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Abstract

This paper is a study of the equation (−∆E)
α
2 u(x) = f (x), where (−∆E)

α
2 is an

(elliptic pseudo-differential) operator defined by

(−∆E)
− α

2 f =
1

Γ( α
2 )

∫ ∞

0
t

α
2−1(Ht ∗ f )(x)dt,

Ht(x) ≡ H(x, t) =
1√

(4πt)nη1η2 · · · ηn
exp

(
−∑

i

x2
i

4ηit

)
,

where η1, η2, · · · , ηn are a set of non-negative numbers that specify the operator. Note
that it is an extension of the fractional Laplacian operator (−∆)

α
2 .

In this paper, we construct a solution, noted as Jα f , by

Jα f (x) ≡ 1
β(α)

∫
Rn

f (y)
|η−1 · (x− y)|n−a dy,

where |η−1 · (x− y)| is
√

∑n
i η−1

i (xi − yi), and β(α)−1 equals

β(α)−1 =
1

√
η1η2 · · · ηn

·
Γ( n−α

2 )

π
n
2 2αΓ( α

2 )
.

Then if we set f = χΩ where χΩ is the indicator function and Ω is some bounded
domain in Rn, then for all bounded domain Ω that is invariant under reflection trans-
formation Pm, namely PmΩ = Ω for all m = 1, . . . , n, Jα f ≡ Jα(x) satisfies

Jα(x) = Jα(Pmx).

The reflection transformation is defined as

Pmx = Pm(x1, · · · , xm, · · · , xn) = (x1, · · · ,−xm, · · · , xn),

where m = 1, 2, . . . , n.

摘摘摘要要要: 在這篇報告中,我們要探討一個方程式 (−∆E)
α
2 u = f ,其中 (−∆E)

α
2 是一個分數

次的橢圓形微分算子,其定義為

(−∆E)
− α

2 f =
1

Γ( α
2 )

∫ ∞

0
t

α
2−1(Ht ∗ f )(x)dt,
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Ht(x) ≡ H(x, t) =
1√

(4πt)nη1η2 · · · ηn
exp

(
−∑

i

x2
i

4ηit

)
,

其中 η1, η2, · · · , ηn 是一群決定其算子特性的參數. 而它是從一般的分數次拉普拉斯算
子延伸而得到的.
在報告中,我們也將找出其一個解,記為 Jα f ,為

Jα f (x) ≡ 1
β(α)

∫
Rn

f (y)
|η · (x− y)|n−a dy,

其中 |η−1 · (x− y)|代表
√

∑n
i η−1

i (xi − yi),而 β(α)−1 等於

β(α)−1 =
1

√
η1η2 · · · ηn

·
Γ( n−α

2 )

π
n
2 2αΓ( α

2 )
.

如果在 Jα f 中令 f = χΩ,其中 χΩ 是指示函數,而 Ω是一個在 Rn 中的有界區域,
則對於所有滿足鏡射變換 Pm 的 Ω, 更精確的說, 對於 m = 1, . . . , n, 都有 PmΩ = Ω,
Jα f ≡ J(x)滿足

Jα(x) = Jα(Pmx).

鏡射變換定義為

Pmx = Pm(x1, · · · , xm, · · · , xn) = (x1, · · · ,−xm, · · · , xn)

其中 m = 1, 2, . . . , n.

1 Introdution

The basic idea of this paper is derived from an important concept in potential theory, the
Riesz potential Iα f . It is known that Riesz potential is closely related to the fractional
Laplacian operator. It is actually the inverse operator of (−∆)

α
2 , namely, u(x) = Iα f if

(−∆)
α
2 u = f [1]. Now we let f ≡ χΩ, where χΩ is the indicator function. Then this

function denoted as Iα(x) in some bounded domain Ω has an interesting property. Iα(x)
is radially symmetric to a center of a ball. In other words, u(x)|∂Ω = const. if and only
if Ω is a ball [4].

In this paper, we will extend the fractional Laplacian to an elliptic operator

(−∆E)
α
2 u =

(
−

n

∑
j

ηj
∂2

∂x2
j

) α
2

u,

where η1, η2, · · · , ηn > 0 and they are independent of the variables. The fractional ex-
ponent will be defined in the article. We hope to achieve the following things in the
paper:

1. Find the solution of (−∆E)
α
2 u = f , which is denoted by Jα f (x). Then u(x) = Jα f

if (−∆E)
α
2 u(x) = f (x).
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2. Discuss the integrability of Jα f .

3. Discuss the symmetry property of the solution of (−∆E)
α
2 u = χΩ where Ω is

an n-dimensional ellipsoid centered at origin point and axis parallel to the axis
(x1, x2, · · · , xn) of some cartesian coordinate system.

4. Consider symmetry property of the solution of another equation (−∆E)
α
2 u =

χΩxi, where i = 1, 2, · · · , n. (The antisymmetric property)

But before doing all this, we will first define some concepts.

1.1 Fractional Laplacian

Now we turn to an important concept of this paper: the fractional Laplacian operator
(−∆)−

α
2 . Only the fractional exponent of a positive definite operator can be defined, so

we need to take a minus sign in front of the ordinary Laplacian ∆.
One way to define (−∆)−

α
2 is to use the Gamma function Γ(α). We can start from the

fact that for any number A [1, 3]:

A−s =
1

Γ(s)

∫ ∞

0
ts−1e−tAdt. (1)

If we exchange A to a Laplacian, A 7→ −∆, s→ α
2 , then we get the definition.

Definition 1. The fractional Laplacian (−∆)−
α
2 is defined by

(−∆)−
α
2 f =

1
Γ( α

2 )

∫ ∞

0
t

α
2−1et∆ f dt, (2)

where
e∆t f (x) = Gt ∗ f (x) =

∫
Rn

Gt(x− y) f (y)dy (3)

and

G(x, t) = Gt(x) = (4πt)−n exp(−|x|
2

4t
) ≥ 0. (4)

Gt(x) is called the Gauss-Weierstrass kernel [1]. It is the fundamental solution of
heat equation, and it is not difficult to see why we use it to define et∆

∂Gt(x)
∂t

= ∆Gt(x)⇐⇒ Gt(x) = e∆t, t > 0. (5)

However, there is a problem in this definition. When α = −2n, where n is a positive
integer, then the 1

Γ( α
2 )

= 1
Γ(−n) part will be zero, and the integral part diverges. We fix

this problem by taking the limit

lim
α→2n

1
Γ( α

2 )

∫ ∞

0
t

α
2−1etA f dt (6)
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where A could be any number, and we find this limit to be An by using the equation

Γ(s + 1)
A−s+1 =

∫ ∞

0
tse−Atdt.

So it is reasonable to redefine the fractional Laplacian by taking limits in the definition
of it. Now we can define the fractional Laplacian with a positive integer exponent by

(−∆)n = lim
α→2n

(−∆)−
α
2 . (7)

1.2 Riesz potential

Riesz potential is closely related to the fractional Laplacian, for it can be seen as an
inverse of the fractional Laplacian [1].

Definition 2. For any n ≥ 2, 0 < α < n, and x ∈ Rn the Riesz potential is

Iα f (x) = (Kα ∗ f )(x) =
1

γ(α)

∫
Rn

f (y)
|x− y|n−a dy, (8)

where γ(α) is

γ(α) =
π

n
2 2αΓ( α

2 )

Γ( n−α
2 )

and
Kα =

1
γ(α)

|x|α−n (9)

is called the Risz kernel.

We are going to focus on Riesz potential in a compact domain Ω or

1
γ(α)

∫
Ω

f (y)
|x− y|n−a dy =

1
γ(α)

∫
Rn

f (y)
|x− y|n−a χΩdy, (10)

where χΩ is the indicator function. The Riesz potential is a singular integral operator,
so the concept of integrability is important. In other words, the question will be for
f ∈ Lp(Ω), and Iα f ∈ Lq(Ω), that p, q satisfy some condition which makes Iα : Lp(Ω)→
Lq(Ω) a bounded operator.

This property can be seen by the Hardy-Littlewood-Sobolev inequality [2]:

Theorem 1. For 0 < α < n, 1 ≤ p, q ≤ ∞, Iα : Lp(Ω)→ Lq(Ω) is a bounded operator:

‖Iα f ‖q ≤ C‖ f ‖p, if
n
p
≤ n

q
+ α. (11)

Proof. See [2]. This theorem says that if f ∈ Lp(Ω), then for x ∈ Ω, Iα f (x) converges
absolutely.
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We are going to see the relationship between fractional Laplacian and the Riesz po-
tential.

Theorem 2. For any 0 < α < n, if u(x) satisfies the equation

(−∆)
α
2 u(x) = ρ(x), x ∈ Rn, (12)

then u(x) can be written as the convolution of Kα and f :

u(x) = Iαρ(x) = (Kα ∗ ρ)(x). (13)

Proof. The proof is standard [1]. For convenience, we will recall it in the appendix.

2 Derive Jα

2.1 Extending the fractional Laplacian

Before extending the fractional Laplacian, we will start by looking at the normal Lalp-
cian first:

∆ ≡∑
i

∂2

∂x2
i

. (14)

We will extend this to

−∆E = −∑
i

ηi
∂2

∂ξ2
i

, where (η1, η2, · · · ηn > 0), (15)

because it is positive definite, η1, η2, η3 · · · > 0. For the specified case η1 = η2 = · · · =
ηn = 1, it reduces to the ordinary Laplacian.

The question is how to define this operator with a fractional exponent (−∆E)
α
2 . We

can do the same as the original fractional Laplacian:

Definition 3. The fractional exponent for the elliptical operator can be written as

(−∆E f )−
α
2 =

1
Γ( α

2 )

∫ ∞

0
t

α
2−1e∆Et f dt, (16)

where e∆Et f = (H ∗ f )(ξ), e∆Etδ(ξ) ≡ H(t, ξ) is the fundamental solution for ∂tu = ∆Eu,
and

H(ξ, t) =
1√

(4πt)nη1η2 · · · ηn
exp

(
−∑

i

ξ2
i

4ηit

)
≥ 0. (17)

(17) can be easily calculated,

∂H(ξ, t)
∂t

− ∆EH(ξ, t) = 0 (t > 0, lim
t→0

= δ(x)) (18)
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and we apply (18) to the Fourier transformation

∂Ĥ(ξ, t)
∂t

+

(
∑

i
ηiξ

2
i

)
Ĥ(ξ, t) = 0, (19)

Ĥ(ξ, t) = exp

(
−∑

i
ηiξ

2
i

)
t = 0, (20)

H(ξ, t) = ∏
i

1
2
√

πtηi
exp

(
−

ξ2
i

4tηi

)
=

1√
(4πt)nη1η2 · · · ηn

exp

(
−∑

i

ξ2
i

4ηit

)
. (21)

2.2 The solution for ∆E

With all these definitions, we can start to derive the solution for fractional elliptic oper-
ator associated to ∆E.

Theorem 3. The solution for fractional elliptic operator

(−∆E)
α
2 u(x) = ρ(x) (22)

can be taken as u(x) = Jαρ(x), where

Jαu(x) ≡ 1
β(α)

∫
Rn

f (y)
|η−1 · (x− y)|n−a dy, (23)

and |η−1(x− y)| stands for
√

∑n
i η−1

i (xi − yi), and β(α)−1 equals

β(α)−1 =
1

√
η1η2 · · · ηn

·
Γ( n−α

2 )

π
n
2 2αΓ( α

2 )
. (24)

Proof. This theorem can be proved by some simple transformation of the variables.
For the equation

(−∆E)
α
2 u(x) = ρ(x), (25)

consider a transformation:
xi 7→

ξi√
ηi

. (26)

Then (25) is transformed to
(−∆)

α
2 ũ(ξ) = ρ̃(ξ). (27)

This is just the ordinary fractional Laplacian, so its solution is just the Riesz potential:

ũ(ξ) =
1

γ(α)

∫
Rn

ρ̃(ξ)

|ξ − ζ|n−a dζ, (28)

and we can transform it back to xi variable, so the solution will be

u(x) =
1

√
η1η2 · · · ηn

·
Γ( n−α

2 )

π
n
2 2αΓ( α

2 )

∫
Rn

f (y)
|η−1 · (x− y)|n−a dy. (29)
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It is also easy to define the solution for some compact domain Ω; simply set

Jα f ≡ 1
β(α)

∫
Ω

f (y)
|η−1(x− y)|n−α

dy =
1

β(α)

∫
Rn

f (y)χΩ

|η−1(x− y)|n−α
dy (30)

where χΩ is the indicator function.

3 Integrability

We have to discuss the integrability of Jα f . Because Jα f can be turned to Iα f by changing
variables, they should satisfy the same inequality. This has been proven to be true, so
we can apply everything in the same way.

Theorem 4. Let 0 ≤ q ≤ ∞, 0 < α < n. Then Jα : Lp(Ω) → Lq(Ω) is an continuous
operator

‖Jα f ‖Lq(Ω) ≤ C‖ f ‖Lp(Ω), for any
1
p
≤ 1

q
+

α

n
. (31)

Proof. Before proofing this theorem we need some lemmas.

Lemma 1. If a function f (x) depends only on |η−1x| ≡ r (where the norm stands for
(∑n

i η−1
i xi)

1/2), then we have the integral equality∫
Rn

f (x)dx = ωn

∫ ∞

0
f (r)rn−1dr, (32)

where ωn is

ωn =
√

η1 · · · ηn
π

n
2

Γ( n
2 + 1)

. (33)

Proof. We can start from the fact that [3]∫
Rn
+

f (xb1
1 + xb2

2 + · · ·+ xbn
n )xa1−1

1 xa2−1
1 · · · xan−1

n dx

=
Γ( a1

b1
)Γ( a2

b2
) · · · Γ( an

bn
)

b1 · · · bnΓ( a1
b1
+ a2

b2
· · ·+ an

bn
)

∫ ∞

0
f (t)t

a1
b1
+

a2
b2
···+ an

bn
−1dt.

(34)

Rn
+ is defined as

Rn
+ = {x ∈ Rn | x1, · · · , xn > 0}. (35)

By setting b1 = b2 = · · · = bn = 2, and a1 = a2 = · · · = an = 1, and a transformation,

xi 7→
√

ηixi, i = 1, 2, · · · n, (36)

we get ∫
Rn
+

f (|η−1x|2)dx =
√

η1 · · · ηn
πn/2

2nΓ( n
2 )

∫ ∞

0
f (t)t

n
2−1dt. (37)
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Last, consider a change of variable t = r2:∫
Rn
+

f (|η−1x|)dx =
√

η1 · · · ηn
πn/2

2nΓ( n
2 + 1)

∫ ∞

0
f (r)rn−1dr. (38)

By the symmetry of f (|η−1x|), it is easy to check

2n
∫

Rn
+

f (|η−1x|)dx =
∫

Rn
f (|η−1x|)dx, (39)

then the lemma is proven.

Lemma 2. For some 1 ≤ p, q, r ≤ ∞, if they satisfy

1
r
+ 1 =

1
p
+

1
q

, (40)

then
β(α)‖Jα f ‖r ≤ ‖ f ‖p‖h‖q, (41)

where
h(x, y) ≡ h(η−1(x− y)) =

1
|η−1(x− y)|n−α

. (42)

Proof. First, we set

|Jα f | =
1

β(α)

∣∣∣∣∫
Rn

f (y)h(x, y)dy
∣∣∣∣ ≤ 1

β(α)

∫
Rn
|h(x, y) f (y)|dy

=
1

β(α)

∫
Rn
| f (y)|

p
r | f (y)|1−

p
r |h(x, y)|

q
r |h(x, y)|1−

q
r dy. (43)

We can see that,

1
r
+

(
1
p
− 1

r

)
+

(
1
q
− 1

r

)
=

1
r
+

1
pr/(p− r)

+
1

qr/(q− r)
= 1. (44)

Then we can apply the Hölder inequality to it:

β(α)|Jα f | ≤
(∫

Rn
| f (y)|p|h(x, y)|qdy

) 1
r
·
(∫

Rn
| f (y)|pdy

) 1
p−

1
r

·
(∫

Rn
|h(x, y)|qdy

) 1
q−

1
r

. (45)

Take both sides to an exponent r, then integrate it by x, and we get

β(α)r‖Jα f ‖r
r ≤

(∫
Rn
| f |pdy

)(∫
R2n
|h|qdxdy

)
‖ f ‖r−p

p ‖h‖r−q
q = ‖ f ‖r

p‖h‖r
q (46)

and the lemma is proven.
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Lemma 3. For n ≥ 2, 0 < α < n, one has

∫
Ω

1
|η−1(x− y)|α dy ≤ n|En|

n− α

(
|Ω|
|En|

)1− α
n

, (47)

where En is

En =
√

η1 · · · ηn
πn/2

Γ( n
2 + 1)

. (48)

It is the volume of a n-dimensional ellipsoid with axes
√

η1,
√

η2, · · · ,
√

ηn.

Proof. First, we set S ∈ Rn an n-dimensional ellipsoid centered at x with axes
√

η1R,
√

η2R, · · · ,
√

ηnR and each parallel to the axis x1, x2, · · · , xn of coordinate, and |S| =
EnRn is the volume of S. Then we set |Ω| = |S|, so that R = (|Ω|/|S|)1/n.∫

S

dy
|η−1(x− y)|α =

∫
S∩Ω

dy
|η−1(x− y)|α +

∫
S−(S∩Ω)

dy
|η−1(x− y)|α (49)

and ∫
Ω

dy
|η−1(x− y)|α =

∫
S∩Ω

dy
|η−1(x− y)|α +

∫
Ω−(S∩Ω)

dy
|η−1(x− y)|α . (50)

Because S− (S ∩Ω) is inside S, 1
|η−1(x−y)|α ≤ R−α; therefore

∫
Ω−(S∩Ω)

dy
|η−1(x− y)|α ≤ R−α(|Ω| − |S ∩Ω|). (51)

Similarly, Ω− (S ∩Ω) is outside S, so that∫
S−(S∩Ω)

dy
|η−1(x− y)|α ≥ R−α(|S| − |S ∩Ω|) = R−α(|Ω| − |S ∩Ω|), (52)

thus we get ∫
S−(S∩Ω)

dy
|η−1(x− y)|α ≥

∫
Ω−(S∩Ω)

dy
|η−1(x− y)|α , (53)

or ∫
Ω

dy
|η−1(x− y)|α ≤

∫
S

dy
|η−1(x− y)|α =

∫ R

0
r−αrn−1|nEn|dr

=
Rn−α

n− α
nEn =

n|En|
n− α

(
|Ω|
|En|

)1− α
n

. (54)

Replace χΩ f (x) by f (x) in lemma one in (54), and the lemma is proven.

The rest of the proof is obvious. For some r we can let

1
r
+

1
p
= 1 +

1
q

(55)
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and if 1 ≤ r ≤ 1/(1− n/α) then n/p ≤ n/q + n is satisfied. By Lemma 2

‖Jα f ‖ ≤ β(α)−1‖h‖r‖ f ‖p. (56)

Note that we have replaced f (x)χΩ by f (x), and h(x, y)χΩ by h(x, y) because (57) only
integrates over a bounded domain.

Then by Lemma 3

‖h‖r ≤
(

nEn

n− (n− α)r

) 1
r
(
|Ω|
|En|

) 1
r +

α
n−1

. (57)

So the theorem is proven.

4 The symmetry problem

We know that for Iα the solution of (−∆)α/2u = χΩ has some very interesting property,
such as its the volume on ∂Ω is a constant if any only if Ω is a ball [4].

(−∆E)
α
2 u = χΩ is invariant under some “elliptical rotation” that preserves |η−1x|,

just like the (−∆)α/2u = χΩ is invariant under rotations that preserve |x|, but the same
property cannot carry over; that is, Jα(x)|Ω will not be a constant where Ω is the ellipsoid
with axis parallel to the coordinate. It is because not all the transformation that preserves
|η−1x| preserves an infinitesimal volume dV in Rn, (if we see this transformation as
a coordinate transformation, then it means the Jacobian does not equal one) [3], and
therefore Jα(x)|∂Ω does not satisfy this property.

There is a transformation that preserves |η−1x| and infinitesimal volume. It is the
reflection transformation Pm (See Definition 4). It is a discrete transformation, so instead
of Jα(x)|∂Ω = const, we will get Jα(x)|∂Ω = Jα(Pmx)|∂Ω. (See Theorem 5.)

Definition 4. We are going to introduce the reflection transformation Pm : Rn → Rn.

Pmx = Pm(x1, · · · , xm, · · · , xn) = (x1, · · · ,−xm, · · · xn), (58)

where m = 1, 2, . . . , n.

For an n-dimensional ellipsoid with axis
√

η1,
√

η2, · · · ,
√

ηn, and each parallel to
the axis of the coordinate (x1, x2, · · · , xn), which will be noted as Ω is symmetric under
reflection transformation. That is, for a x ∈ Ω, then Pmx ∈ Ω, and for some x ∈ ∂Ω, then
Pmx ∈ ∂Ω.

Theorem 5. Let
u(x) ≡ 1

β(α)

∫
Ω

dy
|η−1(x− y)|n−α

= Jα, (59)

then there is a property of u(x)|∂Ω.

u(x)|∂Ω = u(Pmx)|∂Ω, for all n = 1, 2, · · · , n. (60)
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For convenience, we need to use a different kind of coordinate instead of the ordinary
Cartesian coordinate.

Definition 5. We are going to define an elliptical coordinate (ρ, φ1 · · · φn−1) with the
center at some point p.

x1 − p1 =
√

η1ρ cos φ1

x2 − p2 =
√

η2ρ sin φ1 cos φ2

...

xn−1 − pn−1 =
√

ηn−1ρ sin φ1 · · · sin φn−2 cos φn−1

xn − pn =
√

ηnρ sin φ1 · · · sin φn−2 sin φn−1

We can set that p ∈ ∂Ω.
Then another coordinate (r, θ1, · · · θn−1) at a point p′.

x1 − p′1 =
√

η1r cos θ1

x2 − p′2 =
√

η2r sin θ1 cos θ2

...

xn−1 − p′n−1 =
√

ηn−1r sin θ1 · · · sin θn−2 cos θn−1

xn − p′n =
√

ηnr sin θ1 · · · sin θn−2 sin θn−1

Then we can set that p′ = Pm p ∈ ∂Ω.

With this coordinate, we shall define a subset in Rn by

τ
(k)
l = {x ∈ Ω | 2 l−1

k ≤ ρ < 2 l
k}, 1 ≤ l ≤ k. (61)

It is easy to check out that ⋃
1≤l≤k

τ
(k)
l = Ω. (62)

We will do the same to coordinate (r, θ1 · · · θn−1).

τ
′(k)
l = {x ∈ Ω | 2 l−1

k ≤ r < 2 l
k}, 1 ≤ l ≤ k (63)

and ⋃
1≤l≤k

τ
′(k)
l = Ω. (64)

Lemma 4. For any k and any 1 ≤ l ≤ k, it satisfies

|τ(k)
l | = |τ

′(k)
l |. (65)
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Proof. For any x ∈ τ
(k)
l it satisfies the condition(

2
l − 1

k

)2
≤ (x1 − p1)

2

η1
+

(x2 − p2)
2

η2
+ · · · (xm − pm)2

ηm

+ · · ·+ (xn−1 − pn−1)
2

ηn−1
+

(xn − pn)2

ηn
≤
(

2
l
k

)2
(66)

and
x ∈ Ω. (67)

If we transform any x ∈ τ
(k)
l with the reflection transformation Pm , then Pmx ≡ x′

satisfies (
2

l − 1
k

)2
≤ (Pmx1 − p1)

2

η1
+

(Pmx2 − p2)
2

η2
+ · · · (Pmxm − pm)2

ηm

+ · · ·+ (Pmxn − pn)2

ηn
≤
(

2
l
k

)2
(68)

or (
2

l − 1
k

)2
≤ (x1 − p1)

2

η1
+

(x2 − p2)
2

η2
+ · · · (xm + pm)2

ηm

+ · · ·+ (xn−1 − pn−1)
2

ηn−1
+

(xn − pn)2

ηn
≤
(

2
l
k

)2
,

(69)

and x′ ∈ Ω. This is exactly the condition that satisfies for any x′ ∈ τ
′(k)
l . Thus,

Pmτ
(k)
l = τ

′(k)
l . (70)

Since the reflection transformation preserves the volume, so that

|τ(k)
l | = |τ

′(k)
l |. (71)

We know that τ
(k)
l and τ

′(k)
l approach to zero as k approaches to infinity. But how

exactly and how rapidly it approaches to zero, we can see it by Lemma 5.

Lemma 5. For any integer k, and some 1 ≤ l ≤ k the volume of τ
(k)
l and τ

′(k) satisfy

|τ(k)
l | ≤ C(l)k−n, (72)

|τ
′(k)
l | ≤ C(l)k−n, (73)

where C is a constant independent of k but dependent to l.

12



Proof. For convenience, we define

σ
(k)
l = {x ∈ Rn | 2 l−1

k ≤ ρ < 2 l
k} (74)

and
σ
′(k)
l = {x ∈ Rn | 2 l−1

k ≤ r < 2 l
k}. (75)

where 1 ≤ l ≤ k. By the definition of (74) and (75), we can see that τ
(k)
l ⊆ σ

(k)
l , and

τ
′(k) ⊆ σ

′(k)
l ; therefore, |τ(k)

l | ≤ |σ
(k)
l |, and |τ

′(k)
l | ≤ |σ

′(k)
l |. Since the volume of σ

(k)
l and

σ
′(k)
l can be computed

|σ(k)
l | =

∫
Rn

χ
σ
(k)
l

dx = ωn

∫ l
k

l−1
k

rn−1dr =
ωn

n− 1

[(
l
k

)n
−
(

l − 1
k

)n]
. (76)

We have used Lemma 1 in Equation (76). The ωn has been defined in (33). Therefore,
we can see that

|τ(k)
l | ≤ |σ

(k)
l | =

ωn

n− 1

[(
l
k

)n
−
(

l − 1
k

)n]
≡ C(l)k−n, (77)

where C(l) equals

C(l) =
ωn

n− 1
[ln − (l − 1)n]. (78)

The case for τ
′(k)
l can be proven in the same way.

Now, we can divide the function Jα(x) into

Jα(x) =
1

β(α)

∫
Ω

dy
|η−1(x− y)|n−α

(79)

= ∑
1≤l≤k

∫
τ
(k)
l

dy
|η−1(x− y)|n−α

≡ ∑
1≤l≤k

j(l)α

= ∑
1≤l≤k

∫
τ
′(k)
l

dy
|η−1(x− y)|n−α

≡ ∑
1≤l≤k

j
′(l)
α ,

where
j(l)α (x) ≡

∫
τ
(k)
l

dy
|η−1(x− y)|n−α

, (80)

and
j
′(l)
α (x) ≡

∫
τ
′(k)
l

dy
|η−1(x− y)|n−α

. (81)

We are going to define an approximation of j(l)

j(l)appx.α(x) = |τ(k)
l |

1
|η−1(x− y)|n−α

, (82)

j
′(l)
appx.α(x) = |τ

′(k)
l | 1
|η−1(x− y′)|n−α

, (83)

for some y ∈ τ
(k)
l and y′ ∈ τ

′(k)
l .
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Lemma 6. For any integer k and 1 ≤ l ≤ k it satisfies

|j(l)α (p)− j(k)appx.α(p)| ≤ C′(l)k−α (84)

and
|j
′(l)
α (p′)− j

′(k)
appx.α(p′)| ≤ C′(l)k−α, (85)

where C′(l) is independent of k.

Proof. First, it is obvious that

|τ(k)
l | min

x∈τ
(k)
l

1
|η−1(p− y)|n−α

≤ j(l)α (p), j(l)appx.α(p) ≤ |τ(k)
l | max

x∈τ
(k)
l

1
|η−1(p− y)|n−α

, (86)

where
max
y∈τ

(k)
l

1
|η−1(p− y)|n−α

=
1

(2 l−1
k )n−α

, (87)

and
min

y∈τ
(k)
l

1
|η−1(p− y)|n−α

=
1

(2 l
k )

n−α
. (88)

So for a sufficiently large k, it can satisfy

max
y∈τ

(k)
l

|τ(k)
l |

|η−1(p− y)|n−α
− min

x∈τ
(k)
l

|τ(k)
l |

|η−1(p− y)|n−α
=

|τ(k)
l |

(2 l−1
k )n−α

−
|τ(k)

l |
(2 l

k )
n−α

, (89)

so that

|j(l)α (p)− j(k)appx.α(p)| ≤ |τ(k)
l |

(
1

(2 l−1
k )n−α

− 1
(2 l

k )
n−α

)
≡ C′(l)k−α. (90)

We have used Lemma 5 in this equation and C′(l) equals

C′(l) = C(l)2α−n ·
[
(l − 1)α−n − lα−n] . (91)

Then the theorem is proven.

Of course, we can basically do the same with |τ′(k)l |. Then we can get

|j
′(l)
α (p′)− j

′(k)
appx.α(p′)| ≤ C′(l)k−α. (92)

Note that C′(l) increases as l increases, and by (91) and (78), we can see that C′(l) in-
creases in the order of kn−1 · kα−n−1 = kα−2

Now, back to the main theorem, we can see that j(k)appx.α(p) = j
′(k)
appx.α(p′) because

by Lemma 4 |τ(k)
l | = |τ

′(k)
l | , and 1

|η−1(p−y)|n−α = 1
|η−1(p′−y′)|n−α for some y ∈ τ

(k)
l and

Pmy = y′ ∈ τ
′(k)
l , therefore

|j
′(l)
α (p′)− j(l)α (p)| ≤ |j

′(l)
α (p′)− j

′(k)
appx.α(p′)|+ |j(l)α (p)− j(k)appx.α(p)| ≤ 2C′(l)k−α, (93)
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thus, for sufficiently large k

|Jα(p)− Jα(p′)| =
∣∣∣∣∣ k

∑
l

j(l)α (p)− j
′(l)
α (p′)

∣∣∣∣∣ ≤ k

∑
l
|j
′(l)
α (p′)− j(l)α (p)|

≤
k

∑
l

C′(l)k−α ≤ kC′(k) · k−α.

(94)

Since kC′(k) increases in the order of kα−1, so (94) will decrease in the order of k−1 as k
approaches to infinity. So the theorem is proven. �

4.1 Generalization

In Theorem 5, we have assumed Ω to be an n-dimensional ellipsoid centered at the ori-
gin point and it has axis of

√
η1,
√

η2 · · ·
√

ηn each parallel to the coordinate (x1 · · · xn).
But this assumption is superfluous, for all we need is the restriction for Ω is PmΩ = Ω
and Ω is bounded. From (66) to (70) we can see that Lemma 4 still holds under this
restriction, and therefore, so does in Theorem 5.

Another assumption that is superfluous is that we only consider p ∈ ∂Ω and Pm p ∈
∂Ω. That is, we only consider Jα(x) under the restriction Jα(x)|∂Ω. We will extend it to
any point p ∈ Rn and p′ = Pm p ∈ Rn.

We will redefine the coordinate (ρ, φ1 · · · φn−1) and (r, θ1, · · · θn−1) in Definition 5
basically in the same way but this time the coordinate will be centered at any point p
and Pm p which is not necessary on ∂Ω. |τ(k)

l | and |τ
′(k)
l | are now written as

τ
(k)
l = {x ∈ Ω | 2 l−1

k ≤ ρ < 2 l
k} , kmin ≤ l ≤ kmax (95)

and
τ
′(k)
l = {x ∈ Ω | 2 l−1

k ≤ r < 2 l
k} , kmin ≤ l ≤ kmax, (96)

where kmax is defined as ∀l > kmax, τ
(k)
l = ∅. Since Pmτ

(k)
l = τ

′(k)
l , so that ∀l > kmax,

τ
′(k)
l = ∅. Such kmax exists because of the boundedness of Ω. Similarly, kmin is defined

as ∀l < kmin, τ
(k)
l = ∅. If such kmin does not exist, then set kmin = 1.

By this definition, we can get

Ω =
⋃

kmin≤l≤kmax

τ
(k)
l =

⋃
kmin≤l≤kmax

τ
′(k)
l , (97)
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and therefore,

Jα(x) =
1

β(α)

∫
Ω

dy
|η−1(x− y)|n−α

(98)

= ∑
kmin≤l≤kmax

∫
τ
(k)
l

dy
|η−1(x− y)|n−α

≡ ∑
kmin≤l≤kmax

j(l)α

= ∑
kmin≤l≤kmax

∫
τ
′(k)
l

dy
|η−1(x− y)|n−α

≡ ∑
kmin≤l≤kmax

j
′(l)
α .

The definition of j(l)α (x), j
′(l)
α (x), j(l)appx.α(x), and j‘(l)appx.α(x) are still the same, so that

we can see Theorem 5 still holds.
The generalization of Theorem 5 is:

Theorem 6 (generlization). Let

u(x) ≡ 1
β(α)

∫
Ω

dy
|η−1(x− y)|n−α

= Jα. (99)

For all bounded domain Ω that satisfies Ω = PmΩ

u(x) = u(Pmx). (100)

4.2 The antisymmetric property

In the equation of (−∆E)
α
2 u(x) = f (x), we have set f (x) = χΩ and found out that

the solution, noted as Jα(x), has the symmetric property. Now, if we replace the func-
tion f (x) by another function g(x) = χΩxi, where 1 ≤ i ≤ n, then the solution for
(−∆E)

α
2 u(x) = g(x), noted as Jαg(x) = Jα(x) will satisfy another property.

Theorem 7. Let
u(x) ≡ 1

β(α)

∫
Ω

xidy
|η−1(x− y)|n−α

= Jα(x), (101)

then there is a property of u(x)|Ω.

u(x)|∂Ω = u(Pmx)|∂Ω ,for m 6= i, (102)

u(x)|∂Ω = −u(Pmx)|∂Ω ,for m = i. (103)

Where Ω is an n-dimensional ellipsoid centered at origin point and axis parallel to
the coordinate (x1, x2 · · · xn).

Proof. First, we will redefine, j(l)α , j
′(l)
α as

j(l)α (x) ≡
∫

τ
(k)
l

xidy
|η−1(x− y)|n−α

(104)
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and
j
′(l)
α(x) ≡

∫
τ
′(k)
l

xidy
|η−1(x− y)|n−α

. (105)

Since τ
(k)
l and τ

′(k)
l are the same as (61) and (63). so that

Jα(x) =
1

β(α)

∫
Ω

xidy
|η−1(x− y)|n−α

(106)

= ∑
1≤l≤k

∫
τ
(k)
l

xidy
|η−1(x− y)|n−α

≡ ∑
1≤l≤k

j(l)α

= ∑
1≤l≤k

∫
τ
′(k)
l

xidy
|η−1(x− y)|n−α

≡ ∑
1≤l≤k

j
′(l)
α .

Now we are going to do something different. Define a subset in τ
(k)
l ,

π
(k)
ml = {x ∈ τ

(k)
l | √ηi

m−1
k ≤ xi <

√
ηi

m
k }. (107)

Where m is an integer ranges from −k + 1 to k. Similarly, we define

π
′(k)
ml = {x ∈ τ

′(k)
l | √ηi

m−1
k ≤ xi <

√
ηi

m
k }. (108)

By (107) and (108), we can see that Pmπ
(k)
ml = π

′(k)
ml for m 6= i and Pmπ

(k)
ml = π

′(k)
−m+1l for

m = i, therefore, |π(k)
ml | = |π

′(k)
ml | for m 6= i, and |π(k)

ml | = |π
′(k)
−m+1l | for m = i.

We can see that |π(k)
ml | decay to zero as k approach to infinity, and Lemma 7 told that

who rapidly does it approaches to zero.

Lemma 7. For any −k + 1 ≤ m ≤ k, |π(k)
ml | and |π

′(k)
ml | satisfy

|π(k)
ml | ≤ Ck−n−1 (109)

and
|π
′(k)
ml | ≤ Ck−n−1, (110)

where C is a constant independent of k.

Proof. Set
|π|max ≡ max{|π(k)

−k+1l |, |π
(k)
−k+2l | · · · |π

(k)
k−1l |, |π

(k)
kl |} (111)

and
|π|min ≡ min{|π(k)

−k+1l |, |π
(k)
−k+2l | · · · |π

(k)
k−1l |, |π

(k)
kl |}. (112)

Notice that,

2k|π|min ≤
k

∑
m=−k+1

|π(k)
ml | = |τ

(k)
l |. (113)
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By Lemma 5 we can se that

|π|min ≤
1
2

C(l)k−n−1 (114)

or

|π(k)
ml | ≤ |π|max ≤

1
2
|π|max

|π|min
C(l)k−n−1. (115)

The same can be done with |π
′(k)
ml | , and the theorem is proven.

Lemma 8. For any integer k and 1 ≤ l ≤ k it satisfies

|j(l)α (p) + j
′(l)
α (p′)| ≤ C′(l)k−α. (116)

If p ∈ ∂Ω, p′ = Pi p ∈ ∂Ω, and

|j(l)α (p)− j
′(l)
α (p′)| ≤ C′(l)k−α. (117)

If p ∈ ∂Ω, p′ = Pm p ∈ ∂Ω where m 6= i.
The definition of j(l)α (x) and j

′(l)
α (x) are in (104) and (105), and C′(l) is independent

of k.

Proof. First, we define

jml
α (x) =

∫
π
(k)
ml

xidy
|η−1(x− y)|n−α

(118)

and
j
′ml
α (x) =

∫
π
′(k)
ml

xidy
|η−1(x− y)|n−α

. (119)

It is easy to see that

j(l)α (x) =
k

∑
m=−k+1

jml
α (x), and j

′(l)
α (x) =

k

∑
m=−k+1

j
′ml
α (x). (120)

Consider an approximation of jml
α (x), and j

′ml
α (x)

jml
appx.α(x) = |π(k)

ml |
xi

|η−1(x− y)|n−α
(121)

and
j
′ml
appx.α(x) = |π

′(k)
ml |

xi

|η−1(x− y′)|n−α
. (122)

For some y ∈ π
(k)
ml , and y′ ∈ π

′(k)
ml ,

|π(k)
ml | min

x∈π
(k)
ml

xi

|η−1(p− y)|n−α
≤ j

(ml)
α (p), j(ml)

appx.α(p) ≤ |π(k)
ml | max

x∈π
(k)
ml

xi

|η−1(p− y)|n−α
.

(123)
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By the difinition of π
(k)
ml and π

′(k)
ml we can see that

max
y∈π

(k)
ml

xi

|η−1(p− y)|n−α
≤ m

k
1

(2 l−1
k )n−α

(124)

and
min

y∈π
(k)
ml

xi

|η−1(p− y)|n−α
≤ m− 1

k
1

(2 l
k )

n−α
. (125)

Apply (124) and (125) and Lemma 7 to (123) we can get

|j(ml)
α (p)− j

(ml)
appx.α(p)| ≤ C(m, l)k−α−1. (126)

Where C(m, l) equals

C(m, l) = 2α−n−1 |π|max

|π|min
C(l)

[
m

(l − 1)n−α
− m− 1

ln−α

]
. (127)

The can similarly apply the same way to j
′(ml)
α (p′), and get

|j
′(ml)
α (p′)− j

′(ml)
appx.α(p′)| ≤ C(m, l)k−α−1. (128)

On the other hand, by (121) and (122), we can see that jml
appx.α(p) = j

′ml
appx.α(p′) for

Pm p = p′ where m 6= i, and jml
appx.α(p) = −j′−m+1l

appx.α (p′) for Pi p = p′. Therefore, we get

k

∑
m=−k+1

jml
appx.α(p) =

k

∑
m=−k+1

j
′ml
appx.α(p′) (129)

for Pm p = p′, m 6= i.

k

∑
m=−k+1

jml
appx.α(p) = −

k

∑
m=−k+1

j
′ml
appx.α(p′) (130)

for Pi p = p′.
So for the m 6= i case, by (120) we can get,

|j(l)α (p)− j
′(l)
α (p′)| =

∣∣∣∣∣ k

∑
m=−k+1

(jml
appx.α(p)− jml

α (p)) +
k

∑
m=−k+1

(j
′ml
α (p′))− j

′ml
appx.α(p′))

∣∣∣∣∣
≤

k

∑
m=−k+1

|jml
appx.α(p)− jml

α (p)|+
k

∑
m=−k+1

|j′ml
appx.α(p′)− j

′ml
α (p′)|

≤ 2
k

∑
m=−k+1

C(l, m)kα−1 = 2k · C(l)k−α−1 ≡ C(l)k−α

(131)
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and for the m = i case

|j(l)α (p) + j
′(l)
α (p′)| =

∣∣∣∣∣ k

∑
m=−k+1

(jml
α (p)− jml

appx.α(p)) +
k

∑
m=−k+1

(j
′ml
α (p′))− j

′ml
appx.α(p′))

∣∣∣∣∣
≤

k

∑
m=−k+1

|jml
appx.α(p)− jml

α (p)|+
k

∑
m=−k+1

|j′ml
appx.α(p′)− j

′ml
α (p′)|

≤ 2
k

∑
m=−k+1

C(l, m)kα−1 = 2k · C(l)k−α−1 ≡ C(l)k−α.

(132)

Note that by (127), ∑k
m=−k+1 C(l, m)k is independent of m. So we can see that the theo-

rem is proven.

We can see that the first equation in Lemma 7 is identical to (93), so by (94) and (106)
we can get

Jα(p)|∂Ω = Jα(Pm p)|∂Ω, for m 6= i. (133)

By the second equation of Lemma 7, we can see that it is basically the same as (93)

but j
′(l)
α (p′) has been replaced by−j

′(l)
α (p′) , so by (94) we can see that |Jα(p) + Jα(Pm p)|

will approach to zero as k approaches to infinity, so that

Jα(p)|∂Ω = −Jα(Pm p)|∂Ω, for m = i, (134)

and therefore, the theorem has been proven. �

5 Appendix [1]

Theorem 8. For any 0 < α < n, if u(x) satisfies the equation

−∆
α
2 u(x) = ρ(x), for any x ∈ Rn (135)

then u(x) can be written as the convolution between Kα and f

u(x) = Iαρ(x) = (Kα ∗ ρ)(x). (136)

Proof. We can start by Fourier transformation.

F (−∆
α
2 u(x)) = −∆̂α/2u(ξ) (137)

=
∫

Rn

(
1

Γ(−α
2 )

∫ ∞

0
t−

α
2−1e∆tu(x)dt

)
e−ix·ξ dx

=
1

Γ(−α
2 )

∫ ∞

0
t−

α
2−1

(∫ ∞

0
Gt ∗ u(x)e−ix·ξdx

)
dt

=
1

Γ(−α
2 )

∫ ∞

0
t−

α
2−1Ĝt · û(ξ)dt

= ρ̂(ξ).
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The Fourier transformation of the Gauss kernel was known as

Ĝt(ξ) = (4πt)−
n
2

∫ ∞

0
e−
|x|2
4t · e−ix·ξdx = e−t|ξ|2 . (138)

So,

−∆̂α/2u(ξ) =
û(ξ)

Γ(−α
2 )

∫ ∞

0
t−

α
2−1e−t|ξ|2 dt = |ξ|αû(ξ). (139)

In this case, we have use the fact that∫ ∞

0
tse−tu2

dt =
Γ(s + 1)
u2(s+1)

. (140)

Therefore, we get

û(ξ) = |ξ|−αρ̂(ξ), u(x) = (2π)−n
∫

Rn
|ξ|−αeiξ·xdξ. (141)

The solution can be constructed to the convolution between two functions. u(x) =

(2π)−nφ ∗ ρ(x). Where the φ is

φ(x) =
∫

Rn
|ξ|−αeiξ·xdξ, (142)

φ(λx) =
∫

Rn
|ξ|−αeiξ·(λx)dξ =

∫
Rn
|ξ|−αei(λξ)·xdξ. (143)

Now consider a transformation:

λξ = ζ, dξ = λ−ndζ.

Then,

φ(λx) =
∫

Rn
|λ−1ζ|−αeiζ·xλ−ndξ = λα−n

∫
Rn
|ζ|−αeiζ·xdξ = λα−nφ(x). (144)

It is obvious that φ(x) is a homogeneous function, so we can express φ in φ(x) =

C|x|α−n, and now we are going to determine the constant C.∫
Rn

φ(x) exp(−|x|
2

2
)dx = C

∫
Rn

exp(−|x|
2

2
)|ξ|α−1dx (145)

= C|Sn−1|
∫ ∞

0
rα−1 exp(− r2

2
)dr

= C|Sn−1|2
α
2−1Γ(

α

2
).

On the other hand,∫
Rn

φ(x) exp(−|x|
2

2
)dx =

∫
Rn

∫
Rn
|ξ|−α exp(−|x|

2

2
)eiξ·xdxdξ (146)

= (
√

2π)n
∫

Rn
exp(−|ξ|

2

2
)|x|−αdξ

= (
√

2π)n|Sn−1|
∫ ∞

0
exp(− r2

2
)rn−α−1dr

= (
√

2π)n|Sn−1|2
n−α

2 −1Γ(
n− α

2
).
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Compare (145) and (146) with the results, we can see that

C = (
√

2π)n2−α+ n
2

Γ( α−n
2 )

Γ( α
2 )

, (147)

φ(x) = (
√

2π)n2−α+ n
2

Γ( α−n
2 )

Γ( α
2 )
|x|α−n. (148)

And finally, we get our solution

u(x) = (2π)−nφ ∗ ρ(x) = π−
n
2 2−α Γ( α−n

2 )

Γ( α
2 )

∫
Rn

ρ(y)
|x− y|n−α

= Iαρ(x)dx. (149)

If the exponent α = 2n (n is a natural number), then by definition:

−∆̂nu(ξ) = lim
α→2n

−∆̂α/2u(ξ) = lim
α→2n

1
Γ(−α

2 )

∫ ∞

0
t−

α
2−1Ĝt · û(ξ)dt. (150)

By calculation, this limit will be

lim
α→2n

−∆̂α/2u(ξ) = |ξ|αû(ξ). (151)

6 Acknowledgements

I would like to thank the judges of Shing-Tung Yau High School Mathematics Award for
their suggestions for revision.

References

[1] 林琦焜; 〈〈Riesz位勢與 Sobolev不等式〉〉,新竹市,交大出版社 (民97).

[2] E. Stein; Singular Intergrals and Differentiability Properties of Functions. Princeton Uni-
versity Press 1970.

[3] F. Jones; Lebesque Intergration on Euclidean space. Sudbury, Mass: Jones and Bartlett
2001.

[4] G. Lu and J. Zhu; An overdetermined problem in Riesz-potential and fractional Laplacian.
Retrieved from http://arxiv.org/abs/1101.1649, 2011.

22


