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A simple interface-capturing approach proposed previously by the author for effi-
cient numerical resolution of multicomponent problems with a van der Waals fluid
[J. Comput. Phys., 156 (1999), pp. 43–88] is extended to a more general case with
real materials characterized by a Mie–Gr¨uneisen equation of state. As before, the
flow regime of interests is assumed to be homogeneous with no jumps in the pres-
sure and velocity (the normal component of it) across the interfaces that separate
two regions of different fluid components. The algorithm uses a mixture type of
the model system that is formed by combining the Euler equations of gas dyna-
mics for the basic conserved variables and an additional set of effective equations
for the problem-dependent material quantities. In this approach, the latter equations
are introduced in the algorithm primarily for an easy computation of the pressure
from the equation of state, and are derived so as to ensure a consistent modeling
of the energy equation near the interfaces where two or more fluid components are
present in a grid cell, and also the fulfillment of the mass equation in the other single
component regions. A standard high-resolution wave propagation method designed
originally for single component flows is generalized to solve the proposed system for
multicomponent flows, giving an efficient implementation of the algorithm. Several
numerical results are presented in both one and two space dimensions that show
the feasibility of the method with the Roe Riemann solver as applied to a reason-
able class of practical problems without introducing any spurious oscillations in the
pressure near the interfaces. This includes results obtained using a multicomponent
version of the AMRCLAW software package of Berger and LeVeque for the simu-
lation of the impact of an underwater aluminum plate to a copper plate in two space
dimensions. c© 2001 Academic Press
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1. INTRODUCTION

In this paper, we describe extensions of a fluid-mixture type algorithm proposed previ-
ously by the author for efficient numerical resolution of multicomponent problems with
a van der Waals gas (cf. [45]) to a more general case with materials characterized by a
Mie–Grüneisen equation of state of the form

p(ρ, e) = pref(ρ)+ 0(ρ)ρ [e− eref(ρ)]. (1)

Here p, ρ, ande denote the pressure, density, and specific internal energy of the flow,
respectively;0 = (1/ρ)(∂p/∂e)|ρ is the Grüneisen coefficient, andpref, eref are the properly
chosen states of the pressure and internal energy along some reference curve (e.g., along
an isentrope, a single shock Hugoniot, or the other empirically fitting curves) in order to
match the experimental data of the material being examined. Note that, for simplicity, each
of the expressions0, pref, anderef is taken as a function of the density only. Even with this
simplification, the analytical form of the equation of state (1) is an adequate approximation
to a wide variety of materials of interest. This includes some gaseous or solid explosives
and solid metals under high pressure; see Section 2 for the details.

It is known that for a general multicomponent flow system (compressible or not), de-
pending specifically on conditions such as the topological structure of the interfaces and
jumps of fluid properties across them, one can distinguish various type of flow regimes of
practical importance, e.g., annular flow, slug flow, bubbly flow, and so on (cf. [10, 49, 51,
53]). Among them, in this work (cf. [44, 45, 46] also), we are interested in problems arising
from a so-called homogeneous flow in which there is typically a strong coupling between
the motion of each fluid component, and assumes a simple flow condition with no jumps
in the pressure and velocity (the normal component of it) across interfaces that separate
two different fluid components. Consider a one-dimensional inviscid compressible flow,
for example. The basic conservation laws for the fluid mixtures of mass, momentum, and
energy are

∂ρ

∂t
+ ∂

∂x
(ρu) = 0,

∂

∂t
(ρu)+ ∂

∂x
(ρu2+ p) = 0, (2)

∂

∂t
(ρE)+ ∂

∂x
(ρEu+ pu) = 0,

respectively, whereu is the particle velocity, andE = e+ u2/2 is the specific total energy.
Clearly, (2) takes the same form as the standard Euler equations of gas dynamics for a
single component flow, and has been used quite extensively in modeling the behavior
of a homogeneous flow (cf. [44, 45, 46]). Note that, in contrast to the case mentioned
above, the use of a separate set of equations for each fluid component is often preferred for
nonhomogeneous multicomponent problems; see [2, 12, 39] for an example.

To solve a compressible multicomponent problem with a general. Mie–Gr¨uneisen equa-
tion of state (1), we want to use an Eulerian formulation of the equations as in the form
described in (2), and to employ a state-of-the-art shock capturing method on a uniform rect-
angular grid for numerical approximation. Aside from the basic properties that a numerical
method should follow in regions where the solutions contain only a single component
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(cf. [7]), one major problem in the method development of a multicomponent solver is the
need to devise a proper model and treatment of the numerical mixing between more than
one fluid component within a grid cell. For the homogeneous flow problems considered
here, in particular, it is imperative to construct the method so that both the pressure and
velocity remain in equilibrium without introducing any spurious oscillations for these mix-
ture cells. With applications to materials modeled by (1), some representative methods of
the previous efforts in this direction are the volume-of-fluid approach of Miller and Puckett
[31], the two-phase flow approach of Saurel and Abgrall [41], and the ghost-fluid approach
of Fedkiwet al. [13]; see also [47] for an Lagrangian–Eulerian approach and [18, 42] for
other up-to-date multicomponent algorithms.

With (1), our approach to model grid cells that contain more than one fluid component
follows essentially the same idea as developed in [44, 45] for stiffened and van der Waals
gases, and is a further generalization of the quasi-conservative method of Abgrall [1] for
ideal gases. That is to say, we begin by considering an interface-only problem in one
dimension where both the pressure and velocity are constants in the domain, while there
are jumps in the other material-dependent variables across some interfaces. Then, from the
energy equation, we derive a set of effective equations for the mixtures of the problem-
dependent material quantities near the interfaces, see (11a) and (11b), so as to ensure the
pressure remains in equilibrium for this problem. As in the previous work [45], in order
to keep the material quantities unchanged as it should be in a single component region for
a more general problem with shock and rarefaction waves as well, we proceed to modify
these equations and obtain (11c) and (11d).

Note that here because of the strongly nonlinear coupling between many of the material
quantities in the Mie–Gr¨uneisen equation of state (1), see Section 2, it is not possible to
manipulate those equations further to find out a suitable effective equation for each of
the material quantities as we have hope for in the van der Waals gas case [45], which
yields the calculation of some of the material quantities from the equation of state an
explicit step out of the question. To remedy this situation, through a process of splitting
from the equation for the internal energy, we come up with a set of three equations, i.e.,
Eqs. (11c), (11e), and (11f), which together with a local model based on the volume fraction
of fluid components within a grid cell can be used to the determination of the material-
dependent functions0, pref, anderef. Therefore, we are able to compute the pressure from
the equation of state in an easy manner with a reasonable amount of cost. A combination
of the Euler’s equation (2) with this set of three equations and the evolution equations
for volume fractions gives a complete model system that is a viable one to use in our
algorithm for numerical approximation of multicomponent problems. This will be discussed
further in Section 3 for the one-dimensional case, and Section 6 for the multidimensional
extension.

It should be mentioned that the multicomponent model we have derived, i.e., Eq. (12) or
(23), is not written in the full conservation form, but is rather a quasi-conservative system of
equations. Nevertheless, as in the case for single component flows, this model is a hyperbolic
system when each physically relevant value of the state variables of the flow is defined in
the region of thermodynamic stability; see Sections 2 and 3. As before (cf. [44, 45]), here
we use the high-resolution method based on the wave-propagation viewpoint to compute
approximate solution of the problem, giving an efficient implementation of the algorithm
and also very accurate results for a variety of one- and two-dimensional problems; see
Sections 5 and 6.1 for the details.



AN ALGORITHM FOR MIE-GRÜNEISEN EOS 681

This paper is organized as follows. In Section 2, we discuss two important types of
the curves (i.e., the isentropic and Hugoniot loci) for the reference states in the Mie–
Grüneisen equation of state, and give some examples of interests for an explicit expression
of the material-dependent functions0, pref, anderef. In Section 3, we describe in detail
the construction of our fluid-mixture type multicomponent model in one dimension. The
numerical method used to find approximate solution of the model system is briefly reviewed
in Section 4. This includes some discussion of the approximate Riemann solver of Roe. One-
dimensional results obtained using our multicomponent algorithm are shown in Section 5.
In Section 6, we extend the one-dimensional algorithm to multiple space dimensions, and
show some numerical results in two dimensions.

2. EQUATIONS OF STATE

We are interested in a model for real materials (cf. [56]) where the thermodynamic
behavior, such as the specific internal energy and the pressure of the material, can be
characterized by the following two-terms relations

e(V, T) = eref(V)+ eT (V, T), (3a)

p(V, T) = pref(V)+ 0(V)
V

eT (V, T). (3b)

HereV = 1/ρ denotes the specific volume,T denotes the temperature, and the subscripts
ref of (p, e) and T of e refer to the “reference” and “thermal” states of the variables,
respectively. Note that to determine the value ofT from those ofV and e, we use the
well-known relation in thermodynamics,

e− eref(V) = eT (V, T) = e0(V)+
∫ T

T0

CV (V, T
′) dT′,

whereCV is the specific heat at constant volume: Assume thatCV depends only on the
specific volume, from the above, we simply geteT = CV (T − T0), yieldingT = T0+ (e−
eref)/CV . Clearly when we chooseρ andeas our nature state-variables, from (3a) and (3b),
we simply get the Mie–Gr¨uneisen equation of state (1).

Here, for simplicity, we assume that0 is a function ofV only, and takes the form

0(V) = 00

(
V

V0

)α
, (4)

where00 = γ0− 1 represents the Gr¨uneisen coefficient atV = V0, γ0 > 1 is the usual def-
inition of the ratio of specific heats, andα ∈ [0, 1] is a dimensionless parameter. Depending
on the specific reference curve on which the states of the functionspref anderef lie, the
explicit relation betweenpref anderef will be different. We next discuss two typical cases
of practical importance; see [26, 55] also for some other possible instances.

2.1. Reference State along a Isentropic Locus

We begin by considering a class of materials where the thermodynamic state (pref, eref) of
the model equation of state (1) lies along an isentropic locus from a centering point (p0, e0),
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i.e., the specific entropy, denoted byS, is a constant on the curve. In this case, from the
basic thermodynamics relationderef = T dS− pref dV anddS= 0, we obtain easily the
condition betweenpref anderef as pref(V) = −deref(V)/dV. Among many materials that
belong to this type, in this paper we are mainly concerned with the following two sample
examples which have been used quite extensively for modeling the behavior of explosives
and other materials (cf. [35] for an example of solids).

(i) The Jones–Wilkins–Lee (JWL) equation of state (for gaseous explosives [9, 54]),

0(V) = 00

eref(V) = AV0

R1
exp

(−R1V

V0

)
+ BV0

R2
exp

(−R2V

V0

)
− e0

(5)

pref(V) = A exp

(−R1V

V0

)
+ B exp

(−R2V

V0

)
,

(ii) The Cochran–Chan (CC) equation of state (for solid explosives [6]),

0(V) = 00

eref(V) = −AV0

1− E1

[(
V

V0

)1−E1

− 1

]
+ BV0

1− E2

[(
V

V0

)1−E2

− 1

]
− e0

(6)

pref(V) = A
(

V

V0

)−E1

− B
(

V

V0

)−E2

.

Note that in each of these cases we have a total of seven material-dependent quantities in the
description of the material property, i.e., in the former case, there are00,V0, e0,A,B,R1,

andR2, while in the latter case, there are00,V0, e0,A,B, E1, andE2. Table I shows typical
set of numerical values for some sample materials of interest.

2.2. Reference State along a Hugoniot Locus

Our next example is concerned with a popular model for solid media such as metals. In
this instance, in the absence of pronounced dynamic yielding effects or phase transitions,
the hydrostatic pressure is commonly expressed by the Mie–Gr¨uneisen equation of state
(1) together with a linear fit assumption for the shock velocity as a function of the particle
velocity, i.e.,

σ = c0+ s u. (7)

Hereσ represents the shock velocity,c0 is the zero-pressure isentropic speed of sound, and
s is a dimensionless parameter which is related to the pressure derivative of the isentropic
bulk modulusKS = ρ(∂p/∂ρ)|S by (∂KS/∂p)|S = 4s− 1 (cf. [40]). By virtue of (7), it
is easy to deduce that the reference curve for (pref, eref) is simply a single Hugoniot locus
from an initial point (p0, e0). With this in mind, using the standard Rankine–Hugoniot jump
conditions for the Euler equations (2), after some simple algebraic manipulations, we find
the explicit expression forpref anderef as

pref(V) = p0+ c2
0(V0− V)

[V0− s(V0− V)]2

(8)
eref(V) = e0+ 1

2
[ pref(V)+ p0](V0− V);
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TABLE I

Typical Material-Dependent Quantities for Three Different Models That

Are in the Mie–Gr üneisen Form (1)

JWL EOS ρ0 (kg/m3) A (GPa) B (GPa) R1 R2 00 α

TNT 1840 854.5 20.5 4.6 1.35 0.25 0
Water 1004 1582 −4.67 8.94 1.45 1.17 0
CC EOS ρ0 (kg/m3) A (GPa) B (GPa) E1 E2 00 α

Copper 8900 145.67 147.75 2.99 1.99 2 0
TNT 1840 12.87 13.42 4.1 3.1 0.93 0
Shock EOS ρ0 (kg/m3) c0 (m/s) s 00 α p0 e0

Aluminum 2785 5328 1.338 2.0 1 0 0
Copper 8924 3910 1.51 1.96 1 0 0
Molybdenum 9961 4770 1.43 2.56 1 0 0
MORB 2660 2100 1.68 1.18 1 0 0
Water 1000 1483 2.0 2.0 10−4 0 0

Note.Data adapted from [26, 27, 55].

see [28] for the details. Note that with0 and (pref, eref) defined by (4) and (8), respectively,
the resulting form of the Mie–Gr¨uneisen equation of state is often called the shock wave or
HOM equation of state [17, 26].

It had been discussed in detail (cf. [29]) that this shock wave equation of state has certain
limitations. Nevertheless, it is observed experimentally that the model considered here is an
adequate approximation for many metals, when the pressure is up to several megabars. A
typical set of parameter values for metals, such as aluminum and copper, is given in Table I
for the reference (cf. [27]). See [17, 40] for a more general discussion of the equation of
state when (7) is replaced by a higher-order polynomial in the particle velocity.

It should be mentioned that to fulfill the conditions for the thermodynamic stability of
the materials of interests, we assume that for each given physical state the speed of sound
c defined by

c2 =
(
∂p

∂ρ

)
S

=
(
∂p

∂ρ

)
e

+ p

ρ2

(
∂p

∂e

)
ρ

(9)
=
(
0 + 1+ ρ 0

′

0

)(
p− pref

ρ

)
+ 0 pref

ρ
+ p′ref− 0ρe′ref

belong to a set of real numbers, where0′, p′ref, ande′ref are the derivatives of0, pref, anderef

with respect toρ, respectively. Of course, it is both interesting and important to include the
cavitation and spallation effects to materials modeled by (1) in a region where the pressure
drops to a critical value. But this subject matter is a very difficult one, and is beyond the
scope of this paper.

3. EQUATIONS OF MOTION

The basic governing equations in our multicomponent model consist of two parts. We
use (2) as a model system that describes the motion of the fluid mixtures of the conserved
variablesρ, ρu, andρE in a multicomponent grid cell. Assume a homogeneous flow with
a single velocity and pressure on grid cells that contain more than one fluid components.
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From the basic physical principles of mass and energy conservations, we derive a set of
effective equations for the problem-dependent material functions in those cells (see below)
that can be used easily to the determination of the pressure from the equation of state.
Combining these two set of the equations together with the equation of state constitutes a
complete model system that is fundamental in our algorithm for numerical approximation
of multicomponent problems.

To find out the aforementioned effective equations for the mixture of material quantities
in a general Mie–Gr¨uneisen equation of state (1), similar to the previous work (cf. [44, 45]),
we begin by considering an interface only problem where both the pressure and particle
velocity are constants in the domain, while the other variables such as the density and the
material quantities are having jumps across some interfaces. In this case, from the Euler
Eqs. (2), it is easy to obtain equations for the time-dependent behavior of the density and
total internal energy as

∂ρ

∂t
+ u

∂ρ

∂x
= 0, (10a)

∂

∂t
(ρe)+ u

∂

∂x
(ρe) = 0, (10b)

in a respective manner. By inserting the Mie–Gr¨uneisen equation of state (1) into (10b), we
have an equation of the form

∂

∂t

(
p− pref

0
+ ρeref

)
+ u

∂

∂x

(
p− pref

0
+ ρeref

)
= 0 (10c)

that is in relation to not only the pressure, but also the material quantities appearing in the
functions0, pref, anderef.

In our algorithm, to maintain the pressure in equilibrium as it should be for our model
interface only problem, we split (10c) into the following two equations for the fluid mixtures
of 1/0 and−(pref/0)+ ρeref as

∂

∂t

(
1

0

)
+ u

∂

∂x

(
1

0

)
= 0, (11a)

∂

∂t

(
− pref

0
+ ρeref

)
+ u

∂

∂x

(
− pref

0
+ ρeref

)
= 0, (11b)

respectively. We emphasize that in order to have the correct pressure equilibrium in (10c)
near the interfaces, these are the two key equations that should be satisfied and approximated
consistently (when the problem is solved numerically) for any given expressions of0, pref,
anderef appearing in the equation of state. As before (cf. [45]), because the solution of (11a)
and (11b) would depend on not only the material quantities, but also the density, to be able
to handle more general problems with shock and rarefaction waves, we need to modify each
of them so that the mass-conserving behavior of the solution in the single component region
can be obtained as well.

To accomplish this, consider the simpler case with (11a) as an example. Our basic ap-
proach begins with a proper smoothness assumption of the density (such as in the case of
rarefaction waves), and so we may apply the chain rule from differential calculus to the
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partial derivatives in (11a), yielding easily the equivalent relation

∂

∂t

(
1

0

)
+ u

∂

∂x

(
1

0

)
= −

(
0′

02

)(
∂ρ

∂t
+ u

∂ρ

∂x

)
.

Now by subtracting the term(ρ0′/02)∂u/∂x from the above relation on the both sides,
and using the mass conservation on the right, we arrive at an equation of the form

∂

∂t

(
1

0

)
+ u

∂

∂x

(
1

0

)
−
(
0′

02

)
ρ
∂u

∂x
= −

(
0′

02

)(
∂ρ

∂t
+ u

∂ρ

∂x
+ ρ ∂u

∂x

)
= 0. (11c)

Analogously, by following the same procedure as for (11a), the modification of (11b) takes
the form

∂

∂t

(
− pref

0
+ ρeref

)
+ u

∂

∂x

(
− pref

0
+ ρeref

)
+
(
0′pref− 0p′ref

02
+ eref+ ρe′ref

)
ρ
∂u

∂x
= 0.

(11d)

Clearly, (11c) and (11d) reduce to (11a) and (11b), respectively, for a solution near the
interfaces where∂u/∂x = 0, and to the same mass conservation equation of the fluid mixture
for a solution near rarefaction waves where the variation of0′/02 is smooth. Recall that
0′, p′ref, ande′ref are the derivatives of0, pref, anderef with respect toρ, respectively.

Note that, at each space and time, given the initial conditions for 1/0 and−(pref/0)+
ρeref, to compute the solution of (11c) and (11d) would require five evaluations in total to the
mixtures such as0′, pref, p′ref, eref, ande′ref, from the equation of state. Here because of the
strongly nonlinear coupling between the material quantities (see Section 2 for an example),
from (11c) and (11d), it is not possible to come up with additional conditions for the further
details of the related parameters that makes the evaluation of any of the aforementioned
quantities in an explicit step. This is in contrast to the van der Waals case considered in
[45], and poses some difficulties in the realization of our multicomponent algorithm for
materials modeled by (1).

To get by the problems involving the extra evaluations of the termspref and eref, in
particular, one simple way to do is to divide (11d) into the following two parts:

∂

∂t

(
pref

0

)
+ u

∂

∂x

(
pref

0

)
− ρ

(
0′pref− 0p′ref

02

)
∂u

∂x
= 0, (11e)

∂

∂t
(ρeref)+ u

∂

∂x
(ρeref)+ ρ

(
eref+ ρe′ref

)∂u

∂x
= 0. (11f)

Clearly now instead of a single equation for−(pref/0)+ ρeref, we have two separate
ones forpref/0 andρeref, which together with the solutions of (11c) for0 and the mass
conservation equation in (2) forρ are sufficient to determinepref anderef without the use
of the equation of state. Of course, by doing so we still need to define0′, p′ref, ande′ref so
as to have a working model system.

Note that if the reference state of the Mie–Gr¨uneisen equation of state (1) lies either along
an isentropic or a shock Hugoniot locus, from the basic thermodynamic relations described in
Section 2, it is an easy matter to sete′ref = pref/ρ

2 or e′ref = [ pref/ρ + p′ref(ρ/ρ0− 1)]/(2ρ)
in a respective manner, provided that the mixture ofp′ref has a proper mathematical definition
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for numerical purpose also. Thus, in these two situations, to complete the model it is only
the mixtures of0′ and p′ref needed to be defined. (In fact, provided that some modification
of the equations is made, this is also true in a more general case where the reference state
lies partially on an isentrope and partially on a Hugoniot. But we will not discuss that case
here.) Although there may be other better ways, encouraged by the simplicity and also the
success of the previous work for a van der Waals gas case [45], we first introduce a local
model based on the volume-fraction formulation to the computation of all the remaining
undefined material quantities appearing in0′ andp′ref. Then we set the mixture states of0′

and p′ref from the equation of state as in the single component case of the problem.
To be more specific, consider anm-component flow problem with materials modeled

by the shock wave equation of state (8), for example, we assign the material-dependent
mixtures:α, ρ0, c0, ands, according to an averaging operatorM defined as follows:

M(z) =
m∑

i=1

Y(i )z(i ),

and compute0′ = −α0/ρ, p′ref = c2
0(1− η)2(1+ sη)/(1− sη)3 in an explicit manner.

HereY(i ) ∈ [0, 1] is the volume-fraction function of thei th fluid component with a property
6m

i=1Y(i ) = 1, z(i ) is a material quantity belonging to thei th component, andη = 1−
(ρ0/ρ). We use the evolution equation of the form

∂Y(i )

∂t
+ u

∂Y(i )

∂x
= 0,

for the motion ofY(i ) (see [31] for the other possibility in choosing the equation),i =
1, 2, . . . ,m− 1, whereu is the underlying particle velocity of the fluid mixture, and set
Y(m) = 1−6m−1

i=1 Y(i ). In summary, with the Mie–Gr¨uneisen equation of state (1), the mul-
ticomponent model we proposed consists of the following system of equations,

∂ρ

∂t
+ ∂

∂x
(ρu) = 0

∂

∂t
(ρu)+ ∂

∂x
(ρu2+ p) = 0

∂

∂t
(ρE)+ ∂

∂x
(ρEu+ pu) = 0

∂

∂t

(
1

0

)
+ u

∂

∂x

(
1

0

)
− ρ

(
0′

02

)
∂u

∂x
= 0 (12)

∂

∂t

(
pref

0

)
+ u

∂

∂x

(
pref

0

)
− ρ

(
0′pref− 0p′ref

02

)
∂u

∂x
= 0

∂

∂t
(ρeref)+ u

∂

∂x
(ρeref)+ ρ(eref+ ρe′ref)

∂u

∂x
= 0

∂Y(i )

∂t
+ u

∂Y(i )

∂x
= 0, for i = 1, 2, . . . ,m− 1.

This gives us a system ofm+ 5 equations in total that is independent of the number of
material quantities involved in the equation of state (e.g., there are seven of them in (5) or
(6)), for anm-component flow problem;m≥ 1. It is easy to see that in this system the first
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three are the Euler equations which are used to make certain the conservation of the basic
fluid mixtures:ρ, ρu, andρE, while the remaining ones are the effective equations that
are introduced to ensure the correct mixing of the problem-dependent material variables
near the interfaces. With a system written in this way, there is no problem to compute the
pressure from the equation of state

p =
[
(ρE)− (ρu)2

2ρ
+
(

pref

0

)
− (ρeref)

]/(
1

0

)
.

The initialization of the state variables in (12) for fluid-mixture cells can be made in a
standard way as described in [45] for numerical simulation.

Note that, whenm= 1 (single component flow), the effect to the introduction of the
equations for 1/0, pref/0, andρeref in the model is to reduce extra equation-of-state com-
putations in a numerical method to the least possible amount. It is easy to see that our
multicomponent model is a hyperbolic system by first writing (12) in a quasi-linear system
of equations

∂q

∂t
+ A(q)

∂q

∂x
= 0. (13)

Here, for simplicity, in a two-component version of the model, we have the state vectorq
and the matrixA defined by

q =
[
ρ, ρu, ρE,

1

0
,

pref

0
, ρeref,Y

]T

and

A =



0 1 0 0 0 0 0

K − u2 u(2− 0) 0 −p0 −0 0 0

u(K − H) H − u20 u(0 + 1) −up0 −u0 u0 0

−ϕu ϕ 0 u 0 0 0

−χu χ 0 0 u 0 0

−ψu ψ 0 0 0 u 0

0 0 0 0 0 0 u


.

We then compute the eigen-structure of the matrixA. It is a straightforward to show that
for each variablesq defined in the region of thermodynamic stability the eigen-structure of
the matrixA possesses real eigenvalues

3 = diag(λ1, λ2, . . . , λ7) = diag(u− c, u, u+ c, u, . . . ,u) (14a)

and a complete set of eigenvectors of the form

R= (r1, r2, . . . , r7) =



1 1 1 0 0 0 0
u− c u u+ c 0 0 0 0

H − uc u2/2 H + uc p 1 −1 0

ϕ 0 ϕ 1 0 0 0

χ 0 χ 0 1 0 0

ψ 0 ψ 0 0 1 0

0 0 0 0 0 0 1


(14b)
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with Ark = λkrk. HereK =0u2/2, H = E + (p/ρ), ϕ = −0′/02, χ = (0p′ref− 0′pref)/

02, andψ = eref+ ρe′ref. Regarding discontinuous solutions of the system, such as shock
waves or contact discontinuities, it is not difficult to show that (12) has the usual form of
the Rankine–Hugoniot jump conditions across the waves; see Section 4.1 for more details.

4. NUMERICAL METHODS

To find approximate solutions of our model system (12) for multicomponent problems,
we use a high-resolution wave propagation method developed by LeVeque [20, 23] for
general hyperbolic systems of partial differential equations. This method is a variant of
the fluctuation-and-signal scheme of Roe [37, 38] in that we solve the Riemann problems
at each cell interface, and use the resulting waves (i.e., discontinuities moving at constant
speeds) to update the solutions in neighboring grid cells. To achieve high resolution, we
introduce slopes and limiters to the method as in many other high resolution schemes for
conservation laws [21, 50].

4.1. Roe Riemann Solver

Clearly, one of the major steps in our multicomponent algorithm is the numerical res-
olution of the Riemann problem at each cell interface. Here, with materials characterized
by the Mie–Grüneisen equation of state (1), this amounts to solving the nonlinear system
(12) with piecewise constant dataqL and qR to the left and right of the interface. It is
well-known that, except under certain extreme conditions (cf. [31, 34, 55, 56]), the solution
of this Riemann problem would consist of two genuinely nonlinear waves, such as shock
and rarefaction, and a linearly degenerate wave (contact discontinuity); this is just like the
Riemann problem for a perfect gas (cf. [48]). In Fig. 1, we plot a typical solution structure
and the variables involved in the Riemann problem considered here. Because in general it

FIG. 1. Typical solution structure of the Riemann problem for our multicomponent model discussed in
Section 3. The key step in obtaining this solution is to find the midstate(u∗, p∗) in the u− p phase plane. In
general, it is a difficult task to do both exactly and efficiently.
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is too complicated to solve the problem exactly, even in the single component case for real
materials (cf. [8, 36, 43]), we discuss an approximate Riemann solver of Roe; see [31, 36]
for another approach based on the two-shock approximation.

In a Roe’s approximate Riemann solver, we replace the nonlinear Riemann problem
mentioned above by a linear problem as

∂q

∂t
+ Â(qL ,qR)

∂q

∂x
= 0, q(x, 0) =

{
qL for x < x0

qR for x > x0,
(15)

whereÂ(qL ,qR) is a constant matrix that depends on the initial data and is a local lineariza-
tion of the matrixA in (13) about an average state. To find that matrix, as it is often done in
many other Roe solvers (cf. [5, 14, 15]), we want to seek an average state that the difference
of the fluxes in the conservation part of (12) (i.e., the first three equations of the system) are
equal to the respective first-order approximation of the flux differences. That is

1F (i ) = (FR− FL)
(i ) = [ Â(qL ,qR)(qR− qL)]

(i ) = [ Â(qL ,qR)1q](i ),

for i = 1, 2, 3, whereF ∈ R3 is the usual definition of the fluxes for conservation laws,
and1F (i ) is thei th component of1F . With that, it is a straightforward matter to obtain
the results forû and Ĥ by the standard “Roe-averaging” approach, i.e., for a given pair
(ρL , ρR), the average state for a quantityz is defined by

ẑ=
√
ρL zL +√ρRzR√
ρL +√ρR

. (16)

Note that in the process of the derivation, as in [44, 45], we have chosen the averages(1̂/0)
and( p̂/0) based on (16) so that the expression

1p =
[(̂

1

0

)
1

(
p

0

)
−
(̂

p

0

)
1

(
1

0

)]/(̂
1

0

)2

is satisfied approximately (cf. [33] for an review of the other up-to-date approaches for real
gases). With that we setp̂ = ( p̂/0)/(1̂/0) and0̂ = 1/(1̂/0). To finish the construction of
Â(qL ,qR), we still need to find the averages ofϕ, χ , andψ . Since there is no unique way to
do so, we might as well compute them using the Roe-average (16) also. It is our experience
that the set of average states described here is a reasonable one to use for many practical
multicomponent problems (see numerical results present in Section 5) as long as the flow
condition is not too extreme (i.e., with very large density and pressure ratios) across the
interfaces, (cf. [11, 45] for more discussions and the possible cures for that matters).

In contrast to the solution structure for a nonlinear Riemann problem (see Fig. 1), the
solution of the linear problem (15) consists of seven discontinuities propagating at constant
speeds (for a two-component system of seven equations). The jump across each discon-
tinuity is a multiple of the eigenvector of the matrix̂A, and the propagating speed is the
corresponding eigenvalue. We thus have

1q = qR− qL =
7∑

k=1

α̂kr̂k, (17)
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wherer̂k is thekth eigenvector ofÂ; see (14a) and (14b). The scalar ˆαk gives the strength
across the discontinuity that can be determined easily from (17). We find

α̂2 = 1q(1) + 0̂

ĉ2

[
− û2

2
1q(1) + û1q(2) −1q(3) + p̂1q(4) −1q(5) +1q(6)

]
,

α̂3 = 1

2ĉ

[
(ĉ− û)1q(1) +1q(2) − ĉα̂2

]
, α̂1 = 1q(1) − α̂2− α̂3,

α̂4 = 1q(4) − ϕ̂(1ρ − α̂2), α̂5 = 1q(5) − χ̂(1ρ − α̂2),

α̂6 = 1q(6) − ψ̂(1ρ − α̂2), α̂7 = 1q(7),

(18)

whereĉ =
√
0̂[ Ĥ − (û2/2)+ χ̂ − ψ̂ ] is the speed of sound.

Notice that in this Riemann solution, except the discontinuities forλ̂1 = û− ĉ andλ̂3 =
û+ ĉ, all the other discontinuities (five of them) are propagating at the same speedû. For
practical purposes, we may view these discontinuities as a single one with the operator
W2 defined by combining all the jumps across theλ̂2 wave family, i.e., setW2 = α̂2r̂2+∑7

k=4 α̂kr̂k. With this notation, we also writeWk = α̂kr̂k to represent the jump across the
k-wave fork = 1 or 3. Thus, without causing any confusion, we may assume that the wave
family in total is 3 for the solution of this Riemann problem.

4.2. High-Resolution Wave Propagation Scheme

Consider a uniform grid with fixed mesh spacing4x, for example. We use a standard
finite-volume formulation in which the valueQn

j approximates the cell average of the
solution over the grid cell [xj , xj+1] at timetn:

Qn
j ≈

1

4x

∫ xj+1

xj

q(x, tn) dx.

The time step from the current timetn to the nexttn+1 is denoted by1t .
In this numerical discretization setup, a first-order accurate version of the method in

wave- propagation form is a Godunov-type scheme that can be written as

Qn+1
j = Qn

j −
1t

1x

mw∑
k=1

(λ−kWk)
n
j+1+ (λ+kWk)

n
j , (19)

whereλk ∈ R andWk ∈ Rm are solutions of thekth wave family, fork = 1, 2, . . . ,mw,
obtained from solving the Riemann problems at cell interfacesxj andxj+1; see Section 4.1.
As usual, we defineλ− = min(λ, 0) andλ+ = max(λ, 0). Clearly, the method belongs to a
class of upwind schemes (cf. [15, 21]), and by following the same procedure as described
in [45], it is quasi-conservative in the sense that when applying the method to (12) not only
the conservation equations but also the transport equations are approximated in a consistent
manner by the method with the chosen Riemann solver.

To achieve high resolution in this method, we begin by introducing correction waves
in a piecewise-linear form with zero mean value. We then propagate each wave over the
time step1t , and update the cell averages it overlaps. Without going into the detail here
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(cf. [24]), with the corrections, (19) is modified by

Qn+1
j := Qn+1

j −
1t

21x

mw∑
k=1

[
|λk|
(

1−|λk|1t

1x

)
Wk

]n

j+1

−
[
|λk|
(

1−|λk|1t

1x

)
Wk

]n

j

. (20)

It is important to mention that, in practice, the jump of each wave in the above formula
should be limited by using a “slope-limiter” (cf. [21]) to avoid unnecessary fluctuations
near discontinuities. We want to do this by replacing eachWk in (20) with a limited value
W̃k obtained by comparingWk with the correspondingWk from the neighboring Riemann
problem to the left (ifλk > 0) or to the right (ifλk < 0).

Now with the use of the Roe solver to the computations, it is quite common to limit over
each strength of the wave ˆαk j via a limiter functionφ (e.g., by using the minmod function
φ(θ) = max(0,min(1, θ)) or some others as discussed in [50]), and set

α̃k j = φ(θk j )α̂k j with θk j = α̂k J

α̂k j
, J =

{
j − 1 if λ̂k j ≥ 0

j + 1 if λ̂k j < 0,
(21)

for k = 1, 2, . . . , 7 (cf. [15, 22, 23]). In this approach, we then replace the waves in (20),

(W1,W2,W3) =
(
α̂1r̂1, α̂2r̂2+

7∑
k=4

α̂kr̂k, α̂3r̂3

)
,

by a limited version as

(W̃1, W̃2, W̃3) =
(
α̃1r̂1, α̃2r̂2+

7∑
k=4

α̃kr̂k, α̃3r̂3

)
.

It is not difficult to show that for the interface only problem we again have the required
pressure equilibrium that is independent of the limiter being employed to the high-resolution
method (20). Moreover, we obtain a better resolution of the result as compared to the first-
order result. Concerning stability of the method, it is observed numerically that the method
is stable under the usual CFL (Courant–Friedrichs–Lewy) condition for hyperbolic systems
of conservation laws; see Section 5 for an example.

5. NUMERICAL RESULTS IN ONE DIMENSION

We now present some sample numerical results obtained using our multicomponent
algorithm with the Roe solver described in Section 4.

5.1. Single-Component Case

As a preliminary, we begin by showing results for problems with only a single fluid
component presence in the problem formulation.

EXAMPLE 5.1. Our first test problem is a Riemann problem in a shock tube with the
material inside the tube modeled by the Jones–Wilkins–Lee equation of state (5). For
comparison purposes, we take the similar initial data as studied by Rider [36], where on the
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FIG. 2. High-resolution results for a single component Riemann problem with the gaseous explosives at time
t = 12µs. The solid line is the fine grid solution computed by1x = 1/2000, and the points show the solution
with1x = 1/100. The dashed line in each subplot is the initial condition at timet = 0. The gaseous explosive is
modeled by the Jones–Wilkins–Lee equation of state (5).

left of the interface, 0≤ x < 1/2 m, we have

(ρ, u, p, e0)L = (1700 kg/m3, 0 m/s, 1012 Pa, 0 kJ/kg),

and on the right of the interface, 1/2 m≤ x ≤ 1 m, we have

(ρ, u, p, e0)R = (1000 kg/m3, 0 m/s, 5× 1010 Pa, 0 kJ/kg).

In this problem, the seven material-dependent quantities:ρ0,A,B,R1,R2, 00, andα, have
been chosen for the product gases of the explosive TNT as given in Table I.

In Fig. 2, we show results for the density, velocity, pressure, and the speed of sound at
time t = 12 µs, where the test has been carried out by using the high-resolution method
with theMINMOD limiter, the Courant numberµ = 0.9, and the mesh size1x = 1/100. By
comparing the computed solution with the fine grid solution obtained using the same method
but1x = 1/2000, we observe good agreement in the region of rarefaction wave where the
flow is smooth, and reasonable resolution in the region of shock and contact discontinuity
where the flow is not smooth ( judging from the approximate location and the monotonicity
of the solution profile for the discontinuity). In addition, it is easy to make comparisons and
see that our solution agrees quite well with the result present in [36] where a MUSCL-type
scheme with an approximate Riemann solver based on the two-shock approximation was
used in the computation.

EXAMPLE 5.2. We are next concerned with an impact problem in which a precompressed
semi-infinite aluminum slab at rest with(ρ, p) = (4000 kg/m3, 7.93× 109 Pa) is being hit
by an ambient aluminum slab traveling at the speed 2 km/s from the right to the left with
the reference state(ρ, p) = (ρ0, p0). As in [29, 31, 36] and references therein, we use the
popular shock wave equation of state (8) to model the thermodynamical behavior of the
aluminum; see Table I for the numerical values of the material constants:ρ0, c0, s, 00,andα.

In this setup, it is not difficult to show that the exact solution of this problem would
consist of a leftward going shock wave to the stationary aluminum, a material interface,
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FIG. 3. High-resolution results for a single component impact problem with two aluminum slabs at time
t = 50µs. The aluminum is modeled by the shock wave equation of state (8). The graphs of the solutions are
displayed in the same manner as in Fig. 2.

and a rightward going shock wave to the moving aluminum. Figure 3 shows the numerical
result for this problem at timet = 50µs. As compared to the fine grid solution, which is a
good approximation to the exact solution, it is clear that our result gives the correct solution
behavior of this problem; see [36] also for a similar calculation. Here the computation was
performed in the same manner as in Example 5.1, where the initial point of the projectile
impact was set at the center of a meter-wide computational domain.

5.2. Multicomponent Case

We now show results for examples with more than one fluid component in the problem
formulation.

EXAMPLE 5.3. To begin, we are interested in a two-component impact problem of Saurel
and Abgrall [41]. Initially, under the atmospheric condition (i.e., with uniform pressure
p0 = 1atm and temperatureT0 = 300 K throughout the domain), there is a rightward going
copper plate with the speedu = 1500 m/s interacting with a solid explosive (considered as
an inert material) at rest on the right of the plate. In this problem, to model the material
properties of the copper and (solid) explosive, we use the same Cochran–Chan equation
of state (6), but with a different set of material-dependent quantities for each of them, see
numerical values given in Table I.

As in Example 5.2, the exact solution of this impact problem is composed of a leftward-
going shock wave to the copper, a rightward-going shock waves to the inert explosive, and a
material interface lying in between that separates these two different materials. We run this
problem using exactly the same method as performed in the previous examples for single
component flow, and show the resulting solution in Fig. 4 at timet = 85µs for the density,
velocity, pressure, and the thermal internal energy. By comparing the computed solution with
the fine grid one obtained using the same method but1x = 1/2000, we observe reasonable
behavior of the solution with the correct shock speeds and free of spurious oscillations in
the pressure near the interface. Checking our result with the displayed solution appearing
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FIG. 4. High-resolution results for a two-component (solid explosive-copper) impact problem at timet =
85µs. The solid line is the fine grid solution computed by1x = 1/2000, and the points show the solution with
1x = 1/100. The dashed line in each subplot is the initial condition at timet = 0. Both the solid explosive and
copper are modeled by the Cochran–Chan equation of state (6), but with a different set of material quantities for
each of them.

in [41] with the same mesh size1x = 1/100, we find excellent agreement in the density,
pressure, and velocity. Clearly, for detonation problems, it is often necessary to report the
solution of the temperatureT as well. As we have seen in the figure (see Fig. 5 also), the
algorithm did quite a good job to the resolution of thermal internal energyeT which can be
computed directly from the variables obtained in the algorithm, i.e.,eT = (p− pref)/(ρ0).
To go one step further toT by T = eT/CV , we need to do some postprocessing work for the
fluid mixtureCV . Although there are many ways to getCV , say by using the volume-fraction

FIG. 5. High-resolution results for a two-component (gaseous explosive–copper) Riemann problem at time
t = 73µs. The gaseous explosive is modeled by the Jones–Wilkins–Lee equation of state (5), while the copper is
modeled by the Cochran–Chan equation of state (6). The graphs of the solutions are displayed in the same manner
as in Fig. 4.
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function, for example, this is not really in the heart of the whole algorithm, and so the plot
of the temperature is not shown here. Note that, we haveCV = 393 and 1087 J/(kg · K) for
copper and explosive, respectively.

EXAMPLE 5.4. Our next example concerns a two-component Riemann problem of Saurel
and Abgrall [41] that involves the interaction of gaseous detonation products with a copper
plate. In this test, as in Example 5.3, copper is modeled by the Cochran–Chan equation
of state (6), while the detonation products are modeled by the widely employed Jones–
Wilkins–Lee equation of state (5). Initially, on the left whenx ∈ [0, 0.5)m, we have the
detonation product with the data

(ρ, u, p, e0)L = (2485.37 kg/m3, 0, 3.7× 1010 Pa, 8149.158 kJ/kg),

and on the right whenx ∈ [0.5, 1]m, we have the copper with data

(ρ, u, p, e0)R = (8900 kg/m3, 0, 105 Pa, 117.9 kJ/kg).

We note that the data on the left is at the Chapman–Jouget state (see [41] for the details),
while the data on the right is at the usual atmospheric conditions. In Table I, we list the
material quantities of these two substances to this run. For this problem, it is known that the
exact solution consists of a shock wave moving to the right in the copper and a rarefaction
wave propagating to the left in the explosive; see [41].

To solve this problem numerically, we need to define a hybrid version of the equation
of state that is necessary in the algorithm for the numerical mixing between these two
different materials. This can be done by following the same approach as described in [45]
for a case with the mixing between stiffened and van der Waals gases, yielding easily a
Mie–Grüneisen equation of state of the form

p(ρ, e) = p̃ref(ρ)+ 0̃ρ[e− ẽref(ρ)] (22)

for the copper-explosive mixture, wherẽpref = p(JWL)
ref + p(CC)

ref and ẽref = e(JWL)
ref + e(CC)

ref

are defined by simply combining the two differentpref anderef from (5) and (6) into one,
respectively, and̃0 = 00. Here the computation was performed in the same way as before,
and the results are shown in Fig. 5 at timet = 73µs for the variablesρ, u, p, andeT also.
Comparing our solution with the one shown in [41] using a two-phase flow solver, we again
observe good agreement for this problem.

EXAMPLE 5.5. To end this section, we test our algorithm for a model shock-contact prob-
lem that involves the interaction of a shock wave in molybdenum and an encapsulated MORB
(Mid-Ocean Ridge Basalt) liquid (this problem is motivated by a two-dimensional test of
Miller and Puckett [31]). The initial condition is composed of a stationary (molybdenum-
MORB) interface atx = 0.6 m and a rightward going Mach 1.163 shock wave in molybde-
num atx = 0.4 m traveling from left to right in a shock tube of unit length. The material on
the right of the interface is a MORB liquid modeled by the shock wave equation of state (8)
with the data

(ρ, u, p, e0)R = (2260 kg/m3, 0 m/s, 0 Pa, 0 kJ/kg),

and the material on the left of the interface (i.e., on the middle and the preshock state) is
molybdenum modeled by the shock wave equation of state also with data

(ρ, u, p, e0)M = (9961 kg/m3, 0 m/s, 0 Pa, 0 kJ/kg).
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FIG. 6. High-resolution results for a shock wave in molybdenum interacting with an encapsulated MORB
liquid at time 120µs. The solid line is the fine grid solution computed by1x = 1/2000, and the points show
the solution with1x = 1/100. The dashed line in each subplot is the initial condition at timet = 0. Both the
molybdenum and MORB are modeled by the shock wave equation of state (8), but with different material constants
for each of them.

The state behind the shock in the molybdenum is

(ρ, u, p, e0)L = (11042 kg/m3, 543 m/s, 3× 1010 Pa, 0 kJ/kg),

see the dashed line shown in Fig. 6 for illustration. We note that this gives us one example
in which the (molybdenum-MORB) interface is accelerated by a shock wave coming from
the heavy-fluid to the light-fluid region, and it is known that the resulting wave pattern
after the interaction would consist of a transmitted shock wave, an interface, and a reflected
rarefaction wave (cf. [4, 16]).

Numerical results for this problem are shown in Fig. 6 at timet = 120µs for the states
ρ, u, p, and0. Clearly, we observe sensible resolution and convergence of the solution
structure as the mesh is refined. Note that because of the passage of the transmitted
shock wave, the MORB liquid is compressed, yielding the increase of the density, ve-
locity, and pressure. A two-dimensional version of this problem will be considered in
Section 6.1.

6. EXTENSION TO MULTIPLE DIMENSIONS

The multidimensional version of our model system (12) for compressible multicomponent
problems with the Mie–Gr¨uneisen equation of state (1) takes the form

∂ρ

∂t
+

N∑
j=1

∂

∂xj
(ρu j ) = 0

∂

∂t
(ρui )+

N∑
j=1

∂

∂xj

(
ρui u j + δi j p

) = 0 for i = 1, 2, . . . , N
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∂

∂t

(
ρE
)+ N∑

j=1

∂

∂xj
(ρEuj + puj ) = 0

∂

∂t

(
1

0

)
+

N∑
j=1

[
u j

∂

∂xj

(
1

0

)
− ρ

(
0′

02

)
∂u j

∂xj

]
= 0 (23)

∂

∂t

(
pref

0

)
+

N∑
j=1

[
u j

∂

∂xj

(
pref

0

)
− ρ

(
0′pref− 0p′ref

02

)
∂u j

∂xj

]
= 0

∂

∂t
(ρeref)+

N∑
j=1

[
u j

∂

∂xj
(ρeref)+ ρ(eref+ ρe′ref)

∂u j

∂xj

]
= 0

∂Y(i )

∂t
+

N∑
j=1

u j
∂Y(i )

∂xj
= 0, for i = 1, 2, . . . ,m− 1.

HereN is the number of spatial dimensions (N = 2 or 3, for example),u j is the particle
velocity in thexj -direction,δi j is the Kronecker delta that takes the value 1 wheni = j ,
but equals to 0 otherwise, andE = e+∑N

j=1 u2
j /2. As before (cf. [44, 45] and Section 3),

in the model, the firstN + 2 components are simply the Euler equations inN dimensions
that describe the conservation of mass, momenta in thexj -direction, for j = 1, 2, · · · , N,
and energy of the problem. The next three are the effective equations that are derived for the
problem-dependent material quantities. We include the transport equation for the volume-
fraction functionsY(i ), for i = 1, 2, . . . ,m− 1, in the model for the evaluation of0′ and
p′ref. In the algorithm, we again compute the pressure from the equation of state at all space
and time,

p =
[
(ρE)−

∑N
j=1(ρu j )

2

2ρ
+
(

pref

0

)
− (ρeref

)]/( 1

0

)
.

Note that, for any givenN, if the state variables of the flow are all in the region of the
thermodynamic stability (this is the case we are interested in here), it is not difficult to show
that (23) is a hyperbolic system in the sense that any linear combination of the matricesAj ,
j = 1, 2, . . . , N, appearing in the quasi-linear form of the equations

∂q

∂t
+

N∑
j=1

Aj (q)
∂q

∂xj
= 0 (24)

has real eigenvalues and a complete set of eigenvectors. Consider the most general three-
dimensional caseN = 3 and for a two-componentm= 2 problem, for example. We then
have the state vectorq in (24) defined by

q =
[
ρ, ρu1, ρu2, ρu3, ρE,

1

0
,

pref

0
, ρeref,Y

]T

,
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and the matricesAj , for j = 1, 2, 3, defined by

A1=



0 1 0 0 0 0 0 0 0

K − u2
1 u1(2− 0) −u20 −u30 0 −p0 −0 0 0

−u1u2 u2 u1 0 0 0 0 0 0

−u1u3 u3 0 u1 0 0 0 0 0

u1(K − H) H − u2
10 −u1u20 −u1u30 u1(0 + 1) −u1 p0 −u10 u10 0

−ϕu1 ϕ 0 0 0 u1 0 0 0
−χu1 χ 0 0 0 0 u1 0 0
−ψu1 ψ 0 0 0 0 0 u1 0

0 0 0 0 0 0 0 0 u1


,

A2=



0 0 1 0 0 0 0 0 0
−u1u2 u2 u1 0 0 0 0 0 0

K − u2
2 −u10 u2(2− 0) −u30 0 −p0 −0 0 0

−u2u3 0 u3 u2 0 0 0 0 0

u2(K − H) −u1u20 H − u2
20 −u2u30 u2(0 + 1) −u2 p0 −u20 u20 0

−ϕu2 0 ϕ 0 0 u2 0 0 0
−χu2 0 χ 0 0 0 u2 0 0
−ψu2 0 ψ 0 0 0 0 u2 0

0 0 0 0 0 0 0 0 u2


,

A3=



0 0 0 1 0 0 0 0 0
−u1u3 u3 0 u1 0 0 0 0 0

−u2u3 0 u3 u2 0 0 0 0 0

K − u2
3 −u10 −u20 u3(2− 0) 0 −p0 −0 0 0

u3(K − H) −u1u30 −u2u30 H − u2
30 u3(0 + 1) −u3 p0 −u30 u30 0

−ϕu3 0 0 ϕ 0 u3 0 0 0
−χu3 0 0 χ 0 0 u3 0 0
−ψu3 0 0 ψ 0 0 0 u3 0

0 0 0 0 0 0 0 0 u3


,

With that, the eigenvalues and the corresponding eigenvectors of the matrices are: for matrix
A1,

3A1 = diag
(
λ
(1)
1 , λ

(1)
2 , . . . , λ

(1)
9

) = diag(u1− c, u1, u1+ c, u1, . . . , u1),

RA1 =
(
r (1)1 , r (1)2 , . . . , r (1)9

) =



1 1 1 0 0 0 0 0 0
u1− c u1 u1+ c 0 0 0 0 0 0

u2 u2 u2 1 0 0 0 0 0
u3 u3 u3 0 1 0 0 0 0

H − u1c K/0 H + u1c u2 u3 p 1 −1 0
ϕ 0 ϕ 0 0 1 0 0 0
χ 0 χ 0 0 0 1 0 0
ψ 0 ψ 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


,

for matrix A2,

3A2 = diag
(
λ
(2)
1 , λ

(2)
2 , . . . , λ

(2)
9

) = diag(u2− c, u2, u2+ c, u2, . . . , u2),
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RA2 =
(
r (2)1 , r (2)2 , . . . , r (2)9

) =



1 1 1 0 0 0 0 0 0
u1 u1 u1 1 0 0 0 0 0

u2− c u2 u2+ c 0 0 0 0 0 0
u3 u3 u3 0 1 0 0 0 0

H − u2c K/0 H + u2c u1 u3 p 1 −1 0
ϕ 0 ϕ 0 0 1 0 0 0
χ 0 χ 0 0 0 1 0 0
ψ 0 ψ 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


,

and for matrixA3,

3A3 = diag
(
λ
(3)
1 , λ

(3)
2 , . . . , λ

(3)
9

) = diag(u3− c, u3, u3+ c, u3, . . . , u3),

RA3 =
(
r (3)1 , r (3)2 , . . . , r (3)9

) =



1 1 1 0 0 0 0 0 0
u1 u1 u1 1 0 0 0 0 0
u2 u2 u2 0 1 0 0 0 0

u3− c u3 u3+ c 0 0 0 0 0 0
H − u3c K/0 H + u3c u1 u2 p 1 −1 0
ϕ 0 ϕ 0 0 1 0 0 0
χ 0 χ 0 0 0 1 0 0
ψ 0 ψ 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


;

Aj r
( j )
k = λ( j )

k r ( j )
k , j = 1, 2, 3, and k = 1, 2, . . . ,9.

To find approximate solutions of (23) for multicomponents problem, we use a multidi-
mensional version of the high-resolution wave propagation method described in Section 4.
Since the basic idea of the method has been described fully before, and has been imple-
mented in the software packages CLAWPACK (Conservation LAWs PACKage), we will
not repeat the whole description here, but refer to the references [19, 23, 25, 45] for the
details.

6.1. Numerical Results in Two Dimensions

We now show results of some sample two-dimensional multicomponent problems ob-
tained using the high-resolution wave propagation methods with or without local adaptive
mesh refinement. To limit the size of this paper, applications of the algorithm to problems
in three dimensions will not be disussed here, but is the subject of an ongoing work.

EXAMPLE 6.1.1. We begin by considering a simple interface only problem where the
solution consists of a circular copper plate evolving in air with uniform equilibrium pres-
surep0 = 105 Pa and constant particle velocity(u0

1, u0
2) = (103 m/s, 103 m/s). In this test,

inside a circle of radiusr0 = 0.16 m and center(x0
1, x0

2) = (1/4 m, 1/4 m), the material
is copper modeled by the Cochran–Chan equation of state (6) with the parameter values
as given in Table I, while outside the circle, the material is air modeled by theγ -gas law
with ρ0 = 1.2 kg/m3 and00 = 0.4. Note that this type of interface problem is very funda-
mental to the development of many multicomponent algorithms in which the aim is to see
whether the equilibrium of solution in the pressure, in particular, can be maintained by the
method.
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FIG. 7. High-resolution results for the evolution of a circular copper plate in air at timet = 360µs. (a)
Contour plot of the density. (b) Surface plot of the pressure. (c) Cross-sectional plots of density and pressure along
line x1 = x2. The solid line in the cross-sectional plot is the exact solution, and the dotted points are the numerical
results. The dashed line in the density plots is the initial condition at timet = 0. Here the copper is modeled by
the Cochran–Chan equation of state (6), while the air is modeled by the standardγ -gas law of ideal gas.

Here we have performed the computations by using (6) to model the numerical mixing
between the copper and air. Results obtained using the high-resolution method with the
MINMOD limiter, the Courant numberµ = 0.9, and a 100× 100 uniform grid in a unit
square domain, are displayed in Fig. 7, where the 2D contours of the density, 3D surface
plot of the pressure, and the cross-section plot of the density and pressure alongx1 = x2

are presented at timet = 360µs. From the displayed profiles, it is easy to observe good
agreement of the numerical solutions as compared with the exact results. Notice that the
computed pressure remains in the correct equilibrium statep0 (to be more accurate, the
difference of these two is only on the order of machine epsilon), without any unexpected
oscillations near the numerically diffused copper–air interface. Moreover, the copper plate
retains its circular shape and appears to be very well located.

EXAMPLE 6.1.2. We are next concerned with a test problem of Miller and Puckett [31]
in which a shock wave in molybdenum is interacting with a region of encapsulated MORB
liquid. Similar to the initial condition used in Example 5.5, atx1 = 0.3 m, there is a planarly
rightward-moving Mach 1.163 shock wave in molybdenum traveling from left to right that is
about to collide with a rectangular region [0.4, 0.7]× [0, 0.5] m2 which contains a MORB
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FIG. 8. High-resolution results for a shock wave in molybdenum interacting with an encapsulated MORB
liquid. Schlieren-type images for the density and pressure are shown at two different timest = 50µs and 100µs
using a 200× 200 grid. The dashed lines appearing in the pressure plot indicate the approximate location of the
molybdenum–MORB interface. Both the molybdenum and MORB are modeled by the shock wave equation of
state (8).

liquid inside. As before, we use the shock wave equation of state (8) to model the MORB
and molybdenum with the material parameters given in Table I.

Figures 8 and 9 show high-resolution results of a sample run using a uniform 200×
200 grid on a unit square domain. From Fig. 8, a reasonable resolution of the solution
structure (i.e., the diffraction of a shock wave by a MORB liquid) is obtained by using the
algorithm where schlieren-type images of the density and pressure are presented at two
different timest = 50µs and 100µs; see [31] for a similar test of the problem. The cross
section of the results for the same run along linex2 = 0.4 m is drawn in Fig. 9, giving
some quantitative information about the density and pressure at the selected times. Note
that in that figure we have also included results obtained using the same method but with a
finer 400× 400 grid, observing good agreement of these two solutions, and free of spurious
oscillations in the pressure near the molybdenum-MORB interface.

EXAMPLE 6.1.3. We now consider a generalization the two-component impact problem
discussed in Example 5.3 to three components and two dimensions. Here we take the initial
condition where in regionx1 ≥ 0.6 m, we have a leftward going copper plate traveling
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FIG. 9. The cross-sectional plots of the results for the run shown in Fig. 8 along the linex2 = 0.4 m, where
the solid lines are results obtained using the same method but with a finer 400× 400 grid. The dashed line in each
subplot is the initial condition at timet = 0.

vertically in a shock tube with speedu1 = 1500 m/s from right to left, while in region
x1 < 0.6 m, we have a stationary, horizontal, interface atx2 = 0.5 m that separates a solid
inert explosive on the top and a liquid water on the bottom. As in Example 5.3, we assume
that all three fluid components are in the usual atmospheric condition initially throughout the
domain. We use the Cochran–Chan equation of state (6) to model the copper and explosive,
and the Jones–Wilkins–Lee equation of state (5) to model the water. Note that, as before,
to deal with the numerical mixing between the copper, explosive, and water, we employ
the equation of state of the form (22) for numerical approximation; see Table I again for
numerical values to each of the material parameters.

For this problem, we carry out the same runs as done in the previous two examples, and
show the numerical results in Figs. 10 and 11. Clearly, because of the impact of the copper
plate to the water and explosive, transmitted and reflected shock waves are a result of this
action. Note that since the acoustic impedance of explosive is greater than the one for the
water, we find a larger shock speed in explosive than the one in water. Moreover, because of
the head-on collision betwen the leading edge of the copper plate and the water-explosive
interface, generation of a reflected circular wave is observed. It is interesting to mention
that this circular wave pattern has already been seen in Fig. 8 where there is a shock wave
interacting with a corner of the MORB liquid. The cross-sectional plots of the solutions
shown in Fig. 11 give another example of the good agreement of the results as the mesh is
refined.

EXAMPLE 6.1.4. Finally, we are interested in an impact problem that involves the in-
teraction of an underwater aluminum plate to a copper plate. As for the initial condition,
on the left half of the unit square domain, the material is copper, while on the right half of
the domain, the materials are water on the top and aluminum on the bottom separated by a
horizontal interface atx2 = 0.4 m. Here both the copper and water are at rest initially, but
there is a leftward-moving speedu1 = 1500 m/s for aluminum that is on the point of hitting
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FIG. 10. High-resolution results for a three-component impact problem with a moving copper plate and a
stationary interface separating a solid explosive and water. Schlieren-type images for the density and pressure are
shown at two different timest = 50µs and 100µs using a 200× 200 grid. The dashed lines appearing in the
pressure plot is the approximate location of the copper–explosive–water interface. We model the copper and solid
explosive by the Cochran–Chan equation of state (6), and the water by the Jones–Wilkins–Lee equation of state (5).

FIG. 11. The cross-sectional plots of the results for the run shown in Fig. 10 along the linex2 = 0.4 m, where
the solid lines are results obtained using the same method but with a finer 400× 400 grid. The dashed line in each
subplot is the initial condition at timet = 0.
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FIG. 12. Local adaptive mesh refinement results for a three-component impact problem with an underwater
moving aluminum and a copper. Schlieren-type images for the density and pressure are shown at three different
timest = 50µs, 100µs, and 150µs. Two levels of grid refinement is used with the mesh sizesh1 = 1/100 m on
Level 1 andh2 = h1/4 on Level 2 in both thex1- andx2-directions. The dashed lines appearing in the pressure
plot is the approximate location of the aluminum–copper–water interface. We model the aluminum, copper, and
water by the shock wave equation of state (8).

the copper plate. In addition, we assume that all the materials are in an uncompressed state,
and are modeled by the shock wave equation of state (8) with material quantities given in
Table I.

In this test, we perform the computation using an adaptive-mesh version of the high
resolution scheme; see [3] for more information on how to implement the algorithm for
general hyperbolic systems. Note that, in fact, we have modified the software package
AMRCLAW of Berger and LeVeque by replacing only the basic integration scheme to
our multicomponent algorithm described here, while keeping most of the other routines
unchanged. Numerical results with two levels of grid refinement (on Level 1, the mesh size
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is h1 = 1/100 m in both thex1- andx2-directions, and on Level 2, the mesh is refined by a
factor 4) are shown in Fig. 12, where we plot the density and pressure at three different times
t = 50µs, 100µs, and 150µs. From the figure, clearly, because of the impacting of the
aluminum to copper, we observe the transmitted and reflected shock waves to the copper and
aluminum, respectively. Moreover, on the corner of the copper–water and aluminum–water
interfaces, there are a circular shock wave propagating to the water, and a mushroom shape
of the interface appearing which separated the copper, aluminum, and water. It should be
mentioned that this type of the interface structure is often seen in many geophysical impact
problems (cf. [32, 30]). As far as the global picture of the solution is concerned, we have
also observed a similar behavior of the solution as the mesh is refined. It is interesting to see
that there is a smooth transition of the solutions across the coarse and fine grid interfaces;
this means that the basic procedure described in [3] for conservation and wave propagation
at grid interface works quite well in this case.

7. CONCLUSIONS

A simple fluid-mixture type algorithm is developed for the numerical resolution of
compressible multicomponent problems with real materials modeled by the general Mie–
Grüneisen equation of state. The algorithm uses an Eulerian formulation of the equations that
are formed by combining a set of effective equations for the material-dependent functions
and the Euler’s equations of gas dynamics. We use the high-resolution wave propagation
method designed originally for single component flow to solve the proposed model system,
yielding an easy extension of the method from single-component to multicomponent prob-
lems. Numerical results shown in the paper demonstrate the feasibility of the algorithm with
the approximate Riemann solver of Roe to a reasonable class of multicomponent problems
in both one and two dimensions. In the future, we plan to further extend the algorithm
to simulate shock waves in solids with elastic to plastic transition (cf. [34, 52, 55]), and
also to simulate shock to detonation transition (cf. [57]). Important physical effects such as
cavitation and spallation will be looked into for investigation as well.
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