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We describe a novel interface-sharpening approach for efficient numerical resolution of a
compressible homogeneous two-phase flow governed by a quasi-conservative five-equation
model of Allaire et al. (2001) [1]. The algorithm uses a semi-discrete wave propagation
method to find approximate solution of this model numerically. In the algorithm, in regions
near the interfaces where two different fluid components are present within a cell, the
THINC (Tangent of Hyperbola for INterface Capturing) scheme is used as a basis for the
reconstruction of a sub-grid discontinuity of volume fractions at each cell edge, and it
is complemented by a homogeneous-equilibrium-consistent technique that is derived to
ensure a consistent modeling of the other interpolated physical variables in the model. In
regions away from the interfaces where the flow is single phase, standard reconstruction
scheme such as MUSCL or WENO can be used for obtaining high-order interpolated states.
These reconstructions are then used as the initial data for Riemann problems, and the
resulting fluctuations form the basis for the spatial discretization. Time integration of
the algorithm is done by employing a strong stability-preserving Runge–Kutta method.
Numerical results are shown for sample problems with the Mie–Grüneisen equation of
state for characterizing the materials of interests in both one and two space dimensions
that demonstrate the feasibility of the proposed method for interface-sharpening of
compressible two-phase flow. To demonstrate the competitiveness of our approach, we
have also included results obtained using the anti-diffusion interface sharpening method.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Our goal is to describe a novel Eulerian interface-sharpening approach for the efficient numerical resolution of problems
with material interfaces arising from inviscid compressible two-phase flow. We consider an unsteady, inviscid, homogeneous
two-phase flow that is governed by a five-equation model system of the form

∂

∂t
(α1ρ1) + ∇ · (α1ρ1�u) = 0,

∂

∂t
(α2ρ2) + ∇ · (α2ρ2�u) = 0,
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∂

∂t
(ρ�u) + ∇ · (ρ�u ⊗ �u) + ∇p = 0,

∂ E

∂t
+ ∇ · (E�u + p�u) = 0,

∂α1

∂t
+ �u · ∇α1 = 0, (1)

as an example, for the principal motion of the state variables such as the partial densities, momentum, total energy, and
volume fraction, respectively (cf. [1]). Here ρk and αk ∈ [0,1] denote in turn the kth phasic density and volume fraction for
k = 1,2; α1 + α2 = 1. We have ρ = α1ρ1 + α2ρ2 representing the total density, �u the vector of particle velocity, and p the
mixture pressure.

To close the system, the constitutive law for each of the fluid phases of interest is assumed to satisfy a Mie–Grüneisen
equation of state,

pk(ρk, ek) = p∞,k(ρk) + ρkΓk(ρk)
(
ek − e∞,k(ρk)

)
, (2)

where ek is the phasic specific internal energy, Γk = (1/ρk)(∂ pk/∂ek)|ρk the Grüneisen coefficient, and p∞,k , e∞,k are the
properly chosen states of the pressure and internal energy along some reference curve in order to match the experimental
data of the material being examined. For simplicity, each of the expressions Γk , p∞,k , and e∞,k is taken as a function of the
density only, see Section 5 for an example. As usual, E = ρe + ρ�u · �u/2 is the total energy with the total internal energy
defined as a volume-fraction average of the form ρe = ∑2

k=1 αkρkek .
If the isobaric closure is assumed also in this model, where we have p1 = p2 = p in a region that contains more than

one fluid component, from the total internal energy with (2), it is easy to derive the expression for mixture pressure as

p =
(
ρe −

2∑
k=1

αkρke∞,k(ρk) +
2∑

k=1

αk
p∞,k(ρk)

Γk(ρk)

)/ 2∑
k=1

αk

Γk(ρk)
. (3)

With that, it can be shown that this five-equation model is hyperbolic when each physically relevant value of the state
variables of the flow are defined in the region of thermodynamic stability, see [1] for the detail.

As reported in the literature, conventional numerical approach originally developed for single phase compressible flows
can be used to solve this system. However, particular attention must be paid when computing the volume fraction. It is
well known that even high order Eulerian transport scheme on fixed grids cannot completely remove numerical dissipation
which then tends to continuously smear out the initial jump in the volume fraction function. It is obviously problematic for
immiscible interfaces. Even worse, it will eventually lead to the failure in identifying the moving interface which separate
different materials for long term computations. So, we have to keep the interface sharp or at least recognizable through-
out the simulation. To this end, numerical techniques, such as front tracking [5,23,45], anti-diffusion [51,47,48], interface
compression [42,54], ALE (Arbitrary Lagrangian–Eulerian) and its variant [3,4,18,25,27,46,49], have been proposed.

In this work, our approach to interface-sharpening is a variant of the THINC (Tangent of Hyperbola for INterface Cap-
turing) scheme that was proposed previously as an advection solver for the sharp resolution of a sub-grid discontinuity of
volume fraction in the simulation of incompressible two-phase flow (cf. [2,12,60–62]). Shown in these works, the improved
THINC method can get numerical accuracy comparable to the VOF schemes that use explicit geometrical reconstruction,
such as PLIC (piecewise linear interface calculation) reconstruction, to retrieve the moving interfaces in incompressible
multi-phase flows. Without the geometrical reconstruction, a THINC scheme is just a pure advection scheme, and is thus
perhaps the simplest interface-capturing scheme in multi-phase flow simulations.

In the present case with the five-equation model for compressible two-phase flow, in regions near the interfaces, the
original THINC scheme is used without any change for the reconstruction of volume fractions at each cell edge. Using the
particular reconstruction function, THINC scheme effectively recovers the non-oscillatory sharp resolution of the volume
fractions at every time step, and thus completely avoids the appearance of negative volume fractions that always accompa-
nies the high-order Eulerian type schemes over fixed computational grids. With that, assuming the retain of constant cell
averages of ρ1, ρ2, �u, and p within a cell, a new reconstruction procedure is derived so as to ensure a consistent modeling
of the remaining state variables such as α1ρ1, α2ρ2, ρ�u, and E at the cell edges, see [51] for a similar procedure that was
employed in an anti-diffusion type interface-sharpening algorithm. In regions away from the interfaces, where the flow is
single phase, standard MUSCL (Monotone Upstream-centered Schemes for Conservation Laws) or WENO (Weighted Essen-
tially Non-Oscillatory) reconstruction may be applied for the interpolation of state variables to high order (cf. [20,41,57]);
this will be described further in Section 4.

To find approximate solutions of (1) with (2) and (3) numerically, we use a semi-discrete wave propagation method
developed by Ketcheson et al. [15,17] for general hyperbolic systems. In this method, the spatial discretization is constructed
by computing fluctuations from the solutions of Riemann problems with the proposed interface-sharpened initial data at
cell edges. We employ the strong stability-preserving Runge–Kutta scheme [6,7] for the integration in time, yielding a simple
and efficient implementation of the algorithm in the framework of the Clawpack software [16,22].

It should be mentioned that our THINC-based interface-sharpening approach is based on fixed underlying grids which
is different from time-varying grid approaches such as the Lagrangian or ALE [3,4,18,25,27,49], interface tracking [32,38,45],
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and adaptive moving grid method [53] for sharpening interfaces. In addition, our method is simpler than the ones proposed
recently by Shukla et al. [42] and So et al. [51] (see also Appendix B) in the sense that there is no need to introduce
additional interface-compression and anti-diffusion source terms to the compressible two-phase flow model, respectively,
for the purpose of sharpening interfaces numerically (this may be difficult to do for more complex multiphase flow system
and with phase changes, see [40,63], for example). Numerical results presented in Section 5 and Appendix A show the
feasibility of the method for practical compressible two-phase flow and moving interface problems.

The format of this paper is outlined as follows. In Section 2, we review the basic idea of a semi-discrete finite volume
method in wave-propagation form for hyperbolic conservation laws. In Section 3, we describe the THINC scheme for the
sharp reconstruction of interfaces based on a given set of discrete volume fractions. The interface-sharpening algorithm for
compressible two-phase flow is discussed in Section 4. Results of some sample validation tests as well as application of the
method to practical problems are shown in Section 5. In Appendix A, additional advection benchmark tests are considered,
and in Appendix B, a brief review of an anti-diffusion based interface sharpening scheme is described.

2. Semi-discrete wave propagation method

We begin our discussion by reviewing a semi-discrete finite volume method in wave-propagation form [15,17] that is
essential in our interface-sharpening algorithm for solving the present quasi-conservative five-equation model numerically
for compressible two-phase flow. For the ease of the latter description, let us restate (1) in the form

∂q

∂t
+

N∑
j=1

∂ f j(q)

∂x j
+

N∑
j=1

B j(q)
∂q

∂x j
= 0, (4a)

where with �u = (u1, u2, . . . , uN) the terms q, f j , and B j are defined by

q = (α1ρ1,α2ρ2,ρu1, . . . , ρuN , E,α1)
T , (4b)

f j = (α1ρ1u j,α2ρ2u j,ρu1u j + pδ1 j, . . . , ρuN u j + pδN j, Eu j + pu j,0)T , (4c)

B j = diag(0,0, . . . ,0, u1δ1 j, . . . , uNδN j), (4d)

respectively, j = 1,2, . . . , N . Here δi j is the Kronecker delta, and N denotes the number of spatial dimension.

2.1. One-dimensional case

Consider the one-dimensional case N = 1 with a uniform grid with fixed mesh spacing �x1 and the number of cell in
total M1 that discretize a spatial domain in the x1 coordinate. We use a standard finite-volume formulation in which the
value Q i(t) approximates the cell average of the solution over the grid cell Ci: x1 ∈ [x1

i−1/2, x1
i+1/2] at time t ,

Q i(t) ≈ 1

�x1

x1
i+1/2∫

x1
i−1/2

q(x, t)dx.

Let Q (t) = (Q 1, Q 2, . . . , Q M1 )T (t) be the vector of the approximate solution of (4) at time t , and L1(Q (t)) =
(L1(Q 1),L1(Q 2), . . . ,L1(Q M1 ))T (t) be the associated spatial-discretization vector. Then the semi-discrete version of the
wave-propagation method is a method-of-lines discretization of (4) that can be written as a system of ODEs (Ordinary
Differential Equations)

∂ Q (t)

∂t
= L1(Q (t)

)
, (5a)

where each component of L1(Q (t)) is defined by

L1(Q i(t)
) = − 1

�x1

(
A+

1 �Q i−1/2 +A−
1 �Q i+1/2 +A1�Q i

)
(5b)

for i = 1,2, . . . , M1. Here A+�Q i−1/2 and A−�Q i+1/2, are the right- and left-moving fluctuations, respectively, that are
entering into the grid cell, and A1�Q i is the total fluctuation within Ci . To determine these fluctuations, we need to solve
Riemann problems.

Considering the fluctuations A±
1 �Q i−1/2 arising from the edge (i − 1/2) between cells i − 1 and i, for example. This

amounts to solving a Cauchy problem that consists of

∂q + ∂ f1(q)

1
+ B1(q)

∂q
1

= 0 (6a)

∂t ∂x ∂x
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as for the equations and

q
(
x1, t0

) =
{

qL
i−1/2 if x1 < x1

i−1/2

qR
i−1/2 if x1 > x1

i−1/2,
(6b)

as for the initial condition at a time t0. Here qL
i−1/2 = limx→x1

(i−1/2)−
q̃i−1(x) and qR

i−1/2 = limx→x1
(i−1/2)+

q̃i(x) are the interpo-

lated states obtained by taking limits of the reconstructed piecewise-continuous function q̃i−1(x) or q̃i(x) (each of them are
determined based on the set of discrete data {Q i(t0)}, see Sections 3 and 4) to the left and right of the cell edge at x1

i−1/2,
respectively.

If an approximate solver is used for the numerical resolution of the above Riemann problem (cf. [1,55]), this would
result in three propagating discontinuities that are moving with speeds s1,k and the jumps W1,k across each of them for
k = 1,2,3, yielding the expression for the fluctuations as

A±
1 �Q i−1/2 =

3∑
k=1

[
s1,k(qL

i−1/2,qR
i−1/2

)]±W1,k(qL
i−1/2,qR

i−1/2

)
. (7a)

In a similar manner, we may define the fluctuation A1�Q i based on the Riemann problem with the initial data qR
i−1/2 and

qL
i+1/2 at the cell center which gives

A1�Q i =
3∑

k=1

[
s1,k(qR

i−1/2,qL
i+1/2

)]±W1,k(qR
i−1/2,qL

i+1/2

); (7b)

this completes the definition of the fluctuations and also the spatial discretization operator L1(Q i(t)) in (5b). As usual, the
notations for the quantities s± are set by s+ = max (s,0) and s− = min (s,0).

To integrate the system of ODEs (5a) in time, we employ the SSP (Strong Stability-Preserving) multistage Runge–Kutta
scheme [6,7]. That is, in the first-order case we use the Euler forward time discretization as

Q n+1 = Q n + �tL1(Q n), (8a)

where we start with the cell average Q n ≈ Q (tn) at time tn , yielding the solution at the next time step Q n+1 over �t =
tn+1 − tn . In the second-order case, however, we use the classical two-stage Heun method (or called the modified Euler
method) as

Q ∗ = Q n + �tL1(Q n),
Q n+1 = 1

2
Q n + 1

2
Q ∗ + 1

2
�tL1(Q ∗). (8b)

It is common that the three-stage third-order scheme of the form

Q ∗ = Q n + �tL1(Q n),
Q ∗∗ = 3

4
Q n + 1

4
Q ∗ + 1

4
�tL1(Q ∗),

Q n+1 = 1

3
Q n + 2

3
Q ∗∗ + 2

3
�tL1(Q ∗∗) (8c)

is a preferred one to be used in conjunction with the fifth-order WENO scheme that is employed for the reconstruction of
q̃i(x1) during the spatial discretization (cf. [41]).

2.2. Multidimensional case

To extend the one-dimensional method described above to more space dimensions, here we take a simple dimension-
by-dimension approach. Namely, assuming a uniform Cartesian grid with fixed mesh spacing �x1 and �x2, in the x1-, and
x2-direction, respectively, for example, the semi-discrete wave propagation method in two dimensions can be written of the
form

∂ Q (t)

∂t
= L2(Q (t)

)
. (9a)

Here both Q (t) = {Q ij(t)} and L2(Q (t)) = {L2(Q ij(t))} are two-dimensional arrays for i = 1,2, . . . , M1, j = 1,2, . . . , M2,
with Q ij(t) denoting the approximate cell average of the solution for the (i, j)th grid cell over the region Cij: (x1, x2) ∈
[x1 , x1 ] × [x2 , x2 ] at time t as
i−1/2 i+1/2 j−1/2 j+1/2
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Q ij(t) ≈ 1

�x1�x2

x1
i+1/2∫

x1
i−1/2

x2
j+1/2∫

x2
j−1/2

q(x, y, t)dy dx,

and L2(Q ij(t)) representing the approximate spatial derivatives of Eqs. (4) for Cij as

L2(Q ij(t)
) = − 1

�x1

(
A+

1 �Q i−1/2, j +A−
1 �Q i+1/2, j +A1�Q ij

)
− 1

�x2

(
A+

2 �Q i, j−1/2 +A−
2 �Q i, j+1/2 +A2�Q ij

)
. (9b)

Note that the fluctuations A+
1 �Q i−1/2, j , A−

1 �Q i+1/2, j and A1�Q ij are obtained by solving the one-dimensional Rie-
mann problems in the direction normal to the x1-axis (see (6)), while the fluctuations A+

2 �Q i, j−1/2, A−
2 �Q i, j+1/2 and

A2�Q ij can be computed in a similar manner by solving the one-dimensional Riemann problems of in the direction nor-
mal to the x2-axis with

∂q

∂t
+ ∂ f2(q)

∂x2
+ B2(q)

∂q

∂x2
= 0

as for the equations and with chosen reconstructed data as for the initial condition. The SSP Runge–Kutta scheme can be
employed also for the integration of the semi-discrete scheme (9) in time.

It should be mentioned that the class of dimension-by-dimension semi-discrete method considered here would only
give second order results when it is applied to solve general nonlinear hyperbolic systems, even if the fifth-order WENO
reconstruction scheme is used in the spatial discretization, and the third order Runge–Kutta method is employed in time
integration, see [64] for the details. We will not discuss the fully multidimensional spatial discretization in wave-propagation
form here which is beyond the scope of this paper (see [20,41] and references cited therein for more discussions on how this
can be done), but will devote our attention to the devise of a new reconstruction procedure for the purpose of sharpening
interfaces from compressible two-phase flows.

2.3. Include source terms

To end this section, we comment that if x1 is the axisymmetric direction and u1 is the radial velocity, an axisymmetric
version of the five-equation model (4) in one space dimension can be written as

∂q

∂t
+ ∂ f1(q)

∂x1
+ B1(q)

∂q

∂x1
= ψ(q), (10)

where ψ is the source term derived directly from the geometric simplification, yielding

ψ = − κ

x1

(
α1ρ1u1,α2ρ2u1,ρu2

1, Eu1 + pu1,0
)T

.

Here in the case of a 2D radially or 3D spherically symmetric flow, the quantity κ takes 1 or 2, respectively.
Now, to find approximate solutions of (10) numerically, in this work, we take a simple unsplit approach (cf. [20]) in that

the semi-discrete scheme (5) is employed again, but the term L1(Q (t)) on the right-hand side of the equation is modified
to include the effect of source term ψ as

L1(Q i(t)
) := L1(Q i(t)

) + ψ
(

Q i(t)
)
. (11)

We then continue by employing an SSP Runge–Kutta method as usual to integrate the resulting ODEs in time for the
updated solution at the next time step, see Section 5.1 for a sample result obtained using the method.

3. THINC reconstruction scheme

The reconstruction for any physical field to identify a sub-grid discontinuity can be derived using the THINC formulation
for volume fraction function as a building block. To describe the basic idea, we start with the one-dimensional case, and
for simplicity rather than using x1 for the spatial variable and α1(x1, t) for the volume fraction as in Section 2, we take
the often-employed symbols x and φ(x, t) for that matter instead. Then as before we define the approximate value of the
cell-average of φ(x, t) over the grid cell Ci at time t by

φ̄i(t) ≈ 1

�xi

xi+1/2∫
x

φ(x, t)dx,
i−1/2
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where �xi = xi+1/2 − xi−1/2 is the mesh size of the cell; assuming a non-uniform discretization of the spatial domain. Recall
that being a volume fraction of a specified fluid, say fluid F , we have the values of φ̄i(t) as follows,

φ̄i(t) =
⎧⎨
⎩

1 if Ci is filled with fluid F,

α ∈ (0,1) if an interface lies in Ci,

0 if there is no fluid F in Ci .

(12)

In practice, we identify an “interface cell” where the volume fraction satisfies,

(i) ε < φ̄i(t) < 1 − ε,

(ii)
(
φ̄i+1(t) − φ̄i(t)

)(
φ̄i(t) − φ̄i−1(t)

)
> 0, (13)

where ε is a small positive parameter (e.g., 10−4). Note that the latter condition (ii) is a monotonicity constraint on the
data near the interfaces; this is introduced as a measure to prevent from incurring spurious oscillations in the method.

Now given the volume fraction for the interface cell Ci , we seek a reconstruction that mimics the sub-grid structure
of the jump between 0 and 1 in the volume fraction function. For a fixed time t and x ∈ [xi−1/2, xi+1/2], the following
hyperbolic tangent function is well suited for this purpose,

Φi(x) = 1

2

[
1 + σi tanh

(
β

(
x − xi−1/2

�xi
− x̃i

))]
, (14a)

where σi = sgn(�φ̄i(t)) is the sign function of the variable �φ̄i(t) = φ̄i+1(t) − φ̄i−1(t), and β is a prescribed parameter to
control the slope and thickness of the jump which can be determined flexibly in practice (here we take β = 2.3 in all the
tests considered in Section 5).

Note that the only unknown in (14a) is the center x̃i . If we assume the conservation of volume fraction of the form

1

�xi

xi+1/2∫
xi−1/2

Φi(x)dx = φ̄i(t),

it can be determined uniquely as

x̃i = 1

2β
ln

[
exp (β(1 + σi − 2φ̄i)/σi)

1 − exp (β(1 − σi − 2φ̄i)/σi)

]
. (14b)

It should be mentioned that using (14) as a building block, we may reconstruct any physical field ψ(x, t) for x ∈
[xi−1/2, xi+1/2] where it has a jump �ψi = ψmax − ψmin by,

Ψi(x) = ψmin + Φi(x)�ψi . (15)

Here lower and upper bounds of the jump ψmin and ψmax can be determined from the neighboring cells such as ψmin =
min(ψ L

i−1/2,ψ
R
i+1/2) and ψmax = max(ψ L

i−1/2,ψ
R
i+1/2), where ψ L

i−1/2 denotes the value computed from the reconstruction

over the left-side cell [xi−3/2, xi−1/2] and ψ R
i+1/2 from the right-side cell [xi+1/2, xi+3/2].

Reconstruction (15) can be applied to various physical variables, such as primitive variables, characteristic variables and
flux functions. As long as the THINC reconstruction (15) is built up, we can get directly the values at the cell boundaries as
a function of time t through either a point mapping or a trajectory integration for a wave propagation (transport) equation.
In the latter instance, we consider the following wave equation as an example,

∂ψ

∂t
+ u

∂ψ

∂x
= 0,

where u is the characteristic velocity field. We split u into right-moving and left-moving parts, i.e., u = u+ + u− where
u+ = max(u,0) and u− = min(u,0). The solution at the right-side of cell boundary xi−1/2 reads

ψ R
i−1/2(t) = Ψi

(
xi−1/2 − u−

i−1/2t
)

= ψmin + Φi
(
xi−1/2 − u−

i−1/2t
)
�ψi

= ψmin + 1

2

[
1 + σi tanh

(
β

(u−
i−1/2t

�xi
− x̃i

))]
�ψi, (16a)

while that at the left-side of cell boundary xi+1/2 reads
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ψ L
i+1/2(t) = Ψi

(
xi+1/2 − u+

i+1/2t
)

= ψmin + Φi
(
xi+1/2 − u+

i+1/2t
)
�ψi

= ψmin + 1

2

[
1 + σi tanh

(
β

(
1 − u+

i+1/2t

�xi
− x̃i

))]
�ψi, (16b)

which can be used to any approximate Riemann solver in a full- or semi-discrete form, see the formulas given in [2] for
that purpose also.

For the mass conservation law,

∂ψ

∂t
+ ∂ f

∂x
= 0,

where f = uψ is the flux function, we have the total leftward flux across cell boundary xi−1/2 over t as,

f̂ −
i−1/2(t) =

t∫
0

f (xi−1/2, t)dt =
xi−1/2∫

xi−1/2−u−
i−1/2t

Ψi(x)dx

= ψ0u−
i−1/2t − σi�xi

2β
ln

[cosh(β(x̃i + u−
i−1/2t

�xi
))

cosh(β x̃i)

]
�ψi . (17a)

Analogously, the rightward flux across xi+1/2 is

f̂ +
i+1/2(t) =

t∫
0

f (xi+1/2, t)dt =
xi+1/2∫

xi+1/2−u+
i+1/2t

Ψi(x)dx

= ψ0u+
i+1/2t − σi �xi

2β
ln

[cosh(β(1 − x̃i − u+
i+1/2t

�xi
))

cosh(β(1 − x̃i))

]
�ψi . (17b)

where ψ0 = (ψmin + ψmax)/2. So, a one-step finite volume formulation to transport mass can be written as,

ψ̄i(t) = ψ̄i(0) − 1

�xi

(
f̂ i+1/2(t) − f̂ i−1/2(t)

)
,

which is used in the existing THNIC method for incompressible flows.
To extend the above THINC reconstruction scheme to more than one space dimension, here we take a simple dimension-

by-dimension approach as proposed in Xiao et al. [60]; this one-dimensional version of the method works quite well with
the semi-discrete wave propagation method described in Section 2 and also the interface-sharpening reconstruction scheme
for compressible two-phase flow described next.

4. Interface sharpening algorithm

In each time step, our interface-sharpening algorithm for compressible two-phase flow problems consists of the following
steps:

(1) Reconstruct a piecewise polynomial function, denoted by q̃(xi, tn), for all xi based on standard MUSCL/WENO recon-
struction procedure from the cell average Q n at time tn to more than first order.

(2) Modify q̃(xi, tn) for interface cells using a variant of THINC scheme from Q n to sharpen the resolution of interfaces.
(3) Solve Riemann problems with interpolated initial data from q̃(xi, tn) obtained in steps 1 and 2 for spatial discretization.
(4) Employ a semi-discrete method in wave propagation form to update Q n from the current time to the next Q n+1 over

a time step �t .

Note that if step 2 is omitted in the above algorithm, it is simply the standard semi-discrete method proposed by Ketche-
son et al. [15,17] for general hyperbolic systems with new applications to compressible two-phase flow, see Section 2. In this
instance, the implementation of the MUSCL/WENO reconstruction scheme as suggested in [13,20,34] for step 1 is enough for
that matter. Our goal here is to describe step 2 of the reconstruction procedure that is essential to our interface-sharpening
algorithm.
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4.1. Homogeneous-equilibrium-consistent reconstruction scheme

We begin step 2 by employing the one-dimensional THINC scheme described in Section 3 for the reconstruction of the
volume fraction function q(N+4) = α1, in the five-equation model (4). Suppose that with Q n given at a time tn , we have
obtained the interpolated volume fraction for the ith cell at the edges (α1)

R
i−1/2 and (α1)

L
i+1/2 based on the relations (16a)

and (16b) at t = 0, respectively.
With that, to construct the sub-grid structure of the partial density, we follow the approach proposed by So et al. [51]

(see also Appendix B and [54]) in that the phasic densities ρ1 and ρ2 are assumed to remain constants within the cells
during the reconstruction step, yielding the definition of the cell-edge states for the partial densities, i.e., the first and
second component of q; q(k) = αkρk for k = 1,2, as

(αkρk)
R
i−1/2 = (αkρk)i + (ρk)i

[
(αk)

R
i−1/2 − (αk)i

]
, (18a)

(αkρk)
L
i+1/2 = (αkρk)i + (ρk)i

[
(αk)

L
i+1/2 − (αk)i

]
. (18b)

Here (αk)i (ρk)i , and (αkρk)i are the cell-average variables obtained from Q n
i in an interface cell Ci .

Now to find the reconstructed states for the total momentum q( j+2) = ρu j for j = 1,2, . . . , N , the velocity field �u =
(u1, u2, . . . , uN) is assumed to remain unchanged within the cells also; this is true in a region for the contact discontinuity
(the case we are interested in this work). Thus, we have

(ρ�u)R
i−1/2 = (ρ�u)i + �ui

(
ρR

i−1/2 − ρi
)
, (18c)

(ρ�u)L
i+1/2 = (ρ�u)i + �ui

(
ρL

i+1/2 − ρi
)
, (18d)

where ρR
i−1/2 = ∑2

k=1(αkρk)
R
i−1/2 and ρ L

i+1/2 = ∑2
k=1(αkρk)

L
i+1/2 denotes the reconstructed mixture density at the left- and

right-edge of the grid cell i, respectively.
Finally, to reconstruct the total energy q(N+3) = E , we assume further the pressure equilibrium within interface cells,

yielding

E R
i−1/2 = Ei + Ki

(
ρR

i−1/2 − ρi
) +

2∑
k=1

(ρkek)i
[
(αk)

R
i−1/2 − (αk)i

]
, (18e)

E L
i+1/2 = Ei + Ki

(
ρL

i+1/2 − ρi
) +

2∑
k=1

(ρkek)i
[
(αk)

L
i+1/2 − (αk)i

]
, (18f)

where Ki = �ui · �ui/2 denotes the specific kinetic energy in cell Ci . Note that since the above sub-grid reconstruction proce-
dure (18) makes use of the basic homogeneous-equilibrium assumptions of the underlying continuum model (1), it should
be pertinent to call it a homogeneous-equilibrium-consistent reconstruction scheme.

4.2. Interface only problem

To see how our algorithm works for sharpening interfaces, it is instructive to consider an interface only problem where
the initial data consists of uniform pressure p = p0, constant velocity �u = �u0, and constant phasic densities ρk = ρk0 for
k = 1,2 throughout the domain, while there are jumps on the other variables such as partial densities and volume fractions
across some interfaces. Without loss of generality, we consider a one-dimensional problem with a positive velocity u1 =
u0 > 0. In this case, suppose that a 3-wave HLLC approximate solver (cf. [9,44,55]) is used in step 3 of the algorithm for
solving the Riemann problem (6) (similar result follows if a Roe solver [1] is employed instead), it is easy to find the
fluctuations for each cell Ci , i = 1,2, . . . , M1, as

A−
1 �Q i+1/2 = 0,

A+
1 �Q i−1/2 = u0

(
qR

i−1/2 − qL
i−1/2

)
,

A1�Q i = u0
(
qL

i+1/2 − qR
i−1/2

)
.

Inserting the above expression for fluctuations into (5b), we have the spatial discretization of this interface only problem:

L1(Q i(t)
) = − 1

�x1
u0

(
qL

i+1/2 − qL
i−1/2

)
.

Now if the Euler method (8a) is employed for the time integration in (5a), together with the above spatial discretization
term the cell average Q n

i is updated by

Q n+1
i = Q n

i − �t
1

u0
(
qL

i+1/2 − qL
i−1/2

)
,

�x
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or equivalently by

⎡
⎢⎢⎢⎣

α1ρ1
α2ρ2
ρu1

E
α1

⎤
⎥⎥⎥⎦

n+1

i

=

⎡
⎢⎢⎢⎣

α1ρ1
α2ρ2
ρu1

E
α1

⎤
⎥⎥⎥⎦

n

i

− �t

�x1
u0

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(α1ρ1)
L
i+1/2 − (α1ρ1)

L
i−1/2

(α2ρ2)
L
i+1/2 − (α2ρ2)

L
i−1/2

u0(ρ
L
i+1/2 − ρL

i−1/2)

E L
i+1/2 − E L

i−1/2

(α1)
L
i+1/2 − (α1)

L
i−1/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (19)

Here we have assumed a consistent approximation of the true solution of the problem from the earlier time steps so that
the equilibrium conditions pm = p0, um

1 = u0, and ρm
k = ρk0, k = 1,2, are fulfilled for 0 � m � n.

With that, if we substitute the first two components of (19) into the third one, we arrive at readily the expected state of
the particle velocity

(u1)
n+1
i = (u1)

n
i = u0.

When we continue applying this result to the fourth component of (19), after simple algebraic manipulations, we get the
update of the total internal energy

2∑
k=1

(αkρkek)
n+1
i =

2∑
k=1

(αkρkek)
n
i − �t

�x1
u0

[
(αkρkek)

L
i+1/2 − (αkρkek)

L
i−1/2

]
,

or alternatively(
αk

(
p − p∞,k

Γk
+ ρke∞,k

))n+1

i
=

(
αk

(
p − p∞,k

Γk
+ ρke∞,k

))n

i
− �t

�x1
u0

·
[(

αk

(
p − p∞,k

Γk
+ ρke∞,k

))L

i+1/2
−

(
αk

(
p − p∞,k

Γk
+ ρke∞,k

))L

i−1/2

]
,

when it is written componentwise for k = 1,2 and with the Mie–Grüneisen equation of state (2). Note that based on the
results for αkρk and α1 from (19), we find the phasic density ρn+1

k retains its expected value ρn
k for k = 1,2. Using this fact

together with pn = p0 and the consistent reconstruction of ρkek at each cell edges, it is not difficult to show the fulfillment
of pressure equilibrium pn+1 = p0 from the above equation for internal energy.

Having these results in mind, it should be easy to comprehend that the numerical resolution of volume fractions gives
the basic characterization of the discontinuous interfacial profile for both density and total internal energy in which the
THINC reconstruction scheme proposed here may be advantageous for some practical problems with immiscible interfaces;
this will be justified numerically in Section 5.

5. Numerical results

We now present sample numerical results obtained using our semi-discrete wave propagation method with and without
THINC-based solution reconstruction described in the previous sections for compressible two-phase flows in one and two
space dimensions. In all the cases considered here, we have used a second-order MUSCL method with the HLLC approximate
Riemann solver in step 1, a second-order SSP method in step 4, and the Courant number ν = 1/2 (cf. [20]), while performing
the runs. To demonstrate more proof of competitiveness of the approach, we have also included results obtained using the
anti-diffusion interface sharpening technique (see Appendix B for a brief overview of the method).

5.1. One-dimensional case

Example 5.1. We begin by considering a simple interface only problem in one dimension where the exact solution of
the problem consists of a square liquid column evolving in gas with uniform equilibrium pressure p = p0 = 105 Pa and
constant particle velocity u1 = u0 = 100 m/s in a shock tube of one meter. In this test, inside the region x1 ∈ [0.4,0.6] m
the fluid is nearly liquid that contains a uniformly distributed small amount of the gas volume fraction α2 = 10−8, and it
is nearly gas that contains the liquid volume fraction α1 = 10−8 elsewhere; the density for the pure liquid and gas phase
in the domain are ρ1 = 1000 kg/m3 and ρ2 = 1 kg/m3, respectively. We use the stiffened gas equation of state to model
the thermodynamic behavior of liquid and gas where the material-dependent functions appeared in (2) are Γk = γk − 1,
p∞,k = −γkBk , and e∞,k = 0 with the parameter values taken in turn to be γ1 = 4.4, B1 = 6 × 108 Pa, and γ2 = 1.4, B2 = 0
for the liquid and gas phases.

We carried out the computation using the proposed semi-discrete method with and without THINC reconstruction. Peri-
odic boundary condition is used on the left and right boundaries during the computations. Fig. 1 shows numerical results at
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Fig. 1. Numerical results for a passive advection of a square liquid column at time t = 10 ms. The solid line is the exact solution and the points show the
computed solution with 100 mesh points obtained using each of the methods with and without THINC reconstruction; in each graph the anti-diffusion
results (marked by triangles) are included also as for comparison.

time t = 10 ms using a 100 mesh; for comparison purposes results obtained using a wave-propagation based anti-diffusion
method are included also. From the figure, it is easy to see that, with each of the methods, we have retained the cor-
rect pressure equilibrium and particle velocity, without introducing any spurious oscillations near the interfaces. Comparing
with the exact solution, we observe an improved resolution of the interfaces for the density and volume fraction when the
interface-sharpening method (with either the THINC- or anti-diffusion-based) is employed in the simulation.

Example 5.2. Our next example is a two-phase impact problem proposed by Saurel and Abgrall [39] (see also [43]). Initially,
under the atmospheric condition (i.e., with uniform pressure p0 = 105 Pa and temperature T0 = 300 K throughout the
domain), there is a rightward going copper plate with the speed u1 = 1500 m/s interacting with a solid explosive at rest
on the right of the plate, see Fig. 2 for illustration. In this problem, as in the previous test, there is a uniformly distributed
small amount of volume fraction α2 = 10−8 and α1 = 10−8 inside the copper and explosive, respectively. To model the
material properties of the copper and (solid) explosive, we use the Cochran–Chan equation of state that in (2) we set the
same Γk as in the stiffened gas case, but with p∞,k , e∞,k defined by

p∞,k(ρk) = B1k

(
ρ0k

ρk

)−E1k

− B2k

(
ρ0k

ρk

)−E2k

,

e∞,k(ρk) = −B1k

ρ0k(1 − E1k)

[(
ρ0k

ρk

)1−E1k

− 1

]
+ B2k

ρ0k(1 − E2k)

[(
ρ0k

ρk

)1−E2k

− 1

]
− C vk T0. (20)

Here γk , B1k , B2k , E1k , E2k , Cvk , and ρ0k are material-dependent quantities, see Table 1 for a typical set of numerical values
for copper and explosive considered here (cf. [26,29,59]).

It is known that the exact solution of this impact problem is composed of a leftward-going shock wave to the copper,
a rightward-going shock waves to the inert explosive, and a material interface lying in between that separates these two
different materials (cf. [39]). We run this problem using the same numerical methods as performed in the previous examples
for the single interface only problem but with a 200 grid. Fig. 2 shows the resulting solutions at time t = 85 μs for the
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Table 1
Material quantities for solid copper (k = 1) and explosive (k = 2) in the Cochran–Chan equation of state (20).

k ρ0k (kg/m3) B1k (GPa) B2k (GPa) E1k E2k γk C vk (J/kg K)

1 8900 145.67 147.75 2.99 1.99 3 393

2 1840 12.87 13.42 4.1 3.1 1.93 1087

Fig. 2. Numerical results for a two-phase (solid explosive-copper) impact problem at time t = 85 μs. The solid line is the fine grid solution computed by
5000 meshes, and the points show the solutions with 200 meshes.

density, velocity, pressure, and the copper volume fraction. By comparing the computed solutions with the fine grid one
obtained using the THINC-based interface-sharpening method but with 5000 meshes, we see good agreement of the solution
behaviors in all the methods under concerned with the correct shock speeds and free of spurious oscillations in the pressure
near the interface. With the THINC reconstruction, we again observe some improvement on the structure of the density
and volume fraction near the interface. Notice that there is a slight overshoot on the phasic density α1ρ1 on the left of
the interface; this error diminishes however when the mesh is refined. This overshoot does not appear in the present
anti-diffusion results.

Example 5.3. We continue our test by considering the interaction of a shock wave in molybdenum with an encapsulated
MORB (Mid-Ocean Ridge Basalt) liquid. As in [30,31,43], we use (2) to model the thermodynamic behavior of MORB and
molybdenum with Γk , p∞,k , and e∞,k defined as follows:

Γk(ρk) = Γ0k

(
ρ0k

ρk

)ηk

,

p∞,k(ρk) = p0 + ρ0kc2
0k(1 − ρ0k

ρk
)

[1 − ζk(1 − ρ0k
ρk

)]2
,

e∞,k(ρk) = e0 + 1
(

1 − ρ0k
)(

p0 + p∞,k(ρk)
)
. (21)
2ρ0k ρk
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Table 2
Material quantities for MORB (k = 1) and molybdenum (k = 2) in the Mie–Grüneisen equation of state (2) with (21).

k ρ0k (kg/m3) c0k (m/s) ζk γk ηk

1 2660 2100 1.68 1.18 1

2 9961 4770 1.43 2.56 1

Fig. 3. Numerical results for a shock wave in molybdenum interacting with an encapsulated MORB liquid at time 120 μs. The graphs are displayed in the
same manner as in Fig. 2.

Here Γ0k = γk − 1 represents a reference Mie–Grüneisen coefficient at ρk = ρ0k , ηk ∈ [0,1] is a dimensionless parameter, c0k
denotes the zero-pressure isentropic speed of sound, and ζk is a dimensionless parameter. With the zero initial reference
state for p0 and e0, typical set of material quantities for the MORB (k = 1) and molybdenum (k = 2) are given in Table 2.

In this problem, the initial condition is composed of a stationary (MORB-molybdenum) interface at x1 = 0.6 m and a
rightward going Mach 1.163 shock wave in molybdenum at x1 = 0.4 m traveling from left to right in a shock tube of unit
length. The material on the right of the interface is a MORB liquid with the data

(ρ1,ρ2, u1, p,α1)R = (
ρ01,ρ02,0,0,1 − 10−6),

and the material on the left of the interface (i.e., on the middle and the preshock state), is molybdenum with data

(ρ1,ρ2, u1, p,α1)M = (
ρ01,ρ02,0,0,10−6).

The state behind the shock in the molybdenum is

(ρ1,ρ2, u1, p,α1)L = (
ρ01,11 042 kg/m3,543 m/s,3 × 1010 Pa,10−6).

We note that this gives us one example, in which the (MORB-molybdenum) interface is accelerated by a shock wave coming
from the heavy-fluid to the light-fluid region, and it is known that the resulting wave pattern after the interaction would
consist of a transmitted shock wave, an interface, and a reflected rarefaction wave (cf. [10]).

Numerical results for this problem are shown in Fig. 3, where the snap shot of density, velocity, pressure, and volume
fraction for MORB are shown at time t = 120 μs using a 200 grid. From the figure, we again observe sensible improvement



338 K.-M. Shyue, F. Xiao / Journal of Computational Physics 268 (2014) 326–354
Table 3
Material quantities in cgs units for gaseous explosive (k = 1) and water (k = 2) in the JWL equation of state (22) for a spherical underwater explosion test.

k ρ0k (g/cm3) A1k (dyn/cm2) A2k (dyn/cm2) R1k R2k γk

1 1.63 3.712 × 1012 3.23 × 1010 4.15 0.95 1.3

2 1.00381 15.82 × 1012 −4.668 × 1010 8.94 1.45 2.172

of the interface structure obtained using our THINC-based method; this result is comparable with the anti-diffusion one in
all region, except in a narrow region on the left of the interface as in the previous case where a slight overshoot on α1ρ1 is
present. Despite this, our THINC scheme works in a satisfactory manner for the other physical variables near the interfaces.
A two-dimensional version of this problem will be considered in Example 5.8.

Example 5.4. To end this subsection, we are interested in a well-studied UNDEX (UNDerwater EXplosion) problem that
involves the growth and collapse of an underwater gas bubble in spherically symmetric geometry. Similar to the test case
considered in [25] (see [58] also), the initial condition we take is composed of 300 g of spherical TNT charge at a depth of
94.1 m in water with ambient pressure of 1 × 107 dyn/cm2. In this work, the constitutive law for both the explosive (k = 1)
and water (k = 2) are described by the JWL (Jones–Wilkins–Lee) equation of state where in (2) we have

Γk = γk − 1,

p∞,k(ρk) = A1k exp

(−ρ0kR1k

ρk

)
+A2k exp

(−ρ0kR2k

ρk

)
,

e∞,k(ρk) = A1k

ρ0kR1k
exp

(−ρ0kR1k

ρk

)
+ A2k

ρ0kR2k
exp

(−ρ0kR2k

ρk

)
, (22)

see Table 3 for a sample set of material quantities in cgs units for TNT and water (cf. [58]). With that, inside the explosive
sphere of radius 3.5287 cm (for a 300 g TNT) the state variables are

(ρ1,ρ2, u1, p,α1) = (
ρ01,ρ02,0,83 812 408 875.7788 dyn,1 − 10−8),

and outside the sphere the state variables are

(ρ1,ρ2, u1, p,α1) = (
ρ01,ρ02,0,1 × 107 dyn,10−8).

It should be mentioned that unlike the work done in [25,58] where a hybrid barotropic and non-barotropic equation of
state (i.e., the Tait equation of state for water, and the JWL for TNT) is used in their numerical simulation of the problem
with ALE-type methods, here with the five-equation model (4) and the definition of mixture pressure (3) it is convenient
to consider a non-barotropic equation of state for water (such as the JWL) as well in our numerical method for simulation.
It has been demonstrated in [58] and the results shown below that the influence on the equation of state for water is not
high for this spherical UNDEX problem; the compressibility effect of water counts however.

We carry out the computation using the THINC-based interface-sharpening method proposed here together with the
source term treatment described in Section 2.3 for spherical symmetry, where the solid wall is used on the left boundary,
and the non-reflection boundary is used on the right. As in the results present in [25], Figs. 4(a)–(d) show the time sequence
of the density and pressure through four different solution phases, namely, the initial phase, the shock-interface wave
interaction phase, the incompressible phase, and bubble collapse and rebound phase, respectively. First, note that we have
used an adaptive domain size, i.e., 20, 60, 160, and 5000 cm for the solution phases (a)–(d) individually, so that the leading
shock wave remains in the computational domain; the mesh size is kept as a constant �x1 = 0.05 cm throughout the runs.
Comparing our results with the ones shown in [25], we see a qualitative agreement on the basic structure of the solution
at all the phases.

To give a quantitative assessment of the solutions for this spherical UNDEX problem, Fig. 5 shows the time history of the
bubble radius and the bubble–water interface pressure obtained using both the THINC- and anti-diffusion-based methods
(cf. [11,25,58]). From the figure, it is easy to estimate the maximum bubble radius (denoted by rmax) by checking the
maximum of the discrete set of the bubble radius. Moreover, we may also estimate the bubble period (denoted by Tb) by
measuring either the minimum radius or the peak interface after the maximum volume expansion. Table 4 summarizes the
findings together with those results reported in the literature as for comparison.

Note that the incompressible solution shown in the table is computed based on solving a variant of the Rayleigh–
Plesset equation with the gas pressure on the bubble surface following the isentropic JWL equation of state, see [36,58]
for the details. From the table, it is clear that the incompressible solution does not give a good prediction on the solu-
tion which indicates that the water compressibility is of fundamental importance to this problem. Comparing our results
with those appeared in the literature (cf. [52,25,58]) and the anti-diffusion ones, we observe good agreement of re-
sults.



K.-M. Shyue, F. Xiao / Journal of Computational Physics 268 (2014) 326–354 339
Fig. 4. Numerical results for a spherical UNDEX test. Snap shots of the density and pressure are shown at four different solution phases, namely, from top
row to bottom, they are at (a) the initial phase, (b) the shock-interface wave interaction phase, (c) the incompressible phase, and (d) bubble collapse and
rebound phase. The solid dots plotted in each graph indicate the approximate solution of the gas–water interface.
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Fig. 4. (continued)

Fig. 5. Time history of the bubble radius and the bubble–water interface pressure for the spherical UNDEX test. The black triangles, red diamonds, green
circles, and blue squares, shown in each graph indicate the selected snap-shot time plotted in Fig. 4(a)–(d), respectively. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Table 4
A quantitative study of the maximum bubble radius rmax and the period of bubble oscillation Tb for the spherical underwater explosion test.

rmax (cm) Error (%) Tb (ms) Error (%)

Experiment [52] 48.10 0 29.8 0

Incompressible 66.49 38.2 39.1 31.2

Luo et al. [25] 48.75 1.4 29.7 0.3

Wardlaw et al. [58] 46.40 3.5 29.8 0

Our results (with THINC) 48.17 0.1 29.1 2.3

Our results (with antiD) 48.57 0.1 29.5 1.1

It should be mentioned that this spherical UNDEX problem is known to be a difficult test for any multi-material
solvers [25] as the flow conditions are extreme, and the equation of states are stiff. Any spurious oscillations on solu-
tion states near the bubble–water interface will lead eventually to unphysical thermodynamic states, yielding the col-
lapse of computations; this is in fact the case we have experienced when the original semi-discrete method without
THINC reconstruction is employed to solve the problem. The computed UNDEX solutions presented here have demon-
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Fig. 6. Numerical results for a passive evolution of a square liquid column in gas. Contours of the density are shown at time t = 20 ms obtained using the
method with and without THINC reconstruction on a 100 × 100 grid.

Table 5
A comparison of 1-norm errors in mixture density for the passive advection problem obtained using the semi-discrete method with and without THINC
reconstruction, and the wave propagation method with anti-diffusion.

N Method

With THINC No THINC With anti-diffusion

E1(ρ) Order E1(ρ) Order E1(ρ) Order

50 9.8840 NaN 91.7486 NaN 4.0436 NaN
100 5.1746 0.93 60.6698 0.60 2.0558 0.98
200 2.6455 0.97 39.3623 0.62 0.9921 1.05
400 1.3373 0.98 25.2699 0.64 0.4414 1.17

strated further the viability of the proposed interface-sharpening method for practical compressible two-phase flow prob-
lems.

5.2. Two-dimensional case

Example 5.5. To show how our method works in two dimensions, we begin by considering a simple interface only problem
in a unit square domain where the exact solution consists of a passive evolution of a square liquid column in gas of size
(x1, x2) ∈ [0.3,0.7] × [0.3,0.7] m2 with uniform equilibrium pressure p = 105 Pa and constant particle velocity (u1, u2) =
(100,100) m/s. In this test, inside the square region (x1, x2) ∈ [0.3,0.7]×[0.3,0.7] m2 the fluid is nearly liquid that contains
a uniformly distributed small amount of the gas volume fraction α2 = 10−8, and it is nearly gas that contains the liquid
volume fraction α1 = 10−8 elsewhere; the density for the pure liquid and gas phase in the domain are ρ1 = 1000 kg/m3 and
ρ2 = 1 kg/m3, respectively. We use the linearized Mie–Grüneisen equation of state to model the liquid and gas where the
material-dependent functions appeared in (2) are Γk = γk − 1, p∞,k(ρk) = c2

0k(ρk − ρ0k), and e∞,k = 0 with the parameter
values taken in turn to be γ1 = 4.4, c01 = 1624.8 m/s, ρ01 = 1000 kg/m3, and γ2 = 1.4, c02 = 0, ρ02 = 1 kg/m3. Here
periodic boundary condition is used in all sides.

Fig. 6 shows contour plots of the density obtained using the method with and without THINC reconstruction at time
t = 20 ms (this is the time the water column traveled over two periodic distance of the domain) using a 100 × 100 grid.
Excellent interface-sharpening result is observed when THINC reconstruction is employed in the method, whereas severely
diffused interface is seen otherwise. It is not difficult to show analytically that both the pressure and the velocity retains
their equilibrium state, see Section 4.2 as an example.

In Table 5, we present numerical results for a convergence study of the 1-norm errors in mixture density, denoted by
E1(ρ), as the mesh is refined (cf. [21]). We note that the method is first order accurate when the interface-sharpening
technique (i.e., with either the THINC- or anti-diffusion-based) is in use, and is less than first order accurate otherwise; this
rate of convergence is true also for the 1-norm errors in volume fraction considered in this case (not shown here).

Example 5.6. Our second test problem in two dimensions is a three state two-phase triple point problem. We use the same
problem setup as considered in [19,24], where in a rectangular domain of size (x1, x2) ∈ [0,7] × [0,3] the initial data is
quiescent with the state variables

(ρ1,ρ2, p,α1) =

⎧⎪⎨
⎪⎩

(1,1,1,1 − 10−8) if x1 < 1,

(1,1,0.1,10−8) if x1 > 1 and x2 < 1.5,

−8
(0.125,1,0.1,1 − 10 ) if otherwise.



342 K.-M. Shyue, F. Xiao / Journal of Computational Physics 268 (2014) 326–354
Fig. 7. Numerical results for a three state two-phase triple point problem. Contours of mixture density, pressure, and pseudo colors of volume fraction are
shown at two different times t = 2.4 and 5 obtained using each of the methods with and without THINC interface-sharpening (drawn on the top and
bottom parts of each graph, respectively) with a 210 × 90 grid. The vector fields shown in the pressure plots are the particle velocities, and the green
dashed-line graphed in each plot is the initial location of the interface. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Here the two different fluid phases inside the domain are all modeled by polytropic perfect gases so that in (2) we have
Γk = γk − 1, p∞,k = 0, and e∞,k = 0. We take γ1 = 1.5 and γ2 = 1.4 for phase 1 and 2, respectively, see Fig. 7 for the initial
location of the material interface. Nonreflecting boundary condition is assumed on all sides for this problem.

With that, it is known that due to the pressure difference at x1 = 1, a planarly shock wave is formed moving to the right.
Because of the different material properties on the right where the acoustic impedance in upper part is greater than the
one in the lower part, the shock wave moves faster in the upper, and so a vortex evolves around the triple point as time
proceeds.

As before, this triple point problem is solved using each of the methods with and without interface sharpening. The
results are shown in Fig. 7, where contours of density, pressure, and pseudo colors of volume fraction are plotted at two
different times t = 2.4 and 5 with a 210×90 grid and the vector fields of the particle velocities are included in the pressure
plots also. From the figure, it is clear that both methods have done a reasonable job in capturing the main feature of the
solution without introducing any spurious oscillation in pressure near the interface (cf. [19,24]). It is interesting to see that
the results obtained using our interface-sharpening method give a sharper resolution of the interface, while maintaining the
same structure of the solution away from the interface, which follow our expectations in the development of this method.
For comparison purposes, Fig. 8 shows numerical results for the same run but is with the anti-diffusion method, observing
good agreement with the THINC results qualitatively.
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Fig. 8. Anti-diffusion results for a three state two-phase triple point problem. Contours of mixture density, pressure, and pseudo colors of volume fraction
are shown at two different times t = 2.4 and 5 with a 210 × 90 grid.

Example 5.7. We are next concerned with a well-known shock-bubble interaction problem that involves the collision of a
shock wave in air with a circular R22 gas bubble (cf. [8,18,28,37,45] and cited references therein). Initially, there is a planar
leftward-moving Mach 1.22 shock wave in air located at x = 275 mm traveling towards a stationary R22 gas bubble with
center (x1

0, x2
0) = (225,44.5) mm and of radius r0 = 25 mm lying in front of it. Here both the air and R22 are modeled

as perfect gases with γ1 = 1.249, ρ01 = 3.863 kg/m3 and γ2 = 1.4, ρ02 = 1.225 kg/m3 for R22 (k = 1) and air (k = 2),
respectively. Inside the R22 gas bubble, the state variables are

(ρ1,ρ2, u1, u2, p,α1) = (
ρ01,ρ02,0,0,1.01325 × 105 Pa,1 − 10−8),

while outside the bubble they are

(ρ1,ρ2, u1, u2, p,α1) = (
ρ01,ρ02,0,0,1.01325 × 105 Pa,10−8)

and

(ρ1,ρ2, u1, u2, p,α1) = (
ρ01,1.686 kg/m3,−113.5 m/s,0,1.59 × 105 Pa,10−8)

in the preshock and postshock regions, respectively. The computational domain considered here is a shock tube of size:
(x1, x2) ∈ [0,445] × [0,89] mm2, where we impose the solid wall boundary condition on the top and bottom, and the
non-reflecting boundary condition on the left and right.

Fig. 9 shows a sequence of the schlieren-type images of the density at eight different times t = 55, 115, 187, 247, 318,
342, 417, and 1020 μs (measured relative to the time where the incident shock first hits the upstream bubble wall) with
a 3560 × 356 grid. Here for clarity, only the results in some short distances around the gas bubble are presented. From
the figure, it is easy to observe the sensible improvement on the sharpness of the interface when the interface-sharpening
version of the method is employed in the runs.

In Fig. 10, we show density schlieren-type images for the anti-diffusion run of this problem; see the results shown
in [51] also. With that, it is interesting to see that we have gotten a more regularized interface structure (see the results
with THINC in Fig. 9) than the one obtained using the anti-diffusion method. This comes as no surprise, however, because
in our interface-sharpening method the THINC reconstruction is applied only to interface cells where the monotonicity
constraint (13) is one of the conditions to be satisfied, while in the other instance, the anti-diffusion step is applied to
all the cells with a numerical regularization condition imposed to stabilize the gradient of volume fraction in discretiza-
tion.

To get a quantitative assessment of several prominent features of the flow, following [37,45] we make a diagnosis plot
of the space–time locations of the incident shock wave, the upstream bubble wall, the downstream bubble wall, the re-
fracted shock wave, and the transmitted shock wave at some selected times up to t = 250 μs, see Fig. 11 for the case
with and without the THINC reconstruction. With these trajectories, we perform a linear least-squares fit to each set
of points separately, and take the slope of the respective line as one measure of the wave speed of interests. Table 6
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Fig. 9. Numerical results for a planar Mach 1.22 shock wave in air interacting with a circular R22 gas bubble. A sequence of the schlieren-type images of
the density obtained using each of the methods with and without THINC reconstruction is shown (from top to bottom) at eight different times t = 55, 115,
187, 247, 318, 342, 417, and 1020 μs with a 3560 × 356 grid.

provides a comparison of the various computed velocities between our results with those appeared in the literature, observ-
ing good agreement of results. Here V s represents the speed of the incident shock wave during the time t ∈ [0,250] μs,
V ui (V u f ) is the speed of the initial (final) upstream bubble wall when time t ∈ [0,400] μs (t ∈ [400,1000] μs), Vdi
(Vdf ) is the speed of the initial (final) downstream bubble wall when time t ∈ [200,400] μs (t ∈ [400,1000] μs), V R is
the speed of the refracted shock when time t ∈ [0,202] μs, and V T is the speed of the transmitted shock when time
t ∈ [202,250] μs.

Example 5.8. To end this section, we consider a simplified test problem proposed by Miller and Puckett [31] in which a
shock wave in molybdenum is interacting with a region of encapsulated MORB liquid in a unit square domain; there is
no free surface in the problem formulation. Similar to the initial condition used in Example 5.3, at x1 = 0.3 m, there is
a planarly rightward-moving Mach 1.163 shock wave in molybdenum traveling from left to right that is about to collide
with a rectangular region [0.4,0.7]× [0,0.5] m2 which contains a MORB liquid inside. As before, we use the Mie–Grüneisen
equation of state (2) with (21) and material parameters given in Table 2 to model the thermodynamic behavior of MORB
and molybdenum. Here the solid wall boundary condition is used on the bottom, and the nonreflecting boundary condition
is used on the remaining sides.
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Fig. 9. (continued)

Table 6
A comparison of the computed velocities obtained using our algorithm for Example 5.7 with those reported in the literature; see the text for the definition
of the notations used in the table.

Velocity (m/s) V s V R V T V ui V u f Vdi Vdf

Experiment [8] 415 240 540 73 90 78 78

Quirk and Karni [37] 420 254 560 74 90 116 82

Kokh and Lagoutiere [18] 411 243 525 65 86 86 64

Ullah et al. [56] 410 246 535 65 86 76 60

Shyue [45] (volume tracking) 411 243 538 64 87 82 60

Our results (no THINC) 410 244 536 65 86 98 76

Our results (with THINC) 410 244 538 65 86 87 64

Our results (with antiD) 410 244 532 64 85 100 78
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Fig. 10. Anti-diffusion results for a planar Mach 1.22 shock wave in air interacting with a circular R22 gas bubble. Density schlieren-type images are shown
at eight different times t = 55, 115, 187, 247, 318, 342, 417, and 1020 μs with a 3560 × 356 grid.

Fig. 12 show sample results at two different times t = 50 and 100 μs obtained using our semi-discrete method with and
without THINC reconstruction on a 200 × 200 grid. From the pseudo-color plots of the volume fraction, it is easy to observe
the improved resolution of the solution near the interface, when the method with THINC reconstruction is employed in the
test. In addition to that, from the contours of pressure we find reasonable structure of the diffraction of a shock wave by the
MORB liquid, and free of spurious oscillations near the interface. The schlieren-type images of the density provide further
evidence on the improvement of the interface structure by our interface-sharpening method, but also show a glitch on the
left of the interface. This indicates a slight overshoot of the solution, a numerical artifact that we have already seen in the
one-dimensional case. In Fig. 13, we present numerical results based on our implementation of the anti-diffusion method
as for comparison, see [31,43,45,51] for a similar test of the problem.

6. Conclusion

We have described a simple Eulerian interface-sharpening algorithm for compressible homogeneous two-phase flow
governed by a five-equation model. The algorithm uses a semi-discrete wave propagation method as a basis with a variant
of the THINC scheme for reconstructing sub-grid discontinuity of volume fractions numerically. The algorithm is very simple
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Fig. 11. Space–time locations of the incident shock wave (marked by symbol “×”), the upstream bubble wall (marked by symbol “+”), the downstream
bubble wall (marked by symbol “
”), the refracted shock (marked by symbol “�”), and the transmitted shock (marked by symbols “∗” and “�”) for the
runs shown in Fig. 9. These trajectories can be used to estimate the speed such as V s , V u , Vd , V R , V T in the order mentioned above.

and straightforward as one needs only replace the reconstruction in a conventional finite volume formulation by the THINC
reconstruction in the interfacial cell where the volume fraction function has a jump. THINC reconstruction re-enforces
the transition jump at every time step and effectively retains the sharpness of the material interface even for long time
computations. In spite of its simplicity, the THINC scheme provides a general and effective remedy to remove the numerical
diffusion which smears out the jumps in Eulerian formulations. Sample numerical results presented in the paper show
the feasibility of the algorithm for sharpening compressible interfaces in one and two dimensions. One ongoing work is
to devise a fully multi-dimensional method to high order and also to mapped grids with complex geometries; the fully
multi-dimensional THINC reconstruction in [12] can be readily used for that purpose. Extension of the method to a class
of liquid–vapor phase transition problems that may be described by a reduced five-equation model of Kapila et al. will be
considered also (cf. [14,40,63]).
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Appendix A. Some advection tests

We present some advection benchmark tests of the volume fraction transport in two dimensions in comparison with the
anti-diffusion schemes. The THINC reconstruction ((16a) and (16b)) is used to compute the numerical flux which is then
used in a finite volume formulation with given velocity fields as shown below. The slope parameter β in the reconstruction
function is adaptively determined in a way similar to the THINC/SW scheme [61].

Fig. 14 shows the results of a rotating circle same as Example 5.1 in [33] and Example 4.2 in [50] on grids of different
resolutions. The computational domain is [0,1] × [0,1]. A circle with a diameter of 1/4, in which the volume fraction
function is set to be 1 and 0 otherwise, is initially centered at (5/8,5/8).

It is observed from Fig. 14 that the thickness of the moving interface remains compact even without the post-processing
of anti-diffusion. It reveals that interface-capturing computation can be simply done by using the THINC method as a pure
advection scheme. The circular geometry of the interface is preserved in the numerical solutions. The numerical results are
comparable to those reported in [33] and [50].

Fig. 15 shows the result of Zalesak’s problem after one revolution. The computational condition is equivalent to Exam-
ple 4.3 in [50]. Again, the thickness of the jump in volume fraction remains compact throughout the computation. As we
have already shown in [61], THINC method gives a comparable accuracy to the PLIC (piecewise linear interface calculation)
VOF schemes [35] which are in general more accurate than the anti-diffusion type method.

We also repeat the vortex flow test as Example 5.2 in [33] and Example 4.4 in [50]. Shown in Fig. 16, the THINC scheme
shows an obvious superiority in solution quality for all grid resolutions. In particular, THINC scheme is able to resolve the
deformed interface with adequately accuracy even on a low resolution grid, e.g., the 32 × 32 grid, while the anti-diffusion
schemes generate significant discrepancy not only in the shape but also in the location of the interface as shown in [33]
and [50].
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Fig. 12. Numerical results for a planar Mach 1.163 shock wave in molybdenum interacting with an encapsulated MORB liquid. Density schlieren-type images,
pressure contours, and pseudo colors of volume fraction are shown at two different times t = 50 and 100 μs obtained using each of the methods with and
without THINC interface-sharpening with a 200×200 grid. In the pressure plot, the bold line represents the approximate location of the MORB-molybdenum
interface.

Appendix B. Anti-diffusion based interface sharpening method

Following the previous work described in [47], an anti-diffusion based Eulerian interface-sharpening algorithm for the
five-equation model (4) can be written in the form

∂q

∂t
+

N∑
j=1

∂ f j(q)

∂x j
+

N∑
j=1

B j(q)
∂q

∂x j
= 1

μ
Dεq, (B.1a)

where Dε is an augmented anti-diffusion vector differential operator with a diffusion coefficient ε and μ is a positive real
number that the inverse of it 1/μ may be referred as the characteristic regularization rate after the work of Tiwari et
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Fig. 12. (continued)

al. [54]. Here with reference to Dε as applied to the volume fraction function α1 proposed by So et al. [50,51],

Dεq(N+4) = Dεα1 = −∇ · (ε∇α1), (B.1b)

we may define the remaining anti-diffusion terms for Dεq(i) , i = 1,2, . . . , N + 3 as

Dεq(1) = Dε(α1ρ1) = ρ1Dεα1, (B.1c)

Dεq(2) = Dε(α2ρ2) = −ρ2Dεα1, (B.1d)

Dεq( j+2) = Dε(ρu j) = u j(ρ1 − ρ2)Dεα1, j = 1,2, . . . , N, (B.1e)

Dεq(N+3) = Dε E =
[

1 �u · �u(ρ1 − ρ2) + (ρ1e1 − ρ2e2)

]
Dεα1, (B.1f)
2
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Fig. 13. Anti-diffusion results for a planar Mach 1.163 shock wave in molybdenum interacting with an encapsulated MORB liquid. Density schlieren-type
images, pressure contours, and pseudo colors of volume fraction are shown at two different times t = 50 and 100 μs with a 200 × 200 grid.

see [47,48,51] for the basic idea on how this can be derived, and [54] for a different view point of (B.1) if an artificial
compression differential operator is use instead.

To approximate (B.1) numerically, a fractional step method that consists of the following steps in each time iteration is
employed:

(1) Solve the homogeneous part of the model equation without the anti-diffusion terms,

∂q

∂t
+

N∑
j=1

∂ f j(q)

∂x j
+

N∑
j=1

B j(q)
∂q

∂x j
= 0,

over a time step �t .
(2) Take the solution obtained in step 1 as the initial condition, and solve the model equation with only source term,
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Fig. 14. The rotating circle after one revolution on grids of 25 × 25 (top-left), 50 × 50 (top-right), 100 × 100 (bottom-left) and 200 × 200 (bottom-right)
respectively.

Fig. 15. The result after one revolution of Zalesak problem on a 100 × 100 grid. Displayed are the contours of 0.05, 0.5 and 0.95 (left) and the interface
(right).

∂q

∂t
= 1

μ
Dεq,

over a time step �τ towards a “sharp layer”. Here τ = t/μ is a scaled time variable.

In the numerical results shown in Section 5, we have employed the standard wave propagation method in the framework
of Clawpack [22] over a CFL-constrained �t in step 1, and followed by a simple explicit method based on the first-order
forward Euler approximation in (pseudo) time τ , and the second-order central difference approximation in space. Here for
stability, in step 2, we have taken the time step �τ so that

�τ � min

(
�t,

minN
j=1 �(x j)2

2Nεmax

)

is satisfied, and have used a numerical regularization procedure such as employing the Minmod limiter (cf. [20]) to stabilize
the computation of ∇α1 and so the flux ε∇α1 while discretizing the anti-diffusion term Dεα1. Note that in the method,
the diffusion coefficient ε = ε(�u) is a diagonal matrix with entries depending on the local velocity in both space and time.
With that, we have set εmax = max(|�u|). Numerical results shown here indicate that taking only one anti-diffusion iteration
is enough for the purpose of sharpening the interfaces.
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Fig. 16. The interface deformation test with a vortex shear flow on grids of different resolutions (from left to right: 32 × 32, 64 × 64, 128 × 128 and
256 × 256 respectively.). Displayed are the 0.5-contour of the volume fraction function. The top row shows the outputs at t = 1 and the lower row at t = 2.
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