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Abstract. Let E be the Dvoretzky random covering sets on the circle. By
applying the method of limsup type random fractals, as illustrated in Khosh-

nevisan, Peres and Xiao [24], we determine the hitting probability P(E∩G 6= ∅)
and the packing dimension of the intersection E ∩G, where G is an arbitrary

Borel set on the circle.

Introduction

We begin with a brief review on random coverings. Let {ωn}n≥1 be a sequence
of independent random variables on (Ω,B, P) which are uniformly distributed over
the unit interval I = [0, 1). Let {ln}n≥1 be a sequence of positive real numbers
which is decreasing to zero. For every n ≥ 1, denote by In := (ωn, ωn + ln)(mod 1)
the random interval whose starting point and lengthe are determined by ωn and ln
respectively. Define the random covering set as

E := lim sup
n→∞

In = {t ∈ I : t ∈ In for infinitely many n ≥ 1}.

The set E consists of the points which are covered by {In} infinitely often (i.o. for
short). The Borel-Cantelli Lemma implies that the Lebesgue measure of the random
set E is either 1 or 0 almost surely according to the divergence or convergence of
the series

∑∞
n=1 ln.

It was Dvoretzky [5] who called the attention on study of such random sets; he
raised the question that under what condition on {ln} one can have

(0.1) [0, 1) = lim sup
n→∞

In a.s.

In the literature this is referred to as the Dvoretzky covering problem and had
attracted the attention of P. Billard, J.-P. Kahane, B. Mandelbrot, among others,
before it was completely solved by L. A. Shepp in 1972. Shepp [31] provided a
necessary and sufficient condition for (0.1) to hold, namely

(0.2)
∞∑

n=1

1
n2

exp
(
l1 + · · ·+ ln

)
= ∞.
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Since then the topic has been under active development and there have been many
extensions and refinements. We refer to [20, Chapter 11] for a systematic account
on the Dvoretzky covering problem and its higher dimensional extensions, to the
survey articles [8, 22, 23] for historical accounts and connections to multiplicative
processes, and to [1, 4, 7, 8, 9, 10, 14, 21] and the references therein for further
information. It should also be mentioned that Jonasson and Steif [16] (see also [15])
have recently extended the Dvoretzky covering model by including time dynamics
(In the first variant, they identify I = [0, 1) with the unit circle C and allow the
centers of In (n ≥ 1) perform independent Brownian motions on C, each with
variance 1. In the second variant, they associate independent Poisson processes
with the different intervals.) The work of Jonasson and Steif [16] has revealed rich
structures in dynamical random coverings and raised more interesting questions
about properties of the random covering sets, including their fractal dimensions
and hitting probabilities.

This paper is concerned with the geometric and potential-theoretic properties of
the Dvoretzky covering set E = lim sup

n→∞
In. It is known that the set E is a.s. dense

in I and is of second category ([20, Chapter 5, Proposition 11]). Thus, the upper
box dimension of the set E is 1 almost surely. Several authors have investigated
the Hausdorff dimension and other fractal properties of E and/or its complement
F∞ = I\E (which is called the uncovered set). For example, Fan and Wu [10]
considered the Hausdorff dimension of the set E for the special case ln = a

nγ , where
a > 0 and γ > 1 are constants, they proved that dimH(E) = 1

γ a.s., where dimH

denotes Hausdorff dimension. Durand [4] considered a general sequence {ln} with∑∞
n=1 ln < ∞ and proved, among other things,

(0.3) dimHE = α and dimPE = 1 a.s.,

where α is defined by

(0.4) α := inf
{

s > 0 :
∞∑

n=1

lsn < ∞
}

= sup
{

s > 0 :
∞∑

n=1

lsn = ∞
}

with the convention that sup ∅ = 0 and inf ∅ = 1.
The index α defined in (0.4) is known as the exponent of convergence of the

sequence {ln} and can be calculated by using the following formula

(0.5) α = lim sup
n→∞

log n

− log ln

(see [27] p.285 or [30] p.26). Besicovitch and Taylor [3] applied the index α (they
also introduced another index–the lower index for {ln}) to characterize the Haus-
dorff measure and Hausdorff dimension of a linear compact set K whose complement
forms a sequence of open intervals of lengths {ln}. Hawkes [13] showed that α is the
upper box dimension of K, and the lower index of {ln} is the lower box dimension
of K. Kahane [18, 19] called α the upper Besicovitch-Taylor index of {ln}. Some
related indices for {ln} were also discussed in [1] for studying the Carleson problem
and covering numbers for the Dvoretzky covering set E.

The following intersection problem is of intrinsic importance in the study of
random coverings and other random fractals. For any given set A ⊂ [0, 1), we
can ask whether or not it is a.s. covered infinitely often by {In}. That is, when
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does P(A ⊂ E) = 1 hold? In the case
∞∑

n=1
ln = ∞, which is opposite to what we

are considering in this paper, the analogous problem for the uncovered set F∞ has
been investigated by several authors. For example, Kahane [20] considered the case
ln = β

n , 0 < β < 1 and showed that P(A ⊂ E) = 1 (equivalently, P
(
A∩F∞ 6= ∅

)
= 0)

if dimH(A) < β, whilst P(A ⊂ E) = 0 (equivalently, P
(
A ∩ F∞ 6= ∅

)
= 1) if

dimH(A) > β. For a more general case, Hawkes [12] proved that, if the set A
satisfies a regularity condition (which in particular requires dimH(A) = dimP(A)),
then P(A ⊂ E) = 1 or 0 according as dimH(A) < τ and dimH(A) > τ , where τ is
the index of {ln} defined by

τ = lim sup
n→∞

∑n
i=1 li

log n
.

More precise hitting probability results for the Poisson covering (see Mandelbrot
[26]) have been established by using the connection between F∞ and the range of a
subordinator; see Fitzsimmons, et al. [11]. However, the problems for determining
the hitting probabilities of the Dvoretzky random covering set E had never been
studied.

The purpose of this paper is to study the hitting probabilities of the Dvoretzky
covering set E, as well as fractal dimensions of the intersection E ∩ G, when it is
nonempty. Our main result (Theorem 2.1 below) shows that the hitting probability
P(E ∩ G 6= ∅) is determined by dimP(G), the packing dimension of G (see (0.7)
below). This is in contrast with the hitting probability results for the random set
F∞, where Hausdorff dimension plays the natural role. Theorem 2.1 will allow us
to determine the packing dimension of E ∩ G for any analytic set G ⊆ [0, 1) and
provide a refinement (under an extra condition) of (0.3) obtained by Durand [4].

Recall that packing dimension was introduced in the early 1980s by Tricot [33]
as follows. For any ε > 0 and any bounded set G ⊂ R, let N(G, ε) be the smallest
number of balls of radius ε needed to cover G. The upper box dimension of G is
defined as

(0.6) dimM(G) = lim sup
ε→0

log N(G, ε)
− log ε

and the packing dimension of G is defined as

(0.7) dimP(G) = inf
{

sup
n

dimMGn : G ⊂
∞⋃

n=1

Gn

}
,

where the infimum is taken over all countable coverings {Gn} of G. It is well known
that 0 ≤ dimH(G) ≤ dimP(G) ≤ dimM(G) ≤ 1 for every set G ⊂ R. Similarly
to Hausdorff dimension, packing dimension has been shown to be a useful tool for
characterizing fractal sets and for studying “roughness” of stochastic processes. We
refer to Falconer [6] and Mattila [28] for further properties of packing dimension
and to Taylor [32] and Xiao [34] for extensive surveys on its applications to random
fractals.

The rest of this paper is organized as follows. In Section 2 we state the main
results and provide some discussions and examples. The proofs of the theorems are
given in Section 3 and they rely on the general method on limsup random fractals
in Khoshnevisan, Peres and Xiao [24]. We remark that our argument extends that
in [24] and shows that their Theorems 3.1, 3.3 and corollaries still hold if their
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Condition 4 is replaced by a weaker condition. Finally Section 4 contains some
technical results on the upper Besicovitch-Taylor index. In particular we apply the
results in Lapidus and van Frankenhuysen [25] to show that every sequence {ln}
associated to a self-similar string has its upper Besicovitch-Taylor index equal to
the self-similarity dimension and satisfies the condition (C) in this paper.

1. Main results and examples

Throughout this paper we assume
∑∞

n=1 ln < ∞. Thus the Lebesgue measure
of the Dvoretzky covering set E is 0 almost surely.

Let α be the upper Besicovitch-Taylor index of {ln}. Then by Proposition 3.1
below, we have

(1.1) α = lim sup
k→∞

log2 nk

k
,

where log2 is the logarithm in base 2 and nk is defined as

nk = #
{

n ∈ N : ln ∈ [2−k+1, 2−k+2)
}

(k ≥ 2).

Here #A denotes the cardinality of the set A.
To state the main results of this paper we will make use of the following con-

dition (C):

(C) There exists an increasing sequence of positive integers {ki} such that

(1.2) lim
i→∞

ki+1

ki
= 1

and

(1.3) lim
i→∞

log2 nki

ki
= α < 1.

Theorem 1.1. Let E be the Dvoretzky covering set associated with the sequence
{ln} whose upper Besicovitch-Taylor index is α. If the condition (C) holds, then
for every analytic set G ⊂ [0, 1), we have

P
(
E ∩G 6= ∅

)
=

{
0 if dimP(G) < 1− α,

1 if dimP(G) > 1− α.

Remark 1.2. Some remarks are in order.
(i) It is clear that if

(1.4) lim
k→∞

log2 nk

k
= α < 1,

then condition (C) holds. We will give several interesting examples of
sequences {ln} that satisfy (1.4).

(ii) If G is regular in the sense that dim
M

(G) = dimM(G), where dim
M

(G)
is the lower box dimension of G, which is defined by replacing limsup in
(0.6) by liminf, then condition (C) is surplus. This follows from the proof
of Theorem 1.1 below, in which we can take N = {ki0 , ki0+1, . . . } for some
i0 ≥ 1.

(iii) From the first part of the proof of Theorem 1.1, we see that the conclusion
dimP(G) < 1 − α implies P(E ∩ G 6= ∅) = 0, even without the condition
(C).
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(iv) By Proposition 3.3 in Section 4, we see that (1.4) can be replaced by the
following: there exists a constant b ∈ (1, 2] such that

(1.5) lim
k→∞

logb mk

k
= α < 1,

where mk = #
{
n ∈ N : ln ∈ [b−k+1, b−k+2)

}
.

(v) When
∑∞

n=1 ln = ∞, but Shepp’s condition (0.2) is not satisfied, then
E 6= [0, 1). One can consider the random set F∞ = [0, 1)\E of the un-
covered points. The fractal dimension and hitting probabilities have been
studied by Hawkes [12] (see also Kahane [20, Chapter 11]) and have been
shown to be very different from Theorem 1.1.

We can extend Theorem 1.1 to the following, which describes the intersection
of two independent random covering sets of indices α, α′ < 1.

Theorem 1.3. Let E and E′ be two independent Dvoretzky covering sets on
the same probability space, associated to the sequences {ln} and {l′n} respectively.
Suppose both {ln} and {l′n} satisfy the condition (C) with the corresponding upper
Besicovitch-Taylor indices α, α′ < 1 and possibly different subsequences {ki} and
{k′i}. Then for any analytic set G ⊂ [0, 1) satisfying dimP(G) > 1−min{α, α′}, we
have

P
(
E ∩ E′ ∩G 6= ∅

)
= 1.

In particular, if dimP(G) > 1− α, then

dimP(E ∩G) = dimP(G) a.s.

In the following we provide an estimate on the Hausdorff dimension of the
intersection E ∩G for a given set G.

Theorem 1.4. Let E be the Dvoretzky covering set associated with the sequence
{ln} which satisfies the condition (C). Then for any analytic set G ⊂ [0, 1), we have

(1.6) dimH(G)− (1− α) ≤ dimH(E ∩G) ≤ dimP(G)− (1− α) a.s.

By taking G = [0, 1) in Theorems 1.3 and 1.4, we obtain dimH(E) = α and
dimP(E) = 1 almost surely. This recovers the result (0.3) of Durand [4], under the
extra condition (C). We remark that our method is different from that of Durand
[4].

Corollary 1.5. Assume the conditions of Theorem 1.4 hold. For any analytic
set G ⊂ [0, 1) satisfying dimH(G) = dimP(G), we have

dimH(E ∩G) = dimH(G)− (1− α) a.s.

In particular dimH(E) = α almost surely.

We end this section with some examples.

Example 1.6. 1. If ln ∼ c n−γ , where c > 0 and γ > 1 are constants and
ln ∼ jn means lim

n→∞
ln
jn

= 1, then {ln} satisfies (1.4) with α = 1
γ . Hence Theorem 2.1

provides results on hitting probabilities for the associated Dvoretzky covering set E.
In particular, we have dimP(E) = 1. This complements the results in Fan and Wu
(2004) on the Hausdorff dimension of E. More generally, we can take ln ∼ c1 n−γ

for even integers n, while ln ∼ c2 n−γ′ for odd integers n, where both constants γ
and γ′ are larger than 1. Such sequence satisfies (1.4) with α = max{γ−1, γ′−1}.
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Thus, by Durand [4] or by our Corollary 1.5, dimH(E) = α < 1. On the other
hand, by [4] or by our Theorem 1.3, dimP(E) = 1.

2. Let {ln} be the sequence corresponding to the complimentary open intervals

of the tertiary Cantor set. That is, ln = 3−m when
m−1∑
i=0

2i < n ≤
m∑

i=0

2i (m =

1, 2, . . .). Then it can be verified directly that the upper Besicovitch-Taylor index
α = log 2/ log 3 and, moreover, (1.4) holds. Hence our results are applicable to
the corresponding random covering set E. Consequently, dimH(E) = log 2/ log 3
and dimP(E) = 1 almost surely. Similar results hold for the random covering
sets associated with more general self-similar sets (or self-similar strings, in the
terminology of Lapidus and van Frankenhuysen [25]). See Proposition 3.2.

3. If ln = a−n, where a > 1 is a constant, then {ln} satisfies the condition (1.5)
with α = 0, by Remark 1.2 (iv), more generally, Proposition 3.3. Hence Theorem
1.1 holds for such {ln}. In particular, we have dimHE = 0 and dimP(E) = 1 almost
surely.

4. Finally we provide a simple example of {ln} that satisfies condition (C), but
not (1.4). Let β > log 3/ log 2 be a constant. We define

ln =


3−m if

m−1∑
i=0

2i < n ≤
m−1∑
i=0

2i + 2m−1,

n−β if
m−1∑
i=0

2i + 2m−1 < n ≤
m∑

i=0

2i.

Then we can verify that condition (C) is satisfied with α = log 2/ log 3 and the sub-
sequence ki = b(log2 3)ic, where bxc denotes the largest integer ≤ x. However, (1.4)
fails. Nevertheless, the theorems in this section are applicable to the corresponding
Dvoretzky covering set E.

2. Proofs of the theorems

In this section we prove Theorems 1.1, 1.3 and Theorem 1.4. It will be clear
that the method for studying limsup random fractals in Khoshnevisan, Peres and
Xiao [24] plays an essential role in our proofs. We remark that, even though the
second half of the proof of Theorem 1.1 is a modification of the proof of Theorem
3.1 in [24], our argument is more general and proves that Theorems 3.1 and 3.2
and their corollaries in [24] still hold if their Condition 4 is replaced by

Condition 4′: For some constant γ > 0,

lim sup
k→∞

log2 pk

k
= −γ

and there exists an increasing sequence of positive integers {ki} satisfying (1.2)
such that

lim
i→∞

log2 pki

ki
= −γ.

For proving Theorem 1.1 (and for extending the results in [24]) we will use the
following elementary lemma on upper box dimension.

Lemma 2.1. Let {ki} be an increasing sequence of positive integers which sat-
isfies (1.2). Then for any bounded set G ⊂ R,

(2.1) dimM(G) = lim sup
i→∞

log2 N(G, 2−ki)
ki

.
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Proof. For any ε > 0, there is an integer i such that 2−ki+1 < ε ≤ 2−ki . Thus
for any bounded set G ⊂ R we have

N(G, 2−ki) ≤ N(G, ε) ≤ N(G, 2−ki+1).

This implies that

log N(G, 2−ki)
ki log 2

ki

ki+1
≤ log N(G, ε)

− log ε
≤ log N(G, 2−ki+1)

ki+1 log 2
ki+1

ki
.

It is clear that (2.1) follows from the above and (1.2). �

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Firstly we show that dimP(G) < 1−α implies P
(
E∩

G 6= ∅
)

= 0. By (0.7), it suffices to show that whenever dimM(G) < 1 − α, then
E ∩G = ∅, a.s.

Fix an arbitrary but small η > 0 such that dimM(G) < 1 − α − η. For any
r > 0, denote by Cr = Cr(G) a collection of the smallest number of the intervals
with length r that cover the set G. Let Nr(G) = #Cr. Since

lim sup
n→∞

logNln(G)
− log ln

≤ lim sup
r→0

logNr(G)
− log r

= dimM(G) < 1− α− η,

there exists an integer n0 ∈ N such that

(2.2) Nln(G) < l−(1−α−η)
n

for all n ≥ n0. For any interval J in [0, 1) with length ln, since ωn is uniformly
distributed on [0, 1), we have

P
{
In ∩ J 6= ∅

}
≤ 3ln.

Note that {
In ∩G 6= ∅

}
⊂

⋃
J∈Cln

{
In ∩ J 6= ∅

}
,

we derive from this and (2.2) that

P
{
In ∩G 6= ∅

}
≤
∑

J∈Cln

P
{
In ∩ J 6= ∅

}
≤ Nln(G) · 3ln < 3lα+η

n

for all n ≥ n0. Hence the series
∑∞

n=1 P{In ∩G 6= ∅} converges by the definition of
α and η > 0. By the Borel-Cantelli Lemma, we have

P
{
In ∩G 6= ∅ i.o.

}
= 0.

That is, P
{
∃n0, s.t. ∀n ≥ n0, In ∩G = ∅

}
= 1. Therefore, E ∩G = ∅ a.s.

In the following, we prove that if dimP(G) > 1− α, then

P
(
E ∩G 6= ∅

)
= 1.

For this purpose, we construct a random subset E∗ ⊂ E and show that P
(
E∗∩G 6=

∅
)

= 1. The random subset E∗ is a discrete limsup random fractal as in [24]. Our
proof below is a modification and extension of the method in their Section 3 and is
divided into two steps.

(i) Construction. For any k ≥ 2, let Dk be the collection of dyadic intervals of the
form ( i

2k , i+1
2k ), i = 3, 4, . . . , 2k − 1. Denote by Tk = {n ∈ N : ln ∈ [2−k+1, 2−k+2)}

and let nk = #Tk.
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For every J ∈ Dk, define

Zk(J) =

{
1 if ∃ n ∈ Tk such that J ⊂ In = (ωn, ωn + ln),
0 otherwise.

Let
A(k) =

⋃
J∈Dk

Zk(J)=1

J

be the union of open dyadic intervals of order k that are contained in some In with
length ln ∈ [2−k+1, 2−k+2). Observe that

A(k) ⊂
⋃

n∈Tk

In.

We define E∗ := lim supk→∞ A(k). From the above, we have E∗ ⊂ E.

(ii) Hitting probability. Now let G ⊂ [0, 1) be an analytic set such that dimP(G) >
1− α. Then by Joyce and Preiss [17], we can find a closed set G∗ ⊂ G, such that
for all open set V , we have dimM(G∗ ∩ V ) > 1− α, whenever G∗ ∩ V 6= ∅.

In the following, we show P
(
E∗ ∩ G∗ 6= ∅

)
= 1. Our method is a modification

and extension of that in Section 3 of [24].
For every J ∈ Dk, the probability

P
(
Zk(J) = 1

)
= P

{
∃ n ∈ Tk such that J ⊂ (ωn, ωn + ln)

}
does not depend on J due to our assumption on {ωn} and our definition of Dk.
Denote the above probability by Pk. Then

(2.3) Pk ≤ nk(ln − 2−k) ≤ 3 nk2−k.

On the other hand,

Pk = P

( ⋃
n∈Tk

{J ⊂ In}

)
≥
∑

n∈Tk

P(In ⊃ J)−
∑

m∈Tk

∑
n∈Tk
n6=m

P
(
Im ⊃ J, In ⊃ J

)
≥ nk

(
ln − 2−k

)
− 9n2

k 2−2k

≥ nk 2−k(1− 9nk2−k).

(2.4)

In the above, we have used the independence of Im and In (m 6= n) to derive the
second inequality. Combining (2.3) and (2.4), together with (1.1) and Condition
(C), we derive that

(2.5) lim sup
k→∞

log2 Pk

k
= −(1− α)

and there is an increasing sequence of integers {ki} that satisfies (1.2) such that

(2.6) lim
i→∞

log2 Pki

ki
= −(1− α).

Hence E∗ is a limsup random fractals which satisfies Condition 4′ with γ = 1−α
(which is weaker than Condition 4 in Khoshnevisan, Peres and Xiao [24, p.11]).
Still using their terminology, we call E∗ a limsup random fractal of index 1− α.
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Next we verify their Condition 5 regarding the correlation of Zk(J) and Zk(J ′)
in [24]. Given J and J ′ ∈ Dk such that the distance d(J, J ′) ≥ 2−k+2. Since

Cov
(
Zk(J), Zk(J ′)

)
= E

(
Zk(J)Zk(J ′)

)
− E

(
Zk(J)

)
E
(
Zk(J ′)

)
= E

(
Zk(J)Zk(J ′)

)
− P 2

k ,(2.7)

we estimate E(Zk(J)Zk(J ′)) first,

E(Zk(J)Zk(J ′)) = P
(
Zk(J) = 1, Zk(J ′) = 1

)
= P

{
∃ m,n ∈ Tk such that Im ⊃ J and In ⊃ J ′

}
≤
∑

m∈Tk

∑
n∈Tk,
n6=m

P
(
Im ⊃ J, In ⊃ J ′

)
=
( ∑

m∈Tk

P
(
Im ⊃ J

))( ∑
n∈Tk,
n6=m

P
(
In ⊃ J ′

))
.

(2.8)

By (2.7), (2.8) and the first inequality in (2.4) we derive

Cov(Zk(J), Zk(J ′)) ≤ 2
( ∑

m∈Tk

P
(
Im ⊃ J

))
·
∑

m∈Tk

∑
n∈Tk
n6=m

P
(
Im ⊃ J, In ⊃ J ′

)
≤ C

(
nk 2−k

)
E
(
Zk(J)

)
E
(
Zk(J ′)

)
,

(2.9)

where the last inequality follows from (2.3) and C > 0 is a finite constant. It follows
from (2.9) and (1.1) that for any ε > 0

Cov
(
Zk(J), Zk(J ′)

)
< ε E

(
Zk(J)

)
E
(
Zk(J ′)

)
for all k large enough. This implies that f(k, ε) ≤ 8, where

f(k, ε) = max
J∈Dk

#
{
J ′ ∈ Dk : Cov(Zk(J), Zk(J ′)) ≥ εE(Zk(J))E(Zk(J ′))

}
.

In particular,

lim
k→∞

log f(k, ε)
k

= 0.

Thus we have shown that Condition 5 in [24] is satisfied with δ = 0.
The rest of the proof follows a similar line as in the proof of Theorem 3.1 in

[24]. For convenience of the reader, we give it below. Notice that our set N is
determined by Condition (C) and may be different from that in [24].

Fix an open set V ⊂ [0, 1) such that G∗ ∩ V 6= ∅. Let Nk be the number of
dyadic intervals J ∈ Dk such that

(2.10) J ∩G∗ ∩ V 6= ∅.

Since dimM(G∗ ∩ V ) > 1 − α, we use Lemma 2.1 to derive that, for any β ∈(
1− α, dimM(G∗ ∩ V )

)
, Nki

≥ 2kiβ for infinitely many integers i. This implies the
set N defined as

(2.11) N := {i ≥ 1 : Nki ≥ 2kiβ}

satisfies #N = ∞. Similarly to [24], we define

Si =
∑

J∈Dki
J∩G∗∩V 6=∅

Zki
(J).
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Namely, Si is the total number of intervals J ∈ Dki
such that

J ∩G∗ ∩ V ∩A(ki) 6= ∅.
We now show P

(
Si > 0 i.o.

)
= 1.

To this end, we estimate

Var(Si) =
∑

J∈Dki
J∩G∗∩V 6=∅

∑
J′∈Dki

J′∩G∗∩V 6=∅

Cov
(
Zki(J), Zki(J

′)
)
.

Fix ε > 0, for each J ∈ Dki
which satisfies (2.10), let Gki

(J) be the collection of all
J ′ ∈ Dki

such that
(i) J ′ ∩G∗ ∩ V 6= ∅, and
(ii) Cov

(
Zki(J), Zki(J

′)
)
≤ εP 2

ki
.

If J ′ ∈ Dki satisfies (i), but not (ii), then we say J ′ ∈ Bki(J). Thus

Var(Si) ≤ εN 2
ki

P 2
ki

+
∑

J∈Dki
J′∈Bki

(J)

Cov(Zki
(J), Zki

(J ′))

≤ εN 2
ki

P 2
ki

+Nki
max

J∈Dki

#Bki(J)Pki ,

where the last term comes from the fact that Cov(Zk(J), Zk(J ′)) ≤ E
(
Zk(J)

)
= Pk.

Since we have shown maxJ∈Dk
#Bk(J) ≤ 8 for all k large enough, the above implies

lim sup
i→∞
i∈N

Var(Si)
[E(Si)]2

≤ ε + lim sup
i→∞
i∈N

maxJ∈Dki
#Bki

(J)
Nki

Pki

= ε.

In the above, we have used that facts that E(Si) = Nki
Pki

and Nki
Pki

→ ∞ if
i ∈ N and i →∞ (recall (2.6) and (2.11)). Since ε > 0 is arbitrary, we have

(2.12) lim sup
i→∞
i∈N

Var(Si)
[E(Si)]2

= 0.

It follows from the Paley-Zygmund inequality ([20, p.8]) that

P
(
Si > 0

)
≥ (E(Si))2

E(S2
i )

= 1− Var(Si)
E(S2

i )
≥ 1− Var(Si)[

E(Si)
]2 .

Combining the above inequality, (2.12) and Fatou’s Lemma, we derive

(2.13) P
(
Si > 0 i.o.

)
≥ lim sup

i→∞
P
(
Si > 0

)
= 1.

It follows from (2.13) that

P

{( ∞⋃
k=n

A(k)
)
∩G∗ ∩ V 6= ∅, ∀n ≥ 1

}
= 1

for every open set V with G∗ ∩ V 6= ∅. Letting V run over all open interval with
rational endpoints, we obtain that (∪∞k=nA(k))∩G∗ is a.s. dense in G∗ for all n ≥ 1.
Since ( ∞⋃

k=n

A(k)
)
∩G∗
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is an open set in G∗ and G∗ is a complete metric space, by Baire’s category theorem
(see Munkres [29]), we know ∩∞n=1(∪∞k=nA(k)) ∩ G∗ is a.s. dense in G∗, that is,
E∗ ∩G∗ is a.s. dense in G∗. In particular, E∗ ∩G∗ 6= ∅ a.s. This finishes the proof
of Theorem 1.1. �

Proof of Theorem 1.3. We use the same method as in the proof of Theorem
3.2 in [24]. Let G∗ be the closed subset of G described in the proof of Theorem
1.1. Suppose dimP(G) > 1 −min{α, α′}, the proof of Theorem 1.1 shows that for
any open set V such that V ∩G∗ 6= ∅ we have

P
(( ∞⋃

k=n

Ik

)
∩ V ∩G∗ 6= ∅, ∀n ≥ 1

)
= P

(( ∞⋃
k=n

I ′k

)
∩ V ∩G∗ 6= ∅, ∀n ≥ 1

)
= 1.

By independence, there exists a single null probability event outside which for all
open intervals V with rational endpoints satisfying V ∩G∗ 6= ∅, we have( ∞⋃

k=n

Ik

)
∩ V ∩G∗ 6= ∅ and

( ∞⋃
k=n

I ′k

)
∩ V ∩G∗ 6= ∅ for all n ≥ 1.

That is,
{(
∪∞k=n Ik

)
∩ G∗}n≥1 ∪

{(
∪∞k=n I ′k) ∩ G∗

}
n≥1

is a countable collection
of open, dense subsets of the complete metric space G∗. Again, Baire’s theorem
implies that

P
(
E ∩ E′ ∩G∗ is dense in G∗

)
= 1.

In particular, E ∩ E′ ∩ G∗ 6= ∅ a.s. That is, P(E ∩ E′ ∩ G 6= ∅) = 1. This proves
the first part of Theorem 1.3.

In order to prove the second half, we regard the set E∩G as the target set with
respect to the random covering set E′. By Theorem 1.1, we know that P(E′∩E∩G 6=
∅) = 1 implies dimP(E ∩ G) ≥ 1 − α′ a.s. Therefore, from the above we see that
dimP(G) > 1−min{α, α′} implies dimP(E ∩G) ≥ 1− α′ a.s.

Now we assume dimP(G) > 1−α. For any α′ with 1−dimP(G) < α′ < α, that
is, dimP(G) > 1−min{α, α′}, we have dimP(E ∩G) ≥ 1− α′ a.s. Letting α′ tend
to 1− dimP(G) along rational numbers, we obtain

dimP(E ∩G) ≥ dimP(G) a.s.

Therefore, dimP(E ∩G) = dimP(G) a.s. �

Proof of Theorem 1.4. Firstly, we prove the right-hand inequality in (1.6).
By (0.7), it suffices to prove that

(2.14) dimH(E ∩G) ≤ dimM(G)− (1− α) a.s.

Denote by Cln a collection of the smallest number of the intervals with length ln,
the union of such intervals covers the set G. Let Nln(G) = #Cln . Since ξ :=
dimM(G) ≥ lim sup

n→∞

logNln (G)
− log ln

, we have

Nln(G) < l−(ξ+ε)
n

as n large enough, say n ≥ n1(ε), where ε > 0 is an arbitrary small real number.
Let Gn be the collection of the intervals J ∈ Cln such that J ∩ In 6= ∅ and denote
Tn = #Gn. For any J ∈ Gn, P(In ∩ J 6= ∅) ≤ 3ln. Thus

E(Tn) ≤
∑

J∈Gn

P(In ∩ J 6= ∅) ≤ 3Nln(G)ln ≤ 3l1−ξ−ε
n .
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For any θ > ξ − (1− α), we choose ε > 0 such that 2ε < θ − ξ + (1− α), then

E
( ∞∑

n=n1(ε)

Tn lθn

)
< 3

∞∑
n=n1(ε)

l1−ξ−ε
n lξ−(1−α)+2ε

n = 3
∞∑

n=n1(ε)

lα+ε
n < ∞.

Thus E(
∑∞

n=1 Tn lθn) < ∞. It follows that
∑∞

n=1 Tn lθn < ∞ a.s.
For any m ≥ 1, the collection {J ∈ Gn}n≥m is a covering of the set E ∩G, then

Hθ
(
E ∩G

)
≤

∞∑
n=m

Tn lθn < ∞ a.s.,

which implies dimH(E ∩G) ≤ θ a.s. Since θ > dimM(G)− (1− α) is arbitrary, this
proves that (2.14) holds.

The left-hand inequality in (1.6) can be derived from Theorem 1.1 and the
following Lemma, due to Khoshnevisan, Peres, and Xiao [24] (Lemma 3.4 with
N = 1 and γ = 1− α). The proof of Theorem 1.3 completed. �

Lemma 2.2. Equip [0, 1] with the Borel σ-field. Suppose E = E(ω) is a random
set in [0, 1] (i.e., the indicator function χE(ω)(x) is jointly measurable) such that
for any compact set F ⊂ [0, 1] with dimH(F ) > γ, we have P(E ∩ F 6= ∅) = 1.
Then, for any analytic set F ⊂ [0, 1],

dimH(F )− γ ≤ dimH(E ∩ F ) a.s.

3. Technical results

The upper Besicovitch-Taylor index (or the convergence exponent) of {ln} plays
an essential role in this paper. In this section we provide some equivalent charac-
terizations for this index and elaborate more on the condition (C) and (1.4).

First we show that

Proposition 3.1. For any constant a > 1, let nk = #{n ∈ N : ln ∈ [a−k+1, a−k+2)}.
Then

(3.1) α = lim sup
k→∞

loga nk

k
.

Proof. For any γ > α, we have
∑∞

n=1 lγn < ∞ or
∑∞

k=1 nka−γ(k−1) < ∞.
Thus

nka−γ(k−1) ≤ 1

for all k large, which implies

lim sup
k→∞

loga nk

k
≤ γ.

Hence we have

lim sup
k→∞

loga nk

k
≤ α.

On the other hand, if γ > lim supk→∞
loga nk

k , we choose γ′ such that

lim sup
k→∞

loga nk

k
< γ′ < γ.
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This implies nk ≤ akγ′ for all k large enough, say k ≥ k0. Hence
∞∑

k=k0

nka−kγ ≤
∞∑

k=k0

a−k(γ−γ′) < ∞.

This implies α ≤ γ, which proves α ≤ lim supk→∞
loga nk

k . Therefore (3.1) holds. �

For any decreasing sequence {ln} of positive numbers such that
∞∑

n=1
ln < ∞,

one can associate the following Dirichlet series

ζ(s) =
∞∑

n=1

lsn =
∞∑

n=1

e−s ln(l−1
n ),

which is called the geometric zeta function in Lapidus and van Franhenhuysen
[25]. Then the upper Besicovitch-Taylor index α defined by (0.4) is the abscissa of
convergence of the above Dirichlet series. On the other hand, denote by N(x) the
counting function defined by

N(x) = #
{

n : l−1
n ≤ x

}
,

see [25, p.8]. Then nk in Proposition 3.1 can be written as nk = N(ak−1)−N(ak−2)
for a > 1, hence the index α can also be determined by N(x) (we take a = 2):

(3.2) α = lim sup
k→∞

log2

(
N(2k−1)−N(2k−2)

)
k

.

Thanks to the above we can also apply the results in [25] to calculate the upper
Besicovitch-Taylor index of a sequence {ln}. In the following we focus on sequences
which are associated to self-similar sets (or self-similar strings in [25]).

Given an integer M ≥ 2 and constants r1, . . . , rM ∈ (0, 1) such that

1 ≥ r1 ≥ r2 ≥ · · · ≥ rM > 0 and R =
M∑
i=1

ri < 1,

one can construct self-similar sets in [0, 1] with scaling ratios r1, . . . , rM (cf. [6, 25,
28]). Similarly to the tertiary Cantor set in Section 2, we denote the corresponding
sequence by {ln}, where each ln is of the form

rk1
1 · · · rkM

M , where k1, . . . , kM ∈ N.

It can be verified that the multiplicity of the length rk1
1 · · · rkM

M in {ln} is the multino-

mial coefficient
(

q
k1 ··· kM

)
, where q =

M∑
i=1

ki; see [25, p.24].

By the proof of Theorem 2.3 in [25] we see that the geometric zeta function of
{ln} is

(3.3) ζ(s) =
∞∑

q=0

( M∑
i=1

rs
i

)q

, ∀s ∈ C.

This, together with (0.4), implies the first assertion of Proposition 3.2 below.
The asymptotic behavior of the counting function N(x) for a sequence {ln}

associated to a self-similar set has been studied in [25] (see also the references
therein for further information). We notice that the zeta function ζ(s) in (3.3)
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satisfies conditions (H1) and (H′
2) in [25, p.80] with κ = 0 and A = rM (see [25,

pp.121–122]). Hence we can apply Theorem 4.8 in [25, p.88] to obtain that

(3.4) N(x) =
∑

ω∈D(C)

res
(

xsζ(s)
s

; ω

)
+ constant

for all x > rM . In the above D(C) denotes the set of complex dimensions of {ln}
(i.e., the set of poles of ζ(s) or equivalently the set of solutions of the equation∑M

i=1 rω
i = 1) and res(g(s);ω) denotes the residue of a meromorphic function g(s)

at s = ω.
To obtain more explicit information about the terms on the right hand side of

(3.4), we distinguish two cases:
Nonlattice case: The additive group generated by log r1, . . . , log rM is
dense in R.
Lattice case: There exists some number δ > 0 such that log r1, . . . , log rM ∈
δZ. The largest such δ is called the additive generator and is denoted by
r [25, p.34]. The positive constant p = (2π)/(log r−1) is called the oscil-
latory period.

In the nonlattice case, it follows from (5.44) in [25, p.126] that

(3.5) N(x) = res(ζ;α)
xα

α
+ o(xα), as x →∞.

The lattice case is much simpler since the complex dimension of {ln} are located
on finitely many vertical lines [25, Theorem 2.13]. It follows from (5.33) and (5.34)
in [25, pp.122-123] that

(3.6) N(x) = res(ζ;α)
b1−{u}

b− 1
2π

p
xα + o(xα), as x →∞,

where log b = 2πα/p, u = p log x/2π, {x} = x− bxc is the fractional part of x.
By (3.5), (3.6) and (3.2) we derive

(3.7) lim
k→∞

log2

(
N(2k−1)−N(2k−2)

)
k

= α.

In other words, (1.4) always holds for a self-similar sequence {ln}.
Hence we have proved the following proposition.

Proposition 3.2. Let {ln} be the sequence associated to a self-similar set with
scaling ratios r1, . . . , rM . Then the upper Besicovitch-Taylor index α of {ln} coin-
cides with the self-similarity dimension D, which is the unique constant satisfying

M∑
i=1

rD
i = 1.

Moreover, (1.4) holds.

As an example, we mention the Fibonacci sequence, which is obtained by taking
M = 2, r1 = 1/2 and r2 = 1/4. Then it can be verified directly that α = log2 φ,
where φ = 1+

√
5

2 is the golden ratio, and its geometric counting function is given
by

NFib(x) =
3 + 4φ

5
φ−{log2 x}xα − 1 +

7− 4φ

5
φ{log2 x}x−α(−1)blog2 xc,

see [25, p.124]. It can be verified directly that (1.4) holds.
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Finally we show that condition (1.4) can be replaced by (1.5), as stated in
Remark 1.2 (iv).

Proposition 3.3. For any constants a > b > 1, let mk = #
{
n : ln ∈

[b−k+1, b−k+2)
}

and let nk = #
{
n : ln ∈ [a−k+1, a−k+2)

}
. If lim

k→∞
logb mk

k = α,

then
lim

k→∞

loga nk

k
= α.

Proof. We state the elementary fact that if lim
k→∞

logb mk

k = α, then for any

fixed integer τ0 ≥ 1, we have

(3.8) lim
k→∞

logb(mk + mk+1 + · · ·+ mk+τ0)
k

= α.

This can be verified by the fact that b(α−ε)k < mk < b(α+ε)k for all k large implies

b(α−ε)k < mk + mk+1 + · · ·+ mk+τ0 < (τ0 + 1)b(α+ε)(k+τ0)

for all k large.
To prove the lemma, observe that

ln ∈ [a−k+1, a−k+2) ⇐⇒ ln ∈ [b−(logb a)(k−1), b−(logb a)(k−2)).

Hence

nk ≤ #
{
n : ln ∈ [b−b(logb a)(k−1)c−1, b−b(logb a)(k−2)c)

}
= mb(logb a)(k−1)c+2 + · · ·+ mb(logb a)(k−2)c+2,(3.9)

where bxc denotes the largest integer ≤ x, and note that a > b, we have

nk ≥ #
{
n : ln ∈ [b−b(logb a)(k−1)c, b−b(logb a)(k−2)c−1)

}
= mb(logb a)(k−1)c+1 + · · ·+ mb(logb a)(k−2)c+3.(3.10)

Since limk→∞
logb mb(logb a)kc

(logb a)k = α, we derive from (3.8), (3.9) and (3.10) that

lim
k→∞

loga nk

k
= lim

k→∞

logb nk

(logb a)k
= α.

This proves the lemma. �
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