Geometric Aspects on Minimum Tetrahedralizations of
Glued Polyhedrons
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Finding a tetrahedralization is an active area in computational geometry. It has appli-
cations in various topics, such as finite elements analysis, CAD/CAM, mesh generation,
complexity, computer graphics and algebraic topology. Unlike triangulation in 2 dimen-
sional cases, tetrahedralization has several interesting properties. Not all polyhedrons can
be tetrahedralized, but if we allow steiner points, all polyhedron can be tetrahedralized.
Also, the size of polyhedron can be varied while geometry realization changes (Below et
al. 2000).

Chazelle and Palios (1990) proved that a polyhedron having n vertexes and r reflex
edges can be tetrahedralized into O(n + r?) tetrahedron with O(n + r?) steiner points.
Chazelle and Shouraboura (1995) developed an algorithm to tetrahedralize the region
between two polyhedrons into O(n) tetrahedrons. Ruppert and Seidel proved that it is
NP-complete to determine if a polyhedron can be tetrahedralized without steiner points.
For minimum tetrahedralization, fewer results were studied. Below et al. (2004) proved
that finding minimum tetrahedralization is NP-hard and determining if a number is larger
than the size of polyhedron is NP-complete. Thus, it becomes important to study how to
find a minimum tetrahedralization.

Wang and Yang proved that we can tetrahedralize k-vet polyhedron (2000) and BP-
polyhedron (2004) in polynomial time. I think the most important result was given by
Chin et al. (2001). They gave an approximation algorithm and, even more surprisingly,
proved that their upper bound is tight if we only consider the computational structure. In
this paper, I raise an intuitively true question, ”Given two tetrahedralizable polyhedron
with their minimum tetrahedralization and we glue them together along one common
face to form a new polyhedron. It is obvious that there exist a tetrahedralization for new
formed polyhedron, the union of two minimum tetrahedralizations, but is it a minimum
tetrahedralization? In the other word, should we cut the gluing face?”

The answer is no. Chin et al. (2001) gave a counter example. This is also the
biggest obstacle to improve the upper bound given by Chin et al. If we only consider
computational structure, the gluing face must be cut. However, Below et al. (2000)
showed that the error will grow linearly in a specific class of polyhedron if we cut that
face. Hence, Chin et al. cannot give a better upper bound. In order to improve the upper
bound, it is necessary to study the geometric condition of this question. In this paper, I



give a geometric sufficient condition when the answer of the question is yes by using tran
(A+ B) to connect two separate idea, vertexes and inner edges, leading to a contradictory
estimation.

2 Notation and some terms

Convention: in this paper, I only discuss polyhedrons whose any 4 vertexes are not copla-
nar Tetrahedralization of a polyhedron A (here refers to polyhedron in general sense
including whose fundamental group is not simple) is a partition of A into several tetra-
hedrons that only meet on shared face such that each tetrahedron’s vertexes meet on
polyhedron’s vertexes.

The size of tetrahedralization represents the number of tetrahedrons in tetrahedraliza-
tion Minimum tetrahedralization of A is a tetrahedralization whose size is the smallest.
The size of polyhedron represents the size of minimum tetrahedralization.

Given a polyhedron A (in general sense), MT(A) denotes the set that consists of all
tetrahedrons in minimum tetrahedralizaion.

Given n points ay,as, ..., a, in R* let conv(ay, ag, .. .,a,) denote its convex hull.

For convenience, denote both the point set of (n—1)-simplex and itself by (a1, as, ..., a,)

Given a polyhedron P, using P}, to denote n dimensional data set of P and P(,) be
their union. For example, P is a set consists of all surfaces triangle while Fy) is the
union of these triangles.

Given a polyhedron A with its vertexes aj,as,...,a,, let v(a;) denote the number of
edge that join to a;.

For convenience, Given a set A of the set of geometric objects, let PA denote point
set of these geometric objects. For example, PMT(A) = A.

Given 3 points x,y, z, let Pla(x,y, z) denote unbounded plane pass through z,y, 2.

3 Main body

In whole paper, I use a trivial fact that for any two tetrahedralizations on one polyhedron,
the one which has less inner edges will have smaller size. It is a trivial consequence of
following formula derived from Euler formula. S = n + ¢ — 3 where S denotes the size
of tetrahedralization, n denotes the number of vertexes, ¢ denotes the number of inner
edges, the edges wholly contained in the interior of polyhedron.

Also in this paper, I only discuss polyhedrons whose any 4 vertexes are not coplanar
since polyhedrons not in general position can be perturbed. I will implicitly use this
property in various places. This condition is important since if we allow 4 points to be
coplanar, there will be lots of awkward phenomena such as the size of minimum dissection
might be smaller than the size of minimum tetrahedralization (Below et al. 2000).

Although for convenience I only discuss convex polyhedron in theorem 1 and 2, it is
worth to notice that all results in this paper do not depend on convexity of A, B and
A + B. Hence, the general results when A and B are both tetrahedralizable (if not, the
case is trivial or meaningless) follow easily.

Lemma 1. Given a polyhedron P and vertex ay such that for any x € int(P), &t n Pa)
s a two elements set. Prove that, there is a natural tetrahedralization Np of P,

Np = {(al,ai,ay,az) (a1, 04, ay,a;) € P[g]} where x,y,z # 1.



Proof. For any x,y € P, © # y, &t #* &1 since &4 N Pg) is a two element set. This
implies that Gt N m = a1. Since

(alaam7ay7az) :U(alaz) )

z€(az,ay,az)

(a1,az,ay,az) N (a1,a,,a;5,ar) = U(ar, z)
r€(ag,ay,az)N(a,a;5,ar)
for which (a;, a;, ax), (az, ay,a.) € Py This shows that any intersection of two tetrahe-
drons is still a simplex based on the vertexes of P.

To prove their union is P, assume there is x ¢ PNp in P. It is obvious to see
v & P/ (a1, ap, ac) which (a1,ap,a.) € P by definition of Np. If € (a1, a,ac), it
must belongs to (a1, ap, ac, ax) for (ap,ac,ar) € Poj. Hence x € int(P), but now since
m N Py are two point sets,  must contain in one of tetrahedron due to the fact

TEAR Pyy/ay € (ag,ay,a.) . Hence Np is a tetrahedralization of P. O

(amvayvaz)ep@)

Ex 1: The below is a natural tetrahedralization of regular isocahedron.

Remark. [t is worth to notice that convex polyhedrons satisfy the statement of lemmal.
In this case, can be any vertexes of convex polyhedron. Also, it is worth to notice that the
condition can be revised as "for any x € Py, (x,a1) C P ”. A good analogy associating
with art of gallery problem is 7 a1 is enough to be a guardian of the gallery P 7.

However, the condition of Lemma 1 is not a property that can be easily manipulated.
Thus, I raise lemma 2 which allow us to determine the equivalence class of a;.

First, let me define ”located at the same side”. Given a plane P and two points
1, xs. We say that x1,zo are at the same side of P if and only if there is AABC on P,
(A,B,C,z1)N (A, B,C,z2) # (A, B,C). Also, if one of z; is on P, then we say x1, 2 are
at the same side of P in general sense.

We can easily verify that this definition is well-defined, so we omit it here.

Lemma 2. Let polyhedron P and ay satisfy the condition of Lemma 1. Then the (P, x)x €
P also satisfy the condition of Lemma 1 if and only if for any B € Py, x and a1 are
located at the same side of B in general sense.

Proof. First prove the forward direction. z and a; are located at the same side of
(a1,a;,ay) in general sense by definition. Now, for any (a;, a;,ax) € Pgj which 4,5,k # 1,
choose y € (a;,aj,ax). By condition of Lemma 1, we know that (y,aq) is contained in P
and (a;, aj,ax, a1). Pick z on (y,a1), such that T2 Npla(a;,aj,ar) # 0, let it be w. Now,



consider a big(A, B, C) on pla(a;,a;, a) such that (A, B, C) contains conv(a;, a;, ax,w).
Then, (z,y) C (A,B,C,a1) N (A, B,C,z). Since z doesn’t belong to Pla(a;, aj,ax),

(A7 B’ O’ al) m (A7 B7 C? x) ;é (A7B7 O)'

For the backward direction, for any (a;,a;,ar) € P which i, 5,k # 1, assume there is
y € (a;,a;,ay), such that (x,y) ¢ P. So, from z to y, there exists a point z that is the
transition from outside to inside. Now, since (a;,a;,ar,a1) C P and = and a; are at the
same side of (a;,a;, ar), there is a small neighborhood B of z, such that

(z,2) N B C (a;,aj, ax, ) N (@i, a;, ag, ar).

But it is impossible since LHS contains points that don’t belong to P while RHS is wholly
contained in P. O

Corollary 1. Given a polyhedron P and ay satisfying the condition of Lemma 1. Let N be
the number of vertexes and I be the number of inner edges in minimum tetrahedralization.
Then the following inequality holds. N — 1 —v(ay) > 1.

I will prove this corollary by finding a triangulation of polyhedron P which has N —1—
v(ap) inner edges. Since [ is the number of inner edges in minimum tetrahedralization, it
must be smaller or equal than N — 1 —v(aq). It is obvious that Np in Lemma 1 satisfied
our requirement.

Definition (tran(A + B)).
Given a conv(ay,as,...,an,x,y,2). Consider conv(ay,az,...,an, T,Y,2,b1,b2, ..., bm),
such that

conv(ay, @, ..., Gn, T, Y, 2,b1,ba, ... by)/conv(ai,as, ... an, T, Y, 2)

= conv(by,ba, ..., by, x,y, 2).

For convenience denote conv(ay, as, ..., an, ¢, y, z2) as A, conv(by, ba, ..., by, z, y, 2)
as B, conv(ay,ag,...,an,x,y,2,b1,b2,...,by,) as A+ B. Given a tetrahedralization A of
A+ B, such that for any ¢ € A\, (z,y,2) ¢ Pp. Consider a collection ¢ of tetrahedron
from X\ consisting all tetrahedrons T € 6, such that the vertexes of T consist of at least
one a; and one b;. We define PS as tran(A + B).

Lemma 3. Prove that § is a tetrahedralization of a solid tran(A + B) that wholly con-
tains (x,y,2). Furthermore, int(tran(A + B)) is connected and tran(A + B) ) is simply
connected.

Proof. 1t is obvious that 0 is a tetrahedralization since it is a subset of tetrahedralization
A. Assume int(PJ) is disconnected. It means that int(PJ) = U UV for some open U, V
such that UNV = ).

First, observe that the only kind of tetrahedrons whose intersection with (x,y,z) is
nonempty is the kind of tetrahedrons whose vertexes consist of at least one a; and one
b;. Then, Pd contains (x,y, z) because for any ¢ € A ,and P = PA D (z,y, 2).

(z,y,2)Z P
Now, I claim that for any a € int((z,y,2)) in subspace topology on (z,y,z), o €

int(P§). Consider T € § and TN (x,y,2). If a € int(T'N(x,y,2)) on (x,y,2), a € int(PJ)
since it is even an interior point of 7.

If « € 9T but not z, y, or z, it belongs to one of the surface 9 of T. Let ¥ N
(z,y,2) = (a,b). I claim that there are exactly two tetrahedron contains 9. Now consider
the unbounded planes that do not intersect with 7" formed by any three vertexes of
polyhedron. Consider the distance from each plane to «, it is trivial to see that the



distances are non-zero. Since it is a finite set, I can choose € smaller than every element.
Now consider B.(«) N (z,y,2) and pick y not belonged to T from it. It is obvious that
this y cannot belong to tetrahedron doesn’t contain v as desired.

If a & {a,b}, it is trivial to see « is an interior point of P¢ since it is interior point of
union of two tetrahedrons that contain . Hence « € {a, b}.

WLOG, assume o = a. « belongs to a unique segment (a;,b;) due to the fact that
any 4 vertexes of polyhedron are not co-planar. Since the segment based on vertexes is
finite, I can find an open disk B of « on (z,y, z), such that for any z € B, z only belongs
to (a;, by, f,9) for (a;, bj, f,g) € 6. Now it is trivial to see that a is an interior point of
the smallest subcollection of § that contains B (the set containing all tetrahedron that
contains (a;,b;)). Hence, it belongs to int(PJ). O

Note: Notice that the construction of B also shows that (a;,b;)/{a;,b;} C int(Pd) by
considering two cones formed by connecting disk B with a;, b;.

So, for any « € int((z,y,2)), I can choose an open ball B, contained in int(P§).
This implies UB,, contained in int(PJ), too. Hence, UB, is contained in one of U
and V. WLOG, assume UB, is contained in V which implies that U contained in
int(conv(ay,az,...,an,z,y,2)). But it is not true since for any s € U, s belongs to
some R € § which implies that there is a path connecting U and V since R is convex and
contains at least one b,. Hence contradict the fact that int(PJ) is disconnected.

To prove it is simple, we prove it by induction. Consider the tetrahedron that contains
(z,v), (z,y,a;,b;). By previous argument of choosing small enough neighborhood of the
intersection of a segments and Axyz, we can get the stacked polyhedron (green part)
that we need to glue as picture shown. Both boundary of red part and green part are
homeomorphic to a sphere.

And since (a;,b;) will become inner edge after gluing (by note), the resulting poly-
hedron is homeomorphic to two spheres without a disk with an equivalence relationship
on circle. By Van Kampen’s theorem, fundamental group of resulting polyhedron is still
trivial.




Van Kampen’s theorem
IfX,Y,VNY, XUY is open and connected, then m (X UY) is isomorphic to free group
of m (X), m (V) with amalgamation of m (X NY).

Now, since we know (a;,b;) will become inner edge after gluing, we can apply Van
Kampen’s theorem to two balls without a disk with equivalence relationship on disk’s
boundary. Since now 71(X), m1(Y) are all trivial, the resulting free group with amalga-
mation is still trivial as desired.

We can inductively grow the polyhedron by considering new emerging inner edge that
pierces through with same argument. Since there are only finite steps and tran(A4 + B)
is connected, it will stop and implies that tran(A + B) ) is simply connected.

EQ: On below, 6 = {(r,s,a1,b1)} whichr, s € {z,y, 2} and tran(A+B) = conv(x,y, z,a1,by).

One might guess
Given conv(ay,as,...,a,) whose size is m. Consider conv(ai,as,...,an,x), such that
conv(ai,as, ..., an,x)/conv(a,as,...,a,) is (a;,a;,ax,x). Prove that (a;,a;,ax,x) €
MT(conv(ay,as,...,an,,x)), which implies that the size of conv(ay, ag, ..., an,x) is m+1.
For convenience, denote conv(ai, as, . ..,an) as A, (a;, a;, ax, ) as B and conv(a1, as, . . ., Gn, )
as A+ B.

Intuitively, one might expect Guess is true, but in general it is wrong. It is true if
(tran(A+ B)N A, ay) ’ ) satisfy the condition of Lemma 1. Let us see the coun-

z7 )

terexample first. e

Consider polyhedron A as below consists of

{AXYZ ,AADX, ADXZ,AADC, NACB, NABY, NAY X, ABY Z, ABCZ} .

It is a twisted version of a polyhedron that cannot be tetrahedralized given by Lennes
(1911). Now, glue a tetrahedron (X,Y, Z, P) such that PA, PB, PC, PD C A+ B. We
can do that by twisting polyhedron a little bit as picture shown.

By Lemma 1, there is a natural tetrahedralization of A + B as picture shown. Now,



consider the operation N, : (Aade, Abde) — conv(a, b, ¢, d, 21, T2, ..., Tm) such that
sur f(conv(a,b,c,d, x1,22,...,2,)) = {Dade, Abde, Ax;xje, Ax;, x;d}

which 0 <4, <m+1 and z¢ = a, x,,+1 = b. Now we use this operation on A to form a
new convex polyhedron A’ which is a desired counterexample. Let

A" = AUN,,(AABC, AACD) U N,,(AADX, ADXZ) U N,,(AAY X, ABAY)
UN,.(AZBC, ABZY')

and twist A’ a little bit such that it is a convex polyhedron. (We can always do
that since in the operation of N,,, we can choose z; that is extremely closed to ab.
Hence we can choose those new added point such that they are extremely closed to
conv(A,B,C,D,X,Y, 7)) and let X; close to one vertexes sufficiently enough such that
(¢,d,X,Y) which Y ¢ {a,b,X;} will always have improper intersection with one of
{AC,AY,DX,BZ} (Above, I abuse the notation x;, a, b, ¢, and d to every operation
N,,. What I mean is that the outcomes of 4 operations should all satisfy the constraints
I mentioned above.)
I claim that when m is big enough, B ¢ MT (A’ + B) which B = (X,Y, Z, P). First,
there is a trivial tetrahedralization 7' such that B ¢ T whose inner edge set is

{AC,AY,DX,BZ,PA, PB,PC,PD}.

On the other hand, I will claim that for any tetrahedralization R that contains B, its
cardinality of its inner edge set will be more than m. Hence, when m > 9, the tetrahe-
dralization containing B cannot be minimum tetrahedralization.

First, this tetrahedralization should contain {AC, AY, DX, BZ}, otherwise by lemma
proved by Below et al. (2000), we can get the cardinality of its inner edge is more than
m.



If one of {AADX, ADXZ, NADC, NACB, NABY, NAY X, ABYZ, ABCZ}
doesn’t belong to minimum tetrahedralization. WLOG, assume it is AADX. Consider
the tetrahedron that contains DX and transverse two side of AADX. This tetrahedron
will have improper intersection with one of {AC, AY, DX, BZ} by construction. Now,
if this tetrahedralization contains {AXY Z, AADX, ADXZ, ANADC, NACB, NABY,
NAY X, ABY Z, ABCZ}, they form a tetrahedron A that cannot be tetrahedralized.
We get a contradiction, hence for any tetrahedralization R that contains B, its cardinality
of its inner edge set must be more than m as we desired.

Lemma of Below at el.(2000) (The proof of this lemma is in the attachment)
"Let P be a convex 3-polytope on n vertices, that contains the following collection of

g

triangular facets: [a,qi,qi+1] and [b, i, gi+1] for @ = 0,1,...,m (see below), with the
additional restrictions that conv(a,b) does not intersect conv(qo, q1; - -,Gm+1). Then for
each triangulation of P that does not use the edge ab, the number of interior edges is at
least m.”



Remark. The problem of this counterexample occurs due to the fact that (S,1) . .
ie{z,y,z
doesn’t satisfy the condition of Lemma 1 where S = tran(A’+ B)N A’.

Theorem 1. Given a conv(ay,as,...,a,) whose size is m. Consider conv(ay, ag, ...,
an, ), such that conv(ay,as,...,an,x)/conv(ar,as,...,a,) is (a;, aj, ag, x) and there
ezist a point z from {a;,aj,ar} such that for any Y = Pla(a., ae,ar), © and z are at the
same side of Y in general sense. Prove that (a;,a;,ar,x) € MT(conv(ai,as,...,an,x)),
which implies that the size of conv(ay,as,...,an,x) is m + 1. For convenience, denote
conv(ai,az,...,a,) as A, (a;,aj,ax,x) as B and conv(ai,as, ... ,an,z) as A+ B.

Proof. The bold face statement assures that (tran(A + B), z) satisfy the condition of
Lemma 1 by Lemma 2 and construction of tran(A + B).

If (ai, a5, ar, ) € MT (conv(ar,as,...,a,,x)), we can apply Lemma 3. There exists a
simple tran(A+DB). So it is trivial to see that the number of inner edges of tran(A+B) is at
least the number of vertexes minus 4 by Lemma 1. Let this number be Q. By Corollary 1,
(Q+4) —1—4>Q (left hand side is the upper bound of inner edge when (a;, a;, ax, x)
belongs to a tetrahedron), a contradiction. Hence, (a;,a;,ar,x) € MT (conv(aq, as, ...,
an, x)) as desired. O

Now, by the same way, consider following statement.

Theorem 2. Given a conv(ay,as,...,a,) whose size is Sa. Consider conv(ay, as, ...,
an, b1, ba, ..., by), such that conv(ay,as,...,an,b1,ba, ... ,by)/conv(ar, as, ..., a,) is
conv(a;, aj,ar, by, b, ..., by) whose size is Sp and there exist a point z from {a;,a;,ar}

such that for any Y = Pla(ay,ae,a,), by and z are at the same side of Y in general
sense and there exist a point y from {a;,aj,ar} such that for any Z = Pla(bs, by, by,), as
and z are at the same side of Z in general sense. Then (a;,a;,ax) is cut in minimum

tetrahedralization which implies that the size of conv(ay,ag, ..., an,b1,ba,...,by,) is Sa+
Sp. For convenience, denote conv(ai,as,...,an) as A, conv(a;,a;,ar,bi,ba, ... by) as
B and conv(ay,as,...,an,x) as A+ B.

Before proving Theorem 2, let us analyze it first. We can use same way as Theorem 1
which only deals with tran(A+ B). However, there are some subtleties; Lemma 2 cannot
precisely apply here.

However, if we scrutinize the proof of Lemma 2, we can see that what it assures is
that there is no improper intersection of those faces and segments (there is no point from
outside to inside). So, the upper part of polyhedron and the lower part still both satisfy
the condition of Lemma 1 by construction of tran(A + B), the bold face statement, and
the remark in Lemma 1. Furthermore, observe that if we can prove that the inner edge
in tran(A + B) cannot be smaller than the number of all vertexes minus 3, denote it as
Q. We can easily get contradiction by Corollary 1, (Q +3+3) —2—6 > Q.

Lemma 4. Consider tran(A+B) and relabel the vertezes a;, a;, ar as z, y, z, {aq} as oy,
Qag, ..oy o, {be} as B1, Ba, ..., Br. Prove that for any tetrahedralization of tran(A + B)
such that every tetrahedron intersects with both side, the cardinality of its inner edge set
is larger or equal than u + r when u,r > 2.

Proof. First, observe that there are three kinds of tetrahedrons in M T (tran(A + B)),

three vertexes are belonged to {a;} or {x,y,2}, (1)
or two vertexes are belonged to {«;} or {z,y, 2}, (2)
and three vertexes are belonged to ; or {z,y, z}. (3)

10



Now, choosing any vertex «;, consider the set consisting of every tetrahedron in
MT(tran(A + B)) containing «;, called this set as adj(«;). If every tetrahedrons be-
longed to adj(c;) is type(1l) tetrahedron, we get one inner edge correspond to a;(ex: in
the picture, since adj(a;) is all type(1) tetrahedrons, brown inner edge correspond to a;.)
Repeating this operation until it stops. (Do same thing with 3; and type(3) tetrahedron.)

Now, it is trivial to see that the vertexes we remain «;, adj(c;) contains at least one
type(2) tetrahedron since finite points generating by type(3) cannot composite a segment
(there is more subtleties caused by confusion between type(2) and type(3), see remark).

Same as ;. Considering all type(2) tetrahedron, we can group them together by
following way: beginning from any type(2) tetrahedron, if there is any other type(2)
tetrahedron that has common vertexes with it, group them together. Keep doing until
it stops. I claim that in each group, the number of inner edges is at least the number of
vertexes.

First, we consider a single type(2) tetrahedron. There are at least four inner edge and
exactly four vertexes. Then use induction. If a group have already consisted of n type(2)
tetrahedrons satisfy our requirement, we want to prove it is still true when we have n + 1
type(2) tetrahedrons.

When we have n + 1 type(2) tetrahedrons, we have following 4 cases,

Case 1 There is only one common vertex between original group and new tetrahedron.
In this case, we have 3 additional vertexes and at least 4 additional inner edges.

Case 2 There are two common vertexes between original group and new tetrahedron that
located on same side.
In this case, we have 2 additional vertexes and at least 4 additional inner edges.

Case 3 There are two common vertexes between original group and new tetrahedron that
located on different side.
In this case, we have 2 additional vertexes and at least 3 additional inner edges.

Case 4 There are three common vertexes between original group and new tetrahedron.
In this case, we have 1 additional vertex and at least 2 additional inner edges.

Hence by induction, in each group, the number of inner edge is at least the number of
vertexes. By summing up all possibility, we get what we want. O

Remark. When u or r = 1, adj(a;) might only contains both type(1) and type(3) poly-
hedron (since some are hybrid of type 2 and type 3, those tetrahedrons can compose seg-
ments), so the way I manipulate here will be invalid. But when w,r > 2, since the edge
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where tetrahedrons that can simultaneously belong to type 2 and 3 is only three and they
don’t share a common vertex, the awkward phenomena in previous case won’t occur.

Now I am going to prove Theorem 2. Assume
Aazajar & MT (conv(ar,as,...,an,)).

We can apply Lemma 3 to get tran(A + B). If u or r = 1(as I defined in Lemma 4),
by applying Theorem 1, we can immediately get contradiction. So now, we can apply
Lemma 4 and Corollary 1. We also get a contradiction (@ + 3+ 3) —2 — 6 > Q. Hence
Aa;, aj,ar is cut in minimum tetrahedralization as desired.

Generalization

But notice that, the way I manipulate is invalid when the gluing face is not a sin-

1

=]

gle triangle since the contradicting inequality in Theorem 1 might become reasonable
with same RHS and LHS. Hence, we cannot promise the way to cutting. There is an
extremely easy counter example as RHS. If conv(z,y, z,w,a1,b1) is tran(A + B), then
either {(z, z,v), (z,z,w)} or {(y,w,z), (y,w, z)} should belong to MT(A + B) since the
tetrahedralization formed by inner edge a1b; is also minimum tetrahedralization.

But there is indeed a weaker version of Theorem 1 and 2 when the gluing face is two
triangles.

Theorem 3. Given a conv(ay,as,...,a,,2,y,z,w) whose size is m.
Consider conv(ay,ag, .. .,an, 2y, z,w, P), such that
conv(ay, ag,...,an, &y, z,w, P)/conv(ay,as, ..., an, x,y,z,w)

is polyhedron(not necessarily convex) (x,y, z,w, P) and there exist 2 points t1 from {x, z}
and to from {y,w} such that t;, P are at the same side of Pla(ay,ae,a,). Consider 2
tetrahedralization, one is obvious tetrahedralization whose size is m+ 2. WLOG, assume
in that case, the inner edge contain in conv(x,y,z,w) is Tz. The other tetrahedralization
is the smallest size of tetrahedralization which contains {(x,y,w), (z,y,w)}. Denote the
size of this tetrahedrlization as M. Then, the size of conv(ay,as,...,an, T, Yy, z,w, P) is
min(m + 2, M).
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Why do T distinguish m + 2 with M? Well, since they might not be equal. Now,
consider following example as LHS which conv(ay,aq,z,y, z,w) is regular octahedron
whose size is 4, so in this case, m + 2 = 6. However, the tetrahedranization formed by
inner edge (y,w) having the smaller size M which is 5.

Theorem 4. Given a conv(ay,as,...,a,,x,y, z,w) whose size is m and
conv(by,ba, ..., by, x,y, z,w) whose size is n.
Consider conv(ay,as, ... ,an, T, Yy, z2,w,b1,ba,...,by,), such that
conv(ay, ag,...,an, &Y, 2, w,b1,ba,...,b,)/conv(ar,as,...,an, x,y, 2z w)
is polyhedron(not necessarily convex) (by,ba, ..., by, x,y,z,w) and there exists 2 points

t1 from {x,z} and ty from {y,w} such that t;,b, are at the same side of Pla(aw, Ge,ar)
and there exists 2 points wy from {x,z} and wy from {y,w} such that w;,a, are at the
same side of Pla(by,be,by). Consider 2 tetrahedralization, one is obvious tetrahedral-
1zation whose size is m +n. WLOG, assume in that case, the inner edge contain in
conv(x,y, z,w) is (x,z). The other tetrahedralization is the smallest size of tetrahedral-
ization which contains {(x,y,w), (z,y,w)}. Denote the size of this tetrahedralization as
M. Then, the size of conv(ay,as,...,an, x,y,z,w,b1, ba,...,b,) ts min(m +n, M).

For the gluing face is 5 or more-polygon, the way I manipulate won’t work since the
contradicting inequality in Theorem 1 can be true in this situation.

4 Conclusion

I have done the following things in this paper
1. Raise the notion of tran(A + B) and assure that it is simple.

2. Use Lemma 4 to strengthen the properties of tran(A-+ B) that is natural connection
between the number of vertexes and the number of inner edges.

3. Give a counter example on "gluing a tetrahedron on an arbitrary convex polyhe-
dron doesn’t imply that the tetrahedron belongs to minimum tetrahedralization”
and thus check it does counter the restricting condition I gave (In Chin et al’s
paper (2001), there is an alternative counterexample which includes Schonhardt
polyhedron, twisted prism.)

4. Raise the sufficient condition of our desired statement.
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In Chin et al’s (2001) paper, their upper bound is tight if we only consider the compu-
tational structure. We call two polyhedrons is computational equivalent if the sets of
all vertexes and edges of two polyhedron are homeomorphic while geometric equivalence
requires an isometry between two polyhedrons.

The biggest obstacle is that we cannot determine if the glued triangle belongs to
minimum tetrahedralization or not, but if we only consider computational structure, we
have no other choice but sever this triangle which will leading to linearly increasing error as
examples posed in Below et al’s paper shown(2000). So, few quiet interesting questions
rises, how can we find a necessary and sufficient condition of cutting this triangle by
consider polyhedron’s geometry structure? If we find it, how much it can decrease the
upper bound given by Chin et al? Also, what is the time complexity to check if all glued
triangle should be cut or not?

If we use the logical polyhedron in Below et al’s paper (2004), we can find out that
if one of the glued triangles is cut, then the Boolean algebra it represents is unsatisfied.
Yet, even all glued triangles are not cut; we cannot impetuously claim that the Boolean
algebra is satisfied. If it is, then the complexity will be NP-Hard.

5 Appendix

For reader’s convenience, here we reproduce Below et al.’s proof.

Lemma of Below et al. (2000) Let P be a convex 3-polytope on n vertices, that
contains the followingcollection of triangular facets:

[a, qi, gi+1] and [b, ¢;, gi+1] for i = 0,1, ..., m (see Fig. below), with the additional restric-
tions that conv(a, b) does not intersect conv(qo, q1, - - -, gm+1)- Then for each triangulation
of P that does not use the edge ab, the number of interior edges is at least m.

Proof. Since conv(qo, gm+1) is in the interior of P, we obtain the following simple fact:
for all |i —j| > 2, if ¢;q; is an edge of a triangulation, it will also be an interior edge. The
proof of the lemma proceeds by induction on m. The lemma is clearly true for m = 1.
Call (*) the assumption that all vertices ¢;, with 1 < i < m, are incident to at least
one interior edge of the triangulation 7. We now show how to invoke induction in case
(*) does not hold: A vertex ¢; untouched by an interior edge belongs to the tetrahedra

Oj,a = (a, qi—laqia(h—‘rl) and o, = (b, %—1,(]iafh+1)~
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This is because the triangle (a, ¢;, ¢;+1) is in some simplex, and if the fourth point is some
other vertex besides ¢;_1 or b we have an interior edge touching ¢;. Furthermore, the
fourth point cannot be b since in this case the edge ab would be present. By chopping
off these two tetrahedra together with the vertex ¢; (i.e., considering the convex hull
of all of P’s vertices except ¢; ) we can apply induction to guarantee that the remaining
triangulation T'/o; o, 0; » has at least m—1 interior edges. Together with the edge ¢;—1¢i+1
they account for m interior edges in T O]

If (*) holds we will show the claim directly; we set up a one-to-one map from the set
{q1,-..,qm} to a subset of the interior edges that touch them: The vertices ¢; come along
a polygonal curve in a canonical order which is reflected by their indices.

We mark or orient the interior edges ¢;v that touch a vertex ¢; as follows: If v ¢
{90, -+, qm+1}, we call the edge ¢;v special, otherwise we orient it from smaller to larger
index.

For the vertices ¢; with special edges incident to them, we map ¢; to one of those. If a
vertex ¢; has no special edges, but has outgoing interior edges, we map it to the outgoing
edge ¢;qr with the smallest index k. We are left with the case of those vertices ¢; that
have only incoming interior edges incident to g;.

Consider the triangle (a, g;, ¢;+1). It has to be in some tetrahedron of T' whose fourth
point is bound to be a g;, with j, < i. Likewise (b, ¢;, ¢i+1) is in a tetrahedron with fourth
point g;, with j, < 4. If both j, = j» = ¢ — 1, there can be no interior edges incident to
gi (see above), a contradiction to (*). Let j be any of j,, j, such that j < i. Map ¢; to
qdjqi+1-

We claim that the given map is one-to-one. If some vertex g; maps to the special edge
qjv, then necessarily ¢ = j. There are potentially two vertices that can be mapped to an
interior edge g;qr with j < k: ¢; when ¢;g; is the chosen outgoing edge of ¢; and gr_1,
in case qip_1 has only incoming edges.

In the latter case one of the tetrahedra (a,q;,qx—1,qx) and (b, q;, qr—1,qx) has to be
in the triangulation, and ¢; will be mapped to the smaller indexed edge g;qr—1. This is
an interior edge since j < k — 2, so g; cannot also be mapped to g;g;. The injectivity of
the map is proven.
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