
THREE-DIMENSIONAL FRONT TRACKING∗

JAMES GLIMM† , JOHN W. GROVE† , XIAO LIN LI‡ , KEH-MING SHYUE§ ,
YANNI ZENG† , AND QIANG ZHANG†

SIAM J. SCI. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 19, No. 3, pp. 703–727, May 1998 001

Abstract. We describe a three-dimensional front tracking algorithm, discuss its numerical
implementation, and present studies to validate the correctness of this approach. Based on the results
of the two-dimensional computations, we expect three-dimensional front tracking to significantly
improve computational efficiencies for problems dominated by discontinuities. In some cases, for
which the interface computations display considerable numerical sensitivity, we expect a greatly
enhanced capability.

Key words. front tracking, Riemann problems, nonmanifold geometry

AMS subject classifications. 35L65, 35L67, 65M99

PII. S1064827595293600

1. Introduction. Front tracking is a numerical method in which surfaces of
discontinuity are given explicit computational degrees of freedom; these degrees of
freedom are supplemented by degrees of freedom representing continuous solution
values at regular grid points. This method is ideal for solutions in which discontinuities
are an important feature, and especially where their accurate computation is difficult
by other methods. Computational continuum mechanics abounds in such problems,
which include phase transition boundaries, flame fronts, material boundaries, slip
surfaces, shear bands, and shock waves. The method was initiated by Richtmyer and
Morton [55] and was used for high quality aerodynamic computations by Moretti,
Grossman, and Marconi [50, 51, 52].

A systematic development of front tracking in two dimensions has been carried out
by the authors and their coworkers [20, 12, 21, 22, 19, 10, 29]. See [40, 61, 42, 11, 2, 45,
46] and additional references in the survey [37] for other approaches to front tracking
in two dimensions. Special purpose front tracking codes have also been developed, for
example, for simulation of the deposition and etching process for the manufacture of
semiconductors [31]. Computer-aided design packages for solid geometry use similar
concepts, under the terminology of nonmanifold geometry. There are also a number
of one-dimensional front tracking codes [41, 33, 60, 9, 45, 56, 34].

The first conclusion to emerge from this body of work is that it is possible to
apply front tracking in a systematic fashion to complex shock or wave front inter-
action problems, including problems with bifurcations, with changes of wave front
topology, as occurs after interaction, or crossing of one wave (tracked discontinuity)
by another. In other words, the first conclusion is that front tracking is a feasible

∗Received by the editors October 16, 1995; accepted for publication (in revised form) June 14,
1996. This work was supported by the Applied Mathematics Subprogram of the U.S. Department of
Energy under grant DE-FG02-90ER25084, by the Army Research Office under grant DAAH04-95-
10414, and through the Mathematical Sciences Institute of Cornell University under subcontract to
the State University of New York at Stony Brook (ARO contract number DAAH-04-95-10414), by the
National Science Foundation grants DMS-9500568 and DMS-9057429, and by the U.S. Department
of Energy.

http://www.siam.org/journals/sisc/19-3/29360.html
†Department of Applied Mathematics and Statistics, State University of New York at Stony

Brook, Stony Brook, NY 11794-3600 (glimm@ams.sunysb.edu, grove@ams.sunysb.edu, zeng@ams.
sunysb.edu, zhang@ams.sunysb.edu).
‡Department of Mathematics, Indiana University–Purdue University, Indianapolis, IN 46202.
§Department of Mathematics, National Taiwan University, Taipei, Taiwan.

703

704 GLIMM, GROVE, LI, SHYUE, ZENG, AND ZHANG

Detail Shock

Contact

Transmission

Cross

Rarefaction

Total Reflection

Contact
Shock

Detail

Full Computation

60 ∆X

X10 ∆

X∆

FIG. 1.1. Tracked waves to represent the passage of a shock wave through a perturbed planar
interface separating two compressible fluids of different densities. The three frames show successively
zoomed enlargements of a detailed region of shock-contact interaction within a single time step in
the interaction.

method for problems with geometrically complex fronts. The second conclusion is
that the front tracking solutions are often (a) better and (b) obtained on signifi-
cantly coarser grids [26, 36, 30, 4, 10, 6, 7]. Included in the above-cited results are
the following: (a) the first simulation of the Rayleigh–Taylor instability which agrees
with laboratory data in the incompressible limit and is extensible to the compress-
ible case; (b) the first simulation of the Richtmyer–Meshkov instability to agree with
laboratory results for the growth rate of the instability; (c) the best simulation of the
inviscid transition between regular reflection and Mach reflection, for the shock on
ramp problem.

In Figure 1.1, we show the interaction of a shock wave with a randomly perturbed
planar contact discontinuity in two dimensions, representing a density discontinuity
layer between two gases. The original computation and two levels of zoomed enlarge-
ment are displayed in the three panels. The most enlarged panel occupies only a few
mesh blocks and shows a highly resolved and complex set of incident, reflected, and
transmitted waves.

The success of two-dimensional front tracking and the intrinsic importance of
three-dimensional fluid dynamics provide the motivation for the present paper, whose
purpose is to present algorithms and methods for front tracking in three dimensions,
and to validate an implementation of these algorithms through demonstration of con-
vergence under mesh refinement for a test problem. The test problem is the small
amplitude growth rate for a fluid instability; we take the Rayleigh–Taylor acceleration-
driven instability as an example, due to our prior experience with this problem. We
also compare our results to those of the level set method.

THREE-DIMENSIONAL FRONT TRACKING 705

Initializing physical problem
?

Parallel interface communication
?

Parallel subdomain communication
?

Construct computational grid
?

Construct gridline-interface crossing

?

Initialization

Normal propagation of interface
?

Tangential propagation of interface
?

Parallel interface communication
?

Check cross and untangle interface
?

Redistribution of interface
?

Parallel interface communication

?

Interface propagation

Construct computational grid
?

Construct gridline-interface crossing

?

Interpolant construction

Vectorized sweep of interior solver
?

Sweep close-to-interface grid points
?

Parallel subdomain communication

?

Finite difference update

Output time step data
?

�

6
-

Yes

No

Continue for next step?

?
Terminate run

FIG. 1.2. Flow chart for the front tracking computation. With the exception of the i/o and
the sweep and communication of interior points, all solution steps indicated here are specific to the
front tracking algorithm itself.

As a framework for the rest of the paper, we present in Figure 1.2 a flow chart
for the front tracking computation. A more detailed account of the method of front
tracking can be found in [35, 3].

2. Modularity and data structures. The use of modern programming lan-
guages and modular organization has been an integral part of our methodology for
many years, and is an essential part of the work presented here. The front tracking
code is organized into a modular set of data classes that allow the code to be used in
a variety of different applications, including compressible gas dynamics, elastoplastic
flows, flow in porous media, and resin injection molding. The physical processes in
these applications are quite different, but they all share the common property that
sharp waves play a critical role. The data structures of the front tracking code are

706 GLIMM, GROVE, LI, SHYUE, ZENG, AND ZHANG

organized to maximize the amount of code that can be common to these and other
applications. Due to the growing interest in object-oriented programming and mod-
ular algorithm design, we include a discussion of the data organization aspect of our
methods. The discussion is organized by increasing levels of specificity:

1. utilities and software tools;
2. geometrical and topological structures (e.g., grids and interfaces);
3. general equation and problem types and solution methods: hyperbolic,

parabolic, elliptic (e.g., Godunov, ADI, conjugate gradient, finite elements,
interpolation). As such, routines at this level can copy (bitwise) and allocate
storage for dependent variables and pass them as arguments of functions;

4. physical laws: compressible gas dynamics, elastic-plastic flow, etc.;
5. material specification (e.g., equations of state or constitutive laws).

Each organizational level consists of a set of libraries that contain functions for the
computation and manipulation of data objects at that level. The different levels form
a hierarchy in which data objects at higher levels can inherit and extend properties of
objects at lower levels, while objects at lower levels have no direct knowledge of the
existence or properties of the higher level objects. For example, the data structure
describing a point is simply a geometric position when viewed from a level 2 library,
while the same data structure when extended to level 4 describes a point on a wave
surface and carries with it a description of the flow state on either side of the surface.
Public data, functions, and structures defined at one level are available to all higher
specificity levels but not to lower specificity levels. Indirect access to higher level
functions is provided though the use of virtual functions. It is also possible for a
particular level to be divided into sublevels. For example, in the front tracking code,
level 3 is subdivided into four sublevels corresponding to the propagation of tracked
waves, the generation of interpolation grids, the generation of finite difference stencils,
and a driver section. It is also possible to define higher levels. For example, the
elastoplasticity code is built as a superlevel of gas dynamics.

2.1. The interface library. We first discuss the interface library, a level 2 li-
brary which describes the geometry and topology of piecewise smooth manifolds with
piecewise smooth boundaries, embedded in R3. Boundary and coboundary operators,
to map from a manifold to its boundary and to the manifolds which it bounds, are
included in this library. The library compiles and runs independently of the levels
above it. We begin with a description of the main data structures (whose names
are in capital letters) and their interrelationships. At a continuum level, an INTER-
FACE [23] is a collection of nonintersecting geometric objects, NODEs, CURVEs,
and SURFACEs, that correspond to zero-, one-, or two-dimensional manifolds, re-
spectively. The dimension dim of an INTERFACE is a run time variable defined as
the dimension of the embedding space that contains the interface. The front track-
ing code currently supports one-, two-, and three-dimensional INTERFACEs. Both
CURVEs and SURFACEs are oriented manifolds. NODEs correspond to boundary
points of CURVEs, while in R3, CURVEs correspond to the boundaries of SURFACEs.
Each geometric object is associated with a corresponding object, HYPERSURFACE
or HYPERSURFACE BOUNDARY, depending on its codimension. Thus in R2 a
CURVE is associated with a HYPERSURFACE, and a NODE with a HYPERSUR-
FACE BOUNDARY, while in R3, HYPERSURFACEs correspond to SURFACEs, and
HYPERSURFACE BOUNDARIES correspond to CURVEs. The geometric and codi-
mension data structures are linked by pointers that map from one object to the other.
We designate as COMPONENT some labeling scheme, i.e., equivalence class, for the

THREE-DIMENSIONAL FRONT TRACKING 707

t t t t
�
�
�
��

�
�
�
�
�
�
�
�
�

A
A
A
A
A
A
A
A
A

A
A
A
AA

�
�
�
��

�
�
�
�
�
�
�
�
�

A
A
A
A
A
A
A
A
A

A
A
A
AA

@
@
@R

t
t′ t′′

t′′′

P1

P2P3

P1

P2P3

(a) (b)

t
t′ t′′

t′′′

b

Curve C

Surface S′

Surface S

FIG. 2.1. The neighbor structure of a triangle t. The triangle has pointers to the three points
P1, P2, P3 at its corners. In case (a), the triangle is interior to the surface, and its data structure
contains pointers to its three neighboring triangles, t′, t′′, t′′′. In case (b), the triangle is adjacent
to a boundary curve C of the surface S it belongs to. The triangle t still has pointers to neighbors
t′ and t′′, but now the bond b replaces the neighbor t′′′. The bond b has pointers to both t and t′′′.

connected components produced by the HYPERSURFACEs. Thus several connected
components may share a common component label and constitute a single COMPO-
NENT. Each side of a HYPERSURFACE is labeled by the COMPONENT adjacent
to that side. The COMPONENT label for a given geometric position is then defined
by the component on the side of the nearest HYPERSURFACE to that position. The
mapping between manifolds and boundaries consists of pointers from each respective
object to its corresponding boundary or coboundary object. Thus NODEs have a list
of incoming and outgoing CURVEs at the NODE, CURVEs contain the address of
their start and end NODEs, SURFACEs have pointers to their bounding CURVEs,
and CURVEs contain pointers to the SURFACEs that they bound. The boundary of
a SURFACE may consist of several CURVEs, and each CURVE may bound several
SURFACEs (or none at all). In cases where the components on the two sides of the
SURFACE are the same, the side of the SURFACE is useful as a local generalization
of COMPONENT.

The discretized version of the INTERFACE has the same structure, with a piece-
wise linear description built from doubly linked lists of simplices of the appropriate
dimensions. The CURVEs are composed of BONDs; the linking order corresponds to
the natural order of BONDS along the CURVE. Each BOND is a pair of POINTs, and
(conceptually) the straight line segment joining them. SURFACEs are discretized in
terms of TRIANGLEs. In contrast to the BONDs, their linking order has no intrinsic
relation to the geometry of the surface. Figure 2.1 shows the neighbor structure of
TRIANGLEs.

In Figure 2.2, we illustrate the geometric data structures used for the front track-
ing method in three dimensions.

A “next-point” algorithm is provided, which, after a special initialization call, will
return, on successive calls, each POINT in succession. This algorithm is elementary
in two dimensions and results from traversing the BONDs of each CURVE using the
linked list order. As each BOND is considered, its initial POINT (which is also the
final POINT of the previous BOND) will already have been considered, so the final
POINT of the current BOND is the returned value. This elementary idea fails in three
dimensions, as POINTs are redundantly referenced in TRIANGLEs, and the arbitrary
nature of the linking order for TRIANGLEs does not allow a simple determination of

708 GLIMM, GROVE, LI, SHYUE, ZENG, AND ZHANG

POINTs

BONDs

CURVEs

TRIANGLEs

SURFACEs

NODE

REGIME OF
COMPONENT 1

REGIME OF
COMPONENT 2

FIG. 2.2. An illustration of the geometric data structures used for the front tracking method in
three dimensions.

previously considered POINTs of the current TRIANGLE. The initialization call to
the next point in three dimensions is used to sort POINTs and TRIANGLEs into an
array. Hidden storage with sorting information in the triangle and point structure are
used to support the successive calls to the next-point and next-triangle algorithms in
three dimensions.

An INTERFACE, in the C language, is a class structure with arrays of pointers
to SURFACEs, CURVEs, and NODEs, together with a set of operations for the
manipulation of these objects. The SURFACEs, CURVEs, and NODEs are also class
structures. They contain arrays of pointers to their bounding and cobounding objects,
i.e., arrays of pointers to CURVEs, for the SURFACEs, etc., together with various
operators for their manipulation. The SURFACEs and CURVEs also contain reference
to the first and last simplices (TRIANGLEs and BONDs) in the linked list that defines
them.

The TRIANGLEs and BONDs are data structures defined in terms of POINTs
and neighbors (adjacent TRIANGLEs or BONDs). For computational efficiency, they
contain additional information, namely, length for BONDs and area and positive unit
normal for TRIANGLE. A POINT is also a data structure, with data to represent its
coordinate description.

To achieve modularity between dimensions, the coordinates of a point are rep-
resented as an array of dim = 1, 2, or 3 floating point variables. Since one of the
applications of the interface library is to support the efficient interpolation of piece-
wise smooth functions, it would be beneficial to allow arbitrary positive integer values
for the dimension dim. In this case, the interface is a generalization of the notion of

THREE-DIMENSIONAL FRONT TRACKING 709

a simplicial complex [16] of dimension dim − 1 embedded in Rdim. Multiple INTER-
FACEs and their uses, even within a single computation, prevent dim from being a
globally defined variable.

Each of the elementary objects in an INTERFACE (including the INTERFACE
itself) has support routines for initializing, copying, printing, reading of printed for-
mat, and modifying. These routines are exported and publicly available to the rest
of the code. In addition, the INTERFACE has hidden, or private, data and support
functions.

The interface library supports its own storage allocation scheme. Storage allo-
cation is a level 1 module, built as an extension of the Unix routine malloc. As a
hidden variable, a linked list of all active interfaces is maintained, and for each a sep-
arate instance of the level 1 storage allocation scheme is maintained. Storage for an
interface is allocated in blocks of a designated size. These are used as needed for the
allocation of SURFACEs, etc. In this way, the storage is (more nearly) contiguous
in physical memory, and paging inefficiencies for access of computationally related
variables are minimized. Deleted objects are not deallocated; rather the knowledge
of their addresses is eliminated, so that they are deaddressed. The reason for this
choice is that available deaddressed space is highly fragmented. Much of the data
consists of pointers, so that compression by recopy of data is incorrect. Upon deletion
of the entire INTERFACE, all of its storage is deallocated and returned to the system.
The combination of copy INTERFACE to get a new INTERFACE and delete (old)
INTERFACE will free deaddressed storage, reset pointers correctly, and accomplish
compression. Storage allocation is a private aspect of publicly available functions for
initialization of INTERFACE objects.

It is frequently necessary to determine the topology associated with an INTER-
FACE. INTERFACEs are required to be non-self-intersecting (so that SURFACEs
can meet only along their bounding CURVEs, etc.). After each time step in the
dynamical evolution, it is necessary to check the propagated INTERFACE for inter-
sections. If intersections arise, signaling a bifurcation of the topology, a call will be
made to a physics-specific routine, to modify and reconnect the INTERFACE, with
the possible introduction of additional scattered waves, as required by the physics. A
second topological requirement is to determine the COMPONENT of a given location
in space.

These requirements lead to a private INTERFACE data structure of hashed lists
of hypersurface simplices (BONDs or TRIANGLEs) stored according to their inter-
section with each mesh cell. The mesh used here is unrelated to any other (finite
difference) mesh used in the computation; we call it the topological GRID. See Fig-
ure 2.3. GRID defines a regular mesh over a brick in space. Its objects are pointers
to arrays of dim numbers, so that GRID is independent of dimension. The creation
(allocation) of a GRID thus requires dynamic storage allocation. The GRID contains
the upper and lower boundaries of the brick, the number of mesh points, and the
mesh spacing in each coordinate direction. In order to support ghost cells in paral-
lel computing domain decomposition, the GRID also contains upper and lower offset
mesh boundaries for the location of the ghost cell boundaries of the brick. In addition
to the topological GRID, there is a finite difference GRID used for storage of state
values (at cell centers) and for discretization of derivatives. Another GRID, dual to
the finite difference GRID, is used for interpolation (section 2.3).

The intersection routine checks all pairs of hypersurface simplices for intersec-
tions and returns a hashed list of intersecting hypersurfaces and their intersection

710 GLIMM, GROVE, LI, SHYUE, ZENG, AND ZHANG

Di,jDi−1,j Di+1,j

Di,j−1

Di,j+1

Di,j

6

?

6

?

6

LV LC

LB

FIG. 2.3. Illustration of the GRID data structure in two dimensions, for description of single-
processor grid information, in a domain decomposition parallel algorithm. The GRID contains
mesh index ranges, grid spacing, and (redundantly) absolute spatial coordinates for upper and lower
boundaries of the computational domain and of associated ghost cell buffer domains which refer to
cells controlled by neighboring processors but needed by the current processor. Here LC is the length
of the computational domain, LB is the length of the buffers, and LV is the length of the virtual
domain, including both the computational domain and the buffers.

locations. In three dimensions, the intersections are organized into CURVEs, while
in two dimensions, they are isolated NODEs. By use of this hashed list, intersections
are tested only for pairs meeting a common mesh block. Since the local density of
hypersurface elements is normally bounded, the O(n2) intersection computation is
reduced to O(n) in complexity for typical problems.

In addition, these hashed lists are used to support a projection algorithm, which
will find the closest interface point (i.e., the TRIANGLE, side, and the closest point
of the TRIANGLE) to a given point in space. To find the COMPONENT associated
with a given point of space, it is first located in a topological grid mesh cell. If the
cell is regular (i.e., it does not intersect the interface), then precomputed information
will give the COMPONENT by table lookup. If the cell is irregular, then the closest
side, given by the above projection algorithm, determines the COMPONENT. The

THREE-DIMENSIONAL FRONT TRACKING 711

precomputation of COMPONENTs starts with irregular cells. In a neighbor cell which
is regular, the projection algorithm will determine the COMPONENT. These values
are then extended by transitivity, since adjacent regular cells must share the same
COMPONENT.

A general discussion of data structure design and algorithms for sorting, queuing,
searching, hashing, matching, merging, splitting, etc., as well as complexity analy-
sis, can be found in [1]. Algorithms in computational geometry involving geometric
searching, triangulation, detection of intersections, etc. are discussed in [54].

2.2. Front. An INTERFACE, together with generic physics-dependent infor-
mation and “black box” dynamics, is called a FRONT. The resulting algorithms
define a level 3 library. At level 3, a new object, called F POINT, is introduced that
inherits the properties of a POINT and acquires new structure: physical STATEs,
associated with each side of the HYPERSURFACE on which the POINT is located.
Similarly, F NODE, F CURVE, and F SURFACE are objects that inherit and extend
the corresponding INTERFACE object. In practice, we tend to ignore the differ-
ence between an object and its extension and denote the entire range of an inherited
object by its corresponding INTERFACE identifier. Thus we speak of a POINT
or CURVE in the FRONT library, when actually these objects are F POINTs or
F CURVEs, respectively. At level 3, a STATE is the address of allocated stor-
age of known size. Three basic operations can be performed on STATEs in level
3. A STATE can be erased (all bits in the STATE assigned to zero) or copied,
or two STATEs can be interpolated. The latter operation is implemented via vir-
tual functions that must be assigned from a higher level library. FRONT can use
the interpolation functions as “black boxes” but has no information on how the in-
terpolation is performed. For POINTs of co-dimension 2, such as where multiple
SURFACEs meet along a CURVE, there are several STATEs (one for each HY-
PERSURFACE side) for each such HYPERSURFACE; this storage is associated
with the HYPERSURFACE, rather than with the POINT. The HYPERSURFACEs
also acquire new structure: a wave type, which designates physics-specific informa-
tion about the type of front. At level 4 specificity, these wave types can be read
fully, but at level 3, only generic wave types defining boundary conditions (NEU-
MANN, REFLECTING, DIRICHLET, or PERIODIC) or abstract physics can be
read. NEUMANN boundaries correspond to reflecting walls, while REFLECTING
boundaries correspond to symmetry axes. For some physics these two boundary
types may be equivalent, but their implementation is different. DIRICHLET bound-
aries come in two types, those with fixed, time independent boundary conditions,
and those whose boundary conditions are defined by user-defined functions. Scalar
or vector waves are defined as wave fronts corresponding to wave families whose ray
cone is either degenerate (scalar) or nondegenerate (vector). For example, in gas dy-
namics a contact discontinuity or material interface is a scalar wave, while a shock
front is a vector wave. Note that the differentiation between scalar and vector is
known at level 3, but the notion of shocks and contact discontinuities is a level 4
concept.

Passing to specificity level 4, meaning is attached to the (floating point and in-
teger) data contained in a STATE. Thus the simplest idea of a STATE for three-
dimensional compressible fluid flow would be five floating point numbers. It is con-
venient to have the equation of state addressable through the STATE itself, for ap-
plication to multicomponent or multiphase flow problems. Thus the address of the

712 GLIMM, GROVE, LI, SHYUE, ZENG, AND ZHANG

equation of state data base is added to the STATE structure. The equation of state
information is opaque at level 4 but can be accessed at level 5.

Apart from support routines for front-associated data structures, the main opera-
tions performed within the front library are (a) remeshing of the FRONT, (b) drivers
for propagation routines for both regular (codimension one) and irregular (codi-
mension two or higher) POINTs (section 3), and (c) untangling of self-intersecting
FRONTs with only scalar degrees of freedom (section 3). Scalar fronts have degener-
ate ray cones and simple wave interaction laws that can largely be implemented using
pure geometry. In contrast, vector fronts, such as shock waves, interact so as to create
both reflected and transmitted waves, even in the simplest cases. The FRONT data
structure contains parameters to control these operations (a)–(c), including function
pointers to level 4 physics functions for propagation details.

Remeshing introduces tangential diffusion through the interpolation of STATE
values, and it smoothes the hypersurface shape through convex interpolation of posi-
tions, so that it is important not to remesh too often. However, unduly long or short
BONDs, which arise during unremeshed multiple time step propagation, can interfere
with the accuracy or stability of the computation, so that it is also important not to
remesh too infrequently. Remeshing, in two dimensions, is accomplished by dividing
the arc length L of the CURVE by a desired BOND length l′, to arrive at the number
n of BONDs. Since this division must achieve an integer value, we set n equal to the
integer roundoff of L/l′, and l = L/n. New POINTS are inserted along the CURVE,
with arclength spacing l, and then old POINTs are removed. The remeshed BONDs
have nearly uniform length.

In three dimensions, there is no such linear order to the TRIANGLEs of a SUR-
FACE. Remeshing is a local algorithm. Size and aspect ratio criteria are given as
input parameters to this algorithm. Individual triangles are tested and, if they fail
these criteria, placed on a queue. One of two elementary operations is then applied
to each triangle in the queue. These operations either split or combine pairs of trian-
gles having a common edge; the operations are the inverse of each other in the sense
that applying both will leave the interface unchanged. The first elementary operation
divides a pair of TRIANGLEs with a common edge through bisection of their com-
mon edge. The other operation shrinks a pair of TRIANGLEs with a common edge
down to a pair of edges. This operation can alternately be described as shrinking the
common edge to a single point.

The front spacing is a run time parameter, which sets the overall length scale
for the remeshing of front points, as a multiple of the regular grid spacing of the
interior solver. For two-dimensional computations, experience with many problems
indicates that a front spacing value of 0.75 is satisfactory. For three dimensions,
further experiments in a variety of problems will be needed to determine suitable
values for the parameters which control the redistribution of front points. For the
runs given here, the value of 0.75 was also used.

2.3. Interpolation. Three other libraries complete the level 3 code for con-
servation laws. A hyperbolic library is concerned with states and propagation at
regular grid points. A driver library contains the main program initialization, time
loop control, and i/o capabilities. Another level 3 library, discussed here, supports
interpolation, based on state data from the front and hyperbolic libraries.

The ability to interpolate piecewise smooth functions with arbitrary discontinu-
ities across interfaces is of considerable independent interest, and has been developed

THREE-DIMENSIONAL FRONT TRACKING 713

as an isolated capability. It is used to support equation of state tables with phase
transitions across the discontinuity [13, 14].

Interpolation is also used for tabulated rarefaction curves, for the rapid solution
of Riemann problems starting from a tabular equation of state [58]. With the recent
extension of front tracking interpolation to three independent variables, the tabulation
of shock curves is also feasible.

To ensure the integrity of the interpolation process, only state values from a sin-
gle COMPONENT can be interpolated. State data is stored at grid cell centers. For
interpolation, we consider the dual grid, with states stored at grid cell corners. For a
regular (dual grid) cell, i.e., one which does not intersect the front, bilinear interpo-
lation gives the interpolated state values. For an irregular cell, in two dimensions, we
introduce a triangulation that respects the interface and that uses only those points
for which the states are already known: the dual grid corners and the (one-sided) front
points. We now describe our algorithm for triangulation in two dimensions. First,
subdivide each dual grid rectangular mesh cell which meets the interface into polyg-
onal subdomains. The edges of each subdomain are formed by the bonds from the
interface and the mesh line edge of the dual grid cell. A subdomain may be multicon-
nected. Multiconnectedness can be detected by calculating the winding number at a
vertex. Each multiconnected subdomain is divided into simply connected subdomains
by adding two new edges, if necessary.

Finally we triangulate each simply connected polygon by joining pairs of vertices.
Triangulation is based on a divide and conquer algorithm. The idea is to divide the
polygon into two subpolygons and determine a triangulation for each subpolygon. The
triangulation of the two subpolygons determines the triangulation of the combined
polygon. We apply this method recursively until a subpolygon has only three vertices,
and is thus a triangle. A detailed description of such an algorithm can be found in
[1]. In [1], only convex polygons are considered, but the algorithm can be modified to
obtain triangulations for nonconvex polygons as well.

Linear interpolation on each triangle constructed above then completes the defini-
tion of the solution function. It respects the discontinuities in the computed solution
exactly. Access to individual fields within the state is accomplished by function point-
ers in the front and hyperbolic libraries to level 4 functions.

The grid construction upon which this interpolation method is based does not gen-
eralize to three dimensions. A surface-respecting tetrahedralization of space, starting
with a given set of vertices (at which states are defined), is generally not possible. Ex-
tra vertices, called Steiner points, may be needed. The problem of deciding whether
Steiner points are required for a given surface and set of vertices is NP-hard [57]. Stan-
dard tetrahedralizations, such as the Delaunay triangularization, will not, in general,
respect a given surface, in the sense that the tetrahedrons formed from vertices on one
side of the surface may cross the surface. If the surface is convex, then this cannot
happen for the Delaunay triangularization. We cannot assume a convex surface, since
convex surfaces are concave when viewed from the opposite side. If the surface trian-
gles are sufficiently refined through the addition of extra points, then the Delaunay
tetrahedralization will respect the surface. In contrast to the case of general Steiner
points, where data for interpolation would be missing, data at the extra points on the
surface triangles can be given by linear interpolation from the vertices of the triangles.
This solution to the problem will be expensive and will give poor tetrahedra (with
bad aspect ratios). Our solution to the interpolation problem is to allow a separate
tetrahedralization of each connected component of R3, as defined by the interface.

714 GLIMM, GROVE, LI, SHYUE, ZENG, AND ZHANG

The tetrahedralization is determined by the vertices in that component, including the
points on the interface facing that component. This tetrahedralization, for a specific
component, will in general cross the component boundaries. Thus, when applied to
all components, it may be multiple-valued, in that a single point may belong to two
tetrahedra associated with two distinct components. For our intended interpolation
use, this multiple valuedness is not a disadvantage. The interpolation function has
as arguments a point in R3 and the associated component containing that point.
The tetrahedralization associated with that component is used for interpolation, and
so the solution function is single valued, with sharp discontinuities at the interface,
as desired. This construction assumes that the interface, restricted to a dual grid
mesh block, separates the mesh block in the sense that each side of each surface faces
distinct components. Delaunay triangulation applied to each polynomial component
generates a tetrahedral grid with an optimal aspect ratio. It is implemented by an
O(n log n) algorithm. Here n is the number of vertices in a given irregular rectan-
gle grid cell. The algorithm first takes four non-coplanar vertices and generates one
tetrahedron, and then adds the other vertices one at a time. If the vertex under
consideration lies inside an existing tetrahedron, we subdivide the tetrahedron at this
newly added vertex. Otherwise, for each triangular surface of a tetrahedron which is
completely visible to the newly added vertex, we form a new tetrahedra by using the
three vertices of the triangular surface and the newly added vertex. When all vertices
have been added, the Delaunay procedure is complete and we have a tetrahedralized
grid for all vertices of the same COMPONENT in that particular irregular rectangular
grid cell. We apply this procedure for each set of vertices of the same COMPONENT
in that cell. For a general discussion of tetrahedralization in three dimensions, see
[15].

3. The time step algorithm. The solution of conservation laws of the form

~Ut + ~∇ · ~F (~U) = ~G(~U)

are supported by the general framework discussed in sections 2–3. The nature of the
propagation is governed by the codimension of the point. The codimension is that of
the maximal (local) space-time manifold containing the point on which the solution
is smooth. Within this manifold, the solution is continuous along all curves passing
through the point. Normal to this manifold, the solution is discontinuous along all
curves passing through the point. Stated more technically, for any family of transverse
curves defined throughout a neighborhood of the point, the solution will fail to be
jointly continuous in the base point in the manifold and arclength along the curve. In
simple examples, the codimension is the number of simple jump discontinuities present
simultaneously in the solution at a given point in space and time. For time dependent
problems in dim space dimensions, 0 ≤ codimension ≤ dim+ 1. The minimum value,
0, occurs for points of continuity of the solution. At a discrete level, regular grid
points are treated as having codimension 0. Their time propagation is discussed in
section 3.1. The maximum value, dim + 1, occurs for points at which the solution is
bifurcating in time, as well as being discontinuous in space. Thus for this case there is
no space-time curve passing through the point, along which the (space-time) solution
function is continuous. Intermediate values of codimension will often be continuous
in time, with all discontinuous directions realized in space at a fixed time. However,
this simplifying picture need not hold. A simple example is provided by a phase
transition. Applying pressure uniformly, in a time dependent manner, can produce
a simple jump discontinuity in some physical variable, and this discontinuity can be

THREE-DIMENSIONAL FRONT TRACKING 715

spatially uniform, i.e., discontinuous in time only, but not in space coordinates. Even
if some physical effect, such as a gravity- or heterogeneity-induced spatial pressure
difference, can be found to break the spatial symmetry of this example, the effect can
be weak and ill conditioned. Thus numerical methods based on the simplified picture
are not always applicable.

The codimension 1 points are located on the front but are otherwise regular.
They are points of simple jump discontinuity. They lie on the interior of a surface
in three spatial dimensions and on the interior of a curve in two dimensions. We
discuss point propagation in order of increasing codimension, and thus of increasing
difficulty.

3.1. Interior states: Codimension 0. The propagation in time of interior
states (when based on dimensionally split methods) uses a one-dimensional regu-
lar grid stencil, for a sweep along each coordinate direction, and a choice of finite
difference operators for this stencil, such as the higher-order Godunov method, the
Lax–Wendroff scheme, etc. Special care is needed only when the stencil is cut by a
front; in this case there are missing state values, as the finite difference operator is
expected to receive states from a single component only. In this sense, the method
takes the idea of weak derivatives seriously and will never compute a finite difference
across a tracked front. For reasons of modularity, the assembly of the stencil (a level 3
routine) and the computation of the finite difference (a level 4 routine) are separated.
As a result, the introduction of new physics or of a new finite difference algorithm
only requires insertion of a new level 4 one-dimensional elementary finite difference
step, defined on a single stencil.

The missing points of the stencil, in the case of a front cutting through the sten-
cil, are obtained by extrapolation. Conceptually, the state values are double-valued
near the front, with the left component states extending by extrapolation for a small
distance into the right component, and vice versa. The computationally efficient im-
plementation of this extrapolation is obtained from precomputed information of front
crossings of dual grid block edges, which is a side computation in the interpolation grid
data structure referred to in section 2.3. This method is conservative in the interior,
i.e., away from the front. Computational experiments have shown very reasonable
conservation properties with this method; see Table 4.2.

3.2. Regular front states: Codimension 1. The propagation of the front
coordinates and states is performed in a single step. Operator splitting, in a rotated
coordinate system, allows separate propagation steps in directions normal to and
tangent to the front. First consider the normal propagation step. The analysis re-
duces to the integration of a differential equation in one space dimension (the normal
direction), and thus is largely independent of spatial dimension.

The leading order terms in the propagation of a discontinuity, in the direction
normal to the front, is given by the solution of a Riemann problem. This is the one-
dimensional Cauchy problem, with idealized initial conditions consisting of a single
jump discontinuity. The solution will, in general, contain a number of waves. Of
these, one is identified with the discontinuity being tracked (through the wave-type
variable stored as part of the front contribution to the hypersurface). This could be
a bona fide discontinuity in the Riemann solution wave structure, or it could be one
of the edges (leading or trailing) of a rarefaction wave. In any case, the Riemann
solution will give the wave speed and states immediately ahead of and behind the
advancing front. This speed and the states define the new interface position, and thus
the lowest-order version of the normal propagation algorithm.

716 GLIMM, GROVE, LI, SHYUE, ZENG, AND ZHANG

xsll sl sr srr

New position

sl3 sr3 sr2 sr1
t

t + t∆

FIG. 3.1. A schematic picture of the solution of the normal propagation of the front. The front
data at the old time step gives a Riemann solution, which is corrected by interior data, using the
method of characteristics.

Corrections are needed to couple the interior variation of the solution states to
the front propagation. For this purpose, a generalized Riemann problem is solved.
By this we mean a Cauchy problem having a single jump discontinuity in the initial
data. However, the initial data on each side of the jump discontinuity, rather than
being constant, is now allowed to be linear. The linear approximation to the nearby
interior solution states is constructed by moving a mesh distance ∆s away from the
interface along the normal on each side of the interface. The resulting point for solu-
tion evaluation will not, in general, be a regular grid point, and so the solution at this
point is constructed by interpolation, as described above in section 2.3. The solution
of the nonlocal Riemann problem is constructed as a finite difference correction to the
previously discussed (local) Riemann problem, using the method of characteristics.
See Figure 3.1.

Curvature-dependent corrections to the normal propagation are contained implic-
itly in the tangential sweep. Beyond these, there may be curvature corrections due to
self-interaction of the wave form (for a viscous or nonlocalized discontinuity), through
its dependence on finite transport coefficients, such as viscosity or chemical reaction
rates. For detonation waves, such corrections are known to be important and have
been studied quantitatively [8, 39, 47, 48]. It has been argued that there should be a
similar but smaller effect for (viscous or nonlocal) discontinuities in general [49]. This
effect is not included in the computations at present and is believed to be relatively
small for most problems.

The tangential propagation step modifies the interface states but not the points.
The tangential motion of the interface is a reparameterization of the interface, and
does not contribute to its dynamics. As a convention, the reparameterization is taken
to be the identity.

Separate finite difference steps are carried out for the states on each side of the
interface. The splitting into normal and tangential directions is locally orthogonal,
and for this reason no explicit source terms are introduced into the difference equations
by the splitting. While this seems paradoxical, since, e.g., radial expanding flow must
decrease as the wave front expands, the decay mechanism is found not in an explicit
source term but in the divergence of the velocity field, as seen by the tangential finite
difference stencil, after the states are projected onto the plane tangent to the surface.

3.3. Propagation of codimension 2 points. The allowed geometry of inter-
acting waves is dependent on the physics, i.e., on the governing equations of motion.

THREE-DIMENSIONAL FRONT TRACKING 717

The interaction of fronts is usually of codimension 2. Thus in two space dimensions,
the interaction occurs at a NODE, while in three dimensions it takes place along a
CURVE. For the well-studied case of compressible gas dynamics in two space dimen-
sions, the geometry defined by interacting waves is moderately well understood. Each
type of wave interaction, or node, has its own dynamical algorithm. The basis for
these algorithms is the theory of shock polars, which is a graphical method for under-
standing the equations governing a node. The method yields a succession of equations
of elementary waves, for each of the elementary waves meeting at the node, together
with an equation stating that traversing each wave in succession, thus tracing a path
around the node (curve in three dimensions), yields the starting state of that path.
The details of the theory are beyond the scope of this short discussion; see [27, 21].

The propagation of curves in three dimensions will be governed by the same prin-
ciples, i.e., by the solution of shock polars to describe a sequence of (one-dimensional)
Riemann problems while traversing a circle lying in the plane normal to a codimension
2 wave interaction submanifold. Such codimension 2 and higher propagation problems
in three-dimensional computations are not presently supported and will be avoided by
the choice of initial problems and degrees of tracking within these problems, for which
codimension 2 and 3 wave interactions (other than the bifurcations of hypersurfaces
of scalar type) do not arise.

3.4. Propagation of codimension 3 points. The bifurcation of nodes in two
dimensions and the propagation of nodes in three dimensions is a codimension 3
problem. This problem, in which the topology and the nature and number of waves
meeting at a node changes, is complicated and less well understood. There appears to
be a very large number of possible such bifurcations, not fully classified. A sufficient
number of the more commonly occurring bifurcations are understood and supported in
the front tracking code in two dimensions so that an interesting range of complicated
interaction problems can be handled.

In three dimensions, we avoid this complexity initially by tracking material bound-
aries only, for which the physics of the interactions is well understood.

Even for the simplest case of scalar waves, such as contact discontinuities, for
which the interface is untangled on the basis of geometrical considerations alone [19],
the ability to track an interface through a change of topology appears to be unusual,
or possibly unique, and allows the computation of complex interfaces. See Figure 3.2.
For a study of mesh refinement of a similar unstable interface computation, see [18].

This untangle capability (currently available in two dimensions only) is based on
a sharing of coboundary topological data. At a dynamically generated interface self-
intersection, topological information, such as components, will be locally inconsistent.
It is assumed that the time step leading to the self-intersection is sufficiently small
so that the self-intersection is a relatively isolated event. That being the case, the
topological information at the self-intersection point can be compared to similar in-
formation at other ends (edges) of the intersecting hypersurfaces. These ends are the
coboundaries of the intersections. Assuming that the coboundary information did not
result from a self-intersection, it must be valid. On this basis, the inconsistent infor-
mation at the self-intersection point can be evaluated, and unphysical hypersurfaces
identified. For further details concerning this algorithm, see [19].

For waves with vector degrees of freedom, such as shock waves, the untangle will
produce new waves, in addition to the elimination of unphysical ones. The proper
discussion of the algorithm in this case is beyond the scope of this review and is not
completely implemented in all cases; see [24, 27, 25, 28, 6, 5].

718 GLIMM, GROVE, LI, SHYUE, ZENG, AND ZHANG

FIG. 3.2. The frame on the left shows an early time step in the evolution of an interface between
fluids of different densities, subject to gravitational acceleration. The light fluid is on the bottom
and the heavy fluid is on the top. The acceleration points downwards. The frame on the right shows
the complex interface that results, at a later time. Note in particular the formation of droplets of
heavy fluid in the mixing region, as a result of successive bifurcations of the interface topology.

3.5. Parallel implementation. Parallel communication of interface data for
distributed memory computers poses a special problem, as much of the data consists
of addresses of other data, i.e., pointers. Efficient communication requires large mes-
sage packets, so that all allocated storage is communicated as a bit array, with no
attention paid to the logical significance of the data. Upon receipt, this array has
to be unbundled and all pointers reset to the addresses the data will have on the
new processor. Because of the allocation of interface storage in contiguous chunks of
known addresses, this readdressing can be achieved conveniently by simple pointer
arithmetic, in terms of the relative addresses of the interface storage chunk on the
two processors. Computational efficiency requires setting a relatively large chunk
size.

For hyperbolic systems of conservation laws, as considered here, explicit solu-
tion of finite difference equations allow domain decomposition methods to be used
in a straightforward manner. The entire computational region is divided into an
x, y, z rectangular grid of processor domains, with a single domain and single pro-
cessor assigned uniquely to each other. At a later stage of development, we imagine
a hierarchical domain mesh refinement decomposition of the computational region.
Buffer zones are created at the edges of each computational domain to allow efficient
communication and storage of boundary information from neighboring domains. Syn-
chronization after communication in each coordinate direction allows edge and corner
buffer locations to be included within the second and third coordinate direction com-
munications, rather than as distinct operations. In this way, 2d = 6 rather than
3d − 1 = 26 communication steps transmit regular boundary information.

Communication primitives are written using modular protocols, with calls to man-
ufacturer’s primitives contained in a single file. Until communication primitives and

THREE-DIMENSIONAL FRONT TRACKING 719

(a) (b)

FIG. 3.3. Frame (a) shows the portion of the interface associated with a single computational
domain, together with the four pieces of extended interface needed to construct the solution over the
ghost cells which belong to adjacent computational domains. Note that the domain decomposition
is arranged so that there is no z direction communication, and the x direction communication
occurs before the y direction communication. Thus the x− y corners, in the computational domain
of diagonally adjacent processors, are communicated as part of the y direction communication, as
explained in the text. Frame (b) shows the reconstructed interface after the complete communication
step, including both the part of the interface within the computational domain proper, and that part
extending into the ghost cells associated with neighboring domains.

their calling sequences are standardized in programming languages, this method en-
sures a convenient way to achieve portable and modular parallel communication code
and allows an easy upgrade to MPI or PVM protocols.

Rejoining pieces of a triangulated surface along a domain boundary is accom-
plished by floating point comparison of point positions. Since the points to be com-
pared have been propagated by one time step on distinct processors, a possibility of
logical confusion in this operation exists. The need for logical accuracy is very high,
due to the large number of such comparisons to be made within any given run and to
the lack of tolerance in the interface data structure for logical errors in its data rep-
resentation. Thus redundancy is built into the identification routine, with a match of
three points used to establish logical identity of a single triangle, and nearest neighbor
pointers to propagate this identification to neighboring triangles. See Figure 3.3.

3.6. Memory and CPU time. The front tracking method actively tracks the
evolution of fluid interface geometry and thus maintains a sharp resolution of discon-
tinuous physical quantities. Management of the interface data structure adds certain
computational costs to the program. Such costs can be viewed in two parts. One
is the memory needed to store and resolve the interface geometry. The other is the
CPU time needed to handle the physical evolution of the front. Besides the memory
of physical states on a regular computational mesh, front tracking requires additional
memory to store states on the interface and to store the associated interface topol-
ogy. In addition, since the objective of tracking the front is to couple the interaction
between the front states and the states on regular mesh, the program has to maintain

720 GLIMM, GROVE, LI, SHYUE, ZENG, AND ZHANG

TABLE 3.1
CPU time in seconds consumed by each part of the front tracking program. Tp is the time used

for the front propagation including both the propagation of points in the normal direction and the
tangential sweep of the front states. Tg is the CPU time for the construction of the unstructured grid
near the front. This grid provides the coupling between the interface and the interior states. Tfd is
the CPU time used by the finite difference scheme on the regular grid. This time is representative
of the time for an untracked computation. The CPU time for the regular grid and the front become
comparable at an 80 × 160 computational mesh. T is the total time for a time step, approximately
equal to the sum of the three preceding columns.

Grid Tp Tg Tfd T

10× 20 0.57 1.32 0.20 2.08
20× 40 0.78 2.12 0.57 3.48
40× 80 1.43 4.23 2.02 8.02
80× 160 2.45 8.58 7.08 18.00

an unstructured grid in order to interpolate the states between the regular mesh and
the front. The unstructured grid must be updated at each time step.

The percentage of memory storage and CPU time used for tracking the front and
computing the states on the regular mesh is dependent on several factors, such as
whether the interface is steady or expanding, the refinement of the computational
mesh, and the dimension. For a physical problem with a relatively steady front in D
dimensions (D = 1, 2, 3), we have the following scaling for the memory:

M ≈ CfND−1 + CrN
D,

where N is the number of grid points in one dimension. The first term refers to the
memory used by the front, and the second term refers to the memory used by the
regular mesh. The coefficient Cf is substantially larger than Cr. This means that
the front takes a large percentage of the memory in the coarse grid. But as the mesh
is refined, due to the scaling, the memory for the regular mesh increases faster than
that for the front and eventually becomes dominant. Considering the CFL condition,
the CPU time is scaled in the following way:

T ≈ AfND +ArN
D+1.

Table 3.1 shows the CPU time for one time step in the two-dimensional simulation
of the Rayleigh–Taylor instability. In this table, it is shown that although the CPU
time for the front is the leading term in the coarse grid, it becomes comparable
with the CPU time of the regular grid with a 80× 160 mesh for one time step. For a
comparison of tracked and untracked computations at comparable levels of resolution,
an untracked grid finer by a factor of three to five in each spatial dimension should
be used, rather than the comparison on identical grids, as shown here. On this basis,
the 20 × 40 tracked computation is about twice as fast as the 80 × 160 untracked
computation, and the 40×80 tracked computation is about comparable to the 40×80
untracked computation. The three-dimensional front tracking has the same scaling,
but since the code requires further optimization, the coefficients of the scaling are not
yet meaningful. The scaling law should be modified if the physical problem has either
a growing or a shrinking interface. For this reason, the numbers shown here have only
qualitative or relative significance.

The CPU time for data communication in two dimensions is negligible, and the
efficiency of parallelization is over 95%. In three dimensions, due to relatively large

THREE-DIMENSIONAL FRONT TRACKING 721

0.0 0.2 0.4 0.6

016

018

020

022

024

026

028
Amplitude x 10-3

T

8x8

16x16

64x64

256x256
128x128

32x32

0.0 0.2 0.4 0.6

016

018

020

022

024

026

T

Amplitude x 10 -3

16x16x16

8x8x8

32x32x32

64x64x64

FIG. 4.1. We show convergence under mesh refinement of the computed front tracking solution.
The left frame displays the amplitude as a function of time for a two-dimensional computation;
the right frame refers to three dimensions. The amplitude is displayed in dimensionless units, as a
fraction of the wave length.

amount of data to be exchanged in a given time step, the efficiency is decreased to
about 75–80%. A careful arrangement of processors and optimized chuck size for each
data passage can substantially reduce the CPU time needed for communication.

4. Numerical results and validation. The Rayleigh–Taylor instability is a
gravity-, or acceleration-, driven instability of an interface separating two fluids of
differing densities [59]. For small amplitude, single mode sine wave initial positions of
the interface, the two fluid-compressible Euler equations admit a linearization whose
solution is still a sine wave in space and an exponential (or for finite domains, a
difference of exponentials) in time; cf. [17]. The validity of this solution depends
critically on the smallness of the amplitude. The solution is changing very slowly, so
that physical effects, which are small, may be masked by numerical errors, including
numerical diffusion at the interface.

In Figure 4.1 we display the amplitude (peak to trough) as a function of time,
showing convergence under mesh refinement. This plot emphasizes the small ampli-
tude regime, in which the growth rate is nearly exponential. The amplitude, even at
the final time step, is approximately one fifth of a mesh block on the coarsest grid
and is less than two mesh blocks on the finest three-dimensional grid. Numerical
diffusion of the interface, for other methods of computation, would be larger than the
perturbation itself, and thus preclude this computation. For this computation, the
front spacing was set equal to the interior grid spacing and a CFL number 0.95.

We also study L1 convergence under mesh refinement for the same example. In
Table 4.1 we give the L1 errors for different mesh sizes, compared to the 643 mesh
grid, when t = 0.8. We show relative errors for density and energy and absolute
errors for momenta. In this example, the momenta are so small that it is not realistic
to measure the relative errors. (The x and y momenta have 45% relative errors for
the 83 mesh grid and 19% for the 323 mesh grid, while the z momentum has 98%
relative errors for the 83 mesh grid and 24% for the 323 mesh grid.) We see first-order
convergence. This is as expected, since the code is second order in the interior and
first order in the front propagation; hence the motion of the interface is first-order

722 GLIMM, GROVE, LI, SHYUE, ZENG, AND ZHANG

TABLE 4.1
L1 errors for different mesh sizes compared to the 643 mesh grid for t = 0.8.

Mesh Density Energy x momentum y momentum z momentum
size relative error relative error error error error

83 0.47% 0.37% 0.0025 0.0025 0.0061

163 0.27% 0.18% 0.0019 0.0019 0.0032

323 0.15% 0.07% 0.0011 0.0011 0.0015

TABLE 4.2
Errors in conservation properties.

Mesh Density Energy x and y momentum z momentum
size relative error relative error error error

83 0.093% 0.066% 6.9× 10−6 0.0059

163 0.041% 0.054% 2.8× 10−6 0.0025

323 0.014% 0.014% 8.3× 10−5 0.0009

643 0.009% 0.001% 2.3× 10−5 0.0004

accurate. In Table 4.2 we also show errors in conservation properties. For each mesh
size, we compare the conservative quantities at t = 0 and at t = 0.82. Notice that
the integrals of total energy and z momentum are not conserved due to the body
force and the boundaries in the z direction. We thus compare these two quantities
with solutions to the ordinary differential equations which they satisfy. Again, we see
linear convergence. The exception is for x and y momenta, but these are so small
that asymptotic decrease of errors has not been achieved on the meshes used.

We also compare numerical results from the front tracking method with results
from the level set method using TVD as its interior solver. See Figures 4.2 and 4.3,
which show the density and pressure profiles along the z gridline through the spike
tip from these two methods at a common time.

Our main conclusion is that if the two fluids have different equations of state (i.e.,
are different fluids), the level set method does not provide a satisfactory choice of the
equation of state in the numerically mixed zone. If the two fluids are identical, the level
set method plays no role in the computation and is merely a graphical postprocessor
of the solution. It follows that the extra precision in the interface location afforded
by front tracking is very important for problems in which the two fluids separated by
the interface are qualitatively dissimilar. The level set method is relatively simple in
its handling of the fluid interface and, with an enhanced interior solver, can provide
a satisfactory solution for interfaces between fluids with similar physical properties
[44].

In Figure 4.2, computed by the level set method, the density profile has spread
over 4–5 mesh points. The interface position given by the level function at ψ = 0 is
at the left end of the numerical density mixing zone. A pressure bump is produced
near the interface due to the inconsistent use of the equation of state relative to this
density profile. Not only does the level set choose a nonoptimal interface location
at the lower end of the density mixing zone but, more fundamentally, its use of a
sharp interface model for the equation of state, and any type of level set demarcation
between the fluids, is inconsistent with a numerically diffused density mixing zone, and
so an equation of state error is unavoidable. The specific implementation of the level

THREE-DIMENSIONAL FRONT TRACKING 723

z0.0 0.5 1.0 1.5 2.0
0

2

4

6

ρ

0.0

0.5

1.0

1.5

2.0

P

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗

∗

∗

∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

ψ > 0ψ < 0

g g g g g g g g g g g g g g g g g g g

g

g

g g g g g g g g g g g g g g g g g g g g

FIG. 4.2. Density and pressure profiles in the simulation of the three-dimensional Rayleigh–
Taylor instability using TVD and the level set method. The vertical dashed line is the position of
the unperturbed interface. The gases on the different sides of the interface have different equations
of states. The plot illustrates the use of an inappropriate equation of state (inherent to the level set
method) within the mixing zone. The incorrect equation of state results in an unphysical pressure
spike at the interface, which yields an artificial shock wave. The asterisks represent density (left
scale) and the solid dots represent pressure (right scale).

z0.0 0.5 1.0 1.5 2.0
0

2

4

6

ρ

0.0

0.5

1.0

1.5

2.0

P

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗
∗ ∗

g g

FIG. 4.3. Density and pressure profiles in the simulation of the three-dimensional Rayleigh–
Taylor instability using the front tracking method. The vertical dashed line is the position of the
unperturbed interface. The gases on the different sides of the interface have different equations
of state, as in Figure 4.2. The computation shows a sharp interface, and all equation-of-state
computations refer to one of the original fluids; there is no mixing zone and no mixed fluid equation
of state.

set method used here was described in [43, 38] and references cited there. See also [53]
for the proposal to use the level set method for the computation of Rayleigh–Taylor
instabilities and for additional references. The pressure bump produces an artificial
shock which slows down the motion of the heavy fluid. For the front tracking method,
however, the two fluid components are explicitly distinguished to ensure the proper

724 GLIMM, GROVE, LI, SHYUE, ZENG, AND ZHANG

t = 0 t = 2

t = 4 t = 6

FIG. 4.4. Evolution of a three-dimensional fluid interface in the Rayleigh–Taylor instability
through the front tracking method. The computational mesh in this simulation is 20× 20× 40. This
coarse grid simulation has remarkably good agreement with the growth rate in the linear regime. In
this case, the density ratio is 5 : 1 and the compressibility is M2 = 0.1.

use of the equation of state. Not only is the density profile sharp but also the pressure
profile is smooth, with a discontinuous slope at the interface as required by interface
jump conditions.

In these computations, we use the stiffened polytropic equation of state [32]

Pi = (γi − 1)ρiei − γiPi ∞,

where Pi denotes the pressure in the fluid i = 1, 2, ρi is density, and ei is the specific
internal energy. The lower (lighter) fluid has a polytropic equation of state (P1 ∞ = 0),
with γ1 = 1.4. The upper (heavier) fluid has the stiffened polytropic equation of state
with γ2 = 4.0 and P2 ∞ = 1.0, appropriate for compressible liquids such as water.
Initially ρ1 = 1, ρ2 = 5 at the interface.

In Figure 4.4, we display a well-developed Rayleigh–Taylor bubble and spike,
computed by the front tracking method.

5. Discussion and conclusions. We have established feasibility for three-
dimensional front tracking. The wide variety of problems with a need for special-
ized surface or interface computation and the high (distinctive) quality of solutions
resulting from two-dimensional front tracking provide the motivation for this effort.

THREE-DIMENSIONAL FRONT TRACKING 725

Specific difficulties with front tracking are discussed. Some of these have solu-
tions of possible general interest. An example is the front tracking interpolation,
which resolves discontinuities of piecewise smooth functions and (in two dimensions)
has given excellent representation of thermodynamic tables with phase transition dis-
continuities.

Validation of the method is given by mesh refinement studies. We also present
comparison to other numerical methods.

Perhaps the biggest promise for front tracking in three space dimensions is to
combine it with advanced shock capturing and adaptive mesh refinement. The lat-
ter technologies are extremely good at resolving shock fronts and wave interactions
but have major deficiencies at contact discontinuities and material interfaces. Front
tracking is ideal for material interfaces as long as physical diffusion is insignificant.
Thus the three numerical techniques exactly complement each other, and together
they have the ability to accurately compute complex flows in three space dimen-
sions.

REFERENCES

[1] A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, Data Structure and Algorithms, Addison–
Wesley, Reading, MA, 1983.

[2] J. B. BELL, P. COLELLA, AND M. L. WELCOME, Conservative Front-Tracking for Inviscid
Compressible Flow, in UCRL-JC-105251, preprint, 1991. Presented at AIAA 10th Compu-
tational Fluid Dynamics Conference, Honolulu, HA, 1991.

[3] B. BOSTON, Front Tracking of Complex Wave Interactions, Ph.D. thesis, State Univ. of New
York at Stony Brook, Stony Brook, NY, 1995.

[4] B. BOSTON, J. GLIMM, J. W. GROVE, R. HOLMES, AND Q. ZHANG, Multiscale structure for
hyperbolic waves, Stud. Adv. Math., 3 (1997), pp. 1–9.

[5] B. BOSTON, J. W. GROVE, L. F. HENDERSON, R. HOLMES, D. H. SHARP, Y. YANG, AND

Q. ZHANG, Shock induced surface instabilities and nonlinear wave interactions, in Pro-
ceedings of the Eleventh Army Conference on Applied Mathematics and Computing, 1993,
U.S. Army Res. Office, Research Triangle Park, NC.

[6] B. BOSTON, J. W. GROVE, AND R. HOLMES, Front tracking simulations of shock refractions
and shock induced mixing, in Shock Waves @ Marseille IV, Proceedings of the 19th Interna-
tional Symposium on Shock Waves, Marseille, France, 1993, R. Brun and L. Z. Dumitrescu,
eds., Springer-Verlag, Berlin, Heidelberg, New York, 1995, pp. 217–222.

[7] B. BOSTON, J. W. GROVE, AND R. L. HOLMES, Shock induced surface instabilities and non-
linear wave interactions, Mat. Contemp., 8 (1995), pp. 39–62.

[8] B. BUKIET AND J. JONES, The competition between curvature and chemistry in a spherically
expanding detonation, Appl. Phys. Lett., 52 (1988), pp. 1921–1923.

[9] P. CHARRIER AND B. TESSIERAS, On front-tracking methods applied to hyperbolic systems of
nonlinear conservation laws, SIAM J. Numer. Anal., 23 (1986), pp. 461–472.

[10] Y. CHEN, Y. DENG, J. GLIMM, G. LI, D. H. SHARP, AND Q. ZHANG, A renormalization group
scaling analysis for compressible two-phase flow, Phys. Fluids A, 5 (1993), pp. 2929–2937.

[11] I.-L. CHERN AND P. COLELLA, A Conservative Front Tracking Method for Hyperbolic Con-
servation Laws, LLNL Rep. No. UCRL-97200, Lawrence Livermore National Laboratory,
Livermore, CA, 1987.

[12] I.-L. CHERN, J. GLIMM, O. MCBRYAN, B. PLOHR, AND S. YANIV, Front tracking for gas
dynamics, J. Comput. Phys., 62 (1985), pp. 83–110.

[13] L. COULTER AND J. W. GROVE, The Application of Piecewise Smooth Bivariate Interpolation
to Multiphase Tabular Equation of States, Report No. SUNYSB-AMS-92-11, State Univ.
of New York at Stony Brook, Stony Brook, NY, 1992.

[14] L. O. COULTER, Piecewise Smooth Interpolation and the Efficient Solution of Riemann Prob-
lems with Phase Transitions, Ph.D. thesis, New York Univ., NY, 1991.

[15] H. EDELSBRUNNER, F. P. PREPARATA, AND D. B. WEST, Tetrahedrizing Point Sets in Three
Dimensions, Report UIUCDCS-R-86-1310, Dept. of Computer Science, Univ. of Illinois,
Urbana, IL, 1986.

[16] S. EILENBERG AND N. STEENROD, Foundations of Algebraic Topology, Princeton University
Press, Princeton, NJ, 1952.

726 GLIMM, GROVE, LI, SHYUE, ZENG, AND ZHANG

[17] C. L. GARDNER, J. GLIMM, O. MCBRYAN, R. MENIKOFF, D. SHARP, AND Q. ZHANG, The
dynamics of bubble growth for Rayleigh-Taylor unstable interfaces, Phys. Fluids, 31 (1988),
pp. 447–465.

[18] J. GLIMM, Nonlinear waves: Overview and problems, in Multidimensional Hyperbolic Problems
and Computations, J. Glimm and A. Majda, eds., IMA Volumes in Mathematics and Its
Applications 29, Springer-Verlag, New York, Heidelberg, Berlin, 1991, pp. 89–106.

[19] J. GLIMM, J. GROVE, W. B. LINDQUIST, O. MCBRYAN, AND G. TRYGGVASON, The bifurcation
of tracked scalar waves, SIAM J. Comput., 9 (1988), pp. 61–79.

[20] J. GLIMM, E. ISAACSON, D. MARCHESIN, AND O. MCBRYAN, Front tracking for hyperbolic
systems, Adv. Appl. Math., 2 (1981), pp. 91–119.

[21] J. GLIMM, C. KLINGENBERG, O. MCBRYAN, B. PLOHR, D. SHARP, AND S. YANIV, Front
tracking and two-dimensional Riemann problems, Adv. Appl. Math., 6 (1985), pp. 259–
290.

[22] J. GLIMM, W. B. LINDQUIST, O. MCBRYAN, AND L. PADMANABHAN, A front tracking reservoir
simulator, five-spot validation studies and the water coning problem, in Frontiers in Applied
Mathematics 1, SIAM, Philadelphia, PA, 1983, pp. 107–136.

[23] J. GLIMM AND O. MCBRYAN, A computational model for interfaces, Adv. Appl. Math.,
6 (1985), pp. 422–435.

[24] J. GROVE, The interaction of shock waves with fluid interfaces, Adv. Appl. Math., 10 (1989),
pp. 201–227.

[25] J. GROVE, Irregular shock refractions at a material interface, in Shock Compression of Con-
densed Matter 1991, S. Schmidt, R. Dick, J. Forbes, and D. Tasker, eds., North–Holland,
Amsterdam, 1992, pp. 241–244.

[26] J. GROVE, R. HOLMES, D. H. SHARP, Y. YANG, AND Q. ZHANG, Quantitative theory of
Richtmyer-Meshkov instability, Phys. Rev. Lett., 71 (1993), pp. 3473–3476.

[27] J. GROVE AND R. MENIKOFF, The anomalous reflection of a shock wave at a material interface,
J. Fluid Mech., 219 (1990), pp. 313–336.

[28] J. W. GROVE, A survey of the analysis of irregular shock refractions and its application to
front tracking methods, Mat. Contemp., 3 (1992), pp. 53–66.

[29] J. W. GROVE, Applications of front tracking to the simulation of shock refractions and unstable
mixing, J. Appl. Numer. Math., 14 (1994), pp. 213–237.

[30] J. W. GROVE, Y. YANG, Q. ZHANG, D. H. SHARP, J. GLIMM, B. BOSTON, AND R. HOLMES,
The application of front tracking to the simulation of shock refractions and shock acceler-
ated interface mixing, in Proceedings of the 4th International Workshop on the Physics of
Compressible Turbulent Mixing, Cambridge Univ., Cambridge, UK, 1993.

[31] S. HAMAGUCHI, M. DALVIE, R. T. FAROUKI, AND S. SETHURAMAN, A shock-tracking algo-
rithm for surface evolution under reactive-ion etching, J. Appl. Phys, 74 (1993), pp. 5172–
5184.

[32] F. HARLOW AND A. AMSDEN, Fluid Dynamics, LANL Monograph LA-4700, National Technical
Information Service, Springfield, VA, 1971.

[33] L. F. HENDERSON, Regions and boundaries for diffracting shock wave systems, Z. Angew.
Math. Mech., 67 (1987), pp. 73–86.

[34] J. HILDITCH AND P. COLELLA, A front tracking method for compressible flames in one dimen-
sion, SIAM J. Comput., 16 (1995), pp. 755–772.

[35] R. L. HOLMES, A Numerical Investigation of the Richtmyer-Meshkov Instability Using Front
Tracking, Ph.D. thesis, State Univ. of New York at Stony Brook, Stony Brook, NY, 1994.

[36] R. L. HOLMES, J. W. GROVE, AND D. H. SHARP, Numerical investigation of Richtmyer-
Meshkov instability using front tracking, J. Fluid Mech., 301 (1995), pp. 51–64.

[37] J. M. HYMAN, Numerical methods for tracking interfaces, Phys. D, 12 (1984), pp. 396–407.
[38] B. X. JIN, An artificial compression method for the computation of contact discontinuity,

Comp. Math., 1 (1993), p. 121. (In Chinese.)
[39] J. JONES, The spherical detonation, Adv. Appl. Math., 12 (1991), pp. 147–186.
[40] Y. L. ZHU AND B.-M. CHEN, A numerical method with high accuracy for calculating the inter-

actions between discontinuities in three independent variables, Scientia Sinica, 23 (1980),
pp. 1491–1501.

[41] R. J. LEVEQUE AND K.-M. SHYUE, One-dimensional front tracking based on high resolution
wave propagation methods, SIAM J. Comput., 16 (1995), pp. 348–377.

[42] R. J. LEVEQUE AND K.-M. SHYUE, 2-dimensional front tracking based on high resolution wave
propagation methods, J. Comput. Phys., 123 (1996), pp. 354–368.

[43] X.-L. LI, Study of three dimensional Rayleigh-Taylor instability in compressible fluids through
level set method and parallel computation, Phys. Fluids A, 5 (1993), pp. 1904–1913.

THREE-DIMENSIONAL FRONT TRACKING 727

[44] X.-L. LI, B. X. JIN, AND J. GLIMM, Numerical study for the three dimensional Rayleigh-
Taylor instability using the TVD/AC scheme and parallel computation, J. Comput. Phys.,
126 (1996), pp. 343–355.

[45] D.-K. MAO, A treatment of discontinuities in shock-capturing finite difference methods, J. Com-
put. Phys., 92 (1991), pp. 422–455.

[46] D.-K. MAO, A treatment of discontinuities for finite difference methods in the two-dimensional
case, J. Comput. Phys., 104 (1993), pp. 377–397.

[47] R. MENIKOFF, Curvature effect on steady detonation wave, Appl. Math. Lett., 2 (1989),
pp. 147–150.

[48] R. MENIKOFF, Determining curvature effect on detonation velocity from rate stick experiment,
Impact Comput. Sci. Engrg., 1 (1989), pp. 168–179.

[49] R. MENIKOFF, Errors when shock waves interact due to numerical shock width, SIAM J. Com-
put., 15 (1994), pp. 1227–1242.

[50] G. MORETTI, Thoughts and Afterthoughts about Shock Computations, Rep. No. PIBAL-72-37,
Polytechnic Institute of Brooklyn, Brooklyn, NY, 1972.

[51] G. MORETTI, Computations of flows with shocks, Ann. Rev. Fluid Mech., 19 (1987), pp. 313–
337.

[52] G. MORETTI, B. GROSSMAN, AND F. MARCONI, A Complete Numerical Technique for the
Calculation of Three Dimensional Inviscid Supersonic Flow, Rep. No. 72-192, American
Institute for Aeronautics and Astronautics, New York, 1972.

[53] R. MULDER, S. OSHER, AND J. A. SETHIAN, Computing interface motion in compressible gas
dynamics, J. Comput. Phys., 100 (1992), pp. 209–228.

[54] F. P. PREPARATA AND M. L. SHAMOS, Computational Geometry, Springer-Verlag, New York,
1988.

[55] R. RICHTMYER AND K. MORTON, Difference Methods for Initial Value Problems, Interscience,
New York, 1967.

[56] N. H. RISEBRO AND A. TVEITO, A front tracking method for conservation laws in one dimen-
sion, J. Comput. Phys., 101 (1992), pp. 130–139.

[57] J. RUPPERT AND R. SEIDEL, On the difficulty of tetrahedralizing 3-dimensional non-convex
polyhedra, in Proceedings of the 5th Ann. ACM Symposium on Comput. Geom., ACM,
New York, 1989, pp. 380–392.

[58] J. SCHEUERMANN, Efficient Solution of the Riemann Problem Using a Tabular Equation of
State, Ph.D. thesis, New York Univ., New York, 1989.

[59] D. H. SHARP, An overview of Rayleigh-Taylor instability, Phys. D, 12 (1984), pp. 3–18.
[60] B. SWARTZ AND B. WENDROFF, Aztec: A front tracking code based on Godunov’s method,

Appl. Numer. Math., 2 (1986), pp. 385–397.
[61] Y.-L. ZHU, B.-M. CHEN, X.-H. WU, AND Q.-S. XU, Some New Developments of the Singularity-

Separating Difference Method, Lecture Notes in Physics 170, Springer-Verlag, Heidelberg,
1982.

