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In previous work by the author, a simple interface-capturing approach has been
developed and validated for compressible multicomponent flows with a stiffened gas
equation of state in multiple space dimensions. The algorithm uses a mixture type
of the model equations written in a quasi-conservative form to ensure a consistent
approximation of the energy equation near the interfaces where two or more fluid
components are present in a grid cell. A standard high-resolution wave propagation
method is employed to solve the proposed system, giving an efficient implementation
of the algorithm. In this paper, the method is extended to a more general two-phase
(liquid–gas) flow where the fluid of interests is characterized by a van der Waals-
type equation of state. Several numerical results are presented in both one and two
space dimensions that show the feasibility of the method with the Roe solver as
applied to practical problems without introducing any spurious oscillations in the
pressure near the interfaces. This includes a convergence study of a shock wave in
liquid over a gas bubble. To deal with a difficult slip line problem where there is
a strong shear flow moving along the interface, we implement the method based
on the shock-only Riemann solver with an additional update by the scheme to the
total kinetic energy. Rather than using solutions from the basic conservation laws
for the density and momenta which incurs large errors, the resulting total kinetic
energy is used to the computation of the pressure from the equation of state, yielding
typically more accurate results than the unmodified method near the slip lines. This
is demonstrated by numerical results of some sample two-dimensional Riemann
problems. c© 1999 Academic Press
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1. INTRODUCTION

This paper is concerned with the development of a simple interface-capturing approach
for efficient numerical resolution of compressible multicomponent flows with a van der
Waals-type fluid (i.e., a fluid with the finite size of a molecule and the nonzero cohesive
forces between molecules [21]). We consider a simplified two-phase flow where the fluids of
interest consist of two different phases, liquid and gas, separated by immiscible interfaces;
see Fig. 1 for a sample setup in two space dimensions. The algorithm uses a Eulerian
formulation of the equations in which, on the gas-phase part of the domain, the fluid is
governed by the full set of the compressible Euler equations. In two space dimensions, for
instance, it takes the form

∂t


ρ

ρu
ρv

ρE

+ ∂x


ρu

ρu2+ p
ρuv

ρEu+ pu

+ ∂y


ρv

ρuv

ρv2+ p

ρEv + pv

 = 0, (1)

whereρ is the density,u andv are the particle velocities in thex- andy-direction, respec-
tively, p is the pressure, andE is the specific total energy. We assume that the gas satisfies
a van der Waals equation of state,

p(ρ, e) =
(
γ − 1

1− bρ

)
(ρe+ aρ2)− aρ2, (2)

so as to deal with the possible real-gas effect (without phase transitions) when both the
temperature and pressure are high (cf. [21, 74, 78]). Heree denotes the specific internal
energy,γ is the ratio of specific heats (γ >1), and the quantitiesa, b are the van der Waals
gas constants for molecular cohesive forces and the finite size of molecules, respectively
(a≥ 0, 0≤ b< 1/ρ, see [44] for numerical values to various gaseous substances). As usual
we setE= e+ (u2+v2)/2. Note that a van der Waals gas of the form (2) reduces to a Noble–
Abel gas (also called a constant covolume gas) whena= 0 [54, 73] and to a polytropic gas
whenb= 0 as well. The four components of (1) express the conservation of mass, momenta
in thex- andy-direction, and energy, respectively [15].

FIG. 1. A typical example of a two-phase flow setup with interfaces that separate regions of two different
fluids, liquid and gas, into two parts. Note that the gas component in each elliptical-like shape of the domain may
be different from one another. It is those grid cells that are cut by the interfaces requiring special attention for
proper numerical treatments.
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On the liquid-phase part of the domain, however, while the motion of a liquid is assumed
to be governed by (1), the algorithm uses the stiffened gas equation of state,

p(ρ, e) = (γ − 1)ρe− γB, (3)

for a fundamental characterization of material properties of the liquids. HereB is a pressure-
like constant that, together withγ , can be determined by a fitting procedure from laboratory
data (cf. [47]). A typical set of parameter values is for water:γ = 7, B= 3000 atm [15,
25], and for human blood:γ = 5.527,B= 614.6 MPa [52], approximately. It should be
mentioned that in addition to the modeling of a liquid, Eq. (3) is often used to describe other
type of materials, including many compressible solids of practical importance (cf. [47, 55,
60]).

We want to use a state-of-the-art shock-capturing method on a uniform rectangular grid
for the multicomponent flow computations. Clearly when grid cells contain only a single
phase of the fluid, there is no problem to solve each phase of the equations separately. But
in practice due to the presence and the subsequent dynamic-evolution of the interfaces by
the solutions of the governing system, it is inevitable to have two or more fluid components
staying within a cell (see Fig. 1). Because of this, the need to give a proper modeling
and approximation of these mixture grid cells becomes a principle issue in many of the
multicomponent algorithms developed in the literature (cf. [1, 12, 20, 29, 30, 46, 60, 63]).
See [60] in particular for a concise survey of the up-to-date multicomponent methods.

The approach we take here is an extension of the work described by Saurel and Abgrall
[60] and by the author [63, 64], in that as opposed to a simplier case with the stiffened
gas equation of state (3), a modified van der Waals equation of state (5), see Section 2, is
introduced as a basic element to the modeling of the mixing between the stiffened and van
der Waals gases. With that, assuming uniform pressure equilibrium and constant particle
velocity across the interfaces, from the energy equation, we are able to derive the effective
equations for the mixture of the material-dependent quantities near the interfaces. As in
the previous work [63], we take these equations to be of the form that do not vary their
solutions across the shocks and rarefaction waves as well. Combining the resulting set of
effective equations to the Euler equations yields a model system that is written in a quasi-
conservative form; see (13) and (36) for the one- and two-dimensional models, respectively.
We use the high-resolution wave propagation method developed by LeVeque [34, 39, 43] to
solve the proposed system. Numerical results present in Sections 3.4 and 4.3 show that this
is a viable approach in both one and two dimensions as the method is applied with the Roe
solver to practical problems without introducing any spurious oscillations in the pressure
near the interfaces.

To deal with a difficult slip line problem where there is a strong shear flow moving along
the interface, we implement the two-dimensional method based on a shock-only Riemann
solver with an additional update by the scheme to the total kinetic energy. Rather than using
the solutions from the basic conservation laws for the density and momenta, which incurs
large errors, see Section 5.1, the resulting total kinetic energy is employed to compute
the pressure from the equation of state, yielding typically more accurate results than the
unmodified method near slip lines. This will be discussed further in Section 5.2.

It is true that in many multicomponent flow applications physical effects, such as surface
tension and viscosity, play an important role to not only controlling the dynamics of the
interfaces, but also influencing the structure of the nearby solutions, and hence need to be
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taken in the model for realization (cf. [66]). Typical examples of this kind are the popular
water-drop problem in air and the rising air bubble problem in water. In these instances,
because the fluids are mostly in a low Mach number regime, compressibility of the fluids
is often ignored, and so the problem may be formulated into an incompressible form and
solved by a state-of-the-art numerical method for incompressible flows; see [7, 68, 69, 75]
for an example.

Here in contrast to the work just mentioned, we consider a class of problems where
the influence of compressibility of the fluids to the solutions is vital, but not the surface
tension and viscosity. Examples cover a family of shock wave problems with complicated
interface patterns [24, 25, 53, 71, 76, 77] and a hydrodynamic model of sonoluminescence
(an acoustic-induced light emission phenomenon) [8, 33, 78]. It is interesting to note that
the latter problem in fact motivates the current study of two-phase flows with a van der
Waals-type fluid where (2) is used for the modeling of real gases and (3) is employed for a
simple approximation of liquids. Our goal here is to establish a basic solution strategy and
validate its use via numerical experimentation of some sample problems. Direct simulation
of sonoluminescence and other important two-phase flow problems such as shock waves in
bubbly liquids or liquid–solid suspensions will be considered in the future; see [65] for a
preliminary result of the latter problem.

This paper is organized as follows. In Section 2, we begin by discussing the basic equation
of state and the associated thermodynamic stability for the mixing of the stiffened and
van der Waals gases within a grid cell. In Section 3, we describe the one-dimensional
version of the multicomponent algorithm in more details. This includes the construction of
the Riemann problem solution by the shock-only or Roe solver (see Section 3.2) and some
numerical results that validate the proposed approach (see Section 3.4). Extension of the
basic approach to two space dimensions is explained briefly in Section 4, and some sample
two-dimensional results are shown in Section 4.3. A study of how the algorithm works for
slip line problems is addressed in Section 5.1, and a correction of the algorithm is made in
Section 5.2.

2. EQUATIONS OF STATE

To begin, we introduce a hybrid version of the equation of state that is necessary in the
algorithm for modeling the mixing between the stiffened and van der Waals gases within a
grid cell. We do this by taking an approach that expresses (2) and (3) in terms of their natural
variables: the specific entropySand the specific volumeV = 1/ρ, yielding the formulas

p(V, S) = A(S)(V − b)−γ − aV−2, (4a)

and

p(V, S) = A(S)V−γ − B, (4b)

in a respective manner, whereA(S)=Rexp[(S− Sref)/CV ] takes the same form in both
cases (cf. [21, 26]). HereCV represents the specific heat at constant volume (see below),R
is the universal gas constant, andSref is the reference state of the specific entropy. Assuming
the fluids under consideration are all in an adiabatic equilibrium with the same entropy, it
is feasible then to define an extension of the equation of state that combines (4a) with (4b)
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in the following way:

p(V, S) = A(S)(V − b)−γ − (B + aV−2). (4c)

With this, it is easy to see that not only the limiting van der Waals gas case (4a) is recovered as
B→ 0, but so also is the stiffened gas case (4b) as botha→ 0 andb→ 0. In the nonlimiting
case, however, where none of the material-dependent quantitiesa, b, andB is close to zero,
(4c) does give a way to the representation of the cases in between, that is to the mixing of
the stiffened and van der Waals gases.

It should be noted that, as far as the computational efficiency of the method is concerned,
(4c) is of little use in practice, for it requires some extra work to evaluate the specific entropy
from the solutions of the Euler equations. Instead, by employing the first and second laws of
thermodynamics, we may rewrite (4c) in terms of the often-used variables in gas dynamics,
ρ ande, as

p(ρ, e) =
(
γ − 1

1− bρ

)
(ρe− B + aρ2)− (B + aρ2). (5)

It is clear that (5) is a generalization of the equations of state (2) and (3). As we will see
in the latter sections (cf. [64, 65] also for a simpler case), with this so-called modified van
der Waals equation of state (5), it is very robust to devise an interface-capturing solver for
a family of two-phase flow problems considered here.

As to the computation of the fluid temperatureT (which is important to sonolumines-
cence, for example), with (5), we may simply use one of the formulas,

p(V, T) = RT

V − b
− B − a

V2
,

e(V, T) = RT

γ − 1
+ BV − a

V
,

for realization. Note that these two equations are easily derived from (5) using the basic
thermodynamic principles; see [21] for more details.

It is important to mention that, in this work, the thermodynamic description of the multi-
component flows is limited by the stability requirement that the internal energy defined in
(5) be a convex function of its dependent variablesV andS. Because of this, the immediate
consequence is the exclusion of the important but difficult problems involving the transition
of phases here. Analogously in [49, 50] for a Mie–Gr¨uneisen-type equation of state (see
below), it can be shown that explicit conditions for the above mentioned thermodynamic
stability of a van der Waals gas are

(i) The heat capacity coefficientsCV andCp must be positive,

CV = (∂Te)|V = R
γ − 1

> 0,

Cp = (∂T h)|p = R[γRT − 2aρ(1− bρ)2]

(γ − 1)[RT − 2aρ(1− bρ)2]
> 0,

whereh= e+ (p/ρ) is the specific enthalpy.
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(ii) The isentropic bulk modulusKS must be positive,

KS = ρ(∂ρ p)|S =
(

γ

1− bρ

)
(p+ B + aρ2)− 2aρ2 > 0.

(iii) The product of the thermal expansion coefficientϑ and the Gr¨uneisen coefficient
0 must be nonnegative,

ϑ0 =
[
− 1

ρ
(∂Tρ)

∣∣∣∣
p

][
1

ρ
(∂ep)

∣∣∣∣
ρ

]

=
[ R(1− bρ)

RT − 2aρ(1− bρ)2

][
γ − 1

1− bρ

]
= R(γ − 1)

RT − 2aρ(1− bρ)2
≥ 0.

In summary, for stability, from the above conditions, this amounts to the satisfaction of
the inequalities

γ > 1, RT > 2aρ(1− bρ)2.

Combining this with the positiveness of the basic thermodynamic states,ρ, T , and0, defines
the domain of the phase space of this van der Waals gas model. Note in particular that from
item (ii) given above we haveKS= ρc2, and so the positive ofKS implies that the speed of
soundc belongs to a set of real numbers.

For convenience, we write (5) into a more general Mie–Gr¨uneisen-type equation of state
of the form

p(ρ, e) = 0(ρ)[ρe− ρeH (ρ)] − pH (ρ), (6)

where0 is the Grüneisen coefficient of the material of interests, and the density-dependent
functionseH , pH are the reference Hugoniot states. Typically, the specific form of (6) is
rather complicated in general (cf. [27, 28, 48]). Here for fluids described by (5), we have a
relatively simple but nontrivial model to work with, i.e.,

0(ρ) = γ − 1

1− bρ
, eH (ρ) = B − aρ2

ρ
, pH (ρ) = B + aρ2. (7)

It is without question that experience gained by studying the current van der Waals gas
model will help to the further development of an efficient multicomponent solver for more
general materials as described by (6).

3. ONE SPACE DIMENSION

To motivate the basic idea of our method in multiple space dimensions, we begin by
considering one-dimensional problems with both the gas and the liquid governed by the
Euler Eqs. (1) of the following form in thex-direction,

∂t

 ρ

ρu

ρE

+ ∂x

 ρu

ρu2+ p

ρEu+ pu

 = 0, (8)



A FLUID-MIXTURE ALGORITHM FOR VAN DER WAALS GAS 49

and by the equations of state (2) and (3), respectively. The algorithm uses a popular approach
that employs (8) for the motion of the liquid–gas mixtures of the conserved variablesρ,
ρu, andρE in a multicomponent grid cell (see [1, 61, 79] for the use of other governing
equations). We compute the pressure based on the equation of state (6), so long as the
mixture of the problem-dependent material quantities appearing in (7), i.e.,γ,a, b, andB,
are defined and known a priori as well. In the algorithm, by following a general procedure
proposed in [63], conditions for those material quantities are found so that not only the
pressure is retained in equilibrium for an interface only fluid-mixture cell, but also the
mixture of the total mass remains conservative on the domain (of course, the mass of each
fluid component may not typically be conserved here). For completeness, we next give a
detailed description of that procedure.

3.1. Derivation of Model Equations

As in the previous works [63, 64], our starting point is to consider an interface only
problem where both the pressurep and particle velocityu are constants in the domain
(i.e., p andu satisfy the standard surface-tension free dynamic and kinematic boundary
conditions on the interface [32], respectively), while the other variables such as the density
ρ and the material-dependent parameters in the Mie–Gr¨uneisen equation of state (6) are
having jumps across some interfaces. In this setup, we first write (8) in the following
nonconservative form,

∂tρ + u∂xρ + ρ∂xu = 0,

∂t u+ u∂xu+ 1

ρ
∂x p = 0,

∂t (ρe)+ ∂x(ρeu)+ p∂xu = 0,

and obtain easily two basic transport equations for the motion ofρ andρe as

∂tρ + u∂xρ = 0,

∂t (ρe)+ u∂x(ρe) = 0.

By inserting the equation of state (6) into the latter one, we find an alternative description
of the energy equation

∂t

(
p+ pH

0
+ ρeH

)
+ u∂x

(
p+ pH

0
+ ρeH

)
= 0. (9)

To see how the pressure would retain in equilibrium as it should be for this model problem,
we expand (9) into the form

1

0
(∂t p+u∂x p)+ p

[
∂t

(
1

0

)
+u∂x

(
1

0

)]
+
[
∂t

(
pH

0
+ρeH

)
+u∂x

(
pH

0
+ρeH

)]
= 0.

Applying the assumed state of the pressure equilibrium to the above equation comes to a
simplier expression as

p

[
∂t

(
1

0

)
+ u∂x

(
1

0

)]
+
[
∂t

(
pH

0
+ ρeH

)
+ u∂x

(
pH

0
+ ρeH

)]
= 0.



50 KEH-MING SHYUE

Now since this equation should hold for anyp in the physical space, it implies right away
that the terms in the square bracket of the equation should be vanished simultaneously,
yielding a system of the following two equations:

∂t

(
1

0

)
+ u∂x

(
1

0

)
= 0, (10a)

∂t

(
pH

0
+ ρeH

)
+ u∂x

(
pH

0
+ ρeH

)
= 0. (10b)

It is important to note that in order to have the correct pressure equilibrium in (9) near the
interfaces, (10a) and (10b) are the two key equations that should be satisfied for any given
expression of0, pH , andeH in the Mie–Grüneisen equation of state (6). From them, for a
class of real materials modeled analytically by (6) at least, we may continue to work out
suitable conditions for the further details of the related material parameters.

Consider the current two-phase flow application with0, pH , andeH defined by (7), for
example. Equations (10a) and (10b) now have the form

∂t

(
1− bρ

γ − 1

)
+ u∂x

(
1− bρ

γ − 1

)
= 0, (11a)

∂t

(
γ − bρ

γ − 1
B + 2− γ − bρ

γ − 1
aρ2

)
+ u∂x

(
γ − bρ

γ − 1
B + 2− γ − bρ

γ − 1
aρ2

)
= 0, (11b)

in a respective manner. It is obvious that, in addition to (11a) and (11b), we need to impose
two supplementary conditions so as to have enough equations for the four material quantities:
γ , a, b, andB. In our approach, this is done quite easily by simply splitting (11a) into the
following two parts,

∂t

(
1

γ − 1

)
+ u∂x

(
1

γ − 1

)
= 0, (11c)

∂t

(
bρ

γ − 1

)
+ u∂x

(
bρ

γ − 1

)
= 0, (11d)

and also (11b) into the terms

∂t

(
γ − bρ

γ − 1
B
)
+ u∂x

(
γ − bρ

γ − 1
B
)
= 0, (11e)

∂t

(
2− γ − bρ

γ − 1
aρ2

)
+ u∂x

(
2− γ − bρ

γ − 1
aρ2

)
= 0. (11f)

Having done so, we arrive at a primitive form of the transport equations (11c)–(11f) for the
variables 1/(γ − 1), bρ/(γ − 1), B(γ − bρ)/(γ − 1), andaρ2(2− γ − bρ)/(γ − 1). We
note that with them for this interface only problem it is sufficient to have all the quantities
γ , a, b, andB determined at all times, provided that the initial condition has been properly
set for the computation; see Section 3.1.1.

Up to this point, our discussion stresses only on an approach that is capable of maintaining
the pressure in equilibrium for a model interface only problem. Since in practice we are
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interested in shock wave problems as well, we should thus take the equations, i.e., (11c)–
(11f), in a form such thatγ ,a,b, andB remain unchanged across both shocks and rarefaction
waves. Concerning this, it is easy to see that withγ governed by (11c) there is no problem
to do so (cf. [1, 63]). Forb andB, however, due to the appearance of the linear factor ofρ

in (11d) and (11e), it turns out that, in a time when such a scenario occurs, for consistency
these two equations should be modified in such a way that each of them reduces to the basic
mass conservation law of the fluid mixture. The derivation of the modification is simple.
Without going into the details, we write down the corrected version of the corresponding
equation as follows:

∂t

(
bρ

γ − 1

)
+ ∂x

(
bρ

γ − 1
u

)
= 0, (12a)

∂t

(
γ − bρ

γ − 1
B
)
+ ∂x

(
γ − bρ

γ − 1
Bu

)
=
(

γ

γ − 1
B
)
∂xu. (12b)

We next come to the discussion for the quantitya described by (11f). In this situation, if
we assume the proper smoothness of the nonlinear factors ofρ in the equation (such as in
the case of rarefaction waves), as in (12a) and (12b) for the quantitiesb andB, respectively,
we may derive an equation of the form

∂t

(
2− γ − bρ

γ − 1
aρ2

)
+ ∂x

(
2− γ − bρ

γ − 1
aρ2u

)
= −

(
2− γ − 2bρ

γ − 1
aρ2

)
∂xu (12c)

that admits the desired constancy ofa and the mass conservation as well. It is important to
note that this is not the case, however, if the smoothness assumption onρ is violated; this
happens in the event of shock waves, for there is no way to differentiate the discontinuous
termsρ2 andρ3 yielding the partial derivatives onρ itself. Despite its apparent difficulty
to fulfill the requirement ofa across both shocks and rarefaction waves, (12c) is the correct
form to be used in the model so that the fluid mixtureaρ2(2− γ − bρ)/(γ − 1) can be
solved and applied readily to the computation of the pressure; see (14) below.

Here, rather than using (12c), we introduce a simplier linear advection equation of the
form

∂ta+ u∂xa = 0 (12d)

for the motion of the mixture ofa. Clearly, (12d) gives an accurate description ofa in all
the solution regions discussed above. In practice, it is a good one to use in the algorithm for
numerical approximation, see Section 3.4 for some sample results.

To sum up, as in [63], we use the term effective equations to describe the set of equations
that govern the motion of the material-dependent mixtures of the problems. In the current
case, there consists of a couple sytem of five equations, i.e., (11c) and (12a)–(12d). It should
be noted that when further taking the numerical aspect of the model approximation into
consideration, with the full Euler equations, these effective equations are the proper ones
to use for practical problems, but not the other form of the equations; see Section 3.3 and
[60, 63] for the details.
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Putting all the things together, with the modified van der Waals equation of state
(5), the model equations we propose to solve one-dimensional multicomponent pro-
blems are



∂tρ + ∂x(ρu) = 0

∂t (ρu)+ ∂x(ρu2+ p) = 0

∂t (ρE)+ ∂x(ρEu+ pu) = 0

∂t
( bρ
γ − 1

)+ ∂x
( bρ
γ − 1u

) = 0

∂t
(
γ − bρ
γ − 1 B

)+ ∂x
(
γ − bρ
γ − 1 Bu

) = ( γB
γ − 1

)
∂xu

∂t
( 2− γ − bρ

γ − 1 aρ2
)+ ∂x

( 2− γ − bρ
γ − 1 aρ2u

) = −( 2− γ − 2bρ
γ − 1 aρ2

)
∂xu

∂t
(

1
γ − 1

)+ u∂x
(

1
γ − 1

) = 0

∂ta+ u∂xa = 0;

(13)

this gives us eight equations in total to be solved in one space dimension that is nicely
independent of the number of fluid components involved in the problem. It is clear that
in this system the first three are the Euler equations which are used to make certain the
conservation of the basic fluid mixtures,ρ,ρu, andρE, while the remaining are the effective
equations that are introduced to ensure the correct mixing of the problem-dependent material
variables near the interfaces. With a system expressed in this way, there is no problem to
compute all the state variables of interest, including the pressure from the equation of
state

p =
[
ρE − (ρu)2

2ρ
−
(
γ − bρ

γ − 1
B
)
−
(

2− γ − bρ

γ − 1
aρ2

)]/(
1

γ − 1
− bρ

γ − 1

)
. (14)

Note that (13) reduces to a well-testedγ -based model for a stiffened gas whena= b= 0
(cf. [60, 63, 64]) and for a polytropic gas whenB= 0 as well (cf. [1]). As before, the proposed
system (13) is not written in the full conservation form, but is rather a quasi-conservative
system of equations. In addition, the nonzero terms on the right-hand side of the fifth and
sixth equations of (13) should be viewed as an integrated part of the whole system, but not
be considered as a source term. This fact can be realized easily by formulating the model as
a quasi-linear system of equations (of course, with the assumption of a proper smoothness
of the solutions), namely,

∂tq + A(q)∂xq = 0 (15a)

with the state vector

q =
[
ρ, ρu, ρE,

bρ

γ − 1
,
γ − bρ

γ − 1
B, 2− γ − bρ

γ − 1
aρ2,

1

γ − 1
,a

]T

(15b)



A FLUID-MIXTURE ALGORITHM FOR VAN DER WAALS GAS 53

and the matrix

A(q) =



0 1 0 0 0 0 0 0

K − u2 u(2− 0) 0 p0 −0 −0 −p0 0

u(K − H) H − u20 u(0 + 1) up0 −u0 −u0 −up0 0

−ϕu ϕ 0 u 0 0 0 0

ϕuB −ϕB 0 0 u 0 0 0

−χu χ 0 0 0 u 0 0

0 0 0 0 0 0 u 0
0 0 0 0 0 0 0 u


. (15c)

HereK =0u2/2, H = E + (p/ρ), ϕ= b/(γ − 1), andχ =aρ(4− 2γ − 3bρ)/(γ − 1).
Recall that0 is the Grüneisen coefficient, see (7), which gives different values for different
fluids.

It is easy to show that for each physically relevant value of the state variablesq defined
in the region of thermodynamic stability (see Section 2), the eigenstructure of the matrixA
is possessed of real eigenvalues

3= diag(λ1, λ2, . . . , λ8) = diag(u− c, u, u+ c, u, . . . ,u) (16a)

and a complete set of eigenvectors of the form

R= (r1, r2, . . . , r8) =



1 1 1 0 0 0 0 0
u− c u u+ c 0 0 0 0 0

H − uc 1
2u2 H + uc −p 1 1 p 0

ϕ 0 ϕ 1 0 0 0 0

ϕB 0 ϕB 0 1 0 0 0
χ 0 χ 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


(16b)

with Ark= λkrk. Thus, (15a) is a hyperbolic system of partial differential equations and so
is our multicomponent model (13). Regarding discontinuous solutions of the system, such
as shock waves or contact discontinuities, (13) has the usual form of the Rankine–Hugoniot
jump conditions across the waves; see Section 3.2.1 for more details.

With these comments, it should be sensible to use the proposed model for practical
computations. The numerical method to be discussed in Section 3.3 is a consistent approxi-
mation of the model that gives excellent results for a wide variety of problems as illustrated
in Section 3.4.

3.1.1. Initialization of fluid-mixture cells.Consider a typical multicomponent setting
in which there arem different fluids in a grid cell, and each of them occupies a distinct
region with a volume-fraction functionY(i ) in relation to it, fori = 1, 2, . . . ,m. Here by
the standard assumption, we haveY(i ) ∈ [0, 1] and

∑m
i=1 Y(i )= 1. Suppose that for each

componenti the state variables such asρ(i ), u(i ), p(i ), γ (i ),a(i ), b(i ), andB(i ) are known a
priori. The objective is to give a proper definition of the fluid mixtures so that they can be
used as an initial condition for our model equations (13) to the computations.
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In the algorithm, we follow a common practice by evaluating the mixing statesρ,ρu, and
ρe as a volume-weighted sum over the set of componentsρ(i ), ρ(i )u(i ), andρ(i )e(i ) given
above,

 ρ

ρu
ρe

 = m∑
i=1

Y(i )


ρ(i )

ρ(i )u(i )

ρ(i )e(i )

 . (17)

With this result, we then compute the mixture of the total energy byρE= ρe+ (ρu)2/(2ρ);
this completes the definition of the conservative variables for the first three equations of the
model.

To find the initial fluid mixtures, 1/(γ − 1), bρ/(γ − 1), B(γ − bρ)/(γ − 1), and
aρ2(2− γ − bρ)/(γ − 1), for the next four equations, we use the equation of state (5),
where written as a function of the volume fraction it reads(

1− bρ

γ − 1

)
(p+ B + aρ2)+ B − aρ2 = ρe=

m∑
i=1

Y(i )ρ(i )e(i )

=
m∑

i=1

Y(i )

[(
1− b(i )ρ(i )

γ (i ) − 1

)
(p(i ) + B(i ) + a(i )(ρ(i ))2)+ B(i ) − a(i )(ρ(i ))2

]
.

By taking a similar approach as employed in Section 3.1 for the derivation of the effective
equations, it comes out easily a splitting of the above equation into the form

1
γ − 1

bρ
γ − 1

γ − bρ
γ − 1 B

2− γ − bρ
γ − 1 aρ2

 =
m∑

i=1

Y(i )



1
γ (i ) − 1

b(i )ρ(i )

γ (i ) − 1

γ (i ) − b(i )ρ(i )

γ (i ) − 1 B(i )

2− γ (i ) − b(i )ρ(i )

γ (i ) − 1 a(i )(ρ(i ))2


, (18)

where in the process of splitting the terms the pressurep is chosen to satisfy the relation as(
1− bρ

γ − 1

)
p =

m∑
i=1

Y(i )

[(
1− b(i )ρ(i )

γ (i ) − 1

)
p(i )
]

(19)

(cf. [63] also for a simplier case of how this is done). With (18), it is easy to see that when
each of the partial pressures is in equilibrium within a grid cell, the pressure p acquired
from (19) would remain in equilibrium also; i.e.,p= p(i ), for i = 1, 2, . . . ,m. Furthermore,
from (18), we are able to obtain an explicit expression of the material-dependent parameters
γ,a, b, andB in terms of the volume-fraction function and the original set of data. The
results are

γ = 1+ 1

/(
m∑

i=1

Y(i )

γ (i ) − 1

)
, (20a)

b =
[

m∑
i=1

Y(i )

(
b(i )ρ(i )

γ (i ) − 1

)]/[(
m∑

i=1

Y(i )ρ(i )

)(
m∑

i=1

Y(i )

γ (i ) − 1

)]
, (20b)
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B =
[

m∑
i=1

Y(i )

(
γ (i ) − b(i )ρ(i )

γ (i ) − 1
B(i )
)]/[

1+
m∑

i=1

Y(i )

(
1− b(i )ρ(i )

γ (i ) − 1

)]
, (20c)

a =
[

m∑
i=1

Y(i )

(
2− γ (i ) − b(i )ρ(i )

γ (i ) − 1
a(i )(b(i ))2

)]/{(
m∑

i=1

Y(i )ρ(i )

)2

×
[
−1+

m∑
i=1

Y(i )

(
1− b(i )ρ(i )

γ (i ) − 1

)]}
. (20d)

We note that as in the continuous counterpart (12c), (20d) is not used in practice for setting
the initial mixture ofa, but is done by the formulaa= ∑m

i=1 Y(i )a(i ) instead.
To end this subsection, it should be mentioned that by following the same approach

introduced in [63] we may reformulate the model (13) into its variant form, the so-called
volume-fraction model, that is robust when both the set of governing equations and the type
of equations of state are different from one fluid component to the others, separated by the
interfaces. To keep the presentation simple and clear, we omit the discussion of that model
here, but refer the reader to [64, 65] for the details.

3.2. Approximate Riemann Solvers

Before describing numerical methods to solve (13), we pause to discuss the construction
of the Riemann problem solutions which is one of the major steps in our multicomponent
algorithm. For comparison purposes, we present two popular approaches for the resolution
of the Riemann problem with piecewise constant dataqL andqR to the left and right of the
interface.

3.2.1. Shock-only solver.First, we are concerned with a shock-only approximation of
the Riemann solver that ignores the possibility of rarefaction waves and simply construct a
solution in which each pair of the states is connected along the Hugoniot locus for a shock
(cf. [3, 10, 13]). In this approach, the key step is to find the midstate (u∗, p∗) in theu–p
phase plane so that it can connect to (uL , pL ) by a 1-shock and to(uR, pR) by a 3-shock.
It is well known that this is equivalent to solving the following nonlinear equation in an
iterative manner for the pressurep∗:

h(p∗) = u∗R(p∗)− u∗L(p∗) = 0. (21)

Hereu∗L andu∗R are the velocities defined by connecting the states along the 1-shock and
3-shock curves, respectively,

u∗L(p) = uL − p− pL

ML(p)
, u∗R(p) = uR+ p− pR

MR(p)
,

with Mι denoting the Lagrangian shock speed, forι= L or R. In the current application
with the modified van der Waals equation of state (5), whena= 0 (i.e., the vanishing of the
aρ2 term), we may computeMι directly by evaluating the formula

M2
ι (p) = C2

ι

[
1+

(
γι + 1

2γι

)(
p+ Bι
pι + Bι − 1

)]
,
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whereCι= ριcι is the Lagrangian sound speed (cf. [73]). Note that this is as a result derived
from the Rankine–Hugoniot jump condition across the shock waves,

M2
ι (e∗ι − eι) =

(
p2
∗ − p2

ι

)/
2, (22)

with e∗ι= e(p∗, ρ∗ι) a function of the midstate densityρ∗ι, a quantity that is related top, pι,
andMι in the following way

ρ∗ι(p) =
[
ρ−1
ι −

p− pι
M2
ι (p)

]−1

,

while in the more general case whena 6= 0, there is not such a close form solution available
for Wι. Instead, we need to solve (22) iteratively forMι; this is a typical thing to do when
using the method for real gases (cf. [13]).

When applying a standard root-finding approach such as the secant method to (21), we
have a 2-step iteration scheme as follows,

p(n+1)
∗ = p(n)∗ −

∣∣p(n)∗ − p(n−1)
∗

∣∣∣∣u(n)∗L − u(n−1)
∗L

∣∣+ ∣∣u(n)∗R − u(n−1)
∗R

∣∣ [u(n)∗R − u(n)∗L
]
, (23)

whereu(n)∗ι = u∗ι[ p(n)∗ ], for ι= L or R, andn= 1, 2, . . . (until convergence). With a suitable
choice of the starting valuesp(0)∗ and p(1)∗ , method (23) typically converges to the exact
solutionp∗ at a superlinear rate [31]. For gas dynamics, it is a common practice to setp(0)∗
and p(1)∗ by

p(0)∗ =
pRCL + pLCR− (uR− uL)CLCR

CL + CR
,

u(0)∗L = uL − p(0)∗ − pL

CL
, u(0)∗R = uR+ p(0)∗ − pR

CR
, (24)

p(1)∗ =
pRM (0)

L + pLM (0)
R − (uR− uL)M

(0)
L M (0)

R

M (0)
L + M (0)

R

,

with M (0)
ι =Mι[ p(0)∗ ]. After a satisfactory convergence of the scheme, we may then calculate

u∗ by

u∗ = pL − pR+ uL ML(p∗)+ uRMR(p∗)
ML(p∗)+ MR(p∗)

.

We note that alternatively we may use a 1-step Newton method for the solution of (21).
Since the derivation of the scheme is more involved due to the need to compute the derivative
term dp∗/du∗, we do not discuss the method here, but refer the reader to [13] for more
details.

Figure 2 shows a typical solution structure of the Riemann problem considered here.
Clearly, in a shock-only approximate solver, we replace the leftward-going rarefaction
wave by a 1-shock and so the solution consists of three discontinuities moving at constant
speeds. Here the propagation speed of each discontinuity is determined by

λ1 = u∗ − ML(p∗)
ρ∗L(p∗)

, λ2 = u∗, λ3 = u∗ + MR(p∗)
ρ∗R(p∗)

, (25a)
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FIG. 2. Typical solution structure of the Riemann problem for our multicomponent model (13). Note that in
a shock-only approximation of the approximate Riemann solver, the rarefaction wave is replaced by an entropy-
violating shock.

with the jumps across each of them computed by the difference between the states to the
left and right of the discontinuity,

W1 = q∗L − qL , W2 = q∗R− q∗L , W3 = qR− q∗R. (25b)

Wave propagation methods are based on using these propagating discontinuities to update
the cell averages in the cells neighboring each interface.

It is true that no matter what iterative method is employed to the solution of (21), the
approach is quite expansive as compared to the approximate solver of Roe described next.
Nevertheless, there are various situations where this approach is worthwhile and can provide
more accurate results than the Roe solver does. This includes some examples shown in
[18, 41, 56] and many difficult problems with strong shock waves and stiff equations of
state. Moreover, it is a straightforward matter to generalize the approach that covers the
case with surface tension effect across the interfaces; results on this aspect will be reported
elsewhere.

3.2.2. Roe solver. In a Roe’s approximate Riemann solver, we replace the nonlinear
system (13) with dataqL andqR by a linear system of the form

∂tq + Â(qL ,qR)∂xq = 0. (26)

HereÂ(qL ,qR) is a constant matrix that depends on the initial data and is a local linearization
of the matrixA in (15c) about an average state. To find that matrix, as it is often done in
many other Roe solvers (cf. [9, 22, 23]), we want to seek an average state such that the
difference of the fluxes in the conservation part of (13) (i.e., the first four equations of the
system) are equal to the respective first order approximations of the flux differences. That is,

1F (i ) = (FR− FL)
(i ) = [ Â(qL ,qR)(qR− qL)]

(i ) = [ Â(qL ,qR)1q](i ), (27)

for i = 1, 2, 3, 4, whereF ∈ R4 is the usual definition of the fluxes for conservation laws,
and1F (i ) is thei th component of1F . With that, it is a straightforward matter to obtain
the results for̂u, Ĥ , andϕ̂ by the standard “Roe-averaging” approach; i.e., for a given pair
(ρL , ρR), the average state for a quantityz is defined by

ẑ=
√
ρL zL +√ρRzR√
ρL +√ρR

. (28)
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Note that in the process of the derivation, as in [63] we have chosen the averages(1̂/0)
and( p̂/0) based on (28) so that the expression

1p =
[(̂

1

0

)
1

(
p

0

)
−
(̂

p

0

)
1

(
1

0

)]/(̂
1

0

)2

is satisfied approximately. With that we setp̂= ̂(p/0)/ ̂(1/0) and 0̂= 1/ ̂(1/0). To finish
the construction ofÂ(qL ,qR), we still need to find the averages ofB andχ . Since there
is no unique way to do so, we might as well computeB̂ and â using (28) and set ˆχ =
[(2/0̂)− 2− ϕ̂ρ̂]âρ̂, where ˆρ=√ρLρR. Numerical results shown in Section 3.4 indicate
that the set of average states described here is a good one to use for practical multicomponent
problems.

The solution of the linear problem (26) consists of eight discontinuities propagating at
constant speeds (for a system of eight equations). The jump across each discontinuity is a
multiple of the eigenvector of the matrix̂A, and the propagating speed is the corresponding
eigenvalue. We thus have

1q = qR− qL =
8∑

k=1

α̂kr̂k, (29)

wherer̂k is thekth eigenvector ofÂ; see (16a) and (16b). The scalar ˆαk gives the strength
across the discontinuity that can be determined easily from (29). We find

α̂2 = 1q(1) + 0̂

ĉ2

[
− û2

2
1q(1) + û1q(2) −1q(3)+ p̂

(
1q(7) −1q(4)

)+1q(5) +1q(6)
]
,

α̂3 = 1

2ĉ

[
(ĉ− û)1q(1) +1q(2) − ĉα̂2

]
,

α̂1 = 1q(1) − α̂2− α̂3, α̂4 = 1q(4) − ϕ̂(1ρ − α̂2), (30)

α̂5 = 1q(5) − ϕ̂B̂(1ρ − α̂2), α̂6 = 1q(6) − χ̂(1ρ − α̂2),

α̂7 = 1q(7), α̂8 = 1q(8),

whereĉ =
√
0̂[ Ĥ − (û2/2)+ p̂ϕ̂ − ϕ̂B̂ − χ̂ ] is the speed of sound.

Note that in this Riemann solution, except the discontinuities forλ̂1= û− ĉ, and
λ̂3= û+ ĉ, all the other discontinuities (six of them) are propagating at the same speed
û. For practical purposes, we may view these discontinuities as a single one with the
operatorW2 defined by combining all the jumps across theλ̂2 wave family; i.e., set
W2= α̂2r̂2+

∑8
k=4 α̂kr̂k. Clearly, doing so removes the effect of the wave familiesλ̂4

to λ̂8 from the solution. With this notation, we also writeWk= α̂kr̂k to represent the jump
across thek-wave fork= 1 or 3.

3.3. Wave Propagation Methods

We use the high-resolution method based on a wave-propagation viewpoint to compute
approximate solutions of our multicomponent model introduced in Section 3.1. The method
is a variant of the fluctuation-and-signal scheme of Roe [58, 59] in that we solve the Riemann
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problems at each cell interface and use the resulting waves (i.e., discontinuities moving at
constant speeds) to update the solutions in neighboring grid cells (cf. [34, 39]).

For simlicity, we describe the method on a uniform grid with fixed mesh spacing1x, but
the method can be extended quite easily to a nonuniform and time-varying grid as well (cf.
[35, 40]). We use a standard finite-volume formulation in which the valueQn

j approximates
the cell average of the solution over the grid cell [xj , xj+1] at timetn:

Qn
j ≈

1

1x

∫ xj+1

xj

q(x, tn) dx.

The time step from the current timetn to the nexttn+1 is denoted by1t .

3.3.1. First order method. In this setup, a first order accurate version of the method in
wave-propagation form is a Godunov-type scheme that can be written as

Qn+1
j = Qn

j −
1t

1x

mw∑
k=1

(λ−kWk)
n
j+1+ (λ+kWk)

n
j , (31)

whereλk ∈ R andWk ∈ Rm are solutions of thekth wave family, fork = 1, 2, . . . ,mw, ob-
tained from solving the Riemann problems at cell interfacesxj andxj+1, λ

− = min(λ, 0),
and λ+ = max(λ, 0). Clearly, the method belongs to a class of upwind schemes (cf.
[23, 36]), and it will be shown next that the method is quasi-conservative in the sense
that when applying the method to (13) not only the conservation equations but also the
transport equations are approximated in a consistent manner by the method with the chosen
Riemann solver.

To demonstrate that, we first analyze our method for an interface only problem as de-
scribed in Section 3.1. Without loss of generality, we consider a single Riemann problem
where at cell interfacexj the initial data consists of uniform pressurep0 and constant par-
ticle velocity u0 to the left and right of the interface, but with jumps on the other state
variables ofq. Assuming a positive velocityu0 > 0, for example. If the problem is solved
by using a shock-only Riemann solver (see Section 3.2.1), from (31) the cell averageQn

j

would be updated by

Qn+1
j = Qn

j −
1t

1x
(λ2W2)

n
j , (32a)

or equivalently by



ρ

ρu
ρE
bρ
γ − 1

γ − bρ
γ − 1 B

2− γ − bρ
γ − 1 aρ2

1
γ − 1

a



n+1

j

=



ρ

ρu0

ρE
bρ
γ − 1

γ − bρ
γ − 1 B

2− γ − bρ
γ − 1 aρ2

1
γ − 1

a



n

j

− 1t

1x
u0



1ρ

u01ρ

1ρE

1 bρ
γ − 1

1
γ − bρ
γ − 1 B

1
2− γ − bρ
γ − 1 aρ2

1 1
γ − 1

1a



n

j

, (32b)

when expressing (32a) in terms of the solution states of the problem. Noting that in this
case the difference operator1 is simply applied to the Riemann dataQn

j−1 and Qn
j on
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the left and right of the interface. With this, from the first two equations of (32b), we find
the expected state of the particle velocityun+1

j = u0. Employing the updates from (32b)
to (14) yields quite easily the desired pressure equilibriumpn+1

j = p0 at the j th cell; see
[63] for a different way to derive the same result. As to the behavior of the other state
variables, it is not difficult to show monotonicity of the solutions when the usual CFL
(Courant–Friedrichs–Lewy) condition for stability of the method is satisfied (cf. [36]).

Note that alternatively if the Roe approximate solver (see Section 3.2.2) is used to solve
the problem, from (30) we find the strength across the waves as

(α̂1, α̂2, . . . , α̂8)
n
j =
(

0,1ρ,0,1
bρ

γ − 1
,1

γ − bρ

γ − 1
B,12− γ − bρ

γ − 1
aρ2,1

1

γ − 1
,1a

)n

j

.

While from our averaging procedure, we obtain the correct average states forûn
j = u0 and

p̂n
j = p0. Combining all these with the eigenvectors{r̂k} defined in an average state produces

the only nonzero jump across the 2-wave,

W2 = α̂2r̂2+
8∑

k=4

α̂kr̂k =
(
1ρ, u01ρ,

u2
0

2
1ρ + p01

1− bρ

γ − 1
+1γ − bρ

γ − 1
B

+12− γ − bρ

γ − 1
aρ2,1

bρ

γ − 1
,1

γ − bρ

γ − 1
B,12− γ − bρ

γ − 1
aρ2,1

1

γ − 1
,1a

)T

,

with the propagating speedλ2 = u0. Not surprisingly, we get the exact Riemann problem
solution as presented in (32b) and hence the same numerical result for this interface only
problem by using the Roe solver. Without causing any ambiguity, we have dropped the
superscriptn and subscriptj for simplifying the above expression.

We next discuss how our method works when there are some other waves coming into
the j th cell and affecting the cell averageQn+1

j also. As an example, suppose that we are
taking Riemann data at cell interfacexj+1 so that the solution consists of a 1-wave (shock
or rarefaction) propagating to the left of the interface. In this method, from (32a) the cell
averageQn+1

j should be further updated by

Qn+1
j := Qn+1

j − 1t

1x
(λ1W1)

n
j+1, (33a)

where the Riemann problem solutionλ1 andW1 may be computed by using either the
shock-only or Roe solver as mentioned before.

Considering a case with the Roe solver, for instance, (33a) then takes the form

ρ

ρu

ρE
bρ
γ − 1

γ − bρ
γ − 1 B

2− γ − bρ
γ − 1 aρ2

1
γ − 1

a



n+1

j

:=



ρ

ρu

ρE
bρ
γ − 1

γ − bρ
γ − 1 B

2− γ − bρ
γ − 1 aρ2

1
γ − 1

a



n+1

j

− 1t

1x
(û− ĉ)nj+1



α̂1

α̂1(û− ĉ)

α̂1(Ĥ − ûĉ)
α̂1ϕ̂

α̂1ϕ̂B̂
α̂1χ̂

0
0



n

j+1

. (33b)
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It is interesting to note that, due to a fundamental property of the Roe solver, i.e., the relation
in (27), this is a conservative update of the first four components of (33b). Clearly, from the
last two components, the quantitiesγ anda are not affected by the propagation of the 1-
wave. Substituting the mass-conservation updateρn+1

j into the fourth and fifth components
of (33b), after a simple manipulation, we find the quantitiesb andB remain unchanged
as well; this is a result we expect and is true irrespective of any reasonable choice ofB̂
(for example, the Roe-averaging ofB discussed in Section 3.2.2). We use the update of
aρ2(2− γ − bρ)/(γ − 1) primarily to the computation of the pressure from the equation
of state (14), and so the choice of ˆχ does not affect the quantitya in a direct manner.

In summary, it should be clear that (31) is a consistent approximation of our quasi-
conservative model (13). Concerning stability, it is observed numerically that the method is
stable and convergent under mesh refinement provided that the waves in the method affect
only the cells adjacent to the interface during the time step. One advantage of using the
wave-propagation form is that we are able to handle each wave in turn, and there is no need
to compute fluxes and make a distinction between the waves. Extension of the method to
higher order accuracy, and in particular to a high-resolution version of the wave propagation
scheme, follows easily as will be described next.

3.3.2. High resolution corrections.To achieve high resolution in a wave-propagation
method, we begin by introducing correction waves in a piecewise-linear form with zero mean
value. We then propagate each wave over the time step1t and update the cell averages it
overlaps. Without going into the details here (cf. [40]), with the corrections, (31) is modified
by

Qn+1
j := Qn+1

j −
1t

21x

mw∑
k=1

[
|λk|
(

1−|λk|1t

1x

)
Wk

]n

j+1

−
[
|λk|
(

1−|λk|1t

1x

)
Wk

]n

j

. (34)

It is important to mention that, in practice, the strength of each wave should be limited by
using a “slope-limiter” to avoid unnecessary fluctuations near discontinuities. We want to
do this by replacing eachWk in (34) with a limited valuẽWk obtained by comparingWk

with the correspondingWk from the neighboring Riemann problem to the left (ifλk > 0)
or to the right (ifλk < 0).

Suppose that we are using the Roe solver to the computations; it is quite common to
limit over each strength of the wave ˆαk j via a limiter functionφ (e.g., by using the minmod
functionφ(θ) = max(0,min(1, θ)) or some others as discussed in [70]) and set

α̃k j = φ(θk j )α̂k j with θk j = α̂k J

α̂k j
, J =

{
j − 1 if λ̂k j ≥ 0

j + 1 if λ̂k j < 0,
(35)

for k = 1, 2, . . . ,8 (cf. [23, 37, 39]). In this approach, we then replace the waves in (34),

(W1,W2,W3) =
(
α̂1r̂1, α̂2r̂2+

8∑
k=4

α̂kr̂k, α̂3r̂3

)
,

by a limited version as

(W̃1, W̃2, W̃3) =
(
α̃1r̂1, α̃2r̂2+

8∑
k=4

α̂kr̂k, α̃3r̂3

)
.
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It is not difficult to show that for the interface only problem we again have the required
pressure equilibrium that is independent of the limiter being employed to the high-resolution
method (34). Moreover, we obtain a better resolution of the result as compared to the first
order result.

Note that if the shock-only solver is employed to the computations, analogously to (35),
we may apply a slope limiter separately to each component of the waves, i.e.,

W̃ (i )
k j = φ

(
θ
(i )
k j

)
W (i )

k j with θ
(i )
k j =

W (i )
k J

W (i )
k j

, J =
{

j − 1 if λk j ≥ 0

j + 1 if λk j < 0,

whereW (i )
k j is thei th component ofWk j , for k = 1, 2, 3, andi = 1, 2, . . . ,8. While this

approach works quite well for the 1- and 3-waves, for the 2-wave, however, in some cases
because of the sixfold eigenvalue degeneracy, it requires a slight modification of the third
limited component on the total energỹW (3)

k j so as to ensure a consistent approximation of
that term. Motivated by the treatment of the 2-wave in the Roe solver, this may be done by
setting

W̃ (3)
2 j =

u2
∗ j

2
W̃ (1)

2 j + p∗ j
(
W̃ (7)

2 j − W̃ (4)
2 j

)+ W̃ (5)
2 j + W̃ (6)

2 j ,

whereu∗ j and p∗ j are solutions of the Riemann problem at cell interfacexj . With the
limited waves, we again observe good results obtained using the high-resolution method
with the shock-only Riemann solver.

3.4. Numerical Results

We now present results to validate our multicomponent algorithm described in
Section 3.3.

EXAMPLE 3.4.1. As a first example, we consider an interface only problem where the
solution of a Riemann problem consists of a single contact discontinuity evolving in a liquid
with uniform equilibrium pressurep0 = 105 Pa and constant particle velocityu0 = 103 m/s.
Initially, the interface is located atx = 0.2 m of a shock tube of unit length. On the left of
the interface, the fluid is a gas with

(ρ, γ,a, b)L = (50 kg/m3, 1.4, 10−3 m3/kg, 5 Pa m6/kg),

while on the right of the interface, the fluid is a liquid with

(ρ, γ,B)R = (103 kg/m3, 4.4, 6× 108 Pa).

Calculations were carried out by using the high-resolution version of the method with a
200 grid, the Roe solver, and the “minmod” limiter [36]. After 210 time steps (timet =
360µs and Courant number 0.9 approximately), we obtain the results shown in Fig. 3.
Notice that the pressure and also the particle velocity remain at the correct constant states
p0 andu0, respectively, without any spurious oscillations near the interface. Comparing with
the exact solution, the other variables such asρ, T, γ,a, b, andB behave in a satisfactory
manner as well.
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FIG. 3. High-resolution results for an interface only problem at timet = 360µs. The solid line is the exact
solution and the points show the computed solution with 200 mesh points.

EXAMPLE 3.4.2. Our next example is concerned with a more general two-phase liquid–
gas Riemann problem. In this case, the initial condition consists of two constant states with
data

(ρ, u, p) =
{
(103 kg/m3, 0 m/s, 109 Pa) for x ≤ 0.7 m

(50 kg/m3, 0 m/s, 105 Pa) for x > 0.7 m,

where on the left we have the liquid phase withγ = 4.4 andB = 6× 108 Pa, and on the
right we have the gas phase withγ = 1.4,a = 5 Pa m6/kg, andb = 10−3 m3/kg. Breaking
of the liquid–gas membrane results in a leftward going rarefaction wave, a rightward going
contact discontinuity, and a shock wave.

As in Example 3.4.1, we run the problem in a shock tube using the same high-resolution
method, but with a 500 grid for checking convergence of the results. Since the solution of
this Riemann problem is self-similar in thex–t plane, in Fig. 4, we only show results at a
single stopping time,t = 240µs. Observing the displayed profiles, we clearly obtain the
correct behavior of the computed contact discontinuity and also the shock and rarefaction
waves as in comparison with the exact solution. At the tail of the rarefaction wave, the
slight overshoot of the particle velocity and also the undershoot of the pressure are typical
numerical artifacts when the Roe approximate solver is used to the computation; this includes
the case for single component problems also. Numerical evidences suggest, however, that
these errors decrease as the mesh is refined with a rate proportional to the order of accuracy
of the method. It should be noted that the aforementioned errors near the rarefaction wave
are often not visible when the shock-only Riemann solver is employed instead (not shown
here); see [60] for an example.

EXAMPLE 3.4.3. To show how our algorithm performs on shock-contact interactions,
we consider a model problem in which the initial condition is composed of a stationary
interface atx = 0.4 m and a leftward going Mach 1.422 shock wave atx = 0.5 m traveling
from right to left (cf. [1, 30, 63] for a similar test). The fluid on the left of the interface is a
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FIG. 4. High-resolution results for a two-phase liquid–gas Riemann problem at timet = 240µs. The solid
line is the exact solution and the points show the computed solution with 500 mesh points.

van der Waals gas with

(ρ, p, γ,a, b)L = (1.2 kg/m3, 105 Pa, 1.4, 10−3 m3/kg, 5 Pa m6/kg),

and the fluid on the right of the interface (i.e., on the middle and the preshock state) is a
liquid with

(ρ, p, γ,B)M = (103 kg/m3, 105 Pa, 4.4, 6× 108 Pa).

The state behind the shock is

(ρ, u, p)R = (1.23× 103 kg/m3,−432.69 m/s, 109 Pa);

see the dashed line shown in Fig. 5 for illustration. We note that this gives us one example,
in which the interface is accelerated by a shock wave coming from the heavy-fluid to the
light-fluid region, and the resulting wave pattern after the interaction would consist of a
transmitted shock wave, an interface, and a reflected rarefaction wave (cf. Fig. 4 of [63]).

For this problem, snapshots of the computed solutions are shown in Fig. 5 at timet =
270 µs, where we again solve the problem using the high-resolution method with 500
mesh points. From the plots ofρ, u, and p, it is clear that the shock wave and contact
discontinuity are very well located, and the rarefaction wave moves at the correct speed
with the correct shape also. There are some postshock undershoots of the temperatureT
in the front of the interface, however. Results of numerous experiments point to the fact
that this type of error is inherent in any shock wave computation (in fact, the stronger the
incoming shock wave is, the larger the undershoot is) when a shock-capturing method is
employed for approximating the interaction between shocks and interfaces (cf. [2] for a
related issue on postshock oscillations).
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FIG. 5. High-resolution results for a shock-contact interaction problem at timet = 270µs. The solid line
is the exact solution and the points shows the computed solution with 500 mesh points. The dashed line in each
subplot is the initial condition at timet = 0.

4. TWO SPACE DIMENSIONS

We now discuss the generalization of our one-dimensional multicomponent algorithm
to multiple space dimensions. For simplicity, we focus our discussion on two-dimensional
problems, but much of the same idea described here can be extended in a straightforward
manner to three space dimensions as well.

4.1. Model Equations

Following the same development as introduced in Section 3.1, the two-dimensional
version of the model (13) for compressible multicomponent problems with the modified
van der Waals equation of state (5) takes the form

∂tρ + ∂x(ρu)+ ∂y(ρv) = 0

∂t (ρu)+ ∂x(ρu2+ p)+ ∂y(ρuv) = 0

∂t (ρu)+ ∂x(ρuv)+ ∂y(ρv
2+ p) = 0

∂t (ρE)+ ∂x(ρEu+ pu)+ ∂y(ρEv + pv) = 0

∂t
( bρ
γ − 1

)+ ∂x
( bρ
γ − 1u

)+ ∂y
( bρ
γ − 1v

) = 0

∂t
(
γ − bρ
γ − 1 B

)+ ∂x
(
γ − bρ
γ − 1 Bu

)+ ∂y
(
γ − bρ
γ − 1 Bv

) = ( γ

γ − 1B
)
(∂xu+ ∂yv)

∂t
( 2− γ − bρ

γ − 1 aρ2
)+ ∂x

( 2− γ − bρ
γ − 1 aρ2u

)+ ∂y
( 2− γ − bρ

γ − 1 aρ2v
)

= −( 2− γ − 2bρ
γ − 1 aρ2

)
(∂xu+ ∂yv)

∂t
(

1
γ − 1

)+ u∂x
(

1
γ − 1

)+ v∂y
(

1
γ − 1

) = 0

∂ta+ u∂xa+ v∂ya = 0.

(36)

Clearly, in the model, the first four components are the Euler Eqs. (1) for the basic conserva-
tive fluid mixturesρ, ρu, ρv, andρE, while the remaining ones are the effective equations
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for the problem-dependent material quantities. As in the one-dimensional case, we take the
effective equations to be of the form that is viable for numerical approximation and may
therefore set the pressure from the equation of state,

p =
[
ρE − (ρu)2+ (ρv)2

2ρ
−
(
γ − bρ

γ − 1
B
)
−
(

2− γ − bρ

γ − 1
aρ2

)]/(
1− bρ

γ − 1

)
. (37)

Note again that the model has been formulated in such a way that it reduces to the usual
Euler Eqs. (1) for a single component flow.

To examine the basic solution structure of this two-dimensional model, it is instructive
to write (36) in a quasi-linear system of equations

∂tq + A(q)∂xq + B(q)∂yq = 0 (38)

with the state vectorq defined by

q =
[
ρ, ρu, ρv, ρE,

bρ

γ − 1
,
γ − bρ

γ − 1
B, 2− γ − bρ

γ − 1
aρ2,

1

γ − 1
,a

]T

and the matricesA andB given by

A(q) =



0 1 0 0 0 0 0 0 0

K − u2 u(2− 0) −v0 0 p0 −0 −0 −p0 0

−uv v u 0 0 0 0 0 0
u(K − H) H − u20 −uv0 u(0 + 1) up0 −u0 −u0 −up0 0

−ϕu ϕ 0 0 u 0 0 0 0
ϕuB −ϕB 0 0 0 u 0 0 0
−χu χ 0 0 0 0 u 0 0

0 0 0 0 0 0 0 u 0
0 0 0 0 0 0 0 0 u


and

B(q) =



0 0 1 0 0 0 0 0 0
−uv u u 0 0 0 0 0 0

K − v2 −u0 v(2− 0) 0 p0 −0 −0 −p0 0

v(K − H) −uv0 H − v20 v(0 + 1) vp0 −v0 −v0 −vp0 0

−ϕv 0 ϕ 0 v 0 0 0 0

ϕvB 0 −ϕB 0 0 v 0 0 0
−χv 0 χ 0 0 0 v 0 0

0 0 0 0 0 0 0 v 0
0 0 0 0 0 0 0 0 v


.

Recall that0, H, ϕ, andχ represent the same physical quantities as those described in
Section 3.1, and hereK =0(u2+v2)/2. It is easy to show that the spectrum of the matrices
A andB are

3A = diag(λ1, λ2, . . . , λ9) = diag(u− c, u, u+ c, u, . . . ,u)
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and

3B = diag(µ1, µ2, . . . , µ9) = diag(v − c, v, v + c, v, . . . , v),

respectively, with the corresponding set of eigenvectors

RA = (r1, r2, . . . , r9) =



1 1 1 0 0 0 0 0 0
u− c u u+ c 0 0 0 0 0 0
v v v 1 0 0 0 0 0

H − uc 1
2(u

2+ v2) H + uc v −p 1 1 p 0

ϕ 0 ϕ 0 1 0 0 0 0

ϕB 0 ϕB 0 0 1 0 0 0
χ 0 χ 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


and

RB = (ω1, ω2, . . . , ω9) =



1 1 1 0 0 0 0 0 0
u u u 1 0 0 0 0 0

v − c v v + c 0 0 0 0 0 0

H − vc 1
2(u

2+ v2) H + vc u −p 1 1 p 0

ϕ 0 ϕ 0 1 0 0 0 0

ϕB 0 ϕB 0 0 1 0 0 0
χ 0 χ 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


,

whereArk = λkrk and Bωk = µkωk. With this, it is sufficient to conclude that (38), and
hence (36), are hyperbolic in the sense that any linear combination of the matricesA andB
given above is assumed to have real eigenvalues and a complete set of eigenvectors for each
physically relevant value of the state variablesq located in the region of thermodynamic
stability.

For the convenience of the latter reference, we write (36) to a more compact expression
by

∂tq + f (∂x,q)+ g(∂y,q) = 0 (39)

with f andg taken to be the vector-value functions of the following form:

f =
[
∂x(ρu), ∂x(ρu2+ p), ∂x(ρuv), ∂x(ρEu+ pu), ∂x

(
bρ

γ − 1
u

)
,

∂x

(
γ − bρ

γ − 1
B
)
−
(
γB
γ − 1

)
∂xu, ∂x

(
2− γ − bρ

γ − 1
aρ2u

)
+
(

2− γ − 2bρ

γ − 1
aρ2

)
∂xu,

u∂x

(
1

γ − 1

)
, u∂xa

]T
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and

g =
[
∂y(ρv), ∂y(ρuv), ∂y(ρv

2+ p), ∂y(ρEv + pv), ∂y

(
bρ

γ − 1
v

)
,

∂y

(
γ − bρ

γ − 1
B
)
−
(
γB
γ − 1

)
∂yv, ∂y

(
2− γ − bρ

γ − 1
aρ2v

)
+
(

2− γ − 2bρ

γ − 1
aρ2

)
∂yv,

v∂y

(
1

γ − 1

)
, v∂ya

]T

.

Clearly, the functionsf andg defined above reduce to the standard flux functions for a
single component flow.

4.2. Wave Propagation Methods

To compute approximate solutions of (36) numerically for practical multicomponent
problems, we employ a two-dimensional generalization of the high-resolution wave prop-
agation method. In this method, waves obtained from solving one-dimensional Riemann
problems in the directions normal and tangential to each cell interface are used to update
the solutions in neighboring cells. As in the one-dimensional case, see Section 3.3.2, we
introduce slopes and limiters to achieve a high resolution of results.

For simplicity, we describe the method on a uniform Cartesian grid with fixed mesh
spacing1x and1y in thex- andy-direction, respectively; see [35, 41] for a more general
discussion of the method when applied to an unstructure and time-varying grid. As before,
we use a finite-volume formulation in which the valueQn

i j approximates the cell average
of the solution over the(i, j )th grid cell at timetn,

Qn
i j ≈

1

1x1y

∫
Äi j

q(x, y, tn) dx dy.

HereÄi j denotes the rectangular region occupied by the grid cell(i, j ).

4.2.1. First order method.To demonstrate the basic idea, consider the interface between
cells (i −1, j ) and(i, j ) as illustrated in Fig. 6, for example. We solve the one-dimensional

FIG. 6. First order wave propagation method. (a) Normal wave propagation, a case with the Riemann problem
solution in thex-direction is shown,λl > 0. (b) Transverse wave propagation, a case with the splitting of thel th
wave shown in (a) in they-direction. Only themth subwave is plotted,µm > 0. The cell averages affected by the
shaded region of the wave are updated. Note for convenience we have drawn the graph with1x = 1y = h.
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Riemann problem normal to this face, which in this case will be

∂tq + f (∂x,q) = 0,

with initial data given byQn
i−1, j and Qn

i j . If we use the shock-only Riemann solver as
described in Section 3.2.1, we again find the solution consisting of three discontinuities
propagating at constant speeds, and the jump across each discontinuity is the difference
between the state variables to the left and right of the discontinuity; see Fig. 2 for the
typical structure of the solution and (25a) and (25b) for the mathematical expression of
the solutions. Note that in the current case of the Riemann problem solution the particle
velocity in they-direction is advanced in a passive manner along theλ2 family (cf. [23]).
With this type of Riemann solver we have the usual splitting of jumps into waves:

1q = Qn
i j − Qn

i−1, j =
3∑

m=1

Wm.

Alternatively, we may also use the Roe solver for the solution of the Riemann problem;
see Section 3.2.2. In this case, based on the solution of the linear problem (38) in the
x-direction,

∂tq + Â
(
Qn

i j , Qn
i−1, j

)
∂xq = 0,

we obtain the propagating speeds,λ1 = û− ĉ, λ2 = û, λ3 = û+ ĉ, and the jumps,W1 =
α̂1r̂1,W2 = α̂2r̂2+

∑9
k=4 α̂kr̂k,W3 = α̂3r̂3. Here the strengths across the discontinuties are

of the form

α̂2 = 1q(1) + 0̂

ĉ2

[
− û2+ v̂2

2
1q(1) + û1q(2) + v̂1q(3) −1q(4)

+ p̂
(
1q(8) −1q(5)

)+1q(6) +1q(7)
]
,

α̂3 = 1

2ĉ

[
(ĉ− û)1q(1) +1q(2) − ĉα̂2

]
, α̂1 = 1q(1) − α̂2− α̂3,

α̂4 = 1q(4) − v̂(1ρ − α̂2), α̂5 = 1q(5) − ϕ̂(1ρ − α̂2),

α̂6 = 1q(6) − ϕ̂B̂(1ρ − α̂2), α̂7 = 1q(7) − χ̂(1ρ − α̂2),

α̂8 = 1q(8), α̂9 = 1q(9),

with v̂ computed by (28) and̂c2 = 0̂[ Ĥ − (û2+ v̂2)/2+ p̂ϕ̂− ϕ̂B̂− χ̂ ]. Note that the other
averaged states appearing in the above formulae are set in the same manner as described in
Section 3.2.2.

It is clear that no matter what shock-only or Roe solver is employed to the Riemann
problem, if the wave speedλl < 0 the l th wave propagates into cell(i − 1, j ), while if
λl > 0 it propagates into cell(i, j ). In the simplest case of the wave propagation method,
i.e., a two-dimensional extension of Godunov’s method, the cell average affected by this
wave is simply updated by (λl1t/1x)Wl . Note that the quantity in parentheses is the
fraction of the cell swept out by this wave; see Fig. 6a. By computing the effect of each
wave to the cell averages, a single time step of the solution algorithm is completed.
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It is well known that Godunov’s method which we have just described has a very limited
time step restriction for stability [36]. To improve upon the algorithm, by following an
approach proposed by LeVeque [34], we introduce “transverse propagation” of these waves
in thex-direction, so that they affect the cells above or below rowj as well, based on the
propagation speeds in they-direction. We do this for each wave individually in which with
the shock-only solver we solve a Riemann problem for the equation

∂tq + g(∂y,q) = 0

and dataQL andQR just to the left and right of the wave, while with the Roe solver we use
the linear equation

∂tq + Â(QL , QR)∂yq = 0

instead. Considering thel th wave mentioned above, for example. This amounts to setting

QL = Qn
i−1, j +

l−1∑
m=1

Wm, QR = QL +Wl ,

and leads to a splitting of the wave into three pieces,

Wl = QR− QL =
3∑

m=1

Wlm,

where each subwave propagates at a speedµm in they-direction, form= 1, 2, 3. Figure 6b
shows a typical example of theµm > 0 case, where the waveWlm is used to update the cell
averages in cells(i, j ) and(i, j + 1), based on the area that the wave overlaps each cell,

Qn+1
i j := Qn+1

i j −
(
λl
1t

1x

)(
1− 1

2
µm

1t

1y

)
Wlm,

Qn+1
i, j+1 := Qn+1

i, j+1−
1

2

(
λl
1t

1x

)(
µm

1t

1y

)
Wlm.

Note that we have employed a standard initialization procedure that assigns each cell average
to its values at the previous time step,Qn+1

i j = Qn
i j for all i, j .

It should be mentioned that there exists an alternative transverse-propagation approach
based on the splitting of numerical upwind or downwind fluxes instead (cf. [37, 39, 43]).
This latter approach is often useful for a flux formulation of the wave-propagation schemes,
whenever the equations to be solved can be written in a full conservation form, such as the
single component of the Euler equations of gas dynamics. Here, because our model system
(36) is written in a quasi-conservative form, it is not convenient to use that method as a basis
for numerical approximation (cf. [60, 61] for a related work). In fact, we find it is robust
to use the method in wave-propagation form such that we are able to handle each wave in
turn and there is no need to compute fluxes and make distinction between the waves.

Undoubtedly, this modified version of Godunov’s method belongs to a class of unsplit
multidimensional upwind schemes. For a scalar problem, in particular, this approach is a
variant of the corner transport upwind method of Colella [11] in that the cell averages at the
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next time step can be interpreted as a linear combination of the neighboring cell values at
the old time with suitable weights. To make this clear (see [38] also), we consider a linear
advection equation

∂tq + u∂xq + v∂yq = 0,

with a positive particle velocity(u, v) > 0,q ∈ R, as an example. Denoteνx = u1t/1x
andνy = v1t/1y. The update of the cell average in terms of the jumps across each cell
interface, say for the case ofQn

i j shown in Fig. 6b for example, can be found by

Qn+1
i j = Qn

i j − νx

(
1− 1

2
νy

)(
Qn

i j − Qn
i−1, j

)− νy

(
1− 1

2
νx

)(
Qn

i j − Qn
i, j−1

)
− 1

2
νxνy

(
Qn

i, j−1− Qn
i−1, j−1

)− 1

2
νxνy

(
Qn

i−1, j − Qn
i−1, j−1

)
.

After a simple reorganization of terms, it can then be viewed as a sum of the transport of
the neighboring states into the cell,

Qn+1
i j = (1− νx − νy)Q

n
i j + νx(1− νy)Q

n
i−1, j + νy(1− νx)Q

n
i, j−1+ νxνy Qn

i−1, j−1,

within a time step1t (cf. Fig. 1 of [11]). For convenience, we may write the above scheme
to a more general form as

Qn+1
i j =

1∑
l=0

1∑
m=0

alm Qn
i−l , j−m,

with the coefficients defined bya00 = (1− νx − νy),a10 = νx(1− νy),a01 = νy(1− νx),
anda11 = νxνy. The method is clearly a monotone scheme and hence first-order accurate,
as long as the time step1t satisfies the CFL condition max(νx, νy) ≤ 1. It is not difficult
to show that in the case of an interface only problem with uniform pressure and particle
velocity, the pressure obtained using the method would remain in equilibrium without any
spurious oscillations near the interfaces; see [65] for the details. Concerning stability of
the full nonlinear system (36), it is observed numerically that the method is stable and
convergent under mesh refinement provided that the waves in the method affect only the
cells adjacent to the interface during the time step; see Section 4.3 for numerical examples.

4.2.2. High resolution corrections.To achieve high resolution, we begin by looking at
the Taylor series expansion of the state vectorsq(x, y, t +1t) at timet ,

q(x, y, t +1t) = q(x, y, t)+1t∂tq(x, y, t)+ 1

2
(1t)2∂t tq(x, y, t)+ · · ·

= q(x, y, t)−1t (A∂xq + B∂yq)(x, y, t)+ 1

2
(1t)2

[
∂x
(

A2∂xq
)

+ ∂x(AB∂yq)+ ∂y(B A∂xq)+ ∂y
(
B2∂yq

)]
(x, y, t)+ · · · ,

where with the aid of (38) we have replaced the time derivatives∂tq and ∂t tq by the
respective spatial derivatives. Clearly, from the basic local truncation error analysis, to
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FIG. 7. High-resolution wave propagation methods. (a) Normal propagation of the correction wave, a case
with λl > 0 is shown. (b) Transverse propagation of correction wave, a case with the splitting of thel th wave
shown in (a). Only themth subwave is plotted,µm> 0. The piecewise-linear wave form in dashed lines is the ini-
tial location of the correction wave before propagation. The cell averages affected by the correction wave are
updated by the volume of the interaction between the wave and grid cell.

achieve second-order accuracy of the method, we need to include an approximation to the
O(1t2) term:

∂t tq = ∂x
(

A2∂xq
)+ ∂x(AB∂yq)+ ∂y(B A∂xq)+ ∂y

(
B2∂yq

)
.

In pursuit of implementing this efficiently, it turns out that the transverse-wave splitting
method described in Section 4.2.1 has already given a way to approximate the terms:
∂x(AB∂yq) and ∂y(B A∂xq) (cf. [37]). Thus, to achieve full second-order accuracy, we
need only add in the∂x(A2∂xq) and ∂y(B2∂yq) terms to the method. By following the
one-dimensional case, one standard procedure is to first introduce correction waves in a
piecewise-linear form, propagate the wave normal to the interface over the time step1t ,
and then update the cell averages it overlaps.

Consider thel th wave shown in Fig. 7a, for example. The corrections are accomplished
by the updates

Qn+1
i j := Qn+1

i j +
1

2

(
|λl |1t

1x

)(
1− |λl |1t

1x

)
Wl ,

Qn+1
i−1, j := Qn+1

i−1, j −
1

2

(
|λl |1t

1x

)(
1− |λl |1t

1x

)
Wl ,

where the factors multiplyingWl are simply the fractions of each cell that are overlapped
by the correction wave. In practice, the strength of each wave is limited using a “slope-
limiter” [70], and so eachWl in the above correction is replaced by a limited valueW̃ l ; see
Section 3.3.2 for the details.

It should be noted that we may improve upon the method further (although it is still
second-order accurate) by introducing transverse propagation of correction waves as well.
In this instance, theWlm (see Section 4.2.1) is used to update cell averages wherever it is
affected; see Fig. 7b. The updates are

Qn+1
i j := Qn+1

i j +
1

2

(
|λl |1t

1x

)(
1− |λl |1t

1x

)(
1− |µm|1t

1y

)
Wlm,

Qn+1
i−1, j := Qn+1

i−1, j −
1

2

(
|λl |1t

1x

)(
1− |λl |1t

1x

)(
1− |µm|1t

1y

)
Wlm,



A FLUID-MIXTURE ALGORITHM FOR VAN DER WAALS GAS 73

Qn+1
i, j+1 := Qn+1

i, j+1+
1

2

(
|λl |1t

1x

)(
1− |λl |1t

1x

)(
|µm|1t

1y

)
Wlm,

Qn+1
i−1, j+1 := Qn+1

i−1, j+1−
1

2

(
|λl |1t

1x

)(
1− |λl |1t

1x

)(
|µm|1t

1x

)
Wlm.

It can be shown that when handling all the correction waves in this way, we have a consistent
approximation to the third order termsB A2∂xxyq andAB2∂yyxq; see [38] for a detailed anal-
ysis to a scalar problem. Based on various numerical evidences, we find that this modified
method with transverse propagation of correction waves works slightly better than that with
normal propagation of the waves (judging from how the symmetry of the solution structure
is preserved, for example). Hence, the high-resolution results present in Section 4.3 use
exclusively the transverse-propagation version of the method for experiments.

4.3. Numerical Results

We now present some sample results obtained using our multicomponent algorithm with
the Roe solver described in Section 4.2. It is our purpose to demonstrate the effectiveness
of our algorithm for a reasonable class of problems of practical importance.

EXAMPLE 4.3.1. We begin by considering an interface only problem where the solution
consists of a circular gas bubble evolving in a liquid with uniform equilibrium pressure
p0 = 105 Pa and constant particle velocity(u0, v0) = (103 m/s, 103 m/s). Inside the bubble
of radiusr0 = 0.16 m, the fluid is a van der Waals gas with

(ρ, γ,a, b)r≤r0 = (50 kg/m3, 1.4, 5 Pa m6/kg, 10−3 m3/kg),

while outside the bubble, the fluid is a liquid modeled by a stiffened gas with

(ρ, γ,B)r>r0 = (103 kg/m3, 4.4, 6× 108 Pa).

Herer =
√
(x − x0)2+ (y− y0)2 is the distance from a point(x, y) in a unit square domain

to the center of the bubble(x0, y0) = (1/4 m, 1/4 m).
Results obtained using the high-resolution version of the method with a 100× 100 grid

are shown in Fig. 8, where the 2D contours of the density, 3D surface plot of pressure, and the
cross-section plot of the density and pressure alongx = y are presented at timet = 360µs.
From the displayed profiles, it is easy to observe good agreement of the numerical solutions
as compared with the exact results. Notice that the computed pressure remains in the correct
equilibrium statep0 (to be more accurate, the difference of these two is only on the order
of machine epsilon), without any spurious oscillations near the bubble interface. Moreover,
the bubble retains its circular shape and appears to be very well located also.

EXAMPLE 4.3.2. We are next concerned with a radially symmetric problem such that
the computed solution in two dimensions can be compared to the one-dimensional results
for numerical validation. We use the following set of two-phase (liquid–gas) flow data for
experiments in which, in the gas phase, the state variables are

(ρ, p, γ,a, b)r≤r0 = (1250 kg/m3, 109 Pa, 1.4, 1 Pa m6/kg, 10−4 m3/kg),

while in the liquid phase they are

(ρ, p, γ,B)r>r0 = (103 kg/m3, 105 Pa, 4.4, 6× 108 Pa),
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FIG. 8. High-resolution results for an interface-evolving problem at timet = 360µs. (a) Contour plot of the
density. (b) Surface plot of the pressure. (c) Cross-sectional plots of density and pressure along linex= y. The
solid line in the cross-sectional plot is the exact solution, and the dotted points are the numerical results. The
dashed line in the density contour plot is the initial location of the gas bubble at timet = 0.

wherer 2 = x2 + y2 andr0 = 1/5 m. Initially both the gas and liquid are in a stationary
position, but due to the pressure difference between the fluids, breaking of the circular
membrane atr0 occurs instantaneously. For this problem, the resulting solution consists
of an outward-going shock wave in liquid, an inward-going rarefaction wave in gas, and a
contact discontinuity lying in between that separates the gas and the liquid. We note that
because of the geometric symmetry of the solution, for simplicity, we only take a quarter of
the unit square domain, i.e.,(x, y)∈ ([0, 1/2]×[0, 1/2])m2, and apply the line of symmetry
boundary conditions to the bottom and the left boundaries during the computation.

In Fig. 9, we show numerical results for the density, radial velocity (defined asū =√
u2+ v2), and pressure at timet = 120µs, where the test has been carried out by using

a 200× 200 grid with the high-resolution method. Clearly, from Fig. 9a, we observe good
resolution of the wave pattern (i.e., both the shock and interface remain circular and appear
to be very well located) after the breaking of the membrane. Note that there are little wiggles
on the contours of̄u near thex- andy-axis which signifies grid-alignment effects with the
use of the Roe solver (cf. [42] for a similar problem in astrophysics). It should be mentioned
that this type of error is already present when the problem is solved by using the first order
method (not shown). However, we obtain a better result while performing the test as in
Fig. 9 with the shock-only Riemann solver; see Fig. 10. Here the dashed line shown in the
figure is the approximate location of the interface.
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FIG. 9. High-resolution results for a radially symmetric problem at timet = 120µs. (a) Contours of the
density, radial velocity, and pressure. (b) Scatter plots ofρ, ū, andp with locations measured at a distance from
the cell center to the origin. The solid line in the scatter plot is the “true” solution obtained from solving the
one-dimensional model with appropriate source terms for the radial symmetry using the high-resolution method.
The dotted points are the two-dimensional result. The dashed line shown in the figure is the approximate location
of the interface.

The scatter plots shown in Fig. 9b provide the validation of our two-dimensional results
as in comparison with the “true” solution obtained from solving the one-dimensional model
with appropriate source terms for the radial symmetry, using the high-resolution method
with a 1000 mesh points. That is, for the equation, we have a modified version of the one-
dimensional model (13) as

∂tq + f (∂r ,q) = ψ(q) (40)

with f a vector-value function defined by

f =
[
∂r (ρu), ∂r (ρu2+ p), ∂r (ρEu+ pu), ∂r

(
bρ

γ − 1
u

)
,

∂r

(
γ − bρ

γ − 1
B
)
−
(
γB
γ − 1

)
∂r u, ∂r

(
2− γ − bρ

γ − 1
aρ2u

)
+
(

2− γ − 2bρ

γ − 1
aρ2

)
∂r u,

u∂r

(
1

γ − 1

)
, u∂xa

]T

and ψ the source term derived directly from the geometric simplification of a
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FIG. 10. Results for the same run as performed in Fig. 9 but obtained by using the shock-only Riemann solver
to the method.

multidimensional flow to a one-dimensional one,

ψ = −κ
r

[
ρu, ρu2, ρEu+ pu,

bρ

γ − 1
u,
−bρ

γ − 1
Bu,

4− 2γ − 3bρ

γ − 1
aρ2u, 0, 0

]T

.

Note that here the source term is constructed in such a way that (40) reduces to a typical quasi-
one-dimensional model for single-component flows [45], when there is no jump on each of
the material-dependent quantitiesγ,a, b, andB across the interfaces. In the case of a 2D
radially or 3D spherically symmetric flow, we have the quantityκ = 1 or 2, respectively;u
now denotes the particle velocity in ther - (radial) direction. We use a Strang-type time split-
ting procedure to deal with the geometric sources of (40) in a high-resolution manner[67].

A more detailed study of the solutions under mesh refinement may be found in [65]
for a simpler case with the Tait equation of state for the liquid and the constant covolume
equation of state for the gas. In that reference, extensions of our two-dimensional model to
cases with geometric and gravitational sources are briefly discussed also.

EXAMPLE 4.3.3. To show how our algorithm works on shock waves, we consider the
simulation of a shock wave in liquid over a gas bubble. The aim of the test performed here
is twofold: the first is to further validate convergence of the computed solutions obtained
using our multicomponent algorithm to the correct weak ones, and the second is to provide
an example that shows the feasibility of the algorithm as applied to practical problems.
We note that this problem is of practical importance to many applications in sciences and
engineering (see [6, 8, 16] and references therein for more information).

To set up the test, we take a vertical shock tube of size [0, 1]× [−0.2, 1] m2 and consider
a planarly downward-moving Mach 1.422 shock wave in liquid with data in the preshock
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state as

(ρ, u, v, p)(l)preshock= (103 kg/m3, 0, 0, 105 Pa),

and data in the postshock state as

(ρ, u, v, p)(l)post-shock= (1.23× 103 kg/m3, 0,−432.69 m/s, 109 Pa).

The equation of state parameters we employed for the liquid are the same as before; namely,
γ = 4.4 andB = 6×108 Pa. In addition to the shock wave, we assume there is a stationary
gas bubble of radiusr0 = 1/5 m located at(x0, y0) = (1/2 m, 1/2 m) just below the shock
and that is about to interact with the shock; see Fig. 11 for an illustration. Inside the gas

FIG. 11. High-resolution results for a planar Mach 1.422 shock wave in liquid over a gas bubble. Contours of
ρ, p, andY (volume fraction of the gas) are shown at five different times;t = (1, 2, 3, 4, 5) · 102 µs. The circular
dashed line appearing in the plots is the initial location of the interface.
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FIG. 12. Cross-sectional plots of the results for the run shown in Fig. 11 alongx = 1/2 m.

bubble, the state variables are assigned by

(ρ, p, γ,a, b)(g) = (1.2 kg/m3, 105 Pa, 1.4, 10−3 m3/kg, 5 Pa m6/kg).

Note that because of the large pressure jump across the shock wave and also the large ratio
of the acoustic impedances of the liquid to gas,(ρc)(`)/(ρc)(g)≈ 3965, this is a harder
problem to solve in practice.

Figures 11 and 12 show high-resolution results of a sample run using a 200× 240 grid.
From Fig. 11, reasonable resolutions of the solution structure (i.e., the distortion of the gas
bubble and the somewhat complicated wave patterns after the passage of the shock to the
bubble) are obtained by using the algorithm where contours ofρ, p, andY (volume fraction
of the gas, introduced in the computation for monitoring the evolution of the gas bubble) are
presented at five different times,t = (1, 2, 3, 4, 5) ·102 µs; see [17, 25, 57, 60] for a similar
test of the problem. The cross-section of the results for the same run along linex= 1/2 m
is drawn in Fig. 12, giving some quantitative information about the density, pressure, and
temperature at the selected times.

To check the correctness of the computed solutions, Fig. 13 shows results of a convergence
study ofρ, p, andT along linex = 1/2 m, at the final stopping timet = 500µs. Noting
the sensible convergence behavior of the solution profiles under mesh refinement, where
we have used a grid sequence, 2i (100× 120) for i = 0, 1, 2, for the test. See [65] for a
preliminary result of the problem over an array of gas bubbles.
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FIG. 13. A convergence study ofρ, p, and T for a planar Mach 1.422 shock wave in liquid over a gas
bubble. The test is performed by using a high-resolution version of the method with three different grid systems:
2i · (100×120), i = 0, 1, 2. Only the cross-sectional solutions alongx = 1/2 m at timet = 500µs are presented.

5. SLIP LINE PROBLEMS AND CORRECTIONS

Motivated by the work of Saurel and Abgrall [60] on slip lines (i.e., a contact discontinuity
with jumps on the tangential velocities) for multicomponent problems, we now examine
how our two-dimensional algorithm works for such a class of problems.

5.1. Preliminary

We begin by considering a simple numerical test in which the solution is a plan interface
moving vertically byu0= 103 m/s in thex-direction that separates the tangential velocities
vL =−5× 103 m/s on the left andvR= 103 m/s on the right of the interface. For convenience,
we use the same two-phase flow setup as in Example 3.4.1 where the pressure is uniform
with p0 = 105 Pa in a two-dimensional shock tube of size [0, 1]× [0, 1/10] m2 and the
fluid is a gas and liquid on the left and right of the interface, respectively. Note that this is
a different kind of interface only problem that exists only in multiple space dimensions.

For this problem, we do the test using the first order wave propagation method with the
Roe solver as usual; see Section 4.2. Results of a sample run with a 200×20 grid are shown
in Fig. 14 at timet = 360µs. From the figure, large errors in both the pressure and particle
velocity in thex-direction are clearly seen. Carrying out more tests to the problem, we find
that these errors remain at about the same order of magnitude as the mesh is refined and
become even erroneous when a high-resolution method is employed instead. We note that
this observation of the error is true also when we solve the problem using the shock-only
Riemann solver. In fact, by following a similar analysis to that conducted in [60], we may
explain the observed error behavior as being the failure to approximate the kinetic energy
in the tangential direction,K(t) = ρv2/2, consistently by the method. Because of this, the
pressure computed via (37) would not yield the accurate result that is in equilibrium with
p0 = 105 Pa. Note that this is a difficult problem to solve in practice and is even so in the
single component case of the problem; see [80] for a general remark on numerical errors
which occurred in this class of problem with Godunov-type schemes.

For this model slip line problem, analogously to the work done in [60], it is easy to
improve upon the result by solving an extended one-dimensional system that combines the
x-sweep of our two-dimensional model,∂tq + f (∂x,q)= 0, see (36), with an additional
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FIG. 14. Preliminary results for a model slip line problem at timet = 360µs; the first order method with the
multicomponent model (36). The solid line is the exact solution and the points show the computed solution with
a 200× 20 grid; only the solution along the cross-section ofy = 1/20 m is presented.

transport equation for the tangential kinetic energyK(t),

∂tK(t) + ∂x
(
K(t)u

) = 0. (41)

Note that we have taken the above equation to be of the form that works even for shock and
rarefaction waves as well. Rather than computing the pressure based on (37), which incurs
large errors as shown in Fig. 14, here we use the following modified version,

p =
[
ρE − (ρu)2

2ρ
−K(t) −

(
γ − bρ

γ − 1
B
)
−
(

2− γ − bρ

γ − 1
aρ2

)]/(
1− bρ

γ − 1

)
, (42)

with K(t) set by the solution of (41). Note that in the current slip line problem it is not dif-
ficult to show the inconsistency of the numerical solutionK(t) 6= (ρv)2/(2ρ). Numerical
results present in Fig. 15 indicate that with the correction ofK(t) to (42) this is a good
approach without introducing any artificial oscillations inp andu, when performing the
same test as in Fig. 14 with both the first order and high-resolution wave propagation
methods. Observing the displayed profiles, the other components of the solutions are well
behaved also.

It should be noted that no propagation of transverse waves and the solutions of the system
in the y-direction,∂tq + g(∂y,q) = 0, have been included in the above computation. This
is eligible to do for this problem which is one-dimensional in nature. The Roe solver of this
extended system can be derived quite easily as in Sections 3.2.2 and 4.2 and has been used
to produce the results present in Fig. 15.

To further test the above corrected algorithm with the improvement ofK(t) in the
x-direction, we are next concerned with a two-phase liquid–gas Riemann problem studied
by Saurel and Abgrall [60] in which the solution is composed of a leftward going rarefac-
tion wave, a rightward going slip line, and a (weak) shock wave in front of the slip line. In
this problem, we take the same initial data as concerned previously in Example 3.4.2, but
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FIG. 15. Improved results of the test performed in Fig. 14; methods with thex-sweep of our two-dimensional
model, ∂t q+ f (∂x,q)= 0, and the additional equation for the tangential kinetic energy (41). Results using
(a) the first order wave propagation method and (b) the high-resolution wave propagation method. The Roe
solver is employed to the computations.

impose additionally tangential velocitiesvL = 103 m/s on the left andvR = −5× 103 m/s
on the right of the interface. The computational domain is again a two-dimensional shock
tube of size [0, 1]× [0, 1/10] m2. Surely, the region in they-direction is also redundant for
this problem.

Figure 16 shows results for a run obtained using the high-resolution method with a
200× 20 grid up to timet = 240µs, where the cross-section plots ofρ, u, v, andp along
y = 1/20 m are presented at the final stopping time. From the displayed graphs, despite the
slight overshoot inρ and undershoot inp at the tail of the rarefaction wave, see Fig. 4 also,
we clearly observe the correct behavior of the computed slip line and also the rarefaction
and shock waves as in comparison with the exact solution. We note that without using (42),
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FIG. 16. High-resolution results for the Saurel–Abgrall liquid–gas Riemann problem at timet = 240µs. The
solid line is the exact solution and the points show the computed solution with a 200× 20 grid; only the solution
along the cross-section ofy = 1/20 m is presented.

the computed pressure obtained from (37) would become negative (which is nonphysical
in the current case) within the first few time steps of the program execution. See [60] for
the results of a similar calculation, where a MUSCL-type scheme is employed to solve the
problem with the zero van der Waals gas constants:a = 0 andb = 0.

5.2. An Improved Multidimensional Algorithm

More generally, to be able to deal with multidimensional slip lines, shocks, and rarefaction
waves at the same time, we should use the full set of the model system (36) and include
suitable equations or schemes for the computation of the tangential kinetic energies in the
x- and y-directions, respectively, yielding the accurate value for the pressure (cf. [60]).
Since the numerical method we have described in Section 4.2 is an unsplit one, after various
unsuccessful attempts to generalize the approach proposed in Section 5.1, it turns out to be
most convenient to implement the method based on the shock-only Riemann solver with
an additional update to the total kinetic energyK= ρ(u2 + v2)/2 from the jumps of the
Riemann problem solution across the waves. Note that like the update of the state variables
Qn

i j to the solutions of (36), in our wave propagation method, there is no problem to compute
the new value ofKn

i j independently over a time step1t by the scheme. In fact, it is not
difficult to show that the method reduces essentially to the scheme proposed in Section 5.1
for one-dimensional slip line problems, when the shock-only Riemann solver is employed
there. When the update step of bothQn

i j andKn
i j is done, we may compute the pressure

from the further revised formula of (42),

pn+1
i j =

[
ρE −K −

(
γ − bρ

γ − 1
B
)
−
(

2− γ − bρ

γ − 1
aρ2

)]n+1

i j

/(
1− bρ

γ − 1

)n+1

i j

, (43)

that is typically more accurate than simply employing (36) and (37) to the slip line problems
(see comments and results shown below). Of course, in case there is not any strong shear flow
moving along the interface, such as for a radially symmetric flow considered in Section 4.3,
numerical results obtained using these two different approaches would be quite similar,
where the solution ofK by the improved algorithm is approximately equal to [(ρu)2 +
(ρv)2]/(2ρ) obtained from using the solutions of the basic conservation laws.

It should be mentioned that because the transfer of the energy between the kinetic and
potential energies is governed implicitly by the conservation law of the total energy, in the
general multidimensional case, we thus do not have a model equation for the motion of the
total kinetic energy explicitly. For this reason, it is not clear at all how to form a linear system
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of the governing equations and use the Roe solver as a basis to the current formulation of the
scheme. Notably, this is a problem that we will work on in the future to develop an unsplit
multicomponent algorithm for slip lines with a simpler approximate Riemann solver; this
may not be an easy task, however. Two sample calculations are performed below to show
the usefulness of the improved algorithm for slip line problems.

EXAMPLE 5.2.1. As a first example, we consider a two-dimensional Reimann problem in
which the initial condition is composed of four slip lines with the data in the four quadrants
given by

(ρ, u, v, p)1 = (ρ0, u0,−v0, p0), (ρ,u, v, p)2 = (2ρ0, u0, v0, p0),

(ρ, u, v, p)3 = (ρ0,−u0, v0, p0), (ρ,u, v, p)4 = (3ρ0,−u0,−v0, p0),

whereρ0= 103 kg/m3, u0= 103 m/s, v0= 7× 102 m/s, andp0= 1 GPa. In this prob-
lem, the fluid in the first and third quadrants is a gas withγ = 1.4,a= 1 Pa m6/kg, and
b= 10−4 m3/kg, while the fluid in the second and fourth quadrants is a liquid withγ = 4.4
andB= 6×108 Pa; the domain is a unit square. We note that this problem is a multicompo-
nent version of a case studied by Schulz-Rinneet al.where after breaking the membranes the
slip lines spiral around its center in a clockwise manner forming an interesting vortex-like
structure (Fig. 9 of [62]).

In Fig. 17, we present high-resolution results obtained using a 200× 200 grid and the
improved method with the update of the total kinetic energy at timet = 150µs. From the
contours of the displayed quantities such as the density, particle velocities in thex- and
y-direction, and pressure, we observe the very nice spiral structure of the computed so-
lutions, without any artificial fluctuations near the slip lines. The cross-sectional plots of
ρ, u, v, and p for the same run along the linex= 1− y are shown in Fig. 18 where the
solid line is the fine grid solution with a 400× 400 grid. We see good agreement between
the two solutions.

FIG. 17. High resolution results for a two-dimensional Riemann problem, a slip-lines only case. The result
is obtained using a 200× 200 grid and the improved method with the update of the total kinetic energy. Contours
of the solutions for (a) density, (b) particle velocity in thex-direction, (c) particle velocity in they-direction, and
(d) pressure are shown at timet = 150µs.
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FIG. 18. Cross-sectional plots ofρ, u, v, andp for the same run shown in Fig. 17 alongx = 1− y. The solid
line is the fine grid solution with a 400× 400 grid.

EXAMPLE 5.2.2. Our second example is again a two-dimensional Riemann problem, but
with a different set of data where the state in the first quadrant is connected to the second and
fourth quadrants by a 1-shock moving leftward and downward of thex- andy-directions,
respectively. The state in the third quadrant is connect to the second and fourth quadrants
by a slip line, however. This problem is a variant of a run considered in Fig. 12 of [62]
where the interaction at the corner leads to a simple Mach reflection similar to what is seen
in various shock reflections from boundaries. The data we use for the test are given by

(ρ, u, v, p)1 = (ρ̄, ū, ū, 3p0), (ρ,u, v, p)2 = (ρ0, u0, ū, p0),

(ρ, u, v, p)3 = (0.8ρ0, ū, ū, p0), (ρ,u, v, p)4 = (ρ0, ū, v0, p0),

whereρ0= 1 kg/m3, u0= v0= 0, p0= 105 Pa, and ¯ρ= 2.1 kg/m3, ū= 324.28 m/s for a
Mach 1.65 shock wave. In this problem, with the exception that the fluid in the third
quadrant is a polytropic gas withγ = 1.67, the fluid in the other quadrants is a constant
covolume gas withγ = 1.4 andb= 10−3 m3/kg.

We perform a similar test as in Example 5.2.1 using the improved high-resolution method,
but with a finer 400× 400 grid for checking convergence of the solutions. Results of a sample
calculation at timet = 800µs are shown in Figs. 19 and 20. From the contours of the

FIG. 19. High resolution results for a two-dimensional Riemann problem, a case with simple Mach reflection.
The result is obtained using a 400× 400 grid and the improved method with the update of the total kinetic energy.
Contours of the solutions for (a) density, (b) particle velocity in thex-direction, (c) particle velocity in the
y-direction, and (d) pressure are shown at timet = 800µs.
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FIG. 20. Cross-sectional plots ofρ, u, v, andp for the same run shown in Fig. 19x = y.

plot, we observe sharp resolution of the primary shock waves and good behavior of the
slip lines. The cross-sectional plots ofρ, u, v, andp for the same run along the linex= y
provide an example of the basic structure of the solutions quantitatively. A detailed study
of the algorithm to more general unstable interface problems such as the Kelvin–Helmholtz
and Rayleigh–Taylor instabilities will be reported elsewhere in the future.

6. CONCLUSIONS

We have described an extension of a simple interface-capturing approach originally
developed for compressible multicomponent flows with a stiffened gas equation of state to
the more general case of a van der Waals-type fluid in more than one space dimension. The
algorithm uses a mixture-type of the model equations written in a quasi-conservative form
to ensure a consistent approximation of the energy equation near the interfaces where two or
more fluid components are present in a grid cell. A standard high-resolution method based
on the wave propagation formulation is employed to solve the proposed system, giving an
efficient implementation of the algorithm. Numerical results present in the paper show that
this is a viable approach in both one and two dimensions as applied in the method with
the Roe solver to practical problems without introducing any spurious oscillations in the
pressure near the interfaces.

To deal with a difficult slip line problem where there is a strong shear flow moving along
the interface, we implement the two-dimensional method based on a shock-only Riemann
solver with an additional update by the scheme to the total kinetic energy. Substituting the
resulting kinetic energy to the formula for the pressure yields typically more accurate results
than the uncorrected method near slip lines.

Ongoing work is to further improve upon efficiency and resolution of the algorithm by
combining an adaptive mesh refinement and front tracking technqiues (cf. [4, 5, 40, 41])
to the existing computer program. Direct numerical simulation of practical problems such
as the sonoluminescence model, the water-splashed problem, and shock waves in bubbly
liquids will be considered in the future. Generalization of the algorithm to a more general
equation of state such as the one appeared in [27, 28] will be looked at also.
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33. R. Löfstedt, B. P. Barber, and S. J. Putterman, Toward a hydrodynamic theory of sonoluminescence,Phys.
Fluids A5, 2911 (1993).

34. R. J. LeVeque, High resolution finite volume methods on arbitrary grids via wave propagation,J. Comput.
Phys.78, 36 (1988).

35. R. J. LeVeque, Hyperbolic conservation laws and numerical methods, in Von Karman Institute for Fluid
Dynamics, 1990. Lecture series on computational fluid dynamics 1990–1993.

36. R. J. LeVeque,Numerical Methods for Conservation Laws, second ed. (Birkh¨auser, Basel, 1992).

37. R. J. LeVeque, Simplified multi-dimensional flux limiter methods, inNumerical Methods for Fluid Dynamics,
edited by M. J. Baines and K. W. Morton (Oxford University Press, Oxford, 1993), p. 175.

38. R. J. LeVeque, High-resolution conservative algorithms for advection in incompressible flow,SIAM J. Numer.
Anal.33, 627 (1996).

39. R. J. LeVeque, Wave propagation algorithms for multi-dimensional hyperbolic systems,J. Comput. Phys.
131, 327 (1997).

40. R. J. LeVeque and K.-M. Shyue, One-dimensional front tracking based on high resolution wave propagation
methods,SIAM J. Sci. Comput.16, 348 (1995).

41. R. J. LeVeque and K.-M. Shyue, Two-dimensional front tracking based on high resolution wave propagation
methods,J. Comput. Phys.123, 354 (1996).

42. R. J. LeVeque and R. Walder, Grid alignment effects and rotated methods for computing complex flows
in astrophysics, inNotes on Numerical Fluid Mechanics, edited by J. B. Vos, A. Rizzi, and I. L. Ryhming
(Vieweg, Wiesbaden, 1992), Vol. 35.

43. R. L. LeVeque, CLAWPACK: A software package for solving multi-dimensional conservation laws, inProc.
5th Intl. Conf. Hyperbolic Problems(World Scientific, Singapore, 1996), p. 188.

44. D. R. Lide,Handbook of Chemistry and Physics, 76th edition (CRC Press, Boca Raton, FL, 1996).

45. H. W. Liepmann and A. Roshko,Elements of Gas Dynamics(Wiley, New York, 1956).

46. X.-D. Liu, R. P. Fedkiw, and S. Osher,A Quasi-Conservative Approach to the Multiphase Euler Equations
without Spurious Pressure Oscillations, CAM Report 98-11 (UCLA, 1998).

47. S. P. Marsh,LASL Shock Hugoniot Data(University of California Press, Berkeley, 1980).

48. R. G. McQueen, S. P. Marsh, J. W. Taylor, J. N. Fritz, and W. J. Carter, The equation of state of solids from
shock wave studies, inHigh Velocity Impact Phenomena, edited by R. Kinslow (Academic Press, San Diego,
1970).

49. R. Menikoff and B. Plohr, The Riemann problem for fluid flow of real materials,Rev. Mod. Phys.61, 75
(1989).

50. G. H. Miller and E. G. Puckett, A high order Godunov method for multiple condensed phases,J. Comput.
Phys.128, 134 (1996).

51. F. D. Murnaghan,Finite Deformation of an Elastic Solid(Wiley, New York, 1951).

52. H. Nagoya, T. Obara, and K. Takayama, Underwater shock wave propagation and focusing in inhomogeneous
media, inProceedings of 19th Intl. Symp. on Shock Waves, Marseilleedited by R. Brun and L. Z. Dumitrescu
(Springer-Verlag, Berlin, 1995), p. 439.

53. R. I. Nigmatulin,Dynamics of Multiphase Media(Hemisphere, New York, 1991).

54. E. S. Oran and J. P. Boris,Numerical Simulation of Reactive Flow(Elsevier, New York, 1987).

55. B. J. Plohr, Shockless acceleration of thin plates modeled by a tracked random choice method,AIAA Journal
26, 470 (1988).

56. J. J. Quirk, A contribution to the great Riemann solver debate,Intl. J. Numer. Meth. Fl.18, 555 (1994).

57. J. J. Quirk and S. Karni, On the dynamics of a shock-bubble interaction,J. Fluid Mech.318, 129 (1996).



88 KEH-MING SHYUE

58. P. L. Roe, Fluctuations and signals—A framework for numerical evolution problems, inNumerical Methods
for Fluid Dynamics, edited by K. W. Morton and M. J. Baines (Academic Press, San Diego, 1982), p. 219.

59. P. L. Roe, Upwind schemes using various formulations of the Euler equations, inNumerical Methods for the
Euler Equations of Fluid Dynamics, edited by F. Angrand, A. Dervieux, J. A. Desideri, and R. Glowinski
(SIAM, Philadelphia, 1985), p. 14.

60. R. Saurel and R. Abgrall, A simple method for compressible multifluid flows,SIAM J. Sci. Comput., to appear,
1999.

61. R. Saurel and R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows,
J. Comput. Phys.150, 425 (1999).

62. C. W. Schulz-Rinne, J. P. Collins, and H. M. Glaz, Numerical solution of the Riemann problem for two-
dimensional gas dynamics,SIAM J. Sci. Comput.14, 1394 (1993).

63. K.-M. Shyue, An efficient shock-capturing algorithm for compressible multicomponent problems,J. Comput.
Phys.142, 208 (1998).

64. K.-M. Shyue, A volume-of-fluid type algorithm for compressible two-phase flows, inProc. 7th Intl. Conf.
Hyperbolic Problems, edited by M. Fey and R. Jetsch (Birkh¨auser, Basel, 1998), p. 895.

65. K.-M. Shyue,An Eulerian Interface-Capturing Approach for Compressible Two-Phase Flow with van
der Waals-Type Fluids, Final report NSC87-2115-M-002-016 (National Science Council, Taiwan, R.O.C.,
1998), unpublished. [Available on the web:http://www.math.ntu.edu.tw/shyue/2phase.
ps.gz]

66. H. B. Stewart and B. Wendroff, Two-phase flows: Models and methods,J. Comput. Phys.56, 363 (1984).

67. G. Strang, On the construction and comparison of difference schemes,SIAM J. Numer. Anal.5, 506 (1968).

68. M. Sussman, A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. L. Welcome, An adaptive level set
approach for incompressible two-phase flows,J. Comput. Phys.148, 81 (1999).

69. M. Sussman, P. Smereka, and S. Osher, A level set method for computing solutions to incompressible two-
phase flow,J. Comput. Phys.114, 146 (1994).

70. P. K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws,SIAM J. Numer
Anal.21, 995 (1984).

71. M. J. Tan and S. G. Bankoff, Strong shock waves propagating through a bubbly mixture,Experiments in
Fluids2, 159 (1984).

72. H. S. Tang and D. Huang, A second-order accurate capturing scheme for 1D inviscid flows of gas and water
with vacuum zones,J. Comput. Phys.128, 301 (1996).

73. E. F. Toro, A fast Riemann solver with constant covolume applied to the random choice method,Intl. J. Numer.
Meth. in Fluids9, 1145 (1989).

74. H.-S. Tsien, One-dimensional flows of a gas characterized by van der Waals equation of state,J. Math. Phys.
Mass. Inst. Tech.25, 301 (1947).

75. S. O. Unverdi and G. Tryggvason, A front-tracking method for viscous, incompressible, multifluid flows,
J. Comput. Phys.100, 25 (1992).

76. L. van Wijngaarden, One-dimensional flow of liquids containing small gas bubbles,Ann. Rev. Fluid Mech.4,
369 (1972).

77. M. Watanabe and A. Prosperetti, Shock waves in dilute bubbly liquids,J. Fluid Mech.274, 349 (1994).

78. C. C. Wu and P. H. Roberts, A model of sonoluminescence,Proc. R. Soc. London A445, 323 (1994).

79. K. Xu, BGK-based scheme for multicomponent flow calculations,J. Comput. Phys.134, 122 (1997).

80. K. Xu and J. Hu, Projection dynamics in Godunov-type schemes,J. Comput. Phys.142, 412 (1998).

81. K. Yamada, H. Nagoya, and K. Takayama, Shock wave reflection and refraction over a two-fluid interface,
in Proceedings of 19th Intl. Symp. on Shock Waves, Marseille, edited by R. Brun and L. Z. Dumitrescu
(Springer-Verlag, Berlin, 1995), p. 299.

82. Y. B. Zel’dovich and Y. P. Raizer,Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena,
Vol. I & Vol. II (Academic Press, San Diego, 1967).


	1. INTRODUCTION
	FIG. 1.

	2. EQUATIONS OF STATE
	3. ONE SPACE DIMENSION
	FIG. 2.
	FIG. 3.
	FIG. 4.
	FIG. 5.

	4. TWO SPACE DIMENSIONS
	FIG. 6.
	FIG. 7.
	FIG. 8.
	FIG. 9.
	FIG. 10.
	FIG. 11.
	FIG. 12.
	FIG. 13.

	5. SLIP LINE PROBLEMS AND CORRECTIONS
	FIG. 14.
	FIG. 15.
	FIG. 16.
	FIG. 17.
	FIG. 18.
	FIG. 19.
	FIG. 20.

	6. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

