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Abstract

We study the correlation decay and the expected maximal increments of the exponential
processes determined by continuous-time autoregressive moving average type processes of order
(p, q). We consider two background driving processes, namely fractional Brownian motions and
Lévy processes with exponential moments. The results presented in this paper are significant
extensions of those very recent works on the Ornstein-Uhlenbeck-type case (p = 1, q = 0), and
we develop more refined techniques to meet the general (p, q). In a concluding section, we discuss
the perspective role of exponential CARMA-type processes in stochastic modeling of the burst
phenomena in telecommunications and the leverage effect in financial econometrics.
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1 Introduction

Empirically observed data from financial markets usually are of high-frequency, and those from envi-
ronmental sciences (hydrology and geology in particular) usually are irregularly spaced. Moreover,
they exhibit characteristics of long-memory and/or non-Gaussianity. Therefore, the traditional
ARMA or ARIMA time-series models must be treated in the continuous-time setting and to reflect
the above characteristics, and various modelings have been proposed and studied in detail; see re-
cent papers by [26, 27, 28, 29] for FBM driven models and [7, 8, 9] for Lévy driven models, and the
references therein. In this paper, our model is based on Continuous-time Autoregressive-Moving-
Average type (CARMA-type, for brevity) processes driven by fractional Brownian Motions and by
Lévy processes, as those papers cited above. We shall study the exponential processes associated
with these CARMA-type processes.

We mention that, in recent years, it has been of great interest to study the exponential func-
tionals and the exponential processes determined by Brownian motion and by Lévy processes, see
[10, 11, 17], with the view toward application in financial economics. There also appear papers by
[2, 21] to study the exponential processes associated with Ornstein-Uhlenbeck-type (OU-type for
short) processes driven by fractional Brownian Motions and by Lévy processes, which are motivated
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by the connection to Kahane-Mandelbrot theory of turbulence. Furthermore, these exponential pro-
cesses play roles in the context of stochastic volatility modelling (see, for example, [22, Chapter
11]). Indeed, the exponential CARMA-type processes driven by Lévy processes have been used very
recently to study the leverage effect between the stock return and the volatility of continuous-time
financial data, [16].

We study two fundamentally important properties of such an exponential processes Z. We
study the correlation decay

Cov (Z(t), Z(t + s)) as s ↑ ∞,

and estimate the upper bound for the expected maximal increments

E

[
max

t≤s≤t+r
|Z(s) − Z(t)|

]
as r ↓ 0.

The first result is useful to understand the spectral structure of the process. The second result is
of intrinsic importance to the path variation (hence toward various applications) of the process.

In Section 2, we present some preliminaries. In Sections 3 and 4, we state the main results,
respectively, on the CARMA processes driven by a fractional Brownian motion and by a Lévy
process. We present all proofs of our results in Section 5. In a concluding Section 6, we discuss the
advantage of our exponential CARMA-type process on stochastic modeling of the burst phenomena
in telecommunications and the leverage effect in financial econometrics.

Finally, we should mention that, though the CARMA-type process given in Section 2 below
may lead one to feel that it could be a superposition of OU-type processes. This is not true, since
the superpositions proposed in, say, [3, 5] mean to a sum of independent OU-type processes, while
the expression in Section 2 below for a CARMA-type process is a sum of the same driving force
and the parameters λi in the expression are complex-valued. Therefore, the existing techniques for
superposed OU-type processes are not applicable to the CARMA-type processes discussed in this
paper, and we develop more refined techniques to prove the main results of this paper.

2 Preliminaries

2.1 Fractional Brownian motions and Lévy processes

We begin with a review on the definitions and properties of two background driving processes,
fractional Brownian motion (FBM for short) and Lévy process (LP for short).

Definition 2.1 Let 0 < H < 1. A fractional Brownian motion {BH(t)}t∈R is a real-valued centered
Gaussian process, with BH(0) = 0 and Cov

(
BH(s), BH(t)

)
= 1

2

(
|t|2H + |s|2H − |t − s|2H

)
, (t, s) ∈

R2.

It is well known that FBM has stationary increments and self-similarity with index H. We may
and will assume that the sample path of a FBM is everywhere continuous. For more on FBM we
refer to e.g. [15].

Definition 2.2 A real-valued process L := {L(t)}t≥0 with L(0) = 0 is a Lévy process on R, if
(i) For any choice of n ≥ 1 and 0 ≤ t0 < t1 · · · < tn, the random variables L(t0), L(t1)−L(t0), L(t2)−
L(t1), . . . , L(tn) − L(tn−1) are independent.
(ii) L(t) − L(s) has the same distribution as L(t − s), 0 ≤ s < t < ∞, and
(iii) L is continuous in probability.
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We refer to [25] for intensive study on Lévy processes. We may and will assume that the sample
path of a LP is everywhere right-continuous (L(t+) = L(t)) with left-limits L(t−), and we may
also assume that it is quasi-left-continuous (see [25, p.279]).

It is well-known that a LP is characterized by its generating triplet (b, a2, ν), where b ∈ R is
the drift part, a2 ≥ 0 is the variance of the Gaussian part, and ν is the Lévy measure of the jump
part, i.e. it is a σ-finite measure on R \ {0} satisfying∫

R\{0}
(1 ∧ |x|2)ν(dx) < ∞.

The characteristic function of L(1) is determined as

ξ(θ) := log E[eiθL(1)] = ibθ − a2

2
θ2 +

∫
R\{0}

(eiθx − 1 − iθx1{|x|≤1})ν(dx), θ ∈ R, (2.1)

and that for L(t) is given as etξ(θ). Hence we know the distribution of L(t) for any t ≥ 0.
The following form of the Lévy-Itô decomposition is written as [1, p.108],

L(t) = bt + aB(t) +
∫
|x|<1

xÑ([0, t], dx) +
∫
|x|≥1

xN([0, t], dx),

where B is the standard Brownian motion on R, and N(ds, dx) (resp. Ñ(ds, dx)) is the Poisson
(resp. compensated Poisson) random measure on R+

⊗
(R\{0}) with intensity measure ds

⊗
ν(dx).

In this paper, since the second moment is essential, we assume that E[(L(1))2] < ∞ and is
scaled so that Var(L(1)) = 1.

In order to obtain causal stationarity CARMA processes we define a two-sided (in time) Lévy
process

L(t) =
{

L1(t) if t ≥ 0
L2((−t)−) if t < 0,

(2.2)

where {L1(t)}t≥0 and {L2(t)}t≥0 are independent copies of {L(t)}t≥0.

2.2 CARMA processes driven by FBM and by LP

Now we define a CARMA-type process Y := Y (p, q) as follows. We use similar notations as those
in [8] and in [26]. The following framework of CARMA processes are the same for both two cases.
Let 0 ≤ q < p, the process Y (p, q) is represented by observation and state equations;

Y (t) = β′X(t), t ≥ 0, (2.3)
dX(t) = AX(t)dt + δpdW (t), (2.4)

where

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
α1 α2 α3 · · · αp

 , X(t) =


X(0)(t)
X(1)(t)

...
X(p−2)(t)
X(p−1)(t)

 , δp =


0
0
...
0
1

 , β =


1
β1
...

βp−2

βp−1


and the coefficients βj satisfy βj = 0 for j > q.
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In the above, W := {W (t)}t∈R is the driving process, which is BM σB (σ > 0 and B is
the standard BM) in the classical context. In this work, we will firstly consider W to be FBM
and secondly consider W to be LP. The first one is Gaussian with long-range dependence, in case
1/2 < H, and the second one is non-Gaussian Markovian.

When we take the driving process to be FBM σBH (σ > 0 and BH is the FBM defined above),
we write Y := Y (p,H, q) to be the associated CARMA process, which has appeared in [26], yet
without loss of essential significance we skip the drift term appeared in [26, (3)]. The solution of
(2.4) can be written as

X(t) = eAtX(0) + σ

∫ t

0
eA(t−u)δpdBH(u),

where eAt = I +
∑∞

n=1

{
(At)n(n!)−1

}
and I is the identity matrix. Here we confine to the causal

stationary solution ([26, p.182]). If the eigenvalues of A all have negative real parts, a strictly
stationary solution of (2.4) is given by the form;

X(t) = σ

∫ t

−∞
eA(t−u)δpdBH(u), t ≥ 0.

This solution can be extended over all real t in natural way. Thus the CARMA-type process
Y := Y (p,H, q) has the moving-average form:

Y (t) = σ

∫ t

−∞
g(t − u)dBH(u), t ∈ R, (2.5)

where

g(t) =
{

β′eAtδp if t ≥ 0
0 otherwise.

(2.6)

The kernel g here is given in the closed form and for our purpose it is desirable to get a more
tractable expression. In [8, p.483] it is shown that, when all eigenvalues λ = (λ1, . . . , λp) of A have
negative real parts and are all distinct, g has the form

g(t) =
p∑

i=1

β(λi)
α(1)(λi)

eλit, (2.7)

where α(z) = zp − αpz
p−1 − · · · − α1, α(1)(·) denotes its first derivative, β(z) = 1 + β1z + β2z

2 +
· · · + βqz

q. Consequently, Y (t) can be written as

Y (t) = σ

p∑
i=1

β(λi)
α(1)(λi)

∫ t

−∞
eλi(t−u)dBH(u). (2.8)

In this form one can see the clear difference between CARMA-type processes and superposition of
OU-type processes. A more general expression for (2.6) is obtained in [29] (see also [8]), and (2.7)
is the most explicit case. In this paper we work in the form (2.8), namely we always assume the
condition below.

Assumption 2.1 All eigenvalues of λ = (λ1, . . . , λp) of A have negative real parts and are all
distinct, and hence the kernel g in (2.6) has expression (2.7).

4



The autocovariance function of Y , which characterizes the memory property of the process, is
shown in [26, Theorem 2]. Under Assumption 2.1, for h ≥ 0, the autocovariance function of Y is
equal to

γY (h) := Cov(Y (t + h), Y (t))

=
σ2

2
Γ(2H + 1)

p∑
i=1

β(λi)β(−λi)
α(1)(λi)α(−λi)

u(H,λi, h), (2.9)

where

u(H,λ, h) = 2(−λ)1−2H cosh(λh) + λ1−2HeλhP (2H,λh) − (−λ)1−2He−λhP (2H,−λh)

and P (a, z) =
∫ z
0 e−uua−1du/Γ(a), z ∈ C. For H 6= 1/2 as h → ∞, we have the asymptotic behavior

γY (h) = σ2H(2H − 1)
β2(0)
α2(0)

h2H−2 + O(h2H−3). (2.10)

This shows that Y (p,H, q) with H ∈ (1
2 , 1) exhibits long-range dependence. When H ∈ (1

2 , 1) the
autocovariance function of Y has another expression

γY (h) = σ2H(2H − 1)
∫ 0

−∞

∫ h

−∞
g(h − u)g(−v)|u − v|2H−2dudv, (2.11)

in which we easily see the sign of γY (h). Finally, we note that the Y (1,H, 0) process is the fractional
Ornstein-Uhlenbeck (FOU for short) process,

Y (t) = σ

∫ t

−∞
eα1(t−u)dBH(u),

and its autocovariance function is previously known (e.g. [12]) to be

γY (h) = σ2cH

∫ ∞

−∞
eihx |x|1−2H

α2
1 + x2

dx, cH =
Γ(2H + 1) sin(πH)

2π
.

Thus we see again that CARMA process Y (p,H, q) is a natural extension of FOU process.
Next, we replace the driving FBM σBH in the above construction by a LP L to obtain a

corresponding CARMA-type process Y := Y (p, L, q) driven by L. Recall we suppose the second
moment for L and Var(L(1)) = 1. We remark that a Lévy driven CARMA-type process has been
studied in [7, 8].

We again suppose Assumption 2.1. Then, similar to the FBM case, the process {X(t)}t∈R
defined by X(t) =

∫ t
−∞ eA(t−u)δpdL(u), t ∈ R, is the causal strictly stationary solution of (2.4)

with W now taken to be L, and the corresponding CARMA process is

Y (t) =
∫ t

−∞
g(t − u)dL(u), (2.12)

where g(t) is given by (2.6). The following expression which we use later is useful, since X(0) is
independent of {L(t)}t≥0,

Y (t) = β′eAtX(0) +
∫ t

0
β′eA(t−u)δpdL(u). (2.13)
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Under the Assumption 2.1 we have the expression (2.7) for the kernel g, which yields a corresponding
expression, as that in the FBM -driven case, we have

Y (t) =
p∑

i=1

β(λi)
α(1)(λi)

∫ t

−∞
eλi(t−u)dL(u).

It is immediate that EY (t) = −β′A−1δpE[L(1)], and due to [8, Remark 5] the autocovariance
function has a form,

γY (h) =
p∑

i=1

β(λi)β(−λi)
α(1)(λi)α(−λi)

eλi|h|. (2.14)

We thus see that the Lévy driven CARMA process exhibits short memory. Note that, despite a
Lévy driven CARMA process is different from the superposition of p independent Lévy driven OU
processes, as seen in (2.14) the correlation structures nevertheless look similar.

Since Y is an integral with a Lévy process, the distribution of Y (t) is given by the cumulant
generating function;

log E[eiθY (t)] =
∫ ∞

0
ξ(θg(u))du,

where ξ is given in (2.1).
The purpose of this paper is to study the exponential process associated with Y ,

Z := {Z(t)}t∈R := {eY (t)}t∈R,

where Y is Y (p,H, q) and Y (p, L, q). For the OU-type case, i.e. Y (1,H, 0) and Y (1, L, 0), the
associated process is investigated very recently in [21] and, respectively, in [2]. The present work is
a certain continuation of these two papers, yet we need to develop more refined techniques to meet
the general (p, q).

Finally, we mention that, upon various modelling needs, for example [7, 22, 28, 29], we are led
to consider the situation: the kernel g is non-negative, and/or the correlations for the exponential
process Z are non-negative. For instance, in stochastic volatility modelling, the volatility processes
are known to be clustering, which suggests positivity of their autocorrelation functions. Thus we
also impose

Assumption 2.2 Assume that the kernel g defined in (2.6) is non-negative.

A condition for g to be non-negative is given in [28, 29]. In our case, Assumption 2.2 implies non-
negativity for the correlations of our exponential processes, as we show in the following sections.

3 The main result I: the FBM-driven case

Recall that we assume Assumptions 2.1 throughout. Firstly we study the correlation decay of the
exponential processes.

Lemma 3.1 Let Z(t) := eY (t) be the exponential process determined by a stationary Gaussian
process Y (t). Then

Cov(Z(0), Z(s)) T 0 if and only if Cov(Y (0), Y (s)) T 0.

Moreover, assume that as s → ∞, Cov(Y (0), Y (s)) → 0. Then

Cov(Z(0), Z(s)) = exp [Var(Y (0))] {Cov(Y (0), Y (s)) + o(Cov(Y (0), Y (s)))} . (3.1)
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Due to the stationarity the same result holds for Cov(Z(t), Z(t + s)), t ∈ R in Lemma 3.1. Now
one can see that Assumption 2.2 implies non-negative correlation of the process Z since by (2.11)
the correlation of Y is non-negative under this assumption. The following corollary is immediate
from Lemma 3.1 with the covariance decay (2.10) for Y (p,H, q).

Corollary 3.1 Let Y := Y (p,H, q) process with H ∈ (1
2 , 1). Assume 2.1 and 2.2, then the station-

ary process Z(t) := eY (t) has the following covariance structure as s → ∞;

0 ≤ Cov(Z(t), Z(t + s)) = exp(γY (0))
{
γY (s) + O((γY (s))2)

}
= exp(γY (0))

{
σ2H(2H − 1)

β2(0)
α2(0)

s2H−2 + O(s2H−3)
}

,

where γY (·) is the autocovariance function of Y .

Remark 3.1 Assumption 2.2 is only used to assure the non-negativity for the autocorrelation
function of Z; indeed, if we only concern the correlation decay in Lemma 3.1 and Corollary 3.1,
then this assumption can be dropped.

Next, we estimate the expected maximum increments of the process Z associated with Y (p,H, q).
We need two lemmas. The first one is Lemma 2.3 of [21], which is based on Statement 4.8 of [23].
The second one requires new proof.

Lemma 3.2 Let H ∈ [12 , 1). Then for any r ≥ 0 and t ∈ R we have

E

[(
max

t≤s≤t+r

∣∣BH(s)
∣∣)m]

≤

{
rHm 2

√
2√
π

(m − 1)!! if m is odd
rHm2(m − 1)!! if m is even.

(3.2)

Lemma 3.3 Let H ∈ [12 , 1), m = 1, 2, . . . and Y := Y (p,H, q), and assume 2.1. Then the station-
ary process Y has the following bound for m-th moment of maximal increments for all r ≥ 0

E[max0≤s≤r |Y (s) − Y (0)|m]
m!

≤ C(λ)rHm, (3.3)

where λ = (λ1, λ2, . . . , λp) are eigenvalues of A and C(λ) is a constant, which depends on λ and
does not depend on any m or H.

Now, we state the harder result in this section as follows.

Theorem 3.1 Let H ∈ [12 , 1) and Y := Y (p,H, q). Define the stationary process Z(t) := eY (t).
Then there exists a constant C(H, λ) such that for all r with rH < 1/2 and all t ≥ 0,

E

[
max

t≤s≤t+r
|Z(s) − Z(t)|

]
≤ C(H, λ)rH . (3.4)

Here λ = (λ1, λ2, . . . , λp) are eigenvalues of A and C(H, λ) depends on H and λ.

Remark 3.2 To our knowledge, the maximal inequality in the above is new even when the driving
process is Brownian motion(H = 1/2).
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4 The main result II: the Lévy-driven case

We begin with the correlation decay. Under Assumption 2.1, the CARMA process Y := Y (p, L, q)
is strictly stationary and has causal stationary representations (2.12), as that mentioned in Section
2.

We assume that the Lévy process L given in (2.1) has no Gaussian part, i.e. a2 = 0, and that
we denote the drift part by bt and the Poisson random measure of the jump part by N(ds, dx) for
which the intensity measure is ds

⊗
ν(dx). From now on, we always use γ to denote the following

finite and positive quantity,

γ := p sup
i∈{1,...,p}

∣∣∣∣ β(λi)
α(1)(λi)

∣∣∣∣ ,

by which we bound g as 0 ≤ g(u) ≤ γ, ∀u ≥ 0.
We start with two lemmas; the second one is the moment generating function of Y , namely the

moment of Z = eY .

Lemma 4.1 Let g the kernel given in (2.7). For every t > 0 it follows that∫ 0

−∞
g(t − u)du ≤ M1e

−M2t,

∫ 0

−∞
g2(t − u)du ≤ M3e

−M4t,∫ t

0
g(t − u)du ≤ M5,

∫ t

0
g2(t − u)du ≤ M6,

where Mi, i = 1, . . . , 6 are some positive constants.

Lemma 4.2 Let Y := Y (p, L, q) and the kernel g as in (2.7). Assume 2.1 and 2.2, and suppose,
for a given θ > 0, that ∫

x>1
eθγxxν(dx) < ∞ and

∫
x<−1

|x|ν(dx) < ∞. (4.1)

Then, for each t > 0 we have

E[eθY (t)] = E[(Z(t))θ]

= exp
{

θb

∫ t

−∞
g(t − s)ds

}
× exp

{∫ t

−∞

∫
R

[
exp(θg(t − s)x) − 1 − θg(t − s)x1{|x|≤1}

]
ν(dx)ds

}
. (4.2)

We state the covariance decay of the exponential process Z as follows.

Proposition 4.1 Let Z := {Z(t)}t≥0 := {eY (t)}t≥0 be the exponential process associated with the
CARMA process Y (p, L, q). Assume 2.1 and 2.2, and suppose that the Lévy measure ν of L satisfies∫

x>1
e2γxxν(dx) < ∞ and

∫
x<−1

x2ν(dx) < ∞. (4.3)

Then, there exist positive constants c0 and c1 such that

0 ≤ Cov(Z(0), Z(s)) ≤ c0e
−c1s (4.4)

for all s > 0.
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Due to the stationarity the same result holds for Cov(Z(t), Z(t+s)), t ∈ R. At here the assumption
on the Lévy measure is stronger than that in Lemma 4.2; yet, this is needed for the existence of
E[Z(0)Z(s)].

Remark 4.1 (1). Proposition 4.1 extends the previous OU-type case (p = 1, q = 0) [2, Proposition
1] to the general CARMA-type, and its proof in Section 5 also corrects the previous flaw. Moreover,
it now only requires the exponential decay of the Lévy measure ν(dx) on x > 1 and the second
moment on x < −1.
(2). In [16, Remark 5.1], the authors also obtained the exponential decay of the covariance function.
However, their condition on the Lévy measure (in their Propositions 4.3 and 4.4) is stronger than
ours, and we are able to show the positivity of the covariance function which is not achieved by
their method. The positivity of the covariance function is important in both the applications to the
telecommunications (see Section 6 below) and to the volatility clustering (see, for example, [22]).
(3). If we replace (4.1) and (4.3) with a stronger condition, namely suitable exponential decay
of the Lévy measure ν(dx) as x tends to both ±∞, then Proposition 4.1 can be valid without
Assumption 2.2.
(4). The covariance decay of Z = eY is closely related with quantity

U(θ1, θ2; t) = E[ei(θ1Y (t)+θ2Y (0))] − E[eiθ1Y (t)]E[eiθ1Y (0)], −∞ < θ1, θ2 < ∞,

in [24, p.212 and pp.580-581], which characterizes the mixing property of any stationary infinitely
divisible process. Thus, we can apply and assert that Y (p, L, q) is mixing, suppose that the ex-
ponential integrability imposed on the Lévy measure ν(dx) is valid for whole range θ. In this
aspect, we mention that: in [16, Theorem 3.1(i)] the authors prove, by a suitable application of [20,
Theorem 4.3], that both Y and Z can be strongly mixing, under somewhat different conditions.

Now we present the harder estimate, the expected maximum increments of the exponential
process Z := eY .

Theorem 4.1 Let Y := Y (p, L, q) and the kernel g be as in (2.6). Assume for a given θ > 0, that∫
x>1

e2θγxxν(dx) < ∞ and
∫

x<−1
x2ν(dx) < ∞. (4.5)

Then, for t0 > 0 small enough, there exists a positive constant C such that

E

[
max

0≤t≤t0
|(Z(t))θ − (Z(0))θ|

]
≤ C

√
t0.

Here C depends on the kernel g and Lévy measure ν(dx) and drift parameter b.

Remark 4.2 1. As one may see from the proof given in the next Section 5, what we require on
the kernel g for Theorem 4.1 is that |g(u)| ≤ γ, ∀u ≥ 0 (may also allow g to be ±). This can be
achieved, for example, when Re(λj) < 0 (yet not necessarily all λj are distinct), as one may see in
a general expression for g given in [29]).
2. Theorem 4.1 is still valid when the Lévy triplet has Gaussian part; we simply combine Theorems
3.1 (with H = 1/2) and 4.1 and use the Lévy-Itô decomposition theorem. We leave it to readers
for the detail.
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5 Proofs

Proof of Lemma 3.1.
Since the distribution of (Y (0), Y (s)) is a bivariate Gaussian, its moment generating function taken
at 1 yields

E[Z(0)Z(s)] = E[eY (0)+Y (s)]

= exp
{

1
2
(1, 1)Σ(1, 1)′

}
,

where

Σ =
(

Var (Y (0)) Cov (Y (0), Y (s))
Cov (Y (0), Y (s)) Var (Y (s))

)
.

Then by using Cov (Y (0), Y (s)) → 0 as s → ∞ and ex =
∑∞

n=0 xn/n! for |x| < ∞, we have

Cov (Z(0), Z(s))
= exp{Var (Y (0))} [exp {Cov(Y (0), Y (s))} − 1] (5.1)

= exp{Var (Y (0))}

[
Cov(Y (0), Y (s)) +

(Cov (Y (0), Y (s)))2

2!
+

(Cov (Y (0), Y (s)))3

3!
+ · · ·

]
= exp{Var (Y (0))}

[
Cov(Y (0), Y (s)) + o

(
{Cov(Y (0), Y (s))}2

)]
.

2

Proof of Lemma 3.3.
Without loss of generality set σ = 1. By Assumption 2.1 we use the fact Re(λi) < 0 for all
i = 1, 2, . . . , p without mention. The increment has the following form via the integral by parts
formula (see Theorem 2.21 of [30]).

Y (s) − Y (0) =
p∑

i=1

β(λi)
α(1)(λi)

(∫ s

−∞
eλi(s−u)dBH(u) −

∫ 0

−∞
e−λiudBH(u)

)

=
p∑

i=1

β(λi)
α(1)(λi)

(
BH(s) + λi

∫ s

0
eλi(s−u)BH(u)du + (eλis − 1)Yi(0)

)
,

where for simplicity we denote
∫ 0
−∞ e−λiudBH(u) by Yi(0). Take absolute value of this to obtain

|Y (s) − Y (0)| ≤
p∑

i=1

∣∣∣∣ β(λi)
α(1)(λi)

∣∣∣∣
(
|BH(s)| + max

0≤u≤s
|BH(u)| |λi|

Re(λi)
(eRe(λi)s − 1)

+(1 − eRe(λi)s)|Yi(0)|

)

≤ C

(
|BH(s)| + max

0≤u≤s
|BH(u)|(1 − eµs) + (1 − eµs)

p∑
i=1

|Yi(0)|

)
,

where C = p supi

∣∣∣ β(λi)

α(1)(λi)
λi

Re(λi)

∣∣∣ and µ = infi Re(λi) < 0. Take m-th product of this to get

|Y (s) − Y (0)|m

10



≤ Cm
∑

j+k+`=m;j,k,`≥0

m!
j! k! `!

|BH(s)|j
{

max
0≤u≤s

|BH(u)|(1 − eµs)
}k

{
(1 − eµs)

p∑
i=1

|Yi(0)|

}`

≤ Cm
∑

j+k+`=m;j,k,`≥0

m!
j! k! `!

(
max

0≤u≤s
|BH(u)|

)j+k

(1 − eµs)k+`

(
p∑

i=1

|Yi(0)|

)`

.

Moreover, taking expectation of maxima of this, we have

E

[
max
0≤s≤r

|Y (s) − Y (0)|m
]

≤ Cm
∑

j+k+`=m;j,k,`≥0

m!
j! k! `!

E

 max
0≤u≤s

|BH(u)|j+k

(
p∑

i=1

|Yi(0)|

)`
 (1 − eµs)k+`. (5.2)

Let Y (0) :=
∫ 0
−∞ e−ηsdBH(s) with η = supi Re(λi) < 0. To analyze expectation is (5.2) we start to

bound E[|Yn(0)|2`], n = 1, . . . , p by E[|Y (0)|2`]. Define the real and the imaginary part of Yn(0) as

Yn(0) =
∫ 0

−∞
e−(iIm(λn)+Re(λn))udBH(u)

=
∫ 0

−∞
e−Re(λn)u cos(Im(λn)u)dBH(u) − i

∫ 0

−∞
e−Re(λn)u sin(Im(λn)u)dBH(u)

=: RYn(0) − iIYn(0), n = 1, . . . , p.

Noticing |Yn(0)|2 = (RYn(0))2 + (IYn(0))2 we have

E[|Yn(0)|2`] ≤ 22`−1
(
E[(RYn(0))2`] + E[(IRn(0))2`]

)
.

Since RYn(0) and IYn(0) are both Gaussian and their variances are smaller than E[|Y (0)|2], we
further bound E[|Yn(0)|2`] as

E[|Yn(0)|2`] ≤ 22`E[|Y (0)|2`] ≤ 22`(2` − 1)!!M2`
1 , (5.3)

where M1 =
√

Var(Y (0)). Due to this together with Lemma 3.2, the expectation in each term of
the sum is bounded as

E

 max
0≤u≤s

|BH(u)|j+k

(
p∑

i=1

|Yi(0)|

)`


≤

√
E

[
max

0≤u≤s
|BH(u)|2(j+k)

]√√√√E

[
p2`−1

p∑
i=1

|Yi(0)|2`

]

≤

√
E

[
max

0≤u≤s
|BH(u)|2(j+k)

]√
E

[
(2p)2`|Y (0)|2`

]
≤

√
2(2(j + k) − 1)!!r2H(j+k)

√
(2` − 1)!!(2pM1)2`

≤
√

2j+k(j + k)!r2H(j+k)

√
2``!(2pM1)2`

=
√

(j + k)!`!(
√

2rH)j+k(2
√

2pM1)`. (5.4)

11



Here M1 depends on the parameter H and η by the definition. However since H ∈ [12 , 1), we can
make M1 to attain a certain bound regardless of H. In fact

Var(Y (0)) = 2σ2cH

∫ ∞

−∞

|x|1−2H

η2 + x2
dx, cH =

Γ(2H + 1) sin(πH)
2π

.

Note that as H ↑ 1 the integral diverges, but simultaneously cH ↓ 0 in the same rate. Therefore,
we conclude that Var(Y (0)) is bounded regardless of H ∈ [12 , 1).

Now substituting (5.4) into (5.2) and dividing by m!, we have

E [max0≤s≤r |Y (s) − Y (0)|m]
m!

≤ Cm

√
m!

∑
j+k+`=m;j,k,`≥0

m!
j! k! `!

√
(j + k)! `!

m!
(
√

2rH)j(
√

2rH(1 − eµs))k(2
√

2pM1(1 − eµs))`

≤ 1√
m!

Cm
{√

2rH +
√

2rH(1 − eµs) + 2
√

2pM1(1 − eµs)
}m

≤ rHm

√
m!

Cm

{√
2 +

√
2(1 − eµs) + 2

√
2pM1

(1 − eµs)
rH

}m

.

Here we observe that (1− eµs)/rH ≤ |µ| for any 0 ≤ s ≤ r and any H ∈ [12 , 1) and that cm/m! ≤ ec

for any c > 0 and any m = 1, 2, . . .. Hence we can take a universal constant C(λ) > 0 and obtain

E [max0≤s≤r |Y (s) − Y (0)|m]
m!

≤ C(λ)rHm.

2

Proof of Theorem 3.1.
Once we have Lemma 3.3, the proof of the theorem can be proceeded exactly as that of of Theorem
2.1 in [21]; thus we omit it. 2

Proof of Lemma 4.1.
The expression (2.7) of g yields

|g(t − u)| =

∣∣∣∣∣
p∑

i=1

β(λi)
α(1)(λi)

eλi(t−u)

∣∣∣∣∣ ≤ γ

p

p∑
i=1

eRe(λi)(t−u).

Then, since we assume that Re(λi) < 0, i = 1, . . . , p, the results are obtained by basic calculations.
2

Proof of Lemma 4.2.
Since g is a non-negative bounded continuous function with g ∈ L1 ∩ L2, due to approximation
Lemma in [13, p.91], we may take a step function gn(x) =

∑n−1
i=1 ai1(si,si+1](x), where ai ≥ 0, i =

1, . . . , n and −∞ < s1 < s2 < · · · < sn < ∞ such that

gn(x) ≤ gn+1(x) ≤ g(x),

lim
n→∞

gn(x) = g(x) a.e. and gn → g ∈ L1 ∩ L2.

Let Yn(t) =
∫ t
−∞ gn(t − u)dL(u), then by [25, p.165], with the drift b and without the Gaussian

part at there, we see that

E
[
eθ

R t
−∞ gn(t−u)dL(u)

]
12



= exp
{

θb

∫ t

−∞
gn(t − u)du +

∫ t

−∞

∫
R
[eθgn(t−u)x − 1 − θgn(t − u)x1{|x|≤1}]ν(dx)du

}
. (5.5)

The integrand of the last integral is bounded by

θ2eθγ|x||gn(t − u)|2|x|21{|x|≤1} + θ|gn(t − u)||x|
(
eθγx1{x>1} + 1{x<−1}

)
≤ θ2eθγ|x||g(t − u)|2|x|21{|x|≤1} + θg(t − u)|x|

(
eθγx1{x>1} + 1{x<−1}

)
,

which is integrable. Hence by the dominated convergence theorem the right hand side of E[eθ
R t
−∞ gn(t−u)dL(u)]

converges to (4.2) and (4.2) is continuous at θ = 0. Then due to definition of stochastic integral,
(4.2) is turned out to be the moment generating function of Y . 2

Proof of Proposition 4.1.
Due to the expression (2.13), where X(0) and {L(t)}t≥0 are independent, it follows that

Cov(Z(0), Z(t))
= E[eY (0)+Y (t)] − E[eY (0)]E[eY (t)]

= E[eβ′X(0)+β′eAtX(0)]E
[
exp

{∫ t

0
g(t − u)dL(u)

}]
−E

[
eβ′X(0)

]
E

[
eβ′eAtX(0)

]
E

[
exp

{∫ t

0
g(t − u)dL(u)

}]
= E

[
exp

{∫ t

0
g(t − u)dL(u)

}]
︸ ︷︷ ︸

I

(
E

[
eβ′X(0)+β′eAtX(0)

]
− E

[
eβ′X(0)

]
E

[
eβ′eAtX(0)

])
︸ ︷︷ ︸

II

.

We begin to see the calculation of the quantity I. By Lemma 4.2 and Taylor expansion it follows
that

I ≤ exp
{

b

∫ t

0
g(t − u)du +

∫ t

0

∫
R

∣∣∣eg(t−u)x − 1 − g(t − u)x1{|x|≤1}

∣∣∣ ν(dx)du

}
≤ exp

{
b

∫ t

0
g(t − u)du +

∫ t

0

∫
|x|≤1

eg(t−u)|x|g2(t − u)|x|2ν(dx)du

+
∫ t

0

∫
x>1

eg(t−u)xg(t − u)xν(dx)du +
∫ t

0

∫
x<−1

g(t − u)|x|ν(dx)du

}
≤ exp

{
b

∫ t

0
g(t − u)du +

∫ t

0
g2(t − u)du

∫
|x|≤1

eγ |x|2ν(dx)

+
∫ t

0
g(t − u)du

(∫
x>1

eγxxν(dx) +
∫

x<−1
|x|ν(dx)

)}
.

Here in the second step we use the inequalities;

ex − 1 ≤ exx and 1 − e−x ≤ x, x ≥ 0. (5.6)

In view of Lemmas 4.1 and 4.2, the quantity I is proven to be bounded uniformly in t. Again by
Lemma 4.2 we have

E[eβ′(I+eAt)X(0)]
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= exp
{

b

∫ 0

−∞
(g(t − u) + g(−u))du

}
× exp

{∫ 0

−∞

∫
R
[e(g(t−u)+g(−u))x − 1 − (g(t − u) + g(−u))x1{|x|≤1}]ν(dx)du

}
and

E[eβ′X(0)]E[eβ′eAtX(0)]

= exp
{

b

∫ 0

−∞
(g(t − u) + g(−u))du

}
× exp

{∫ 0

−∞

∫
R
[eg(−u)x − 1 − g(−u)x1{|x|≤1}]ν(dx)du

}
× exp

{∫ 0

−∞

∫
R
[eg(t−u)x − 1 − g(t − u)x1{|x|≤1}]ν(dx)du

}
.

Thus we have

II = exp
{

b

∫ 0

−∞
(g(t − u) + g(−u))du

}
︸ ︷︷ ︸

IIa

×
[
exp

{∫ 0

−∞

∫
R
[e(g(t−u)+g(−u))x − eg(−u)x − eg(t−u)x + 1]ν(dx)du

}
− 1

]
︸ ︷︷ ︸

IIb

× exp
{∫ 0

−∞

∫
R
[eg(−u)x − 1 − g(−u)x1{|x|≤1}]ν(dx)du

}
︸ ︷︷ ︸

IIc

× exp
{∫ 0

−∞

∫
R
[eg(t−u)x − 1 − g(t − u)x1{|x|≤1}]ν(dx)du

}
.︸ ︷︷ ︸

IId

We study IIa, IIb, and IIc and IId in order. Due to Lemma 4.1, the quantity IIa is bounded uniformly
in t. Again by (5.6) it is easy that

IIb := exp
{∫ 0

−∞

∫
R
(eg(t−u)x − 1)(eg(−u)x − 1)ν(dx)du

}
− 1

≤ exp

{∫ 0

−∞

∫
|x|≤1

eg(t−u)xg(t − u) · eg(−u)xg(−u)|x|2ν(dx)du

+
∫ 0

−∞

∫
x>1

eg(t−u)x+g(−u)xg(t − u)xν(dx) +
∫ 0

−∞

∫
x<−1

g(t − u)|x|ν(dx)du

}
− 1

≤ exp
{∫ 0

−∞
g(t − u)du

∫
R

(
γe2γ|x||x|21{|x|≤1} + e2γ|x|x1{x>1}

)
ν(dx)

+
∫ 0

−∞
g(t − u)du

∫
x<−1

|x|ν(dx)
}
− 1.

Here in the second inequality we use (5.6). Then due to Lemma 4.1 and Taylor expansion we have

IIb ≤ exp
{

c

∫ 0

−∞
g(t − u)du

}
− 1 ≤ c′e−c′′t, (5.7)
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where c, c′ and c′′ are some positive constants. Next we see the boundedness of IIc and IId. Since
proofs are similar we only show the boundedness of IIc. Again by Lemmas 4.1 and 4.2 with (5.6)
we have

log IIc ≤
∫ 0

−∞

∫
|x|≤1

eg(−u)|x| (g(−u)x)2 ν(dx)du

+
∫ 0

−∞

∫
x>1

eg(−u)xg(−u)xν(dx)du

+
∫ 0

−∞

∫
x<−1

(
1 − eg(−u)x

)
ν(dx)du

≤
∫ 0

−∞
g2(−u)du

∫
|x|≤1

eγ|x||x|2ν(dx)

+
∫ 0

−∞
g(−u)du

(∫
x>1

eγxxν(dx) +
∫

x<−1
|x|ν(dx)

)
< ∞.

The same calculation holds for IId, and IIc and IId are turned out to be bounded uniformly in t.
Hence with boundedness of I and IIa, the equation (5.7) yields the results. 2

Proof of Theorem 4.1.
In the following proof, the c, c′, c′′, C, C ′, C ′′, etc, will denote positive constants for which the exact
values are irrelevant and may vary from line to line. By the Lévy-type stochastic integral of Y in
Section 2 (recall that we have assumed there is no Gaussian part), for t > 0,

Y (t) = β′eAtX(0) +
∫ t

0
g(t − u)dL(u)

where g is the CARMA kernel defined in Section 2. The Lévy-Itô decomposition for L mentioned
in Section 2, written in the differential form yields,

dL(s) = bds +
∫
|x|<1

xÑ(ds, dx) +
∫
|x|≥1

xN(ds, dx).

This together with the state equation (2.4) gives

dY (t) =
(
β′AeAtX(0) +

∫ t

0
g′(t − s)dL(s)

)
dt + g(0)dL(t)

= β′AX(t)dt + g(0)dL(t)

= (β′AX(t) + g(0)b)dt + g(0)
∫
|x|<1

xÑ(dt, dx) + g(0)
∫
|x|≥1

xN(dt, dx),

where g(0) = β′δp. We apply Itô’s formula for Lévy-type stochastic integrals, as that in [1, p.226,
Theorem 4.4.7] with f(x) = eθx to obtain

eθY (t) − eθY (0) =
∫ t

0
θeθY (s−)(β′AX(s−) + g(0)b)ds

+
∫ t

0

∫
|x|≥1

[eθ(Y (s−)+g(0)x) − eθY (s−)]N(ds, dx)

+
∫ t

0

∫
|x|<1

[eθ(Y (s−)+g(0)x) − eθY (s−)]Ñ(ds, dx)
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+
∫ t

0

∫
|x|<1

[eθ(Y (s−)+g(0)x) − eθY (s−) − θg(0)xeθY (s−)]ν(dx)ds.

We rearrange the above expression to get the following semimartingale decomposition, confer [1,
p.252],

eθY (t) − eθY (0) = M(t) + V (t),

where the martingale part M(t) and the finite variation part V (t) are, respectively, expressed by

M(t) =
∫ t

0

∫
x∈R

eθY (s−)
(
eθg(0)x − 1

)
Ñ(ds, dx)

and

V (t) =
∫ t

0

{
eθY (s−)

(
θβ′AX(s−) + θg(0)b +

∫
|x|≥1

(eθg(0)x − 1)ν(dx)

+
∫
|x|<1

(eθg(0)x − 1 − θg(0)x)ν(dx)
)}

ds.

We estimate the expected maximums of M and V separately.
(i) Estimate for E[max0≤t≤t0 |V (t)|].
Due to a basic inequality |ey − 1 − y| ≤ c(y2/2) and inequalities (5.6) with Fubini’s theorem,

E

[
max

0≤t≤t0
|V (t)|

]
≤

∫ t0

0

{
θE[eθY (s−)|β′AX(s−)|] + E[eθY (s−)]

(
θg(0)|b| + c

2
θ2g2(0)

∫
|x|<1

x2ν(dx)

+2
∫

x>1
eθγxν(dx) + θg(0)

∫
x<−1

|x|ν(dx)
)}

ds.

We observe that s → Y (s−) is also strictly stationary, E[f(Y (s−))] = E[f(Y (s))] = E[f(Y (0))]
for each nonnegative f and each s by the left-quasi-continuity of the Lévy process L. Therefore,

E

[
max

0≤t≤t0
|V (t)|

]
≤

∫ t0

0

(
θ
√

E[e2θY (0)]E[(β′AX(0))2] + E[eθY (0)]c′
)
ds ≤ c′′t0.

(ii) Estimate for E [max0≤t≤t0 |M(t)|].
By the Burkholder’s inequality for martingale with jumps as that given in [6, p.213] with p = 1
there, we have, for each t0 > 0,

E

[
max

0≤t≤t0
|M(t)|

]
≤ CE

[
[M ]1/2(t0)

]
≤ C ′√E [[M ](t0)],

where [M ] denotes the quadratic variation process of the martingale process M ; we have also used
a basic inequality that E

√
V ≤

√
EV for every nonnegative random variable V . By the quadratic

variation of stochastic integrals, see [1, p.230] without the Gaussian part there, and our expression
of M(t) given above, we have

[M ](t0) =
∫ t0

0

∫
x∈R

e2θY (s−)
(
eθg(0)x − 1

)2
N(ds, dx).
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Since the process s → Y (s−) is a left-continuous process, by the compensation formula as that
given in [18, Theorem 4.4], we have

E [[M ](t0)] =
∫ t0

0

∫
x∈R

E
[
e2θY (s−)

](
eθg(0)x − 1

)2
ν(dx)ds.

As we have argued in the proof of the drift part (i), for each s, E
[
e2θY (s−)

]
= E

[
e2θY (0)

]
. Under

our integrability assumptions on ν(dx), similar calculations as before show that∫
x∈R

(
eθg(0)x − 1

)2
ν(dx) < ∞.

Thus,

E

[
max

0≤t≤t0
|M(t)|

]
≤ C ′√E [[M ](t0)] ≤ C ′′√t0.

As a consequence,

E

[
max

0≤t≤t0
|eθY (t) − eθY (0)|

]
≤ E

[
max

0≤t≤t0
|M(t)|

]
+ E

[
max

0≤t≤t0
|V (t)|

]
≤ C ′′√t0 + c′′t0,

which is of O(
√

t0) as t0 is small. 2

6 Concluding remarks

We have presented the study on the exponential process

Z := {Z(t)}t∈R := {eY (t)}t∈R,

where Y is Y (p,H, q) and Y (p, L, q), the CARMA (p, q) process driven by FBM and by LP with
exponential moments, under Assumptions 2.1 and 2.2. In this concluding section, we discuss its
advantageous role in stochastic modelling of finance and telecommunication.

(1) Telecommunication: In this context, we work on the normalized exponential CARMA-type
process

Z̃(t) := eY (t)−c,

where the constant c = EeY (0) so that the resulting Z̃(t) is a positive-valued stationary process
with mean 1 (we may choose c so that the mean of Z̃(t) is any prescribed positive quantity). In view
of the burst phenomenon of internet traffic, it is studied in [19] the infinite product of a re-scaled
“mother process” Λ. The Λ is any mean 1, positive-valued, positive-correlated stationary process,
for which the correlation decay (as time-lag tends to ∞) and the expected maximal increments (as
time-lag tends to 0) are both of a certain power-decay. The exponential FBM driven OU-type
process and the exponential LP driven OU-type process, respectively in [2] and [21], are used to
model such a mother process. We would propose to use the Z̃(t) as a more general mother process
to create the infinite product; one advantage of the CARMA-type process over the OU-type process
in this situation should be that we can have more adjusting parameters p, q to fit the multifractality
of the various burst measures.
(2) Finance: In a very recent work [16], the authors use the exponential CARMA-type process
driven by a Lévy process to study the leverage effect between the stock return and the volatility
for continuous-time financial markets with jumps. Their §3 has features on: (i) the construction of
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a proper return process via the underlying Lévy process L and the volatility exponential CARMA
process driven by the derived Lévy process M , and (ii) the leverage of the return and the volatility
conditioning on the jumps of L. As the long memory property of financial markets is well recognized
(see, for example, [14]), it seems worthwhile to study [16] with fractional Brownian motion as the
underlying process. However, both above features and related analysis seem not readily achieved;
the issue will be addressed elsewhere.
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