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Abstract

The purpose of this paper is to consider the Cauchy problem for the time-

fractional (both sub- and super- diffusive) relativistic diffusion equation. Based on

the viewpoint of theory of pseudo-differential operators, we regard the equation

as a pseudo differential equation, and we act the equation via the space-time

transform. The solution is expressed as the convolution of the Green’s function

(heat kernel) and the initial data. The Green’s functions are determined by their

Fourier transforms, and are written in terms of Mittag-Leffler functions.

1 Introduction

The purpose of this paper is to consider the Cauchy problem for the following time-

fractional relativistic diffusion equation (TFRDE, for brevity),

∂β

∂tβ
u(t, x) = Hα,mu(t, x), u(0, x) = u0(x), t ≥ 0, x ∈ Rn. (1.1)

In the above, the fractional temporal derivative ∂β

∂tβ
is in the Caputo-Djrbashian sense

(see the end of this section); while the spatial differential operator

Hα,m := m− (m
2
α −∆)

α
2
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is a relativistic diffusion operator with the spatial-fractional parameter α ∈ (0, 2) and

the normalized mass parameter m > 0.

The operator Hα,m appears in vast literature of mathematics and physics. The

prominent case is α = 1, which −H1,m represents the free energy of the relativistic

Schrödinger operator with a relativistic particle of mass m; see the seminal paper of

Carmona et al. [2] for mathematical discussions. For study on general α ∈ (0, 2), one

may refer to Ryznar [10], Baeumer et al. [1], and the references therein. The operator

Hα,m has also played an essential role in the theory of computer vision; see a special

volume edited by Kimmel et al. [6], in which Hα,m is employed to connect the PDEs and

the computer vision theory. In this paper, we consider (1.1) from the viewpoint of theory

of pseudo-differential operators; see, for example, the book of Wong [14]. We regard (1.1)

as a pseudo differential equation, and we act the equation via the space-time transform;

see the statement and the proof of Proposition 1. We will also present in Proposition

3 a corresponding stochastic processes viewpoint, when β ≤ 1. We should remark that

the viewpoint of pseudo-differential operators is very inspiring to catch the essence of

the solution of (1.1), and also works for the whole time-fractional range β ∈ (0, 2). We

state our results in Section 2, and all the proofs are given in Section 3. In the final

Section 4, we give remarks on the two-scale property of relativistic Green’s functions

(heat kernels).

Here, we review briefly the fractional time-derivatives as follow; see, for example,

Djrbashian [4] for details.

dβf

dtβ
(t) :=

{
f (m)(t) if β = m ∈ N

1
Γ(m−β)

∫ t

0
f (m)(τ)

(t−τ)β+1−m dτ if β ∈ (m− 1, m),
(1.2)

where f (m)(t) denotes the ordinary (non-fractional) derivative of order m of a causal

function f(t) (i.e., f is vanishing for t < 0). In this note, we mainly use 0 < β < 1 and

1 < β < 2; which are referred respectively as the sub-diffusive and the super-diffusive,

since the β = 1 is well-known as the diffusive.

For the expression of the Green’s function in the time-fractional index β, we need the
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following Mittag-Leffler (ML) functions; see, for example, [4, Chapter 1] for the details.

The ML function is defined by, for k = 1, 2,

Eβ,k(z) =
∞∑
i=0

zi

Γ(βi + k)
, z ∈ C. (1.3)

We remark that a ML function is an entire function on the complex plane and its

asymptotic behaviors, when β ∈ (0, 2), β 6= 1, have the inverse power law as follows:

|Eβ,k(z)| ∼ O(
1

|z|
), |z| → ∞ with |arg(−z)| < π(1− β

2
), (1.4)

where arg: C → (−π, π) and the notation f(z) ∼ O(g(z)) means that f(z)/g(z) remains

bounded as z approaches the indicated limit point; for (1.4), see the classic book by

Erdélyi et al. [5] (pp. 206-212, especially p. 206 (7) and p. 210 (21)).

Acknowledgement: Most of this work is achieved while the author visited De-

partment of Mathematics and Statistics, York University, Canada, in Fall 2011. The

hospitality of the host is appreciated.

2 Main results

Since (1.1) is of linear-parabolic type, the solution must be expressed as the convolution

of the Green’s function ( heat kernel) and the initial condition. Therefore, the form

of the solution expressed below is not surprising; however the defining display for the

Green’s function is completely new, to our knowledge. For an f ∈ L2(Rn, Leb), we use

f̂ to denote the Fourier (-Plancherel) transform of f . In the context henceforth, we skip

the indices α, m from the Green’s functions for most time; yet will resume these two

indices when it is necessary.

Proposition 1. The solution u(t, x) of (1.1) is expressed:

• β = 1(diffusive): with the given initial u0(x) = f(x), and with the Green’s function

denoted by G = Gα,m,

u(t, x) =

∫
Rn

G(t, x− y)f(y)dy.
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• β : 0 < β < 1(sub-diffusive): with the given initial u0(x) = f(x), and with the

associated Green’s function denoted by Gβ,1 = Gβ,1;α,m,

u(t, x) =

∫
Rn

Gβ,1(t, x− y)f(y)dy.

• β : 1 < β < 2(super-diffusive): with the two given initials u0(x) = f(x), and

∂tu
∂t
|t=0(x) = g(x), and with the two associated Green’s functions denoted by Gβ,i =

Gβ,i;α,m, i = 1, 2 ( respectively associated with the two initials f(x), g(x) ),

u(t, x) =

∫
Rn

Gβ,1(t, x− y)f(y)dy +

∫
Rn

Gβ,2(t, x− y)g(y)dy.

In the above, the initial(s) f (and g in the super-diffusive) are assumed in the fol-

lowing subspace DA of L2(Rn, Leb).

DA := {f ∈ L2(Rn, Leb) :

∫
Rn

θ(λ)|f̂(λ)|2dλ < ∞},

with

θ(λ) := (m
2
α + |λ|2)

α
2 −m > 0, ∀λ 6= 0.

The defining displays for the above Green’s functions are, respectively, via the spatial

Fourier transforms as follows: for each t > 0 fixed, for λ ∈ Rn, with < ·, · > denoting

the inner product in Rn,

• β = 1,

∫
Rn

ei<λ,x>G(t, x)dx = e−tθ(λ). (2.1)

• β ∈ (0, 2), β 6= 1,

∫
Rn

ei<λ,x>Gβ,1(t, x)dx = Eβ,1(−tβθ(λ)). (2.2)

• β ∈ (1, 2),

∫
Rn

ei<λ,x>Gβ,2(t, x)dx = t · Eβ,2(−tβθ(λ)). (2.3)
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For the prominent case, that is, α = 1 and m > 0, from the explicit expression of

the Green’s function G1,m(t, x) appeared in Wong [13, pp. 195-6] (we need to multiply

emt to the Kt(x) there to meet our present situation), we see that G1,m(t, x) is positive

valued, and its integral over x is 1. See also Carmona et al. [2, pp. 123-4] from the

viewpoint of stochastic processes. The following property shows that the corresponding

sub-diffusive Green’s function also behaves in the same manner.

Proposition 2. For the sub-diffusive 0 < β < 1 with α = 1 and m > 0; for each t > 0,

the associated Green’s function Gβ,1(t, x) satisfies

Gβ,1(t, x) > 0;

∫
Rn

Gβ,1(t, x)dx = Eβ,1(−tβθ(0)) = 1. (2.4)

Remarks: 1. For the super-diffusive β ∈ (1, 2) and the two associated Green’s

functions Gβ,k, k = 1, 2, we can view Proposition 2 in the following informal way: let us

rewrite the latter as Gβ,k+1, k = 0, 1, and let θ(λ) be the θ function defined in Proposition

1. Then, we have∫
Rn

Gβ,k+1(x, t)dx =

∫
Rn

1

(2π)n

∫
Rn

e−i<λ,x>tkEβ,k+1(−θ(λ)tβ)dλ dx. (2.5)

Using the symbolic relation of the δ0-function

δ0(λ) =
1

(2π)n

∫
Rn

e−i<λ,x>dx,

we see that the display (2.5) is symbolically equal to∫
Rn

δ0(λ)tkEβ,k+1(−θ(λ))dλ = tkEβ,k+1(0) = tk.

The last relation in the above seems to indicate that the super-diffusive does not have the

propobilistic interpretation; such an interpretation for the diffusive and the sub-diffusive

will be given in the below, Proposition 3.

2. Proposition 2 is stated and proved only for the case α = 1, since we use the explicit

expression of G1,m(t, x) to see that it is postive valued; this positivity property seems

not readily seen from the Fourier transform expression of the Gα,m(t, x), for general

α ∈ (0, 2).
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The following property a probabilistic viewpoint for the solution of (1.1) in the dif-

fusive and the sub-diffusive cases; it is based on the (Bochner) subordination of the

Brownian motion in Rn; this probabilistic approach in, say, [3] allows to consider the

sub-diffusive RDE on a bounded domain.

Proposition 3. In the diffusive and the sub-diffusive cases, the solution u(t, x) of (1.1)

has a probabilistic interpretation: with the given initial data f(x) = u0(x), for the diffu-

sive, u(t, x) = Ex[f(Xt)], and for the sub-diffusive, u(t, x) = Ex[f(Yt)]. The stochastic

process Xt is the Brownian motion Bt on Rn subordinated by a relativistic α
2
-subordinator.

The stochastic process Yt is the Xt further subordinated by a β-subordinator. The nota-

tion Ex[·] means the expectation w.r.t. the process starting at x, and the foot-index x is

skipped when the process starts at x = 0.

3 Proofs

Proof of Proposition 1. The diffusive case is typical; indeed the display for the

Green’s function G(t, x) is a consequence of our viewing that RDE (β = 1) as a pseudo

differential equation. The proof of the sub-diffusive case can be imbedded in the super-

diffusive case (with g(x) identically to be zero). Therefore we proceed the proof for the

latter case, 1 < β < 2. The proof is based on the temporal-spatial transform arguments:

take the Laplace transform L(·) with respect to the temporal variable t, and then take

the Fourier transform F(·) with respect to the spatial variable x. For the notational

consistency, we use (x̂, t̂) to denote the spatial-temporal variable in the transformed

space-time. Firstly, by the convolution for Laplace transform and the integration-by-

parts on the defining display of the fractional derivative (1.2) for the causal functions,

we see that u(x, t) must satisfy

{−∂u

∂t
u(x, 0)− t̂u(x, 0) + t̂2Lu(x, t̂)}t̂β−2 = Hα,mLu(x, t̂). (3.1)
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Then, we take the spatial Fourier transform F(·) to (3.1); we then have

{−F ∂u

∂t
(x̂, 0)− t̂Fu(x̂, 0) + t̂2FLu(x̂, t̂)}t̂β−2 = −{(m

2
α + |x̂|2)

α
2 −m}FLu(x̂, t̂),

which can be rewritten as

FLu(x̂, t̂) =
−t̂β−2

−{(m 2
α + |x̂|2)α

2 −m} − t̂β
(t̂Fu(x̂, 0) + F ∂u

∂t
(x̂, 0)). (3.2)

For θ = θ(x̂) := (m
2
α + |x̂|2)α

2 −m > 0, we expand the −t̂β−1

−θ−t̂β
and the −t̂β−2

−θ−t̂β
in powers of

t̂−1 by geometric series and represent the inverse power of t̂ by the integral representation

for the Γ-function (see, for example, Podlubny [9, (1.80)]), then we can have

−t̂β−1

−θ − t̂β
= L(Eβ,1(−θ�β))(t̂)

and

−t̂β−2

−θ − t̂β
= L(�Eβ,2(−θ�β))(t̂),

in which � wants to mean the variable in t to be under the L. Then, we take the inverse

Laplace transform to (3.2) to obtain

Fu(x̂, t) = Eβ,1(−θtβ) + tEβ,2(−θtβ).

As a final step, we take the the inverse Fourier transform to the above, and then use the

convolution to obtain the solution; the displays for the Green’s functions are consequently

derived.

Proof of Proposition 2. From Wyss and Wyss [15], noting that we are now in the

sub-diffusive, we can express the associated Green’s function as

Gβ,1(t, x) =

∫ ∞

0

fβ(z)G(tβz, x)dz, x ∈ Rn, t > 0; (3.3)

in which, G(t, x) is the Green’s function determined by the diffusive case, with α = 1

and m > 0 (see Proposition 1), and fβ(z) is a nonnegative-valued function of z ≥ 0

represented in terms of so-called H-function (see, for example, Schneider [12, p. 284])

fβ(z) = H10
11

(
z|

(1− β, β)

(0, 1)

)
, z ≥ 0; (3.4)
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indeed fβ is with Laplace transform∫ ∞

0

e−szfβ(z)dz = Eβ,1(−s), s ≥ 0. (3.5)

By (3.3), and the positivity of G(t, x) as we remark in Section 2, we see that Gβ,1(t, x) >

0. Moreover,∫
Rn

Gβ,1(t, x) dx =

∫
Rn

∫ ∞

0

fβ(z)G(tβz, x) dzdx

=

∫ ∞

0

fβ(z)

∫
Rn

G(tβz, x) dxdz

=

∫ ∞

0

fβ(z) · e−tβzθ(0) dz = Eβ,1(−tβθ(0)) = 1. (3.6)

In the above, we use Tonelli Theorem (it is legitimate to use, since the integrand is

known to be nonnegative) to change the order of integrations, and we also use the (3.5)

and the defining display of G(t, x) in Proposition 1. Note that θ(0) = 0, and that

Eβ,1(0) = 1.

Proof of Proposition 3. The proof is adapted from two references, Ryznar [10] and

Chen et al. [3]. In [10], the relativistic relativistic (α/2)-subordinator is introduced, as a

Lévy process Tt with increasing sample paths and with the Laplace function determined

by

E
[
e−uTt

]
= e−t{(m

2
α +u)

α
2 −m}, u > 0.

Assume that Tt and the Brownian motion Bt in Rn are totally independent, then the

subordinated process Xt = BTt is a Lévy process Rn, for which the characteristic function

is given by,

E
[
ei<λ,Xt>

]
= e−t{(m

2
α +|λ|2)

α
2 −m}, λ ∈ Rn.

This means that the transition density function of the process Xt is exactly the Green’s

function of the (1.1). Now, for the sub-diffusive case β < 1, the general theory for

sub-diffusive processes mentioned, for example, in [3] and the references therein, asserts

the second part of the proposition. Indeed, let St be a subordinator for which Laplace

function is determined by

E
[
e−uSt

]
= e−tuβ

, u > 0.
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Assume that the processes St is totally independent from a Markov process Xt for which

the infinitesimal generator is denoted by A, then, by [3, Section 3], the sub-fractional

diffusive equation, regarded as an evolution equation,

∂βu

∂tβ
= Au, u(0) = f,

has the solution u(t, x) = Ex[f(Yt)], where the process Yt := XEt , and Et is the right-

inverse of St, i.e. Et = inf{s : Ss > t}. The generator of the Lévy process Xt is Hα,m,

which can be seen from the characteristic function expression of Xt given above and the

theory of Lévy processes in, say, the book of Sato [11]. This gives the assertion.

Remark: We should remark that Proposition 3 is not fully equivalent to Proposi-

tion 1, since our domain of the action DA in Proposition 1 is not, in general, known to

be the same as the domain of the Markov generator A.

4 Remark on Green’s functions

Here, we make the remarks on how the viewpoint of pseudo-differential operators gives us

the insight on the RDEs. The Fourier expression Ĝα,m of the Green’s function Gα,m(t, x)

in Proposition 1 (we add foot-index α, m here to clarity their roles in the below) gives

us the following two-scale property:

When T →∞,

Ĝα,m(Tt, T− 1
2 λ) = exp

{
Tt(m− (m

2
α + T−1|λ|2)

α
2 )
}
→ exp

{
− t

α

2
m1− 2

α |λ|2
}

.

When ε → 0,

Ĝα,m(εt, ε−
1
α λ) = eεtme−εt(m

2
α +ε−

2
α |λ|2)

α
2 → e−t|λ|α .

The first one is observed by the limiting on the first two terms in the concerned fractional-

binomial expansion, and the second one is observed by the direct limiting.

The above two-scale property asserts that: the large-scale is dominated by the mass

index m, and the small-scale is dominated by the spatial-fractional index α. This two-

scale property is key to consider the multi-scaling property of RDEs, as shown in [7, 8].
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As for the time-fractional case, the Fourier expression Ĝβ,1 of the first associated

Green’s function Gβ,1 in Proposition 1 also exhibits the two-scale via its Fourier trans-

form: Ĝβ,1(Tt, T−β
2 λ), for large T , and Ĝβ,1(εt, ε

− β
α λ), for small ε. The displays will

then use the ML function Eβ,1 to replace the exponential function.

However, the the Fourier expression Ĝβ,2 of the second associated Green’s function

Gβ,2, appearing only in the super-diffusive, has a aggregating time factor t in its expres-

sion, which should be quite different from the above observations.

Finally, we mention that, though the explicit expression for the prominent G1,m(t, x)

has appeared in Carmona et al. [2, pp. 123-4] and Wong [13, pp. 195-6], it seems that

there is no such explicit expression for Gα,m(t, x) for general α ∈ (0, 2).
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