well known that the solution for this problem (the ellipti
 equation with zeroNeumann boundary 
onditions) may fail to exist if the 
onsisten
y 
onditionZ
  (s) dA = 0 (10:15)is not satis�ed. In our model problem with the above 
hosen sour
e terms  i and  o, it iseasy to 
he
k that 
ondition (10.15) is satis�ed, and hen
e there is a solution. Although thesolution is determined only up to an additive 
onstant, this 
auses no additional problembe
ause only its �rst derivative will be used in the algorithm to 
ompute the velo
ity.We use a staggered grid in whi
h the pressure p is de�ned at grid points, and the satu-ration s is de�ned at 
ell 
enters (see Figure 10.1). To dis
retize (10.13), we use a standard�ve-point sten
il �nite di�eren
e method on a uniform grid. This is done using a similarpro
edure to what we used for dis
retizing the one-dimensional pressure equation (10.10).Applying this in both the x- and y-dire
tions, and 
olle
ting terms, yields the followingdi�eren
e formulaaij pi;j�1 + bij pi�1;j + 
ij pij + dij pi+1;j + eij pi;j+1 = rij (10:16)with aij = ��(si;j� 12 )=h2bij = ��(si� 12 ;j)=h2dij = ��(si+ 12 ;j)=h2eij = ��(si;j+ 12 )=h2
ij = �(aij + bij + dij + eij)rij =  i(xi � x
; yj � y
)� X8(x�;y�) o(xi � x�; yj � y�)for node (i; j), see Figure 10.1b for the notation used here. Here �(s�;�) = �(s(x�; y�)) isde�ned using the harmoni
 average of the neighboring 
ells, e.g.,�(si;j� 12 ) = 20� 1�(si� 12 ;j� 12 ) + 1�(si+ 12 ;j� 12 )1A�1 ;(x
; y
) denotes the 
enter of the inje
tion well whi
h is at the 
enter of the domain, and(x�; y�) denotes the 
enters of the produ
tion wells whi
h are at the 
orners of the domain,in our 
ase.



123Be
ause of the boundary 
onditions (10.12), the above di�eren
e formula (10.16) needsto be modi�ed for nodes at the boundaries. It is easy to show that by introdu
ing �
titiousnodes outside the 
omputational domain and approximating the boundary 
onditions witha 
entral di�eren
e formula at the boundary, the pressure at a �
titious node is simplyequal to the pressure at the interior node adja
ent to the boundary, e.g., pi;2 = pi;0 for allthe i on the y = 0 boundary. Sin
e we have �s=�n = 0 at the boundaries, the 
oeÆ
ient ofthe pressure in (10.16) at the �
titious node is also the same as the pressure at the interiornode adja
ent to the boundary. Having known this, we 
an then modify the di�eren
eequation (10.16) by ignoring nodes outside the domain and multiplying the 
oeÆ
ient ofthe related interior nodes by two. Alternatively, the above result 
an be derived moredire
tly by approximating the boundary 
ondition with a one-sided di�eren
e formula,expanding this di�eren
e formula at the boundary using the Taylor series expansion, andemploying the ellipti
 equation (10.13) that takes into a

ount the di�erential equation atthe boundary node[112℄.Going through all the nodal points for i = 1; 2; � � � ; N and j = 1; 2; � � � ; N , using row-wise ordering, we obtain a blo
k-tridiagonal linear system for the unknown pressure p. Forillustration purposes, we display the 
oeÆ
ient matrix A in the 
ase where �(s) = 1 in theellipti
 equation (10.13) and N = 3, i.e.,
A = 1h2

0BBBBBBBBBBBBBB�
4 �2 �2�1 4 �1 �2�2 4 �2�1 4 �2 �1�1 �1 4 �1 �1�1 �2 4 �1�2 4 �2�2 �1 4 �1�2 �2 4

1CCCCCCCCCCCCCCAwhere h is the underlying uniform grid size, assuming that a square grid is used. Analogousto the original di�erential equation, the solution to this linear system may not exist, unlessthe sum on the right hand side of the linear system equals zero to satisfy a dis
rete versionof the 
onsisten
y 
ondition (10.15) for this problem. It is easy to 
he
k that the sum on theright hand side of our linear system does satisfy this 
ondition. Here this linear system issolved using the in
omplete LU generalized minimum residual method in the SLAP (SparseLinear Algebra Pa
kage) Library.Step 2: Having 
al
ulated the pressure p, we 
an 
ompute the total velo
ity ~q bydi�eren
ing p and putting the result ba
k in the velo
ity equation (10.2). In one spa
edimension with ~q = u, this results inui+ 12 = ��(si+ 12 )(pi+1 � pi)=hiwhen a forward di�eren
e on p is employed, where u� = u(x�) is de�ned at the 
ell 
enter.Sin
e the method we use for updating the saturation is based on solving the Riemannproblem at ea
h 
ell interfa
e, it is ne
essary to also 
ompute the velo
ity u at the 
ellinterfa
e. One simple approa
h is to take an average of two neighboring velo
ities and



124assign it to the 
ell interfa
e, namely, setui = 12(ui� 12 + ui+ 12 ):In two spa
e dimensions with ~q = (u; v), we do the same thing as in one dimension by
omputing the 
ell averaged velo
ity de�ned at the 
ell 
enter as follows: ui+ 12 ;j+ 12vi+ 12 ;j+ 12 != � 12h  �(si+ 12 ;j)(pi+1;j � pi;j) + �(si+ 12 ;j+1)(pi+1;j+1 � pi;j+1)�(si;j+ 12 )(pi;j+1 � pi;j) + �(si+1;j+ 12 )(pi+1;j+1 � pi+1;j) !where �(s�;�) is 
omputed using the harmoni
 average of the neighboring 
ells. This givesthe velo
ities for the regular 
ells. Sin
e the grid we used for updating the saturation
onsists of not only the regular 
ells, but also the irregular 
ells, we need to 
omputethe velo
ities for the irregular 
ells also. This 
an be done by employing an interpolations
heme that makes use of the 
ell averaged velo
ities on the neighboring regular 
ells, e.g.,by interpolating data based on a re
tangular box over the neighboring 
ells. The velo
ity atthe 
ell interfa
e for both regular and irregular 
ells 
an be 
omputed in a manner similarto the one-dimensional 
ase.Before presenting numeri
al results, we make two remarks on Step 3 of the algorithm.First, in solving the Riemann problem at the ea
h 
ell interfa
e, the 
ell interfa
e velo
itydes
ribed above is used for the velo
ity ~q appearing in the saturation equation (10.8).Se
ond, the sour
e term appearing in the saturation equation (10.8), only the  i termexists, is treated as a boundary 
ondition in ea
h time step, i.e., we reset saturation s = 1in the region where the inje
tion sour
e  i is in e�e
t.10.3 Numeri
al ResultsWe now show some preliminary results for this two phase model.One spa
e dimension. We �rst show some one-dimensional results for our one-dimensional model problem dis
ussed in the previous se
tion. As initial 
onditions, wetake saturation s = 0 (pure oil) in the entire 
omputational domain, ex
ept for the �rstgrid 
ell (x 2 [0; h℄, where h = 0:01 is the mesh size) whi
h has s = 1 (pure water orsolvent). As boundary 
onditions, we use Diri
hlet data, p(x=0) = 1 and p(x=1) = 0, forthe ellipti
 pressure equation, and �xed boundary 
onditions with s = 1 on the left handside boundary and out
ow boundary 
ondition on the right hand side boundary for thehyperboli
 saturation equation.Results are shown in Figure 10.2. In Figure 10.2a and 
, we show results for the immis-
ible displa
ement 
al
ulations where the saturation and pressure are shown, respe
tively,with three di�erent vis
osity ratios, � = 1; 2; 10, at time t = 0:8. It is 
learly seen that asthe vis
osity ratio in
reases the saturation pro�le behind the dis
ontinuity be
omes moreand more depressed, and it be
omes harder and harder to displa
e the resident oil. It 
analso be observed in Figure 10.2
 that the pressure pro�le has a kink at the dis
ontinuity forsome vis
osity ratios. This is a 
onsequen
e of the jumps in saturation and the vis
ositythere. It is easy to 
he
k that as the frontal mobility ratio M approa
hes one, the jump inthe pressure gradient approa
hes zero. This 
an be seen in Figure 10.2
 where the frontalmobility ratios we use are M = 0:586 for � = 1, M = 0:845 for � = 2, and M = 1:397 for� = 10.



125In Figure 10.2b and d, we show results for the mis
ible displa
ement 
al
ulations withthe same vis
osity ratios and stopping time as for the immis
ible displa
ement 
al
ulations.Noti
e that the saturation pro�le remains the same shape for all the vis
osity ratios. This isdue to the fa
t that only a single phase of 
uid (solvent or oil) 
an exist in a volume of themis
ible porous medium. This is not so for 
uids in an immis
ible environment, however.In Figure 10.2d, kinks are 
learly seen at the dis
ontinuities in the 
ase where the frontalmobility ratio is not equal to one there. (Re
all that for mis
ible displa
ement M = �.)The above results were obtained using the high resolution front tra
king method withCourant number � = 0:9.Two spa
e dimensions. We now show two-dimensional results for our two-dimensionalmodel problem with the �ve-spot pattern. Here the problem of interest is to study stabilityof the interfa
es under various mobility ratios. As initial saturation, we use s = 1 (purewater or solvent) inside a perturbed 
ir
ular interfa
e and s = 0 (pure oil) outside the per-turbed interfa
e. As boundary 
onditions, we have Neumann boundary 
onditions (10.12)for the ellipti
 equation, and re
e
ting boundary 
onditions �s=�n = 0 for the saturationequation. The sour
e  i that 
orresponds to the inje
tion of 
uid at the wells is lo
ated atthe 
enter of the domain, and sinks  o that 
orrespond to the produ
tion of oil from thewells are lo
ated at the 
orners of the domain.Results are shown in Figures 10.3 and 10.4. In Figure 10.3a and b, we show resultsfor the immis
ible displa
ement 
al
ulations where the evolution of the tra
ked interfa
esare shown with vis
osity ratio � = 2 and � = 10, respe
tively. Note that with � = 2 wehave frontal mobility ratio M = 0:845. So based on the stability 
riterion mentioned inthe beginning of this 
hapter this interfa
e is stable under small perturbations. Note thatour numeri
al result shown in Figure 10.3a re
e
ts this fa
t. Moreover, our result shown inFigure 10.3b also predi
ts the right behavior of an unstable front where M = 1:397 there.In Figure 10.4a and b, we show results for the mis
ible displa
ement 
al
ulations wherethe evolution of the tra
ked fronts are shown with vis
osity ratio � = 1 and � = 10,respe
tively. Again, based on the mobility ratio we 
an readily predi
t that the interfa
e isstable for � = 1 (M = 1), while the interfa
e is unstable for � = 10 (M = 10). Our resultsgive a 
orre
t indi
ation of the stability of the interfa
e.The above two-dimensional 
al
ulations were run on a 50 � 50 grid. For updating thesaturation, we use the high resolution front tra
king method with Courant number �0 = 0:9.For similar 
al
ulations, see [39℄,[58℄.Finally, in Table 10.1, we report results on the timing (the CPU time) of the two-dimensional oil reservoir simulations. It is easy to observe that Step 1 of solving the ellipti
equation leads the usage of the CPU time (the 
ase for the mis
ible 
al
ulation with � = 1is a spe
ial situation where the pressure is 
onstant for all time), Step 3 of solving thehyperboli
 equation is the se
ond most expensive, and Step 2 of evaluating the velo
ity isthe last. Hen
e it is desirable to use a fast Poisson solver for this problem so as to improvethe performan
e of this algorithm. Note that the CPU time on the se
ond 
olumn of thetable 
onsists of time for the integration step (three basi
 steps in Algorithm 10.1) and theIO (input and output). The above 
al
ulations were run on a DEC station 5000/200 usinga Fortran 77 
omplier under the Ultrix operating system.
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Figure 10.2: Results for the one-dimensional oil reservoir simulation. Figures a) and 
) showresults for the immis
ible displa
ement 
omputations. Figures b) and d) show results forthe mis
ible displa
ement 
omputation. In ea
h �gure, three vis
osity ratios, � = 1; 2; 10,were used in the test up to time t = 0:8.



127a) � = 2 b) � = 10

Figure 10.3: Evolution of the tra
ked interfa
es for the immis
ible displa
ement oil reservoirsimulation, plotted every other time step. a) � = 2 (M = 0:845) up to time t = 10:5. b)� = 10 (M = 1:397) up to time t = 5:75.a) � = 1 b) � = 10

Figure 10.4: Evolution of the tra
ked interfa
es for the mis
ible displa
ement oil reservoirsimulation, plotted every 5 time steps. a) � = 1 (M = 1) up to time t = 15. b) � = 10(M = 10) up to time t = 9:4.
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Table 10.1: Timing of the two-dimensional oil reservoir simulations on a DEC station5000/200. CPU time CPU time/step Time steps(se
onds) Step 1 Step 2 Step 3immis
ible � = 2 810 15 1 7.8 34immis
ible � = 10 738 15.1 1 8.4 30mis
ible � = 1 1350 2.6 1.3 5 150mis
ible � = 10 2360 16.5 2.6 5.7 95



Chapter 11CONCLUSIONS11.1 Thesis SummaryIn this thesis, we have developed and studied a simple front tra
king approa
h that modelsthe propagation of dis
ontinuous solutions for nonlinear hyperboli
 systems of 
onservationlaws with sour
e terms in both one and two spa
e dimensions. In this approa
h, we use auniform underlying grid with some grid 
ells subdivided by tra
ked interfa
es, made up ofmoving points in one spa
e dimension and 
urves in two spa
e dimensions, approximatelyaligned with the dis
ontinuities in the 
ow �eld. In ea
h time step, we solve Riemannproblems at the tra
ked interfa
es using the values from adja
ent 
ells as data, and followstrong waves (sho
ks or interfa
es) to determine a new set of tra
ked interfa
es at the endof the time step. A 
onservative high resolution �nite volume method based on the wavepropagation approa
h is then applied on the resulting nonuniform grid to update the 
ellvalues. Potential problems with stability are dealt with by the use of a \large time step"method (see Chapters 2 and 6). Sin
e the new interfa
e lo
ations have been 
hosen 
arefully,the resulting solution remains sharp and is smooth away from these new interfa
es. Theold interfa
es 
an then be eliminated by re
ombining the adja
ent 
ells. This front tra
kingalgorithm is des
ribed in more detail in Chapters 3 and 7 for the one- and two-dimensional
ases, respe
tively.Error analysis. To examine stability and a

ura
y of the algorithm, in Chapters 4and 8 we performed error estimation for the one- and two-dimensional algorithms. Theresults presented there show that our algorithm is stable even if some of the small 
ellsare orders of magnitude smaller than the regular 
ell that is used to determine the timestep. In addition, our algorithm is �rst order and almost se
ond order a

urate in the1-norm for problems involving 
onta
t dis
ontinuities and sho
ks, respe
tively, in whi
h ahigh resolution method is used in the experiments (see Se
tions 4.1 and 8.1). Note theabove results hold for both the one- and two-dimensional algorithms. As noted there, ourtra
king results are mu
h better than what is obtained with sho
k 
apturing.Con
erning the error behavior in 
ells near the tra
ked interfa
es, we have also inves-tigated several issues that 
an lead to loss of a

ura
y, su
h as the 
hoi
e of slopes inneighboring 
ells, the use of nonuniform and time-dependent grid, and the linearization ofwave intera
tions due to the use of the large time step method. From this study, we foundthat signi�
ant improvement of the errors in 
ells near tra
ked 
onta
t dis
ontinuities 
anbe obtained using \one-sided" slopes, though this gives mu
h less improvement in 
ells neartra
ked sho
ks (see Se
tion 4.2). In addition, there is some loss of a

ura
y due to theuse of time-dependent nonuniform grids, parti
ularly in the max-norm for the �rst ordermethod (see Se
tions 4.3 and 8.3). It has been seen from a one-dimensional model problemthat the errors introdu
ed by the linearization of wave intera
tions in the large time stepmethod are of magnitude O(h), and they only o

ur lo
ally near the tra
ked interfa
es.Be
ause of this, the 1-norm error of the method has not been severely a�e
ted by this loss



130of a

ura
y (see Se
tion 4.1). For stability, there is no problems with the linear wave inter-a
tion approa
h for most 
al
ulations, ex
ept in an extreme 
ase where a strong rarefa
tionwave overtakes a sho
k. In that 
ase, we modify the method so that the intera
tion of thetra
ked dis
ontinuity and the weak waves is handled \exa
tly" (see Se
tion 4.4).Lastly, we have observed very ni
e results in the a

ura
y of the tra
ked front lo
ationusing our front-tra
king algorithm in both the one- and two-dimensional 
ases (see, e.g.,Figures 4.8 and 4.11, and Table 8.1). An approa
h that repla
es the pie
ewise linear repre-sentation of the tra
ked front by a pie
ewise quadrati
 representation did not signi�
antlyimprove the tra
ked front a

ura
y (see Se
tion 8.2).Appli
ations. To demonstrate the potential power of our front tra
king algorithmon more 
omplex problems, a wide variety of problems have been solved to validate thealgorithm for problems involving sho
k waves and interfa
es arising in gas dynami
s. Inone spa
e dimension, the examples 
onsidered are a double piston problem, the Woodward-Colella blast wave problem, the steady quasi one-dimensional nozzle 
ow, and unstabledetonation waves. In two spa
e dimensions, they are radially symmetri
 sho
k waves, asho
k-vortex intera
tion, a sho
k-ramp intera
tion, the Kelvin-Helmholtz and Rayleigh-Taylor instabilities, and a steady state 
al
ulation for a supersoni
 
ow over a ramp. Theseresults show the e�e
tiveness of our front tra
king algorithms in both one and two spa
edimensions. They also show the importan
e of using front tra
king for these problems (seeSe
tion 3.3, Chapter 5, Se
tion 7.3, and Chapter 9).To further test the 
apability of our front tra
king algorithm, we also 
onsidered a modelproblem arising from oil reservoir simulation. In this 
ase, we need to solve a 
oupled systemof ellipti
 and hyperboli
 partial di�erential equations. We use an IMPES pro
edure to dothis, in whi
h the hyperboli
 equation and the ellipti
 equation are dealt with separatelyand sequentially in ea
h time step. Here the hyperboli
 equation is solved using the fronttra
king algorithm and the ellipti
 equation is solved using a standard �ve-point �nitedi�eren
e method on a uniform grid. Our preliminary results for some sample problemsindi
ate that front tra
king is a very useful tool for this problem also (see Chapter 10).11.2 Future Resear
hEven though our front tra
king algorithm is quite su

essful in solving many pra
ti
alproblems, there are many aspe
ts that have not been handled as well as we might hope,parti
ularly for two-dimensional problems. Here we sket
h some of them, and des
ribefuture work.Improve resolution near the tra
ked interfa
es. As we have seen from the two-dimensional error analysis performed in Chapter 8, there is some loss of a

ura
y of ourfront tra
king algorithm in 
ells near the tra
ked interfa
es. From the Kelvin-Helmholtzunstable interfa
e problem in Se
tion 9.2.1, we also see that our result is not as sharp asthat obtained from another front tra
king method. Be
ause of this resolution dis
repan
ynear the tra
ked interfa
es, we observe di�erent solution behavior for the Rayleigh-Taylorproblem (see Se
tion 9.2.2) obtained from our method vs. another tra
king method. Forthe purpose of 
learing up the di�eren
e as well as improving the algorithm, we plan to dothe following work:



1311) Explore various approa
hes that take a

ount of slopes information for the irregular
ells. Some possible approa
hes has been mentioned in Se
tion 6.5. Although thework will in
rease a great deal by 
onsidering these approa
hes to the method, it isstill worth while studying them in depth. Ultimately, we would like to �nd an eÆ
ientway to do this.2) Explore various approa
hes that a
hieve high resolution of the tra
ked front. In this
ase, we may want to use 
urve-�tting or other interpolation te
hnique to 
onstru
t asmoother parametri
 
urve to higher order, and also use a higher order representationfor the grid interfa
es.It is important to note that we should 
onsider this work as a whole, be
ause theresolution near the tra
ked interfa
es depends not only on the a

ura
y of the grid we
onstru
t, but also on the a

ura
y of the �nite volume method we use on the grid. Weshould also keep in mind that we want to modify the method so that the numeri
al di�usionis as small as possible. For some interfa
e problems, we might need to put more restri
tionson the method so that the mass of ea
h of two distin
t 
uids is 
onserved independently,with no leaking a
ross the interfa
e.Code development. So far, to simplify programming, our 
urrent version of thetwo-dimensional front tra
king 
ode is only 
apable of dealing with dis
ontinuities thathave suÆ
iently smooth stru
ture; the splitting of fronts as well as the 
ollision of frontsare not allowed in the program. Be
ause of this, the appli
ability of this 
ode is limitedto simple front geometries. As a �rst step toward ta
kling more 
omplex problems, weneed to 
onsider using more general data stru
tures in the 
ode that 
an take a

ount of
ompli
ated topologi
al 
hanges in the front stru
ture. Some ideas suggested in [38℄,[42℄are very valuable here. Another modi�
ation of the 
ode that would enhan
e our ability tosolve 
omplex problems is to 
ouple front tra
king with lo
al adaptive mesh re�nement ashas already been done for some one-dimensional problems. Doing so would be parti
ularlyuseful for problems involving some internal stru
tures near the tra
ked dis
ontinuities, su
has in the detonation wave 
omputation.Finally, work is 
ontinuing in the appli
ation of our front tra
king algorithm to realappli
ations. In parti
ular, we are interested in studying physi
al e�e
ts, su
h as surfa
etension, vis
osity, 
hemi
ally rea
tions, moving sour
es, and more general equations of state,on the solutions of hyperboli
 
onservation laws arising in various situations (e.g., in gas,water, porous media, or elasti
 and plasti
 materials).
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Appendix ALINEAR THEORY REVIEWHere we review the linear stability analysis for the Kelvin-Helmholtz and Rayleigh-Taylor problems, see also [33℄ and [84℄. Results obtained from this analysis were used toinitialize the 
ow in the numeri
al simulation performed in Se
tions 9.2.1 and 9.2.2. Theseresults also provide 
omparison solutions in the regime where the amplitude of the interfa
eis small.A.1 Kelvin-Helmholtz instabilityIn Se
tion 9.2.1, we 
onsider the Kelvin-Helmholtz unstable interfa
e problem in whi
h theinterfa
e separates two 
uids of di�erent tangential velo
ities. We take 
onstant density�0 and pressure p0 with zero verti
al velo
ity in the 
omputational domain. Above theinterfa
e, we have horizontal velo
ity u = u0, and below the interfa
e, we have horizontalvelo
ity u = �u0. We introdu
e a sinusoidal perturbation (9.3) on the interfa
e to triggerthe instability.In the standard linear stability analysis, we study the solution behavior on the short times
ale, while the amplitude of the interfa
e is small. In the present 
ase, it is then reasonableto assume that the 
ow is irrotational away from the interfa
e, and the entropy is 
onstantin the domain. Let � denote the velo
ity potential with u = ��=�x and v = ��=�y so thatthe irrotationality 
ondition r� ~q = r� (r�) = 0 holds, where ~q = (u; v) is the velo
ityve
tor. It is easy to show that the governing equations, in the regions above and below theinterfa
e, are the following:���t + ��x �����x�+ ��y �����y � = 0; (A.1)���t + 12 �(���x )2 + (���y )2�+H(�) = H(�0) + 12u20; (A.2)where H = e + p=� is the enthalpy (for polytropi
 gas H = 

�1p=�). Note that H isa fun
tion of density � only. This is due to the fa
t that the entropy, s0 = p0��
0 , is
onstant throughout the domain, and so pressure p = s0�
 . In the above system, the �rstequation is the 
onservation of mass, and the se
ond equation is the Bernoulli's equationfor 
ompressible 
ows, see [25℄ and [84℄.For the boundary 
onditions, we have solid walls on the top and bottom, and periodi
boundaries on the left and right. On the interfa
e, we have the kinemati
 boundary 
ondi-tion whi
h states that parti
les at the interfa
e should remain at the interfa
e, namely, onthe interfa
e r� � ~n = ~q � ~n (A:3)



141where ~n is the dire
tion normal to the interfa
e. Let � be the interfa
e position. After somealgebra, (A.3) 
an be written in the following form����y �y=� = ���t + ����x�y=� ���x: (A:4)To derive the linearized equations for (A.1) and (A.2), we write the solution as its zerothorder (equilibrium) solution and a �rst order 
orre
tion,�(x; y; t) � �ux+�1(x; y; t) �1 � �ux;�(x; y; t) � �0 + �1(x; y; t) �1 � �0;and substitute it to (A.1) and (A.2). Retaining only the �rst order terms, we obtain( ��t + �u ��x)�1 + �0(�2�1�x2 + �2�1�y2 ) = 0; (A.5)( ��t + �u ��x)�1 +H 0(�0)�1 = 0; (A.6)where H 0(�0) = 
20=�0, and 
0 is the sound speed. Eliminating �1 in (A.5) and (A.6), weget the wave equation for the velo
ity potential �1,� ( ��t + �u ��x)2�1 + 
0(�2�1�x2 + �2�1�y2 ) = 0: (A:7)Note that �u = u0 in the region above the interfa
e, while �u = �u0 in the region below theinterfa
e. To simplify the expressions, we ignore the subs
ript for the velo
ity potential.Sin
e our initial interfa
e (9.3) is perturbed sinusoidally with varying interfa
e positionin the y-dire
tion, we 
an write the solution as� = f(y) exp (�t+ ikx) (A:8)where � is the growth rate (a real number in this 
ase), and k is the wave number. Sub-stituting (A.8) to (A.7), 
ombining terms, we obtain a se
ond order ordinary di�erentialequation for the magnitude fun
tion f(y),f 00(y)� (�+ i�)f(y) = 0 (A:9)where � = (MÆ�)2 � (M2 � 1)k2 and � = 2M2Æk�with M = j�uj=
0 (Ma
h number) and Æ = 1=�u.Note that with the appropriate �u, (A.9) is valid in both the region above and belowthe interfa
e. In ea
h region, its solution 
an be determined expli
itly when the solid walland kinemati
 (a linearized version) boundary 
onditions are used, see [84℄. Sin
e thesesolutions are rather 
ompli
ated in expression, we do not present them in detail here. Itshould be mentioned that using the dynami
 boundary 
ondition on the interfa
e, whi
hstates that the pressure is 
ontinuous a
ross the interfa
e, we obtain a nonlinear equationfor the growth rate �. This is solved numeri
ally using a root-�nding routine. In Figure A.1,we plot the solutions obtained from this linear stability analysis with two di�erent Ma
hnumbers, M = 0:2 and M = 0:5.
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Figure A.1: Typi
al solutions of the linear theory for the Kelvin-Helmhotlz unstable in-terfa
e problem. Results with two di�erent Ma
h numbers, M = 0:2 and M = 0:5, areshown.A.2 Rayleigh-Taylor instabilityIn Se
tion 9.2.2, we 
onsider the Rayleigh-Taylor unstable interfa
e problem in whi
h theinterfa
e separates two 
uids of di�erent densities. We introdu
e a small perturbation ofan isothermal equilibrium 
ow with a 
at interfa
e separating exponentially strati�ed 
owabove and below the interfa
e. Let �0, p0, and e0 be the density, pressure, and internalenergy of this equilibrium state, respe
tively. The equations governing these states are�p0�y = �0g; (A.10)��y (e0 + p0=�0) = 0; (A.11)see [33℄ and [108℄.As in the Kelvin-Helmholtz problem, we look for solutions in the small amplitude regime,and we write the solutions as�(x; y; t) � �0(y) + �1(x; y; t);u(x; y; t) � u1(x; y; t);v(x; y; t) � v1(x; y; t);p(x; y; t) � p0(y) + p1(x; y; t):Substituting them into the Euler equations with gravitational sour
es (9.4), we 
an derivethe linearized equations for the �rst order 
orre
tion terms. For polytropi
 gas, they are��1�t + �0 �u1�x + �0�v1�y + ��0�y v1 = 0; (A.12)�0�u1�t + �p1�x = 0; (A.13)�0�v1�t + �p1�y = g�1; (A.14) �
20
 � 1! ��1�t + � 1
 � 1� �p1�t = �0gv1: (A.15)



143Assume that the solutions of these equations take the form,0BBB� �1u1v1p1 1CCCA= exp (�t+ ikx)0BBB� �̂1û1v̂1̂p1 1CCCA (y): (A:16)Substituting (A.16) to (A.12){(A.15), we obtain equations governing the magnitude fun
-tions �̂1, û1, v̂1, and p̂1: ��̂1 + ik�0û1 + �0�v̂1�y + ��0�y v̂1 = 0; (A.17)��0û1 + ikp̂1 = 0; (A.18)��0v̂1 + �p̂1�y = g�̂1; (A.19) �
20�
 � 1! �̂1 + � �
 � 1� p̂1 = �0gv̂1: (A.20)We now eliminate û1 and v̂1 from the above equations, whi
h yields the following twoequations, �2�̂1 + g��̂1�y + k2p̂1 � �2p̂1�y2 = 0;�(
20�2 + (
 � 1)g2)�̂1 + �2p̂1 + (
 � 1)g�p̂1�y = 0:Finally, we eliminate �̂1 from the above two equations, and obtain a se
ond order ordinarydi�erential equation for p̂1,�2p̂1�y2 � 
g
20 �p̂1�y �  �2
20 + k2 + (
 � 1)g2k2
20�2 ! p̂1 = 0: (A:21)This 
an be solved expli
itly with the appropriate boundary 
onditions, su
h as solid wallson the top and bottom, and kinemati
 boundary on the interfa
e, see [33℄.We assume that the position of the perturbed interfa
e has the form� = y0 + " exp (�t+ ikx);where y0 is the unperturbed position, and " is the amplitude of the perturbation. It is easyto 
he
k that the solution isp̂1 = �0"(g2(
 � 1) + 
20�2)exp(��(ybdry � y0))� exp(�+(ybdry � y0)) � (A.22)�exp (��+(y � ybdry))(
 � 1)g + ��
20 � exp (���(y � ybdry))(
 � 1)g + �+
20 � ; (A.23)where ybdry is the lo
ation of the solid wall, and�� = � 
g2
20 �  
2g24
40 + �2
20 + k2 + (
 � 1)g2k2
20�2 !1=2 :
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al solutions of the linear theory for the Rayleigh-Taylor unstable interfa
eproblem. Results with two di�erent dimensionless parameters, M2 = 0:5 and M2 = 2, areshown. This parameter measures the 
ompressibility of the 
uids.Having obtained the p̂1, other variables 
an also be determined,�̂1 = 1
20�2 + (
 � 1)g2 ��2p̂1 + (
 � 1)g�p̂1�y � ; (A.24)û1 = � ik��0 p̂1; (A.25)v̂1 = 1��0 (g�̂1 � �p̂1�y ): (A.26)The requirement on the 
ontinuity of the pressure at the interfa
e leads to a nonlinearequation, (p̂1 + �0g")y"y0 = (p̂1 + �0g")y#y0that determines the growth rate �.In Figure A.2, we plot the solutions obtained from this linear stability analysis with twodi�erent dimensionless parameters, M2 = 0:5 and M2 = 2, where M2 = (2�g)=(k
20). Thisparameter measures the 
ompressibility of the 
uids.


