
Role of coordinates in computational fluid dynamics

W.H. Huia*, J.J. Hub and K.M. Shyuec

aDivision of Mechanics, Research Centre for Applied Sciences Academia Sinica, Taipei, Taiwan; bDepartment of Information

Management, Shu-Te University, Kaohsiung County, Taiwan; cDepartment of Mathematics, National Taiwan University,

Taipei, Taiwan

(Received January 2007; final version received 19 June 2007 )

Computational fluid dynamics uses large scale numerical computation to solve problems of fluid flow. It turns out that the

numerical solution for a given flow depends on the coordinates (grid) used to compute the flow. The commonly used

Eulerian and Lagrangian coordinate systems both have advantages and drawbacks. In this paper, we first discuss the role

of coordinates in computational fluid dynamics regarding the questions of: (a) conservation form partial differential

equations; (b) numerical resolution of contact discontinuities; (c) grid generation; and (d) grid orthogonality. We then

introduce a unified coordinate system which combines the advantages of both Eulerian and Lagrangian system and

beyond, while avoiding their drawbacks. Examples include a transonic flow past an airfoil and a two-fluids flow with

shocks.

Keywords: unified coordinates; automatic grid generation; Eulerian coordinates; multi-fluids flow; Godunov scheme

1. Eulerian versus Lagrangian coordinates

The starting point in CFD is the physical conservation

law

›

›t

ð
VðtÞ

E dV ¼ 2

ð
›VðtÞ

kF·~n dS: ð1Þ

In Eulerian coordinates, which are fixed in space,

Equation (1) can be written as partial differential

equations (PDE) in conservation form. Thus, for a

g-law perfect gas we have

›Ee

›t
þ

›Fe

›x
þ

›Ge

›y
¼ 0; ð2Þ

Ee ¼ ½r; ru; rv; re�T;

Fe ¼ ½ru; ru2 þ p; ruv; uðreþ pÞ�T;

Ge ¼ ½rv; ruv; rv2 þ p; vðreþ pÞ�T:

In (2), u and v are the x- and y-components of fluid

velocity, and

e ¼
1

2
ðu2 þ v2Þ þ

1

g2 1

p

r
:

Shock-capturing computation is therefore easy to

apply in the Eulerian system, but it tends to smear contact

discontinuities badly. Furthermore, for computing flow

past a body, which is a central problem in CFD, it is

necessary to generate a body-fitted grid prior to flow

computation.

By contrast, in Lagrangian coordinates, contact

discontinuities can be resolved sharply. However, the

coordinates are flow dependent, hence Equation (1)

cannot easily be written in conservation PDE form

(except in the special case of one-dimensional flow). This

complicates the computation, for instance, a stagger grid

is needed, causing numerical diffusion. Moreover, the

grid deforms with the fluid, causing inaccuracy and even

breakdown of computation.

2. The ‘Optimal’ coordinate system

Can we have a coordinate system that combines the

advantages of the Eulerian and Lagrangian, while

avoiding their drawbacks? Such a system would be

‘optimal’ in some sense (whether or not a system is

optimal depends on the criteria, which are necessarily

subjective). Specifically, we want the coordinate system

to possess the following properties:

(1) conservation PDE form exists, as in Eulerian;

(2) contact discontinuities are sharply resolved, as in

Lagrangian;

(3) grid can be automatically generated to fit given

body shapes;

(4) grid is orthogonal; and

(5) grid is uniform, etc.

ISSN 1061-8562 print/ISSN 1029-0257 online

q 2008 Taylor & Francis

DOI: 10.1080/10618560701737112

http://www.informaworld.com

*Corresponding author. Email: whhui@ust.hk

International Journal of Computational Fluid Dynamics

Vol. 22, Nos. 1–2, January–February 2008, 3–9



We shall show that the unified coordinate system

introduced in the next section possesses these properties.

3. The unified coordinate system

For simplicity, we consider 2Dflow and introduce a unified

coordinate system (l, j, h) (Hui et al. 1999, Hui and

Kudriakov 2001) via the transformation from Eulerian

system (t, x, y)

dt ¼ dl

dx ¼ U dlþ A djþ L dh

dy ¼ V dlþ B djþM dh

8>><
>>: ð3Þ

From (3), we get

DQ

Dt

j

h

 !
¼ 0; ð4Þ

where

DQ

Dt
;

›

›t
þQ·7

x
!:

So, the coordinates (j, h), and hence computational

cells, move with velocity Q ¼ (U, V). It includes the

Eulerian as a special case when Q ¼ 0 and Lagrangian

when Q ¼ q ¼ (u, v).

Under the transformation, (2) becomes

›E

›l
þ

›F

›j
þ

›G

›h
¼ 0; ð5Þ

where

E ¼

rJ

rJu

rJv

rJe

A

B

L

M

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

; F ¼

rX

rXuþ pM

rXv2 pL

rXeþ pðuM 2 vLÞ

2U

2V

0

0

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

;

G ¼

rY

rYu2 pB

rYvþ pA

rYeþ pðvA2 uBÞ

0

0

2U

2V

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

:

Here, J ¼ AM 2 BL,X ¼ (u 2 U)M 2 (v 2 V)L and

Y ¼ (v 2 V)A 2 (u 2 U)B. The first four equations in (5)

are the physical conservation laws. But since they involve

the coefficients A, B, L and M of the transformation, they

are not closed. It is, therefore, necessary and sufficient to

append the time evolution of these coefficients, i.e. the last

four equations, to make the system closed. These four

equations are the compatibility conditions of the

transformation and are called geometric conservation

laws.

4. Grid movement

Since there are two arbitrary functions, U and V, we

prescribe two requirements.

(A) Coordinate lines h ¼ consant shall be material

lines of fluid particles, meaning

Dqh

Dt
¼ 0: ð6Þ

Together with the first of (4), we get

ðv2 VÞA ¼ ðu2 UÞB: ð7Þ

4.1 Observations

(a) Contact lines, being material lines, must coincide

with coordinate lines and, therefore, can be resolved

sharply.

(b) As the body surface is a material line, condition (7)

guarantees that the unified grid is automatically

a body-fitted grid at all times. This provides the basis

for automatic grid generation.

(c) A material interface (including a free surface)

corresponds to h ¼ constant and thus can be

resolved sharply.

(d) h(x, y, t) is a level set function; hence there is no

need to introduce an extra function when using the

level set method.

All these make the unified coordinate approach

particularly suitable and useful for problems of multi-

fluids flow and flow–solid interactions, etc.

W.H. Hui et al.4



(B) Grid angles and hence grid orthogonality shall be

preserved during the l marching computation. Thus, we

have

›

›l
cos21 7j·7h

j7jk7hj

� �

¼
›

›l
cos21 ALþ BMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ B2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 þM 2
p

� �
¼ 0:

ð8Þ

After eliminating V from (7) and using the geometric

conservation laws, (8) becomes an ordinary differential

equation for U

›U

›h
þ Pðh; l; jÞU ¼ Qðh;l; jÞ; ð9Þ

Pðh;l;jÞ ¼
S2

T 2J
A
›B

›j
2B

›A

›j

� �
2

L

AJ
A
›B

›h
2B

›A

›h

� �

Qðh;l;jÞ ¼
S2A

T 2J
B
›u

›j
2A

›v

›j

� �
þ
L

J
A
›v

›h
2B

›u

›h

� �
þuPðh;l;jÞ;

S2 ¼ L2 þM 2; T 2 ¼A2 þB2:

We can specify any initial data for U at h ¼ const.

5. Computation procedure

The special case of steady supersonic flow was

successfully studied in Hui and Hu (2006), and here we

are concerned with steady flow which may have subsonic

regions. Flows of this type are computed by marching in

time l until a steady state is reached.

The computation procedure for uniform flow past a

body is illustrated by a Mach 0.8 steady air flow

(g ¼ 1.4) past a NACA 0012 airfoil as follows.

Initialisation stage – automatic generation of body-

fitted grid in a computational window. Given the grid

sizes, Dx and Dy, and the number of cells, M £ N, in

the window (we use M ¼ 200 and N ¼ 100 in the

example).

Step 1. Begin with a column of N orthogonal cells,

representing the given uniform flow in the x-direction

(Figure 1(a)). This gives the initial values of (A, B, L,

M) ¼ (1, 0, 0, 1). We also take (U, V) ¼ (u, v)

initially.

Step 2. Compute the solution to Equation (5) by

marching in time l, using dimensional splitting:

splitting into two 1D systems in l 2 j and l 2 h,

each of them is solved using the standard God-

unov/MUSCL scheme with the minmod limiter.

(Details are as follows. To update the solution from

time n to time n þ 1: (a) solve the first four equations

(the physical conservation laws) of Equation (5) for

(r, p, u, v) keeping A, B, L, M, U and Vat time n level,

(b) use this updated values together with a specified

initial data to solve Equation (9) for U and then

Equation (7) for V at time n þ 1 and (c) use these

updated values of U and V to update (A, B, L, M) at

time level n þ 1 by integrating the geometric

conservation laws. At all outer boundaries of the

computational region at every time step, we apply the

characteristic boundary conditions.) After one

time step Dl, this column of cells moves to the

right by UDl.

Step 3. After several time steps when the initial column

of cells has moved to the right by a distance equal to

Dx, add one new column of cells on the left that is

identical to the initial column.

Step 4. Repeat this process of adding cell columns on the

left of the computational region until the leading

column meets the body surface (Figure 1(b)) we then

impose the boundary condition of zero normal

velocity on the body surface.

Step 5. Continue this process until after the columns of

cells cover the whole body surface and further

downstream, when we have M columns of cells in the

window (Figure 1(c)–(e)).

This completes the initialisation stage, and we now

have a body-fitted grid (Figure 1(e),(f)) and a flow field

around the airfoil in the window. The computed grid is

seen orthogonal, as predicted. It is also fairly uniform in

the x-direction, because in solving Equation (9) we have

specified uniform data for U at h ¼ constant The

associated flow field computed (e.g. surface pressure in

Figure 1(g)) is, however, only a very rough approxi-

mation to the correct one [see, e.g. the potential solution

of Hafez et al. (1984)], partly because it has not reached

the steady state and partly because the downstream

boundary conditions used at the transient times, e.g.

in Figure 1(a)–(d), are obviously incorrect as the

computational regions at those times are not the full

window.

To progress further, one could use the body-fitted

orthogonal grid generated so far to perform an Eulerian

computation with the associated flow field as an initial

solution. This can be easily done by putting U ¼ V ¼ 0

(without solving Equation (9)) during the subsequent

iterations towards a steady state. In this way, the unified

coordinate approach plays the role of grid generation for

Eulerian computation.

An alternative and better way is to continue the unified

coordinate computation to proceed to the Main stage –

iteration with flow-adjusted grids.

Step 6. To iterate the solution towards a steady state,

whenever we add a new column of cells on the left

of the window we also simultaneously delete the

International Journal of Computational Fluid Dynamics 5



Figure 1. Computed results for a Mach 0.8 steady flow past a NACA 0012 airfoil, showing flow-generated grids at different times,
surface pressure and pressure contours. g ¼ 1.4: (a) initial grid at t ¼ 0.0, (b) flow-generated grid at t ¼ 4.0, (c) flow-generated grid at
t ¼ 4.6, (d) flow-generated grid at t ¼ 4.9, (e) flow-generated grid at t ¼ 10.1, (f) blow-up grid at t ¼ 10.1, (g) surface pressure at
t ¼ 10.1, (h) flow-adjusted blow-up grid at t ¼ 50.0, (i) surface pressure at t ¼ 50.0 and (j) pressure contours at t ¼ 50.0.

W.H. Hui et al.6



right-most column of cells from the computation

window, thus keeping the window in the same size.

At the same time, we improve the solution by using

the information of the flow field at every time step,

e.g. the surface pressure gradient, to adjust the initial

data of U at h ¼ constant in solving (9) so that the

grid is refined in regions of high pressure gradient

(Figure 1(h)). We note that this flow-adjusted refined

grid remains orthogonal. The computed surface

pressure distribution is shown in Figure 1(i), which is

much better than that in Figure 1(g) and is in good

agreement with the potential flow computation of

Figure 2. Sample computation of a Mach 2.2 steady flow past a NACA 0012 airfoil at angle of attack of 88 and a horizontal air–SF6
material interface. The flow-generated grid, and the contours of the density, pressure and entropy are shown at three different times:
(a) flow-generated grid, t ¼ 0.128, (b) flow-generated grid, t ¼ 1.04, (c) flow-generated grid, t ¼ 4.0, (d) density contours, t ¼ 0.128,
(e) density contours, t ¼ 1.04, (f) density contours, t ¼ 4.0, (g) pressure contours, t ¼ 4.0 and (h) entropy contours, t ¼ 4.0. (All colour
figures available online in colour.)

International Journal of Computational Fluid Dynamics 7



Hafez et al. (1984). The pressure contours at the same

time is shown in Figure 1(j).

The flow-adjusted grid in Figure 1(h) looks similar

to those obtained by the grid re-distribution method in

Eulerian computation. But there are differences: grid

re-distribution requires generating another grid at

every time step by solving an elliptic equation, and

conservation properties in the interpolations of

geometry and flow variables between the two grids

must be ensured. These issues do not arise in our flow-

adjusted grid approach because we need only one grid;

the only modification is to specify the initial data for

U at h ¼ constant by using the pressure gradient

information.

In terms of computing time, most of the CPU time is

used in solving the Riemann problems for the physical

conservation laws, which is the same as in Eulerian

computation. However, additional times are needed to

solve Equation (9) and to update the geometric variables

(A, B, L, M). These typically increase the CPU time by

5–10%. (This can also be reduced if in step 6 after the

flow-adjusted grid is well established we put U ¼ V ¼ 0

so that there is no need to solve Equation (9)

subsequently.) On the other hand, grid re-distribution in

Eulerian computation by solving an elliptic equation

increases CPU time. What is most important is that

Eulerian computation always needs generating a body-

fitted grid prior to flow computation, and this can be

time-consuming.

6. Examples

Example 1 showing a transonic flow computation is

already given above. Example 2 shows a sample

computation for a Mach 2.2 steady flow over a NACA

0012 airfoil at an angle of attack of 88 and a horizontal

air–SF6 material. Figure 2(a)–(c) shows the flow-

generated grids at different times, whereas Figure 2(d)–

(h) shows the computed contours of density, pressure and

entropy at those times. The interface between air and SF6
was initially identified with a particular value of h and it

remained so, because a contact line coincides with a

coordinate line h ¼ constant in the unified coordinate

system. The computation was straight forward, with no

special treatment; yet the results are better than the

corresponding Eulerian ones (Figure 3(a)–(d)), in

particular the interface and the slip line behind the

airfoil are resolved sharper.

7. Conclusion

This paper demonstrates that coordinate system plays an

important role in computational fluid dynamics. It further

Figure 3. Eulerian computation of a Mach 2.2 steady flow
past a NACA 0012 airfoil at angle of attack of 88 and a
horizontal air–SF6 material interface: (a) local Eulerian grid,
(b) density contours, (c) pressure contours and (d) entropy
contours.

W.H. Hui et al.8



shows that the unified coordinate system is superior to

the Eulerian and the Lagrangian system.

References

Hafez, M.M., Osher, S. and Whitlow, W., 1984. Improved finite
different schemes for transonic potential calculations. AIAA 22nd
Aerospace Sciences Meeting, AIAA paper 84-0092.

Hui, W.H. and Hu, J.J., 2006. Space-marching gridless computation of

steady supersonic/hypersonic flow. International Journal of

Computational Fluid Dynamics, 20, 55–59.

Hui, W.H. and Kudriakov, S., 2001. A unified coordinate system for

solving the two-dimensional Euler equations. Journal of Compu-

tational Physics, 172, 235–260.

Hui, W.H., Li, P.Y. and Li, Z.W., 1999. A unified coordinate system for

solving the two-dimensional Euler equations. Journal of Compu-

tational Physics, 153, 596–637.

International Journal of Computational Fluid Dynamics 9




