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A simple shock-capturing approach to multicomponent flow problems is devel-
oped for the compressible Euler equations with a stiffened gas equation of state in
multiple space dimensions. The algorithm uses a quasi-conservative formulation of
the equationsthatis derived to ensure the correct fluid mixing when approximating the
equations numerically with interfacesyAbased model and a volume-fraction model
have been described, and both of them are solved using the standard high-resolution
wave propagation method for general hyperbolic systems of partial differential equa-
tions. Several calculations are presented with a Roe approximate Riemann solver that
show accurate results obtained using the method without any spurious oscillations
in the pressure near the interfaces. Convergence of the computed solutions to the
correct weak ones has been verified for a two-dimensional Richtmyer—Meshkov un-
stable interface problem where we have performed a mesh-refinement study and also
shown front-tracking results for comparisong 1998 Academic Press

1. INTRODUCTION

Our goal is to present a simple approach to multicomponent flow of general compress
materials in more than one dimension. We use the Euler equations of gas dynamics
model system, and consider problems with the so-called “stiffened” gas equation of state
approximating materials including compressible liquids and solids [29, 50]. The algoritt
uses a quasi-conservative formulation of the equations proposed by Abgrall [1] to ens
a consistent approximation of the energy equation near the interfaces where regior
different fluid components are separated:Adased model is therefore derived that extend
the work of Abgrall [1] from polytropic gases in one dimension to a stiffened gas, and al
to multiple dimensions. We give a new formulation of the resulting model in expressi
of the volume fraction that is more robust for two-component flow problems. This will &
discussed further in Sections 2 and 5.
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We use the high-resolution wave propagation method developed by LeVeque [40, 41,
to solve the proposed multicomponent models. This method is a variant fidi¢heation-
and-signaimethod of Roe [59, 60], and has been widely used in many applications includi
the single-component fluid of ideal gases. The main idea behind the method has rece
been implemented in the software package CLAWPACK (Conservation LAWs PACKag
as the underlying integration routine [46, 47]. The current use of the method is just an e:
extension of the previous one from single-component to multicomponent problems. Itis
efficient and yet accurate scheme without any spurious oscillations in the pressure nea
interface as illustrated by numerical results presented in this paper.

We will only briefly review and describe the method in a shock-capturing framewor
in one dimension, see Section 3. Extensions of the method to front-tracking and to t
dimensions are straightforward also by following the procedures outlined in [44, 4E
for example. We will not discuss a front-tracking version of the method here, but fc
cus on the more fundamental shock-capturing algorithm and validate itdaisemeri-
cal experimentations. Some preliminary results obtained using the front tracking mett
may be found in [65, 66] for two-dimensional unstable fluid interface problems such .
Rayleigh—Taylor and Richtmyer—Meshkov instabilities, see Section 6 for an example al
Generalization of the approach to three dimensions can be made in a similar mani
but requires more programming work, especially in regard to a front-tracking methc
[25].

Clearly for real applications the use of a stiffened gas equation of state that appears i
analytical formula (i.e., the constitutive relation (2) in Section 2) represents only a limite
number of materials of practical importance [29, 50]. However, there are some proble
of sufficient interest and difficulty that the development of a multicomponent algorithm fc
this equation of state is worthwhile, particularly since in some cases it is relatively easy
compute the exact solutions and check accuracy of the method.

Numerous numerical methods have been developed over the years to handle multic
ponent flow problems. Consider a non-reacting ideal gas flow, for example. One popL
approach among them is to solve an extended system of equations in which additic
conservation equations are introduced to the original Euler equations to describe the ¢
servation of each fluid component separately. Methods of this type, in particular a sho
capturing version of the method, often fail to maintain pressure equilibrium for grid cel
near interfaces where two or more fluid components are mixed. Some representative ex
ples that exhibit this erroneous phenomenon are given in [34] for the use-biaed (see
Fig. 1 also) and a level-set model, and in [9, 12, 71] for the use of a mass-fraction moc
The exception is the method explained by Jeahgl. [33] that the fluxes obtained using
conservative Euler solvers are modified in a suitable way to avoid the occurrence of
pressure errors generated near the interfaces. It is unclear how to extend the method
situation other than the ideal gas flows, however.

Another approach introduced by Karni [35, 36] is to solve the Euler equations separat
on each side of the interface using a method designed for a single-component flow, wi
the interface is dealt with in a different manner using a pressure evolution equation deri\
from the energy equation. Despite the fact that the method is not exactly conservative
the interface, reasonable results are obtained using this approach in conjunction with ei
standard level-set or mass-fraction formulation of ideal gases. Extension of the methoc
a thermally perfect gas was done recently by Fediial.[21] in one dimension. It should
be noted that Cocclait al.[12] devised a rather similar method of this kind that employs a
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linear interpolation technique near the interface instead; some one-dimensional result:
shown for a stiffened gas flow.

Our method to modeling multicomponent flow of general compressible materials is n
tivated by the work of Abgrall [1] in that, based on the physical principles and from tt
energy equation, we derive the effective equations (see Section 2) for the mixture of mate
dependent quantities near the interface. In this method, with the stiffened gas equatic
state, we take these equations to be of the form that do not vary their solutions ac
the shock and rarefaction waves as well. Combining the resulting effective equations (
Egs. (9)) to the Euler equations yields a model system that is not written in the full cc
servation form, but is rather a quasi-conservative system of equations. Abgrall [1] sol
a system of this kind using a predictor-corrector method, while we use the high-resolut
wave propagation method that gives an efficient implementation of the algorithm. In pr
ciple, when properly modified, it is possible to employ the state-of-the-art shock-captur
methods for hyperbolic systems of conservation laws for solving the model equations
well; see [67] for an example that generalizes the MUSCL scheme [13, 72] to this spec
application and also to a van der Waals gas.

There are many other multicomponent approaches available in the literature. Some tyj
ones are the level-set methods [19, 52], front-tracking methods [25, 28], volume-of-fl
methods [14, 51, 55, 71], and the BGK-based method [74].

This paper is organized as follows. In Section 2, we begin by discussing the basic c
putational models in one dimension that govern the motion of materials characterized |
stiffened gas equation of state in a multicomponent environment. We will give two differe
formulations of the model equations that are both applicable for practical computatic
of multicomponent problems. In Section 3, we briefly review an approximate Riema
solver of Roe, and analyze a first order numerical methods based on a wave-propag
approach with an application to our multicomponent models proposed in Section 2.~
results of some one-dimensional tests are given in Section 4 that validate this approach.
basic idea of the algorithm is then extended to multiple dimensions in Section 5, and sc
two-dimensional numerical results are presented. Section 6 shows results for a Richtm
Meshkov unstable interface problem where a mesh-refinement study is performed to cl
convergence of the computed solutions.

2. DERIVATION OF MODEL EQUATIONS

In one dimension, the single-component Euler equations of gas dynamics take the f

5 [ P pu
il Wl pu>+p | =0, (1)
pE (PE+ pu

wherep is the densityu is the velocity,p is the pressure, anfd is the total energy per unit
mass. We assume a compressible material that the internal energy per unit mass, de
by e, satisfies the “stiffened” gas equation of state,

_ PP

pe MR 2



MULTICOMPONENT ALGORITHM FOR COMPRESSIBLE FLOW 211

and E =e + u?/2. Herey is the usual ratio of specific heatg ¢ 1), and p., is a pre-
scribed pressure-like constant; these values can be used to describe the material prope
interests and can be determined from laboratory experinvigntm empirical fit [31, 49].
For example, for water we hawe=5.5, p,, =492115 bars [12], and for tungsten we
gety =3.14, p, = 1.0 Mbar [54]. Note a stiffened gas reduces to a polytropic gas whe
P = 0. The three components of Egs. (1) express the conservation of mass, moment
and energy, respectively [18].

We are interested in the simulation of multicomponent flow problems. For the equatiot
we take a popular approach by considering the Euler Egs. (1) as a model system,
[33, 74] for the use of other governing equations. Our goal here is to derive computatiol
models that may prevent pressure oscillations near the interfaces, when solving the prok
numerically with standard shock-capturing methods.

2.1. Preliminary. To begin, suppose that there aredifferent fluid components in a
grid cell, and each of them occupies a distinct region with a volume-fraction functio
Y® in relation to it, fori =1, 2, ..., m. Here by the standard assumptions we hé{e
€ [0,1]and>>", Y =1. Suppose that for each compongtite state variables such as
oM, u® p® y® andpl) are known a priori. The objective is to define the mixture of the
pressurep as well as the conserved variabjgsou, andp E in a consistent manner within
the cell for the Euler Egs. (1). Note this step is necessary when we initialize the data
computations.

To accomplish this, we follow a common practice by setfingu, andp E as a volume-
weighted sum over the set of componepnts, pOu®, andp®E®D, for each separately,

m m m
o= ZY(D"“)’ pu = ZY“)p“)u“), pE = ZY(i>p<‘)e“>+%Y“)p(”uz, 3)
i=1 i=1 i=1

whereu is the velocity mixture that can be computed easily by

n oo
u m @) 50y
u= P — Zp#] 10 )
P i YOO

To find the pressure mixturp, we need to use the equation of state (2). From (3), afte
some simple algebra, we find

m m ) o
P+ VP M ()l i PV +vpY

Note this gives us one equation that is not only for the mixturp béit also fory and ps.
Obviously, we need to choose two supplementary conditions so as tophgveand py,
defined well, leading to the full agreement of (4).

The basic idea of our approach is quite simple. We first split (4) into two parts by settit
the terms

p = YOpo VP Em: YOy ©OpQ.

- . - ) : (5)
— i) — — —
v -1 i-1 7 V-1 y—1 i=1 y® -1
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this provides us with one condition right away. We then impose the following condition
the computation of,

1 Ty®
=> — . (6a)
y-1 Zro-1

Clearly wheny is known, from (5), it is an easy matter to determine the unknogvaad

Ps- The results are
m Y(i)p(i)>/< mooy® >
p= Z . 27 (6b)
<i=1 y® -1 i=1 y® -1

Ty Dy O p) mo oy
oo = — 1+ — . 6C

Notice that in case each of the partial pressysésis in equilibrium within a grid cell
the pressurep acquired from (6b) would remain in equilibrium also, i.e.= p®, for
i=1,2,...,m. This nice property on the mixture gfis in fact the main reason why we
use (6a), but not other ways to compgtesee [14, 55] for a more rigorous derivation. In
addition, we get the total pressupe= >, Y p® when the grid cell is composed of the
same set of V) but with differentpd’. We use (6¢) for the mixture gd., in order to make
sure that (4) is handled in a consistent manner.

It is worthwhile to mention that in casé® represents a mass-fraction function of the
ith component withh® = pY® | we would have Eq. (4) replaced by

P+ VP _ DHall) p(i)‘i‘y(i)pgc)
7—,08 Zp e Z —o 1)

0
i=1 Y

and

In this instance, it is a standard approach that setccording to (6a) (cf. [26, 39]).
Analogously, by following the same procedures as for the volume-fraction case, we f

the results ofp and pyo,
m p® mooyb
- iz=;),<i>_1 ;y@—l '

= (L) [ s

2.2. y-based model. It is clear that the motion of the fluid mixtures, obtained from
above, is governed by the Euler Egs. (1). In the development of our multicomponent mo
it is of great importance to first consider the case oifrd@rface onlyproblem where both
of the pressurg and velocityu are constants in the domain, while the other variables suc
asp, y, andP,, are having jumps across some interfaces.
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To do so, we start out to write (1) in the following non-conservative form,

ap ap au
— +u— — =0,
ot + aX + pax

au ou lop

- u_ p—

8t+ 8X+,08X
8(e)+a(eu)+ au—0
ot PO T P Pox =

and obtain easily equations describing the motion of the interfaces as

ap ap

- D 7

8t+u8x o, (7a)
8(e)Jrua(e)—O (7b)
at ax PP T

With this, it is clear that for an interface the densityas well as the total internal energy
peis evolved by the linear transport Egs. (7a) and (7b).

To see how the pressupwould retain in equilibrium as it should be for this problem,
we insert the equation of state (2) into (7b), and have

(Pt VP 0 [P+ VP
— [ == — [ —£=) =o. 8
8t< y—l>+uax< y—l) (8)

By expanding (8), we may therefore write that equation as
] ola (2 o] 4(2)
w7250
Now the requirement that be in equilibrium leads to the equation of the form
a2 o) ) i () -

Since this equation should hold for apyin the physical space, it implies that the terms in
bracket of the above equation should be vanished simultaneously, yielding a system of

equations
0 1 d 1
—— u—|——1] =0
3t(7/—1>+ 3X<V—1)

0 d

O VP O (VP )

ot\y—1 ox\y—1
Note that these are the evolution equations that should be satisfied for the material-depen
variablesy andp., in order to have the correct pressure behavior in (8) for the interface. F

convenience, we call (9) the effective equations of the problem, where the initial conditi
of the equations are provided, for example, by (6a) and (6c¢) in a respective manner.

C)
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Of course, intuitively, there are many other ways that the effective equations can
rewritten, while still getting the correct pressure from (8) for tihigrface onlyproblem.
One simple example among them is to write (9) as

0 1 0 1
—— |+ = u)j=20
at\y -1 ax\y—-1

a oo oo
O YPx +i rP uj=0;
at\y—1) oax\y—1

this is a legitimate one to use, for the velocilyis a constant for the problem (see
Egs. (25a)—(25c) also for other examples wipen= 0). But since in general we are inter-
ested in shock wave problems as well, with the stiffened gas equation of state (2), we sh
only take the effective equations in a form that do not vary their solutions across botf
shocks and rarefaction waves. For this reason, it rules outimmediately the use of (10) a
effective equations. When further taking the numerical aspect of the model equations
consideration, it turns out that with the full Euler Egs. (1) the effective equations in a fol
of (9) are the proper ones to use for practical multicomponent problems; see Section :
the analysis of a numerical method that approximates the model equations, and Sect
for numerical examples.

In summary, the model equations we propose to solve multicomponent problems v
the stiffened gas equation of state are

(10)

ap d
P % puy=0
at T axPW

2 ou) + L pu?+ py =0
gt P T P TR =

%(PE) + ;—X[(PE + pu] =0 (11)

d 1 0 1

(1) o (5oa) =

2 (28l (22) —o

ot\y—1 ox\y—1

Here in this system the first three equations are simply the Euler Egs. (1) that are L
to make certain the conservation of pu, and p E, while the last two equations are the
effective Eqgs. (9) of the problem, that are introduced to ensure the correct mixing beha
of the variabley and p,, on the interfaces.

Note the model Egs. (11) is not written in the full conservation form, but is rather
guasi-conservative system of equations. For shock wave problems, this poses no pro
at all, because for stiffened gasesind p,, remain unchanged across genuinely nonlinea
waves such as shocks or rarefactions, and hence we have the usual Riemann invarian
Rankine—Hugoniot jump conditions across the rarefaction and shock waves, respecti
(cf. [26, 68]). At linearly degenerate waves such as interfaces where there may be jumy
y and p.., this again gives no problem since as we have seen in the previous discussior
would have the desired pressure equilibrium when the model is in use.

Of particular importance is the case of shock wave and interface interaction. It is kno
that, due to the nonlinearity of the problem, the pressure across the interface will be q
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different before and right after the wave interaction [7, 18]. Somewhat surprisingly, we fir
no major problem in using the model as well, see Section 4 for a representative numer
test. We emphasize that in this casand p,, are transported in a passive manner according
to (9) along with the interface, and the variables suclh as, and p are dealt with in a
conservative way from the conservation part of Egs. (11) as usual.

With all these in mind, it should be sensible to use the proposed model as for practi
computations. The numerical method to be described in Section 3 is a consistent appr
mation of the model that gives excellent results for a wide variety of problems as illustrat
in Section 4. For convenience, we call this modeil-hased model to be distinct from the
other one presented below. Note in [1] Abgrall used a slightly different starting point, b
nevertheless he obtained the same set of model equations for polytropic gas problems v
P = 0.

2.3.Volume-fraction model. It should be noted that we may reformulate the abpve
based model as a volume-fraction or a mass-fraction model that is also applicable to m
multicomponent problems. To demonstrate the basic idea, we consider the case in u:
volume-fraction functions as an example.

Similar to the approach used in the construction of ptsased model, we look for
effective equations that may preserve the pressure equilibrium fioteaface onlyproblem.
Here with the volume-fraction notion of the statg$;1— 1) andy p,./(y —1) being defined
by (6a) and (6c), the key step is to replace (9) by

3 [ YO [~ YO
ﬁ(z—y(”—l)d’—u&(Ziy(i)_l)ZO’

i=1 i=1

9 z”‘:wi)y(”pé‘g ol ivw(”p&) _0
i\ = rO-1 x\ = yO-1 '

After regrouping terms, we find the transport equation for each volume fraxtian

Yo — ay®
ui
at Y ox

=0 fori=12,...,m. (12)

As before when the set &f® is known, we may therefore compugteand p,, from (6a)
and (6c¢). In effect, in a volume-fraction model, instead of using (9) we uselifi&)them)
as the effective equations of the problem. Note that in ¥43etands for the mass-fraction
of the component, we find the effective equations of a mass-fraction model that is of th
same form as in (12). Because of the close connection between the two models, we de
our discussion to one of the models only, namely to the volume-fraction model.

For completeness, we write down the full set of equations for this volume-fraction mod
ap 0
— 4+ —(pu) =0
o5t T ix (pu)
0 ad
—(pu) + —(pU? + p) =0
ot X
5 5 (13)
—(pE)+ —[(pE ul=0
8t(p ) + aX[(p + p)u]

aY® ay®
[ u—
ot + daX

=0 fori=12....m;
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this gives us totallym 4+ 3 equations to be solved. Since the derivation of the volume
fraction model comes closely out of thebased model, it can be shown that this model is
as effective as thg-based model. But for general multicomponent problemsythased
model is the preferred one to use, because the basic equations for the model stay as
see (11), irrespective of the number of components involved in the problem.

3. NUMERICAL APPROXIMATION OF MODEL EQUATIONS

We use the high-resolution wave propagation method to compute solutions for our n
ticomponent models introduced in Section 2. The method is a variant dluitteation-
and-signalformulation of Roe [59, 60] in that we solve the Riemann problem at each c
interface, and use the resulting waves (i.e., discontinuities propagating at constant spe
to update the solutions in neighboring grid cells (cf. [40, 41]).

For simplicity, we describe the method on a uniform grid with fixed mesh spating
but the method can be extended quite easily to a nonuniform and time-varying grid as \
[44]. We use a standard finite-volume formulation that the vbllpm R™ approximates the
cell average of the solution over the grid ced] [x;.+1] at timet,. The time step is denoted
by At.

In this setup, a first order accurate version of the method in wave-propagation form
Godunov-type scheme that can be written as

At
UMt =Un — ~ kz; G W1 + W], (14)

wherei, € R and Wy € R™ are solutions obtained from solving Riemann problems at ce
interfacesx; andx;j;1, A~ = min(a, 0), andA™ = max(x, 0) (cf. [26]). It is easy to see
that the method belongs to a class of upwind schemes, and as it will be shown be
that the method is quasi-conservative in the sense that when applying the method to
multicomponent models not only the conservation equations but also the transport equat
are approximated in a consistent manner by the method with the chosen Riemann sc
Concerning stability, it is observed numerically that the method is stable and converg
under mesh refinement provided that the waves in the method affect only the cells adja
to the interface during the time step; see Section 4 for numerical examples and alsc
results shown in [43].

3.1.Method withy -based model. Consider the’-based model as an example. We solve
the Riemann problem at each cell interfagethat consists of (11) with piecewise constant
dataU{'_; andU{' on the left and on the right of the interface. Rather than computing tt
exact solutlon to this Riemann problem, which can be done by iterative procedures (cf. |
15, 54]) but is rather expensive, we use a generalized version of the approximate Rien
solver of Roe (cf. [58] and below) in most instances. This is much more efficient to comp
than the exact Riemann solution, and provides a very accurate approximation of solutior
smooth flows and also for moderate-strength shock waves. As long as the equation of
is not too stiff across the interfaces (which is the application considered here), the solu
of the Roe Riemann solver gives a proper resolution of the contact discontinuity to be u
in the method (14) for numerical approximation also. It is important to mention that in ca
we have a stringent set of data that involves strong shock waves and (or) stiff equatio
states, we find it is advisable to use the exact Riemann solver so as to properly deal
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the nonlinear effect of the solution structure; see [67] for an example and also [20, 45, !
for other examples that the exact Riemann solver should be in use.

To implement Roe’s approximate Riemann solver, we first write (11) as a quasi-line
system of equations

9q
) = 15
s (q) (15)
with
p 0 1 o o0 0
pu (V—;s>u2 B—-yu y—1 x 1—-y
_| oE _
a= Ll AQ) = <y71)u —uH H—(p—=-Du2 yu xu L—ypul
:‘1 0 0 0 u 0
=] 0 0 0 0 u

whereH = E + (p/p) is the enthalpy, ang = —:(y — 1)? with . = p/(y — 1). We then
solve a linear problem

d
8_? + AL, QR)— = (16)

with initial data

(X, 0) = ac for x left to the interface
a lar for x right to the interface

WhereA(qL, gr) is a constant matrix that depends on the initial data and is a local lineariz
tion of the matrixA about an average state. Here as it is often done in many other R
solvers (cf. [10, 23, 26]), we want to seek an average state that the difference of the flu
in the conservation part of Egs. (11) are equal to the respective first order approximatior
the flux differences. That is,

AFY = (Fr— 7)Y = [A@L, gr)(r — aD]V = [A@qL, ar)AQ],  (17)

fori = 1,2, 3, whereF e R3is the usual definition of the fluxes for the Euler Egs. (1),
andAF® is theith component oA F.

To accomplish the relation in (17), by taking a similar approach employed in [26] fc
real gases (cf. [23] also0), we find it is sufficient to get the average states for variables s
asd, H, 7,1, and set the matrlA(qL, gr) = A, H, 7,1). The results are

- /PLuL + \/PRUR g VAL He + /erHR

YT UmtviR it e 18)
R ) R ) SN IRV
51 JoL + /PR ’ NN/

Note that in the current derivation of the average stateend( are chosen so that the
expression

Ap=(?—1)2[Al
y_
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is satisfied approximately, anfids computed byy — 1)7 (see [23, 24] for arelated discussion
to the case of real gases). As shown in Section 4, we find good results with the use of
set of average states defined in (18).

The solution of the linear problem (16) consists of five discontinuities propagating
constant speeds. The jump across each discontinuity is a multiple of the eigenvector o
matrix A, and the propagating speed is the corresponding eigenvalue. We thus have

5
AQ=0r—qL =Z&kfk, (19)
k=1

wheref is thekth eigenvector ofA with

1 1 1 0 0

Gg-¢ 0 0+¢ 0 0
fi=|H-0 |, fo=|30%|, fs=|H+0a|, fa=|p]|, fs=]|1],

0 0 0 1 0

0 0 0 0 1
(20)

andAf, = A, fy with i the corresponding eigenvalue,

AMm=0-¢ A,=0, A3=0+48& Is=is=0, (21)

whereé = /(7 — 1)(H — 0?/2) is the speed of sound. The scaiar dives the strength
across the discontinuity that can be determined easily from (19). We find

A -1, ~ N N A
Q2= yez [(H—0%Ag™® +0Aq? — Ag® + pAg? + Ag®] =Ap — éf
- .. . n Ap+ pEAuU
=_[€-0)Aq?P + Aq® —8ay] = ———F—
a3 =% K )AQ + AQ &) %2
A . . Ap — pEAU
— AQD — G — Ga= 2P T PEAY
a1 = Aq oy — o3 = %2 (22)
1
as=Aq¥ = A(—)
y—1
a5 = AQO = A(&),
y—1

wherep'= ./pLPR.

Notice that in this Riemann solution there exist three discontinuities propagating at
same speed,, = A, = s = (. For practical purposes, we may view these discontinuitie
as a single one with the operaﬁ&z defined by combining all the jumps across thevave
family, i.e., setW, = &ofp + Gafa + @sfs. Clearly, doing so removes the effect of the
A4 and 5\5 wave families to the solution. With this notation, we also WWAtQ = ayfg to
represent the jump across tke= 1 and 3 waves. Wave propagation methods are based |
using these propagating discontinuities to update the cells averages in the cells neighb
each interface.

We now show thatin the case of eterface onlyproblem the numerical solution obtained
using the method would be free of oscillations, and in particular the pressure would rerr
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in equilibrium. Without loss of generality, we consider a single Riemann problem that
cell interfacex; the initial data are picked up so that there are no jumps in both the presst
and velocity, i.e. Apf' = 0 andAu] = 0, but is otherwise for the other variables such as
0, ¥, andpy. With this initial data, the Riemann solution consists of only a single contac
discontinuity with the wave strength"computed by (22) as

A A A ) A 1 n A ¥ Poo n
a1y = azj =0, a2j = Apj, s = A -1 asj = A ——— | ,
i

and the associated eigen-structiikg f\k,- computed by (20) and (21), respectively.
Now suppose that the wave moves to the right of the interfiace 0. To take account
of the effect of this wave, according to (14), the cell averiaﬁél should be evaluated by

At
pJnJrl =0 - i Ap, (23a)
n+1 n_ Ao raan
(pWj™ = (pwyj — = 0;[0AT}, (23b)
At 1. . 13\" YPo \"
(PE)}" = (BN — 4 {ZuzAp” + pA(y_1> + A(ygl) ]j’ (23¢)
1 n+1 1 n At 1 n
= =(—) - —=0a(—) . (23d)
y—1/; y—1/; AX v—=1/;
n+1 n n
. o At oo
PP N (¥Pe ) ALy (VP ) (23e)
y—1/; y—1/; AX v =1/

It follows from (23a) and (23b) that we have the expected stané*df: u? where by (18),
G; = urj‘. With this result, Eq. (23c) can be simplified to

At N 1 n Y P n
n+1 _ L — 8 - AL
(,Oe)] (,Oe)] XUJ[pA<y ) +A<)/ > ]j,

or alternatively to

n+1 n n n
oo o At T, 1 oo
(575), -(575) - 5a (o) G5 |,
y—1/; y—1/; AX y—1 y—1 i
when using the equation of state (2). Notice that in case (23e) is applied to the abt
equation, we have further simplification

G5 - () - sl ()]
Py o () A a1 ) |

and find the pressure equilibrium of the computed soluti@ﬁ1 = pj, when Eq. (23d)
is satisfied along with the fulfillment of the conditigh) = p] (see (18) and the comment
thereafter).

As to the behavior of the solutiop§ ™, ¥"**, and(p..)|**, from (23a), (23d), (23e), itis
easy to derive the modified equations for each of them individually, and show monotonic
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of the results obtained using the method (cf. [42]). See results shown in Section 4
numerical verification of this statement also.

In practical applications, there may be some other waves which come infahthoell
and affect the cell averagﬂej”+1 as well. Suppose that we are taking Riemann data at ce
interfacex; 1 so that there is a 1-wave (shock or rarefaction) propagating to the left of t
interface. In this method (14), we update the cell avetatb@L by

At Ap" — pEAU"
n+1 . n+1
pj =Py (U—C)j+1{A :
) ) AX 2e? i1
At . [ Ap"— pEAU"
W= (pu)™ - — (0 -8 1|0 -8 ———— ,
(pw); (pw); AX( )j+1 ] ( ) 2 -
At A~ A [APT — pEAU"
E)Y"l = (bE)"™ — — (0 —-10); H-—08) ——52—— _
(pE)j (PE)j AX(u )j+1 ] ( uc) 2 -

We note that due to a fundamental property of the Roe solver, i.e., the relation in (17), 1
is a conservative update of the numerical solutipfis', (ou)T*™, and(pE)}**. We get a
new pressure;z)'j1+l by using the equation of state (2),

1 1 1 n+1 1
Pt = (" -1 (pE - Epu2> — (rPa)
J

One advantage of using the wave propagation form is that we are able to handle ¢
wave in turn, and there is no need to compute fluxes and make distinction between
waves (cf. [67]). Extension of the method to higher order accuracy, and in particular t
high-resolution version of the wave propagation scheme, follows easily by incorporat
limited slopes and by constructing piecewise linear profiles to the method; see [43,
for the detail. It is not difficult to show that for thaterfaceonly problem we again have
the required pressure equilibrium that is independent of the limiter being employed to
high-resolution method. Moreover, we obtain a better resolution of the result as compe
to the first order result; see Section 4 for numerical examples.

3.2. Method with volume-fraction modelWe now consider the use of the Riemann
solutions associated with the volume-fraction model (13) to the wave propagation met
(14). For simplicity in description, we are concerned with a two-component flow proble
that the quasi-linear system of equations in (15) are defined with

0 1 0 0 0
ppu (VT%)UZ G-yu  y-1 x¥ x@
q= $(Ii , A(Q) = (VT’l)u3—uH H—(@y—-Du®> yu xDu x®@ul’
v 0 0 0 u 0
0 0 0 0 u

wherex® = (1 —y)(p+y©pD)/(y» — 1). We use the Roe solver as usual in that we
solve the linear problem (16) with the Roe-type mathix. , qr) = A®@, H, 7, Y, Y@)
depending on the initial datay andgr. Here as in the case of the-based model we
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compute the average statiesH, 7 by (18), and set the average st by the standard
“Roe-averaging” approach also with

(@) (i)
\A((”:V'OLYLIjL”ORYRI fori =1,2.
VPL + /PR '

When definingA in this way, it is easy to check the satisfaction of the fundamental relatio
in (17).

The result of this linearized Riemann problem takes a rather similar wave structure a:
the form shown in (19)—(22) of the-based model. Without writing the full solution here,
we mention that the only difference between the representation of these two solutions i
the jump across thé, and A5 families. Here we use the following expressions instead,

0 0
0 0
A~ Ay AVI)) 2 _ | pty®pl 2 _ | ptr@p?
0s = AY'Y, as = AY'Y, Mg = o=t | g = )
1 0
0 1

As in the case performed for thebased model, we now analyze the pressure obtaine
using the method (14) with the volume-fraction model forititerface onlyproblem con-
sidered there. In this case, it is enough to begin looking at the update of the internal ene
in the form,

P+yPe " _ (PHypo)\" AL
y—1 i B y—1 i AX )

2 N . .
p+yPpl A(YO)"|

Note the above equationis just a simplified version of the update of the total energy by tak
into account of the fact thau_'j“Ll = uf. When substituting the volume-fraction relations in
(6a) and (6¢) fory and p»,, we may write the equation as

2 . . X . n+1 2 . . . . n
Z Y(')p n Y(')y(')pgo) . Z Y(')p N Y(')y(') pgg
y®—1 yo—1 | y®—1 y®—1
]

i=1 i=1 i

2 ~ .
At p+y"pl H\n
- HUJ _ i _—1 A(Y )
i=1 j
After a simple manipulation, we finpi}1+l = p}, o_nly if p; = p{ and the establishment of

the difference equations for the volume fractif?,

At

@) n+1_ @) n_
(YO)* = ()] - 2

0. " -
J. u,A(Y')j fori =1,2.
It is easy to see that the latter two requirements are guaranteed by the method.
Note for this two-component flow problem we have described the method uses t
different volume-fraction function¥ ™ andY®@. In practice, due to the fact that® 4
Y@ =1, we may simply use a volume-fraction function, ¥4¥, to the model, and set the
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value of the other one&/® = 1 — Y@ for example. When modeling in this way, it gives
a more robust method to the computation of two-component flow problems than the us
the y-based model to the method.

4. NUMERICAL RESULTS IN ONE DIMENSION

We now present results to validate our multicomponent algorithm with the Roe soh
described in Section 3 in one dimension.

ExAMPLE 4.1. We consider amterface onlyproblem that the solution of a Riemann
problem consists of a single contact discontinuity in gas dynamics. We take two sets of (
for numerical experiments. In the first set, we have a polytropic gas and use two cons
states as

0 1 0 0.125

u 1 u 1

p | = 1 and p |l =] 1 [, (24)
y 14 y 12
P/ | 0 P/ g 0

while in the second set we use the same data as in the first set with the exception th:
the stateR a stiffened gas witlyg = 4 and(p~)r = 1 is employed instead. Heteis the
state used fox € [0, 0.2) andR is the state used fot € [0.2, 1].

Results for the first set of data are shown in Fig. 1 where we have employgehased
model together with both the first order and high-resolution wave propagation method:
the computations. For comparison, we also include results obtained using three diffe
effective equations to the simulations. They are the conservation equations with either

a ad
— — =0 25a
o (PY) + 5 (pyu) =0, (25a)
or
d P ad pu
il - _ =0, 25b
3t(y—1>+3><<y—1) (255)
and the primitive equation
dy dy
— +u— =0. 25c¢c
ot + aX (25¢)

Note in the cases of (25a) and (25b), we have two model systems that are in the
conservation form; see [34] for a similar consideration.

From the figure, we clearly observe pressure fluctuations in the solutions when employ
any of the equations in (25a)—(25c), but not fhased model where (9) is considered, to
the method. By following a similar analysis conducted in Section 3 fanterface only
problem, we may explain the observed error behavior in pressure as being the failur
approximate the energy Eq. (7b) in a consistent manner when those equations are ir
(cf. [34]). Note other variables in the solution are affected by this error also as time evolv
Numerical evidences suggest however that these errors decrease as the mesh is refine
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FIG. 1. Comparison plots of four different multicomponent models for the Euler equations with data (24)
timet = 0.12 (a) Results using the first order wave propagation method. (b) Results using the high-resoluti
wave propagation method with the “minmod” slope limiter. In each figure the solid line is the exact solution al
the points show the computed solution with 100 mesh points.
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FIG. 2. High-resolution results for aimterfaceonly problem using the same initial data as in Fig. 1 with the
exception thayr = 4 and(p.)r = 1 are used in the current computation. The solid line is the exact solution ar
the points show the computed solution with 100 mesh points.

the rate of convergence of the error in the 1-norm is about the order of accuracy of
method that is employed to the computation.

Figure 2 shows results of a run using the second set of data where only the high-resolt
solutions with they-based model are presented. Notice that the pressure and also
velocity remain at constant states for this stiffened gas simulation. Because the er
become too erroneous in most cases, we do not show results using the type of models giv
(25a)—(25c) for this test.

Note in the above computation, we use 100 mesh points and plot the results at t
t=0.12. For the purposes in illustration of the basic solution structure obtained frc
using the high-resolution version of the method, we only present results using the s
pler “minmod” slope limiter (see [42, 70]) for the runs. Of course, other more sophisticat
limiters, such as “superbee” for example (cf. [2, 70]), can be employed to the methc
for computations also. As far as the global structure of the solution is concerned,
observe quite similar behavior of the solutions when different limiters are in use to t
method. We further remark that the Courant number (see [42]) in choosing the time <
that maintains stability of the method is 0.9 in the tests. The nonreflecting boundal
are used on the left and right of the computational domain. Without further notice,
use the same limiter and the Courant number for all other experiments performed in
paper.

ExaMPLE 4.2. We next are concerned with a two-phase gas-liquid Riemann proble
On the left wherx € [0, 0.5), we have the gas phase with data
(pv uv p7 7/’ pOO)L = (1241 01 2753 147 O)a
and on the right wher € [0.5, 1], we have the liquid phase with data

(p, U, P, ¥, Poo)r = (0.991 0, 3.059 x 1074, 5.5, 1.505).

We note that the above variables have been nondimensionalized as in the work don
Cocchiet al.[12] and Cooke and Chen [17] to simulate underwater explosions in a sphe
cally symmetric geometry. We run the problem in a shock tube with 100 mesh points,
show the high-resolution results in Fig. 3 at titne- 0.1 using they-based model. From

the figure, we again see the correct behavior of the computed contact discontinuity,
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FIG. 3. High-resolution results for a two-phase gas-liquid Riemann problem atttin®.1. The solid line
is the exact solution and the points show the computed solution with 100 mesh points.

also the rarefaction and shock waves as in comparison with the exact solution (the s
line shown in the plot). The results of this problem with a source term that accounts f
the simplification of a cylindrically symmetric flow will be presented in Section 5 togethe
with two-dimensional results.

ExampPLE 4.3. Finally, we consider a shock-contact interaction problem studied b
Abgrall [1] and Karni [35] that verifies convergence of the computed solutions to the corre
weak ones in a multicomponent case. The initial condition we use consists of a station
interface atx = 0.5 separating two fluids of different equation of states, and a leftwari
going Mach 1.95 shock wave at= 0.6 traveling from the right to left. The gas on the left
of the interface is a polytropic gas with

(IOa u’ p’ y5 pDO)L == (la 07 15 147 0)7

and the gas on the right of the interface (i.e., on the middle and the preshock state),
stiffened gas with

(107 u, pﬂ Y, pDO)M - (57 0, 17 47 1)

The state behind the shock is
(p,U, P, v, Po)r = (7.093 —0.7288 10, 4, 1).

The exact solution for this problem in thet plane up to timeé = 0.2 is illustrated in Fig. 4
where the density contours are presented.

A snap shot of the computed total internal energy, velocity, and pressure are showr
Fig. 5 at timet = 0.2 where we solve the problem using the high-resolution wave prope
gation method with 200 mesh points. We can easily see that the shock wave and con
discontinuity are very well located, and the rarefaction wave moves at the correct spe
with the correct shape. A two-dimensional version of the problem will be considered
Section 6.

We note that in this section we have only present numerical solutions obtained us|
the y-based model to the method. It is interesting to mention that we find little differenc
between the results as compared to the ones obtained using the volume-fraction mod
the method for simulations. Because of this, we omit the presentation of the volume-fract
based numerical results here.
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FIG. 4. The exact solution for a shock-contact interaction problem for the Euler equations with a stiffen
gas equation of state; density contour plot in xheplane.

5. EXTENSION TO MULTIPLE DIMENSIONS

The two-dimensional version of the-based model for compressible multicomponent
problems with the stiffened gas equation of state takes the form

% 19wy + L (pvy =0
o 9 Doy =
ot Toax P Tyt

9 I 9
ﬁ(pu)Jr&(pU +|0)+8—y(puv)—0
D on+ Lpu) + L+ py =0
—(pv) + — (puv) + —(pv =
at PV T kP gy PV TP

9 9 0 (26)
5(pE> + 5[@5 + p)u] + B_y[('oE +p] =0

a 1 +u8 1 n a 1 _0
ot\y—1 ox\y—1 vay y—1)

a Y Poo a Y Poo 0 Y P _
8t(y—1) +U3X<V—1> +v8y<y—1) =0
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FIG. 5. Results for a shock-contact interaction problem; snap shot of the density, velocity, and pressure
timet = 0.2 with 200 mesh points. The solid line is the exact solution.

Hereu andv are the velocities in thg- andy-direction, respectively, anel = e + (u? +
v?)/2. In this model system, the first four components are simply the Euler equations
two dimensions that describe the conservation of mass, momentaxndhndy-direction,
and energy of the problems [18]. As in the one-dimensional case (see Section 2), the
two components are the effective equations that are derived to model the motions of
thermodynamics variableg and p,, near the material interfaces. We take the effective
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equations to be of the form as shown in (26) that is suitable for numerical approximat
of the model to practical multicomponentproblems.

Here we use a two-dimensional generalization of the high-resolution wave propaga
method to compute solutions of this model. In the method, waves obtained from solving o
dimensional Riemann problems in the directions normal and tangential to the cell interfa
are used to update the solutions in neighboring cells with the slopes and limiters that
introduced to achieve high resolutions (cf. [40, 41, 43, 45]). Two sample calculations
presented below to validate the method with the Roe approximate Riemann solver wi
the exact or “true” solution is available for the test cases; see the next section for
results.

ExampLE 5.1. We begin by considering dnterface onlyproblem that the solution
consists of a circular interface with radiug= 0.16 evolving in a constant velocity field
(u, v) = (1, 1). We take the same initial data as in Example 4.1 that the pressure is con
uous across the interface wigh= 1, while the densityy, and p,, are set by

(1,1.4,0 forr <rp

(07 Pee) { (0.1254,1)  forr > rq,

wherer? = (x — Xg)2 + (y — Yo)? is the distance from the centex, yo) = (0.25, 0.25).
The results of one sample test are shown in Figs. 6—-9 where the 3D surface plots of
density and pressure are presented at time0.36. The cross section of the density and
pressure along the = y line are plotted in the figure also where the solid line is the exac
solution. It is easy to observe good agreement of the results. Notice in particular that

Density

t=0.36

0.5

0 %

FIG.6. High-resolution results for an interface-evolving problem at tirze0.36, surface plots of the density.
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FIG.7. High-resolutionresults for aninterface-evolving problem at tim€0.36, surface plots of the pressure.

computed pressure is staying in equilibrium as desired. In this computation we have u
the high resolution version of the method with a 2000 grid and the usual Courant
number 0.9 and the “minmod” limiter.

ExamMPLE 5.2. We next consider a radially symmetric problem that due to the pressu
difference an initially at rest circular air bubble is exploded under the water. We use t
same set of data as in Example 4.2 that inside the bubble of nadit®.2, the fluid is air
with

(0, P, ¥, Poo) = (1.241,2.753 1.4, 0),
while outside the bubble, the fluid is water with
(0, P, ¥, Pso) = (0.991, 3.059x 1074, 5.5, 1.505).

For this problem, we perform the computation using the high-resolution method with
100 x 100 grid, and obtain the results for the density and pressure as shown in Fig.
From the contours of the plots, it is easy to see that breaking of the bubble results in
outgoing circular shock wave and an incoming rarefaction wave; the contact discontinu
lies in between these waves. From the cross-sectional plots along #@5, we find
good agreement of the results as compared with the “true” solution obtained from solvi
the one-dimensional multicomponent model with appropriate source terms for the rac
symmetry using the front-tracking algorithm [44] (with 500 mesh points). Here the presst
near the interface behaves in a satisfactory manner without any spurious oscillations,
the shock wave and contact discontinuity appear to be very well located.
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To end this section, we note that, as in the one-dimensional case, we may form a t
dimensional version of the volume-fraction model by simply replacing the effective eqt
tions in (26) with the set of equations for the volume-fraction funct@h,

ay® aY® aYy®
u
ot + aX +u ay

=0 fori=12,....,m (27)

of anm-component problem. As soon %€’ is known, the computation gf and p,, can be
doneinthe same way as in the one-dimensional case. Again, we observe not much differ
between the computed solutions when comparing the results obtained usingésed
and volume-fraction formulations of the algorithm to various multicomponent problems

By analogy with the two-dimensional extension, it is easy to construct the multicomy
nent models in three dimensions. We may then solve the resulting model equations u
three-dimensional wave propagation methods of the type described in [37], for exam
The results of the computations will be reported in a sequel paper in the future.

6. RICHTMYER-MESHKOQOV INSTABILITY

We now present numerical results to the simulation of Richtmyer—Meshkov unsta
interface problems in two dimensions. Our goal of the tests performed here is twofold:
firstis to validate convergence of the computed solutions obtained using our multicompor
algorithm to the correct weak ones, and the second is to provide an example that show
effectiveness of the algorithm to practical problems.

To setup the test, we consider a shock tube with length 4 and height 1 in a two-dimensi
domain. In the standard Richtmyer—Meshkov unstable interface problem, the initial cor
tion in the tube is composed of an interface separating two fluids of different densities at
shock wave approaching the interface. It is known that this interface becomes unstable
the amplitude of the initial perturbation to the interface is growing with respect to tim
after the passage of a shock wave, irrespective of the side of the heavy or light fluid that
shock is incident upon (cf. [32, 57, 61, 75]). We note that this behavior of the interface
unlike the gravity-induced Rayleigh—Taylor instability where the interface is unstable or
when the heavy fluid lies above the light fluid; assuming gravity is diredtednwards
(cf. [22, 64]).

ExamMPLE 6.1. We take a single mode perturbation of an aigi8terface that the initial
location of the interface is represented by

X = Xo + € cog2rky) fory € [0, 1], (28)

wherexo=1.2 is the location of the unperturbed interfage: 0.1 is the amplitude of
the perturbation, ané=1 is the wave number. We use the polytropic gas equation
state for air and SfFwith y = 1.4 andy = 1.093, respectively. We choose the density ratic
D = psr,/pair =5.04 so as to maintain the constant pressure and temperature across
interface. To trigger the instability, at=1.325 there is a planar Mach 1.24 shock wave in
air propagating from the left to the right of the interface. This gives us one example t
the interface is accelerated by a shock wave coming from the light-fluid to the heavy-fl
region, and the resulting wave pattern after the interaction would consist of a transmi
shock wave, an interface, and a reflected shock.
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pressure.
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We use the high-resolution wave propagation method withythiimsed model for the
computation. We consider a 32080 grid with periodic boundaries on the top and botton
and nonreflecting boundaries on the left and right. The results are presented in Fig. 11 w
the contours of the density and pressure (in logarithmic scale) are shown at six diffe!
times. Note that the dashed line in each pressure contoursis £h@ level set introduced
in the simulation as a passive quantity for representing the approximate location of
interface (see [52, 53, 63] for more information on the use of level set functions to gene
moving-front problems). From the figure, it is easy to see the growth of the interface &
also the complicated wave patterns that are induced by this wave interaction.

To check the correctness of the computed solutions, Fig. 12 compares the cross se
of the results for the same run along lipe= 0.5 with the results obtained using the front-
tracking version of the method (see [45] for the details of the front-tracking method). Go
agreement of the solutions is clearly observed; see Fig. 13 also for a comparison of
interface locations. In Fig. 14, we show results for a convergence study performed usit
mesh refinement sequence80 x 20) fori =0, 1, 2, where the density and pressure cross
sectional solutions along linge= 0.5 are plotted at timé= 9. Notice that the reasonable

Density Pressure

FIG.10. Results for aradially symmetric problem at time: 0.058. Contours of the density and pressure are
shown together with the cross-section of the solutions alongyliae0.5. The solid line in the cross-section plot
is the “true” solution obtained from solving the one-dimensional multicomponent model with appropriate sou
terms for the radial symmetry using the front-tracking algorithm. The dotted points are the two-dimensional re
obtained using the high-resolution wave propagation method.
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FIG. 11. Results for the simulation of Richtmyer—Meshkov instability, a Mach 1.24 shock wave in air, an
an air-Sk interface case. The density and pressure contours (in logarithmic scale) are shown at six differ
times obtained using the high-resolution wave propagation method with a 820grid. The dashed line in the

pressure contour plot is thie= 0 level set introduced in the simulation as a passive quantity for representing th
approximate location of the interface.
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FIG. 12. The cross-sectional plots of the results for the run shown in Fig. 11 along ka®.5, where the
solid lines are results obtained using the front tracking version of the method with the same grid size.
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FIG. 13. A comparison plot of the interface locations for the Richtmyer—Meshkov instability, a Mach 1.2
shock wave in air, and an air-Skterface case. (a) Results using the high-resolution wave propagation methc
with interfaces represented ljy = 0 level sets. (b) Results using the front tracking version of the high-resolutior

wave propagation method. Interface locations are shown at six different times. The dashed line in each figu
the initial shock location which is captured in this case.

convergence behavior of the density profile under mesh refinement, and in particular
pressure, is free of spurious oscillations near the interface.

EXAMPLE 6.2. We now consider an air-liquid interface that is interacting with a pla
nar Mach 1.95 shock wave in liquid. We use the same initial data as in Example 4.3 w
the interface represented by (28) in the current case. We carry out various tests as v
done in the previous example, and obtain the results shown in Figs. 15-18. The comg
wave structure is once again present in this problem, and is very well computed wt
using the algorithm. Notice that for this problem the phase of the interface has shift

Density Pressure

12

Vi

— 320 x 80 — 320 x 80
------ 160 x 40
—-—--80x20

10
L
1.92
1

- —--80x20

\
1
I
1
1
1
|
I
1
[

FIG. 14. A convergence study of the density and pressure for the Richtmyer—Meshkov instability, a Ma
1.24 shock wave in air, and an airShterface case. The testis performed using three different grid systems, ar

the solutions are plotted along line= 0.5 at timet = 9. The vertical dashed line in the figure is the interface
location obtained using the front tracking method.
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Density Pressure
air liquid air Hiquid
t=0.1 t=0.1

8

W
) [ B0
& B

FIG. 15. Results for the simulation of Richtmyer—Meshkov instability, a Mach 1.95 shock wave in liquic
and an air-liquid interface case. The density and pressure contours (in logarithmic scale) are shown at six diff
times obtained using the high-resolution wave propagation method with a 820grid. The dashed line in the
pressure contour plot is thie = 0 level set introduced in the simulation as a passive quantity for representing t
approximate location of the interface.

over 180 degrees. This interface behavior is commonly seen when the shock wave is [
agating from the heavy fluid to the interface that has the light fluid on the other si
(cf. [32, 75]).

We note that as far as the global wave structure is concerned the results presented he
reasonable ones as compared to those appearing in the literature [11, 32]. A more ca
study of the solutions that covers results from the theoretical prediction of a nonlinear the
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FIG. 16. The cross-sectional plots of the results for the run shown in Fig. 15 along Ea®.5, where the
solid lines are results obtained using the front tracking version of the method with the same grid size.

developed by Zhang and Sohn [76] and the laboratory experiments [27, 73] will be repor
elsewhere [66].

7. CONCLUSIONS

The generalization of shock-capturing methods originally designed for single-compone
flows to the case of a multicomponent flow requires some thoughts. The principle probl
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a) ¥ = 0 level sets

CUurves «—
t=0,0.1,0.3,

air liquid
b) Tracked interfaces
curves «—
t=0,0.1,0.3,0/5,1,2

air liquid

FIG. 17. A comparison plot of the interface locations for the Richtmyer—Meshkov instability, a Mach 1.¢
shock wave in liquid, and an air-liquid interface case. (a) Results using the high-resolution shock-capturing me
with interfaces represented hy =0 level sets. (b) Results using the high-resolution front tracking method
Interfaces are shown at six different times. The dashed line in each figure is the initial shock location whic
captured in this case.

in the usual extension is the occurrence of spurious pressure oscillations when tw
more fluid components are present in a grid cell. Here we consider a compressible 1
problem with a stiffened gas equation of state as an example. We show that by choo
the correct set of model equations (i.e., the quasi-conservative formulation pflihsed
and volume-fraction models) accurate results can be obtained using standard methoc
a single-component flow. Here we have employed the high-resolution wave propaga
method with the Roe solver for the computations, giving an efficient implementation of t
algorithm. Validation of our multicomponent approach is clearly established by test res
present in the paper.

Density Pressure

FIG. 18. A convergence study of the interface locations for the Richtmyer—Meshkov instability, a Mach 1.
shock wave in liquid, and an air-liquid interface case. The test is performed using three different grid systems,
the solutions are plotted along line= 0.5 at timet = 2. The vertical dashed line in the figure is the interface
location obtained using the front tracking method.
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Ongoing work is to further test the approach for realistic problems with interfaces se
arating regions of low and high Mach number flows and with very stiff equation of state
Model examples to be considered are the popular water-drop problems in air and the ris
air bubble problems in water [8, 69], but now in a compressible flow environment. Extensi
of the method to a Mie—Girieisen type equation of state of condensed materials [50, 51
toreal gases [15, 48, 62], and to reacting flows [6, 10, 16, 30] will be looked at. Realizati
of the algorithm that couples with front tracking and adaptive mesh refinement [3-5] w
be considered in the future also.
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