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In previous work by the author, a simple interface-capturing approach has been
developed and validated for compressible multicomponent flows with a stiffened gas
equation of state in multiple space dimensions. The algorithm uses a mixture type
of the model equations written in a quasi-conservative form to ensure a consistent
approximation of the energy equation near the interfaces where two or more fluid
components are present in a grid cell. A standard high-resolution wave propagation
method is employed to solve the proposed system, giving an efficientimplementation
of the algorithm. In this paper, the method is extended to a more general two-phase
(liqguid—gas) flow where the fluid of interests is characterized by a van der Waals-
type equation of state. Several numerical results are presented in both one and two
space dimensions that show the feasibility of the method with the Roe solver as
applied to practical problems without introducing any spurious oscillations in the
pressure near the interfaces. This includes a convergence study of a shock wave in
liquid over a gas bubble. To deal with a difficult slip line problem where there is
a strong shear flow moving along the interface, we implement the method based
on the shock-only Riemann solver with an additional update by the scheme to the
total kinetic energy. Rather than using solutions from the basic conservation laws
for the density and momenta which incurs large errors, the resulting total kinetic
energy is used to the computation of the pressure from the equation of state, yielding
typically more accurate results than the unmodified method near the slip lines. This
is demonstrated by numerical results of some sample two-dimensional Riemann
problems. © 1999 Academic Press
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1. INTRODUCTION

This paper is concerned with the development of a simple interface-capturing appro
for efficient numerical resolution of compressible multicomponent flows with a van d
Waals-type fluid (i.e., a fluid with the finite size of a molecule and the nonzero cohes
forces between molecules [21]). We consider a simplified two-phase flow where the fluid
interest consist of two different phases, liquid and gas, separated by immiscible interfa
see Fig. 1 for a sample setup in two space dimensions. The algorithm uses a Eule
formulation of the equations in which, on the gas-phase part of the domain, the fluic
governed by the full set of the compressible Euler equations. In two space dimensions
instance, it takes the form

o pu pv
pu pU2 + p puv
0 +0 +0 =0, 1
t oV X oUV y IO’U2+ p ( )
PE pEuU+ pu pEv 4+ pv

wherep is the densityu andv are the particle velocities in the andy-direction, respec-
tively, p is the pressure, anf is the specific total energy. We assume that the gas satisfi
a van der Waals equation of state,

y—1
1—bp

P, € = ( ) (pe+ap?) — ap?, )

so as to deal with the possible real-gas effect (without phase transitions) when both
temperature and pressure are high (cf. [21, 74, 78]). ldatenotes the specific internal
energy,y is the ratio of specific heaty (> 1), and the quantities, b are the van der Waals
gas constants for molecular cohesive forces and the finite size of molecules, respect
(a=0,0<b<1/p, see [44] for numerical values to various gaseous substances). As us
we setE = e+ (u2+v?)/2. Note that a van der Waals gas of the form (2) reduces to a Nobl
Abel gas (also called a constant covolume gas) wherd [54, 73] and to a polytropic gas
whenb =0 as well. The four components of (1) express the conservation of mass, mome
in the x- andy-direction, and energy, respectively [15].

FIG. 1. A typical example of a two-phase flow setup with interfaces that separate regions of two differe
fluids, liquid and gas, into two parts. Note that the gas component in each elliptical-like shape of the domain |
be different from one another. It is those grid cells that are cut by the interfaces requiring special attentior
proper numerical treatments.
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On the liquid-phase part of the domain, however, while the motion of a liquid is assur
to be governed by (1), the algorithm uses the stiffened gas equation of state,

p(p,e) = (y — Dpe—yB, 3

for afundamental characterization of material properties of the liquids.Blisra pressure-
like constant that, together with can be determined by a fitting procedure from laboratol
data (cf. [47]). A typical set of parameter values is for wajee- 7, B=3000 atm [15,
25], and for human bloody =5.527, B=614.6 MPa [52], approximately. It should be
mentioned that in addition to the modeling of a liquid, Eq. (3) is often used to describe o
type of materials, including many compressible solids of practical importance (cf. [47,
60]).

We want to use a state-of-the-art shock-capturing method on a uniform rectangular
for the multicomponent flow computations. Clearly when grid cells contain only a sin
phase of the fluid, there is no problem to solve each phase of the equations separatel
in practice due to the presence and the subsequent dynamic-evolution of the interfac
the solutions of the governing system, it is inevitable to have two or more fluid compon:
staying within a cell (see Fig. 1). Because of this, the need to give a proper mode
and approximation of these mixture grid cells becomes a principle issue in many of
multicomponent algorithms developed in the literature (cf. [1, 12, 20, 29, 30, 46, 60, 6
See [60] in particular for a concise survey of the up-to-date multicomponent methods.

The approach we take here is an extension of the work described by Saurel and At
[60] and by the author [63, 64], in that as opposed to a simplier case with the stiffe
gas equation of state (3), a modified van der Waals equation of state (5), see Sectior
introduced as a basic element to the modeling of the mixing between the stiffened anc
der Waals gases. With that, assuming uniform pressure equilibrium and constant pa
velocity across the interfaces, from the energy equation, we are able to derive the effe
equations for the mixture of the material-dependent quantities near the interfaces. #
the previous work [63], we take these equations to be of the form that do not vary t
solutions across the shocks and rarefaction waves as well. Combining the resulting s
effective equations to the Euler equations yields a model system that is written in a qt
conservative form; see (13) and (36) for the one- and two-dimensional models, respect
We use the high-resolution wave propagation method developed by LeVeque [34, 39, 4
solve the proposed system. Numerical results present in Sections 3.4 and 4.3 show th
is a viable approach in both one and two dimensions as the method is applied with the
solver to practical problems without introducing any spurious oscillations in the press
near the interfaces.

To deal with a difficult slip line problem where there is a strong shear flow moving alc
the interface, we implement the two-dimensional method based on a shock-only Rien
solver with an additional update by the scheme to the total kinetic energy. Rather than
the solutions from the basic conservation laws for the density and momenta, which in
large errors, see Section 5.1, the resulting total kinetic energy is employed to com
the pressure from the equation of state, yielding typically more accurate results thatr
unmodified method near slip lines. This will be discussed further in Section 5.2.

Itis true that in many multicomponent flow applications physical effects, such as surf
tension and viscosity, play an important role to not only controlling the dynamics of
interfaces, but also influencing the structure of the nearby solutions, and hence need
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taken in the model for realization (cf. [66]). Typical examples of this kind are the popul
water-drop problem in air and the rising air bubble problem in water. In these instanc
because the fluids are mostly in a low Mach number regime, compressibility of the flu
is often ignored, and so the problem may be formulated into an incompressible form
solved by a state-of-the-art numerical method for incompressible flows; see [7, 68, 69,
for an example.

Here in contrast to the work just mentioned, we consider a class of problems wh
the influence of compressibility of the fluids to the solutions is vital, but not the surfa
tension and viscosity. Examples cover a family of shock wave problems with complica
interface patterns [24, 25, 53, 71, 76, 77] and a hydrodynamic model of sonoluminesce
(an acoustic-induced light emission phenomenon) [8, 33, 78]. It is interesting to note t
the latter problem in fact motivates the current study of two-phase flows with a van ¢
Waals-type fluid where (2) is used for the modeling of real gases and (3) is employed f
simple approximation of liquids. Our goal here is to establish a basic solution strategy
validate its use via numerical experimentation of some sample problems. Direct simulal
of sonoluminescence and other important two-phase flow problems such as shock wav
bubbly liquids or liquid—solid suspensions will be considered in the future; see [65] fo
preliminary result of the latter problem.

This paper is organized as follows. In Section 2, we begin by discussing the basic equa
of state and the associated thermodynamic stability for the mixing of the stiffened ¢
van der Waals gases within a grid cell. In Section 3, we describe the one-dimensic
version of the multicomponent algorithm in more details. This includes the construction
the Riemann problem solution by the shock-only or Roe solver (see Section 3.2) and si
numerical results that validate the proposed approach (see Section 3.4). Extension o
basic approach to two space dimensions is explained briefly in Section 4, and some sa
two-dimensional results are shown in Section 4.3. A study of how the algorithm works
slip line problems is addressed in Section 5.1, and a correction of the algorithm is mad
Section 5.2.

2. EQUATIONS OF STATE

To begin, we introduce a hybrid version of the equation of state that is necessary in
algorithm for modeling the mixing between the stiffened and van der Waals gases withi
grid cell. We do this by taking an approach that expresses (2) and (3) in terms of their nat
variables: the specific entrofyand the specific volum& = 1/p, yielding the formulas

p(V,S) = AS)(V —b) —aVv2 (4a)
and
p(V, S = AV — B, (4b)

in a respective manner, whery S) = R exp[(S — Ser)/Cv] takes the same form in both

cases (cf. [21, 26]). Her@, represents the specific heat at constant volume (see bé&tow),
is the universal gas constant, aBg is the reference state of the specific entropy. Assumin
the fluids under consideration are all in an adiabatic equilibrium with the same entropy
is feasible then to define an extension of the equation of state that combines (4a) with:
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in the following way:
p(V,S) = AS)(V —b)” — (B+aV?). (4c)

With this, itis easy to see that not only the limiting van der Waals gas case (4a) is recover
B — 0, but so also is the stiffened gas case (4b) as&eth0 andb — 0. In the nonlimiting
case, however, where none of the material-dependent quaatitieandss is close to zero,
(4c) does give a way to the representation of the cases in between, that is to the mixil
the stiffened and van der Waals gases.

It should be noted that, as far as the computational efficiency of the method is concel
(4c)is of little use in practice, for it requires some extra work to evaluate the specific entr
from the solutions of the Euler equations. Instead, by employing the first and second lav
thermodynamics, we may rewrite (4¢) in terms of the often-used variables in gas dynar
p ande, as

Mma=(ijym B+ ap?) — (B +ap?). ©)

It is clear that (5) is a generalization of the equations of state (2) and (3). As we will
in the latter sections (cf. [64, 65] also for a simpler case), with this so-called modified !
der Waals equation of state (5), it is very robust to devise an interface-capturing solve
a family of two-phase flow problems considered here.

As to the computation of the fluid temperature(which is important to sonolumines-
cence, for example), with (5), we may simply use one of the formulas,

RT a

pv,T) = W—B—V—
RT a

VvV, T —_— V- —,
eV, T) = l+B v

for realization. Note that these two equations are easily derived from (5) using the b
thermodynamic principles; see [21] for more detalils.

Itis important to mention that, in this work, the thermodynamic description of the mul
component flows is limited by the stability requirement that the internal energy define
(5) be a convex function of its dependent variableandS. Because of this, the immediate
consequence is the exclusion of the important but difficult problems involving the transit
of phases here. Analogously in [49, 50] for a MieduBeisen-type equation of state (set
below), it can be shown that explicit conditions for the above mentioned thermodyna
stability of a van der Waals gas are

(i) The heat capacity coefficien®, andC, must be positive,

1
R[yRT — 2ap(1 — bp)?]
—DIRT — 2ap(1—bp)?]

R
v = (07€)|v = r > 0,

Cp= @rhlp= ¢

whereh =e+ (p/p) is the specific enthalpy.
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(i) The isentropic bulk modulu& s must be positive,

Ks=p(3,p)|s= (ﬁ)(p+6+ap2) — 2ap2 > 0.

(iii) The product of the thermal expansion coefficignand the Guheisen coefficient
I’ must be nonnegative,

1 1
PANES l—(aTP) ] [(8ep) ]
p ol | © ,
_[ R(1 - bp) Hy—l}_ Ry — 1
- |RT —2ap(1—bp)2|[1—bp| RT —2ap(1l—bp)2 ™~

In summary, for stability, from the above conditions, this amounts to the satisfaction
the inequalities

y>1 RT > 2ap(l—bp)2

Combining this with the positiveness of the basic thermodynamic stat&sandr", defines
the domain of the phase space of this van der Waals gas model. Note in particular that 1
item (i) given above we havi§ s = pc?, and so the positive df s implies that the speed of
soundc belongs to a set of real numbers.

For convenience, we write (5) into a more general Miax#t@iSen-type equation of state
of the form

p(p, € =T(p)[pe— pen(p)] — Pn(p), (6)

whererl is the Grineisen coefficient of the material of interests, and the density-depend
functionsey, py are the reference Hugoniot states. Typically, the specific form of (6) |
rather complicated in general (cf. [27, 28, 48]). Here for fluids described by (5), we hav
relatively simple but nontrivial model to work with, i.e.,

—ap?

-1 B
F(p)=ly_—bp, en(p) = = pu(p) =B+ a0’ %)

It is without question that experience gained by studying the current van der Waals
model will help to the further development of an efficient multicomponent solver for mo
general materials as described by (6).

3. ONE SPACE DIMENSION

To motivate the basic idea of our method in multiple space dimensions, we begin
considering one-dimensional problems with both the gas and the liquid governed by
Euler Egs. (1) of the following form in the-direction,

P pu
o¢| PU | + 0y ,OUZ—‘r p =0, (8)
pE pEU+ pu
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and by the equations of state (2) and (3), respectively. The algorithm uses a popular app
that employs (8) for the motion of the liquid—gas mixtures of the conserved variaple:
pu, andpE in a multicomponent grid cell (see [1, 61, 79] for the use of other governi
equations). We compute the pressure based on the equation of state (6), so long
mixture of the problem-dependent material quantities appearing in (7)y,#.b, ands,
are defined and known a priori as well. In the algorithm, by following a general proced
proposed in [63], conditions for those material quantities are found so that not only
pressure is retained in equilibrium for an interface only fluid-mixture cell, but also 1
mixture of the total mass remains conservative on the domain (of course, the mass of
fluid component may not typically be conserved here). For completeness, we next g
detailed description of that procedure.

3.1. Derivation of Model Equations

As in the previous works [63, 64], our starting point is to consider an interface ol
problem where both the pressupeand particle velocityu are constants in the domain
(i.e., p andu satisfy the standard surface-tension free dynamic and kinematic bounc
conditions on the interface [32], respectively), while the other variables such as the del
p and the material-dependent parameters in the Migr&€isén equation of state (6) are
having jumps across some interfaces. In this setup, we first write (8) in the follow
nonconservative form,

0o + Udyxp 4+ poxu = 0,
otU 4 UodyU + %E&p =0,
i (p€) + dx(peu) + paxu = 0,
and obtain easily two basic transport equations for the motignasfdpe as

oo + Udxp =0,
3 (pe) + udy(pe) = 0.

By inserting the equation of state (6) into the latter one, we find an alternative descrip
of the energy equation

8t<pJ}pH +peH) +u3x<pj}p'4 +PeH> =0. )

To see how the pressure would retain in equilibrium as it should be for this model probl
we expand (9) into the form

1 1 1
Lprusp o[ 2) rus( 2]+ [a (B (2o =0

Applying the assumed state of the pressure equilibrium to the above equation come:
simplier expression as

) (]2 1) (3 )
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Now since this equation should hold for apyin the physical space, it implies right away
that the terms in the square bracket of the equation should be vanished simultaneo
yielding a system of the following two equations:

O (1{) + u8x<l%> =0, (10a)

o (% + peH> + udy (% + peH> =0. (10b)

It is important to note that in order to have the correct pressure equilibrium in (9) near
interfaces, (10a) and (10b) are the two key equations that should be satisfied for any g
expression of’, py, andey in the Mie—Grineisen equation of state (6). From them, for &
class of real materials modeled analytically by (6) at least, we may continue to work
suitable conditions for the further details of the related material parameters.

Consider the current two-phase flow application wWithpy, andey defined by (7), for
example. Equations (10a) and (10b) now have the form

at(l_bp> +uax(1_bp> —0, (1la)
y—-1 y—-1

—b 2—y—b —b 2—y—b
at<” G N 'Oa,o2> +uax<y G 'Oa,o2> —0, (11b)
y—1 y—1 y—1 y—1

in a respective manner. It is obvious that, in addition to (11a) and (11b), we need to imp
two supplementary conditions so as to have enough equations for the four material quanti
y, a, b, andB. In our approach, this is done quite easily by simply splitting (11a) into th
following two parts,

1 1
t(V—1>+ux<y—1> ’ (o)
b b
a<—£—>+u@<—ﬁ—>=o, (11d)
y—1 y—1
and also (11b) into the terms
—b —b
a( L =B) +un( L —2B) =0, (11le)
-1 y—1
2—y—b 2—y—b
a(yﬁﬁﬁ)+u@<y‘%&>:o. (11f)
y—1 y—1

Having done so, we arrive at a primitive form of the transport equations (11c)—(11f) for t
variables ¥(y — 1), bp/(y — 1), B(y —bp)/(y — 1), andap?(2—y —bp)/(y — 1). We
note that with them for this interface only problem it is sufficient to have all the quantiti
y, &, b, andB determined at all times, provided that the initial condition has been propel
set for the computation; see Section 3.1.1.

Up to this point, our discussion stresses only on an approach thatis capable of maintai
the pressure in equilibrium for a model interface only problem. Since in practice we ¢
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interested in shock wave problems as well, we should thus take the equations, i.e., (:
(11f),inaform suchthat, a, b, and3 remain unchanged across both shocks and rarefact
waves. Concerning this, it is easy to see that witlpoverned by (11c) there is no problem
to do so (cf. [1, 63]). Fob and B3, however, due to the appearance of the linear factar of
in (11d) and (11e), it turns out that, in a time when such a scenario occurs, for consist
these two equations should be modified in such a way that each of them reduces to the
mass conservation law of the fluid mixture. The derivation of the modification is simy
Without going into the details, we write down the corrected version of the corresponc

equation as follows:
b b
) <p> + ax( p u> -0, (12a)
y—1 y—1

—b _b
at(y pB) +ax<” pBu) - (VB>aXu. (12b)
y—1 y—1 y—1

We next come to the discussion for the quardityescribed by (11f). In this situation, if
we assume the proper smoothness of the nonlinear factgrénahe equation (such as in
the case of rarefaction waves), as in (12a) and (12b) for the quaitiied3, respectively,
we may derive an equation of the form

2-y—h 2-y—b 2—y—2b
o (#aﬁ) + Oy (#apzu) =— (#af) Hu  (12c)
y—1 y—1 y—1

that admits the desired constancyacdnd the mass conservation as well. It is important t
note that this is not the case, however, if the smoothness assumptjpis aolated; this
happens in the event of shock waves, for there is no way to differentiate the discontin
termsp? and p® yielding the partial derivatives op itself. Despite its apparent difficulty
to fulfill the requirement of across both shocks and rarefaction waves, (12c) is the corr
form to be used in the model so that the fluid mixtagg(2 — y — bp)/(y — 1) can be
solved and applied readily to the computation of the pressure; see (14) below.

Here, rather than using (12c), we introduce a simplier linear advection equation of
form

da+uoa=0 (12d)

for the motion of the mixture oé. Clearly, (12d) gives an accurate descriptioraah all
the solution regions discussed above. In practice, it is a good one to use in the algorithi
numerical approximation, see Section 3.4 for some sample results.

To sum up, as in [63], we use the term effective equations to describe the set of equa
that govern the motion of the material-dependent mixtures of the problems. In the cul
case, there consists of a couple sytem of five equations, i.e., (11c) and (12a)—(12d). It sl
be noted that when further taking the numerical aspect of the model approximation
consideration, with the full Euler equations, these effective equations are the proper
to use for practical problems, but not the other form of the equations; see Section 3.2
[60, 63] for the details.
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Putting all the things together, with the modified van der Waals equation of stz
(5), the model equations we propose to solve one-dimensional multicomponent f
blems are

dp + dx(pu) =0
d(pu) + dx(pu®+ p) =0
& (pE) + ox(pEu+ pu) =0

Bt(%) + 3x(%u) =0

0 (L=2B) + 8 (L=2Bu) = (5))a,u (13)
o (212 ap?) + o (1 2ap%) = — (= 2Lap?) o
o (727) +udk(;27) =0

this gives us eight equations in total to be solved in one space dimension that is nic
independent of the number of fluid components involved in the problem. It is clear tt
in this system the first three are the Euler equations which are used to make certair
conservation of the basic fluid mixtures,ou, andp E, while the remaining are the effective
equationsthatare introduced to ensure the correct mixing of the problem-dependent mat
variables near the interfaces. With a system expressed in this way, there is no proble
compute all the state variables of interest, including the pressure from the equatior
state

_ (pw? [y —bp 2—y—bo_, 1 bp
p‘[pE_ 2 _<y—13>_< , 1 aﬂﬂ/(y_l—y_1>~ a4

Note that (13) reduces to a well-testesbased model for a stiffened gas wrees b=0
(cf.[60, 63, 64]) and for a polytropic gas whB8n= 0 as well (cf. [1]). As before, the proposed
system (13) is not written in the full conservation form, but is rather a quasi-conservat
system of equations. In addition, the nonzero terms on the right-hand side of the fifth -
sixth equations of (13) should be viewed as an integrated part of the whole system, bu
be considered as a source term. This fact can be realized easily by formulating the mod
a quasi-linear system of equations (of course, with the assumption of a proper smooth
of the solutions), namely,

&q + A(Mdxg =0 (15a)
with the state vector

- 2_y— 1 T
y —

= 9 u? E? 9 b
q=|p,pU p v -1 y—1 -
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and the matrix

0 1 0 0 0 0 0 O
K—u2 u@-TI) T pr - -r —pr 0
UK-H) H-ul' uC+1 upl —ur —ul' —upl' O
—ou 0 u 0 0 0 0
A@Q) = 4 ® . (15¢)
ouB —¢B 0 0O u 0 0 0
—xu X 0 0 0 u 0 0
0 0 0 0 0 0 u 0
| 0 0 0 0 0 0 0 uj

HereK =Tu?/2, H=E + (p/p), ¢ =b/(y — 1), andx =ap(4 — 2y — 3bp)/(y — 1).
Recall thaf” is the Grineisen coefficient, see (7), which gives different values for differe
fluids.

It is easy to show that for each physically relevant value of the state varigblened

in the region of thermodynamic stability (see Section 2), the eigenstructure of the matr
is possessed of real eigenvalues

A =diag(Ag, A2, ..., Ag) =diagu —c,u,u+c,u, ..., U) (16a)

and a complete set of eigenvectors of the form

1 1 1 0O 0 0 0 G
u—c u u+c O O O O O
H—uc Ju? H+uc —p 1 1 p O
R=(ry,ra,....rg) = ¢ 0 ¢ 1 0000 (16b)
oB 0 ¢B 0 1000
X 0 X 0O 01 0O
0 0 0 0O 00 1 0
|0 0 0 0 00 0 1

with Arg = Ark. Thus, (15a) is a hyperbolic system of partial differential equations and
is our multicomponent model (13). Regarding discontinuous solutions of the system, ¢
as shock waves or contact discontinuities, (13) has the usual form of the Rankine—Hug
jump conditions across the waves; see Section 3.2.1 for more detalils.

With these comments, it should be sensible to use the proposed model for prac
computations. The numerical method to be discussed in Section 3.3 is a consistent apj

mation of the model that gives excellent results for a wide variety of problems as illustre
in Section 3.4.

3.1.1. Initialization of fluid-mixture cells.Consider a typical multicomponent setting
in which there arem different fluids in a grid cell, and each of them occupies a distin
region with a volume-fraction functiod® in relation to it, fori =1, 2, ..., m. Here by
the standard assumption, we ha¥® [0, 1] and>_", Y® = 1. Suppose that for each
component the state variables such a8, u®, p@,y® a® b® andB" are known a
priori. The objective is to give a proper definition of the fluid mixtures so that they can
used as an initial condition for our model equations (13) to the computations.
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In the algorithm, we follow a common practice by evaluating the mixing states, and
pe as a volume-weighted sum over the set of compongfitsp®u®, andp@el) given
above,

p(l)
Zy(l) p(|)u(|) ) (17)

,oe pheh

With this result, we then compute the mixture of the total energyBy= pe+ (pu)?/(2p);
this completes the definition of the conservative variables for the first three equations of
model.

To find the initial fluid mixtures, I(y — 1), bp/(y — 1), B(y — bo)/(y — 1), and
ap?(2 — y — bp)/(y — 1), for the next four equations, we use the equation of state (5
where written as a function of the volume fraction it reads

m
L TP

i=1
M [/1—b®pD . D i ‘ 0 i
:ZY(')K 1 >(p(l) +BD 4 a®(pM)2) 4 BH _ a®(p0)
i=1

By taking a similar approach as employed in Section 3.1 for the derivation of the effect
equations, it comes out easily a splitting of the above equation into the form

1 B 1 7]
y—1 yO -1
bo m b(!)pm
y—-1 . @ yO® -1

y — pr _ZY y(n,b(l)me(i) ’ (18)

y—1 i= Ho-1

2— y bp 2—yO _pb 0 i)\ 2

80" | a2

where in the process of splitting the terms the presgusechosen to satisfy the relation as

(5-1)r ZY(” (* ya?m 1()) | (19)

(cf. [63] also for a simplier case of how this is done). With (18), it is easy to see that wh
each of the partial pressures is in equilibrium within a grid cell, the pressure p acqui
from (19) would remain in equilibrium also; i.gp,= p", fori =1, 2, ..., m. Furthermore,
from (18), we are able to obtain an explicit expression of the material-dependent parame
y,a, b, and B in terms of the volume-fraction function and the original set of data. Th
results are

mooy®
J/=1+1/<i§:;y(i)_1>, (20a)
o b p® m O mo oy
- [zl ) (Bes)] e
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mo @) (OFN0! d (OIN0!
ZYU)(V ),(.)b_—lp )1/ 1+Zyn>< —b p1 )] (20c)
i=1

, _ O _phy, meoo
ZY«)(Z Vy(i)_blp a<l)(b('))2>]/{ (vapm)
iz i=1
1_ b<') (M
@)
1+ZY ( 7 )H (20d)

We note that as in the continuous counterpart (12c), (20d) is not used in practice for se
the initial mixture ofa, but is done by the formula= >_", Y®a® instead.

To end this subsection, it should be mentioned that by following the same apprc
introduced in [63] we may reformulate the model (13) into its variant form, the so-cal
volume-fraction model, that is robust when both the set of governing equations and the
of equations of state are different from one fluid component to the others, separated b
interfaces. To keep the presentation simple and clear, we omit the discussion of that n
here, but refer the reader to [64, 65] for the detalils.

B =

3

3.2. Approximate Riemann Solvers

Before describing numerical methods to solve (13), we pause to discuss the constru
of the Riemann problem solutions which is one of the major steps in our multicompor
algorithm. For comparison purposes, we present two popular approaches for the resol
of the Riemann problem with piecewise constant dgtandqg to the left and right of the
interface.

3.2.1. Shock-only solverFirst, we are concerned with a shock-only approximation
the Riemann solver that ignores the possibility of rarefaction waves and simply constri
solution in which each pair of the states is connected along the Hugoniot locus for a sl
(cf. [3, 10, 13]). In this approach, the key step is to find the midstateg,) in the u—p
phase plane so that it can connectug,(p.) by a 1-shock and t@ug, pr) by a 3-shock.

It is well known that this is equivalent to solving the following nonlinear equation in :
iterative manner for the pressupg:

h(p*) = U*R(p*) - U*L(p*) =0. (21)

Hereu,_ andu,g are the velocities defined by connecting the states along the 1-shock
3-shock curves, respectively,

p— P P—Pr
. U, = Ur+
Mi(p) SRP=URT gy

UL (P) = UL —

with M, denoting the Lagrangian shock speed, ferL or R. In the current application
with the modified van der Waals equation of state (5), wéner0 (i.e., the vanishing of the
ap? term), we may computi, directly by evaluating the formula

+1\/ p+B
i =1+ (50) (5 -2) )
P ‘ * 2y, p. + B
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whereC, = p,¢, is the Lagrangian sound speed (cf. [73]). Note that this is as a result deriv
from the Rankine—Hugoniot jump condition across the shock waves,

M2(e, —e) = (p? - p?)/2, (22)

with e,, = e(ps, p«) afunction of the midstate density,, a quantity that is related tp, p,,
andM, in the following way

p— pt:|_l

— -1_
px(P) = {pL MZ(p)

while in the more general case whagt 0, there is not such a close form solution available
for W,. Instead, we need to solve (22) iteratively idr; this is a typical thing to do when
using the method for real gases (cf. [13]).

When applying a standard root-finding approach such as the secant method to (21)
have a 2-step iteration scheme as follows,

(n) _ ph-1
(n+1) p(n) | Py P |

\u(”) - 1>‘ n |u(n) LD [UinF)z - USB] (23)
*R

whereu®™ =u,,[p"], for t=L or R,andn=1, 2, ... (until convergence). With a suitable
choice of the starting valueg® and p?, method (23) typically converges to the exact
solution p, at a superlinear rate [31]. For gas dynamics, it is a common practice pi’set
andp® by

0 — PrCL + PLCr— (UR — UL)CLCR

CL +CR
0 (0)
2 B gy B ”
o _ PRMI” + PR — (ug — ) M M
’ MO + MY ’

with M© = M,[ p{?]. After a satisfactory convergence of the scheme, we may then calcul:
u, by

pL — Pr+ ULML(ps) + UrMR(P:)
ML (ps) + Mr(ps) '

U, =

We note that alternatively we may use a 1-step Newton method for the solution of (2
Since the derivation of the scheme is more involved due to the need to compute the deriv:
termdp,/du,, we do not discuss the method here, but refer the reader to [13] for mc
details.

Figure 2 shows a typical solution structure of the Riemann problem considered h
Clearly, in a shock-only approximate solver, we replace the leftward-going rarefacti
wave by a 1-shock and so the solution consists of three discontinuities moving at cons
speeds. Here the propagation speed of each discontinuity is determined by

MR L MR

p*L(p*)’ p*R(p*)’
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FIG. 2. Typical solution structure of the Riemann problem for our multicomponent model (13). Note tha
a shock-only approximation of the approximate Riemann solver, the rarefaction wave is replaced by an ent
violating shock.

with the jumps across each of them computed by the difference between the states 1
left and right of the discontinuity,

Wi=0w —0aqL, Wo=0r— G, Wz =0r— ORr- (25b)

Wave propagation methods are based on using these propagating discontinuities to L
the cell averages in the cells neighboring each interface.

It is true that no matter what iterative method is employed to the solution of (21),
approach is quite expansive as compared to the approximate solver of Roe described
Nevertheless, there are various situations where this approach is worthwhile and can pr
more accurate results than the Roe solver does. This includes some examples shc
[18, 41, 56] and many difficult problems with strong shock waves and stiff equations
state. Moreover, it is a straightforward matter to generalize the approach that cover:
case with surface tension effect across the interfaces; results on this aspect will be ref
elsewhere.

3.2.2. Roe solver.In a Roe’s approximate Riemann solver, we replace the nonline
system (13) with datg, andgg by a linear system of the form

&0 + A(QL. 9r)3xd = 0. (26)

HereA(qL, gr) is a constant matrix that depends on the initial data and is alocal lineariza
of the matrixA in (15c¢) about an average state. To find that matrix, as it is often done
many other Roe solvers (cf. [9, 22, 23]), we want to seek an average state such thz
difference of the fluxes in the conservation part of (13) (i.e., the first four equations of
system) are equal to the respective first order approximations of the flux differences. Th

AFY = (Fr— FO)Y = [A@L, ar) (@R — 9]V = [A@L, gr)AG] VY, (27)

fori = 1,2, 3, 4, whereF e R*is the usual definition of the fluxes for conservation laws
andAF® is theith component ofA 7. With that, it is a straightforward matter to obtain
the results fofl, H, and¢ by the standard “Roe-averaging” approach; i.e., for a given p:
(pL, PR), the average state for a quantitis defined by

VPLZL + /PRZR
PL T+ /PR )

7= (28)
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Note that in the process of the derivation, as in [63] we have chosen the av@s
and(p/T") based on (28) so that the expression

— — — 2

wo=[(5)2(2)-(F)=(®)/ ()

r r r r r

is satisfied approximately. With that we sgt= (H/l\“)/(l//F) andl" = 1/(1//F). To finish
the construction ofA(q., gr), we still need to find the averages Bfand x. Since there
is no unique way to do so, we might as well compt’;?teandé using (28) and sef =
[(Z/f‘) —2—¢plap, wherep= ,/pLpr. Numerical results shown in Section 3.4 indicate
that the set of average states described here is a good one to use for practical multicomp
problems.

The solution of the linear problem (26) consists of eight discontinuities propagating
constant speeds (for a system of eight equations). The jump across each discontinuity
multiple of the eigenvector of the matrik, and the propagating speed is the correspondin
eigenvalue. We thus have

8
AQ=0Qr—0qL = Z&kfk, (29)
k=1

wheref, is thekth eigenvector ofA; see (16a) and (16b). The scadardives the strength
across the discontinuity that can be determined easily from (29). We find

[ oo
oy = Aq(l) + P _?Aq(l) + GAq(2> _ Aq(3) + f)(Aq<7) _ Aq(4)) + Aq(5) + Aq<6> ,

1
G = 5 (€~ DAY + AQ® — &as],
a; = Aq® — G, — as, as = Aq?W — p(Ap — &), (30)

as = AQ® — §B(Ap — @), G5 =Aq® — X (Ap — &),

a7 = Aq?, g =Aq®,

whereé = /T[H — (02/2) + pp — BB — 3] is the speed of sound.

Note that in this Riemann solution, except the discontinuities ifpe= 0 — ¢, and
A3=0+¢, all the other discontinuities (six of them) are propagating at the same spe
0. For practical purposes, we may view these discontinuities as a single one with
operator)V, defined by combining all the jumps across thewave family; i.e., set
Wy = @ofs + Z§=4 axfx. Clearly, doing so removes the effect of the wave famifigs
to 13 from the solution. With this notation, we also writgy = axfy to represent the jump
across th&-wave fork =1 or 3.

3.3. Wave Propagation Methods

We use the high-resolution method based on a wave-propagation viewpoint to comj
approximate solutions of our multicomponent model introduced in Section 3.1. The mett
is a variant of the fluctuation-and-signal scheme of Roe [58, 59] in that we solve the Riem:
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problems at each cell interface and use the resulting waves (i.e., discontinuities movi
constant speeds) to update the solutions in neighboring grid cells (cf. [34, 39]).

For simlicity, we describe the method on a uniform grid with fixed mesh spatigdput
the method can be extended quite easily to a nonuniform and time-varying grid as wel
[35, 40]). We use a standard finite-volume formulation in which the v@lpapproximates
the cell average of the solution over the grid cg|l,[xj 1] at timet,:

Q" ~ 1 /Xj+1q(xt)dX
I Ax X; R

The time step from the current timgto the next, . ; is denoted byAt.

3.3.1. First order method. In this setup, a first order accurate version of the method
wave-propagation form is a Godunov-type scheme that can be written as

At &5
QM =Q) = 1 > GO + GO, (31)
k=1
where), € R andWW € R™ are solutions of thith wave family, fokk = 1,2, ..., m,,, ob-

tained from solving the Riemann problems at cell interfageandx; 1, A~ = min(, 0),
and At = max(i, 0). Clearly, the method belongs to a class of upwind schemes (
[23, 36]), and it will be shown next that the method is quasi-conservative in the se
that when applying the method to (13) not only the conservation equations but alsc
transport equations are approximated in a consistent manner by the method with the cl
Riemann solver.

To demonstrate that, we first analyze our method for an interface only problem as
scribed in Section 3.1. Without loss of generality, we consider a single Riemann prob
where at cell interfacg; the initial data consists of uniform pressysgand constant par-
ticle velocity ug to the left and right of the interface, but with jumps on the other sta
variables ofg. Assuming a positive velocityy > 0, for example. If the problem is solved
by using a shock-only Riemann solver (see Section 3.2.1), from (31) the cell a\@fage
would be updated by

At
QI = Q) - 6], (32a)
or equivalently by
— - n+1 - -n r A qn
P o P
pu pUo UoAp
rE rE ApE
_bo_ _bo b
y—1 y—1 At Affl
y —bp = y —bp — —u —b s 32b
yle yle AX 0 A);/ffB ( )
2—y—Db 2 2—y—b 2 —_v—b,
VV_lPap yy—lpap A2 y)’ilpapZ
1 1 1
y-1 y-1 Ay
L a 4 L a 4 L Aa

|
when expressing (32a) in terms of the solution states of the problem. Noting that in
case the difference operatar is simply applied to the Riemann da@{_; and Q{ on
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the left and right of the interface. With this, from the first two equations of (32b), we fin
the expected state of the particle veloaif;‘/*lz uo. Employing the updates from (32b)
to (14) yields quite easily the desired pressure equilibricn{W = po at the jth cell; see
[63] for a different way to derive the same result. As to the behavior of the other st:
variables, it is not difficult to show monotonicity of the solutions when the usual CF
(Courant—Friedrichs—Lewy) condition for stability of the method is satisfied (cf. [36]).

Note that alternatively if the Roe approximate solver (see Section 3.2.2) is used to st
the problem, from (30) we find the strength across the waves as

1 n

mﬂ,A————,Aa).
y—1 j

b
(@1, @z, ...,48)] = (0, Ap,0, A P A

V—WB
y =1

A2—)/—b,o
y—1"

y—1

While from our averaging procedure, we obtain the correct average stat&s-far, and
P} = po. Combining all these with the eigenvect¢iis} defined in an average state produces
the only nonzero jump across the 2-wave,

1-h
Pra

y —bp
y—1 5

y—1

8 2
a a ~ a u
Wo = a2 + E axfx = (A,O, UpAp, EOAP + PoA
k=4

2—y—bp
y—1

bo

2—y—b
Y pa,oZA ’
y—1

_b
1 , Y =% p A
-

A )
+ y—1

1 T
2
ap’, A ,Aa),
y—1

with the propagating speed = ug. Not surprisingly, we get the exact Riemann problem
solution as presented in (32b) and hence the same numerical result for this interface
problem by using the Roe solver. Without causing any ambiguity, we have dropped
superscript and subscripi for simplifying the above expression.

We next discuss how our method works when there are some other waves coming
the jth cell and affecting the cell averagg@j”rl also. As an example, suppose that we are
taking Riemann data at cell interfagg 1 so that the solution consists of a 1-wave (shock
or rarefaction) propagating to the left of the interface. In this method, from (32a) the c
averageQ'j1+1 should be further updated by

n+1 . n+1 At n
Q" =Qj" " — B()‘lwl)l#l’ (33a)
where the Riemann problem solutiaa and W, may be computed by using either the
shock-only or Roe solver as mentioned before.
Considering a case with the Roe solver, for instance, (33a) then takes the form

- o 1 n+1 - o 1 n+1 ) )
ou pu o1
oE oE a1(U —©)
o b G1(H —06)
y—1 y—1 ~o
At o1
y —bp y —bp ——(0 C)n R (33b)
,—1B =15 AX 1 0B
2—y—b 2—y—b A A
yy_l P ap? yy_l P ap? &3
1 1 0
y—1 y—1
a j a J. 0 i+l
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Itis interesting to note that, due to a fundamental property of the Roe solver, i.e., the rele
in (27), this is a conservative update of the first four components of (33b). Clearly, from
last two components, the quantitigsanda are not affected by the propagation of the 1
wave. Substituting the mass-conservation upﬂ?d“é into the fourth and fifth components
of (33b), after a simple manipulation, we find the quantitieasnd 3 remain unchanged
as well; this is a result we expect and is true irrespective of any reasonable chdice
(for example, the Roe-averaging Bfdiscussed in Section 3.2.2). We use the update
ap?(2 —y —bp)/(y — 1) primarily to the computation of the pressure from the equatic
of state (14), and so the choice pfddes not affect the quantityin a direct manner.

In summary, it should be clear that (31) is a consistent approximation of our qu
conservative model (13). Concerning stability, it is observed numerically that the methc
stable and convergent under mesh refinement provided that the waves in the method
only the cells adjacent to the interface during the time step. One advantage of usin
wave-propagation form is that we are able to handle each wave in turn, and there is no
to compute fluxes and make a distinction between the waves. Extension of the meth
higher order accuracy, and in particular to a high-resolution version of the wave propag:e
scheme, follows easily as will be described next.

3.3.2. High resolution corrections.To achieve high resolution in a wave-propagatiol
method, we begin by introducing correction waves in a piecewise-linear form with zerom
value. We then propagate each wave over the time Ategnd update the cell averages it
overlaps. Without going into the details here (cf. [40]), with the corrections, (31) is modif

by

At Qo At n At n
n+1 . n+1
+l._ o+l — Al | 1=|Ak|— — 1kl | 1= ak]— . (34
i T oAx E [I k|< |Ak] X)Wk} [I k|( Akl X>Wk]_ (34)

k=1 j+1 i

It is important to mention that, in practice, the strength of each wave should be limitec
using a “slope-limiter” to avoid unnecessary fluctuations near discontinuities. We war
do this by replacing each in (34) with a limited value/V obtained by comparinyVk
with the correspondingVi from the neighboring Riemann problem to the lefti(if > 0)
or to the right (ifAx < 0).

Suppose that we are using the Roe solver to the computations; it is quite commc
limit over each strength of the wavwg; via a limiter functiong (e.g., by using the minmod
function¢ (8) = max(0, min(1, 8)) or some others as discussed in [70]) and set

Q j—1 ifig=>0
ok {J T Ak = (35)

G = ¢ G)ag with 6g =22 3= "7
ki 4 kl)ak] ki akj j+1 If)\kj<0,

fork=1,2,...,8(cf. [23, 37, 39)]). In this approach, we then replace the waves in (34
8
(W1, W2, W3) = <&1f1, aofz + Z akfk, &3f3> .
k=4
by a limited version as

8
W1, Wo, Wa) = <&1f1, aafs + Z axfk, 073f3> .
k=2
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It is not difficult to show that for the interface only problem we again have the require
pressure equilibrium that is independent of the limiter being employed to the high-resolut
method (34). Moreover, we obtain a better resolution of the result as compared to the
order result.
Note that if the shock-only solver is employed to the computations, analogously to (3
we may apply a slope limiter separately to each component of the waves, i.e.,
WO = ¢ (60)YWS with 60 = WE:JZ _ {J —1 a0
Wi J+1 if g <O,
WhereW(') is theith component olV;, fork = 1,2, 3, andi = 1,2, ..., 8. While this
approach works quite well for the 1- and 3-waves, for the 2-wave, however, in some cé
because of the sixfold eigenvalue degeneracy, it requires a slight modification of the tl
limited component on the total energy@ SO as to ensure a consistent approximation o
that term. Motivated by the treatment of the 2-wave in the Roe solver, this may be done
setting

2- —
W(3) ;J W(ZJJ-) + p*j ( (7) W(A)) + W(5) + )/\}(26])7

whereu,; and p,; are solutions of the Riemann problem at cell interfageWith the
limited waves, we again observe good results obtained using the high-resolution met
with the shock-only Riemann solver.

3.4. Numerical Results

We now present results to validate our multicomponent algorithm described
Section 3.3.

ExampLE 3.4.1. As a first example, we consider an interface only problem where t
solution of a Riemann problem consists of a single contact discontinuity evolving in a ligt
with uniform equilibrium pressurpy = 10° Pa and constant particle velocity = 10° m/s.
Initially, the interface is located at = 0.2 m of a shock tube of unit length. On the left of
the interface, the fluid is a gas with

(p,y,a, by = (50 kg/n?, 1.4, 1072 m/kg, 5 Pa rfi/kg),
while on the right of the interface, the fluid is a liquid with
(p,y, B)r = (10° kg/m®, 4.4, 6 x 10 Pa).

Calculations were carried out by using the high-resolution version of the method witt
200 grid, the Roe solver, and the “minmod” limiter [36]. After 210 time steps (tike
360 us and Courant number 0.9 approximately), we obtain the results shown in Fig.
Notice that the pressure and also the particle velocity remain at the correct constant s
po andug, respectively, without any spurious oscillations near the interface. Comparing w
the exact solution, the other variables suchas, y, a, b, andB behave in a satisfactory
manner as well.
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FIG. 3. High-resolution results for an interface only problem at time 360 us. The solid line is the exact
solution and the points show the computed solution with 200 mesh points.

ExamMPLE 3.4.2. Our next example is concerned with a more general two-phase ligt
gas Riemann problem. In this case, the initial condition consists of two constant states
data

(10° kg/m®,0m/s 10° Pa forx <0.7m

.4 P {(50 kg/n?,0m/s 10° Pa  forx > 0.7 m,

where on the left we have the liquid phase with= 4.4 andB = 6 x 10° Pa, and on the
right we have the gas phase wijth= 1.4, a = 5 Pa nf/kg, andb = 102 m%kg. Breaking
of the liquid—gas membrane results in a leftward going rarefaction wave, a rightward g
contact discontinuity, and a shock wave.

As in Example 3.4.1, we run the problem in a shock tube using the same high-resolt
method, but with a 500 grid for checking convergence of the results. Since the solutio
this Riemann problem is self-similar in tkxet plane, in Fig. 4, we only show results at &
single stopping timet, = 240 us. Observing the displayed profiles, we clearly obtain tk
correct behavior of the computed contact discontinuity and also the shock and rarefa
waves as in comparison with the exact solution. At the tail of the rarefaction wave,
slight overshoot of the particle velocity and also the undershoot of the pressure are ty
numerical artifacts when the Roe approximate solveris usedto the computation; thisincl
the case for single component problems also. Numerical evidences suggest, howeve
these errors decrease as the mesh is refined with a rate proportional to the order of acc
of the method. It should be noted that the aforementioned errors near the rarefaction
are often not visible when the shock-only Riemann solver is employed instead (not sh
here); see [60] for an example.

ExamMPLE 3.4.3. To show how our algorithm performs on shock-contact interactiol
we consider a model problem in which the initial condition is composed of a station
interface ak = 0.4 m and a leftward going Mach 1.422 shock wave at 0.5 m traveling
from right to left (cf. [1, 30, 63] for a similar test). The fluid on the left of the interface is
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FIG. 4. High-resolution results for a two-phase liquid—gas Riemann problem at tim&40 us. The solid
line is the exact solution and the points show the computed solution with 500 mesh points.

van der Waals gas with
(o, p,v,a, by = (1.2 kg/n, 10° Pa 1.4, 102 m3/kg, 5 Pa ni/kg),

and the fluid on the right of the interface (i.e., on the middle and the preshock state)
liquid with

(0, p, v, B)m = (10° kg/m?, 10° Pa 4.4, 6 x 10° Pa).
The state behind the shock is
(p,u, pP)r = (1.23 x 10° kg/m®, —43269 m/s 10° Pa);

see the dashed line shown in Fig. 5 for illustration. We note that this gives us one exam
in which the interface is accelerated by a shock wave coming from the heavy-fluid to
light-fluid region, and the resulting wave pattern after the interaction would consist o
transmitted shock wave, an interface, and a reflected rarefaction wave (cf. Fig. 4 of [63
For this problem, snapshots of the computed solutions are shown in Fig. 5 dt fime
270 us, where we again solve the problem using the high-resolution method with 5
mesh points. From the plots @f, u, and p, it is clear that the shock wave and contact
discontinuity are very well located, and the rarefaction wave moves at the correct sp
with the correct shape also. There are some postshock undershoots of the temferatt
in the front of the interface, however. Results of numerous experiments point to the f
that this type of error is inherent in any shock wave computation (in fact, the stronger
incoming shock wave is, the larger the undershoot is) when a shock-capturing metho
employed for approximating the interaction between shocks and interfaces (cf. [2] fo
related issue on postshock oscillations).
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FIG. 5. High-resolution results for a shock-contact interaction problem at time270 us. The solid line
is the exact solution and the points shows the computed solution with 500 mesh points. The dashed line ir
subplot is the initial condition at time= 0.

4. TWO SPACE DIMENSIONS

We now discuss the generalization of our one-dimensional multicomponent algori
to multiple space dimensions. For simplicity, we focus our discussion on two-dimensic
problems, but much of the same idea described here can be extended in a straightfo
manner to three space dimensions as well.

4.1. Model Equations

Following the same development as introduced in Section 3.1, the two-dimensi
version of the model (13) for compressible multicomponent problems with the modif
van der Waals equation of state (5) takes the form

O o + Ox(pu) + 8y(,OU) =0
3 (pu) + dx(pu? + p) + dy(puv) =0
3 (pu) + dx(puv) + dy(pv*> +p) =0
% (pE) + d(pEu+ pu) + dy(pEv + pv) =0
0 (527) + 0 (523u) + 8y (524v) =0
(L= B) + 0, (L2 Bu) + 0y (=2 B) = (LB) (hu+ dyv) O
& (512 a0%) + o (52 a0%u) + 0y (B2 an%)
= —(Zyyffbpap ) (3xu + dyv)
at( 1) +uax( 7) +v8y(ﬁ) =0
dia + uoxa + voya = 0.

Clearly, in the model, the first four components are the Euler Egs. (1) for the basic conse
tive fluid mixturesp, pu, pv, andp E, while the remaining ones are the effective equatior
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for the problem-dependent material quantities. As in the one-dimensional case, we take
effective equations to be of the form that is viable for numerical approximation and m
therefore set the pressure from the equation of state,

(pw)? + (pv)? —bp 2—y—hp 1-bp
p=|pE— S (e Y i e P . @37
20 y—1 y—1 y—1
Note again that the model has been formulated in such a way that it reduces to the u
Euler Egs. (1) for a single component flow.

To examine the basic solution structure of this two-dimensional model, it is instructi
to write (36) in a quasi-linear system of equations

og + A(Q)dxq + B(@)ayq =0 (38)

with the state vectoq defined by

bo y—-bo_ 2—-y—-bp_ , 1

= E
q P, pU, pv, p s vy R ap,y_l,a
and the matrice# and B given by
i 0 1 0 0 0 0 0 0 0
K—-—u? u@2-rI) —ul r pr -I' —-I' —pI O
—uv v u 0 0 0 0 0 0
uK—-H) H—u’l' —wl uT+1) upl —ul —ul' —upl O
A =1 _gu ¢ 0 0 u 0 0 0 0
puBB —pB 0 0 0 u 0 0 0
—xu X 0 0 0 0 u 0 0
0 0 0 0 0 0 0 u 0
i 0 0 0 0 0 0 0 0 uj
and
[ 0 0 1 0 0 0 0 0 q
—Uuv u u 0 0 0 0 0 0
K—v?2 —ul' v2-0) r pr -I' —-I' —pI" O
v(K —H) —uvl' H—vT o +1) vpI' —v[C —vI’ —ovpl’ O
B@) = —pv 0 @ 0 v 0 0 0 O0f.
ovBB 0 —pB 0 0 v 0 0 0
—Xv 0 X 0 0 0 v 0 0
0 0 0 0 0 0 0 v 0
L 0 0 0 0 0 0 0 0 v

Recall thatl", H, ¢, and x represent the same physical quantities as those described
Section 3.1, and hef¢ =T'(u?+v?)/2. It is easy to show that the spectrum of the matrice
AandB are

Aa =diagiry, Az, ..., Ag) = diaglu —c,u,u+c,U,...,u)
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and

Ag = diag(us, p2, ..., nug) =diagv —c,v,v+c¢,v,...,v),

respectively, with the corresponding set of eigenvectors

1 1 1 0O 0 00O00GQ

u—c u u+c O O O O O O

v v v 1 0 00O0O0

H-uc fu?+v?) H+uc v —p 1 1 p O

Ra=(ry,r2,...,rg) = @ 0 ® 0 1L 00O00O
oB 0 B 0 0 100 O

X 0 x 0 0 0100

0 0 0 0 0 0010

. 0 0 0O 0 0 00 0 1

and

r1 1 1 0O 0 00 OO

u u u 1 0 00 O0O

v—_C v v+c O O OO0 O O

H-v 3W?+v?) H+we u —p 1 1 p O
Rg = (w1, w2, ..., wg) = ® 0 @ 0O 1 00 0 O,
oB 0 pB 0O 0 1 0 0O

X 0 x 0 0 0100

0 0 0 0O 0 0010

L O 0 0 0O 0 OO0 O 1

where Ar, = Akl and Boyx = ukwk. With this, it is sufficient to conclude that (38), and
hence (36), are hyperbolic in the sense that any linear combination of the matace3
given above is assumed to have real eigenvalues and a complete set of eigenvectors fc
physically relevant value of the state variabtekcated in the region of thermodynamic
stability.

For the convenience of the latter reference, we write (36) to a more compact expres
by

&g+ f(9x, 9) + 9@y, q) =0 (39)

with f andg taken to be the vector-value functions of the following form:

b
f= |:8X(pu)v Bx(puz—i- p), dx(ouv), dx(p Eu+ pu, 8X<)/ flu)’
ax(’/ - pr) _ < vB >8Xu, ax(z_ Y~ bpap2u> + (2_ Y- 2|Opa,oz>axu,
y—1 y—1 y—1 y—1

uo ! u8aT
X )/—1 9 X
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and

b
g= {E)y(pv), dy(puv), By(pvz + P), dy(pEv + pv), 8y<y fl”)’

y —bp yB 2—y—bpo_, 2—y—2bp_,
0 B)- ayv, oy [ L= 2TV AP, 2) g0,
y(V—l ) (V—1>yvy< y—1 V)T, o )

1 T
oy —— ), vaya| .
o(5-1) e

Clearly, the functionsf andg defined above reduce to the standard flux functions for
single component flow.

4.2. Wave Propagation Methods

To compute approximate solutions of (36) numerically for practical multicompone
problems, we employ a two-dimensional generalization of the high-resolution wave pr
agation method. In this method, waves obtained from solving one-dimensional Riem.
problems in the directions normal and tangential to each cell interface are used to up
the solutions in neighboring cells. As in the one-dimensional case, see Section 3.3.2
introduce slopes and limiters to achieve a high resolution of results.

For simplicity, we describe the method on a uniform Cartesian grid with fixed me!
spacingAx andAy in the x- andy-direction, respectively; see [35, 41] for a more genera
discussion of the method when applied to an unstructure and time-varying grid. As bef
we use a finite-volume formulation in which the val@g approximates the cell average
of the solution over théi, j)th grid cell at timet,,,

Qij ~ q(X, y»tn)dXdy

AXAY Jo,

Here®;; denotes the rectangular region occupied by the grid(cej).

4.2.1. Firstorder method. To demonstrate the basic idea, consider the interface betwe
cells{ —1, j)and(, j) asillustrated in Fig. 6, for example. We solve the one-dimension:

a) b)
A AL
H}; Wim }-mﬂf
(-1, ' (i-1,7)
Wi
hl| (i, —1) (1,7 —1)

FIG.6. Firstorderwave propagation method. (a) Normal wave propagation, a case with the Riemann prok
solution in thex-direction is showny, > 0. (b) Transverse wave propagation, a case with the splitting dflthe
wave shown in (&) in thg-direction. Only themth subwave is plotteds,, > 0. The cell averages affected by the
shaded region of the wave are updated. Note for convenience we have drawn the grapk withy = h.
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Riemann problem normal to this face, which in this case will be
&d+ f(9x,q) =0,

with initial data given byQ[' ; ; and Qfj. If we use the shock-only Riemann solver a
described in Section 3.2.1, we again find the solution consisting of three discontinu
propagating at constant speeds, and the jump across each discontinuity is the diffe
between the state variables to the left and right of the discontinuity; see Fig. 2 for
typical structure of the solution and (25a) and (25b) for the mathematical expressio
the solutions. Note that in the current case of the Riemann problem solution the pat
velocity in they-direction is advanced in a passive manner along\thiamily (cf. [23]).
With this type of Riemann solver we have the usual splitting of jumps into waves:

3
AQ=Q} - Qi =) Wn
m=1

Alternatively, we may also use the Roe solver for the solution of the Riemann probls
see Section 3.2.2. In this case, based on the solution of the linear problem (38) ir
x-direction,

3tq + A(Qn ) Qr—lj)axq = O’

we obtain the propagating speedls,= 0 — €, A = 0, A3 = 0 + €, and the jumps\V; =
aif, Wo = aofr + Z§=4 axfx, Wi = asfs. Here the strengths across the discontinuties a
of the form

R I 02402 N .

. .. . An . A oA
as [(€—0AqP + Aq® —¢az], &1 =AqP — & —as,

~ 26
as = AW — d(Ap — &), &s = Aq® — p(Ap — &),
b6 = AQ© — pB(Ap — @), a7 = Aq" = 3(Ap — &),
Gg = Aq(8)’ Qg = Aq(g),

with & computed by (28) ané? = I'[H — (02 + 2)/2+ pp — @53 — ]. Note that the other
averaged states appearing in the above formulae are set in the same manner as descl
Section 3.2.2.

It is clear that no matter what shock-only or Roe solver is employed to the Riem:
problem, if the wave speekl <0 thelth wave propagates into cgli — 1, j), while if
A > 0 it propagates into celii, j). In the simplest case of the wave propagation metho
i.e., a two-dimensional extension of Godunov’s method, the cell average affected by
wave is simply updated byr(At/Ax)W,. Note that the quantity in parentheses is th
fraction of the cell swept out by this wave; see Fig. 6a. By computing the effect of e
wave to the cell averages, a single time step of the solution algorithm is completed.
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It is well known that Godunov’s method which we have just described has a very limit
time step restriction for stability [36]. To improve upon the algorithm, by following ar
approach proposed by LeVeque [34], we introduce “transverse propagation” of these w:
in the x-direction, so that they affect the cells above or below joms well, based on the
propagation speeds in tlyedirection. We do this for each wave individually in which with
the shock-only solver we solve a Riemann problem for the equation

and data), andQr just to the left and right of the wave, while with the Roe solver we us
the linear equation

%9 + A(QL, Qr)dyq =0
instead. Considering tHéh wave mentioned above, for example. This amounts to setting

1-1

QL = Qinfl,j +ZWI’T11 QR= QL +W|1

m=1

and leads to a splitting of the wave into three pieces,

3
W =Qr—QL=>) Wn,

m=1

where each subwave propagates at a spggd they-direction, form = 1, 2, 3. Figure 6b
shows a typical example of the, > 0 case, where the waW,, is used to update the cell
averages in cell§, j) and(i, j + 1), based on the area that the wave overlaps each cell,

At 1 At
n+1 n+1 — _ = =
Qi = Qj <M AX) <1 ZﬂmAy>VVIm»

1 At At
anﬁl : anﬁd 5 <)~I Ax) < Ay)WIm

Note that we have employed a standard initialization procedure that assigns each cell ave
to its values at the previous time stéﬁ,}*l = Q{‘j foralli, j.

It should be mentioned that there exists an alternative transverse-propagation appr
based on the splitting of numerical upwind or downwind fluxes instead (cf. [37, 39, 43
This latter approach is often useful for a flux formulation of the wave-propagation schem
whenever the equations to be solved can be written in a full conservation form, such as
single component of the Euler equations of gas dynamics. Here, because our model sy
(36) is written in a quasi-conservative form, it is not convenient to use that method asa b
for numerical approximation (cf. [60, 61] for a related work). In fact, we find it is robus
to use the method in wave-propagation form such that we are able to handle each wa
turn and there is no need to compute fluxes and make distinction between the waves.

Undoubtedly, this modified version of Godunov’s method belongs to a class of unsj
multidimensional upwind schemes. For a scalar problem, in particular, this approach
variant of the corner transport upwind method of Colella [11] in that the cell averages at
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next time step can be interpreted as a linear combination of the neighboring cell valu
the old time with suitable weights. To make this clear (see [38] also), we consider a lir
advection equation

3 + Udxq + vdyq = 0,

with a positive particle velocityu, v) > 0,g € R, as an example. Denotg = uAt/Ax
andvy = vAt/Ay. The update of the cell average in terms of the jumps across each
interface, say for the case @ffj shown in Fig. 6b for example, can be found by

1 1
Qinj+l = Qinj — Vx (1— 2”y> (anj - Qin—l,j) —Vy <1— va> (anj - Qin,j—l)

1 1
- évxvy(Qin,j—l - Qin—l,j—l) - EVXVV(Qin—l,j - Qin—l,j—l)'
After a simple reorganization of terms, it can then be viewed as a sum of the transpo
the neighboring states into the cell,

Qinj+1 =Q—vx—vy) Q|nJ + (1 —vy) Qirll,j +vy(1— vx)QﬂFl + VxVyQinfl,jfl,

within a time stepAt (cf. Fig. 1 of [11]). For convenience, we may write the above scher
to a more general form as

1 1
Qinj+l = Z Z Am Qinf|,j,m,

1=0 m=0

with the coefficients defined B = (1 — vy — vy), @10 = vx (1 — vy), @g1 = vy (1 — vy),
andag; = vxvy. The method is clearly a monotone scheme and hence first-order accu
as long as the time stept satisfies the CFL condition méx, vy) < 1. It is not difficult

to show that in the case of an interface only problem with uniform pressure and par
velocity, the pressure obtained using the method would remain in equilibrium without
spurious oscillations near the interfaces; see [65] for the details. Concerning stabilit
the full nonlinear system (36), it is observed numerically that the method is stable
convergent under mesh refinement provided that the waves in the method affect onl
cells adjacent to the interface during the time step; see Section 4.3 for numerical exam

4.2.2. High resolution corrections.To achieve high resolution, we begin by looking a
the Taylor series expansion of the state vectgss y, t + At) at timet,

1
ax. y.t+ At) = q(x, y, t) + Ataqx, y. t) + émt)Zauq(x, Vo) 4+

1
=q(X, Y, t) — At(Adq + Bayq)(x, y, t) + é(At)z[aX(Azaxq)

+ 3 (ABdyq) + dy(B Adq) + 3y (B?3yq) | (X, y, ) + - -,

where with the aid of (38) we have replaced the time derivatiygsand d;;q by the
respective spatial derivatives. Clearly, from the basic local truncation error analysis
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IWI/Z

A= 5 Ari - VAR

FIG. 7. High-resolution wave propagation methods. (a) Normal propagation of the correction wave, a ¢
with A, > 0 is shown. (b) Transverse propagation of correction wave, a case with the splitting |t thave
shown in (a). Only thenth subwave is plotteds,, > 0. The piecewise-linear wave form in dashed lines is the ini-
tial location of the correction wave before propagation. The cell averages affected by the correction wave
updated by the volume of the interaction between the wave and grid cell.

achieve second-order accuracy of the method, we need to include an approximation tc
O(At?) term:

did = x (A%9q) + dx(ABAyQ) + 3y (B AXQ) + dy(B?3,q).

In pursuit of implementing this efficiently, it turns out that the transverse-wave splittir
method described in Section 4.2.1 has already given a way to approximate the tel
dx(ABdyq) and oy (B Adkq) (cf. [37]). Thus, to achieve full second-order accuracy, we
need only add in théy(A23,q) and d,(B2?3yq) terms to the method. By following the
one-dimensional case, one standard procedure is to first introduce correction waves
piecewise-linear form, propagate the wave normal to the interface over the timatstep
and then update the cell averages it overlaps.

Consider théth wave shown in Fig. 7a, for example. The corrections are accomplish

by the updates
At At
n+l n+l — —
Qi = Qj (MHAX)( [A1] )Wh

1 At
1 . 1
Qi“_*l’j = Q,njlj - E(MHB) ( |)\I|—>VVI,

where the factors multiplyingV} are simply the fractions of each cell that are overlappe:
by the correction wave. In practice, the strength of each wave is limited using a “slo
limiter” [70], and so each}) in the above correction is replaced by a limited vallig see
Section 3.3.2 for the details.

It should be noted that we may improve upon the method further (although it is s
second-order accurate) by introducing transverse propagation of correction waves as
In this instance, th&Vi, (see Section 4.2.1) is used to update cell averages wherever i
affected; see Fig. 7b. The updates are

At At At
Nl . n+l
M|— 1—|M|— 1-— —
Q Q <| I|AX>< | ||AX>( |Mm|Ay>WIm’
1 At At At
1. 1
Qi =Q"y,; - E(Mllﬂ) (1— Ml'ﬂ) (1— Wm'A_y)VVIm’
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1 At At At
Q.nﬁl = QPT41—1 + > <|)\I|AX> (1— [Al le) <|Mm|Ay>VV|m,

1 At At At
1 . 1
Qinj_l,j+1 = inj-l’Hl - 2 <|)MI |AX) (1— MI'AX) <|,U~m|AX)VVIm-

It can be shown that when handling all the correction waves in this way, we have a consi
approximation to the third order termBsA?dyx,q andAB?dyy«q; see [38] for a detailed anal-
ysis to a scalar problem. Based on various numerical evidences, we find that this moc
method with transverse propagation of correction waves works slightly better than that
normal propagation of the waves (judging from how the symmetry of the solution struct
is preserved, for example). Hence, the high-resolution results present in Section 4.:
exclusively the transverse-propagation version of the method for experiments.

4.3. Numerical Results

We now present some sample results obtained using our multicomponent algorithm
the Roe solver described in Section 4.2. It is our purpose to demonstrate the effective
of our algorithm for a reasonable class of problems of practical importance.

ExampLE 4.3.1. We begin by considering an interface only problem where the solut
consists of a circular gas bubble evolving in a liquid with uniform equilibrium presst
Po = 10° Pa and constant particle velocityo, vo) = (10° m/s 10° m/s). Inside the bubble
of radiusrg = 0.16 m, the fluid is a van der Waals gas with

(0,7, b)r<, = (50 kg/n?, 1.4, 5 Pa ni/kg, 10~3 m*kg),
while outside the bubble, the fluid is a liquid modeled by a stiffened gas with

(0,7, B)rr, = (1 kg/m®, 4.4,6 x 1¢° Pa).

Herer = \/(x — X0)2 + (Y — Yo)?is the distance from a poix, y) in a unit square domain
to the center of the bubbleg, yo) = (1/4 m, 1/4 m).

Results obtained using the high-resolution version of the method with & 100 grid
are shown in Fig. 8, where the 2D contours of the density, 3D surface plot of pressure, an
cross-section plot of the density and pressure aloagy are presented at tinte= 360us.
From the displayed profiles, it is easy to observe good agreement of the numerical solu
as compared with the exact results. Notice that the computed pressure remains in the c
equilibrium statepy (to be more accurate, the difference of these two is only on the ort
of machine epsilon), without any spurious oscillations near the bubble interface. Morec
the bubble retains its circular shape and appears to be very well located also.

ExamMPLE 4.3.2. We are next concerned with a radially symmetric problem such t
the computed solution in two dimensions can be compared to the one-dimensional re
for numerical validation. We use the following set of two-phase (liquid—gas) flow data
experiments in which, in the gas phase, the state variables are

(p, P, v, a, b)r<r, = (1250 kg/nt, 10° Pa 1.4, 1 Pa nf/kg, 10~* m3/kg),
while in the liquid phase they are

(0, P, ¥, B)ror, = (10° kg/m®, 10° Pa 4.4, 6 x 10 Pa),
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FIG. 8. High-resolution results for an interface-evolving problem at ttree360 s. (a) Contour plot of the
density. (b) Surface plot of the pressure. (c) Cross-sectional plots of density and pressure alrrgylinEhe
solid line in the cross-sectional plot is the exact solution, and the dotted points are the numerical results.
dashed line in the density contour plot is the initial location of the gas bubble at &nde

wherer? = x? 4 y? andro = 1/5 m. Initially both the gas and liquid are in a stationary
position, but due to the pressure difference between the fluids, breaking of the circi
membrane aty occurs instantaneously. For this problem, the resulting solution consi:
of an outward-going shock wave in liquid, an inward-going rarefaction wave in gas, an
contact discontinuity lying in between that separates the gas and the liquid. We note
because of the geometric symmetry of the solution, for simplicity, we only take a quarte
the unitsquare domain, i.€x, y) € ([0, 1/2] x [0, 1/2]) m?, and apply the line of symmetry
boundary conditions to the bottom and the left boundaries during the computation.

In Fig. 9, we show numerical results for the density, radial velocity (defined as
A/UZ +v2), and pressure at timte= 120 us, where the test has been carried out by usin
a 200x 200 grid with the high-resolution method. Clearly, from Fig. 9a, we observe go«
resolution of the wave pattern (i.e., both the shock and interface remain circular and ap
to be very well located) after the breaking of the membrane. Note that there are little wigg
on the contours ofi near thex- andy-axis which signifies grid-alignment effects with the
use of the Roe solver (cf. [42] for a similar problem in astrophysics). It should be mentior
that this type of error is already present when the problem is solved by using the first or
method (not shown). However, we obtain a better result while performing the test as
Fig. 9 with the shock-only Riemann solver; see Fig. 10. Here the dashed line shown in
figure is the approximate location of the interface.
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FIG. 9. High-resolution results for a radially symmetric problem at time120 us. (a) Contours of the
density, radial velocity, and pressure. (b) Scatter plots,af, and p with locations measured at a distance from
the cell center to the origin. The solid line in the scatter plot is the “true” solution obtained from solving
one-dimensional model with appropriate source terms for the radial symmetry using the high-resolution me
The dotted points are the two-dimensional result. The dashed line shown in the figure is the approximate lo
of the interface.

The scatter plots shown in Fig. 9b provide the validation of our two-dimensional res
as in comparison with the “true” solution obtained from solving the one-dimensional mo
with appropriate source terms for the radial symmetry, using the high-resolution met
with a 1000 mesh points. That is, for the equation, we have a modified version of the «
dimensional model (13) as

&g+ (@, =v(@ (40)

with f a vector-value function defined by

b
f = [a,(pu), 3 (pu® + p), 3 (PEU+ pu), 3 (7/ flu>’
() (2 o () (B2
y—1 y—1 y—1 y—1

uoa, 1 uaaT
r ]/—1 ’ X

and ¢ the source term derived directly from the geometric simplification of
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FIG. 10. Results for the same run as performed in Fig. 9 but obtained by using the shock-only Riemann so
to the method.

multidimensional flow to a one-dimensional one,

4-2y —30p T

T ap?u, 0,0

K 2
= ——|pu, pu? pEu+ pu, u, Bu,
(4 - |pU. pU%, pEUA P s -1ty o1 , -1

Note that here the source termis constructed in such away that (40) reducesto atypical g
one-dimensional model for single-component flows [45], when there is no jump on eact
the material-dependent quantitigsa, b, andB across the interfaces. In the case of a 2C
radially or 3D spherically symmetric flow, we have the quantity 1 or 2, respectively
now denotes the particle velocity in the(radial) direction. We use a Strang-type time split-
ting procedure to deal with the geometric sources of (40) in a high-resolution manner|¢

A more detailed study of the solutions under mesh refinement may be found in [¢
for a simpler case with the Tait equation of state for the liquid and the constant covolu
equation of state for the gas. In that reference, extensions of our two-dimensional mod
cases with geometric and gravitational sources are briefly discussed also.

ExampLE 4.3.3. To show how our algorithm works on shock waves, we consider tl
simulation of a shock wave in liquid over a gas bubble. The aim of the test performed h
is twofold: the first is to further validate convergence of the computed solutions obtair
using our multicomponent algorithm to the correct weak ones, and the second is to pro
an example that shows the feasibility of the algorithm as applied to practical probler
We note that this problem is of practical importance to many applications in sciences
engineering (see [6, 8, 16] and references therein for more information).

To set up the test, we take a vertical shock tube of siz&][@ [—0.2, 1] m? and consider
a planarly downward-moving Mach 1.422 shock wave in liquid with data in the presho
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state as
(,O, u, v, p)g:eshockz (103 kg/m3’ Oa 0» 1§ Pa),
and data in the postshock state as
(P U, v, P)hastshook = (1.23 x 10° kg/n, 0, —43269 m/s 10° Pa.
The equation of state parameters we employed for the liquid are the same as before; ne
y = 4.4 andB = 6 x 10° Pa. In addition to the shock wave, we assume there is a station
gas bubble of radiug = 1/5 m located atxo, Yo) = (1/2 m, 1/2 m) just below the shock

and that is about to interact with the shock; see Fig. 11 for an illustration. Inside the

Density Pressure Volume-fraction

t = 100ps

t = 3005
¢t = 400ps

FIG.11. High-resolution results for a planar Mach 1.422 shock wave in liquid over a gas bubble. Contour
0, p, andY (volume fraction of the gas) are shown at five different tintes; (1, 2, 3, 4, 5) - 1(? us. The circular
dashed line appearing in the plots is the initial location of the interface.
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FIG. 12. Cross-sectional plots of the results for the run shown in Fig. 11 atoadl/2 m.

bubble, the state variables are assigned by
(0, p,y,a, b)@ = (1.2 kg/n?, 10° Pa 1.4, 102 m®/kg, 5 Pa ni/kg).

Note that because of the large pressure jump across the shock wave and also the large
of the acoustic impedances of the liquid to ggss)® /(pc)@ ~ 3965, this is a harder
problem to solve in practice.

Figures 11 and 12 show high-resolution results of a sample run usinga 200 grid.
From Fig. 11, reasonable resolutions of the solution structure (i.e., the distortion of the
bubble and the somewhat complicated wave patterns after the passage of the shock 1
bubble) are obtained by using the algorithm where contouss pf andY (volume fraction
of the gas, introduced in the computation for monitoring the evolution of the gas bubble)
presented at five different times= (1, 2, 3, 4, 5) - 10 us; see [17, 25, 57, 60] for a similar
test of the problem. The cross-section of the results for the same run alongdiag2 m
is drawn in Fig. 12, giving some quantitative information about the density, pressure,
temperature at the selected times.

To checkthe correctness of the computed solutions, Fig. 13 shows results of a converg
study ofp, p, andT along linex = 1/2 m, at the final stopping time= 500 us. Noting
the sensible convergence behavior of the solution profiles under mesh refinement, w
we have used a grid sequenck(1P0x 120) for i =0, 1, 2, for the test. See [65] for a
preliminary result of the problem over an array of gas bubbles.
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FIG. 13. A convergence study g, p, and T for a planar Mach 1.422 shock wave in liquid over a gas
bubble. The test is performed by using a high-resolution version of the method with three different grid syst
2'.(100x 120, i = 0, 1, 2. Only the cross-sectional solutions along: 1/2 m at timet = 500us are presented.

5. SLIP LINE PROBLEMS AND CORRECTIONS

Motivated by the work of Saurel and Abgrall [60] on slip lines (i.e., a contact discontinu
with jumps on the tangential velocities) for multicomponent problems, we now exam
how our two-dimensional algorithm works for such a class of problems.

5.1. Preliminary

We begin by considering a simple numerical test in which the solution is a plan interf
moving vertically byuy = 10° m/s in thex-direction that separates the tangential velocitie
v = —5 x 10*m/s on the leftandr = 10° m/s on the right of the interface. For convenience
we use the same two-phase flow setup as in Example 3.4.1 where the pressure is ur
with pp = 10° Pa in a two-dimensional shock tube of size IPx [0, 1/10] n? and the
fluid is a gas and liquid on the left and right of the interface, respectively. Note that thi
a different kind of interface only problem that exists only in multiple space dimensions

For this problem, we do the test using the first order wave propagation method with
Roe solver as usual; see Section 4.2. Results of a sample run with<220grid are shown
in Fig. 14 at time = 360us. From the figure, large errors in both the pressure and parti
velocity in thex-direction are clearly seen. Carrying out more tests to the problem, we f
that these errors remain at about the same order of magnitude as the mesh is refine
become even erroneous when a high-resolution method is employed instead. We not
this observation of the error is true also when we solve the problem using the shock-
Riemann solver. In fact, by following a similar analysis to that conducted in [60], we m
explain the observed error behavior as being the failure to approximate the kinetic en
in the tangential directiorlC® = pv?/2, consistently by the method. Because of this, th
pressure computed via (37) would not yield the accurate result that is in equilibrium v
po = 10° Pa. Note that this is a difficult problem to solve in practice and is even so in-
single component case of the problem; see [80] for a general remark on numerical e
which occurred in this class of problem with Godunov-type schemes.

For this model slip line problem, analogously to the work done in [60], it is easy
improve upon the result by solving an extended one-dimensional system that combine
x-sweep of our two-dimensional modélg + f (9, q) =0, see (36), with an additional
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FIG. 14. Preliminary results for a model slip line problem at time 360us; the first order method with the
multicomponent model (36). The solid line is the exact solution and the points show the computed solution \
a 200x 20 grid; only the solution along the cross-sectioryet 1/20 m is presented.

transport equation for the tangential kinetic enetdY,
*EY + 9, (KVu) = 0. (41)

Note that we have taken the above equation to be of the form that works even for shock
rarefaction waves as well. Rather than computing the pressure based on (37), which in
large errors as shown in Fig. 14, here we use the following modified version,

_ W o (v=bo )\ (2-y-bo_, 1-bp
p=|pE- =~ -K P o1 ¥ 1) 42

with K£® set by the solution of (41). Note that in the current slip line problem it is not dif
ficult to show the inconsistency of the numerical solutléo® # (pv)?/(2p). Numerical
results present in Fig. 15 indicate that with the correctiorC6f to (42) this is a good
approach without introducing any artificial oscillationsprandu, when performing the
same test as in Fig. 14 with both the first order and high-resolution wave propagat
methods. Observing the displayed profiles, the other components of the solutions are
behaved also.

It should be noted that no propagation of transverse waves and the solutions of the sy
in the y-direction,d;q + g(dy, ) = 0, have been included in the above computation. Thi
is eligible to do for this problem which is one-dimensional in nature. The Roe solver of tt
extended system can be derived quite easily as in Sections 3.2.2 and 4.2 and has beel
to produce the results present in Fig. 15.

To further test the above corrected algorithm with the improvemenC®f in the
x-direction, we are next concerned with a two-phase liquid—gas Riemann problem stuc
by Saurel and Abgrall [60] in which the solution is composed of a leftward going rarefa
tion wave, a rightward going slip line, and a (weak) shock wave in front of the slip line. |
this problem, we take the same initial data as concerned previously in Example 3.4.2,
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FIG. 15. Improved results of the test performed in Fig. 14; methods witlkxteeeep of our two-dimensional
model, 3.9+ f (3, ) =0, and the additional equation for the tangential kinetic energy (41). Results us
(a) the first order wave propagation method and (b) the high-resolution wave propagation method. The
solver is employed to the computations.

impose additionally tangential velocities = 10° m/s on the left andg = —5 x 10° m/s
on the right of the interface. The computational domain is again a two-dimensional st
tube of size [01] x [0, 1/10] m?. Surely, the region in thg-direction is also redundant for
this problem.

Figure 16 shows results for a run obtained using the high-resolution method wit
200 x 20 grid up to time = 240 us, where the cross-section plotsmfu, v, andp along
y = 1/20 m are presented at the final stopping time. From the displayed graphs, despit
slight overshoot irp and undershoot ip at the tail of the rarefaction wave, see Fig. 4 alsc
we clearly observe the correct behavior of the computed slip line and also the rarefa
and shock waves as in comparison with the exact solution. We note that without using |
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FIG. 16. High-resolution results for the Saurel-Abgrall liquid—gas Riemann problem at tim240us. The
solid line is the exact solution and the points show the computed solution with & 20Qrid; only the solution
along the cross-section gf= 1/20 m is presented.

the computed pressure obtained from (37) would become negative (which is nonphys
in the current case) within the first few time steps of the program execution. See [60]
the results of a similar calculation, where a MUSCL-type scheme is employed to solve
problem with the zero van der Waals gas constamts:0 andb = 0.

5.2. An Improved Multidimensional Algorithm

More generally, to be able to deal with multidimensional slip lines, shocks, and rarefact
waves at the same time, we should use the full set of the model system (36) and incl
suitable equations or schemes for the computation of the tangential kinetic energies ir
x- and y-directions, respectively, yielding the accurate value for the pressure (cf. [6C
Since the numerical method we have described in Section 4.2 is an unsplit one, after vat
unsuccessful attempts to generalize the approach proposed in Section 5.1, it turns out
most convenient to implement the method based on the shock-only Riemann solver
an additional update to the total kinetic eneigy= p(u? + v?)/2 from the jumps of the
Riemann problem solution across the waves. Note that like the update of the state varie
Q{‘j to the solutions of (36), in our wave propagation method, there is no problem to comp
the new value ofC{} independently over a time steft by the scheme. In fact, it is not
difficult to show that the method reduces essentially to the scheme proposed in Sectior
for one-dimensional slip line problems, when the shock-only Riemann solver is employ
there. When the update step of bad@f} and Cj} is done, we may compute the pressure
from the further revised formula of (42),

n+1 n+1
- per (7)) /)
y—1 y—1 i y—1/j
that s typically more accurate than simply employing (36) and (37) to the slip line proble!
(see comments and results shown below). Of course, in case there is not any strong shea
moving along the interface, such as for a radially symmetric flow considered in Section
numerical results obtained using these two different approaches would be quite sim
where the solution ofC by the improved algorithm is approximately equal tpy)? +
(pv)?]/(2p) obtained from using the solutions of the basic conservation laws.

It should be mentioned that because the transfer of the energy between the kinetic
potential energies is governed implicitly by the conservation law of the total energy, in 1
general multidimensional case, we thus do not have a model equation for the motion of
total kinetic energy explicitly. For this reason, it is not clear at all how to form a linear syste
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of the governing equations and use the Roe solver as a basis to the current formulation
scheme. Notably, this is a problem that we will work on in the future to develop an uns
multicomponent algorithm for slip lines with a simpler approximate Riemann solver; t
may not be an easy task, however. Two sample calculations are performed below to
the usefulness of the improved algorithm for slip line problems.

ExaMPLE 5.2.1. Asalfirstexample, we consider a two-dimensional Reimann problen
which the initial condition is composed of four slip lines with the data in the four quadra
given by

(p,u,v, pP)1 = (po, Ug, —vo, Po), (0, U, v, P)2 = (200, Ug, Vo, Po),
(10’ Ua v, p)3 = (pOa —UO, Vo, po)v (P, ua v, p)4 == (31007 _UOa —o, pO)»

where po =10 kg/m?, ug=10° m/s, vo=7 x 10* m/s, andpp=1 GPa. In this prob-
lem, the fluid in the first and third quadrants is a gas witk 1.4, a=1 Pa nf/kg, and
b=10"* m®/kg, while the fluid in the second and fourth quadrants is a liquid with4.4
andB = 6 x 10° Pa; the domain is a unit square. We note that this problem is a multicom
nentversion of a case studied by Schulz-Rieted.where after breaking the membranesth
slip lines spiral around its center in a clockwise manner forming an interesting vortex-
structure (Fig. 9 of [62]).

In Fig. 17, we present high-resolution results obtained using a<2R00 grid and the
improved method with the update of the total kinetic energy at timd 50 us. From the
contours of the displayed quantities such as the density, particle velocities xa #rel
y-direction, and pressure, we observe the very nice spiral structure of the compute
lutions, without any artificial fluctuations near the slip lines. The cross-sectional plots
p, U, v, and p for the same run along the line=1—y are shown in Fig. 18 where the
solid line is the fine grid solution with a 430 400 grid. We see good agreement betwee
the two solutions.

FIG. 17. High resolution results for a two-dimensional Riemann problem, a slip-lines only case. The re
is obtained using a 200 200 grid and the improved method with the update of the total kinetic energy. Conto
of the solutions for (a) density, (b) particle velocity in tkelirection, (c) particle velocity in thg-direction, and
(d) pressure are shown at tirhe= 150 us.
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FIG. 18. Cross-sectional plots ¢f, u, v, andp for the same run shown in Fig. 17 alorg= 1 —y. The solid
line is the fine grid solution with a 40Q 400 grid.

ExampLE 5.2.2. Our second example is again a two-dimensional Riemann problem,
with a different set of data where the state in the first quadrant is connected to the seconc
fourth quadrants by a 1-shock moving leftward and downward okttend y-directions,
respectively. The state in the third quadrant is connect to the second and fourth quadi
by a slip line, however. This problem is a variant of a run considered in Fig. 12 of [6
where the interaction at the corner leads to a simple Mach reflection similar to what is s
in various shock reflections from boundaries. The data we use for the test are given by

(p,u,v, P)1 = (p,u,u,3pg), (p,u, v, P)2 = (po, Uo, U, Po),
(p,u,v, p)3 = (0.8pp, U, U, po), (p,U, v, P)a= (po, U, vo, Po),

where po =1 kg/n?, up=1vp=0, po=1C° Pa, andp =2.1 kg/n¥, U= 32428 m/s for a
Mach 1.65 shock wave. In this problem, with the exception that the fluid in the thil
quadrant is a polytropic gas with=1.67, the fluid in the other quadrants is a constan
covolume gas witly = 1.4 andb = 10-3 m3/kg.

We perform a similar test as in Example 5.2.1 using the improved high-resolution meth
butwith afiner 400< 400 grid for checking convergence of the solutions. Results of a samy
calculation at timet =800 us are shown in Figs. 19 and 20. From the contours of th

a b

FIG. 19. High resolution results for a two-dimensional Riemann problem, a case with simple Mach reflectic
The result is obtained using a 483400 grid and the improved method with the update of the total kinetic energy
Contours of the solutions for (a) density, (b) particle velocity in #direction, (c) particle velocity in the
y-direction, and (d) pressure are shown at tirze 800 us.
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plot, we observe sharp resolution of the primary shock waves and good behavior o
slip lines. The cross-sectional plots @fu, v, and p for the same run along the line=y
provide an example of the basic structure of the solutions quantitatively. A detailed st
of the algorithm to more general unstable interface problems such as the Kelvin—Helmt
and Rayleigh—Taylor instabilities will be reported elsewhere in the future.

6. CONCLUSIONS

We have described an extension of a simple interface-capturing approach origir
developed for compressible multicomponent flows with a stiffened gas equation of sta
the more general case of a van der Waals-type fluid in more than one space dimensior
algorithm uses a mixture-type of the model equations written in a quasi-conservative f
to ensure a consistent approximation of the energy equation near the interfaces where
more fluid components are present in a grid cell. A standard high-resolution method b
on the wave propagation formulation is employed to solve the proposed system, givin
efficient implementation of the algorithm. Numerical results present in the paper show
this is a viable approach in both one and two dimensions as applied in the method
the Roe solver to practical problems without introducing any spurious oscillations in
pressure near the interfaces.

To deal with a difficult slip line problem where there is a strong shear flow moving alc
the interface, we implement the two-dimensional method based on a shock-only Rien
solver with an additional update by the scheme to the total kinetic energy. Substituting
resulting kinetic energy to the formula for the pressure yields typically more accurate res
than the uncorrected method near slip lines.

Ongoing work is to further improve upon efficiency and resolution of the algorithm
combining an adaptive mesh refinement and front tracking techngiues (cf. [4, 5, 40,
to the existing computer program. Direct numerical simulation of practical problems s
as the sonoluminescence model, the water-splashed problem, and shock waves in k
liquids will be considered in the future. Generalization of the algorithm to a more gene
equation of state such as the one appeared in [27, 28] will be looked at also.
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