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Abstract
This paper is a study of the equation (—Ag)?u(x) = f(x), where (—Ag)? is an
(elliptic pseudo-differential) operator defined by
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where 11,12, - - - , 1y are a set of non-negative numbers that specify the operator. Note
that it is an extension of the fractional Laplacian operator (—A)?2.
In this paper, we construct a solution, noted as J, f, by

Jef(x) = 1 /}R — f(y) dy,

B(a) (x—y)ne
where [771 - (x —y)|is /X 77 (x; — y;), and B(a) ! equals
po =L )

V2T wi2eT(4)’
Then if we set f = x where x( is the indicator function and () is some bounded

domain in R”, then for all bounded domain Q) that is invariant under reflection trans-
formation Py, namely P, () = Qforallm =1,...,n, Jof = J«(x) satisfies

Ja(x) = Ja(Pmx).
The reflection transformation is defined as
Pux =Py (x1,- -+ X, ,%n) = (X1, , =Xm, -+, Xn),

wherem =1,2,...,n.
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1 Introdution

The basic idea of this paper is derived from an important concept in potential theory, the
Riesz potential I, f. It is known that Riesz potential is closely related to the fractional
Laplacian operator. It is actually the inverse operator of (—A)?2, namely, u(x) = I, f if
(=A)7u = f [1]. Now we let f = xq, where xq is the indicator function. Then this
function denoted as I, (x) in some bounded domain () has an interesting property. I, (x)
is radially symmetric to a center of a ball. In other words, u(x)|,q = const. if and only
if Q) is a ball [4].
In this paper, we will extend the fractional Laplacian to an elliptic operator

%
( AE 7 ( Zﬂ]ax ) u,

where #1,12,- -+, > 0 and they are independent of the variables. The fractional ex-
ponent will be defined in the article. We hope to achieve the following things in the
paper:

1. Find the solution of (—Ag)Zu = f, which is denoted by J, f(x). Then u(x) = J,f
if (—Ap) Tu(x) = f()



2. Discuss the integrability of J, f.

3. Discuss the symmetry property of the solution of (—Ag)Zu = xq where Q) is
an n-dimensional ellipsoid centered at origin point and axis parallel to the axis
(x1,x2,- -+, %) of some cartesian coordinate system.

N\Q
|

4. Consider symmetry property of the solution of another equation (—Ag)2u
Xaxi, wherei =1,2,--- ,n. (The antisymmetric property)

But before doing all this, we will first define some concepts.

1.1 Fractional Laplacian

Now we turn to an important concept of this paper: the fractional Laplacian operator
(—A)~%. Only the fractional exponent of a positive definite operator can be defined, so
we need to take a minus sign in front of the ordinary Laplacian A.

One way to define (—A)~ 7 is to use the Gamma function I'(«). We can start from the
fact that for any number A [1, 3]:

A — L / ps—le—tAgy. (1)
0

If we exchange A to a Laplacian, A — —A,s — % , then we get the definition.

Definition 1. The fractional Laplacian (—A)~? is defined by

(_A)i%f: r(lg)/o ! tAfdt )
where
() = Gix f(x) = [ Gilx=y)f()dy ©
and
n |x[*
G(x,t) = G¢(x) = (4mt) exp(—?) > 0. 4)

Gt(x) is called the Gauss-Weierstrass kernel [1]. It is the fundamental solution of

heat equation, and it is not difficult to see why we use it to define '*

G
I 55” = AGi(x) <= Gi(x) = e, t>0. (5)
However, there is a problem in this definition. When & = —2#n, where n is a positive

integer, then the ﬁ = %n) part will be zero, and the integral part diverges. We fix
2

I(
this problem by taking the limit

lim / t3 1etAfdi‘ (6)
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where A could be any number, and we find this limit to be A" by using the equation

F(S+1) _ b s ,—At

So it is reasonable to redefine the fractional Laplacian by taking limits in the definition
of it. Now we can define the fractional Laplacian with a positive integer exponent by

(—A)" = lim (—A)~2. )

a—2n

1.2 Riesz potential

Riesz potential is closely related to the fractional Laplacian, for it can be seen as an
inverse of the fractional Laplacian [1].

Definition 2. Forany n > 2,0 < a < n, and x € R” the Riesz potential is

L) = (Kex ) = s [ Uy, ®

nx—y

where («) is

_ mE2T(%)
7= e
and
Ko = ——|x[*" ©)
“ ()

is called the Risz kernel.

We are going to focus on Riesz potential in a compact domain () or

1 fy) 1 f(y)
@ I Ty T @ e e ypaaady (10)

where xq is the indicator function. The Riesz potential is a singular integral operator,
so the concept of integrability is important. In other words, the question will be for
feLP(Q),and I f € L1(Q), that p, g satisfy some condition which makes I, : LP(Q)) —
L7(Q)) a bounded operator.

This property can be seen by the Hardy-Littlewood-Sobolev inequality [2]:

Theorem 1. For0 < a <n,1<p,q<oo, I, : LF(Q}) — L1(Q)) is a bounded operator:

. no_n
Iafllg < Clifllp, i - <—+a (11)

P4
Proof. See [2]. This theorem says that if f € LP(Q)), then for x € Q, I, f(x) converges
absolutely. 0O



We are going to see the relationship between fractional Laplacian and the Riesz po-
tential.

Theorem 2. For any 0 < a < n, if u(x) satisfies the equation
(—8)3u(x) =p(x), xR, (12)
then u(x) can be written as the convolution of K, and f:

u(x) = lyp(x) = (Ko % p)(x)- (13)

Proof. The proof is standard [1]. For convenience, we will recall it in the appendix. O

2 Derive |,

2.1 Extending the fractional Laplacian

Before extending the fractional Laplacian, we will start by looking at the normal Lalp-
cian first:

aZ
A= ; a2 (14)
We will extend this to
aZ
—Ap = — Xi:ma—é,?, where (171,772, - 7ja > 0), (15)

because it is positive definite, #1,72,%3 - - - > 0. For the specified caserj; =1, = --- =
#1n = 1, it reduces to the ordinary Laplacian.

The question is how to define this operator with a fractional exponent (—Ag)Z. We
can do the same as the original fractional Laplacian:

Definition 3. The fractional exponent for the elliptical operator can be written as

[4 ]_ o 9
(—Apf)~% = @/0 t5-1ebet fat, (16)

where e2Ef f = (H x £)(¢), ePE5(E) = H(t, €) is the fundamental solution for d;u = Afpu,
and

1 &z
H(Et) = exp| —) =] >0. (17)
VAT P ( XI: 477#)
(17) can be easily calculated,
OHE ) _ A H(z, 1) =0 (£ > 0, lim = 5(x)) (18)
ot t—0



and we apply (18) to the Fourier transformation

2H( (&) (2 ;7152) (19)

H(g t) —exp( Zméﬂ)t:Or (20)
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2.2 The solution for Ag

H(S,t)

With all these definitions, we can start to derive the solution for fractional elliptic oper-
ator associated to Afg.

Theorem 3. The solution for fractional elliptic operator

(=8p)fu(x) = p(x) (22)
can be taken as u(x) = Jop(x), where
1 fy)
Tau(x) = / _ 4y, (23)
)= 5 S T G-y
and |71 (x — )| stands for /Y. 7, (x; — y;), and B(a) ! equals
- 1 re=2
Bla)™' = : ﬁ( Z l : (24)
Mz Mn w2257 (5)
Proof. This theorem can be proved by some simple transformation of the variables.
For the equation
(=8g)2u(x) = p(x), (25)
consider a transformation: :
Xp v~ 26
i (26)
Then (25) is transformed to
(=8)2a(¢) = p(S)- (27)
This is just the ordinary fractional Laplacian, so its solution is just the Riesz potential:
. 1 / p(e)
i(¢) = dg, 28
© 1) Jee T 29
and we can transform it back to x; variable, so the solution will be
[(n=x
uwy = U)Wy 9)
il 20T () Jre [yt (x —y)[n
O



It is also easy to define the solution for some compact domain ); simply set

= fy) _ fW)xa
f = 560 o e = e e

where xq is the indicator function.

3 Integrability

We have to discuss the integrability of J, f. Because J, f can be turned to I, f by changing
variables, they should satisfy the same inequality. This has been proven to be true, so
we can apply everything in the same way.

Theorem 4. Let 0 < g < 0,0 < & < n. Then J, : LF(Q) — L9(Q) is an continuous
operator

—_

1 o
IJafllsq) < Clifllr(q), forany v <o+ (31)

(A=)

Proof. Before proofing this theorem we need some lemmas.

Lemma 1. If a function f(x) depends only on |~ x| = r (where the norm stands for
(X 17, 'x;)1/2), then we have the integral equality

f(x)dx = wy /Ooof(r)r”_ldr, (32)

IRH

where w,, is

7T
Wy = Ulﬂnm (33)

b, b “1_ap-1 -
» Flat 202+ a2 iy
+

T(4)I(2). .. T(%) o0 LIS SO TR 9

R" is defined as

R} ={xeR" | xg,---,x, > 0}. (35)
By settingby =bp =--- =b, =2,and ay =ap = - -+ = a, = 1, and a transformation,
X = \/Mixi, 1=12,---mn, (36)
we get
-1 /2 n_q
o £ 5 P)x = s [0 67)



Last, consider a change of variable t = r%:

1 /2 1
— 1’1
mf“’? x[)dx = /i ’7”2nr / f(r)r™=dr.
By the symmetry of (|~ 'x|), it is easy to check
n -1 d :/ -1 d
[ Fr s = [ )

then the lemma is proven.

Lemma 2. For some 1 < p,q,r < oo, if they satisfy

1 1 1
SHl==+4-,
r P 9
then
Bl Tafllr < I fllplnllg,
where

1
h(x,y) =h(n~ ' (x— =
(x,y) =h(n(x—y)) P I
Proof. First, we set

1

1
B(a) IRnf(y)h(x,y)dy' < W/]R n(x,y) f(y)|dy
1

N M/}l‘an ‘f(y)‘g|f(3/)|1_€|h(x,y)|g|h(x,y)|1—€dy_

I

We can see that,

1+<1_1)+(1_1)—1+ 1 _|_ 1 —1
ro\p 1 q r) v pr/lp—r) qr/(qg-r)

Then we can apply the Holder inequality to it:

1_1
p

sl < ([, |f<y>|r’|h<x,y>|'uy)1 (o 1reray)

([ xray)

Take both sides to an exponent 7, then integrate it by x, and we get

By NI < ( [, 17Pdy) ( [, Ity ) U5 Py = A1 el

and the lemma is proven.

KN
e

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)



Lemma 3. Forn > 2,0 < a < 1, one has

~ 1 nEn|(0|)1—ﬁ
dy < ,
/o i x =y = n—a \|E]

7'["/2

En= M- NCES
It is the volume of a n-dimensional ellipsoid with axes /71, /72, * , \/Tn-

where E,; is

(47)

(48)

Proof. First, we set S € R" an n-dimensional ellipsoid centered at x with axes /1R,
V2R, - -+, \/nR and each parallel to the axis xq,x2,-- -, x, of coordinate, and |S| =

E,R" is the volume of S. Then we set |Q}| = |S|, so that R = (|Q|/|S|)1/".

' dy _ dy dy
A -y foe i T(x— g +/sf(smn> T(x— )
and p J p
Yy Y Yy
JE - 7 4 -7
/0 =1 (x —y)[* /sm =1 (x —y)l® /Qf(sm) =1 (x —y)|*

Because S — (SN Q) is inside S - < R7%; therefore

1
7 Hx—y)]

dy _
—— < RO -[SNnQ)).
Lo oo T <RIl =500
Similarly, ) — (SN Q) is outside S, so that
/ qdiyaZR*”‘(ISI—ISOQI)=R*“(|0|—|Smn|),
s—(snQ) [ (x — y)

thus we get
/ Ay / Ay
s—(sno) [ 1 (x =y)|* ~ Ja-(sna) 171 (x —y)|*

or

' dy / dy /R —an—1
— < = r~%r nEy,|dr
hrer = hoear InEnl

_ Rt IR <|0)1—ﬁ_
[El

n—a ' n—a
Replace xaf(x) by f(x) in lemma one in (54), and the lemma is proven.

The rest of the proof is obvious. For some r we can let

1 1 1
,+,:1+,
rp q

(49)

(50)

(51)

(52)

(53)

(54)

(55)



andif1 <r <1/(1—n/a)thenn/p < n/q+ nis satisfied. By Lemma 2

e f I < BG) ™ A lLf 1 - (56)

Note that we have replaced f(x)xq by f(x), and h(x,y)xq by h(x,y) because (57) only
integrates over a bounded domain.

nE. O\ (lo] R
o< (o) (1) -

So the theorem is proven. O

Then by Lemma 3

4 The symmetry problem

We know that for I, the solution of (—A)*/?u = xq, has some very interesting property,
such as its the volume on d() is a constant if any only if () is a ball [4].

(—Ag)Zu = xq is invariant under some “elliptical rotation” that preserves |7 x|,
just like the (—A)*/?u = xq is invariant under rotations that preserve |x|, but the same
property cannot carry over; that is, Jo(x)|q will not be a constant where Q) is the ellipsoid
with axis parallel to the coordinate. It is because not all the transformation that preserves
|7~ 1x| preserves an infinitesimal volume dV in R", (if we see this transformation as
a coordinate transformation, then it means the Jacobian does not equal one) [3], and
therefore ], (x)|3n does not satisfy this property.

There is a transformation that preserves |7~ !x| and infinitesimal volume. It is the
reflection transformation Py, (See Definition 4). It is a discrete transformation, so instead
of Ja(x)|sq = const, we will get [, (x)|sq = Ja(Pnx)|aq- (See Theorem 5.)

Definition 4. We are going to introduce the reflection transformation P, : R" — R".
pmx - Pm(xlz' te /xm/' o /xi’l) - (xll' o /_xm/' : 'xi’l)/ (58)
wherem =1,2,...,n.

For an n-dimensional ellipsoid with axis /71, /72, - -, \/7ln, and each parallel to
the axis of the coordinate (x1,x2, - - -, x,,), which will be noted as () is symmetric under
reflection transformation. That is, for a x € (), then Py,x € (), and for some x € 9(), then
Pyux € 0Q).

Theorem 5. Let

u(x) = 1 dy =
= 56 Jo TG =S = )

then there is a property of u(x)|3q-

u(x)|aq = u(Pux)|yq, foralln =1,2,--- ,n. (60)

10



For convenience, we need to use a different kind of coordinate instead of the ordinary

Cartesian coordinate.

Definition 5. We are going to define an elliptical coordinate (p, ¢1 - - - ¢p,—1) with the

center at some point p.

X1—p1 = /Mipcos
X2 —p2 = /720sin¢1cos ¢,

Xp—1—Pn-1 = +Mn-1pSINQ1 - sing,_»cosd, 1
Xn—Pn = /fupsing;---sing, osing,_1

We can set that p € 0Q).
Then another coordinate (7,61, - - - 6,_1) ata point p’.

x1—p) = \/yircosb;

Xo—py = +/narsinb cosby

Xp-1—Ph1 = +/fn_1rsinfy---sinf,_5cosb, 1
Xp— Py = \/Harsinb---sinf,_osin6, ;

Then we can set that p’ = Py,p € 0Q).

With this coordinate, we shall define a subset in R” by

Tl(k):{x€Q|21*Tlgp<2%},1§l§k.

It is easy to check out that
U Tl(k) =0.

1<I<k
We will do the same to coordinate (7,61« - 60,_1).
Tl/(k):{xe()|zl*71§r<2£},1§l§k

and
U Tl/(k) =Q.

1<I<k

Lemma 4. For any k and any 1 <[ <k, it satisfies

50| = |15, ®).

11
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(k)

Proof. For any x € 7, it satisfies the condition

(21—1>2 < (xl—p1)2 n (XZ—PZ)Z 4. (xm_pm)Z
k m 12 Nm

) ) ) (66)
4ot (Xn—1— Pn-1) + (xn — pn) < (21>
Mn—1 Hn k
and
x € Q. (67)
If we transform any x € Tl(k) with the reflection transformation P,, , then Pyx = x’
satisfies
(21 - 1>2 < (Pox1 = pi)? | (Puxz—p2)? | (Pudm = pm)®
m , 2 , Nm (68)
4+t M < <2l>
fn k
or
(21 ; 1)2 < (x1 = p1)? N (x2 = p2)? 4. (xm + pm)*
mn 2 . ’72m ) (69)
bt (xn-1—Pn-1) + (xn — pn) < <2l> )
-1 Nn k
and x" € Q). This is exactly the condition that satisfies for any x’ € Tl/ ®), Thus,
Since the reflection transformation preserves the volume, so that
k k
591 =15, 71)
O

We know that Tl(k) and Tll (k) approach to zero as k approaches to infinity. But how

exactly and how rapidly it approaches to zero, we can see it by Lemma 5.

l(k) and ') satisfy

Lemma 5. For any integer k, and some 1 < [ < k the volume of T,
] <k, 72)
59 < cor, 73)

where C is a constant independent of k but dependent to I.

12



Proof. For convenience, we define
oM — {xeRr" |22 <p <2} (74)

and
Mo {xer |2t <r<2ly, (75)

where 1 < [ < k. By the definition of (74) and (75), we can see that Tl(k) - Ul(k) , and

k) C (Tl/ ®). therefore, \TIU()\ < |(Tl(k) |, and |Tl,(k)| < |0’l/ ®)|. Since the volume of Ul(k> and

(Tl/ ®) can be computed

1 n n
(k) _ k —1 _ Wy l l— 1
oy | = ko Kot ydx = wy o M dr = — [(k) — (k . (76)

We have used Lemma 1 in Equation (76). The w; has been defined in (33). Therefore,
we can see that

0 < 1@ = _@n [(IN"Z (L=1N] 2 cppen
=225 (1) - () | =eoe, 7
where C(I) equals
_ Wn n_ o n
C(l) = n—l[l (I-1)"]. (78)
The case for TZ/ ®) can be proven in the same way. O
Now, we can divide the function J,(x) into
1 / dy
x) = 79
M= @ o TG g )
dy
N T e
_ dy _ /(1)
l<lz<k/T1,(k) It x—y)lr 1§12k]a '
where p
D (x) = / S E— 80
) o [ x —y) (%0
and p
D (x) = / S E— (81)
e
We are going to define an approximation of j(!)
(1 k 1
][(lp)px.tx(x) = |Tl( )|Wr (82)
/(1 '(k 1
]a(p}x.a(x) = Iz ! = t(x —y) | 5

(k)

forsomey € 7 ®),

andy’ €1

13



Lemma 6. For any integer k and 1 <[ < k it satisfies

i) (p) = isppra(p)] < C' (DK (84)
and ,
(1) = Jaigpea(P)] < C' (DK, (85)
where C'(1) is independent of k.

Proof. First, it is obvious that

1 ) () 0D K 1
min ————— < ), (p) < |T max & e (86)
i ey S e P 8) < 0 ma
where , ,
= (87)
yer Ol -y 25
and , ,
— = . (88)
yef, Ol =y~ 2hre
So for a sufficiently large k, it can satisfy
k k k k
i SN A i R
X 1,1 PR A - n—a ~ (nl-1 T 0l ! (89)
e 171 (p = y)] xed® 171 (P =) @) (2p)n e
so that
0 = peatp)l < 199 (s = o ) = QR o0)
J Jappx.a\P)| = 1T (2I—Tl)n—ac (2%)71704 - ’
We have used Lemma 5 in this equation and C’(I) equals
C'(ly=Cc(@)2v " [(1—1)* " =17, (91)
Then the theorem is proven. O
Of course, we can basically do the same with ]Tl/ ®) |. Then we can get
i (7') — (P} < C (DK ©2)

Note that C’(I) increases as | increases, and by (91) and (78), we can see that C'(I) in-
creases in the order of k"1 . k*~"—1 = ka2

Now, back to the main theorem, we can see that ],EI;)F,M(;?) = ]a(;;gm(p’ ) because
o] I

by Lemma 4 |Tl(k)| = , and for some y € Tl(k) and

Py =y € Tl,(k) , therefore

50 = i) < 11 (0) = 1o )]+ 11 (p) = e (p)] < 2C (DK%, (93)

14



thus, for sufficiently large k

Ja(p) = Ta(p")| =

(94)

Since kC’(k) increases in the order of k*~1, so (94) will decrease in the order of k! as k
approaches to infinity. So the theorem is proven. g

4.1 Generalization

In Theorem 5, we have assumed () to be an n-dimensional ellipsoid centered at the ori-
gin point and it has axis of /771, \/72 - - - /7 each parallel to the coordinate (x1 - - - xy).
But this assumption is superfluous, for all we need is the restriction for Q2 is P, = Q)
and Q) is bounded. From (66) to (70) we can see that Lemma 4 still holds under this
restriction, and therefore, so does in Theorem 5.

Another assumption that is superfluous is that we only consider p € dQ2 and P,,p €
dQ). That is, we only consider J,(x) under the restriction J,(x)|3n. We will extend it to
any point p € R” and p’ = Pyp € R".

We will redefine the coordinate (p, ¢ - - - ¢,—1) and (7,601, --6,_1) in Definition 5
basically in the same way but this time the coordinate will be centered at any point p

and Py, p which is not necessary on 9Q). |Tl(k) | and |Tl,(k) | are now written as
k) =1 L ,
T —{XGQ|2k §p<2k}/kmzn§l§kmax (95)

and
Tl/(k) — {XGQ |21*T1 <1’<2£},kmin <lI Skmazu (96)

where kj,qy is defined as VI > kjx, Tl(k) = @. Since PmTl(k) = Tl, (k), so that VI > kyax,
'(k)

T, = @. Such kygay exists because of the boundedness of Q). Similarly, k,;, is defined

as VI < kyin, Tl(k) = @. If such k,,;,, does not exist, then set k,,,;,, = 1.
By this definition, we can get

o= Uy M= Uy %, 97)

kmin <I<kmax kmin <I<kmax

15



and therefore,

N = 1 dy
K6 = 5 G g ©8)
d .
- Z / B B Z ],gl)

-1 _ —
k <l<kmax Tl(k) ‘17 (x y) |n ¢ kmin Slgkmax

min >

d /
- ¥ y -y o

! (k) -1 _ n—u
kmi11§l_kmax Tl |;7 (x y) | kmin Slgkmux

The definition of j,gl) (x), jl/x(l) (x), j,gé)px_a(x), and ],Z%M(x) are still the same, so that

we can see Theorem 5 still holds.
The generalization of Theorem 5 is:

Theorem 6 (generlization). Let

_ 1 7 dy _
)= gy o TG g )

For all bounded domain () that satisfies Q) = P,,,()

u(x) = u(Ppx). (100)

4.2 The antisymmetric property

In the equation of (—Ag)%u(x) = f(x), we have set f(x) = xq and found out that
the solution, noted as J,(x), has the symmetric property. Now, if we replace the func-
tion f(x) by another function g(x) = xqx;, where 1 < i < n, then the solution for
(—Agp)Zu(x) = g(x), noted as J,g(x) = Ja(x) will satisfy another property.

Theorem 7. Let

1 / x;dy ~
ulx) = = Ja(x), (101)
W= 5@ Jo -y~
then there is a property of u(x)|q.
u(x)bﬂ = M(me)bﬂ lfor m 7& ir (102)
u(x)laq = —u(Pmx)|aq form =i. (103)

Where () is an n-dimensional ellipsoid centered at origin point and axis parallel to
the coordinate (x1,xp - - - xp).

() 1)

Proof. First, we will redefine, j,’, j, ' as

(1) :/ xidy 104
W= o g 109
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and
) x;dy
iy = Joo e e 1o

Since Tl(k) and Tl,(k) are the same as (61) and (63). so that

~ 1 xidy
Ju(x) = / 106
&) = W G (106)
_ x;dy _ (1)
- — n—a Ju
L o=k

xidy _ /(1)
L = 2

(k)

Now we are going to do something different. Define a subset in 7;,

a) = {x eV | et <x < ) (107)

Where m is an integer ranges from —k + 1 to k. Similarly, we define

'(k '(k _
ml) = {req™ | ymm <x < ). (108)
By (107) and (108), we can see that P, 7'(7(:1) = 77;5];) for m # i and Py, nr(:l) = nl(’:rL ,; for
m = i, therefore, |7T;(151)| = |7r;5]l()| for m # i, and |71’1(1i<l)| = |7r/_(l:n)+1l\ form = i. O

We can see that \7'(7(:1) | decay to zero as k approach to infinity, and Lemma 7 told that
who rapidly does it approaches to zero.

Lemma 7. Forany —k+1<m <k, \7‘[551)| and |7r;gll()| satisfy

7% < ckn (109)
and /
M| < ck (110)

where C is a constant independent of k.

Proof. Set
7ol = max{ | 1, 1728y 1y L 1) (111)
and
| 2lin = min{ |2, 1 17N L 1) (112)
Notice that,
Mlin < 3 2% = 9] (113
m=—k+1
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By Lemma 5 we can se that

[thyin < 5 COK! (114)
or .
18] < [ty < 21l gt (115)
2 |7T|min
The same can be done with |7T;(le() | , and the theorem is proven. O

Lemma 8. For any integer k and 1 <[ < k it satisfies

i)+ (p)] < C k™. (116)
If p € 00, p' = Pip € 0Q), and

() = ()] < k. (117)

If p € 00, p’ = Pyp € 9O where m # i.
The definition of j,g) (x) and ja(l) (x) are in (104) and (105), and C’(I) is independent
of k.

Proof. First, we define

il xidy
= —— 118
R e (118)
and p
Jml xiay
L — 119
0 = fo (19)
It is easy to see that
n S /() SI
jo ()=} i'(x), and jo(x) =}, " (). (120)
m=—k+1 m=—k+1
Consider an approximation of ! (x), and j;"! (x)
sml (k) Xi
= _ 121
Jappx.tx(x) |7Tml | |77_1 (x _ y)|n_,x ( )
and .
ml (S ]
Jui;ﬂlpx.zx(x) - |7Tml | |;7_1 (X :y/) |n—zx : (122)
For some y € 777(:1)' andy’ € n;glf),
X Xi

(ml) (ml) (k)
<j Happx. < 7T, | max e
e x  (p) appxzx(p) | l|x€7‘c£:l) I 1(p —v)|

(123)

|7T1(1i<l)| min ——
xeny(’f; ‘77 (P_]/
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(k) (k)

By the difinition of 77, / and 7t,,;” we can see that

X; m 1
yr?:g) W <7 L) (124)
and . L )
yen & [T (p — ) <= ko (2f)n—e (125)
Apply (124) and (125) and Lemma 7 to (123) we can get
i (p) = ilppa ()] < Clm, DI, (126)
Where C(m, 1) equals
Clm 1) =21 ey | e (127)
The can similarly apply the same way to j;(m” (p'), and get
5™ (p') — happta(p)] < Clm, DI, (128)

On the other hand, by (121) and (122), we can see that )app”(p) = j;";llgx.a(p’) for

Pyp = p' where m # i, and ]uppx.a(p) )a;,g?g}l(p ) for P;p = p'. Therefore, we get

k k
Z j;”;;lpx.a(l?) = Z jarzé)x.tx(p,) (129)
m=—k+1 m=—k+1
for Pyp = p/, m #i.
£ 1 : 1 /
2 jzrznppx.a(p) - - Z J,;pra(P ) (130)
m=—k+1 m=—k+1
for Pp=1p'.
So for the m # i case, by (120) we can get,
0y L0 S ! S iy il
|]1x (P) —Ja (P )| = Z,:(Jrl(jglppx.a(p) _jgf (P)) + Z]:{+1<jam (P )) _jur;asz.zx(p ))
m=— m=—
k
< Z ‘j?plpx.zx( ) - Ja ( )| + Z ‘jai;;;x.oc(p/) - jaml(p/)|
m=—k+1 m=—k+1

k
<2 Y clmkt=2% Chk*t=Cc)k™®
m=—k+1
(131)
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and for the m = i case

k k
(1 Rt .m .m 'm J'm
i)+ =1 L ) =)+ L G — i (P)
m=—k+1 m=—k+1
k 1 1 k "ml "ml
< Z ‘ijpx.zx(p) - JZ1 (P)| + Z ‘jan;}px.zx(pl) - jam (P/)|
m=—k+1 m=—k+1

k
<2 Y Cclmkt=2% C(hk*t=Ck "
m=—k+1
(132)
Note that by (127), Z’,‘nz_k " C(I,m)k is independent of m. So we can see that the theo-
rem is proven. O

We can see that the first equation in Lemma 7 is identical to (93), so by (94) and (106)
we can get
Ju(P)laa = Ju(Pup)loq, form #i. (133)

By the second equation of Lemma 7, we can see that it is basically the same as (93)
(1 ()

but j,’ (p') has been replaced by —j, "’ (p’) , so by (94) we can see that |Jx(p) + Ju(Pup)|
will approach to zero as k approaches to infinity, so that
and therefore, the theorem has been proven. O

5 Appendix [1]
Theorem 8. For any 0 < a < n, if u(x) satisfies the equation
—A%u(x) = p(x), foranyx € R" (135)
then u(x) can be written as the convolution between K, and f
u(x) = Lp(x) = (Ko ) (1) (136)

Proof. We can start by Fourier transformation.

F(=A%Zu(x)) = —AY2y(f) (137)

= 1"(12‘") /Ooo —3-1 </000Gt*u(x)e ”‘édx) dt
_ r(lza)/omt 916G . a(¢)dt
= p(8):



The Fourier transformation of the Gauss kernel was known as

— n S %2 .
Gi(&) = (4mt)™2 / o el gy = o HIEP, (138)
0
So, R
ATu(g) = L (7t = (grae). (139)
NEDN
In this case, we have use the fact that
b s —tu? _ F(S + 1)
/0 Fetar =~ S (140)

Therefore, we get

(&) = 817 (&), u(x) = @m) ™" [ |al ez, (141)

The solution can be constructed to the convolution between two functions. u(x) =
(27t) "¢ * p(x). Where the ¢ is

— —u ig-x
o) = [ leletae, (142)
p(Ax) = [ 167 g = [ Je| ez, (143)

Now consider a transformation:
AE=(,dE=A7"dE.
Then,
o) = [ AT A = A [ g e g = Mg (). (14

It is obvious that ¢(x) is a homogeneous function, so we can express ¢ in ¢(x) =
C|x|*~", and now we are going to determine the constant C.

/H;n¢(x)exp(—|xz|2)dx = [ exp( —ﬁ)\gw-ldx (145)
— Cls" 1|/ “lexp ——)dr
= C|s" 1|27—1r(§).
On the other hand,
[ o@en(-Ehar = [ [ erep-Eleaa  as
Sk /R exp(~ ERAN
- (V2n)"|s' 1|/ exp(— = )1y
= (V2r)"| s"*1|2T*1r(T"‘).

21



Compare (145) and (146) with the results, we can see that

IIF u
C:(\/Ziﬂ)nziwr? ( 2 ),

I'(3)
x) = )" 7tx+%@ xla—n
o) = (VIR 2

And finally, we get our solution

u(x) = (2m) "px*p(x) = n7%27“r(u) /]R W) = Lyp(x)dx.

2
r(z)

If the exponent @ = 21 (1 is a natural number), then by definition:

nlx =yl

— — 1
—_An = lim —A&/2 = i
u(@) = fim —atu(l) = I v

By calculation, this limit will be

lim —A*/2u(Z) = |g]*a(Z).

a—2n
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