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1 Introduction

This paper is concerned with the development of a Cartesian-grid approach for
the numerical simulation of general (single or multicomponent) compressible
flow problems with complex moving geometries. As a preliminary, in this work,
we are interested in a class of moving objects that undergo solely rigid-body
motion with the propagation speeds determined by either a given function of
time or the Newton’s second law of motion. We use the two-dimensional Euler
equations of gas dynamics as a model system in which the principal motion
of the single-component flow is governed by
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Here ρ denotes the density, u and v are the particle velocities in the x- and
y-direction, respectively, p is the pressure, and E is the specific total energy.
To close the system, a stiffened gas (or called Tammann) equation of state,

p(ρ, e) = (γ − 1) ρe − γB, (2)

is employed to describe the thermodynamic behavior of the fluid component
of interests, where e represents the specific internal energy, γ is the usual ratio
of specific heats (γ > 1), and B is a prescribed pressure-like constant (cf. [10]
and references cited therein). Then, we have E = e + (u2 + v2)/2 as usual.

Our approach to model the presence of moving objects in the problem for-
mulation takes essentially the same idea as reported in [2, 4, 5, 8, 11] in that
an underlying uniform Cartesian grid is used with some rectangles subdivided
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by the tracked interfaces into two parts, where approximate locations of the
moving objects are expected. In each time step, in accordance with the pre-
scribed rule for the moving-object motion, appropriate boundary states are
set at the tracked interfaces so that not only the fluid-rigid body interaction,
but also the new location of the tracked moving object, can be computed ac-
curately by the method at the end of the time step. See Section 3 for more
discussion, and [8] for a concise survey of the other approaches.

Rather than using the standard conservative flux-difference or flux-splitting
method as in the aforementioned work for moving-boundary problems which
can be done but is typically limited to applications governed by conservation
laws, we implement the algorithm based on a finite volume method in wave-
propagation form, see Section 2. One of the advantages of the method is that
reasonable time steps can be taken even if some of the subcells created by the
tracked interfaces are orders of magnitude smaller than the underlying Carte-
sian cells (cf. [6, 7]). In addition, generalization of the method from single
to multicomponent flows can be made in a straightforward manner when it
is used in conjunction with a quasi-conservative model system for numerical
approximation (cf. [10]). Numerical results presented in Section 4 gives some
indications of the feasibility of the proposed method for practical applications.

2 Wave-Propagation Methods

We begin by reviewing a finite volume method in wave-propagation form for
the numerical approximation of two-dimensional hyperbolic conservation laws,
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which is one of the fundamental steps in our algorithm devised in Section 3.
Here q ∈ lRm denotes the vector of m conservative quantities, and f(q), g(q)
denote the flux vectors, see (1) for an example. We will describe the method
on a slightly nonuniform grid denoted by G that is composed of a set of
regular cells with a fixed mesh spacing ∆x and ∆y in the x- and y-direction,
respectively, and some irregular cells which are formed by inserting tracked
boundaries into the grid, see Fig. 1a for an illustration.

We use a standard finite volume formulation of the method that the ap-
proximate value of the cell average of the solution over any given cell S at
time tn can be written as

Qn
S ≈

1

M(S)

∫

S

q(x, y, tn) dx dy,

where M(S) is the measure (area) of this cell. The methods we use are based
on solving one-dimensional Riemann problems at each cell edge, and the re-
sulting waves (discontinuities moving at constant speeds) are employed to
update the cell averages in the cells neighboring each edge (cf. [6]).
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Fig. 1. (a) A typical grid created by our algorithm. A wave propagating normally
from the cell edge: (b) between cells E and F updates the solution in cell F , and (c)
between cells C and E updates four neighboring cell averages. Here Wp represents
the region swept out by the p-wave over a time step ∆t, for p = 1, 2, · · · , m.

Consider the cell edge between irregular cells E and F as illustrated in
Fig. 1a, for example. We solve the one-dimensional Riemann problem normal
to this face, which in this case will be

∂q

∂t
+

∂f(q)

∂x
= 0,

with the initial data given by Qn
E and Qn

F . If Roe’s approximate solver (cf. [9])
is chosen to solve the Riemann problem, the jump Qn

F −Qn
E would be decom-

posed into eigenvectors of A which is a localization of the Jacobian matrix of
f(q), Qn

F −Qn
E =

∑m

p=1
αprp, where rp is the pth eigenvector of A, Arp = λprp

with λp the corresponding eigenvalue, and αp gives the wave strength.
Figure 1b shows a typical p-wave with λp > 0, where part of cell F is

affected by this wave over a time step ∆t. In the simplest first-order version
of the wave-propagation method, this cell average is updated by

Qn+1

S := Qn+1

S −
M (Wp ∩ S)

M(S)
αprp (3)

for S = F . Here Wp represents the region swept out by the wave and αprp is
the jump across the wave. Note that we have employed a standard initializa-
tion procedure, Qn+1

S := Qn
S , for all S.

Now, if we are concerned with the cell edge between cells C and E (this
is one segment of the tracked moving object with its normal oriented towards
the outside), a Riemann problem would be solved in the direction normal to
this face with appropriate chosen data Qn

C and Qn
E that takes account of the

moving-boundary conditions on this face. Here the p-wave indicated in Fig. 1c
overlaps four cells, and using (3) in a similar manner gives modification of the
cell average in each of these cells by the jump across this wave, weighted by
the fraction of the cell area covered by the wave.

Note that because waves are allowed to propagate through more than
one grid cell and are not confined to stay within neighboring cells, this first-
order method is typically stable as long as the time step ∆t satisfies the CFL
(Courant-Friedrichs-Lewy) condition relative to the regular ∆x and ∆y,
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Fig. 2. (a) With a given moving-object velocity at the current time, the tracked
interfaces are advanced in a Lagrangian manner over a time step ∆t. (b) Final
location of tracked interfaces are set by where the new segments obtained in a)
intersect the grid line. (c) Sample cases for the initialization of new irregular cells.

ν =
∆t maxm

p=1 |λp|

min(∆x, ∆y)
≤

1

2
, (4)

even when there are very small irregular cells near the tracked interfaces. To
improve the stability condition of the method to ν ≤ 1 as well as the accuracy
of the method to high resolution, it is straightforward to apply the techniques
developed in [7] to the current instance.

3 Moving-Boundary Tracking Algorithm

In each time step, our moving-boundary tracking method for compressible
fluid dynamics problems in two dimensions consists of the following steps:

(1) With a given moving-object velocity at the current time, advance the
location of the tracked interfaces on the grid system Gn in a Lagrangian
manner over a time step ∆t, see Fig. 2a for an illustration.

(2) Find the new tracked-interface location using the result obtained in step 1,
yielding the new grid system Gn+1, see Figs. 2b. Some cells will be subdi-
vided, and the values in each new irregular cell must be initialized.

(3) Employ the finite volume wave-propagation method on the grid Gn+1

created in step 2 to update the cell averages of our physical model for
single or multicomponent compressible flow over ∆t.

(4) Determine the new moving-object velocity at the next time step.

Note that steps 1 and 2 constitute the basic surface-moving procedure
(cf. [7]) for the propagation of rigid object, step 3 is the construction of ap-
proximate solutions to the physical problems of interests on a grid containing
moving object, see Section 2, and step 4 is simply the calculation of the ve-
locity for the moving object at the next time step.

Here the initialization of the irregular cell values is done by

Qn
S :=

∑

χ∈Gn

M (χ ∩ S)

M(S)
Qn

χ (5)
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for all S ∈ Gn+1, when the value Qn
χ is known a priori on Gn. As in many

existing moving-boundary methods (cf. [1, 5, 11]), an extrapolation procedure
should be devised to assign state values that are in the interior region of the
moving object, and incorporate that in (5) for the evaluation, see the cases
for S = A, B, C, and D as illustrated in Fig. 2c. In the present work, we take
an approach developed by Forrer and Berger [5] for that.

It should be mentioned that in case the motion of the object is induced by
the flow field, such as the cylinder lift-off problem studied in Section 4, the
velocity of the object (u, v)b at the time step tn+1 can be computed based on
the Newton’s second law of motion by

(u, v)n+1

b := (u, v)n
b +

∆t

Mb

(Fx, Fy)n
b ,

where Mb is the mass of the object, and the vector (Fx, Fy)n
b is the force on the

object which can be calculated by a numerical integration of the flow pressure
times the normal vector along the surface of the object.

4 Numerical Examples

We now present sample numerical results obtained using our algorithm for
compressible flow problems with moving geometries. Unless stated otherwise,
we have done all the tests using a high-resolution wave-propagation method
with the minmod limiter and the Courant number ν = 0.9 as defined in (4).
Moreover, the material-dependent parameters in the equation of state (2) are
set by (γ, B) = (1.4, 0) and (7, 3000Bar) for the gas- and liquid-phase,
respectively. The boundary conditions of the computational domain are solid
walls on the top and bottom, and non-reflecting outflow on the left and right.

Example 4.1. We begin by considering a benchmark test that involves
a one-dimensional piston moving at constant velocity in a two-dimensional
domain. Initially, inside a shock tube with dimensions 1 × 0.2m2, we have a
piston of size: (x, y) ∈ [0.4, 0.44]× [0, 0.2]m2, that is about to move vertically
from left to right with a constant velocity (u, v)b = (0, 300)m/s into a region
of quiescent perfect gas with ρ = 1kg/m3 and p = 105Pa. It is known that the
exact solution of the problem would consist of a rightward-going shock wave
in the front and a leftward-going rarefaction wave in the rear of the moving
piston. In Fig. 3, we show the computed solution for the density, velocity
in the x-direction, and pressure at time t = 800µ along the line y = 0.1m,
using a 100× 20 uniform grid. From the displayed profiles, it is clear that our
numerical result is in good agreement with the exact solution.

Example 4.2. Our next example is concerned with the so-called cylinder
lift-off problem (cf. [1, 3, 4, 5]) in which the Newton’s second law of motion
is applied to model the movement of the moving object. In this problem, the
initial condition consists of a planar Mach 3 shock wave in air located at
x = 0.08m traveling from left to right (the pre-shock state is at rest with
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Fig. 3. Cross-sectional plots of the density, x-component velocity, and pressure
for the one-dimensional moving piston problem at time t = 800µs along the line
y = 0.1m. The solid line is the exact solution.

density 1.4kg/m3 and pressure 1Pa), and a stationary rigid circular cylinder
(which has density 10.77kg/m3) with center (x0, y0) = (0.15, 0.05)m and of
radius r0 = 0.05m in front of the shock wave.

Figure 4 shows the contours of pressure at three different times, t = 0,
0.1641, and 0.33085s obtained using our method with a 1000×200 grid. From
the figure, it is easy to notice the asymmetric reflection of the incident shock
wave by the cylinder at the bottom side. When the time proceeds, the re-
flected pressure would be higher near the bottom, causing the lift-off effect to
the cylinder. In view of the global structure of the solution, our results agree
quite well with the results displayed in [1]. In Table 1, we present a conver-
gence study of the center of the cylinder and the relative mass loss at the
final stopping time t = 0.30085s, observing a linear convergence on the latter
quantity, when the mesh is refined. It should be noted that when comparing
this results with the one appeared in [1], we see a slight difference on the
center of the cylinder. More work should be done to clear up the discrepancy.

Table 1. A convergence study of the center of cylinder and the relative mass loss
for the cylinder lift-off problem at the final stopping time t = 0.30085s.

Mesh size Center of cylinder (m) Relative mass loss

250 × 50 (0.618181, 0.134456) −0.257528
500 × 100 (0.620266, 0.136807) −0.131474
1000 × 200 (0.623075, 0.138929) −0.066984

Example 4.3. Finally, as an example to show how our algorithm performs
for multicomponent problems with moving geometries, we are interested in the
flying of a supersonic projectile into a partially-filled water container. Here we
take a projectile with a circular shape of radius 0.3m, and consider a constant
velocity motion (u, v)b = (0,−500)m/s of the projectile where its initial loca-
tion is at (x0, y0) = (0, 0.4)m in a square domain with dimensions 6 × 6m2.
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Fig. 4. Contour plots of the pressure for the cylinder lift-off problem at three
different times t = 0, 0.1641, and 0.30085s by using a 1000 × 200 grid.

Above the horizontal air-water interface at y = 0, the fluid is a motionless air
with the standard atmospheric condition, while below the interface the fluid
is water at rest with density 1000kg/m3 and pressure 1Bar. The boundary
conditions on the computational domain are solid walls on the left, right, and
bottom, and non-reflecting outflow on the top.

To solve this two-fluid problem numerically, our moving-boundary tracking
algorithm uses a mixture type of the model equations proposed in [10] as the
basis for approximation. Results of a sample run obtained using the algorithm
with an uniform 600 × 600 grid are shown in Fig. 5 where contours of the
density, pressure, and volume fraction are shown at three different times t = 1,
2, and 3ms. From the figure, it is interesting to see the time evolution of the
air-water interface, upon the projectile entering the body of water. In the
future, we plan to validate this result by making comparison with either the
laboratory experiments or the ones obtained using other numerical methods.
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