The 4-choosability of planar graphs and cycle

adjacency
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Abstract

This article studies list coloring of planar graphs. Suppose G is a plane
graph and H is a subgraph of G which is induced by the edges of some 4-,
5-faces of G. Let Dy be a graph constructed from H with the vertex set
V(Dy) = {f : f is a 4-, 5-face of H and G} and the edge set E(Dy) = {ff’ :
f and f’ are adjacent in G}. An edge of H is called an inner-edge if it is a
common edge of two 4-, 5-faces of G, otherwise it is called an outer-edge. If
Dy is a tree and all outer-edges of H are adjacent to 3-cycles in G, then H
is called a star-sun in G. It is proved that a planar graph without adjacent

3-cycles, adjacent 4-cycles and star-suns is 4-choosable.
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1 Introduction and Preliminaries

In 1852, Francis Guthrie, while trying to color the map of counties of England,
noticed that only four different colors were sufficient in order that two countries
sharing a boundary receiving different colors. The Four Color Map Problem then
spread out through Augustus De Morgan of University College London. Figure 1.1

shows that four colors are sufficient for the maps of Taiwan and the United States.



Figure 1.1 Examples for The Four Color Map Problem.

The problem was solved by Appel, Haken and Koch with the aids of computer
in 1977, and known as The Four Color Theorem. The theorem now is often stated
in term of the dual graph of a planar graph as: every planar graph is 4-colorable,
namely the vertices of a planar graph can be colored by using 4 colors such that
adjacent vertices receive different colors. Soon after then, Vizing [7] and Erdés et
al. [2] generalized the concept of coloring to list coloring. This article studies list
coloring for planar graphs.

Let G be a graph. A proper vertex coloring of G is a mapping ¢ : V(G) — IN
such that ¢(v) # @(u) whenever v and u are adjacent. A list-assignment of G is
a mapping L : V(G) — 2N and is called a k-list-assignment if each L(v) is of size
k. The graph G is L-colorable if there exists an L-coloring which is a proper vertex
coloring ¢ of G such that the color ¢(v) € L(v) for each v € V(G). Figure 1.2
demonstrates a list-assignment L, using real colors, and an L-coloring of the map
of Taiwan. If G is L-colorable for any k-list-assignment L, then G is said to be
k-choosable. The choosability of a graph G is the minimum integer k such that G is
k-choosable.

Figure 1.2 The example of an L-coloring of the map of Taiwan.



1.1 Survey and Motivations

In 1994, Thomassen [6] proved that every planar graph is 5-choosable. Voigt [8]
showed that not all planar graphs are 4-choosable. Hence, over the past decades,
determining whether a planar graph is 4-choosable or not has received significant
attention. Some notable research studies of choosability on planar graphs are as
follows:

Thomassen [6] proved that every planar graph is 5-choosable.

Voigt [8] presented an example of planar graph which is not 4-choosable.
Every planar graph G without 3-cycles is 4-choosable because 6(G) < 3.
Lam et al. [4] proved the 4-choosability of planar graphs without 4-cycles.
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Wang and Lih proved the 4-choosability of planar graphs without 5-cycles, or

without 6-cycles, or without intersecting 3-cycles in [10, 9, 11].
6. Farzad [3] proved the 4-choosability of planar graphs without 7-cycles.

7. Chen et al. [1] proved the 4-choosability of planar graphs without 4-cycles adja-
cent to 3-cycles.

8. Lin [13] proved that the 4-choosability of planar graphs without adjacent 3-cycles,
adjacent 4-cycles and k-suns.

This article provides a new sufficient condition for a planar graph to be 4-
choosable. Different from the above research, in this study, each short cycle is
allowed to exist. This article uses the discharging method, the proof by contra-
diction, the Euler’s formula and the mathematical induction to prove the following

theorem.

Theorem: Every planar graph without adjacent 3-cycles, adjacent 4-cycles and

star-suns is 4-choosable.

1.2 Definitions

All graphs considered in this article are finite, simple and planar. A plane graph
is a drawing of a planar graph in which edges only interest at their end vertices.
Let G be a plane graph with V(G), E(G), F(G) as its vertex set, edge set and face
set, respectively. The degree of a vertex v in G, written as d(v), is the number of
edges incident to it. The degree of a face f in G, denoted by d(f), is the number of
edges incident to it. The minimum degree of G, min{d(v) | v € V(G)}, is denoted
by 6(G). A vertex v is a k-vertex (k*-vertex or k™ -vertex, respectively) if d(v) = k



(d(v) > k or d(v) < k, respectively). A face f is a k-face (k*-face or k™ -face,
respectively) if d(f) =k (d(f) > k or d(f) < k respectively).

Let G be a plane graph. Two cycles are adjacent if they have at least one edge
in common. Two cycles are intersecting if they have at least one vertex in common.
A cycle of length k is called a k-cycle. A k-sun in a plane graph G is a k-cycle whose

each edge is adjacent to a 3-cycle, see Figure 1.3.

Figure 1.3 In G, the red 7-cycle is a 7-sun and the blue 11-cycle is an 11-sun.

Assume H is a subgraph of a plane graph G which is induced by the edges of
some 4-, 5-faces of G. Notice that H is also a plane graph. A 4-, 5-face of H is
called a real-face if it is also a 4-, 5-face of G. An edge of H is called an inner-edge
if it is a common edge of two real 4-, 5-faces of H, otherwise it is called an outer-
edge. Let Dy be the graph with V(Dy) = {f : f is a real 4-, 5-face of H} and
E(Dy) = {ff' : f and f’ are adjacent in H}. If Dy is a tree and all outer-edges
of H are adjacent to 3-cycles in G, then H is called a star-sun in G. Note that a
star-sun is a special k-sun. If Dy is a tree and there is only one outer-edge of H not
adjacent to 3-cycle in G, then H is called a flower in G. A maximal flower in G is a

flower not a subgraph of another flower.

Example (in Figure 1.4). In (a), let H be a subgraph which is induced by the edges
of some 4-, 5-faces in G. The graph Dy is a tree. In (b), the red 4-cycle is a flower
but not a maximal flower in G. The red part of (c) is a maximal flower in G since

it is not a subgraph of another flower. The red part of (d) are star-suns.



€ 6-face

(a) A special subgraph of H. (b) A flower (red). (¢) A maximal flower (red).

(d) Two star-suns (red).

Figure 1.4

2 Proof of the Theorem

The idea of the proof follows a common routine as is in the articles mentioned in
Section 1.1. First, we assume that there are counterexamples to the Theorem. Let
G be a minimal counterexample with fewest vertices. We derive several forbidden
configurations in G and discuss some properties of G.

We then apply the discharging method to show that the minimal counterexample
does not exist. We design the initial charges w : V(G) — F(G) for all vertices and
faces in the minimal counterexample G and the discharging rules. We modify w
to w’ by applying the discharging rules. Since the discharging rules only transfer
charges in G, the initial total charge of w and w’ should be the same. We shall show
that the total charges of w and w’ are different, which is a contradiction in total
charge. Therefore, the minimal counterexample does not exist and the Theorem is

proved.

2.1 Properties of a Minimal Counterexample

Let G be a minimal counterexample of the Theorem. Assume L is a 4-list-assignment

of G such that G is not L-colorable. We derive some properties of G.



Lemma 1: The minimum degree of vertex in G is at least 4, in other words,
J(G) > 4.

Proof. Suppose to the contrary that there is a vertex u of degree less than 4. Delet-
ing u from G results a graph G’ with fewer vertices than G. As G’ satisfying the
conditions of the Theorem, by the induction hypothesis, G’ has an L-coloring. Be-
cause the list of u has 4 permissible colors and the number of the neighbors of u is
less than 4, we can color u with a color in L(u), and hence extending an L-coloring

of G’ to an L-coloring of G, see Figure 2.1. This is a contradiction. O

Figure 2.1 The vertex u has at most three neighbors uq, up, us in G.

2.1.1 Forbidden subgraphs of G : pi-subgraph and g;-subgraph

In the graph G, a pi-subgraph is a 4-cycle in which every vertex is of degree 4 in G,
and a gpp-subgraph is the union of two intersecting 4-cycles in which every vertex is

of degree 4 except that the intersecting vertex is of degree 5 in G, see Figure 2.2.

Figure 2.2 A pq-subgraph and a g,-subgraph.

Lemma 2: The graph G contains neither a p1-subgraph nor a @;-subgraph.




Proof. Suppose G contains a g1-subgraph with vertex set V(1) = {v1,v2, 03,04}
and edge set E(p1) = {0102, 0203, 0304, 0401 }. Delete V(1) from G, and then the
remaining graph G’ = G — V(1) admits an L-coloring ¢ by the induction hypoth-
esis. For all v € V(gp1), let L1(v) = L(v) \ {¢'(u) | u € V(G') and uv € E(G)}.
Then, |Lq(v;)| > 2 for i € {1,2,3,4}, see Figure 2.3 (a).

First, suppose that L1(v1) = Ly (v2) = L1(v3) = L1(v4) = {a,b}. In this case, we
color v1 and v3 by a, color v; and v4 by b. Second, suppose that not all L (v;) being
the same, say L1(v1) # L1(v4). In this case, choose some a € Lq(v1) \ L1(v4). Then
color v1 by a, color v by a color b € L1(v3) \ {a}, color v3 by a color ¢ € Li(v3) \ {b}
color vy by a color d € Ly(vy) \ {c} which is not equal to a. Then, gy is L1-colorable.
Hence, we can extend ¢’ to an L-coloring of G.

Suppose G contains a go-subgraph with V() = {v1,v2,v3,v4, 05,06, 07}, E(2) =
{017)2, V203,0304,0401,0405, 050¢, U607, 1777]4}. Then G' = G — V(pz) admits an L-
coloring ¢'. Forallv € V() let Ly(v) = L(v) \ {¢'(u) |u € V(G') and uv € E(G)}.
Then, |Ly(v;)| > 2 fori € {1,2,3,5,6,7} and |Ly(vy4)| > 3, see Figure 2.3 (b).

If Ly(vs) N Ly(v7) # @, then we choose a color a € Ly(vs) N Ly(v7) and a color
b € Ly(ve) \ {a}. Let ¢'(vs) = ¢'(v7) = a and ¢'(vg) = b. For the remaining
4-cycle {v1,v2,v3,04}, each vertex still has at least 2 permissible colors that are not
used by any of its colored neighbors. Therefore, we can extend ¢’ to an L-coloring
of G. Assume Ly(v5) N Ly(v7) = @. According to the proof of pi-subgraph, there
is an L-coloring ¢’ to the 4-cycle {v1,vp,v3,v4}. Without loss of generality, assume
¢'(v4) ¢ La(v7). We choose a color a € Ly(vs) \ {¢'(v4)}, b € La(ve) \ {a} and
c € Ly(vy) \ {b}. Let ¢'(vs) = a, ¢'(vs) = b and ¢'(v;) = c. Therefore, we can
extend ¢’ to an L-coloring of G. This completes the proof of Lemma 2. O

(a) A pq-subgraph. (b) A @o-subgraph.

Figure 2.3



2.1.2 The distribution of all 4-, 5-faces in G

Consider the special graph Dg, it presents the distribution of all 4-, 5-faces in the
minimal counterexample G. Assume H is a subgraph of G which is induced by the
edges of some 4-, 5-faces of G and Dy is a connected component of Dg. Let a be the
number of real-5-faces in H, and  be the number of real-4-faces in H. The number
of outer-edges and inner-edges of H are denoted by Outer(H) and Inner(H). Note
that the sum of Outer(H) and Inner(H) is |E(H)|.

Example (in Figure 2.4). Let H be a subgraph of G which is induced by the edges
of some 4-, 5-faces of G and Dy be a connected component of Dg. In H, there
are 6 real-5-faces, 3 real-4-faces, one 6-face (may be not real), one 3-face (may be
not real), one 13-face (may be not real), 22 outer-edges and 10 inner-edges. Hence,
a =6, =3, Outer(H) = 22 and Inner(H) = 10.

Figure 2.4 A subgraph H with Dy being a connected component of Dg.

2.1.3 A special graph Dy constructed by the real 4-, 5-faces in H

To describe the distribution of the 4-, 5-faces in the minimal counterexample G, let
H be a subgraph of G which is induced by the edges of some 4-, 5-faces of G and
Dy be a connected component of Dg. The graph Dy is constructed by real-4-faces
and real-5-faces in H, see Figure 2.5(a). Note that if H is a maximal flower in G,

then Dy is a tree, see Figure 2.5(b).



(b) The graph Dy is a tree.

Figure 2.5 The construction of Dpy.

Lemma 3: Let H be a subgraph of G which is induced by the edges of some 4-,
5- faces of G and Dy be a connected component of Dg.

1. If Dy is a tree, then Outer(H) = 3a + 2 + 2.
2. If Dy is not a tree, then Outer(H) < 3a + 2.

Proof. Note that the degree sum of all real-4-faces, real-5-faces of H counts outer-
edges once and inner-edges twice. Hence, 50 +4f = Outer(H) + 2Inner(H). If
Dy is a tree, then the number of the inner-edges of H is & + B — 1. This means
Inner(H) = a + B — 1. Therefore, we have Outer(H) = 3a + 2B+ 2. If Dy is not a
tree, then Inner(H) > a + B. This implies that Outer(H) < 3a + 28. O

Example (for Lemma 3). In Figure 2.6 (a), Dy is a tree with « =2, B = 3 and
Outer(H) = 14. Then, Outer(H) =14 =3-2+2-3+2 =30+ 2B+ 2.

In Figure 2.6 (b), Dp is not a tree with « = 6, = 3 and Outer(H) = 22. Then,
Outer(H) =22<3-6+2-3=3a+28.



Figure 2.6

2.2 Discharging Method

2.2.1 Discharging rules

For x € V(G)UF(G), the initial charge of x is defined by the weight function
w(x) = 3d(x) — 12. By using the Euler’s formula of a connected planar graphs, we
have V(G) — E(G) + F(G) = 2. Hence, the total charge of w is

w(G) = 2 w(x) = Z (3d(v) — 12) + E (3d(f) —12)

xeV(G)UF(G) veV(G) FEF(G)

3 Y d+ Y d(f) | —12(V(G)| + |[F(G)))

veV(G) fEF(G)
3(2|E(G)|+2|E(G)|) —12(|E(G)| +2) = —24.

Now we will discharge the charges according to the following rules, see also Figure 2.7.

(R-1) If a 4-face f is incident to exactly one 5"-vertex v, then v sends charge 2 to
f.

(R-2) If a 4-face f is incident to more than one 5" -vertex v, then each v sends charge
1 to f.

(R-3) Discharge 1 of the charge of a non-triangular face to each of its adjacent
3-faces.

(R-4) If a 61-face f’ is adjacent to a maximal flower H, then f’ sends charge 1 to
the face f in H that is adjacent to f'.
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Figure 2.7 Discharging rules.

Let w and w’ denote the weight functions for the initial charge and the one after
discharging. Now we estimate the total charge of w’. Notice that the total charge
of w’ is supposed to be the same as that of w. The proof of the Theorem will be

obtained by showing the total charge of w' is nonnegative.

2.2.2 New charges of the vertices and faces

Assume v € V(G). By Lemma 1, we may assume that v is of degree at least 4.

1. If d(v) = 4, then w'(v) = w(v) = 0 since v does not transfer any charges to
others.

2. Let d(v) = 5. The vertex v is incident to at most two 4-faces, since G contains
no adjacent 4-faces. According to R-1 and R-2, if v is incident to at most one 4-
face which receives at most 2 from v, then w'(v) > w(v) —2=3-2=1>0.
If v is incident to 2 intersecting 4-faces, and one of them that only has an
incident 51-vertex receives 2 from v, then the other must receive only 1 from v
because G forbids pp-subgraph. Hence, w'(v) > w(v) —1-2=3-1-2=0,
see Figure 2.8.

4)

Figure 2.8 The situation that a 5-vertex sends 3 charges to 4-faces.

d(v)

3. If d(v) > 6, then v is incident to at most {2] 4-faces because G contains
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no adjacent 4-cycles and each 4-face receives 2 at most from v, where [x] is the

largest integer not exceeding x, see Figure 2.9. Therefore,

w'(v) > w(v) —2 {d(zv)} =3d(v)—12-2 [d(;)] > 2d(v) —12 > 0.

V(6) |

d
Figure 2.9 Each 6™-vertex sends at most [(20)] charges to its incident 4-faces.

Next, assume f € F(G).

1. If d(f) = 3, then the faces adjacent to f are not 3-faces, since G contains no
adjacent 3-faces. Therefore, w'(f) = w(f) +1-3 = (=3)+1-3 =0, because
f gets 3 charges from its adjacent 47 -faces according to R-3, see Figure 2.10.

Figure 2.10 Every 3-face receives 3 charges from its adjacent 4"-faces.

2. If d(f) € {4,5}, then we compute their charges together in group. Let H be
a subgraph of G which is induced by the edges of some 4-, 5-faces of G and
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Dy be a connected component of Dg. Since G contains no star-suns, we can

classify H into three types:

(1) H is called Type-1 if Dy is a tree and H is a maximal flower of G, see
Figure 2.11 (a).

(2) H is called Type-2 if Dy is a tree and H is not a maximal flower of G,
see Figure 2.11 (b).

(3) H is called Type-3 if Dy is not a tree, see Figure 2.11 (c).

Let f be a real 4-, 5-face of H. We call f Type-i if H is Type-i for some

ie€{1,2,3}.

Type—1 G

(a) Type-1: Dy is a tree and H is a maximal flower in G.

Type—2 G . '

(b) Type-2: Dy is a tree but H is not a maximal flower in G.

Type -3 G

(¢) Type-3: Dy is not a tree.

Figure 2.11
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In the above three types, let the number of real-5-faces be a and the number
of real-4-faces be B. Since G forbids gi-subgraph, every 4-face of G is incident
to one 57 -vertex at least. As a result, after applying R-1 and R-2, each 4-face
of G receives 2 charges from 5"-vertices at least. The original charge of each
5-face is three, so the sum of the charges of the real 4-, 5-faces in H is at least
3a 4 2.

(1) If H is Type-1, then H sends at most Outer(H) — 1 charges to its adjacent
3-faces according to R-3, and H receives charge 1 from a 4" -face according
to R-4. Note that Dy is a tree since H is a maximal flower. By Lemma 3
(1), Outer(H) = 3a + 2 + 2. Hence,

w'(f) > 3a+2B — (Outer(H) —1) +1
f € {f : a real-face of
Type-1 H with d(f) € {4,5}}

—30+28—(Ba+2+2—1)—1=0.

(2) If H is Type-2, then H sends at most Outer(H) — 2 charges to its adjacent
3-faces, or it is a maximal flower. By Lemma 3 (1), Outer(H) = 3a + 2 +

2. Hence,

Y w'(f) > 3a +2p — (Outer(H) — 2)
f € {f : a real-face of
Type-2 H with d(f) € {4,5}}

=30+28— (Ba+26+2—-2)=0.

(3) If H is Type-3, then H sends at most Outer(H) charges to its adjacent
3-faces. By Lemma 3 (2), Outer(H) < 3a + 2. Hence,

w'(f) > 3a + 2B — Outer(H)
f € {f : a real-face of
Type-3 H with d(f) € {4,5}}

> 30+ 2B — (36 +2B) = 0.

CIfd(f) > 6, then w'(f) > w(f) —1-d(f) = 2d(f) — 12 > 0 since f transfers
at most charges d(f) to its incident faces which are 3-cycles or maximal flowers

according to R-3 and R-4, see Figure 2.12.
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Figure 2.12 A 6" -face sends at most d(f) charges.

After discharging, the total charge of w' is

Y, w= ) @@+ )3 w'(f)

xeV(G)UF(G) veV(G) fe{3-face, 6*-face in G}

+ Y. w'(f) + Y w'(f)

f6{4—, 5-face is Type-1} f€{4—7 5-face is Type-2}

+ Y. w'(f) > 0.
fe{4-, 5-face is Type-3}

Since the original total charge is —24,

Y, 9M#F ) w),

xeV(G)UF(G) x€V(G)UF(G)

a contradiction. In other words, the minimal counterexample G does not exist.
Therefore, the proof of the Theorem is completed.

Summary and Conclusions

3.1 The Difference Between the Previous Result and the The-

orem

The result in [13] shows that every planar graph without adjacent 3-cycles, adjacent

4-cycles and k-suns is 4-choosable. In the new Theorem, the k-suns can exist, and

only a kind of particular suns, called star-suns, is forbidden. In other words, the

one is a special case in light of the research. Hence, the Theorem is better than the

previous result.
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3.2 The Value of the Theorem

1. Tt is worth noticing in [5] that Montassier design a planar graph that satisfies
the conditions of the Theorem but is not 3-choosable. Therefore, it is tight that
every planar graph without adjacent 3-cycles, adjacent 4-cycles and star-suns is
4-choosable.

2. Coustruction of a Coloring Algorithm.

For the planar graph G satisfying our conditions, we can color G according to the

following steps:

(1) Search for vertices with degrees less than 4, p1-subgraphs and gp-subgraphs
and delete them recursively.

(2) What remains is a graph G’ with minimum degree at least 4 and with neither
p1-subgraph nor gpp-subgraph. But by the Theorem, G’ cannot exist. This
means graph G is deleted completely.

(3) If we list what we have deleted in their order, then we can color the graph

according to the backward order.

3.3 Conjectures

After completing the proof of the Theorem, based on the process of the discharging

we make a conjecture as follows.

Conjecture: Every planar graph without adjacent 3-cycles, adjacent 4-cycles

is 4-choosable.
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