A symmetry problem of elliptic differential operators in potential theory

Yu－Ping Wang

Sacred Hearts High School

Abstract

This paper is a study of the equation $\left(-\Delta_{E}\right)^{\frac{\alpha}{2}} u(x)=f(x)$ ，where $\left(-\Delta_{E}\right)^{\frac{\alpha}{2}}$ is an （elliptic pseudo－differential）operator defined by $$
\begin{gathered} \left(-\Delta_{E}\right)^{-\frac{\alpha}{2}} f=\frac{1}{\Gamma\left(\frac{\alpha}{2}\right)} \int_{0}^{\infty} t^{\frac{\alpha}{2}-1}\left(H_{t} * f\right)(x) d t \\ H_{t}(x) \equiv H(x, t)=\frac{1}{\sqrt{(4 \pi t)^{n} \eta_{1} \eta_{2} \cdots \eta_{n}}} \exp \left(-\sum_{i} \frac{x_{i}^{2}}{4 \eta_{i} t}\right), \end{gathered}
$$

where $\eta_{1}, \eta_{2}, \cdots, \eta_{n}$ are a set of non－negative numbers that specify the operator．Note that it is an extension of the fractional Laplacian operator $(-\Delta)^{\frac{\alpha}{2}}$ ．

In this paper，we construct a solution，noted as $J_{\alpha} f$ ，by

$$
J_{\alpha} f(x) \equiv \frac{1}{\beta(\alpha)} \int_{\mathbb{R}^{n}} \frac{f(y)}{\left|\eta^{-1} \cdot(x-y)\right|^{n-a}} d y
$$

where $\left|\eta^{-1} \cdot(x-y)\right|$ is $\sqrt{\sum_{i}^{n} \eta_{i}^{-1}\left(x_{i}-y_{i}\right)}$ ，and $\beta(\alpha)^{-1}$ equals

$$
\beta(\alpha)^{-1}=\frac{1}{\sqrt{\eta_{1} \eta_{2} \cdots \eta_{n}}} \cdot \frac{\Gamma\left(\frac{n-\alpha}{2}\right)}{\pi^{\frac{n}{2}} 2^{\alpha} \Gamma\left(\frac{\alpha}{2}\right)} .
$$

Then if we set $f=\chi_{\Omega}$ where χ_{Ω} is the indicator function and Ω is some bounded domain in \mathbb{R}^{n} ，then for all bounded domain Ω that is invariant under reflection trans－ formation P_{m} ，namely $P_{m} \Omega=\Omega$ for all $m=1, \ldots, n, J_{\alpha} f \equiv J_{\alpha}(x)$ satisfies

$$
J_{\alpha}(x)=J_{\alpha}\left(P_{m} x\right)
$$

The reflection transformation is defined as

$$
P_{m} x=P_{m}\left(x_{1}, \cdots, x_{m}, \cdots, x_{n}\right)=\left(x_{1}, \cdots,-x_{m}, \cdots, x_{n}\right),
$$

where $m=1,2, \ldots, n$ ．
摘要：在這篇報告中，我們要探討一個方程式 $\left(-\Delta_{E}\right)^{\frac{\alpha}{2}} u=f$ ，其中 $\left(-\Delta_{E}\right)^{\frac{\alpha}{2}}$ 是一個分數次的椭圓形微分算子，其定義為

$$
\left(-\Delta_{E}\right)^{-\frac{\alpha}{2}} f=\frac{1}{\Gamma\left(\frac{\alpha}{2}\right)} \int_{0}^{\infty} t^{\frac{\alpha}{2}-1}\left(H_{t} * f\right)(x) d t
$$

$$
H_{t}(x) \equiv H(x, t)=\frac{1}{\sqrt{(4 \pi t)^{n} \eta_{1} \eta_{2} \cdots \eta_{n}}} \exp \left(-\sum_{i} \frac{x_{i}^{2}}{4 \eta_{i} t}\right),
$$

其中 $\eta_{1}, \eta_{2}, \cdots, \eta_{n}$ 是一群決定其算子特性的參數．而它是從一般的分數次拉普拉斯算子延伸而得到的．

在報告中，我們也將找出其一個解，記為 $J_{\alpha} f$ ，為

$$
J_{\alpha} f(x) \equiv \frac{1}{\beta(\alpha)} \int_{\mathbb{R}^{n}} \frac{f(y)}{|\eta \cdot(x-y)|^{n-a}} d y
$$

其中 $\left|\eta^{-1} \cdot(x-y)\right|$ 代表 $\sqrt{\sum_{i}^{n} \eta_{i}^{-1}\left(x_{i}-y_{i}\right)}$ ，而 $\beta(\alpha)^{-1}$ 等於

$$
\beta(\alpha)^{-1}=\frac{1}{\sqrt{\eta_{1} \eta_{2} \cdots \eta_{n}}} \cdot \frac{\Gamma\left(\frac{n-\alpha}{2}\right)}{\pi^{\frac{n}{2}} 2^{\alpha} \Gamma\left(\frac{\alpha}{2}\right)} .
$$

如果在 $J_{\alpha} f$ 中令 $f=\chi_{\Omega}$ ，其中 χ_{Ω} 是指示函數，而 Ω 是一個在 \mathbb{R}^{n} 中的有界區域，則對於所有滿足鏡射變換 P_{m} 的 Ω ，更精確的説，對於 $m=1, \ldots, n$ ，都有 $P_{m} \Omega=\Omega$ ， $J_{\alpha} f \equiv J(x)$ 滿足

$$
J_{\alpha}(x)=J_{\alpha}\left(P_{m} x\right)
$$

鏡射變換定義為

$$
P_{m} x=P_{m}\left(x_{1}, \cdots, x_{m}, \cdots, x_{n}\right)=\left(x_{1}, \cdots,-x_{m}, \cdots, x_{n}\right)
$$

其中 $m=1,2, \ldots, n$ ．

1 Introdution

The basic idea of this paper is derived from an important concept in potential theory，the Riesz potential $I_{\alpha} f$ ．It is known that Riesz potential is closely related to the fractional Laplacian operator．It is actually the inverse operator of $(-\Delta)^{\frac{\alpha}{2}}$ ，namely，$u(x)=I_{\alpha} f$ if $(-\Delta)^{\frac{\alpha}{2}} u=f[1]$ ．Now we let $f \equiv \chi_{\Omega}$ ，where χ_{Ω} is the indicator function．Then this function denoted as $I_{\alpha}(x)$ in some bounded domain Ω has an interesting property．$I_{\alpha}(x)$ is radially symmetric to a center of a ball．In other words，$\left.u(x)\right|_{\partial \Omega}=$ const．if and only if Ω is a ball［4］．

In this paper，we will extend the fractional Laplacian to an elliptic operator

$$
\left(-\Delta_{E}\right)^{\frac{\alpha}{2}} u=\left(-\sum_{j}^{n} \eta_{j} \frac{\partial^{2}}{\partial x_{j}^{2}}\right)^{\frac{\alpha}{2}} u
$$

where $\eta_{1}, \eta_{2}, \cdots, \eta_{n}>0$ and they are independent of the variables．The fractional ex－ ponent will be defined in the article．We hope to achieve the following things in the paper：

1．Find the solution of $\left(-\Delta_{E}\right)^{\frac{\alpha}{2}} u=f$ ，which is denoted by $J_{\alpha} f(x)$ ．Then $u(x)=J_{\alpha} f$ if $\left(-\Delta_{E}\right)^{\frac{\alpha}{2}} u(x)=f(x)$ ．
2. Discuss the integrability of $J_{\alpha} f$.
3. Discuss the symmetry property of the solution of $\left(-\Delta_{E}\right)^{\frac{\alpha}{2}} u=\chi_{\Omega}$ where Ω is an n-dimensional ellipsoid centered at origin point and axis parallel to the axis ($x_{1}, x_{2}, \cdots, x_{n}$) of some cartesian coordinate system.
4. Consider symmetry property of the solution of another equation $\left(-\Delta_{E}\right)^{\frac{\alpha}{2}} u=$ $\chi_{\Omega} x_{i}$, where $i=1,2, \cdots, n$. (The antisymmetric property)

But before doing all this, we will first define some concepts.

1.1 Fractional Laplacian

Now we turn to an important concept of this paper: the fractional Laplacian operator $(-\Delta)^{-\frac{\alpha}{2}}$. Only the fractional exponent of a positive definite operator can be defined, so we need to take a minus sign in front of the ordinary Laplacian Δ.

One way to define $(-\Delta)^{-\frac{\alpha}{2}}$ is to use the Gamma function $\Gamma(\alpha)$. We can start from the fact that for any number $A[1,3]$:

$$
\begin{equation*}
A^{-s}=\frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-1} e^{-t A} d t \tag{1}
\end{equation*}
$$

If we exchange A to a Laplacian, $A \mapsto-\Delta, s \rightarrow \frac{\alpha}{2}$, then we get the definition.
Definition 1. The fractional Laplacian $(-\Delta)^{-\frac{\alpha}{2}}$ is defined by

$$
\begin{equation*}
(-\Delta)^{-\frac{\alpha}{2}} f=\frac{1}{\Gamma\left(\frac{\alpha}{2}\right)} \int_{0}^{\infty} t^{\frac{\alpha}{2}-1} e^{t \Delta} f d t \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
e^{\Delta t} f(x)=G_{t} * f(x)=\int_{\mathbb{R}^{n}} G_{t}(x-y) f(y) d y \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
G(x, t)=G_{t}(x)=(4 \pi t)^{-n} \exp \left(-\frac{|x|^{2}}{4 t}\right) \geq 0 \tag{4}
\end{equation*}
$$

$G_{t}(x)$ is called the Gauss-Weierstrass kernel [1]. It is the fundamental solution of heat equation, and it is not difficult to see why we use it to define $e^{t \Delta}$

$$
\begin{equation*}
\frac{\partial G_{t}(x)}{\partial t}=\Delta G_{t}(x) \Longleftrightarrow G_{t}(x)=e^{\Delta t}, \quad t>0 \tag{5}
\end{equation*}
$$

However, there is a problem in this definition. When $\alpha=-2 n$, where n is a positive integer, then the $\frac{1}{\Gamma\left(\frac{\alpha}{2}\right)}=\frac{1}{\Gamma(-n)}$ part will be zero, and the integral part diverges. We fix this problem by taking the limit

$$
\begin{equation*}
\lim _{\alpha \rightarrow 2 n} \frac{1}{\Gamma\left(\frac{\alpha}{2}\right)} \int_{0}^{\infty} t^{\frac{\alpha}{2}-1} e^{t A} f d t \tag{6}
\end{equation*}
$$

where A could be any number, and we find this limit to be A^{n} by using the equation

$$
\frac{\Gamma(s+1)}{A^{-s+1}}=\int_{0}^{\infty} t^{s} e^{-A t} d t
$$

So it is reasonable to redefine the fractional Laplacian by taking limits in the definition of it. Now we can define the fractional Laplacian with a positive integer exponent by

$$
\begin{equation*}
(-\Delta)^{n}=\lim _{\alpha \rightarrow 2 n}(-\Delta)^{-\frac{\alpha}{2}} \tag{7}
\end{equation*}
$$

1.2 Riesz potential

Riesz potential is closely related to the fractional Laplacian, for it can be seen as an inverse of the fractional Laplacian [1].

Definition 2. For any $n \geq 2,0<\alpha<n$, and $x \in \mathbb{R}^{n}$ the Riesz potential is

$$
\begin{equation*}
I_{\alpha} f(x)=\left(K_{\alpha} * f\right)(x)=\frac{1}{\gamma(\alpha)} \int_{\mathbb{R}^{n}} \frac{f(y)}{|x-y|^{n-a}} d y \tag{8}
\end{equation*}
$$

where $\gamma(\alpha)$ is

$$
\gamma(\alpha)=\frac{\pi^{\frac{n}{2}} 2^{\alpha} \Gamma\left(\frac{\alpha}{2}\right)}{\Gamma\left(\frac{n-\alpha}{2}\right)}
$$

and

$$
\begin{equation*}
K_{\alpha}=\frac{1}{\gamma(\alpha)}|x|^{\alpha-n} \tag{9}
\end{equation*}
$$

is called the Risz kernel.
We are going to focus on Riesz potential in a compact domain Ω or

$$
\begin{equation*}
\frac{1}{\gamma(\alpha)} \int_{\Omega} \frac{f(y)}{|x-y|^{n-a}} d y=\frac{1}{\gamma(\alpha)} \int_{\mathbb{R}^{n}} \frac{f(y)}{|x-y|^{n-a}} \chi_{\Omega} d y \tag{10}
\end{equation*}
$$

where χ_{Ω} is the indicator function. The Riesz potential is a singular integral operator, so the concept of integrability is important. In other words, the question will be for $f \in L^{p}(\Omega)$, and $I_{\alpha} f \in L^{q}(\Omega)$, that p, q satisfy some condition which makes $I_{\alpha}: L^{p}(\Omega) \rightarrow$ $L^{q}(\Omega)$ a bounded operator.

This property can be seen by the Hardy-Littlewood-Sobolev inequality [2]:
Theorem 1. For $0<\alpha<n, 1 \leq p, q \leq \infty, I_{\alpha}: L^{p}(\Omega) \rightarrow L^{q}(\Omega)$ is a bounded operator:

$$
\begin{equation*}
\left\|I_{\alpha} f\right\|_{q} \leq C\|f\|_{p}, \quad \text { if } \quad \frac{n}{p} \leq \frac{n}{q}+\alpha . \tag{11}
\end{equation*}
$$

Proof. See [2]. This theorem says that if $f \in L^{p}(\Omega)$, then for $x \in \Omega, I_{\alpha} f(x)$ converges absolutely.

We are going to see the relationship between fractional Laplacian and the Riesz potential.

Theorem 2. For any $0<\alpha<n$, if $u(x)$ satisfies the equation

$$
\begin{equation*}
(-\Delta)^{\frac{\alpha}{2}} u(x)=\rho(x), \quad x \in \mathbb{R}^{n} \tag{12}
\end{equation*}
$$

then $u(\mathbf{x})$ can be written as the convolution of K_{α} and f :

$$
\begin{equation*}
u(x)=I_{\alpha} \rho(x)=\left(K_{\alpha} * \rho\right)(x) \tag{13}
\end{equation*}
$$

Proof. The proof is standard [1]. For convenience, we will recall it in the appendix.

2 Derive J_{α}

2.1 Extending the fractional Laplacian

Before extending the fractional Laplacian, we will start by looking at the normal Lalpcian first:

$$
\begin{equation*}
\Delta \equiv \sum_{i} \frac{\partial^{2}}{\partial x_{i}^{2}} . \tag{14}
\end{equation*}
$$

We will extend this to

$$
\begin{equation*}
-\Delta_{E}=-\sum_{i} \eta_{i} \frac{\partial^{2}}{\partial \tilde{\xi}_{i}^{2}}, \quad \text { where }\left(\eta_{1}, \eta_{2}, \cdots \eta_{n}>0\right) \tag{15}
\end{equation*}
$$

because it is positive definite, $\eta_{1}, \eta_{2}, \eta_{3} \cdots>0$. For the specified case $\eta_{1}=\eta_{2}=\cdots=$ $\eta_{n}=1$, it reduces to the ordinary Laplacian.

The question is how to define this operator with a fractional exponent $\left(-\Delta_{E}\right)^{\frac{\alpha}{2}}$. We can do the same as the original fractional Laplacian:

Definition 3. The fractional exponent for the elliptical operator can be written as

$$
\begin{equation*}
\left(-\Delta_{E} f\right)^{-\frac{\alpha}{2}}=\frac{1}{\Gamma\left(\frac{\alpha}{2}\right)} \int_{0}^{\infty} t^{\frac{\alpha}{2}-1} e^{\Delta_{E} t} f d t \tag{16}
\end{equation*}
$$

where $e^{\Delta_{E} t} f=(H * f)(\xi), e^{\Delta_{E} t} \delta(\xi) \equiv H(t, \xi)$ is the fundamental solution for $\partial_{t} u=\Delta_{E} u$, and

$$
\begin{equation*}
H(\xi, t)=\frac{1}{\sqrt{(4 \pi t)^{n} \eta_{1} \eta_{2} \cdots \eta_{n}}} \exp \left(-\sum_{i} \frac{\xi_{i}^{2}}{4 \eta_{i} t}\right) \geq 0 . \tag{17}
\end{equation*}
$$

(17) can be easily calculated,

$$
\begin{equation*}
\frac{\partial H(\xi, t)}{\partial t}-\Delta_{E} H(\xi, t)=0\left(t>0, \lim _{t \rightarrow 0}=\delta(x)\right) \tag{18}
\end{equation*}
$$

and we apply (18) to the Fourier transformation

$$
\begin{gather*}
\frac{\partial \widehat{H}(\xi, t)}{\partial t}+\left(\sum_{i} \eta_{i} \xi_{i}^{2}\right) \widehat{H}(\xi, t)=0, \tag{19}\\
\widehat{H}(\xi, t)=\exp \left(-\sum_{i} \eta_{i} \xi_{i}^{2}\right) t=0, \tag{20}\\
H(\xi, t)=\prod_{i} \frac{1}{2 \sqrt{\pi t \eta_{i}}} \exp \left(-\frac{\xi_{i}^{2}}{4 t \eta_{i}}\right)=\frac{1}{\sqrt{(4 \pi t)^{n} \eta_{1} \eta_{2} \cdots \eta_{n}}} \exp \left(-\sum_{i} \frac{\xi_{i}^{2}}{4 \eta_{i} t}\right) . \tag{21}
\end{gather*}
$$

2.2 The solution for Δ_{E}

With all these definitions, we can start to derive the solution for fractional elliptic operator associated to Δ_{E}.
Theorem 3. The solution for fractional elliptic operator

$$
\begin{equation*}
\left(-\Delta_{E}\right)^{\frac{\alpha}{2}} u(x)=\rho(x) \tag{22}
\end{equation*}
$$

can be taken as $u(x)=J_{\alpha} \rho(x)$, where

$$
\begin{equation*}
J_{\alpha} u(x) \equiv \frac{1}{\beta(\alpha)} \int_{\mathbb{R}^{n}} \frac{f(y)}{\left|\eta^{-1} \cdot(x-y)\right|^{n-a}} d y \tag{23}
\end{equation*}
$$

and $\left|\eta^{-1}(x-y)\right|$ stands for $\sqrt{\sum_{i}^{n} \eta_{i}^{-1}\left(x_{i}-y_{i}\right)}$, and $\beta(\alpha)^{-1}$ equals

$$
\begin{equation*}
\beta(\alpha)^{-1}=\frac{1}{\sqrt{\eta_{1} \eta_{2} \cdots \eta_{n}}} \cdot \frac{\Gamma\left(\frac{n-\alpha}{2}\right)}{\pi^{\frac{n}{2}} 2^{\alpha} \Gamma\left(\frac{\alpha}{2}\right)} . \tag{24}
\end{equation*}
$$

Proof. This theorem can be proved by some simple transformation of the variables.
For the equation

$$
\begin{equation*}
\left(-\Delta_{E}\right)^{\frac{\alpha}{2}} u(x)=\rho(x), \tag{25}
\end{equation*}
$$

consider a transformation:

$$
\begin{equation*}
x_{i} \mapsto \frac{\xi_{i}}{\sqrt{\eta_{i}}} . \tag{26}
\end{equation*}
$$

Then (25) is transformed to

$$
\begin{equation*}
(-\Delta)^{\frac{\alpha}{2}} \tilde{u}(\tilde{\xi})=\tilde{\rho}(\tilde{\xi}) \tag{27}
\end{equation*}
$$

This is just the ordinary fractional Laplacian, so its solution is just the Riesz potential:

$$
\begin{equation*}
\tilde{u}(\xi)=\frac{1}{\gamma(\alpha)} \int_{\mathbb{R}^{n}} \frac{\tilde{\rho}(\xi)}{|\xi-\zeta|^{n-a}} d \zeta \tag{28}
\end{equation*}
$$

and we can transform it back to x_{i} variable, so the solution will be

$$
\begin{equation*}
u(x)=\frac{1}{\sqrt{\eta_{1} \eta_{2} \cdots \eta_{n}}} \cdot \frac{\Gamma\left(\frac{n-\alpha}{2}\right)}{\pi^{\frac{n}{2}} 2^{\alpha} \Gamma\left(\frac{\alpha}{2}\right)} \int_{\mathbb{R}^{n}} \frac{f(y)}{\left|\eta^{-1} \cdot(x-y)\right|^{n-a}} d y . \tag{29}
\end{equation*}
$$

It is also easy to define the solution for some compact domain Ω; simply set

$$
\begin{equation*}
J_{\alpha} f \equiv \frac{1}{\beta(\alpha)} \int_{\Omega} \frac{f(y)}{\left|\eta^{-1}(x-y)\right|^{n-\alpha}} d y=\frac{1}{\beta(\alpha)} \int_{\mathbb{R}^{n}} \frac{f(y) \chi_{\Omega}}{\left|\eta^{-1}(x-y)\right|^{n-\alpha}} d y \tag{30}
\end{equation*}
$$

where χ_{Ω} is the indicator function.

3 Integrability

We have to discuss the integrability of $J_{\alpha} f$. Because $J_{\alpha} f$ can be turned to $I_{\alpha} f$ by changing variables, they should satisfy the same inequality. This has been proven to be true, so we can apply everything in the same way.

Theorem 4. Let $0 \leq q \leq \infty, 0<\alpha<n$. Then $J_{\alpha}: L^{p}(\Omega) \rightarrow L^{q}(\Omega)$ is an continuous operator

$$
\begin{equation*}
\left\|J_{\alpha} f\right\|_{L^{q}(\Omega)} \leq C\|f\|_{L^{p}(\Omega)}, \quad \text { for any } \frac{1}{p} \leq \frac{1}{q}+\frac{\alpha}{n} \tag{31}
\end{equation*}
$$

Proof. Before proofing this theorem we need some lemmas.
Lemma 1. If a function $f(x)$ depends only on $\left|\eta^{-1} x\right| \equiv r$ (where the norm stands for $\left(\sum_{i}^{n} \eta_{i}^{-1} x_{i}\right)^{1 / 2}$), then we have the integral equality

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} f(x) d x=\omega_{n} \int_{0}^{\infty} f(r) r^{n-1} d r, \tag{32}
\end{equation*}
$$

where ω_{n} is

$$
\begin{equation*}
\omega_{n}=\sqrt{\eta_{1} \cdots \eta_{n}} \frac{\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}+1\right)} . \tag{33}
\end{equation*}
$$

Proof. We can start from the fact that [3]

$$
\begin{array}{rl}
\int_{\mathbb{R}_{+}^{n}} & f\left(x_{1}^{b_{1}}+x_{2}^{b_{2}}+\cdots+x_{n}^{b_{n}}\right) x_{1}^{a_{1}-1} x_{1}^{a_{2}-1} \cdots x_{n}^{a_{n}-1} d x \\
& =\frac{\Gamma\left(\frac{a_{1}}{b_{1}}\right) \Gamma\left(\frac{a_{2}}{b_{2}}\right) \cdots \Gamma\left(\frac{a_{n}}{b_{n}}\right)}{b_{1} \cdots b_{n} \Gamma\left(\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}} \cdots+\frac{a_{n}}{b_{n}}\right)} \int_{0}^{\infty} f(t) t^{\frac{a_{1}}{b_{1}}+\frac{a_{2}}{b_{2}} \cdots+\frac{a_{n}}{b_{n}}-1} d t . \tag{34}
\end{array}
$$

\mathbb{R}_{+}^{n} is defined as

$$
\begin{equation*}
\mathbb{R}_{+}^{n}=\left\{x \in \mathbb{R}^{n} \mid x_{1}, \cdots, x_{n}>0\right\} . \tag{35}
\end{equation*}
$$

By setting $b_{1}=b_{2}=\cdots=b_{n}=2$, and $a_{1}=a_{2}=\cdots=a_{n}=1$, and a transformation,

$$
\begin{equation*}
x_{i} \mapsto \sqrt{\eta_{i}} x_{i}, \quad i=1,2, \cdots n, \tag{36}
\end{equation*}
$$

we get

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{n}} f\left(\left|\eta^{-1} x\right|^{2}\right) d x=\sqrt{\eta_{1} \cdots \eta_{n}} \frac{\pi^{n / 2}}{2^{n} \Gamma\left(\frac{n}{2}\right)} \int_{0}^{\infty} f(t) t^{\frac{n}{2}-1} d t \tag{37}
\end{equation*}
$$

Last, consider a change of variable $t=r^{2}$:

$$
\begin{equation*}
\int_{\mathbb{R}_{+}^{n}} f\left(\left|\eta^{-1} x\right|\right) d x=\sqrt{\eta_{1} \cdots \eta_{n}} \frac{\pi^{n / 2}}{2^{n} \Gamma\left(\frac{n}{2}+1\right)} \int_{0}^{\infty} f(r) r^{n-1} d r . \tag{38}
\end{equation*}
$$

By the symmetry of $f\left(\left|\eta^{-1} x\right|\right)$, it is easy to check

$$
\begin{equation*}
2^{n} \int_{\mathbb{R}_{+}^{n}} f\left(\left|\eta^{-1} x\right|\right) d x=\int_{\mathbb{R}^{n}} f\left(\left|\eta^{-1} x\right|\right) d x \tag{39}
\end{equation*}
$$

then the lemma is proven.
Lemma 2. For some $1 \leq p, q, r \leq \infty$, if they satisfy

$$
\begin{equation*}
\frac{1}{r}+1=\frac{1}{p}+\frac{1}{q} \tag{40}
\end{equation*}
$$

then

$$
\begin{equation*}
\beta(\alpha)\left\|J_{\alpha} f\right\|_{r} \leq\|f\|_{p}\|h\|_{q}, \tag{41}
\end{equation*}
$$

where

$$
\begin{equation*}
h(x, y) \equiv h\left(\eta^{-1}(x-y)\right)=\frac{1}{\left|\eta^{-1}(x-y)\right|^{n-\alpha}} \tag{42}
\end{equation*}
$$

Proof. First, we set

$$
\begin{align*}
\left|J_{\alpha} f\right| & =\frac{1}{\beta(\alpha)}\left|\int_{\mathbb{R}^{n}} f(y) h(x, y) d y\right| \leq \frac{1}{\beta(\alpha)} \int_{\mathbb{R}^{n}}|h(x, y) f(y)| d y \\
& =\frac{1}{\beta(\alpha)} \int_{\mathbb{R}^{n}}|f(y)|^{\frac{p}{r}}|f(y)|^{1-\frac{p}{r}}|h(x, y)|^{\frac{q}{r}}|h(x, y)|^{1-\frac{q}{r}} d y . \tag{43}
\end{align*}
$$

We can see that,

$$
\begin{equation*}
\frac{1}{r}+\left(\frac{1}{p}-\frac{1}{r}\right)+\left(\frac{1}{q}-\frac{1}{r}\right)=\frac{1}{r}+\frac{1}{p r /(p-r)}+\frac{1}{q r /(q-r)}=1 . \tag{44}
\end{equation*}
$$

Then we can apply the Hölder inequality to it:

$$
\begin{align*}
\beta(\alpha)\left|J_{\alpha} f\right| \leq & \left(\int_{\mathbb{R}^{n}}|f(y)|^{p}|h(x, y)|^{q} d y\right)^{\frac{1}{r}} \cdot\left(\int_{\mathbb{R}^{n}}|f(y)|^{p} d y\right)^{\frac{1}{p}-\frac{1}{r}} \\
& \cdot\left(\int_{\mathbb{R}^{n}}|h(x, y)|^{q} d y\right)^{\frac{1}{q}-\frac{1}{r}} \tag{45}
\end{align*}
$$

Take both sides to an exponent r, then integrate it by x, and we get

$$
\begin{equation*}
\beta(\alpha)^{r}\left\|J_{\alpha} f\right\|_{r}^{r} \leq\left(\int_{\mathbb{R}^{n}}|f|^{p} d y\right)\left(\int_{\mathbb{R}^{2 n}}|h|^{q} d x d y\right)\|f\|_{p}^{r-p}\|h\|_{q}^{r-q}=\|f\|_{p}^{r}\|h\|_{q}^{r} \tag{46}
\end{equation*}
$$

and the lemma is proven.

Lemma 3. For $n \geq 2,0<\alpha<n$, one has

$$
\begin{equation*}
\int_{\Omega} \frac{1}{\left|\eta^{-1}(x-y)\right|^{\alpha}} d y \leq \frac{n\left|E_{n}\right|}{n-\alpha}\left(\frac{|\Omega|}{\left|E_{n}\right|}\right)^{1-\frac{\alpha}{n}}, \tag{47}
\end{equation*}
$$

where E_{n} is

$$
\begin{equation*}
E_{n}=\sqrt{\eta_{1} \cdots \eta_{n}} \frac{\pi^{n / 2}}{\Gamma\left(\frac{n}{2}+1\right)} . \tag{48}
\end{equation*}
$$

It is the volume of a n-dimensional ellipsoid with axes $\sqrt{\eta_{1}}, \sqrt{\eta_{2}}, \cdots, \sqrt{\eta_{n}}$.
Proof. First, we set $S \in \mathbb{R}^{n}$ an n-dimensional ellipsoid centered at x with axes $\sqrt{\eta_{1}} R$, $\sqrt{\eta_{2}} R, \cdots, \sqrt{\eta_{n}} R$ and each parallel to the axis $x_{1}, x_{2}, \cdots, x_{n}$ of coordinate, and $|S|=$ $E_{n} R^{n}$ is the volume of S. Then we set $|\Omega|=|S|$, so that $R=(|\Omega| /|S|)^{1 / n}$.

$$
\begin{equation*}
\int_{S} \frac{d y}{\left|\eta^{-1}(x-y)\right|^{\alpha}}=\int_{S \cap \Omega} \frac{d y}{\left|\eta^{-1}(x-y)\right|^{\alpha}}+\int_{S-(S \cap \Omega)} \frac{d y}{\left|\eta^{-1}(x-y)\right|^{\alpha}} \tag{49}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\Omega} \frac{d y}{\left|\eta^{-1}(x-y)\right|^{\alpha}}=\int_{S \cap \Omega} \frac{d y}{\left|\eta^{-1}(x-y)\right|^{\alpha}}+\int_{\Omega-(S \cap \Omega)} \frac{d y}{\left|\eta^{-1}(x-y)\right|^{\alpha}} \tag{50}
\end{equation*}
$$

Because $S-(S \cap \Omega)$ is inside $S, \frac{1}{\left|\eta^{-1}(x-y)\right|^{\alpha}} \leq R^{-\alpha}$; therefore

$$
\begin{equation*}
\int_{\Omega-(S \cap \Omega)} \frac{d y}{\left|\eta^{-1}(x-y)\right|^{\alpha}} \leq R^{-\alpha}(|\Omega|-|S \cap \Omega|) \tag{51}
\end{equation*}
$$

Similarly, $\Omega-(S \cap \Omega)$ is outside S, so that

$$
\begin{equation*}
\int_{S-(S \cap \Omega)} \frac{d y}{\left|\eta^{-1}(x-y)\right|^{\alpha}} \geq R^{-\alpha}(|S|-|S \cap \Omega|)=R^{-\alpha}(|\Omega|-|S \cap \Omega|), \tag{52}
\end{equation*}
$$

thus we get

$$
\begin{equation*}
\int_{S-(S \cap \Omega)} \frac{d y}{\left|\eta^{-1}(x-y)\right|^{\alpha}} \geq \int_{\Omega-(S \cap \Omega)} \frac{d y}{\left|\eta^{-1}(x-y)\right|^{\alpha}}, \tag{53}
\end{equation*}
$$

or

$$
\begin{align*}
\int_{\Omega} \frac{d y}{\left|\eta^{-1}(x-y)\right|^{\alpha}} & \leq \int_{S} \frac{d y}{\left|\eta^{-1}(x-y)\right|^{\alpha}}=\int_{0}^{R} r^{-\alpha} r^{n-1}\left|n E_{n}\right| d r \\
& =\frac{R^{n-\alpha}}{n-\alpha} n E_{n}=\frac{n\left|E_{n}\right|}{n-\alpha}\left(\frac{|\Omega|}{\left|E_{n}\right|}\right)^{1-\frac{\alpha}{n}} . \tag{54}
\end{align*}
$$

Replace $\chi_{\Omega} f(x)$ by $f(x)$ in lemma one in (54), and the lemma is proven.
The rest of the proof is obvious. For some r we can let

$$
\begin{equation*}
\frac{1}{r}+\frac{1}{p}=1+\frac{1}{q} \tag{55}
\end{equation*}
$$

and if $1 \leq r \leq 1 /(1-n / \alpha)$ then $n / p \leq n / q+n$ is satisfied. By Lemma 2

$$
\begin{equation*}
\left\|J_{\alpha} f\right\| \leq \beta(\alpha)^{-1}\|h\|_{r}\|f\|_{p} . \tag{56}
\end{equation*}
$$

Note that we have replaced $f(x) \chi_{\Omega}$ by $f(x)$, and $h(x, y) \chi_{\Omega}$ by $h(x, y)$ because (57) only integrates over a bounded domain.

Then by Lemma 3

$$
\begin{equation*}
\|h\|_{r} \leq\left(\frac{n E_{n}}{n-(n-\alpha) r}\right)^{\frac{1}{r}}\left(\frac{|\Omega|}{\left|E_{n}\right|}\right)^{\frac{1}{r}+\frac{\alpha}{n}-1} \tag{57}
\end{equation*}
$$

So the theorem is proven.

4 The symmetry problem

We know that for I_{α} the solution of $(-\Delta)^{\alpha / 2} u=\chi_{\Omega}$ has some very interesting property, such as its the volume on $\partial \Omega$ is a constant if any only if Ω is a ball [4].
$\left(-\Delta_{E}\right)^{\frac{\alpha}{2}} u=\chi_{\Omega}$ is invariant under some "elliptical rotation" that preserves $\left|\eta^{-1} x\right|$, just like the $(-\Delta)^{\alpha / 2} u=\chi_{\Omega}$ is invariant under rotations that preserve $|x|$, but the same property cannot carry over; that is, $\left.J_{\alpha}(x)\right|_{\Omega}$ will not be a constant where Ω is the ellipsoid with axis parallel to the coordinate. It is because not all the transformation that preserves $\left|\eta^{-1} x\right|$ preserves an infinitesimal volume $d V$ in \mathbb{R}^{n}, (if we see this transformation as a coordinate transformation, then it means the Jacobian does not equal one) [3], and therefore $\left.J_{\alpha}(x)\right|_{\partial \Omega}$ does not satisfy this property.

There is a transformation that preserves $\left|\eta^{-1} x\right|$ and infinitesimal volume. It is the reflection transformation P_{m} (See Definition 4). It is a discrete transformation, so instead of $\left.J_{\alpha}(x)\right|_{\partial \Omega}=$ const, we will get $\left.J_{\alpha}(x)\right|_{\partial \Omega}=\left.J_{\alpha}\left(P_{m} x\right)\right|_{\partial \Omega}$. (See Theorem 5.)

Definition 4. We are going to introduce the reflection transformation $P_{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.

$$
\begin{equation*}
P_{m} x=P_{m}\left(x_{1}, \cdots, x_{m}, \cdots, x_{n}\right)=\left(x_{1}, \cdots,-x_{m}, \cdots x_{n}\right), \tag{58}
\end{equation*}
$$

where $m=1,2, \ldots, n$.
For an n-dimensional ellipsoid with axis $\sqrt{\eta_{1}}, \sqrt{\eta_{2}}, \cdots, \sqrt{\eta_{n}}$, and each parallel to the axis of the coordinate $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$, which will be noted as Ω is symmetric under reflection transformation. That is, for a $x \in \Omega$, then $P_{m} x \in \Omega$, and for some $x \in \partial \Omega$, then $P_{m} x \in \partial \Omega$.

Theorem 5. Let

$$
\begin{equation*}
u(x) \equiv \frac{1}{\beta(\alpha)} \int_{\Omega} \frac{d y}{\left|\eta^{-1}(x-y)\right|^{n-\alpha}}=J_{\alpha} \tag{59}
\end{equation*}
$$

then there is a property of $\left.u(x)\right|_{\partial \Omega}$.

$$
\begin{equation*}
\left.u(x)\right|_{\partial \Omega}=\left.u\left(P_{m} x\right)\right|_{\partial \Omega}, \text { for all } n=1,2, \cdots, n \tag{60}
\end{equation*}
$$

For convenience, we need to use a different kind of coordinate instead of the ordinary Cartesian coordinate.

Definition 5. We are going to define an elliptical coordinate ($\rho, \phi_{1} \cdots \phi_{n-1}$) with the center at some point p.

$$
\begin{aligned}
x_{1}-p_{1} & =\sqrt{\eta_{1}} \rho \cos \phi_{1} \\
x_{2}-p_{2} & =\sqrt{\eta_{2}} \rho \sin \phi_{1} \cos \phi_{2} \\
\vdots & \\
x_{n-1}-p_{n-1} & =\sqrt{\eta_{n-1}} \rho \sin \phi_{1} \cdots \sin \phi_{n-2} \cos \phi_{n-1} \\
x_{n}-p_{n} & =\sqrt{\eta_{n}} \rho \sin \phi_{1} \cdots \sin \phi_{n-2} \sin \phi_{n-1}
\end{aligned}
$$

We can set that $p \in \partial \Omega$.
Then another coordinate $\left(r, \theta_{1}, \cdots \theta_{n-1}\right)$ at a point p^{\prime}.

$$
\begin{aligned}
x_{1}-p_{1}^{\prime} & =\sqrt{\eta_{1}} r \cos \theta_{1} \\
x_{2}-p_{2}^{\prime} & =\sqrt{\eta_{2} r \sin \theta_{1}} \cos \theta_{2} \\
\vdots & \\
x_{n-1}-p_{n-1}^{\prime} & =\sqrt{\eta_{n-1}} r \sin \theta_{1} \cdots \sin \theta_{n-2} \cos \theta_{n-1} \\
x_{n}-p_{n}^{\prime} & =\sqrt{\eta_{n}} r \sin \theta_{1} \cdots \sin \theta_{n-2} \sin \theta_{n-1}
\end{aligned}
$$

Then we can set that $p^{\prime}=P_{m} p \in \partial \Omega$.
With this coordinate, we shall define a subset in \mathbb{R}^{n} by

$$
\begin{equation*}
\tau_{l}^{(k)}=\left\{x \in \Omega \left\lvert\, 2 \frac{l-1}{k} \leq \rho<2 \frac{l}{k}\right.\right\}, 1 \leq l \leq k . \tag{61}
\end{equation*}
$$

It is easy to check out that

$$
\begin{equation*}
\bigcup_{1 \leq l \leq k} \tau_{l}^{(k)}=\Omega \tag{62}
\end{equation*}
$$

We will do the same to coordinate $\left(r, \theta_{1} \cdots \theta_{n-1}\right)$.

$$
\begin{equation*}
\tau_{l}^{\prime(k)}=\left\{x \in \Omega \left\lvert\, 2 \frac{l-1}{k} \leq r<2 \frac{l}{k}\right.\right\}, 1 \leq l \leq k \tag{63}
\end{equation*}
$$

and

$$
\begin{equation*}
\bigcup_{1 \leq l \leq k} \tau_{l}^{\prime(k)}=\Omega \tag{64}
\end{equation*}
$$

Lemma 4. For any k and any $1 \leq l \leq k$, it satisfies

$$
\begin{equation*}
\left|\tau_{l}^{(k)}\right|=\left|\tau_{l}^{\prime(k)}\right| \tag{65}
\end{equation*}
$$

Proof. For any $x \in \tau_{l}^{(k)}$ it satisfies the condition

$$
\begin{align*}
\left(2 \frac{l-1}{k}\right)^{2} \leq & \frac{\left(x_{1}-p_{1}\right)^{2}}{\eta_{1}}+\frac{\left(x_{2}-p_{2}\right)^{2}}{\eta_{2}}+\cdots \frac{\left(x_{m}-p_{m}\right)^{2}}{\eta_{m}} \tag{66}\\
& +\cdots+\frac{\left(x_{n-1}-p_{n-1}\right)^{2}}{\eta_{n-1}}+\frac{\left(x_{n}-p_{n}\right)^{2}}{\eta_{n}} \leq\left(2 \frac{l}{k}\right)^{2}
\end{align*}
$$

and

$$
\begin{equation*}
x \in \Omega . \tag{67}
\end{equation*}
$$

If we transform any $x \in \tau_{l}^{(k)}$ with the reflection transformation P_{m}, then $P_{m} x \equiv x^{\prime}$ satisfies

$$
\begin{align*}
\left(2 \frac{l-1}{k}\right)^{2} \leq & \frac{\left(P_{m} x_{1}-p_{1}\right)^{2}}{\eta_{1}}+\frac{\left(P_{m} x_{2}-p_{2}\right)^{2}}{\eta_{2}}+\cdots \frac{\left(P_{m} x_{m}-p_{m}\right)^{2}}{\eta_{m}} \tag{68}\\
& +\cdots+\frac{\left(P_{m} x_{n}-p_{n}\right)^{2}}{\eta_{n}} \leq\left(2 \frac{l}{k}\right)^{2}
\end{align*}
$$

or

$$
\begin{align*}
\left(2 \frac{l-1}{k}\right)^{2} \leq & \frac{\left(x_{1}-p_{1}\right)^{2}}{\eta_{1}}+\frac{\left(x_{2}-p_{2}\right)^{2}}{\eta_{2}}+\cdots \frac{\left(x_{m}+p_{m}\right)^{2}}{\eta_{m}} \tag{69}\\
& +\cdots+\frac{\left(x_{n-1}-p_{n-1}\right)^{2}}{\eta_{n-1}}+\frac{\left(x_{n}-p_{n}\right)^{2}}{\eta_{n}} \leq\left(2 \frac{l}{k}\right)^{2}
\end{align*}
$$

and $x^{\prime} \in \Omega$. This is exactly the condition that satisfies for any $x^{\prime} \in \tau_{l}^{\prime(k)}$. Thus,

$$
\begin{equation*}
P_{m} \tau_{l}^{(k)}=\tau_{l}^{\prime(k)} \tag{70}
\end{equation*}
$$

Since the reflection transformation preserves the volume, so that

$$
\begin{equation*}
\left|\tau_{l}^{(k)}\right|=\left|\tau_{l}^{\prime(k)}\right| \tag{71}
\end{equation*}
$$

We know that $\tau_{l}^{(k)}$ and $\tau_{l}{ }^{\prime(k)}$ approach to zero as k approaches to infinity. But how exactly and how rapidly it approaches to zero, we can see it by Lemma 5 .

Lemma 5. For any integer k, and some $1 \leq l \leq k$ the volume of $\tau_{l}^{(k)}$ and $\tau^{\prime(k)}$ satisfy

$$
\begin{align*}
& \left|\tau_{l}^{(k)}\right| \leq C(l) k^{-n} \tag{72}\\
& \left|\tau_{l}^{\prime(k)}\right| \leq C(l) k^{-n} \tag{73}
\end{align*}
$$

where C is a constant independent of k but dependent to l.

Proof. For convenience, we define

$$
\begin{equation*}
\sigma_{l}^{(k)}=\left\{x \in \mathbb{R}^{n} \left\lvert\, 2 \frac{l-1}{k} \leq \rho<2 \frac{l}{k}\right.\right\} \tag{74}
\end{equation*}
$$

and

$$
\begin{equation*}
\sigma_{l}^{\prime(k)}=\left\{x \in \mathbb{R}^{n} \left\lvert\, 2 \frac{l-1}{k} \leq r<2 \frac{l}{k}\right.\right\} \tag{75}
\end{equation*}
$$

where $1 \leq l \leq k$. By the definition of (74) and (75), we can see that $\tau_{l}^{(k)} \subseteq \sigma_{l}^{(k)}$, and $\tau^{\prime(k)} \subseteq \sigma_{l}^{\prime(k)}$; therefore, $\left|\tau_{l}^{(k)}\right| \leq\left|\sigma_{l}^{(k)}\right|$, and $\left|\tau_{l}^{\prime(k)}\right| \leq\left|\sigma_{l}^{\prime(k)}\right|$. Since the volume of $\sigma_{l}^{(k)}$ and $\sigma_{l}^{\prime(k)}$ can be computed

$$
\begin{equation*}
\left|\sigma_{l}^{(k)}\right|=\int_{\mathbb{R}^{n}} \chi_{\sigma_{l}^{(k)}} d x=\omega_{n} \int_{\frac{l-1}{k}}^{\frac{l}{k}} r^{n-1} d r=\frac{\omega_{n}}{n-1}\left[\left(\frac{l}{k}\right)^{n}-\left(\frac{l-1}{k}\right)^{n}\right] \tag{76}
\end{equation*}
$$

We have used Lemma 1 in Equation (76). The ω_{n} has been defined in (33). Therefore, we can see that

$$
\begin{equation*}
\left|\tau_{l}^{(k)}\right| \leq\left|\sigma_{l}^{(k)}\right|=\frac{\omega_{n}}{n-1}\left[\left(\frac{l}{k}\right)^{n}-\left(\frac{l-1}{k}\right)^{n}\right] \equiv C(l) k^{-n} \tag{77}
\end{equation*}
$$

where $C(l)$ equals

$$
\begin{equation*}
C(l)=\frac{\omega_{n}}{n-1}\left[l^{n}-(l-1)^{n}\right] . \tag{78}
\end{equation*}
$$

The case for $\tau_{l}{ }^{\prime(k)}$ can be proven in the same way.
Now, we can divide the function $J_{\alpha}(x)$ into

$$
\begin{align*}
J_{\alpha}(x) & =\frac{1}{\beta(\alpha)} \int_{\Omega} \frac{d y}{\left|\eta^{-1}(x-y)\right|^{n-\alpha}} \tag{79}\\
& =\sum_{1 \leq l \leq k} \int_{\tau_{l}^{(k)}} \frac{d y}{\left|\eta^{-1}(x-y)\right|^{n-\alpha}} \equiv \sum_{1 \leq l \leq k} j_{\alpha}^{(l)} \\
& =\sum_{1 \leq l \leq k} \int_{\tau_{l}^{(k)}} \frac{d y}{\left|\eta^{-1}(x-y)\right|^{n-\alpha}} \equiv \sum_{1 \leq l \leq k} j_{\alpha}^{\prime(l)}
\end{align*}
$$

where

$$
\begin{equation*}
j_{\alpha}^{(l)}(x) \equiv \int_{\tau_{l}^{(k)}} \frac{d y}{\left|\eta^{-1}(x-y)\right|^{n-\alpha}} \tag{80}
\end{equation*}
$$

and

$$
\begin{equation*}
j_{\alpha}^{\prime(l)}(x) \equiv \int_{\tau_{l}^{\prime}(k)} \frac{d y}{\left|\eta^{-1}(x-y)\right|^{n-\alpha}} . \tag{81}
\end{equation*}
$$

We are going to define an approximation of $j^{(l)}$

$$
\begin{align*}
& j_{a p p x . \alpha}^{(l)}(x)=\left|\tau_{l}^{(k)}\right| \frac{1}{\left|\eta^{-1}(x-y)\right|^{n-\alpha}}, \tag{82}\\
& j_{a p p x . \alpha}^{\prime(l)}(x)=\left|\tau_{l}^{\prime(k)}\right| \frac{1}{\left|\eta^{-1}\left(x-y^{\prime}\right)\right|^{n-\alpha}} \tag{83}
\end{align*}
$$

for some $y \in \tau_{l}^{(k)}$ and $y^{\prime} \in \tau_{l}{ }^{\prime(k)}$.

Lemma 6. For any integer k and $1 \leq l \leq k$ it satisfies

$$
\begin{equation*}
\left|j_{\alpha}^{(l)}(p)-j_{a p p x . \alpha}^{(k)}(p)\right| \leq C^{\prime}(l) k^{-\alpha} \tag{84}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|j_{\alpha}^{\prime(l)}\left(p^{\prime}\right)-j_{a p p x . \alpha}^{\prime(k)}\left(p^{\prime}\right)\right| \leq C^{\prime}(l) k^{-\alpha}, \tag{85}
\end{equation*}
$$

where $C^{\prime}(l)$ is independent of k.
Proof. First, it is obvious that

$$
\begin{equation*}
\left|\tau_{l}^{(k)}\right| \min _{x \in \tau_{l}^{(k)}} \frac{1}{\left|\eta^{-1}(p-y)\right|^{n-\alpha}} \leq j_{\alpha}^{(l)}(p), j_{a p p x . \alpha}^{(l)}(p) \leq\left|\tau_{l}^{(k)}\right| \max _{x \in \tau_{l}^{(k)}} \frac{1}{\left|\eta^{-1}(p-y)\right|^{n-\alpha}} \tag{86}
\end{equation*}
$$

where

$$
\begin{equation*}
\max _{y \in \tau_{l}^{(k)}} \frac{1}{\left|\eta^{-1}(p-y)\right|^{n-\alpha}}=\frac{1}{\left(2 \frac{l-1}{k}\right)^{n-\alpha}} \tag{87}
\end{equation*}
$$

and

$$
\begin{equation*}
\min _{y \in \tau_{l}^{(k)}} \frac{1}{\left|\eta^{-1}(p-y)\right|^{n-\alpha}}=\frac{1}{\left(2 \frac{l}{k}\right)^{n-\alpha}} \tag{88}
\end{equation*}
$$

So for a sufficiently large k, it can satisfy

$$
\begin{equation*}
\max _{y \in \tau_{l}^{(k)}} \frac{\left|\tau_{l}^{(k)}\right|}{\left|\eta^{-1}(p-y)\right|^{n-\alpha}}-\min _{x \in \tau_{l}^{(k)}} \frac{\left|\tau_{l}^{(k)}\right|}{\left|\eta^{-1}(p-y)\right|^{n-\alpha}}=\frac{\left|\tau_{l}^{(k)}\right|}{\left(2 \frac{l-1}{k}\right)^{n-\alpha}}-\frac{\left|\tau_{l}^{(k)}\right|}{\left(2 \frac{l}{k}\right)^{n-\alpha}}, \tag{89}
\end{equation*}
$$

so that

$$
\begin{equation*}
\left|j_{\alpha}^{(l)}(p)-j_{a p p x . \alpha}^{(k)}(p)\right| \leq\left|\tau_{l}^{(k)}\right|\left(\frac{1}{\left(2 \frac{l-1}{k}\right)^{n-\alpha}}-\frac{1}{\left(2 \frac{l}{k}\right)^{n-\alpha}}\right) \equiv C^{\prime}(l) k^{-\alpha} . \tag{90}
\end{equation*}
$$

We have used Lemma 5 in this equation and $C^{\prime}(l)$ equals

$$
\begin{equation*}
C^{\prime}(l)=C(l) 2^{\alpha-n} \cdot\left[(l-1)^{\alpha-n}-l^{\alpha-n}\right] \tag{91}
\end{equation*}
$$

Then the theorem is proven.
Of course, we can basically do the same with $\left|\tau_{l}^{\prime(k)}\right|$. Then we can get

$$
\begin{equation*}
\left|j_{\alpha}^{\prime(l)}\left(p^{\prime}\right)-j_{a p p x . \alpha}^{\prime(k)}\left(p^{\prime}\right)\right| \leq C^{\prime}(l) k^{-\alpha} . \tag{92}
\end{equation*}
$$

Note that $C^{\prime}(l)$ increases as l increases, and by (91) and (78), we can see that $C^{\prime}(l)$ increases in the order of $k^{n-1} \cdot k^{\alpha-n-1}=k^{\alpha-2}$

Now, back to the main theorem, we can see that $j_{a p p x . \alpha}^{(k)}(p)=j_{a p p x . \alpha}^{\prime}\left(p^{\prime}\right)$ because by Lemma $4\left|\tau_{l}^{(k)}\right|=\left|\tau_{l}^{\prime(k)}\right|$, and $\frac{1}{\left|\eta^{-1}(p-y)\right|^{n-\alpha}}=\frac{1}{\left|\eta^{-1}\left(p^{\prime}-y^{\prime}\right)\right|^{n-\alpha}}$ for some $y \in \tau_{l}^{(k)}$ and $P_{m} y=y^{\prime} \in \tau_{l}{ }^{\prime(k)}$, therefore

$$
\begin{equation*}
\left|j_{\alpha}^{\prime(l)}\left(p^{\prime}\right)-j_{\alpha}^{(l)}(p)\right| \leq\left|j_{\alpha}^{\prime(l)}\left(p^{\prime}\right)-j_{a p p x . \alpha}^{\prime(k)}\left(p^{\prime}\right)\right|+\left|j_{\alpha}^{(l)}(p)-j_{a p p x . \alpha}^{(k)}(p)\right| \leq 2 C^{\prime}(l) k^{-\alpha} \tag{93}
\end{equation*}
$$

thus, for sufficiently large k

$$
\left.\begin{array}{rl}
\left|J_{\alpha}(p)-J_{\alpha}\left(p^{\prime}\right)\right|=\mid \sum_{l}^{k} j_{\alpha}^{(l)}(p)-j_{\alpha}^{\prime}(l) \\
l \tag{94}
\end{array} p^{\prime}\right)\left|\leq \sum_{l}^{k}\right| j_{\alpha}^{\prime}(l)\left(p^{\prime}\right)-j_{\alpha}^{(l)}(p) \mid, ~=\sum_{l}^{k} C^{\prime}(l) k^{-\alpha} \leq k C^{\prime}(k) \cdot k^{-\alpha} .
$$

Since $k C^{\prime}(k)$ increases in the order of $k^{\alpha-1}$, so (94) will decrease in the order of k^{-1} as k approaches to infinity. So the theorem is proven.

4.1 Generalization

In Theorem 5 , we have assumed Ω to be an n-dimensional ellipsoid centered at the origin point and it has axis of $\sqrt{\eta_{1}}, \sqrt{\eta_{2}} \cdots \sqrt{\eta_{n}}$ each parallel to the coordinate $\left(x_{1} \cdots x_{n}\right)$. But this assumption is superfluous, for all we need is the restriction for Ω is $P_{m} \Omega=\Omega$ and Ω is bounded. From (66) to (70) we can see that Lemma 4 still holds under this restriction, and therefore, so does in Theorem 5.

Another assumption that is superfluous is that we only consider $p \in \partial \Omega$ and $P_{m} p \in$ $\partial \Omega$. That is, we only consider $J_{\alpha}(x)$ under the restriction $\left.J_{\alpha}(x)\right|_{\partial \Omega}$. We will extend it to any point $p \in \mathbb{R}^{n}$ and $p^{\prime}=P_{m} p \in \mathbb{R}^{n}$.

We will redefine the coordinate $\left(\rho, \phi_{1} \cdots \phi_{n-1}\right)$ and ($r, \theta_{1}, \cdots \theta_{n-1}$) in Definition 5 basically in the same way but this time the coordinate will be centered at any point p and $P_{m} p$ which is not necessary on $\partial \Omega .\left|\tau_{l}^{(k)}\right|$ and $\left|\tau_{l}^{\prime(k)}\right|$ are now written as

$$
\begin{equation*}
\tau_{l}^{(k)}=\left\{x \in \Omega \left\lvert\, 2 \frac{l-1}{k} \leq \rho<2 \frac{l}{k}\right.\right\}, k_{\min } \leq l \leq k_{\max } \tag{95}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau_{l}^{\prime(k)}=\left\{x \in \Omega \left\lvert\, 2 \frac{l-1}{k} \leq r<2 \frac{l}{k}\right.\right\}, k_{\min } \leq l \leq k_{\max } \tag{96}
\end{equation*}
$$

where $k_{\max }$ is defined as $\forall l>k_{\max }, \tau_{l}^{(k)}=\varnothing$. Since $P_{m} \tau_{l}^{(k)}=\tau_{l}^{\prime(k)}$, so that $\forall l>k_{\max }$, $\tau_{l}^{\prime(k)}=\varnothing$. Such $k_{\max }$ exists because of the boundedness of Ω. Similarly, $k_{\min }$ is defined as $\forall l<k_{\text {min }}, \tau_{l}^{(k)}=\varnothing$. If such $k_{\text {min }}$ does not exist, then set $k_{\text {min }}=1$.

By this definition, we can get

$$
\begin{equation*}
\Omega=\bigcup_{k_{\min } \leq l \leq k_{\max }} \tau_{l}^{(k)}=\bigcup_{k_{\min } \leq l \leq k_{\max }} \tau_{l}^{\prime(k)}, \tag{97}
\end{equation*}
$$

and therefore,

$$
\begin{align*}
J_{\alpha}(x) & =\frac{1}{\beta(\alpha)} \int_{\Omega} \frac{d y}{\left|\eta^{-1}(x-y)\right|^{n-\alpha}} \tag{98}\\
& =\sum_{k_{\min } \leq l \leq k_{\max }} \int_{\tau_{l}^{(k)}} \frac{d y}{\left|\eta^{-1}(x-y)\right|^{n-\alpha}} \equiv \sum_{k_{\min } \leq l \leq k_{\max }} j_{\alpha}^{(l)} \\
& =\sum_{k_{\min } \leq l \leq k_{\max }} \int_{\tau_{l}^{(k)}} \frac{d y}{\left|\eta^{-1}(x-y)\right|^{n-\alpha}} \equiv \sum_{k_{\min } \leq l \leq k_{\max }} j_{\alpha}^{\prime(l)} .
\end{align*}
$$

The definition of $j_{\alpha}^{(l)}(x), j_{\alpha}^{\prime}(l)(x), j_{a p p x . \alpha}^{(l)}(x)$, and $j_{a p p x . \alpha}^{\prime}(l)$ are still the same, so that we can see Theorem 5 still holds.

The generalization of Theorem 5 is:
Theorem 6 (generlization). Let

$$
\begin{equation*}
u(x) \equiv \frac{1}{\beta(\alpha)} \int_{\Omega} \frac{d y}{\left|\eta^{-1}(x-y)\right|^{n-\alpha}}=J_{\alpha} . \tag{99}
\end{equation*}
$$

For all bounded domain Ω that satisfies $\Omega=P_{m} \Omega$

$$
\begin{equation*}
u(x)=u\left(P_{m} x\right) . \tag{100}
\end{equation*}
$$

4.2 The antisymmetric property

In the equation of $\left(-\Delta_{E}\right)^{\frac{\alpha}{2}} u(x)=f(x)$, we have set $f(x)=\chi_{\Omega}$ and found out that the solution, noted as $J_{\alpha}(x)$, has the symmetric property. Now, if we replace the function $f(x)$ by another function $g(x)=\chi_{\Omega} x_{i}$, where $1 \leq i \leq n$, then the solution for $\left(-\Delta_{E}\right)^{\frac{\alpha}{2}} u(x)=g(x)$, noted as $J_{\alpha} g(x)=\mathfrak{J}_{\alpha}(x)$ will satisfy another property.

Theorem 7. Let

$$
\begin{equation*}
u(x) \equiv \frac{1}{\beta(\alpha)} \int_{\Omega} \frac{x_{i} d y}{\left|\eta^{-1}(x-y)\right|^{n-\alpha}}=\mathfrak{J}_{\alpha}(x) \tag{101}
\end{equation*}
$$

then there is a property of $\left.u(x)\right|_{\Omega}$.

$$
\begin{gather*}
\left.u(x)\right|_{\partial \Omega}=\left.u\left(P_{m} x\right)\right|_{\partial \Omega}, \text { for } m \neq i, \tag{102}\\
\left.u(x)\right|_{\partial \Omega}=-\left.u\left(P_{m} x\right)\right|_{\partial \Omega}, \text { for } m=i . \tag{103}
\end{gather*}
$$

Where Ω is an n-dimensional ellipsoid centered at origin point and axis parallel to the coordinate $\left(x_{1}, x_{2} \cdots x_{n}\right)$.

Proof. First, we will redefine, $j_{\alpha}^{(l)}, j_{\alpha}^{\prime(l)}$ as

$$
\begin{equation*}
j_{\alpha}^{(l)}(x) \equiv \int_{\tau_{l}^{(k)}} \frac{x_{i} d y}{\left|\eta^{-1}(x-y)\right|^{n-\alpha}} \tag{104}
\end{equation*}
$$

and

$$
\begin{equation*}
j_{\alpha(x)}^{\prime(l)} \equiv \int_{\tau_{l}^{\prime(k)}} \frac{x_{i} d y}{\left|\eta^{-1}(x-y)\right|^{n-\alpha}} . \tag{105}
\end{equation*}
$$

Since $\tau_{l}^{(k)}$ and $\tau_{l}^{\prime(k)}$ are the same as (61) and (63). so that

$$
\begin{align*}
\mathfrak{J}_{\alpha}(x) & =\frac{1}{\beta(\alpha)} \int_{\Omega} \frac{x_{i} d y}{\left|\eta^{-1}(x-y)\right|^{n-\alpha}} \tag{106}\\
& =\sum_{1 \leq l \leq k} \int_{\tau_{l}^{(k)}} \frac{x_{i} d y}{\left|\eta^{-1}(x-y)\right|^{n-\alpha}} \equiv \sum_{1 \leq l \leq k} j_{\alpha}^{(l)} \\
& =\sum_{1 \leq l \leq k} \int_{\tau_{l}^{(k)}} \frac{x_{i} d y}{\left|\eta^{-1}(x-y)\right|^{n-\alpha}} \equiv \sum_{1 \leq l \leq k} j_{\alpha}^{\prime}(l) .
\end{align*}
$$

Now we are going to do something different. Define a subset in $\tau_{l}^{(k)}$,

$$
\begin{equation*}
\pi_{m l}^{(k)}=\left\{x \in \tau_{l}^{(k)} \left\lvert\,{\sqrt{\eta_{i}}}^{\frac{m-1}{k}} \leq x_{i}<\sqrt{\eta_{i}} \frac{m}{k}\right.\right\} . \tag{107}
\end{equation*}
$$

Where m is an integer ranges from $-k+1$ to k. Similarly, we define

$$
\begin{equation*}
\pi_{m l}^{\prime(k)}=\left\{x \in \tau_{l}^{\prime(k)} \left\lvert\, \sqrt{\eta_{i}} \frac{m-1}{k} \leq x_{i}<\sqrt{\eta_{i}} \frac{m}{k}\right.\right\} . \tag{108}
\end{equation*}
$$

By (107) and (108), we can see that $P_{m} \pi_{m l}^{(k)}=\pi_{m l}^{\prime(k)}$ for $m \neq i$ and $P_{m} \pi_{m l}^{(k)}=\pi_{-m+1 l}^{\prime(k)}$ for $m=i$, therefore, $\left|\pi_{m l}^{(k)}\right|=\left|\pi_{m l}^{\prime(k)}\right|$ for $m \neq i$, and $\left|\pi_{m l}^{(k)}\right|=\left|\pi_{-m+1 l}^{\prime(k)}\right|$ for $m=i$.

We can see that $\left|\pi_{m l}^{(k)}\right|$ decay to zero as k approach to infinity, and Lemma 7 told that who rapidly does it approaches to zero.

Lemma 7. For any $-k+1 \leq m \leq k,\left|\pi_{m l}^{(k)}\right|$ and $\left|\pi_{m l}^{\prime(k)}\right|$ satisfy

$$
\begin{equation*}
\left|\pi_{m l}^{(k)}\right| \leq C k^{-n-1} \tag{109}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\pi_{m l}^{\prime(k)}\right| \leq C k^{-n-1} \tag{110}
\end{equation*}
$$

where C is a constant independent of k.
Proof. Set

$$
\begin{equation*}
|\pi|_{\max } \equiv \max \left\{\left|\pi_{-k+1 l}^{(k)}\right|,\left|\pi_{-k+2 l}^{(k)}\right| \cdots\left|\pi_{k-1 l}^{(k)}\right|,\left|\pi_{k l}^{(k)}\right|\right\} \tag{111}
\end{equation*}
$$

and

$$
\begin{equation*}
|\pi|_{\min } \equiv \min \left\{\left|\pi_{-k+1 l}^{(k)}\right|,\left|\pi_{-k+2 l}^{(k)}\right| \cdots\left|\pi_{k-1 l}^{(k)}\right|,\left|\pi_{k l}^{(k)}\right|\right\} . \tag{112}
\end{equation*}
$$

Notice that,

$$
\begin{equation*}
2 k|\pi|_{\min } \leq \sum_{m=-k+1}^{k}\left|\pi_{m l}^{(k)}\right|=\left|\tau_{l}^{(k)}\right| \tag{113}
\end{equation*}
$$

By Lemma 5 we can se that

$$
\begin{equation*}
|\pi|_{\min } \leq \frac{1}{2} C(l) k^{-n-1} \tag{114}
\end{equation*}
$$

or

$$
\begin{equation*}
\left|\pi_{m l}^{(k)}\right| \leq|\pi|_{\max } \leq \frac{1}{2} \frac{|\pi|_{\max }}{|\pi|_{\min }} C(l) k^{-n-1} . \tag{115}
\end{equation*}
$$

The same can be done with $\left|\pi_{m l}^{\prime(k)}\right|$, and the theorem is proven.
Lemma 8. For any integer k and $1 \leq l \leq k$ it satisfies

$$
\begin{equation*}
\left|j_{\alpha}^{(l)}(p)+j_{\alpha}^{\prime}(l)\left(p^{\prime}\right)\right| \leq C^{\prime}(l) k^{-\alpha} \tag{116}
\end{equation*}
$$

If $p \in \partial \Omega, p^{\prime}=P_{i} p \in \partial \Omega$, and

$$
\begin{equation*}
\left|j_{\alpha}^{(l)}(p)-j_{\alpha}^{\prime(l)}\left(p^{\prime}\right)\right| \leq C^{\prime}(l) k^{-\alpha} \tag{117}
\end{equation*}
$$

If $p \in \partial \Omega, p^{\prime}=P_{m} p \in \partial \Omega$ where $m \neq i$.
The definition of $j_{\alpha}^{(l)}(x)$ and $j_{\alpha}^{\prime(l)}(x)$ are in (104) and (105), and $C^{\prime}(l)$ is independent of k.

Proof. First, we define

$$
\begin{equation*}
\mathfrak{j}_{\alpha}^{m l}(x)=\int_{\pi_{m l}^{(k)}} \frac{x_{i} d y}{\left|\eta^{-1}(x-y)\right|^{n-\alpha}} \tag{118}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathfrak{j}_{\alpha}^{\prime m l}(x)=\int_{\pi_{m l}^{\prime(k l}} \frac{x_{i} d y}{\left|\eta^{-1}(x-y)\right|^{n-\alpha}} . \tag{119}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
j_{\alpha}^{(l)}(x)=\sum_{m=-k+1}^{k} \mathfrak{j}_{\alpha}^{m l}(x), \text { and } j_{\alpha}^{\prime(l)}(x)=\sum_{m=-k+1}^{k} \mathfrak{j}_{\alpha}^{\prime m l}(x) . \tag{120}
\end{equation*}
$$

Consider an approximation of $\mathfrak{j}_{\alpha}^{m l}(x)$, and $\mathfrak{j}_{\alpha}^{\prime m l}(x)$

$$
\begin{equation*}
\mathfrak{j}_{a p p x . \alpha}^{m l}(x)=\left|\pi_{m l}^{(k)}\right| \frac{x_{i}}{\left|\eta^{-1}(x-y)\right|^{n-\alpha}} \tag{121}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathfrak{j}_{a p p x . \alpha}^{\prime m l}(x)=\left|\pi_{m l}^{\prime(k)}\right| \frac{x_{i}}{\left|\eta^{-1}\left(x-y^{\prime}\right)\right|^{n-\alpha}} . \tag{122}
\end{equation*}
$$

For some $y \in \pi_{m l}^{(k)}$, and $y^{\prime} \in \pi_{m l}^{\prime(k)}$,

$$
\begin{equation*}
\left|\pi_{m l}^{(k)}\right| \min _{x \in \pi_{m l}^{(k l}} \frac{x_{i}}{\left|\eta^{-1}(p-y)\right|^{n-\alpha}} \leq \mathfrak{j}_{\alpha}^{(m l)}(p), \mathfrak{j}_{a p p x \cdot \alpha}^{(m l)}(p) \leq\left|\pi_{m l}^{(k)}\right| \max _{x \in \pi_{m l}^{(k)}} \frac{x_{i}}{\left|\eta^{-1}(p-y)\right|^{n-\alpha}} \tag{123}
\end{equation*}
$$

By the difinition of $\pi_{m l}^{(k)}$ and $\pi_{m l}^{\prime(k)}$ we can see that

$$
\begin{equation*}
\max _{y \in \pi_{m l}^{(k)}} \frac{x_{i}}{\left|\eta^{-1}(p-y)\right|^{n-\alpha}} \leq \frac{m}{k} \frac{1}{\left(2 \frac{l-1}{k}\right)^{n-\alpha}} \tag{124}
\end{equation*}
$$

and

$$
\begin{equation*}
\min _{y \in \pi_{m l}^{k l}} \frac{x_{i}}{\left|\eta^{-1}(p-y)\right|^{n-\alpha}} \leq \frac{m-1}{k} \frac{1}{\left(2 \frac{l}{k}\right)^{n-\alpha}} \tag{125}
\end{equation*}
$$

Apply (124) and (125) and Lemma 7 to (123) we can get

$$
\begin{equation*}
\left|\mathfrak{j}_{\alpha}^{(m l)}(p)-\mathfrak{j}_{a p p x . \alpha}^{(m l)}(p)\right| \leq C(m, l) k^{-\alpha-1} \tag{126}
\end{equation*}
$$

Where $C(m, l)$ equals

$$
\begin{equation*}
C(m, l)=2^{\alpha-n-1} \frac{|\pi|_{\max }}{|\pi|_{\min }} C(l)\left[\frac{m}{(l-1)^{n-\alpha}}-\frac{m-1}{l^{n-\alpha}}\right] . \tag{127}
\end{equation*}
$$

The can similarly apply the same way to $\mathfrak{j}_{\alpha}{ }^{(m l)}\left(p^{\prime}\right)$, and get

$$
\begin{equation*}
\left|\mathfrak{j}_{\alpha}^{\prime(m l)}\left(p^{\prime}\right)-\mathfrak{j}_{\text {appx. }}^{\prime}(m l)\left(p^{\prime}\right)\right| \leq C(m, l) k^{-\alpha-1} . \tag{128}
\end{equation*}
$$

On the other hand, by (121) and (122), we can see that $\mathfrak{j}_{a p p x . \alpha}^{m l}(p)=\mathfrak{j}_{a p p x . \alpha}^{\prime m l}\left(p^{\prime}\right)$ for $P_{m} p=p^{\prime}$ where $m \neq i$, and $\mathfrak{j}_{\text {appx. }}^{m l}(p)=-\mathfrak{j}_{\text {appx. }}^{\prime}-m+1 l\left(p^{\prime}\right)$ for $P_{i} p=p^{\prime}$. Therefore, we get

$$
\begin{equation*}
\sum_{m=-k+1}^{k} \mathfrak{j}_{a p p x . \alpha}^{m l}(p)=\sum_{m=-k+1}^{k} \mathfrak{j}_{a p p x . \alpha}^{\prime m l}\left(p^{\prime}\right) \tag{129}
\end{equation*}
$$

for $P_{m} p=p^{\prime}, m \neq i$.

$$
\begin{equation*}
\sum_{m=-k+1}^{k} \mathfrak{j}_{a p p x . \alpha}^{m l}(p)=-\sum_{m=-k+1}^{k} \mathfrak{j}_{a p p x . \alpha}^{\prime}{ }^{m l}\left(p^{\prime}\right) \tag{130}
\end{equation*}
$$

for $P_{i} p=p^{\prime}$.
So for the $m \neq i$ case, by (120) we can get,

$$
\begin{gather*}
\left.\left|j_{\alpha}^{(l)}(p)-j_{\alpha}^{\prime}(l)\left(p^{\prime}\right)\right|=\mid \sum_{m=-k+1}^{k}\left(\mathfrak{j}_{a p p x . \alpha}^{m l}(p)-\mathfrak{j}_{\alpha}^{m l}(p)\right)+\sum_{m=-k+1}^{k}\left(\mathfrak{j}_{\alpha}^{\prime m l}\left(p^{\prime}\right)\right)-\mathfrak{j}_{a p p x . \alpha}^{\prime m l}\left(p^{\prime}\right)\right) \mid \\
\leq \sum_{m=-k+1}^{k}\left|\mathfrak{j}_{a p p x . \alpha}^{m l}(p)-\mathfrak{j}_{\alpha}^{m l}(p)\right|+\sum_{m=-k+1}^{k}\left|\mathfrak{j}_{a p p x . \alpha}^{\prime m l}\left(p^{\prime}\right)-\mathfrak{j}_{\alpha}^{\prime m l}\left(p^{\prime}\right)\right| \\
\leq 2 \sum_{m=-k+1}^{k} C(l, m) k^{\alpha-1}=2 k \cdot C(l) k^{-\alpha-1} \equiv C(l) k^{-\alpha} \tag{131}
\end{gather*}
$$

and for the $m=i$ case

$$
\begin{gather*}
\left.\left|j_{\alpha}^{(l)}(p)+j_{\alpha}^{\prime}(l)\left(p^{\prime}\right)\right|=\mid \sum_{m=-k+1}^{k}\left(\mathfrak{j}_{\alpha}^{m l}(p)-\mathfrak{j}_{a p p x . \alpha}^{m l}(p)\right)+\sum_{m=-k+1}^{k}\left(\mathfrak{j}_{\alpha}^{\prime m l}\left(p^{\prime}\right)\right)-\mathfrak{j}_{a p p x . \alpha}^{\prime m l}\left(p^{\prime}\right)\right) \mid \\
\leq \sum_{m=-k+1}^{k}\left|\mathfrak{j}_{a p p x . \alpha}^{m l}(p)-\mathfrak{j}_{\alpha}^{m l}(p)\right|+\sum_{m=-k+1}^{k}\left|\mathfrak{j}_{a p p x . \alpha}^{\prime m l}\left(p^{\prime}\right)-\mathfrak{j}_{\alpha}^{\prime m l}\left(p^{\prime}\right)\right| \\
\leq 2 \sum_{m=-k+1}^{k} C(l, m) k^{\alpha-1}=2 k \cdot C(l) k^{-\alpha-1} \equiv C(l) k^{-\alpha} . \tag{132}
\end{gather*}
$$

Note that by (127), $\sum_{m=-k+1}^{k} C(l, m) k$ is independent of m. So we can see that the theorem is proven.

We can see that the first equation in Lemma 7 is identical to (93), so by (94) and (106) we can get

$$
\begin{equation*}
\left.\mathfrak{J}_{\alpha}(p)\right|_{\partial \Omega}=\left.\mathfrak{J}_{\alpha}\left(P_{m} p\right)\right|_{\partial \Omega}, \text { for } m \neq i . \tag{133}
\end{equation*}
$$

By the second equation of Lemma 7, we can see that it is basically the same as (93) but $j_{\alpha}^{\prime(l)}\left(p^{\prime}\right)$ has been replaced by $-j_{\alpha}^{\prime(l)}\left(p^{\prime}\right)$, so by (94) we can see that $\left|\mathfrak{J}_{\alpha}(p)+\mathfrak{J}_{\alpha}\left(P_{m} p\right)\right|$ will approach to zero as k approaches to infinity, so that

$$
\begin{equation*}
\left.\mathfrak{J}_{\alpha}(p)\right|_{\partial \Omega}=-\left.\mathfrak{J}_{\alpha}\left(P_{m} p\right)\right|_{\partial \Omega}, \text { for } m=i \tag{134}
\end{equation*}
$$

and therefore, the theorem has been proven.

5 Appendix [1]

Theorem 8. For any $0<\alpha<n$, if $u(x)$ satisfies the equation

$$
\begin{equation*}
-\Delta^{\frac{\alpha}{2}} u(x)=\rho(x), \quad \text { for any } x \in \mathbb{R}^{n} \tag{135}
\end{equation*}
$$

then $u(\mathbf{x})$ can be written as the convolution between K_{α} and f

$$
\begin{equation*}
u(x)=I_{\alpha} \rho(x)=\left(K_{\alpha} * \rho\right)(x) . \tag{136}
\end{equation*}
$$

Proof. We can start by Fourier transformation.

$$
\begin{align*}
\mathcal{F}\left(-\Delta^{\frac{\alpha}{2}} u(x)\right) & =-\widehat{\Delta^{\alpha / 2} u}(\xi) \tag{137}\\
& =\int_{\mathbb{R}^{n}}\left(\frac{1}{\Gamma\left(\frac{-\alpha}{2}\right)} \int_{0}^{\infty} t^{-\frac{\alpha}{2}-1} e^{\Delta t} u(x) d t\right) e^{-i x \cdot \xi} d x \\
& =\frac{1}{\Gamma\left(\frac{-\alpha}{2}\right)} \int_{0}^{\infty} t^{-\frac{\alpha}{2}-1}\left(\int_{0}^{\infty} G_{t} * u(x) e^{-i x \cdot \xi} d x\right) d t \\
& =\frac{1}{\Gamma\left(\frac{-\alpha}{2}\right)} \int_{0}^{\infty} t^{-\frac{\alpha}{2}-1} \widehat{G_{t}} \cdot \widehat{u}(\xi) d t \\
& =\widehat{\rho}(\xi) .
\end{align*}
$$

The Fourier transformation of the Gauss kernel was known as

$$
\begin{equation*}
\widehat{G}_{t}(\xi)=(4 \pi t)^{-\frac{n}{2}} \int_{0}^{\infty} e^{-\frac{|x|^{2}}{4 t}} \cdot e^{-i x \cdot \xi} d \mathbf{x}=e^{-t|\xi|^{2}} \tag{138}
\end{equation*}
$$

So,

$$
\begin{equation*}
-\widehat{\Delta^{\alpha / 2} u}(\xi)=\frac{\widehat{u}(\xi)}{\Gamma\left(\frac{-\alpha}{2}\right)} \int_{0}^{\infty} t^{-\frac{\alpha}{2}-1} e^{-t|\xi|^{2}} d t=|\xi|^{\alpha} \widehat{u}(\xi) . \tag{139}
\end{equation*}
$$

In this case, we have use the fact that

$$
\begin{equation*}
\int_{0}^{\infty} t^{s} e^{-t u^{2}} d t=\frac{\Gamma(s+1)}{u^{2(s+1)}} \tag{140}
\end{equation*}
$$

Therefore, we get

$$
\begin{equation*}
\widehat{u}(\xi)=|\xi|^{-\alpha} \widehat{\rho}(\xi), \quad u(x)=(2 \pi)^{-n} \int_{\mathbb{R}^{n}}|\xi|^{-\alpha} e^{i \xi \cdot x} d \xi . \tag{141}
\end{equation*}
$$

The solution can be constructed to the convolution between two functions. $u(x)=$ $(2 \pi)^{-n} \phi * \rho(x)$. Where the ϕ is

$$
\begin{gather*}
\phi(x)=\int_{\mathbb{R}^{n}}|\xi|^{-\alpha} e^{i \xi \cdot x} d \xi \tag{142}\\
\phi(\lambda x)=\int_{\mathbb{R}^{n}}|\xi|^{-\alpha} e^{i \xi \cdot(\lambda x)} d \xi=\int_{\mathbb{R}^{n}}|\xi|^{-\alpha} e^{i(\lambda \xi) \cdot x} d \xi \tag{143}
\end{gather*}
$$

Now consider a transformation:

$$
\lambda \xi=\zeta, d \xi=\lambda^{-n} d \zeta
$$

Then,

$$
\begin{equation*}
\phi(\lambda \mathbf{x})=\int_{\mathbb{R}^{n}}\left|\lambda^{-1} \zeta\right|^{-\alpha} e^{i \zeta \cdot x} \lambda^{-n} d \xi=\lambda^{\alpha-n} \int_{\mathbb{R}^{n}}|\zeta|^{-\alpha} e^{i \tau \cdot x} d \xi=\lambda^{\alpha-n} \phi(x) \tag{144}
\end{equation*}
$$

It is obvious that $\phi(x)$ is a homogeneous function, so we can express ϕ in $\phi(x)=$ $C|x|^{\alpha-n}$, and now we are going to determine the constant C.

$$
\begin{align*}
\int_{\mathbb{R}^{n}} \phi(x) \exp \left(-\frac{|x|^{2}}{2}\right) d x & =C \int_{\mathbb{R}^{n}} \exp \left(-\frac{|x|^{2}}{2}\right)|\xi|^{\alpha-1} d x \tag{145}\\
& =C\left|\mathbb{S}^{n-1}\right| \int_{0}^{\infty} r^{\alpha-1} \exp \left(-\frac{r^{2}}{2}\right) d r \\
& =C\left|S^{n-1}\right| 2^{\frac{\alpha}{2}-1} \Gamma\left(\frac{\alpha}{2}\right) .
\end{align*}
$$

On the other hand,

$$
\begin{align*}
\int_{\mathbb{R}^{n}} \phi(x) \exp \left(-\frac{|x|^{2}}{2}\right) d x & =\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}}|\xi|^{-\alpha} \exp \left(-\frac{|x|^{2}}{2}\right) e^{i \xi \cdot x} d x d \xi \tag{146}\\
& =(\sqrt{2 \pi})^{n} \int_{\mathbb{R}^{n}} \exp \left(-\frac{|\xi|^{2}}{2}\right)|x|^{-\alpha} d \xi \\
& =(\sqrt{2 \pi})^{n}\left|S^{n-1}\right| \int_{0}^{\infty} \exp \left(-\frac{r^{2}}{2}\right) r^{n-\alpha-1} d r \\
& =(\sqrt{2 \pi})^{n}\left|S^{n-1}\right| 2^{\frac{n-\alpha}{2}-1} \Gamma\left(\frac{n-\alpha}{2}\right) .
\end{align*}
$$

Compare（145）and（146）with the results，we can see that

$$
\begin{gather*}
C=(\sqrt{2 \pi})^{n} 2^{-\alpha+\frac{n}{2}} \frac{\Gamma\left(\frac{\alpha-n}{2}\right)}{\Gamma\left(\frac{\alpha}{2}\right)}, \tag{147}\\
\phi(x)=(\sqrt{2 \pi})^{n} 2^{-\alpha+\frac{n}{2}} \frac{\Gamma\left(\frac{\alpha-n}{2}\right)}{\Gamma\left(\frac{\alpha}{2}\right)}|x|^{\alpha-n} . \tag{148}
\end{gather*}
$$

And finally，we get our solution

$$
\begin{equation*}
u(x)=(2 \pi)^{-n} \phi * \rho(x)=\pi^{-\frac{n}{2}} 2^{-\alpha} \frac{\Gamma\left(\frac{\alpha-n}{2}\right)}{\Gamma\left(\frac{\alpha}{2}\right)} \int_{\mathbb{R}^{n}} \frac{\rho(y)}{|x-y|^{n-\alpha}}=I_{\alpha} \rho(x) d x \tag{149}
\end{equation*}
$$

If the exponent $\alpha=2 n$（ n is a natural number），then by definition：

$$
\begin{equation*}
-\widehat{\Delta^{n} u}(\xi)=\lim _{\alpha \rightarrow 2 n}-\widehat{\Delta^{\alpha / 2} u}(\xi)=\lim _{\alpha \rightarrow 2 n} \frac{1}{\Gamma\left(\frac{-\alpha}{2}\right)} \int_{0}^{\infty} t^{-\frac{\alpha}{2}-1} \widehat{G_{t}} \cdot \widehat{u}(\xi) d t \tag{150}
\end{equation*}
$$

By calculation，this limit will be

$$
\begin{equation*}
\lim _{\alpha \rightarrow 2 n}-\widehat{\Delta^{\alpha / 2} u}(\xi)=|\xi|^{\alpha} \widehat{u}(\xi) \tag{151}
\end{equation*}
$$

6 Acknowledgements

I would like to thank the judges of Shing－Tung Yau High School Mathematics Award for their suggestions for revision．

References

［1］林琦焜；〈《Riesz 位勢與 Sobolev 不等式》，新竹市，交大出版社（民97）
［2］E．Stein；Singular Intergrals and Differentiability Properties of Functions．Princeton Uni－ versity Press 1970.
［3］F．Jones；Lebesque Intergration on Euclidean space．Sudbury，Mass：Jones and Bartlett 2001.
［4］G．Lu and J．Zhu；An overdetermined problem in Riesz－potential and fractional Laplacian． Retrieved from http：／／arxiv．org／abs／1101．1649， 2011.

