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WIGNER ENSEMBLE

H = (hjk) is a hermitian N ×N matrix, N � 1.

hjk =
1√
N

(xjk + iyjk), (j < k), hjj =

√
2

N
xjj

where xjk, yjk (j < k) and xjj are independent with distributions

xjk, yjk ∼ dν := e−g(x)dx,

Normalization: E xjk = 0, E x2
jk = 1

2.

Example: g(x) = x2 is GUE.

Normalization ensures that Spec(H) = [−2,2] + o(1)

Results hold for real symmetric matrices as well, e.g. for GOE.
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1
(x) =           4 ! x 2

Eigenvalues: E1 ≤ E2 ≤ . . . . . . EN

Typical eigenvalue spacing is Ei − Ei−1 ∼ 1
N .
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MAIN QUESTIONS

1) Density of states (DOS) — Wigner semicircle law.

2) Eigenvalue spacing distribution (Wigner-Dyson statistics and

level repulsion);

3) (De)localization properties of eigenvectors.

RELATIONS:

• 2) is finer than 1) [bulk vs. individual ev.]

• Level repulsion ⇐⇒ Delocalization ??? [Big open conjecture]

Motivation in background: Random Schrödinger operators in the

extended states regime.
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DENSITY OF STATES

N (I) := #{µn ∈ I} number of evalues µn of H in I ⊂ R.

Smoothed density of states around E with window size η:

%η(E) =
1

Nπ
ImTr

1

H − E − iη
=

1

Nπ

∑
α

η

(µα − E)2 + η2

%η(E) and N (I) with I = [E − η
2, E + η

2] are closely related.

WIGNER SEMICIRCLE LAW

For any fixed I ⊂ R,

lim
N→∞

E N (I)

N
=
∫
I
%sc(x)dx, %sc(x) =

1

2π

√
4− x2 1(|x| ≤ 2)

Similar statement for %η(E), window size η = O(1) fixed.

Fluctations and almost sure convergence are also known.
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The Wigner-Dyson statistics (universal distribution of eigenvalue

spacing) requires info on individual evalues on a scale η ∼ 1/N .

It is believed to hold for general Wigner matrices, but proven

only for Gaussian and related models and the proofs use explicit

formulas for the joint ev. distribution. [Dyson, Deift, Johansson]

GOALS:

(i) Prove Semicircle Law for any scales η � N−1.

(ii) Prove that eigenvectors are delocalized.
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Theorem 1: Fix κ, ε > 0. Let η � (logN)8

N , then, as N →∞,

P

 sup
|E|≤2−κ

∣∣∣∣∣∣ N [E − η
2, E + η

2]

Nη
− %sc(E)

∣∣∣∣∣∣ ≥ ε
 ≤ e−c(logN)2

i.e. Semicircle Law holds for energy windows ∼ 1/N (mod logs)

Theorem 2: Fix κ > 0, then

P

∃v, ‖v‖2 = 1, Hv = µv, |µ| ≤ 2−κ, ‖v‖∞ ≥
(logN)5

N1/2

 ≤ e−c(logN)2

i.e. almost all eigenfunctions are fully delocalized.
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ASSUMPTIONS on the single site distribution dν = e−g(x)dx

(i) sup g′′ <∞

(ii) There exists δ > 0 such that
∫
eδx

2
dν(x) <∞

(iii) dν satisfies the logarithmic Sobolev inequality∫
u logu dν ≤ C

∫
|∇
√
u|2 dν

Item (i) was needed for a concentration Lemma. J. Bourgain

has informed us that this lemma also holds if (i) is replaced by

a decay stronger than Gaussian (e.g. bounded r.v.).
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Lemma: [Upper bound]. Assume g′′ <∞. Let |I| ≥ logN
N , then

P{N (I) ≥ KN |I|} ≤ e−cKN |I|

for large K. Similar result holds for P{%η(E) ≥ K}.

Proof: Decompose

H =

(
h a∗

a B

)
, h ∈ C, a ∈ CN−1, B ∈ C(N−1)×(N−1)

Let λα,uα be the ev’s of B and define

ξα := N |a · uα|2, Eξα = 1

For the (1,1) matrix element of Gz = (H − z)−1, z = E + iη:

Gz(1,1) =
1

h− z − a · (B − z)−1a
=

h− z − 1

N

N−1∑
α=1

ξα

λα − z

−1
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|Gz(1,1)| ≤
1∣∣∣∣Im[

h− z − 1
N

∑
α

ξα
λα−z

] ∣∣∣∣ ≤
η−1

1 + 1
N

∑
α

ξα
(λα−E)2+η2

≤
Nη∑

α : λα∈I
ξα

for any interval I = [E − η,E + η].

NI ≤ Cη Im TrGz ≤ Cη
N∑
k=1

|Gz(k, k)|

Repeating the above construction for each k,

NI ≤ CNη2
N∑
k=1

∣∣∣∣ ∑
α : λ(k)

α ∈I

ξ
(k)
α

∣∣∣∣−1

so to get an upper bound on NI, we need a lower bound on
∑
ξα.
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Good news: For the decomposition

H =

(
h a∗

a B

)
,

the eigenvalues µα of H and λα of B are interlaced:

µ1 ≤ λ1 ≤ µ2 ≤ λ2 ≤ . . .
so the number of λα ∈ I is N (I)± 1.

NI ≤ CNη2
N∑
k=1

∣∣∣∣ ∑
α : λ(k)

α ∈I

ξ
(k)
α

∣∣∣∣−1

Suppose ∑
α : λ(k)

α ∈I

ξ
(k)
α ≥ c #{λ(k)

α ∈ I} ≥ cN (I)

(recalling E ξ = 1 and hoping for weak correlation) then we had

N (I) .
N2η2

N (I)
=⇒ N (I) . Nη
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Lower bound on
∑
α ξα:

Recall ξα = N |a · uα|2. Note that a is indep of λα,uα. The ξα’s
are not independent, but almost, so their sum has a strong con-
centration property.

Lemma: Let g′′ <∞ or supp ν compact, then

P

 ∑
α∈A

ξα ≤ δ|A|

 ≤ e−c|A|

Note
∑
α∈A

ξα = N
∑
α∈A
|a·uα|2 = N |PAa|2, PA = proj

Lemma: Let z = (z1, . . . zN), zj = xj + iyj, xj, yj ∼ dν(x). Let P
be a projection of rank m in CN . Then

E e−c(Pz,Pz) ≤ e−c
′E(Pz,Pz) = e−c

′m

Proof: Brascamp-Lieb or Bourgain’s decoupling method.
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Proof of the local semicircle law: Consider the Stieltjes transform

m(z) =
∫
%(x)dx

x− z

The Stieltjes tr. of the semicircle law satisfies

msc(z) +
1

msc(z) + z
= 0

This fixed point equation is stable away from the spectral edge.

Let m(z) be the Stieltjes tr. of the empirical density of H, and

m(k)(z) that of the minor B(k):

m(z) =
1

N
Tr

1

H − z
, m(k)(z) =

1

N − 1
Tr

1

B(k) − z
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Then from the expansion

m(z) =
1

N

N∑
k=1

Gz(k, k) =
1

N

N∑
k=1

1

hkk − z − a(k) · 1
B(k)−z

a(k)

obtain

m =
1

N

N∑
k=1

1

hkk − z −
(
1− 1

N

)
m(k) −Xk

with

Xk = a(k) ·
1

B(k) − z
a(k) − Ek

[
a(k) ·

1

B(k) − z
a(k)

]
︸ ︷︷ ︸

=(1− 1
N )m(k)

=
1

N

N−1∑
α=1

ξ
(k)
α − 1

λ
(k)
α − z

(recall ξ(k)
α = N |a(k) · u(k)

α |2, Ekξ
(k)
α = 1)
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m =
1

N

N∑
k=1

1

hkk − z −
(
1− 1

N

)
m(k) −Xk

(i) P{hkk ≥ ε} ≤ e−δε
2N

(ii) By interlacing property
∣∣∣∣m− (1− 1

N

)
m(k)

∣∣∣∣ = o(1)

(iii) Lemma: P{|Xk| ≥ ε} ≤ e−cε(logN)2

Then, away from an event of tiny prob, we have

m = −
1

N

N∑
k=1

1

m+ z + δk

where the random variables δk satisfy |δk| ≤ ε. From stability of

the equation msc = − 1
msc+z, we get |m−msc| ≤ Cε.
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Proof of Lemma: Forget k.

X =
1

N

N−1∑
α=1

ξα − 1

λα − z
, ξ = |b · vα|2,

With a high prob in the prob. space of the minor, we have

#{λα ∈ I} ≤ Nη(logN)2. Fix such an event and play with a.

Compute

d

dβ

[
e−β log E ee

βX
]

= e−βE u logu ≤ Ce−βE |∇
√
u|2, u :=

ee
βX

E ee
βX

and

e−βE |∇
√
u|2 ≤ eβE

u ∑
k

∣∣∣∣∂X∂bk
∣∣∣∣2
 =

eβ

N2
E
[
u
∑
α

ξα

|λα − z|2

]
≤

eβ

Nη
E [uY ]

with Y = 1
N

∑
α

ξα
|λα−z|.

16



e−βE |∇
√
u|2 ≤

eβ

Nη
E [uY ], Y =

1

N

∑
α

ξα

|λα − z|

Use entropy inequality

E [uY ] ≤ γ−1E u logu+ γ−1E eγY

(with optimal γ ∼ eβ/Nη) and log-Sobolev once more to get

E |∇
√
u|2 ≤ E eγY

Integrate the inequality

d

dβ

[
e−β log E ee

βX
]
≤ e−βE eγY

from −∞ to β0 ∼ 1
2 log(Nη)− 2 log logN .

The boudary term at β = −∞ vanishes since E X = 0, thus
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log E ee
β0X ≤ E eδY , Y =

1

N

∑
α

ξα

|λα − z|

with δ ∼ 1/(logN)4 � 1.

Since ξα = |b · vα|2 has finite exponential moment, if there are

not too many λα near E, then Y has finite exponential moment

for a small δ.

This controls the exponential moment of X.
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EXTENDED STATES: EIGENVECTOR DELOCALIZATION

No concept of absolutely continuous spectrum.

v ∈ CN , ‖v‖2 = 1 is extended if ‖v‖p ∼ N
1
p−

1
2, p 6= 2.

E.g. For GUE, all eigenvectors have ‖v‖4 ∼ N−1/4 (symmetry)

Question: in general for Wigner? [T. Spencer]

Our Theorem 2 answers to this in the strongest possible norm,

with log corrections, for all eigenvectors (away from the edge)

Theorem 2: Fix κ > 0, then

P

∃v, ‖v‖2 = 1, Hv = µv, |µ| ≤ 2−κ, ‖v‖∞ ≥
(logN)5

N1/2

 ≤ e−c(logN)2
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Proof. Decompose as before H =

(
h a∗

a B

)
,

Let Hv = µv and v = (v1,w), w ∈ CN−1. Then

hv1 +a ·w = µv1, av1 +Bw = µw =⇒ w = (µ−B)−1av1

From the normalization, 1 = ‖w‖2 + |v1|2, we have

|v1|2 =
1

1 + 1
N

∑
α

ξα
(µ−λα)2

≤
1

1
N

1
(q/N)2

∑
α∈A ξα

, (ξα := N |a·uα|2)

where recall λα,uα are the ev’s of B and let

A =
{
α : |λα − µ| =

q

N

}
q ∼ (logN)8

Concentration ineq. and lower bound on the local DOS imply∑
α∈A

ξα ≥ c|A| ≥ cq

with very high probability, thus

|v1|2 ≤
q

N
=⇒ ‖v‖∞ ≤ N−1/2 modulo logs
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SUMMARY

• All results for general Wigner matrices, no Gaussian formulas

•We established the Semicircle Law for the DOS on scale (logN)8

N
(optimal modulo logs)

• All eigenvectors are fully delocalized away from the spectral

edges. Optimal estimate on the sup norm (modulo logs)

OPEN QUESTIONS:

• Are all conditions necessary (strong decay plus log-Sobolev)?

• Wigner-Dyson distribution of level spacing [DREAM...]
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Outline

• Credit Derivatives: market data and is-
sues

• Approach I - reduced form: copula method

• Approach II - structural form: first pas-
sage time problem

• Modification: stochastic correlation

• Conclusions and Future works
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Introduction of Credit Derivatives

• A contract between two parties whose

values are contingent on the creditwor-

thiness of underlying asset (s).

• Single-name: only one reference asset,

like CDS (Credit Default Swaps).

• Multi-name: several assets in one basket,

like CDO (Collateralized Debt Obliga-

tions) or BDS (Basket Default Swaps).
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Credit Default Swap 
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Source: Securities Industry and Financial Markets As-
sociation.
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A Example: Credit Swap Evaluation

premium =

IE {(1−R)×B(0, τ)× I(τ < T )} /

IE


N∑

j=1

4j−1, j ×B(0, tj)× I(τ > tj)


Notations: τ : default time, R: recovery rate,

B(0, t): discount factor, 4j−1, j: time incre-

ment.
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Some Mathematical Issues

• Modeling default time

• Modeling correlations between default times

• Estimating joint default probability: rare

event in high dimension
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Approaches to Modeling Default Times

• Intensity-Based (Reduced Form)
View firm’s default as extraneous, modeling
the hazard rate of the firm.

IP (τ ≤ t) = F (t) = 1− exp
{
−
∫ t

0
h(s)ds

}
.

• Asset Value-Based (Structural Form)
First passage time problem: in 2-d{

dS1t = µ1 S1t dt + σ1 S1t dW1t

dS2t = µ2 S2t dt + σ2 S2t d(ρ W1t +
√

1− ρ2 W2t)

Joint default occurs if S1t < B1 and S2t < B2

for some t ≤ T .
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Reduced Form Approach: Copula Method∗

Default Times Modeling:
{
τi = F−1

i (Ui)
}n

i=1
,

U ’s are (standard) uniform random variables.

A n-dimensional Copula is a distribution func-

tion on [0,1]n with uniform marginal distri-

butions.

Through a copula function, one can build

up correlations between default times.
∗Cherubini, Luciano, Vecchiato (2004), Nel-
son(2006).

8



Gaussian Copula

• Li (2000) introduced Gaussian copula

C(u1, u2, · · · , un;Σ) =

ΦΣ(Φ−1(u1),Φ
−1(u2), · · · ,Φ−1(un)),

where Σ denotes the variance-covariance
matrix.

• Laurent and Gregory (2003) introduced
Gaussian Factor Copula so that parame-
ters numbers are reduced from O(n2) to
O(n).

• Easy to compute but lack of economic
sense.
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Structural Form Approach: Review

• Merton (1974) applied Black-Scholes Op-
tion Theory (1973). Default time only
happens at maturity.

• Black and Cox (1976) proposed the first
passage time problem (1-dim) to model
default event.

• Zhou (2001) extended to 2-dim case.
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Credit Risk Modeling:

Structural Form Approach

Multi-Names Dynamics: for 1 ≤ i ≤ n

dSit = µiSitdt + σi SitdWit,

d
〈
Wit, Wjt

〉
= ρijdt.

Each default time τi for the ith name is de-

fined as τi = inf{t ≥ 0 : Sit ≤ Bi}, where Bi

denotes the ith debt level.

The ith default event is defined as {τi ≤ T}.
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Joint Default Probability:

First Passage Time Problem

Q: How to compute, for any finite n names,

DP = IE
{
Πn

i=1I(τi≤T ) | Ft

}
?

Explicit Formulas exist for 1 and 2 names

cases so far...(no mention for stochastic cor-

relation/volaility...)
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Multi-Dimensional Girsanov Theorem

Given a Radon-Nikodym derivative

dIP

dĨP
= Qh

T = e

(∫ T
0 h(s,Ss)·dW̃s−1

2

∫ T
0 ||h(s,Ss)||2ds

)
,

W̃t = Wt +
∫ t
0 h(s, Ss)ds is a vector of Brown-

ian motions under ĨP . Thus

DP = ĨE
{
Πn

i=1I(τi≤T )Q
h
T

}
.

If h = − 1
DP σT∇DP , zero variance for the

new estimator.
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Monte Carlo Simulations:

Importance Sampling

An importance sampling method is to select

a constant vector h = (h1, · · · , hn) to satisfy

the following n conditions

ĨE {SiT |F0} = Bi, i = 1, · · · , n.

Each hi can be uniquely determined by the

linear system

Σi
j=1ρijhj = µi

σi
− lnBi/Si0

σi T , for i = 1, · · · , n.
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Trajectories under different measures

Single Name Case
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Single Name Default Probability

B BMC Exact Sol Importance Sampling
50 0.0886 (0.0028) 0.0945 0.0890 (0.0016)
20 0 (0) 7.7 ∗ 10−5 7.2 ∗ 10−5(2.3 ∗ 10−6)
1 0 (0) 1.3 ∗ 10−30 1.8 ∗ 10−30(3.4 ∗ 10−31)

Number of simulations are 104 and the Eu-

ler discretization takes time step size T/400,

where T is one year. Other parameters are

S0 = 100, µ = 0.05 and σ = 0.4.
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Three-Names Joint Default Probability

ρ BMC Importance Sampling
0.3 0.0049(6.98 ∗ 10−4) 0.0057(1.95 ∗ 10−4)
0 3.00 ∗ 10−4(1.73 ∗ 10−4) 6.40 ∗ 10−4(6.99 ∗ 10−5)

-0.3 0(0) 2.25 ∗ 10−5(1.13 ∗ 10−5)

Parameters are S10 = S20 = S30 = 100, µ1 =

µ2 = µ3 = 0.05, σ1 = σ2 = 0.4, σ3 = 0.3 and

B1 = B2 = 50, B3 = 60. Standard errors are

shown in parenthesis.

Effect of Correlation! Debt to Asset Ratios

(Bi/Si0) are not small.

17



We propose an algorithm to compute the

joint default prob.

In fact, the choice of our new measure

is optimal in Large Deviations Theory.
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Large Deviations Theory:

Cramer’s Theorem

Let {Xi} be real-valued IID r.v.’s under IP

and IEX1 < ∞. For any x ≥ IEX1, we have

lim
n→∞

1

n
ln IP

[
Sn

n
≥ x

]
= −Γ∗(x) = − inf

y≥x
Γ∗(y).

1. Sn =
∑n

i=1 Xi: sample sum

2. Γ(θ) = ln IE
[
eθX1

]
: the cumulant function

3. Γ∗(x) = supθ∈< [θ x− Γ(θ)]: Legendre

transform of Γ (also called rate function).
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Tie to Importance Sampling

Define an expo. change of measure IP θ by

dIP θ

dIP
= exp (θ Sn − nΓ(θ)) ,

pn := IP

[
Sn

n
≥ x

]
= IEθ

[
ISn

n ≥x
exp (−θ Sn + nΓ(θ))

]
.

The optimal 2nd moment (M2
n(θ, x)) of the

new estimator can be shown as

M2
n(θx, x) ≈ p2

n, where Γ∗(x) = θx x− Γ(θx).

Under the optimal measure, the event is
not rare any more! (Note: IEθx [Sn/n] = x.)
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Large Deviation Principle (LDP)

A X -valued seq. {Zε}ε defined on (Ω,F , IP )
satisfies a LDP with the rate function I if
(1) Upper Bound: for any closed subset F of
X , lim supε→0 ε ln IP [Zε ∈ F ] ≤ − infx∈F I(x)
(2) Lower Bound: for any open subset G of
X , lim supε→0 ε ln IP [Zε ∈ G] ≥ − infx∈G I(x)

If F ⊆ X s.t. infx∈F0 I(x) = infx∈F̄ := IF ,

then

lim sup
ε→0

ε ln IP [Zε ∈ F ] = −IF .
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Freidlin-Wentzell Theorem

The solution of

dXε
t = b(Xε

t )dt +
√

εσ(Xε
t )dWt,

Xε
0 = x,

satisfies a LDP with the rate function

I(f) =

1

2

∫ T

0
< ḟ(t)− b(f(t)), a−1(f(t))(ḟ(t)− b(f(t))) > dt

for some nice function f , or I(f) = ∞ oth-

erwise. a(x) = σ(x)σ′(x).
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Single-Name Default Prob. Approximation

IP

 inf
0≤t≤T

St = S0 e

(
µ−σ2

2

)
t+σWt ≤ B


= IE

[
I

(
inf

0≤t≤T
ε

(
µ−

σ2

2

)
t + εσWt ≤ −1

)]

:= Pε (scaling by ln (B/S0) =
−1

ε
)

≈ exp
( −1

ε2 2σ2 T

)
. ( by F-W Thm )
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Importance Sampling:

2nd Moment Approximation

ĨE

[
I

(
inf

0≤t≤T
St ≤ B

)
e2h W̃T−h2 T

]

St = S0 e

(
µ−σ2

2 −σh
)
t+σW̃t

, h =
µ

σ
−

lnB/S0

σ T

= ÎE

I
 inf

0≤t≤T
S0 e

(
µ−σ2

2 +σh
)
t+σŴt ≤ B

 eh2 T
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2nd Moment Approximation (Cont.)

= ÎE

[
I

(
inf

0≤t≤T

(
ε

(
2µ−

σ2

2

)
+

1

T

)
t + εσŴt ≤ −1

)]

× e

(
r
σ+ 1

εσT

)2
T

(scaling by ln (B/S0) =
−1

ε
)

:= M2
ε

≈ exp
( −1

ε2 σ2 T

)
. ( by F-W Thm )

Theorem: By M2
ε ≈ (Pε)2 we observe the

optimality of chosen measure.
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The Optimal Variance Reduction:

A Numerical Evidence

0 10 20 30 40 50 60 70 80 90
10!30

10!20

10!10

100

1010

1020

1030

1040

1050
!(") vs PB(T), B = 15

"

 

 
!(")
PB(T)

26



A Modification: Stochastic Correlation


dS1

t = rS1
t dt + σ1S1

t dW1
t

dS2
t = rS2

t dt + σ2S2
t d(ρ(Yt)dW1

t +
√

1− ρ2(Yt)dW2
t )

dYt = 1
δ(m− Yt)dt +

√
2β√
δ

dZt

Joint default probability

P δ(t, x1, x2, y) := IEx1,x2,y

{
Π I{mint≤u≤T Si

t≤Bi}

}
In this case, the construction of our IS method

fails!
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Full Expansion of P δ

Theorem

P δ(t, x1, x2, y) =
∞∑

i=0

δiPi(t, x1, x2, y),

where P ′s can be obtained recursively and

the y variable can be factored out (separate).

Proof: by means of Singular Perturbation

Techniques.

Accuracy results are ensured given smooth-

ness of terminal condition.
28



Leading Order Term

P0(t, x1, x2) solves the homogenized PDE
(y-independent).(

L1,0 + ρ̄L1,1

)
P0(t, x1, x2) = 0

ρ̄ =< ρ(y) >, average taken wrt the invar-
tiant measure of Y.

Differential operators are

L1,0 =
∂

∂t
+

2∑
i=1

σ2
i x2

i

2

∂2

∂x2
i

+
2∑

i=1

µixi
∂

∂xi

L1,1 = σ1σ2x1x2
∂2

∂x1∂x2
.
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Other Terms

Pn+1(t, x1, x2, y) =
i+j=n+1∑
i≥0,j≥1

ϕ
(n+1)
i,j (y)Li

1,0L
j
1,1 Pn

where a seq. of Poisson eqns to be solved:

L0 ϕ
(n+1)
i+1,j (y) =

(
ϕ
(n)
i,j (y)− < ϕ

(n)
i,j (y) >

)
L0 ϕ

(n+1)
i,j+1 (y) =

(
ρ(y)ϕ

(n)
i,j (y)− < ρ ϕ

(n)
i,j >

)
,

where L0 = β2 ∂2

∂y2 + (m− y) ∂
∂y .
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Numerical Result I: Stochastic Correlation

α = 1
δ

BMC Importance Sampling
0.1 0.0037(6 ∗ 10−4) 0.0032(1 ∗ 10−4)
1 0.0074(9 ∗ 10−4) 0.0065(2 ∗ 10−4)
10 0.0112(1 ∗ 10−3) 0.0116(4 ∗ 10−4)
50 0.0163(1 ∗ 10−3) 0.0137(5 ∗ 10−4)
100 0.016(1 ∗ 10−3) 0.0132(4 ∗ 10−4)

Parameters are S10 = S20 = 100, B1 = 50, B2 =

40, m = π/4, ν = 0.5, ρ(y) = |sin(y)|.

Using homogenization in IS, note the ef-

fect of correlation.
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Numerical Result II: Stochastic Correlation

α = 1
δ

BMC Importance Sampling
0.1 0(0) 9.1 ∗ 10−7(7 ∗ 10−8)
1 0(0) 7.5 ∗ 10−6(6 ∗ 10−7)
10 0(0) 2.4 ∗ 10−5(2 ∗ 10−6)
50 1 ∗ 10−4(1 ∗ 10−4) 2.9 ∗ 10−5(3 ∗ 10−6)
100 1 ∗ 10−4(1 ∗ 10−4) 2.7 ∗ 10−5(2 ∗ 10−6)

Parameters are S10 = S20 = 100, B1 = 30, B2 =

20, m = π/4, ν = 0.5.

Note the effect of correlation.
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Conclusion

• Credit risk models are introduced.

• A simple yet efficient importance sam-

pling method is proposed, justified by large

deviations theory.

• Full expansion of joint default probabil-

ity under stochastic correlation and its

application to importance sampling.
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Future Works

• Generalized to stochastic volatility mod-
els.

• Risk management of credit portfolios.

• Similar variance analysis for Gaussian cop-
ula models.

• Homogenization in Large Deviations.
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Motivation

Pricing Formula

In a financial model with interest rate 0, stock price process (St) and risk
neutral probability measure P∗, the price of European call option at time 0
is given by

π(K,T ) = E∗
[
(ST −K)+

]
, (1)

where T is the maturity and K is the strike price.

Two methods to discuss it:

Stochastic analysis

Dynamic analysis
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Motivation

Relation between π and St

Method 1: Stochastic Analysis
ut: marginal utility of St under P∗, Then π is determined by the
distribution function and the partial moment and

πxx(·, t) = ut with density function p(·, t).

Method 2: Dynamic Analysis
Suppose St satisfies

dSt = St(bt dt+ σ(St, t) dWt),

then we have Dupire equation

πt =
1
2
x2σ2(x, t)πxx − xσtπx. (2)

Solve it!
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Motivation

Another Point of View

Consider
π(K,T ) = E∗

[
(ST −K)+

]
,

where (St) is a martingale with respect to P∗.

Breeden and Litzenberger (1978) and Dupire (1997) show that

P∗(ST > K) = − ∂

∂K+
π(K,T ),

where
∂

∂K+
π(K, t) means the right-derivative of π with respect to K.

Question

Does there exist a stochastic process whose marginal (or k-marginal) is
identical to the marginal of (St)?
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Motivation

Stoyanov’s Conjecture

Stoyanov’s Conjecture

There exists a stochastic process X with X0 = 0 satisfying

1 Xt −Xs ∼ N (0, t− s) for all s < t.

2 Xt2 −Xt1 and Xt4 −Xt3 are independent for 0 ≤ t1 < t2 ≤ t3 < t4.

But X is not a Brownian motion.

Thus,

We aim to see if there exists a stochastic process whose marginal (or
k-marginal) is identical to the marginal of a Brownian motion, but is not a
Brownian motion.
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Weak Brownian Motions

Definition

Definition

A stochastic process X is called a weak Brownian motion of order k, if for
all (t1, t2, ..., tk)

(Xt1 , Xt2 , ..., Xtk)
(law)
= (Bt1 , Bt2 , ..., Btk) ,

where B is a Brownian motion.

Another formulation

E[f1(Xt1) · · · fk(Xtk)] = E[f1(Bt1) · · · fk(Btk)]

for f1, ..., fk ∈ C1
0 (R).

Stoyanov’s Conjecture

There exists weak Brownian motion of order 4 which differs from Brownian
motion.
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Weak Brownian Motions

Main Results

Theorem (Föllmer-W.-Yor (2000))

Let k ∈ N. There exists a process (Xt)0≤t≤1 which is not Brownian
motion such that the k-dimensional marginals of X are identical to those
of Brownian motion.

Theorem

For every ε > 0, there exists a probability measure Q 6= P on C([0, 1])
such that

1 Q ≈ P
2 Q ⊥ P

and satisfies
Q = P on FJ = σ(Xt : t ∈ J)

for any J ⊆ [0, 1] such that Jc contains some interval of length ε.
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Weak Brownian Motions

Properties

Proposition

Let X be a weak Brownian motion of order k.

1 If k ≥ 2, then X has a continuous version. Moreover, if X is a
Gaussian process, then X is a Brownian motion

2 If k ≥ 4, then 〈X〉t = t. Moreover, if X is a martingale, then X is a
Brownian motion.

Remark

A weak Brownian motion may not be a martingale, e.g.,

Xt =

{
Wt, t ≤ 1/2,
W 1

2
+
(√

2− 1
)
Wt− 1

2
, t > 1/2.
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Weak Brownian Motions

Itô Integral

If X is a continuous weak Brownian motion of order k ≥ 1 whose paths
have quadratic variation

〈X〉t = t,

then the Itô integral ∫ t

0
f(Xt) dXt

exists as a pathwise limit of non-nticipting Riemann sums along dyadic
partitions for any bounded f ∈ C1 and satisfies the Itô’s formula even
though X may not be a semimartingale, see Föllmer (1981). Moreover,

E

[∫ t

0
f(Xt) dXt

]
= 0

which may be viewed as a weak form of martingale property.
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Weak Brownian Motions

Characterization

1 W is a Brownian motion if and only if there exist an orthonormal
basis (ϕn) on L2([−0, 1]) and a sequence of i.i.d. N (0, 1)-distributed
random variables (ξn) such that

Wt =
∞∑
k=1

(∫ t

0
ϕn(u) du

)
ξn.

2 X is a weak Brownian motion of order k if and only if there exist an
orthonormal basis (ϕn) on L2([−0, 1]) and a sequence of uncorrelated
N (0, 1)-distributed random variables (ηn) such that

∞∑
k=1

(
λ1

∫ t1

0
ϕn(u) du+ · · ·+ λk

∫ tk

0
ϕn(u) du

)
ηn

is Gaussian for all λ1, ..., λk ∈ R, t1 ≤ t2 ≤ · · · ≤ tk and

Xt =
∞∑
k=1

(∫ t

0
ϕn(u) du

)
ηn
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Martingale Marginal Property

Martingale Marginal

Definition

The family of densities Q = {q(x, t) : t > 0} has martingale marginal
property if there exists a probability space on which one may define a
martingale (Mt) such that for every t, the law of M is given by the density
q(M, t).

Theorem (Strassen (1965))

A family of probability measures (µn)n≥0 has martingale marginal property

if and only if for all n ≥ 0,

∫
|x|µn(dx) <∞, and for any concave

µn-integrable function ψ, the sequence

(∫
ψ(x)µn(dx)

)
is

non-increasing (the values of the integrals may be −∞).

C.-T. Wu (NCTU-AM) Weak Brownian Motions July 10, 2006 12 / 22



Martingale Marginal Property

Martingale Marginal

Definition

The family of densities Q = {q(x, t) : t > 0} has martingale marginal
property if there exists a probability space on which one may define a
martingale (Mt) such that for every t, the law of M is given by the density
q(M, t).

Theorem (Strassen (1965))

A family of probability measures (µn)n≥0 has martingale marginal property

if and only if for all n ≥ 0,

∫
|x|µn(dx) <∞, and for any concave

µn-integrable function ψ, the sequence

(∫
ψ(x)µn(dx)

)
is

non-increasing (the values of the integrals may be −∞).

C.-T. Wu (NCTU-AM) Weak Brownian Motions July 10, 2006 12 / 22



Martingale Marginal Property

Generalizations

Remark

Doob (1968) proved the continuous version of above result.

Theorem (Rothschild and Stiglitz (1970, 1971))

{q(x, t) : t > 0} has martingale marginal property if and only if for all K
and for all T1 ≤ T2∫ ∞

0
Sq(S, T2) dS ≤

∫ ∞
0

Sq(S, T1) dS

∫ ∞
0

(S −K)+q(S, T2) dS ≥
∫ ∞

0
(S −K)+q(S, T1) dS.

Remark

This concept is relative to stochastic orders, see Föllmer and Schied
(2004).
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Martingale Marginal Property

Markov Martingales

Question

Given a family of densities {q(x, t) : t > 0}, does there exist a probability
space on which one can define a Markov martingale (Mt) such that for
every t, the law of M is given by the density q(M, t)?

Theorem (Kellerer (1972))

1 Let {q(x, t) : t > 0} be a family of marginal densities, with finite first
moment, such that for s < t∫

f(x)q(x, t) dx ≥
∫
f(x)q(x, s) dx

for all convex non-decreasing functions f , then there exists a Markov
submartingale (Mt) with marginal densities {q(Mt, t) : t > 0}.

2 Furthermore, if the means are independent of t, then (Mt) is a
Markov martingale.
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Martingale Marginal Property

Constructions

Define the family of barycetre functions

ψ(x, t) =

∫∞
x yq(y, t) dy∫∞
x q(y, t) dy

.

Suppose ψ(x, t) is increasing in t and q(x, t) is a family of zero mean
densities.

Theorem (Madan and Yor (2002))

Let (Bt) be a standard Brownian motion. Define a stopping time

τt = inf
{
s : sup

0≤u≤s
Bu ≥ ψ(Bs, t)

}
.

Then Mt := Bτt is an inhomogeneous Markov martingale with density q.
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Wiener Chaos

Consequence of the Main Results

Let X represent the coordinate process and L2(P) = L2(C([0, 1]),P).

Notation

For every k ∈ N, define

Πk :=

{
k∏
i=1

fi(Xti) : t1 < · · · < tk ≤ 1, fi is bounded, Borel measurable

}
.

Then

Corollary

For every k, Πk is not total in L2(P).
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Wiener Chaos

Decomposition

Notation

For every k ∈ N, define

K0 := Π0 = R, Kn+1 = Π̄n+1 ∩ Π̄⊥n ,

where ⊥ denotes orthogonality relation in L2(P).

Lemma

L2(P) =
∞⊕
n=1

Kn.

Remark

Kn is called the nth time-space Wiener chaos.
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Wiener Chaos

Time-Space Wiener Chaos

For every u ≤ 1, we define the Brownian bridge by

X
(u)
t := Xt −

∫ t

0

Xu −Xs

u− s
ds t < u.

Then (X(u)
t ) is a Brownian motion w.r.t. the enlarged filtration

Ft ∨ σ(Xu), see, e.g., Yor (1992).

Theorem (Peccati (2001))

H ∈ Kn if and only if there exists a measurable deterministic function
h(u1, x1; ...;un, xn) such that∫ 1

0

∫ u1

0
· · ·
∫ un−1

0
E
[
h2(u1, Xu1 ; ...;un, Xun)

]
dun · · · du2 du1 <∞,

(3)

H =
∫ 1

0

∫ u1

0
· · ·
∫ un−1

0
h(u1, Xu1 ; ...;un, Xun) dX(un−1)

un
· · · dX(u1)

u2
dXu1 .
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Wiener Chaos

Consequences

Corollary

Let F be a real random variable in L2(P), then there exists a sequence of
measurable functions h(F,n) satisfying the integrability condition (3) such
that

F = E[F ] +
∞∑
n=1

∫ 1

0

∫ u1

0
· · ·
∫ un−1

0
h(F,n) dX

(un−1)
un

· · · dX(u1)
u2

dXu1 .

Comparison (Wiener chaos)

Let F be a real random variable in L2(P), then there exists a sequence of
deterministic square integrable functions ϕ(F,n) : Rn −→ R such that

F = E[F ] +
∞∑
n=1

∫ 1

0

∫ u1

0
· · ·
∫ un−1

0
ϕ(F,n) dXun · · · dXu2 dXu1 .
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Future Works

Future Works

1 For k = 2, 3, 〈X〉t = t?

2 Generalization of weak martingales.

3 The construction of martingale k-marginal property and Markov
martingale k-marginal property.

4 The relationship between the weak Brownian motion of order k, the
kth Wiener chaos, kth time-space Wiener chaos, and the
generalization of the stochastic order.

5 N -complete market, N -mixed trading strategies (Campi (2004)).
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Random transpositions

For n = 1, 2, ...,

Sn: the symmetric group of degree n, idn : the identity of Sn

pt
n : the probability on Sn after t shuffles of random transposition

starting from the identity. That is,

pt
n(δ) =

∑
σ∈Sn

pt−1
n (σ)pn(σ

−1δ)

where

pn(σ) =


1
n if σ = idn

2
n2 if σ = (i , j) with 1 ≤ i < j ≤ n

0 otherwise

Un : the uniform probability on Sn

∀B ⊂ Sn, pt
n(B) → Un(B) as t →∞



Total variation and L2-distance

Total variation: For any two measures µ, ν on a set Ω equipped with
a σ-algebra B, their total variation is defined by

‖µ− ν‖TV = sup
B∈B

|µ(B)− ν(B)|

L2-distance: Let µ, ν be measures on Ω which are absolutely
continuous w.r.t. π with Randon-Nikodym derivatives f , g . The
L2(Ω, π)-distance between µ and ν is defined to be

‖f − g‖2 =

(∫
Ω
|f − g |2dπ.

)1/2

.



Results on Random transpositions

Concerning the random transpositions, as a function of the time
t ∈ {0, 1, 2, ...}, the total variation and the L2-distance

t 7→ ‖pt
n − Un‖TV, t 7→

∥∥∥∥ dpt
n

dUn
− 1

∥∥∥∥
2

are non-increasing in t and converge to 0 as t →∞.

Diaconis & Shahshahoni (1981): Let tn = 1
2n log n.

lim
n→∞

‖patn
n − Un‖TV =

{
1 for a ∈ (0, 1)

0 for a ∈ (1,∞)

and

lim
n→∞

∥∥∥∥dpatn
n

dUn
− 1

∥∥∥∥
2

=

{
∞ for a ∈ (0, 1)

0 for a ∈ (1,∞)



Markov transition function, invariant measure

(Ω,B): a measurable space, T : either [0,∞) or N = {0, 1, 2, ...}.
A Markov transition function is a family {p(t, x , ·) : t ∈ T , x ∈ Ω}
of probability measures on (Ω,B) satisfying

p(0, x ,Ω \ {x}) = 0

and, for t ∈ T , A ∈ B, p(t, ·,A) is a B-measurable function and
satisfies

p(t + s, x ,A) =

∫
Ω

p(s, y ,A)p(t, x , dy).

An invariant measure π of p(t, x , ·) is a measure on Ω satisfying∫
Ω

p(t, x ,A)π(dx) = π(A), t > 0,A ∈ B.



Semigroup and spectral gap

For t > 0, let Pt be an operator defined by

Pt f (x) =

∫
Ω

f (y)p(t, x , dy),

where f is any bounded measurable function.

For any probability µ on (Ω,B), let µPt be a probability defined by

µPt(A) =

∫
Ω

p(t, x ,A)µ(dx).

Let p(t, ·, ·) be a Markov transition function with invariant probability
π and let Pt be the associated operator as before. The spectral gap
of Pt is the largest constant c such that

‖Pt − Eπ‖L2(Ω,π)→L2(Ω,π) ≤ e−ct ∀t > 0,

where Eπf = π(f )1.



The L2-distance and the L2-mixing time

If µPt has a density h(t, µ, ·) w.r.t. π, then the L2-distance between
p(t, µ, ·) and π is defined by

D2(µ, t) = ‖h(t, µ, ·)− 1‖2 =

(∫
Ω

h2(t, µ, y)π(dy)− 1

)1/2

.

Otherwise, D2(µ, t) is set to be infinity.

Corresponding to the above setting, the ε-L2-mixing time for p(t, µ, ·)
is defined by

T2(µ, ε) = inf{t ∈ T : D2(µ, t) ≤ ε}.



The L2-cutoff

Consider a family of Markov transition functions

F = {pn(t, x , ·), t ∈ T , x ∈ Ωn : n = 1, 2, ...}.

with initial probabilities µn. The family F is said to present an L2-cutoff
if there exists a positive sequence tn such that

lim
n→∞

Dn,2(µn, atn) =

{
∞ for a ∈ (0, 1)

0 for a ∈ (1,∞)

Here, tn is called the L2-cutoff time.

Lemma

The family {pn(t, µn, ·) : n = 1, 2, ...} has an L2-cutoff if and only if

lim
n→∞

Tn,2(µn, ε)

Tn,2(µn, δ)
= 1 ∀0 < ε, δ <∞.

Moreover, Tn,2(µn, ε) can be an L2-cutoff time for any ε ∈ (0,∞).



The L2-distance for random walks on finite groups

G : a finite group

Q: a probability on G

U: the uniform probability on G .
Then ∥∥∥∥dQ

dU
− 1

∥∥∥∥2

2

=
∑

dρTr(Q̂(ρ)Q̂(ρ)∗)

where dρ is the dimension of ρ, Q̂(ρ) is the Fourier transformation of
Q at ρ defined by

Q̂(ρ) =
∑
g∈G

Q(g)ρ(g).

and the summation is over all irreducible representations ρ of G
except the trivial one.



The L2-distance for reversible Markov processes

(Ω,B): a measurable space, T : [0,∞) or {0, 1, 2, ...}
p(t, ·, ·), t ∈ T : a Markov transition function on Ω with invariant
probability π

Pt : the operator on L2(Ω, π) associated with p(t, ·, ·)
λ: The spectral gap of Pt

Assume that

Pt is self-adjoint for t ∈ [0, 1] ∩ T (or equivalently, π is reversible);

Pt is strongly continuous if T = [0,∞) with infinitesimal generator A;

λ > 0;

µ is a probability whose density f w.r.t. π is in L2(Ω, π).

Let {EB |B ∈ B(R)} be the resolution of the identity for P1 (resp. −A) if
T = N (resp. T = [0,∞)). Then, for t ∈ T ,

D2(µ, t)
2 =

{∫
[λ,∞) e−2tγd〈Eγf , f 〉π if T = [0,∞)∫
[λ,∞) γ

2td〈Eγf , f 〉π if T = {0, 1, 2, ...}



The L2-distance for reversible finite Markov chains

Ω: a finite set, T : [0,∞) or N
p(t, ·, ·): a Markov transition functions on Ω. For T = N,

p(1, x , y) = K (x , y), p(t, x , y) =
∑
z∈Ω

K t−1(x , z)K (z , y).

and, for T = [0,∞),

p(t, x , y) = e−t(I−K)(x , y) = e−t
∞∑

n=0

tn

n!
Kn(x , y).

Assume that π is a reversible probability for p(t, ·, ·) and K has
eigenvalues λ0 = 1, λ1, ..., λ|Ω|−1 and normalized eigenvectors
ψ0 ≡ 1, ψ1, ..., ψ|Ω|−1 in L2(Ω, π). Then, for t ∈ T ,

D2(µ, t)
2 =

{∑|Ω|−1
i=1 |µ(ψi )|2e−2(1−λi )t if T = [0,∞)∑|Ω|−1
i=1 |µ(ψi )|2λ2t

i if T = {0, 1, 2, ...}



A sufficient condition on the L2-cutoff

Theorem (Chen & Saloff-Coste, 2008)

Consider a family F of Markov transition functions pn(t, x , ·), t ∈ T and
x ∈ Ωn, with invariant probability πn and spectral gap λn > 0. For n ≥ 1,
let µn be a probability on (Ωn,Bn) and set tn(ε) = Tn,2(µn, ε).
(i) For T = [0,∞), if there exists ε > 0 such that

λntn(ε) →∞,

then F has an L2-cutoff with cutoff time tn(ε).
(ii) For T = N, let γn = min{1, λn}. If there exists ε > 0 such that

γntn(ε) →∞,

then F has an L2-cutoff with cutoff time tn(ε).



An equivalent condition on the L2-cutoff

Theorem (Continuous-time finite Markov chain)

For n ≥ 1,

Kn is a Markov kernel on a finite set Ωn with invariant probability πn;

pn(t, ·, ·) = e−t(I−Kn);

xn ∈ Ωn.

Assume that Kn is irreducible and reversible w.r.t. πn with eigenvalues

1 > λn,1 ≥ λn,2 ≥ · · · ≥ λn,|Ωn|−1

and eigenvectors (normalized in L2(Ωn, πn))

1, ψn,1, ψn,2, ..., ψn,|Ωn|−1.



An equivalent condition for the L2-cutoff

Theorem (Continuous-time finite Markov chain)

For C > 0, set

jn = jn(C ) = min
{

j ≥ 1 :
∑j

i=1 |ψn,i (xn)|2 > C
}

τn = τn(C ) = supj≥jn

{
log(
Pj

i=0 |ψn,i (xn)|2)
2(1−λn,j )

}
Then, the family {pn(t, xn, ·)|n = 1, 2, ...} has an L2-cutoff if and only if,
for some C > 0 and ε > 0,

lim
n→∞

τn(1− λn,jn) = ∞, lim
n→∞

jn−1∑
i=1

|ψn,i (xn)|2e−ε(1−λn,i )τn = 0. (1)

Furthermore, if the above limit holds, then τn is an L2-cutoff time.



Remarks on the main theorem

(a) If (1) holds true for some C > 0 and ε > 0, then it must be true for
all C > 0 and ε > 0.

(b) The theorem remains true if τn is replaced by the L2-mixing time
Tn,2(xn, ε).

(c) Consider the case that pn(t, ·, ·) is invariant under transitive group
action, that is, some compact group Gn acts transitively on Ωn with

pn(t, gx , gy) = pn(t, x , y) ∀x , y ∈ Ωn, g ∈ Gn.

Then, ψn,i (xn) can be replaced by 1.



Random walks on hypercubes

Ωn: the finite group (Z2)
n

Kn: a Markov kernel on Ωn given by

Kn(x , y) =

{
1

n+1 if y = x or y = x + en,i

0 otherwise

where

en,i =

i−1︷ ︸︸ ︷
0 · · · 0 1

n−i︷ ︸︸ ︷
0 · · · 0 ∀i = 1, 2, ..., n.

For n = 4,

0 0 1 0
�������)

�
�

�+ ?

Q
Q

Qs

PPPPPPPq

0 0 1 00 1 1 0 0 0 0 01 0 1 0 0 0 1 1

pn(t, ·, ·): the Markov transition function e−t(I−Kn).



L2-cutoff for random walks on hypercubes

Kn has eigenvectors ψn,x , x ∈ Ωn, where

ψn,x(y) = (−1)x ·y , x · y = x1y1 + · · ·+ xnyn.

and eigenvalues

1− 2|x |
n+1 , |x | = x1 + x2 + · · ·+ xn.

For C = 1/2, jn(C ) = 1, 1− λn,jn(C) = 2
n+1 and

τn(C ) = max
1≤i<2n

(
log(i + 1)

2λn,i

)
=

(n + 1) log(n + 1)

4

Using the main theorem, the family has an L2-cutoff with cutoff time
1
4n log n.



Ehrenfest processes

Ωn = {0, 1, ..., n}, Kn is a Markov kernel on Ωn given by

Kn(i , i + 1) = 1− i

n
, Kn(i + 1, i) =

i + 1

n
, ∀0 ≤ i < n.

Let K ′
n be the simple random walk on (Z2)

n, that is,

K ′
n(x , x + en,i ) =

1

n
, ∀x ∈ (Z2)

n, 1 ≤ i ≤ n.

Let Xi = {x ∈ (Z2)
n : |x | = i} for 0 ≤ i ≤ n and set

K ′′
n (Xi ,Xj) = K ′

n(xi , xj)

where xi ∈ Xi and xj ∈ Xj . Then,

Kn(i , j) = K ′′
n (Xi ,Xj).



Spectral information for Ehrenfest processes

Theorem

Let Kn be the Markov kernel of the Ehrenfest chain on {0, 1, ..., n}. Then,
Kn has invariant probability πn(i) =

(n
i

)
2−n, eigenvalues

λn,i = 1− 2i

n
, 0 ≤ i ≤ n,

and eigenvectors

ψn,i (x) =

(
n

i

)−1/2 i∑
k=0

(−1)k
(

x

k

)(
n − x

i − k

)
, 0 ≤ i , x ≤ n

which are normalized in L2(πn).

Note that the vectors ψn,i are in fact the Krawtchouk polynomials.



L2-cutoff for Ehrenfest processes

Theorem

For n ≥ 1, let Kn be the Markov kernel of the Ehrenfest chain on
{0, 1, ..., n} and pn(t, ·, ·) = e−t(I−Kn). Let 0 ≤ xn ≤ n be a sequence of
starting states. Then the family pn(t, xn, ·) has an L2-cutoff if and only if

lim
n→∞

|n − 2xn|√
n

= ∞.

Moreover, if there is an L2-cutoff, then the cutoff time can be

tn =
n

2
log

|n − 2xn|√
n

.



Constant rate birth-and-death processes

Ωn = {0, 1, ..., n}
Kn: a Markov kernel on Ωn given by{

Kn(x , x + 1) = Kn(n, n) = p

Kn(x + 1, x) = Kn(0, 0) = q = 1− p
∀0 ≤ x < n

with p < 1/2.
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p
? 6q p0 n

pn(t, ·, ·) = e−t(I−Kn)

xn ∈ {0, ..., n}: the initial state



Constant rate birth-and-death processes

Kn has invariant probability πn given by

πn(x) = cn(p/q)x , cn =
1− p/q

1− (p/q)n+1

and eigenvalues

λn,0 = 1, λn,j = 2
√

pq cos
jπ

n + 1
, 1 ≤ j ≤ n,

and normalized eigenvectors ψn,0 ≡ 1,

ψn,j(x) = Cn,j

{(
q

p

)(x+1)/2

sin
j(x + 1)π

n + 1
−

(
q

p

)(x+2)/2

sin
jxπ

n + 1

}

for 1 ≤ j ≤ n, where Cn,j =
(
cn(n + 1)q(1− λn,j)/(2p2)

)−1/2
.



L2-cutoff for constant rate birth-and-death processes

Theorem

For n ≥ 1, let pn(t, ·, ·) be the continuous-time (p, q)-random walks on
Ωn = {0, 1, ..., n} with p ∈ (0, 1/2) and let xn ∈ Ωn. Then, the family
pn(t, xn, ·) has an L2-cutoff if and only if xn →∞. Moreover, if there
exists an L2-cutoff, then the cutoff time can be

tn =
log q − log p

2(1− 2
√

pq)
xn.



(p, q)-random walks on nonnegative integers

Ω = {0, 1, 2, ...}, K : the Markov kernel on Ω given by{
K (x , x + 1) = p

K (x + 1, x) = K (0, 0) = q = 1− p
∀x ≥ 0.

r r r r r r r r�����
-
� �� �q

p

�
-
� �� �q

p

�
-
� �� �q

p

�
-
� �� �q

p

�
-
� �� �q

p

�
-
� �� �q

p

�
-
� �� �q

p
?q 0 . . .

p(t, ·, ·) = e−t(I−K)

For p < 1/2, K has an invariant probability π given by

π(x) = (1− p/q)(p/q)x , x ≥ 0.



(p, q)-random walks on nonnegative integers

Theorem

Let p(t, ·, ·) be the Markov transition function for the (p, q)-random walk
on {0, 1, ...} with p ∈ (0, 1/2) and q = 1− p. Then, the family
{p(t, xn, ·)|n = 1, 2, ...} has an L2-cutoff if and only if

xn →∞.

Furthermore, if the L2-cutoff exists, then the cutoff time can be

tn =
log q − log p

2(1− 2
√

pq)
xn.



Sketch of the proof for the main theorem

τn(1/2)(1− λn,1) →∞ ⇒ L2-cutoff.

Here, we prove the case that pn(t, ·, ·) is invariant under transitive group
action. If Dn,2(x , t) is the L2-distance between pn(t, x , ·) and πn, then

Dn,2(x , t)
2 =

∑
i≥1

e−2(1−λn,i )t .

Let j ≥ 1 be such that τn = log(j+1)
2(1−λn,j )

. Then, Dn,2(xn, τn(1/2)) ≥ 1/2 and,

hence, τn(1/2) ≤ Tn,2(xn, 1/2).

τn(1/2)(1− λn,1) →∞ ⇒ Tn,2(xn, 1/2)(1− λn,1) →∞
⇒ L2-cutoff



Sketch of the proof for the main theorem

L2-cutoff ⇒ τn(1/2)(1− λn,1) →∞.

Fix ε > 0. Let Nn,j = |{i ≥ 1 : 1− λn,i ≤ (1− λn,1)(1 + ε)j+1}|.

⇒
{

log Nn,j ≤ 2(1− λn,1)τn(1/2)(1 + ε)j+1

Dn,2(xn, t)
2 ≤

∑
j≥0 Nn,j exp{−2t(1− λn,1)(1 + ε)j}

⇒ Dn,2(xn, (1 + ε)2τn(1/2))2 ≤ 1

1− exp{−2ε2(1− λn,1)τn(1/2)}

Set ε = εn = ((1− λn,1)τn(1/2))−1/2. Then,

Dn,2(xn, (1 + εn)
2τn(1/2))2 ≤ (1− 1/e2)−1 ≤ 2

Since εn ≤
√

2/ log 2 ≤ 2,

⇒ 9(1− λn,1)τn(1/2) ≥ (1− λn,1)Tn,2(xn, 2) →∞



Sketch of the proof for the main theorem

L2-cutoff time.

As a consequence of the above proof, if εn = ((1− λn,1)τn(1/2))−1/2,
then

(1 + εn)
−2Tn,2(xn, 2) ≤ τn(1/2) ≤ Tn,2(xn, 1/2).

Recall that

L2-cutoff ⇔ (1− λn,1)Tn,2(xn, ε) →∞ for some ε > 0

⇔ Tn,2(xn, ε)/Tn,2(xn, δ) → 1 ∀ε, δ > 0

⇔ (1− λn,1)τn(1/2) →∞

Thus, εn → 0 and

τn(1/2)/Tn,2(xn, ε) → 1 ∀ε > 0.
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Some Stochastic Analysis of

ORNSTEIN-UHLENBECK-type Processes

Narn-Rueih Shieh

Department of Mathematics, National Taiwan University

Abstract

In this talk, we report some recent works on the expected maximum

increments and the correlation decay of the exponential process deter-

mined by an OU-type process. As an application, the works show that a

scheme for large-deviation-based multifractal spectra proposed by Man-

nersalo etal can be carried out for such processes. These are joint works

with Vo Anh(Brisbane), Nikolai Leonenko(Cardiff), and Muneya Mat-

sui(Yokohama).
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1. OU Process and its generalization

The (unique) stationary process X which solves the SDE

dX(t) = −λX(t)dt + dB(t),

or in a mean-reverting form

dX(t) = −θ(X(t) − µ)dt + dB(t).

To generalize, we may consider

1. the background driving process can be a Lévy process, or a

fractional BM.

2. the more general mean-reverting process as the solution of

SDE

dX(t) = −θ(X(t) − µ)dt +
√
v(X(t))dB(t).
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2. Exponential Process

Given a process X with exp moment, let c(t) be the normalizing

factor so that

Y (t) := eX(t)−c(t)

is a positive-valued mean 1 process.

When X is stationary, c(t) is a constant in t.

The object of the works:

1. the estimate of correlation decay E(Y (t + s)Y (t)).

2. the estimate of the expectation E[max0≤s≤h |Y (t + s) −
Y (t)|].

3



3. An application

The papers of J.P. Kahane (1985,1987,1989,2000) on positive

T-martingales and multiplicative chaos lead to a certain multi-

scale fractional analysis of some random clustering phenomena.

In particular, the MF products of stationary stochastic processes

by Mannersalo, Norros and Riedi (AAP 2002).

The above two are crucial steps toward to the scheme.
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