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Abstract: Multidimensional Serre–Green–Naghdi equations are numerically solved by using a natural hyperbolic-elliptic splitting.
The hyperbolic step is solved by semidiscret finite volume methods. The elliptic step is related to recovering nonhydrostatic pressure.
One-dimensional (1D) and two-dimensional (2D) test problems (i.e., 1D solitary wave propagation, 2D dam-break problem, solitary wave
overstep and overhump) are considered. DOI: 10.1061/JHEND8.HYENG-13703. © 2023 American Society of Civil Engineers.

Introduction

We describe a simple hyperbolic-elliptic splitting approach for the
efficient numerical resolution of the Serre–Green–Naghdi (SGN)
equations for shallow water flows in more than one space dimen-
sion. The SGN equations can be derived by depth averaging of the
free surface Euler equations (Serre 1953; Su and Gardner 1969;
Green et al. 1974; Green and Naghdi 1976; Bazdenkov et al.
1987; Camassa et al. 1996; Liapidevskii and Gavrilova 2008; Li
et al. 2019; Castro-Orgaz and Hager 2017) and via Hamilton’s prin-
ciple of stationary action (Miles and Salmon 1985; Salmon 1998;
Barros et al. 2007; Busto et al. 2021). The SGN equations can also
be seen as a special case in a hierarchy of vertically averaged high-
order models (Castro-Orgaz et al. 2023). The SGN model aug-
mented by the wave-breaking dissipation terms is proposed in
(Cienfuegos 2023).

In dimensional form, the SGN equations are

ht þ divðhv̄Þ ¼ 0 ð1aÞ

ðhv̄Þt þ div

�
hv̄ ⊗ v̄ þ

�
gh2

2
þ h2

3

�
ḧþ 3

2
b̈

��
I

�
¼ −pjz¼b∇b

ð1bÞ

ðhEÞt þ div

�
hv̄E þ

�
gh2

2
þ h2

3

�
ḧþ 3

2
b̈
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v̄

�
¼ pjz¼bbt ð1cÞ
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pjz¼b ¼ ghþ h

�
b̈þ 1

2
ḧ

�
ð1dÞ
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þ b

�
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�
ḣþ 3
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ḃ

�
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þ 1

8
ḃ2 ð1eÞ

where h = the water depth; v̄ = the depth averaged velocity; g = the
gravity acceleration; b = the bottom topography; and z ¼ hþ b =
the free surface (see Fig. 1). The “dot” means the material deriva-
tive along the averaged velocity v̄: ḟ ¼ ð∂f=∂tÞ þ v̄ · ∇f for any
scalar function fðt;xÞ; two “dots” mean the corresponding second
material derivative (see Appendix for details).

The difficulty in solving the momentum equation in the form in
Eq. (1b) is that its flux depends on the time derivatives of v̄. To
overcome this difficulty, one introduces the variable K defined as

K ¼ 1

h
∂L
∂v̄ ¼ v̄ þ 1

3

�
ḣþ 3

2
ḃ

�
∇hþ

�
1

2
ḣþ ḃ

�
∇b ð2Þ

where the Lagrangian Lðv̄; h; ḣ; b; ḃÞ is defined by Eq. (60). The
quantity K is more important than v̄. In particular, it verifies the
Helmholtz equation, and its circulation along closed material lines
is conserved in time (generalized Kelvin’s theorem) (Gavrilyuk and
Teshukov 2001). In addition, by introducing the generalized flow
potential ϕ byK ¼ ∇ϕ, one can reduce the study of SGN equations
to the study of two scalar equations for the fluid depth h and the
flow potential ϕ (Gavrilyuk and Teshukov 2001). The choice ofK,
which is defined up to the gradient of an arbitrary function, is not
unique, however. For example, using the mass conservation law in
Eq. (1a) one can rewrite Eq. (2) in the form

K ¼ v̄ − 1

3h
∇ðh3divðv̄ÞÞ þ 1

3
∇ðh2divðv̄ÞÞ þ 1

2h
∇ðh2ḃÞ

− 1

2
∇ðhḃÞ þ

�
1

2
ḣþ ḃ

�
∇b ð3Þ

Hence, up to the gradient terms, one can replace Eq. (3) by

K ¼ v̄ − 1

3h
∇ðh3divðv̄ÞÞ þ 1

2h
∇ðh2ḃÞ þ

�
1

2
ḣþ ḃ

�
∇b ð4Þ

In particular, in the case of a flat bottom, the sum of the two first
terms in Eq. (4), v̄ − ð1=3hÞ∇ðh3divðv̄ÞÞ is the tangent velocity of
the fluid at the free surface (Gavrilyuk et al. 2014).

We illustrate the advantages of using ðh;KÞ variables in the 1D
formulation. By using Eq. (4), the momentum [Eq. (1b)] can be
written in conservative form even in the case of time dependent
bottom bðt; xÞ as

Kt þ
�
KU þ gðbþ hÞ − 1

2
ðḃþ ḣÞ2 − 1

2
U2

�
x
¼ 0 ð5Þ

where U is the horizontal depth averaged velocity [v̄ ¼ ðU; 0ÞT],
and
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K ¼ U − 1

3h
ðh3UxÞx þ

1

2h
ðh2ḃÞx þ

�
1

2
ḣþ ḃ

�
bx ð6Þ

Replacing ḣ ¼ −Uhx in Eq. (5), one obtains the flux depending
on U and its space derivatives, space derivatives of h, and time and
space derivatives of bðt; xÞ. OnceK and h are updated at a new time
instant by any solver, the velocity U at this time instant is obtained
from Eq. (6) by inverting the corresponding 1D elliptic operator (Le
Métayer et al. 2010; Cantero-Chinchilla et al. 2016; Castro-Orgaz
et al. 2022).

To find v̄ from Eq. (4) in the 2D case, we have to invert two
elliptic operators (one for each component of v̄) at each time, which
is computationally the most “expensive” step (Le Métayer et al.
2010; Li et al. 2014, 2019; Marche 2020).

To avoid the elliptic step in solving the SGN equations, another
idea was proposed based on their hyperbolic approximation (Favrie
and Gavrilyuk 2017; Busto et al. 2021; Tkachenko et al. 2023).
Such an approximation is related to a modification of the “master”
Lagrangian in Eq. (60): a new “extended” Lagrangian is introduced
whose Euler–Lagrange equations approximate the SGN equations.
Thus, no dissipation is added to the modified system: the approxi-
mation of the conservative SGN system is also a conservative sys-
tem. The advantage of such an approach is obvious: One can use for
the dispersive SGN system the entire arsenal of numerical methods
for hyperbolic equations. The method of “extended Lagrangian”
was mathematically justified in Duchêne (2019). The method was
succesfully used for other dispersive equations such as the nonlinear
Schrödinger equation (Dhaouadi et al. 2019), the Benjamin–Bona–
Mahony equation (Gavrilyuk and Shyue 2022), the Euler–van der
Waals–Korteweg equations (Dhaouadi and Dumbser 2022), and
thin film flows (Dhaouadi et al. 2022). Nonvariational hyperbolic
approximation of the SGN equations also exist (Antuono et al.
2009; Mazaheri et al. 2016).

In this paper, we return to the idea of inverting the elliptic
operator without the assumption of generalized potential flow:
K ≠ ∇ϕ. The main result is that, even in 2D case, we have to invert
only once the elliptic operator. The idea is based on the fact that, for
the full Euler equations, one can obtain a scalar Poisson equation
for pressure.

Combining this elliptic operator with the hyperbolic part of the
equations yields a simple formulation of the algorithm, which can
be implemented easily for accurate numerical resolution.

Derivation of the Averaged Pressure Equation

The 2D SGN [Eqs. (1a) and (1b)] are [with v̄ ¼ ðU;VÞT and
x ¼ ðx; yÞT]

ht þ ðhUÞx þ ðhVÞy ¼ 0 ð7aÞ

ðhUÞt þ
�
hU2 þ gh2

2
þ h2

�
1

2
b̈þ 1

3
ḧ

��
x
þ ðhUVÞy

¼ −
�
ghþ h

�
b̈þ 1

2
ḧ

��
bx ð7bÞ

ðhVÞt þ ðhUVÞx þ
�
hV2 þ gh2

2
þ h2

�
1

2
b̈þ 1

3
ḧ

��
y

¼ −
�
ghþ h

�
b̈þ 1

2
ḧ

��
by ð7cÞ

where U and V = the components in the x and y directions of the
averaged over the fluid depth velocity. For convenience, we rewrite
the momentum [Eqs. (7b) and (7c)] in the form

U̇ þ 1

h

�
gh2

2
þ h2

�
1

2
b̈þ 1

3
ḧ

��
x
¼ −

�
gþ b̈þ 1

2
ḧ

�
bx

V̇ þ 1

h

�
gh2

2
þ h2

�
1

2
b̈þ 1

3
ḧ

��
y
¼ −

�
gþ b̈þ 1

2
ḧ

�
by ð8Þ

Now, let P be the integrated fluid pressure divided by the con-
stant density ρ and defined by

P ¼ gh2

2
þ h2

�
1

2
b̈þ 1

3
ḧ

�
ð9Þ

Then, we have

U̇ þ Px

h
¼ − 1

4

�
gþ b̈þ 6P

h2

�
bx

V̇ þ Py

h
¼ − 1

4

�
gþ b̈þ 6P

h2

�
by ð10Þ

Taking the divergence of the above system, we find

∇ · ð ˙̄vÞ þ ∇ ·

�∇P
h

�
¼ ∇ · Ψ ð11Þ

where

v̄ ¼
�
U

V

�
; Ψ ¼

�−ðgþ b̈þ 6P=h2Þbx=4
−ðgþ b̈þ 6P=h2Þby=4

�
ð12Þ

The first term on the left-hand side of Eq. (11) becomes

∇ · ð ˙̄vÞ ¼ ∇ ·

�∂v̄
∂t þ

∂v̄
∂x v̄

�
¼ ∂

∂t ð∇ · v̄Þ þ ∇ ·

�∂v̄
∂x v̄

�
¼ ∂

∂t ð∇ · v̄Þ þ ∇ ·

�∂v̄
∂x

�
· v̄ þ trace

��∂v̄
∂x

�
2
�

¼ ∂
∂t ð∇ · v̄Þ þ ∇ð∇ · v̄Þ · v̄ þ trace

��∂v̄
∂x

�
2
�

¼
˙

ð∇ · v̄Þ
zfflfflffl}|fflfflffl{

þ trace

��∂v̄
∂x

�
2
�

¼
˙

ð∇ · v̄Þ
zfflfflffl}|fflfflffl{

þ ð∇ · v̄Þ2 − 2 det

�∂v̄
∂x

�
ð13Þ

The last expression in the equation comes from

A2 − traceðAÞAþ detðAÞI ¼ 0 ð14Þ
and

L

H
b+h

b

x3

x1

Fig. 1. Sketch of the flow over topography.
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traceðA2Þ ¼ ðtraceðAÞÞ2 − 2 detðAÞ ð15Þ
for a general 2 × 2 matrix A. Thus, we find an alternative form of
Eq. (11)

˙
ð∇ · v̄Þ
zfflfflffl}|fflfflffl{

þ ð∇ · v̄Þ2 − 2 det

�∂v̄
∂x

�
¼ −∇ ·

�∇P
h

�
þ ∇ · Ψ ð16Þ

Note that, from the mass conservation [Eq. (7a)], we have

∇ · v̄ ¼ − ḣ
h

ð17Þ

Substituting Eq. (17) into Eq. (16), we find

−∇ ·

�∇P
h

�
þ ∇ · Ψ ¼ −

˙�
ḣ
h

�zffl}|ffl{
þ
�
ḣ
h

�
2

− 2 det

�∂v̄
∂x

�
¼ − ḧ

h
þ ḣ2

h2
þ
�
ḣ
h

�
2

− 2 det

�∂v̄
∂x

�
¼ − ḧ

h
þ 2

ḣ2

h2
− 2 det

�∂v̄
∂x

�
ð18Þ

This leads to

1

3
h2ḧ ¼ 2

3
h3
�
ḣ2

h2
− det

�∂v̄
∂x

��
þ 1

3
h3∇ ·

�∇P
h

�
− 1

3
h3∇ · Ψ

¼ P − 1

2
gh2 − 1

2
h2b̈ ð19Þ

We thus arrive at the scalar elliptic equation for the averaged
pressure

− h3

3
∇ ·

�∇P
h

�
− h3

2
∇ ·

�
P∇b
h2

�
þ P

¼ 2h3

3

�
ð∇ · v̄Þ2 − det

�∂v̄
∂x

��
þ 1

2
gh2 þ 1

2
h2b̈ − h3

3
∇ · ϒ

ð20Þ
with

ϒ ¼
"−ðgþ b̈Þbx=4
−ðgþ b̈Þby=4

#
ð21Þ

The elliptic operator for P can be rewritten in the form

− 1

3
∇ ·

�∇P
h

�
− 1

2

�∇P · ∇b
h2

�
þ P

�
1

h3
− 1

2
div

�∇b
h2

��
¼ f

ð22Þ
where f = the right-hand side; and P verifies, for example, the Neu-
mann or periodic condition at the boundary of the computational
domain. The operator is invertible if bðt;xÞ slowly varies and
hðt; xÞ is bounded from zero, i.e., the dry bottom case is avoided.

In the following, we consider the case of a stationary bottom
topography ðbt ¼ 0Þ. Then, we have

ḃ ¼ Ubx þ Vby;

b̈ ¼ UðUbx þ VbyÞx þ VðUbx þ VbyÞy ð23Þ

For numerical purposes, it is more convenient to rewrite the
governing equation in terms of a new variable ϖ, where ϖ ¼ P −
gh2=2 is the averaged nonhydrostatic part of the physical pressure
(divided by ρ). With ϖ, the 1D SGN model is

ht þ ðhUÞx ¼ 0 ð24aÞ

ðhUÞt þ
�
hU2 þ 1

2
gh2 þϖ

�
x

¼ −
�
ghþ 3

2h
ϖ

�
bx − 1

8
h½ðUbxÞ2�x ð24bÞ

− h3

3

�
ϖx

h

�
x
− h3

2

�
bx
h2

ϖ

�
x
þϖ ¼ 2

3
h3U2

x

þ 1

2
h2UðUbxÞx þ

h3

3

�
gðhþ bÞx þ

1

4
UðUbxÞxbx

�
x

ð24cÞ

In the 2D case, the governing equations written in terms
of ϖ are

ht þ ðhUÞx þ ðhVÞy ¼ 0 ð25aÞ

ðhUÞt þ
�
hU2 þ 1

2
gh2 þϖ

�
x
þ ðhUVÞy

¼ −
�
ghþ 3

2h
ϖ

�
bx − 1

4
hb̈bx ð25bÞ

ðhVÞt þ ðhUVÞx þ
�
hV2 þ 1

2
gh2 þϖ

�
y

¼ −
�
ghþ 3

2h
ϖ

�
by − 1

4
hb̈by ð25cÞ

− h3

3

��
ϖx

h

�
x
þ
�
ϖy

h

�
y

�
− h3

2

��
bx
h2

ϖ

�
x
þ
�
by
h2

ϖ

�
y

�
þϖ

¼ 2h3

3
½ðUx þ VyÞ2 − ðUxVy − UyVxÞ� þ

h2

2
b̈

þ h3

3

��
gðhþ bÞx þ

1

4
b̈bx

�
x
þ
�
gðhþ bÞy þ

1

4
b̈by

�
y

�
ð25dÞ

Numerical Method

To find approximate solutions to our SGN equations, we used a
variant of the hyperbolic-elliptic splitting approach developed pre-
viously in Le Métayer et al. (2010) for b ¼ 0. Our modified version
of this algorithm will be presented in the form of two steps.

Hyperbolic step. At each intermediate stage of the semidiscrete
scheme discussed as follows, we solve the hyperbolic part of the
system written in compact vectorial form

qt þ divF ðqÞ þ ζðq;∇bÞ ¼ ψðq;∇q;∇b;∇2b;ϖ;∇ϖÞ ð26aÞ

where in two dimensions, for example, we have

q ¼

266664
h

hU

hV

b

377775; F ¼ ½F G � ¼

266666664

hU hV

hU2 þ 1

2
gh2 hUV

hUV hV2 þ 1

2
gh2

0 0

377777775
ð26bÞ
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ζ ¼

266664
0

−ghbx
−ghby

0

377775; ψ ¼

266666664

0

− 3ϖ
2h

bx − h
4
b̈bx −ϖx

− 3ϖ
2h

by − h
4
b̈by −ϖy

0

377777775 ð26cÞ

Elliptic step. Using the approximate solution q computed during
the hyperbolic step, with the prescribed boundary conditions, we
continue by inverting numerically the elliptic operator forϖwritten
in the form

− h3

3
∇ ·

�
1

h
∇ϖ

�
− h3

2
∇ ·

�∇b
h2

ϖ

�
þϖ

¼ φðq;∇q;∇2q;∇b;∇2bÞ ð27Þ
where φ is the right-hand side of Eqs. (24c) and (24d) for 1D and
2D problems, respectively.

Note that, in the hyperbolic step, rather than writing Eq. (26)
with the fluxes F and G as a function of q and ϖ, we write it
in the form with b included as an additional equation where the
state-of-the-art well-balanced schemes for the Saint-Venant (SV)
equations with the bottom topography can be used straightfor-
wardly for the numerical resolution. We then obtain a standard el-
liptic problem, which any modern method can resolve (LeVeque
2007; Knabner and Angermann 2021; Steinbach 2007).

Hyperbolic Step

To numerically solve our SGN model in Eq. (26) in the hyperbolic
step, we use the semidiscrete finite volume method written in a
wave-propagation form (Ketcheson and LeVeque 2008; Ketcheson
et al. 2013). We consider the 2D case as an exmple and describe the
method on a uniform Cartesian grid of M cells with fixed mesh
spacing Δx in the x direction and N cells with fixed mesh spacing
Δy in the y direction. The method is based on a staggered grid
formulation in which the value QijðtÞ approximates the cell average
of the solutions q over the grid cell Cij

QijðtÞ ≈ 1

ΔxΔy

Z
xiþ1

2

xi−1
2

Z
yjþ1

2

yj−1
2

qðt; x; yÞdxdy ð28Þ

while ΠijðtÞ≈ϖðt; xi; yjÞ gives the pointwise approximation of
the nonhydrostatic pressure ϖ at ðxi; yjÞ at time t.

The semidiscrete version of the wave-propagation method is a
method-of-lines discretization of Eq. (26) that can be written as a
system of ordinary differential equations (ODEs) in the form

dQij

dt
¼ LijðQ;ΠÞ ð29aÞ

with

LijðQ,ΠÞ − 1

Δx
ðAþΔQi−1

2
,j þA−ΔQiþ1

2
,j þAΔQijÞ

− 1

Δy
ðBþΔQi,j−1

2
þ B−ΔQi,jþ1

2
þ BΔQijÞ þΨijðQ,ΠÞ

ð29bÞ
for i ¼ 1; 2; : : : ;M, j ¼ 1; 2; : : : ;N. Here, Q and Π = the vectors
with components Qij and Πij, respectively; AþΔQi−ð1=2Þ,j,
A−ΔQiþð1=2Þ,j, BþΔQi;j−ð1=2Þ, and B−ΔQi;jþð1=2Þ = the right-
ward-, leftward-, upward-, and downward-moving fluctuations;
and AΔQij and BΔQij = the total fluctuations within the cell.

To determine these fluctuations, we need to solve Riemann prob-
lems. Note that the term ΨijðQ;ΠÞ in Eq. (29b) represents a dis-
crete version of ψ over the grid cell Cij, which can be evaluated
straightforwardly by numerical differentiation techniques such as
the finite-difference approximation of derivatives (LeVeque 2007).

Consider now the fluctuations A�ΔQi−ð1=2Þ,j arising from the
edge between cells Ci−1;j and Cij, for example. This amounts to
solving the Cauchy problem for the homogeneous part of Eq. (26)
in the x direction

qt þ FðqÞx þ ζðq; bxÞ ¼ 0 ð30aÞ

with the piecewise constant initial data at a given time t0

qðt0; x; yjÞ ¼
8<: qL

i−1
2
;j

if x < xi−1
2

qR
i−1

2
;j

if x > xi−1
2

ð30bÞ

where qLi−ð1=2Þ;j ¼ limx→xði−½1=2�Þ− ~qi−1;jðxÞ and qRi−ð1=2Þ;j ¼
limx→xði−½1=2�Þþ ~qi;jðxÞ = the interpolated states obtained by taking

limits of the reconstructed piecewise-continuous function ~qi−1;jðxÞ
or ~qi;jðxÞ {each of them can be determined by applying a standard
interpolation scheme to the set of discrete data fQijðt0Þg [see
Bouchut (2000), LeVeque (2002), and Shu (2009) for more de-
tails]} to the left and right of the cell edge at xi−ð1=2Þ, respectively.

Here, we are interested in the approximate Riemann solver of
Roe (1981) for the numerical resolution of the Riemann problem.
For that, we first write Eq. (26) as a quasilinear system of equations

qt þAqx þ Bqy ¼ ψðq;∇q;∇b;∇2b;ϖ;∇ϖÞ ð31aÞ

with

A ¼

266664
0 1 0 0

−U2 þ gh 2U 0 gh

−UV V U 0

0 0 0 0

377775;

B ¼

266664
0 0 1 0

−UV V U 0

−V2 þ gh 0 2V gh

0 0 0 0

377775 ð31bÞ

The eigenvalues and the corresponding eigenvectors of the
matrices are, for matrix A

ΛA ¼ diag½λA;1;λA;2;λA;3; λA;4 � ¼ diag½U − c;U;U þ c; 0 �
ð32aÞ

RA ¼ ½ rA;1; rA;2; rA;3; rA;4 �

¼

2666664
1 0 1 c2=ðU2 − c2Þ

U − c 0 U þ c 0

V 1 V Vc2=ðU2 − c2Þ
0 0 0 1

3777775 ð32bÞ

and for matrix B

ΛB ¼ diag½λB;1;λB;2; λB;3; λB;4 � ¼ diag½V − c;V;V þ c; 0 �
ð32cÞ
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RB ¼ ½ rB;1; rB;2; rB;3; rB;4 �

¼

266664
1 0 1 c2=ðV2 − c2Þ
U 1 U Uc2=ðV2 − c2Þ

V − c 0 V þ c 0

0 0 0 1

377775 ð32dÞ

where c ¼ ffiffiffiffiffi
gh

p
, ARA ¼ ΛARA, and BRB ¼ ΛBRB.

In a Roe’s approximate Riemann solver, we replace the nonlin-
ear system in Eq. (30a) with data qLi−ð1=2Þ;j and qRi−ð1=2Þ;j by a linear

system of the form

qt þ bA�qL
i−1

2
;j
; qR

i−1
2
;j

	
qx ¼ 0 ð33Þ

where bAðqLi−ð1=2Þ;j; qRi−ð1=2Þ;jÞ is a constant matrix that depends on

the initial data and is a local linearization of the matrix A in
Eq. (31) about an average state [see Bouchut (2000), LeVeque
(2002), and Toro (1997) for more details].

The solution of the linear problem in Eq. (33) consists of three
discontinuities propagating at constant speeds and a stationary dis-
continuity at the cell egde. The jump across each discontinuity is a
multiple of the eigenvector of the matrix bA, and the propagating
speed is the corresponding eigenvalue. We thus have the expression
for the fluctuations as

A�ΔQi−1
2
;j ¼

X4
k1

�bλA,k
i−1

2
,j

	�
ŴA,k

i−1
2
,j ð34aÞ

where

Δqi−1
2
,j ¼ qR

i−1
2
,j − qL

i−1
2
,j ¼

X4
k¼1

bαA,k
i−1

2
,jbrA,ki−1

2
,j ¼

X4
k¼1

bWA,k
i−1

2
,j ð34bÞ

with bWA,k
i−ð1=2Þ,jbαk

i−ð1=2Þ,jbrki−ð1=2Þ,j for k ¼ 1; 2; 3; 4, and

bλA;1
i−1

2
;j ¼ bU−bc; bλA;2i−1

2
;j ¼ bU; bλA;3

i−1
2
;j ¼ bUþbc; bλA;4

i−1
2
;j ¼ 0

ð34cÞ

bαA;1
i−1

2
;j
¼ 1

2bc
�
ðbU þ bcÞΔqð1Þ

i−1
2
;j
−Δqð2Þ

i−1
2
;j
−
� bc2bU − bc

�
Δqð4Þ

i−1
2
;j

�
ð34dÞ

bαA;2
i−1

2
;j
¼ −bVΔqð1Þ

i−1
2
;j
þΔqð3Þ

i−1
2
;j

ð34eÞ

bαA;3
i−1

2
;j
¼ 1

2bc
�
−ðbU − bcÞΔqð1Þ

i−1
2
;j
þΔqð2Þ

i−1
2
;j
þ
� bc2bU þ bc

�
Δqð4Þ

i−1
2
;j

�
ð34fÞ

bαA;4
i−1

2
;j
¼ Δqð4Þ

i−1
2
;j

ð34gÞ

Here, we set bU and bV using the “Roe-averaging” approach
based on data qLi−ð1=2Þ;j and qRi−ð1=2Þ;j, and bc the arithmetic average

of cLi−ð1=2Þ;j and cRi−ð1=2Þ;j. The notation ΔqðιÞi−ð1=2Þ;j means the lth

component of Δqi−ð1=2Þ;j. As usual, the quantities s� are set by
sþ ¼ maxðs; 0Þ and s− ¼ minðs; 0Þ.

Similarly, by assuming that bx ¼ 0 at the center edge, we can
define fluctuation AΔQij within cell Cij based on the solution of
the following Riemann problem:

qt þ FðqÞx ¼ 0 ð35aÞ
with the initial condition

qðt0; x; yÞ ¼
8<: qR

i−1
2
;j

if x < xi

qL
iþ1

2
;j

if x > xi
ð35bÞ

which gives Δqij ¼ qL
iþ1

2
,j − qR

i−1
2
,j ¼

X4
k¼1

bαA,k
ij brA,kij ¼

X4
k¼1

bWA,k
ij ,

yielding

AΔQij ¼
X4
k¼1

ðbλA,kij Þ�ŴA,k
ij ð35cÞ

Analogously, we can find the remaining fluctuations
B�ΔQi;jþð1=2Þ and BΔQij by solving the homogeneous part of
Eq. (26) in the y direction with the piecewise constant data at
the cell edge.

To integrate the system of ODEs in Eq. (29a) in time, we em-
ploy the strong stability-preserving (SSP) multistage Runge–Kutta
scheme (Gottlieb et al. 2001). That is, in the first-order case we use
the Euler forward time discretization as

Qnþ1
ij ¼ Qn

ij þΔtLijðQn;ΠnÞ ð36aÞ
where we start with the cell average Qn

ij ≈ QijðtnÞ and Πn
ij ≈

ϖðtn; xi; yjÞ at time tn, yielding the solution at the next time step
Qnþ1

ij over Δt ¼ tnþ1 − tn. In the second-order case, however, we
use the classical two-stage Heun method (also called the modified
Euler method) as

Q�
ij ¼ Qn

ij þΔtLijðQn;ΠnÞ;

Qnþ1
ij ¼ 1

2
Qn

ij þ
1

2
Q�

ij þ
1

2
ΔtLijðQ�;Π�Þ ð36bÞ

It is common that the three-stage third-order scheme of the form

Q�
ij ¼ Qn

ij þΔtLijðQn;ΠnÞ

Q��
ij ¼ 3

4
Qn

ij þ
1

4
Q�

ij þ
1

4
ΔtLijðQ�;Π�Þ

Qnþ1
ij ¼ 1

3
Qn

ij þ
2

3
Q�

ij þ
2

3
ΔtLijðQ��;Π��Þ ð36cÞ

is a preferred one to be used in conjunction with the third- or fifth-
order weighted essentially nonoscillatory (WENO) scheme (Shu
2009). It is important to note that we updateΠ after each intermedi-
ate ODE stage.

Elliptic Step

To discuss discretizations, we consider the elliptic Eq. (27) in
two dimensions and problems subject to the prescribed boundary
conditions. Asssume that q is known a priori from the hyperbolic
step at a given time. We will describe a five-point finite difference
method on a uniform Cartesian grid with mesh spacingΔx andΔy
as before (LeVeque 2007; Knabner and Angermann 2021). To dis-
cretize Eq. (27), for terms on the left-hand side, we replace the
second-order derivative by taking a backward difference for the
outer derivative and then a forward difference for the inner deriva-
tive and the first-order derivative by taking a centered difference;
for terms on the left-hand side, we use centered difference for all the
derivatives. Collecting terms, we obtain the following constant co-
efficient difference formula for node ij:
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αijΠi−1;j þ βijΠiþ1;j þ γijΠi;j−1 þ δijΠi;jþ1 þ ηijΠij ¼ Φij

ð37Þ
with αij, βij, γij, δij, ηij, and φij defined by

αij ¼− H3
ij

3ðΔxÞ2
�

1

Hi−1
2
,j
− 3

4H2
i−1,j

ðbi,j−bi−1,jÞ
�

βij ¼− H3
ij

3ðΔxÞ2
�

1

Hiþ1
2
,j
þ 3

4H2
iþ1,j

ðbiþ1,j−bi,jÞ
�

γij ¼− H3
ij

3ðΔyÞ2
�

1

Hi,j−1
2

− 3

4H2
i,j−1

ðbi,j−bi,j−1Þ
�

δij ¼− H3
ij

3ðΔyÞ2
�

1

Hi,jþ1
2

þ 3

4H2
i,jþ1

ðbi,jþ1−bi,jÞ
�

ηij ¼
H3

ij

3ðΔxÞ2
�

1

Hi−1
2
,j
þ 1

Hiþ1
2
,j

�
þ H3

ij

3ðΔyÞ2
�

1

Hi,j−1
2

þ 1

Hi,iþ1
2
,j

�
þ 1

Φij ¼
2H3

ij

3
ððD · U ijÞ2− detðDUij,DVijÞÞ

þH2
ij

2
ðU ij ·DðU ij ·DbijÞÞþ

gH3
ij

3
D ·DðHþbÞij

þH3
ij

12
D ·DððUij ·DðU ij ·DbijÞÞbijÞ ð38Þ

respectively. Here, Uij ¼ ðUij,VijÞ = the numerical approximation
of the velocity vector ðU;VÞ at ðxi; yjÞ; and D ¼ ðDx,0,Dy,0Þ = the
discrete gradient operator with Dx;0 and Dy;0 the second-order cen-
tered difference for the first derivatives in the x and y directions,
respectively (LeVeque 2007). The notations Hi�ð1=2Þ;j, Hi;j�ð1=2Þ,
bi�1;j, and bi;j�1 are the pointwise approximate values at the re-
spective spatial locations.

Going through all the nodal points for i ¼ 1; 2; : : : ;M, and
j ¼ 1; 2; : : : ;N, incorporating the boundary conditions, we have
a linear system ofM × N unknownsΠðtÞ, which would be a strictly
diagonal dominant linear system if bðt;xÞ slowly varies, which can
be solved by the state-of-the-art iterative methods (Trefethen and
Bau 1997).

Well-Balanced Condition

Assume that the lake is at rest, where U ¼ V ¼ 0 at all times. From
Eq. (25), we find a simplified steady-state system�

1

2
gh2 þϖ

�
x
¼ −

�
ghþ 3

2h
ϖ

�
bx ð39aÞ

�
1

2
gh2 þϖ

�
y
¼ −

�
ghþ 3

2h
ϖ

�
by ð39bÞ

− h3

3

��
ϖx

h

�
x
þ
�
ϖy

h

�
y

�
− h3

2

��
bx
h2

ϖ

�
x
þ
�
by
h2

ϖ

�
y

�
þϖ ¼ gh3

3
∇2ðhþ bÞ ð39cÞ

Now, we write the [Eqs. (39a) and (39b)] in the form

ghðhþ bÞx ¼ − 3

2h
ϖbx −ϖx

ghðhþ bÞy ¼ − 3

2h
ϖby −ϖy ð40Þ

and find easily the equilibrium free surface hþ b = constant at all
times ifϖ ¼ 0 is the solution of the elliptic [Eq. (39c)]. Inversly, to
preserve hþ b = constant, we must have

ϖx ¼ − 3

2h
ϖbx and ϖy ¼ − 3

2h
ϖby ð41Þ

Substituting the equations into Eq. (39c), we have

ϖ ¼ gh3

3
∇2ðhþ bÞ ¼ 0 ð42Þ

The fact the ϖ ¼ 0 is equivalent to bþ h = const means the
SGN model reduces to the SV equations for the lake-at-rest prob-
lem (Michel-Dansac et al. 2016).

Numerical Examples

We begin by considering two benchmark tests with the flat bottom
where the exact solution or the “true” solution obtained from a sim-
plified model is readily avaliable for comparison. In all the tests, the
gravitational constant was chosen to be g ¼ 9.81 m=s2, and the
Courant number was set to 0.5 to ensure stability of the hyperbolic
solver.

Propagation of a Solitary Wave

Our first test is the numerical accuracy study for the propagation of
a single solitary wave over a flat bottom in one dimension. The
exact solution of the problem with respect to ξ ¼ x −Dt is: for
the height

hðξÞ ¼ h1 þ ðh2 − h1Þsech2
0@ðξ − x0Þ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðh2 − h1Þ

h2h21

s 1A ð43aÞ

for the velocity

Table 1. Numerical results for the solitary wave problem obtained using
our algorithm with four different mesh sizes and four different hyperbolic
integration schemes; one-norm errors in the height and the two-norm
errors in the nonhydrostatic pressure ϖ are shown at time t ¼ 100=D s.
The elliptic equation in Eq. (24c) is solved using second-order finite
difference scheme in all cases

Godunov E1ðhÞ Order E2ðϖÞ Order

N ¼ 1,000 4.930 × 10−1 — 1.707 × 10−1 —
N ¼ 2,000 3.103 × 10−1 0.67 1.132 × 10−1 0.59
N ¼ 4,000 1.783 × 10−1 0.80 6.722 × 10−2 0.75
N ¼ 8,000 9.632 × 10−2 0.89 3.700 × 10−2 0.86

MUSCL
N ¼ 1,000 2.679 × 10−2 — 9.209 × 10−3 —
N ¼ 2,000 6.928 × 10−3 1.95 2.327 × 10−3 1.98
N ¼ 4,000 1.793 × 10−3 1.95 6.709 × 10−4 1.79
N ¼ 8,000 5.490 × 10−4 1.71 3.492 × 10−4 0.94

WENO 3
N ¼ 1,000 7.664 × 10−3 — 4.992 × 10−3 —
N ¼ 2,000 1.431 × 10−3 2.42 9.121 × 10−4 2.45
N ¼ 4,000 2.844 × 10−4 2.33 1.736 × 10−4 2.39
N ¼ 8,000 6.214 × 10−5 2.19 3.624 × 10−5 2.26

BVD 35
N ¼ 1,000 3.446 × 10−3 — 1.491 × 10−3 —
N ¼ 2,000 8.642 × 10−4 2.00 3.730 × 10−4 2.00
N ¼ 4,000 2.163 × 10−4 2.00 9.329 × 10−5 2.00
N ¼ 8,000 5.409 × 10−5 2.00 2.333 × 10−5 2.00

© ASCE 04023054-6 J. Hydraul. Eng.
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UðξÞ ¼ D

�
1 − h1

hðξÞ
�

ð43bÞ

and for the nonhydrostatic pressure ϖ

ϖðξÞ ¼ 1

3
gh21h2hðξÞ

�
h 0ðξÞ
hðξÞ

� 0
ð43cÞ

where h1 and h2 = the fluid depth at infinity and under the soliton’s
crest; x0 = the initial location of the soliton; and D ¼ ffiffiffiffiffiffiffi

gh2
p

= the
wave speed. We set x0 ¼ 0, h1 ¼ 1 m, and h2 ¼ 1.2 m, yielding
D ≈ 3.431 m=s; the computational domain is of size 100 m with
periodic boundary conditions at both ends.

Table 1 shows one-norm errors of the height at time t ¼
100=D≈ 29.1457 s (time necessary to the crest of the solitary
wave to travel one period) for a convergence study of the solutions
obtained using our numerical strategy with four different mesh
sizes N ¼ 1,000, 2,000, 4,000, and 8,000, and four different hyper-
bolic integration schemes. The underlying elliptic solver for
Eq. (27) is the second-order finite difference scheme, which can
be inverted straightforwardily.

Let EpðwÞ ¼ fEp
j ðwÞg for j ¼ 1; 2; 3; 4 be the sequence of the

p-norm error of the computed solution w to its true solution on an
N ¼ f1,000; 2,000; 4,000; 8,000g grid. With that, it is a common
practice (LeVeque 2007) to estimate the rate of convergence for
w using the errors on

convergence order ¼ lnðEp
j−1ðwÞ=Ep

j ðwÞÞ
lnðNj−1=NjÞ

ð44Þ

From Table 1, for the one-norm errors for height and two-
norm errors for the nonhydrostatic pressure ϖ, we observe
that, when the Godunov method is employed in the hyperbolic
step (i.e., the method uses zeroth-order piecewise constant

Fig. 3. Convergence study of the Jacobi, Gauss–Seidel, and SOR
methods for inverting the elliptic operator to the 2D radial-symmetric
solution shown in Fig. 2. Here, the number of iteration steps in total
during each elliptic-step run is shown.

Fig. 2. Results for a radially symmetric problem at time t ¼ 20 s. Top figures: images of the height and the nonhydrostatic pressure ϖ. Bottom
figures: scatter plots of the height and ϖ. The solid line in the scatter plot is the “true” solution obtained from solving the radially symmetric SGN
model with appropriate source terms for the radial symmetry; the dashed line is the results obtained using the SVequation, whereϖ ¼ 0. The dotted
points are the 2D result.
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reconstruction scheme for the Riemann data at the cell edges, and
the forward Euler method in Eq. (36a) for the time discretization),
the order of accuracy of algorithm approaches to first-order accu-
rate as the mesh is refined. When monotonic upstream-centered
scheme for conservation laws (MUSCL) is employed alternatively
[i.e., the first-order piecewise linear reconstruction scheme with
the monotinized centered limiter and the Heun method in Eq. (36b)
are in use], the convergence rate is not second-order accurate
as the mesh is refined. In the WENO 3 case, however [i.e., the
method uses the third-order WENO scheme for Riemann data
reconstruction, and the third-order method in Eq. (36c) for the time
discretization], the order of accuracy is slightly greater than 2 in h
and ϖ, which is less than 3 (the formal order of accuracy of the
hyperbolic solver WENO 3); this result may not come as a surprise
because our underlying elliptic solver is only of OððΔxÞ2Þ. In
the boundary variation diminishing (BVD) 35 case, where the
method employs the third-order SSP scheme in the time integration

together with the pair of third- and fifth-order WENO scheme
in the BVD reconstruction process (Deng et al. 2018), we found
the same convergence behavior as in the WENO 3 case. Never-
theless, among all three methods, BVD 35 gives the smallest error
in magnitude for each mesh size.

Thus, in all the test cases, the computation was carried out using
our algorithm with the BVD 35 scheme in the hyperbolic part and
the second-order finite difference method in the elliptic part.

Note that, in Gavrilyuk et al. (2020), we have conducted a
similar numerical accuracy study of the solitary wave propagation
using the K-based SGN equations, also observing sensible conver-
gence behavior as we refine the mesh.

Radially Symmetric Problem

Our second example is a radially symmetric problem; this problem
was studied in Tkachenko et al. (2023) as an example for the

(a) (b)

(c) (d)

(e) (f)

Fig. 4. Results for a solitary wave over a step. Numerical solutions of the free surface hþ b and the velocity u for both the SGN and SV models are
shown at three different times t ¼ 0, 4.296 s, and 10.74 s.
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numerical validation of a hyperbolized SGN model. Initially,
the fluid is at rest in the entire computational domain of size
ðx; yÞϵ½−150,150� × ½−150,150� m2, uð0; x; yÞ ¼ 0 m=s, while its
depth is a smooth function

hð0; rÞ ¼ hR þ hL − hR
2

�
1þ tanh

�
r0 − r
α

��
ð45Þ

where we take α ¼ 2, where hL, hR, and α ¼ 1.8 m, 1 m, and 2,
respectively; r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; and r0 ¼ 50 m. Fig. 2 shows the

pseudocolor images (top row) and the scatter plots (bottom row)
of the height and the nonhydrostatic pressure ϖ at time t ¼ 20 s
obtained using our algorithm with a 600 × 600 grid. From the
plots, it is easy to observe that breaking of the cylindrical water
column results in an outgoing circular dispersive shock wave
and an incoming rarefaction wave. We observe also the good quali-
tative agreement of the results as compared with the “true” solution

obtained from solving the 1D SGN model with appropriate source
terms for the radial symmetry (Le Métayer et al. 2010) with 3,000
mesh points. For comparison, we also show the radially symmetric
solution in the water height obtained using the SV equation
(ϖ ¼ 0), observing the effect of the nonhydrostatic pressure to
the solution.

To study the convergence of our iterative solver for the inversion
of the 2D discrete elliptic operator (the 1D elliptic operator is in-
verted by a direct method), for simplicity, we consider the Jacobi,
Gauss–Seidel, and the successive over-relaxation (SOR) methods,
and employ each of them in the computations for comparison. In
Fig. 3, we plot the number of iteration steps in total that were taken
during each of elliptic steps until the stopping criteria is achieved
for the convergence. Here, the stopping criteria we used is

min
k
ðE2

kðΠÞ;Emax
k ðΠÞÞ ≤ 10−d ð46Þ

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Comparision of the time history of the wave-amplitude ratio ðhþ b − h1Þ=h1 and the experimental data at the gauge locations x ¼ –9 m,
−3 m, 0 m, 3 m, 6 m, and 9 m. Results for the SGN and SV models are shown.
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where E2
kðΠÞ ¼kΠk −Πk−1k2 and Emax

k ðΠÞ ¼ kΠk −Πk−1kmax =
the two- and maximum-norm errors of Π at the kth iteration step,
respectively; and d ¼ 6. It is clear that our elliptic solver works
satisfactorily with the SOR method and has faster convergence than
the Jacobi and the Gauss–Seidel methods, which is expected
(LeVeque 2007; Trefethen and Bau 1997). Here, a fixed relaxation
facor ω ¼ 1.2 was chosen for the SOR method in the computations.

Solitary Wave over a Step

We continue by considering a benchmark test for the solitary wave
over a step (Seabra-Santos et al. 1987), where the numerical results
can be compared with the experimental data for the numerical val-
idation. Here, for the solitary wave in Eq. (43), we use x0 ¼ –3 m,
h1 ¼ 0.2 m, and h2 ¼ 0.2365 m; for the bathymetry, we take

bðxÞ ¼ 1

20
ð1þ erfð8xÞÞ ð47Þ

where erf is the error function (Abramowitz and Stegun 1964). The
computational domain is xϵ½−16; 16� m.

Fig. 4 shows the free surface hþ b and the velocity u at three
different times t ¼ 0, 4.296 s, and 10.74 s. We observe the smooth

propagation of the soliton over the bathymetry, and the variation of
the soliton profile as time proceeds. In addition, there is spurious
oscillation observed in the solutions near the step; this gives an ex-
ample showing that the lake-at-rest conditions are handled satisfac-
torily by our algorithm. The comparision of the time history of the
wave-amplitude ratio ðhþ b − h1Þ=h1 and the experimental data at
the gauge locations x ¼ –9 m, −3 m, 0 m, 3 m, 6 m, and 9 m are
shown in Fig. 5, observing good agreement of the results. The com-
putation was carried out using our algorithm with 6,400 meshes,
and nonreflecting outflow boundary condition was used on the
left and right boundaries. In Figs. 4 and 5, numerical results ob-
tained using the SV equation where ϖ ¼ 0 are also included for
comparison.

Solitary Wave over a Gaussian Hump

We are next concerned with the propagation of a solitary wave over
a 2D Gaussian hump; this problem was studied in Busto et al.
(2021) as an example for the numerical validation of a hyperbolized
SGN model. Here, for the solitary wave in Eq. (43), we take
x0 ¼ –5 m, h1 ¼ 0.2 m, and h2 ¼ 0.2365 m; for the bathymetry,
we have

Fig. 6. Results for a solitary wave over a Gaussian hump at three different times t ¼ 0, 5 s, and 12 s. Left figures: surface plots of the free surface
hþ b together with the bathymetry are shown. In each graph, the free surface is on the top, and the bathymetry is on the bottom. Right figures:
pseudocolor plots of the nonhydrostatic pressure ϖ.

© ASCE 04023054-10 J. Hydraul. Eng.

 J. Hydraul. Eng., 2024, 150(1): 04023054 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

N
at

io
na

l T
ai

w
an

 U
ni

ve
rs

ity
 o

n 
10

/2
4/

23
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.



bðx; yÞ ¼ 1

10
exp

�
− x2 þ y2

2

�
ð48Þ

The computational domain is ðx; yÞϵ½−10; 20� × ½−10; 10� m2.
Fig. 6 shows numerical results of the free surface hþ b (left

figures) and the nonhydrostatic pressure ϖ (right figures) at
times t ¼ 0, 5 s, and 12 s obtained using our algorithm with
750 × 500 mesh points. We observe the growth of the soliton
amplitude as it propagated over the hump, and the formation
of transmitted and reflected waves afterward. We also observe
the smooth solution transition across the bottom topography,
which gives another example showing that our algorithm is a
well-balanced scheme. In Fig. 7, we show results for a conver-
gence study of hþ b and ϖ at time 12 s along y ¼ 0 using three
different meshes: 375 × 250, 750 × 500, and 1,250 × 1,000,
observing qualitatively agreement of the solutions as the mesh
is refined. To study the convergence of our iterative solver for
the inversion of the 2D discrete elliptic operator with the bottom
topography, Fig. 8 shows the number of iteration steps in total for
the Jacobi, Gauss–Seidel, and the SOR methods in each elliptic-
step run. The faster convergence of the SOR method, as com-
pared with the Jacobi and the Gauss–Seidel method, is again
observed.

Conclusion

The SGN equation is the best representative of the so-called
Boussinesq–type models describing dispersive shallow water
flows. They predict much better specific features of wave propa-
gation and interaction compared with the classical hydrostatic
SV equations. We have proposed a simple hyperbolic-elliptic split-
ting approach for the numerical resolution of the SGN equations in
1D and 2D problems with the bottom topography. The algorithm
uses a state-of-the-art well-balanced scheme for the hyperbolic
part of the equations, and a stationary iterative method such as
the Jacobi, Gauss–Seidel, and SOR methods for the inversion of
the elliptic operator for the nonhydrostatic part of the pressure,
yielding an efficient implementation of the algorithm. Sample
numerical results presented in the paper show the feasibility of
the algorithm to practical problems. Ongoing works aim at extend-
ing this approach to breaking waves and to the cases with more
general boundary conditions.

Appendix. Derivation of the SGN Equations

We denote the time with t and the Cartesian coordinate axes by xk
for k ∈ f1; 2; : : : ; dg with d being the space dimension. Some-
times, we will also make use of the notation x ≔ x1, y ≔ x2,
and z ≔ x3.

We present a rapid derivation of the SGN equations by
Hamilton’s principle. Consider the Euler equations of incompress-
ible fluids between the rigid bottom z ¼ bðt; x1; x2Þ and free sur-
face z ¼ hðt; x1; x2Þ þ bðt; x1; x2Þ (Fig. 1)

div2v þ
∂v3
∂z ¼ 0; ρ

Dv
Dt

þ∇2p ¼ 0; ρ
Dv3
Dt

þ ∂p
∂z ¼ −ρg

ð49Þ

where ðv; v3ÞT = the velocity field; v ¼ ðv1; v2ÞT = the horizontal
velocity; v3 = the vertical component of the velocity; g = the gravity
acceleration; the divergence and gradient operators are taken with
respect to x1, x2 variables (this is denoted with Index 2); ρ = the
fluid density; p = the pressure; and ðD=DtÞ ¼ ð∂=∂tÞ þ v · ∇2 þ
v3ð∂=∂zÞ = the material derivative. The standard boundary condi-
tions are fulfilled at the free surface:

ðhþ bÞt þ v · ∇2ðhþ bÞ ¼ v3; p ¼ 0 ð50Þ

and at the bottom

Fig. 8. Convergence study of the Jacobi, Gauss–Seidel, and the SOR
methods for inverting the elliptic operator to the solution shown in
Fig. 6. Here, the number of iteration steps in total during each elliptic-
step run are shown.

(a) (b)

Fig. 7. Convergence study of the free surface and nonhydrostatic pressureϖ for the solitary wave over a Gaussian hump. The test is performed using
three different grid systems: 375 × 250, 750 × 500, and 1,250 × 1,000; the solutions are plotted along y ¼ 0 at time t ¼ 20 s.
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bt þ v · ∇2b ¼ v3 ð51Þ

Consider the following dimensionless variables (with “tilde”):

ðx1; x2Þ → Lð ~x1; ~x2Þ; x3 → L ~x3; t →
Lffiffiffiffiffiffiffi
gH

p ~t;

v →
ffiffiffiffiffiffiffi
gH

p
~v; v3 → ε

ffiffiffiffiffiffiffi
gH

p
~v3; p → ρgH ~p; b → H ~b

ð52Þ

Here, the small parameter ε ¼ H=L = the ratio of the vertical
scale height H and horizontal scale length L (Fig. 1). In shallow
water, approximation of the dimensionless equations become
(we will suppress the “tilde” for the dimensionless variables)

div2v þ
∂v3
∂z ¼ 0;

Dv
Dt

þ ∇2p ¼ 0; ε2
Dv3
Dt

þ ∂p
∂z ¼ −1

ð53Þ

The boundary conditions have the same form in dimensionless
variables.

The corresponding total energy of the flow can be written as

E ¼
Z þ∞
−∞

Z þ∞
−∞

Z
bþh

b

�jvj2 þ ε2v23
2

þ zþ C

�
dzdx1dx2 ð54Þ

where constant C is added to have a finite total energy in the class
of solutions having the same constant values at infinity (v → 0,
h → h∞, b → 0). The incompressibility equation and kinematic
boundary conditions imply the mass conservation law in the form

ht þ divðhv̄Þ ¼ 0; hv̄ ¼
Z

bþh

b
vdz ð55Þ

In the following, “dot” = the material derivative along the aver-
aged velocity v̄: for any function fðt; x1; x2Þ, we denote

ḟ ¼
� ∂
∂tþ v̄ · ∇

�
f; f̈ ¼

� ∂
∂tþ v̄ · ∇

�
2

f ð56Þ

Since the averaged quantities depend only on t, x1, x2, we will
no longer use the index “two” with the space operators. To derive
the equations, we do not need the assumption of potential flow. It
can be replaced by a weaker condition: the horizontal vorticity is of
order εs, with s > 1 [see Barros et al. (2007) for details]. The veloc-
ity v3 can be presented by the following approximate expression:

v3 ≈ ḃ − ðz − bÞdivðv̄Þ ¼ ḃþ z − b
h

ḣ ð57Þ

Then, up to ε2 order terms, one has (Barros et al. 2007)Z
bþh

b

�jvj2 þ ε2v23
2

þ z

�
dz ≈ h

�jv̄j2
2

þ ε2

6

�
ḣþ 3

2
ḃ

�
2

þ ε2

8
ḃ2
�

þ h
2
ð2bþ hÞ ð58Þ

It allows us to write the Lagrangian (difference between kinetic
and potential energy) in the form

L ¼
Z þ∞
−∞

Z þ∞
−∞

Ldx1dx2 ð59Þ

with

Lðv̄; h; ḣ; b; ḃÞ ¼ h

�jv̄j2
2

þ ε2

6

�
ḣþ 3

2
ḃ

�
2

þ ε2

8
ḃ2
�

− h
2
ðhþ 2bÞ − Ch ð60Þ

The corresponding Hamilton’s action between the time instants
t0 and t1 is then

a ¼
Z

t1

t0

Ldt ð61Þ

The Euler–Lagrange equations for Eq. (61) under the constraint
in Eq. (55) can be obtained by the method developed in Barros et al.
(2007), Gavrilyuk (2011), and Dhaouadi et al. (2019). One can
obtain the following momentum equation of the second order of
accuracy with respect to ε:

ðhv̄Þt þ div

�
hv̄⊗ v̄þ

�
h2

2
þ ε2h2

�
1

2
b̈þ 1

3
ḧ

��
I

�
¼ −pjz¼b∇b

ð62Þ

with

pjz¼b ¼ hþ ε2h

�
b̈þ 1

2
ḧ

�
ð63Þ

Eqs. (55), (62), and (63) admit the energy conservation law

ðhEÞt þ div

�
hv̄E þ

�
h2

2
þ ε2h2

�
1

2
b̈þ 1

3
ḧ

��
v̄

�
¼ pjz¼bbt

ð64Þ

where

E ¼ jv̄j2
2

þ h
2
þ bþ ε2

�
1

6

�
ḣþ 3

2
ḃ

�
2

þ 1

8
ḃ2
�

ð65Þ

Thus, in the case of a stationary bottom topography [b ¼ bðxÞ],
the energy conservation law is exact. The mathematical justification
of the SGN equations is given in Makarenko (1986) and Lannes
(2013). For completeness, we will now write the SGN equations
in dimensional form

ht þ divðhv̄Þ ¼ 0 ð66aÞ

ðhv̄Þt þ div

�
hv̄ ⊗ v̄ þ

�
gh2

2
þ h2

3

�
ḧþ 3

2
b̈

��
I

�
¼ −pjz¼b∇b

ð66bÞ

ðhEÞt þ div

�
hv̄E þ

�
gh2

2
þ h2

3

�
ḧþ 3

2
b̈

��
v̄

�
¼ pjz¼bbt

ð66cÞ

with

pjz¼b ¼ ghþ h

�
b̈þ 1

2
ḧ

�
ð66dÞ

E ¼ jv̄j2
2

þ g

�
h
2
þ b

�
þ 1

6

�
ḣþ 3

2
ḃ

�
2

þ 1

8
ḃ2 ð66eÞ

where pjz¼b is the physical bottom pressure divided by ρ.
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