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Local semicircle law and complete delocalization

for Wigner random matrices

Horng-Tzer Yau

Joint work with L. Erd&s, B. Schlein (Munich)



WIGNER ENSEMBLE

H = (hj) is a hermitian N x N matrix, N > 1.

1 . . %
hiw = @ik Fiyin), (<R Ry =5 2

where .,y (j < k) and z;; are independent with distributions

Tk, Yk ~ dv = e 9@ dy,

ot _ 2 __ 1

Normalization: E z;, =0, E T = 5

Example: g(z) = z2 is GUE.

Normalization ensures that Spec(H) = [-2,2] 4+ o(1)

Results hold for real symmetric matrices as well, e.g. for GOE.
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.Ey

E1<E><.....

Eigenvalues:

Typical eigenvalue spacing is E; — E;_1 ~ .



MAIN QUESTIONS
1) Density of states (DOS) — Wigner semicircle law.

2) Eigenvalue spacing distribution (Wigner-Dyson statistics and
level repulsion);

3) (De)localization properties of eigenvectors.

RELATIONS:

e 2) is finer than 1) [bulk vs. individual ev.]

e Level repulsion <= Delocalization 7?77 [Big open conjecture]

Motivation in background: Random Schrodinger operators in the
extended states regime.



DENSITY OF STATES
N(I) := #{un € I} number of evalues u, of H in I C R.

Smoothed density of states around E with window size n:

1 1 1 n
E)=—1ImTr —
on(F) Nm H—E —1n Nﬁza:(ua—E)Q+772

on(E) and N'(I) with I =[E — 1, E + 1] are closely related.

WIGNER SEMICIRCLE LAW

For any fixed I C R,
 EN 1
im PO = [o@)e, owle) = o4 2P 102l < 2)

N—o0

Similar statement for on(E), window size n = O(1) fixed.

Fluctations and almost sure convergence are also known.



The Wigner-Dyson statistics (universal distribution of eigenvalue
spacing) requires info on individual evalues on a scale n ~ 1/N.

It is believed to hold for general Wigner matrices, but proven
only for Gaussian and related models and the proofs use explicit
formulas for the joint ev. distribution. [Dyson, Deift, Johansson]

GOALS:
(i) Prove Semicircle Law for any scales n > N~ 1.

(ii) Prove that eigenvectors are delocalized.



8
Theorem 1: Fix k,e >0. Letn> %, then, as N — oo,
P sup
|E|<2—k

i.e. Semicircle Law holds for energy windows ~ 1/N (mod logs)

Nn

— 0sc(E)

. } < oellog V)’

Theorem 2: Fix k > 0, then

P{av,nvnz: 1, By = v, il < 2, Vo > (OFTD < cmelioam)

i.e. almost all eigenfunctions are fully delocalized.



ASSUMPTIONS on the single site distribution dv = e=9(T) dy
(i) supg” < oo
(i) There exists § > 0 such that [ e du(z) < oo

(iii) dv satisfies the logarithmic Sobolev inequality

/ulogudy§0/|v\/ﬂ|2 dv

Item (i) was needed for a concentration Lemma. J. Bourgain
has informed us that this lemma also holds if (i) is replaced by
a decay stronger than Gaussian (e.g. bounded r.v.).



Lemma: [Upper bound]. Assume ¢” < co. Let |I]| > %, then

P{N(I) > KN|I|} < e KNI
for large K. Similar result holds for P{o,(E) > K}.

Proof: Decompose

H = (Z 3;), heC, acCV-1 BeccWV-Dx(N-1)

Let Ao, un be the ev's of B and define

For the (1,1) matrix element of G, = (H — 2)~ !, z = E 4+ in:

—1
1 1
G.(1,1) = =
(1 1) h—z—a- - (B—-2z2)"1la {




1 77_1 Nn

|Gz(1al)| < 1 ¢ < 1 1 Sa . >, &
‘Im [h—Z_NZQ VOLZ] ‘ TN Za Gam )+ o vl

for any interval [ = [E —n, E + 1].

N
k=1

Repeating the above construction for each k,

Ol
N7 < CN?? Z ‘
a: AFer
so to get an upper bound on Ny, we need a lower bound on > &,.
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Good news: For the decomposition
h a*
the eigenvalues uo Of H and Ay Oof B are interlaced.

p1 < A1 <pp < Ap <.
so the number of \p € T is N(I) £ 1.

N7 < C’Nn Z ‘ £(k)
a:aMer
Suppose
S sexpPen > v
o )\&k)EI
(recalling E £ = 1 and hoping for weak correlation) then we had
N2p2

N() < — N({) S Nny

T NU)
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Lower bound on ) &q:

Recall £, = Nla - uq|?. Note that a is indep of A\, uq. The &'
are not independent, but almost, so their sum has a strong con-
centration property.

Lemma: Let ¢” < co or supprv compact, then

P( > éa < 6|A|) < e—clAl

acA

Note Y ta=N Y |aua|? = N|P4al?, P4 = proj
acA acA

Lemma: Let z = (21,...2N), 2; = zj +iy;, ¢j,y; ~dv(z). Let P
be a projection of rank m in C*'. Then

/

E o—<(Pz,Pz) ~ e—c’E(Pz,Pz) — o Cm

Proof: Brascamp-Lieb or Bourgain's decoupling method.
12



Proof of the local semicircle law: Consider the Stieltjes transform

m(z) = / o(x)dx

r —z

The Stieltjes tr. of the semicircle law satisfies
1

mse(z) + 2 =0

msc(z) +

This fixed point equation is stable away from the spectral edge.

Let m(z) be the Stieltjes tr. of the empirical density of H, and
m(k)(2) that of the minor B(k):

1 1 1 1
— (F) () =
m(z) NTrH—z’ m "/ (2) N 1TrB(k) —
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Then from the expansion

(2) = g: Gk k) = - 1
mi\z) =— — = ; -
N =1 N /= b — 2z —alk) . B(kl)_za(kf)
obtain
1 N 1
e Nkzzzl hpp — 2z — (1 —l)mﬂﬂ) — X},
with
N—-1 (k)
OO BN (O B [(k) 1 (k)]:i o’ =1
Xp=a (k) _ za Fk a k) _ . N & Agk) ;
:(1—%)777,(]?)
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(i) P{hyy > e} < e 0N
(ii) By interlacing property ‘m — (1 — %)m(k)' = o0(1)

(i) Lemma: P{|X,| > ¢} < e—cc(logN)?

Then, away from an event of tiny prob, we have

where the random variables §; satisfy |6 < e. From stability of

the equation msc = —msi_|_2, we get |m — mse| < Ce.
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Proof of Lemma: Forget k.

With a high prob in the prob. space of the minor, we have
#{ )Xo € I} < Nn(log N)2. Fix such an event and play with a.

Compute

d 3 eeﬁX

— e Plog E ¢° X] — e PEulogu < Ce PE IV/ul?, u = 3
E e€”X

and

0X |2 eP £ ef
—PE |Vyu|? < P’E '_ :—E[ a ]<—E Y
e TEIVVulT<e u%abk N2 “;|/\a—z|2 < gt Yl

with Y = NZOé |)\a =

16




B 1 £
—BE |1Vvul2 < S E [uY Yy = = «

Use entropy inequality
E[uY] <~ 'Eulogu4+~1E Y
(with optimal v ~ e?/Nn) and log-Sobolev once more to get
E |VVul* <Ee""

Integrate the inequality

di e PlogE eeﬁX <e PEY

from —oco to By ~ 310g(Nn) — 2loglog N.
The boudary term at 8 = —oo vanishes since E X = 0, thus
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1
0gE X <E Y, y=1y fe
N & | Aa — 2|

with 6 ~ 1/(log N)* <« 1.

Since &4 = |b - vo|? has finite exponential moment, if there are

not too many Ay near E, then Y has finite exponential moment
for a small §.

This controls the exponential moment of X.
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EXTENDED STATES: EIGENVECTOR DELOCALIZATION

No concept of absolutely continuous spectrum.

sl
N =

veCV, ||v|lo =1 is extended if ||v|p,~ N

, p 7 2.

E.g. For GUE, all eigenvectors have ||v]|4 ~ N~1/4 (symmetry)
Question: in general for Wigner? [T. Spencer]

Our Theorem 2 answers to this in the strongest possible norm,
with log corrections, for all eigenvectors (away from the edge)

Theorem 2: Fix x > 0, then

P{EIV, Ivi2 =1, Hv = pv, |ul < 2=k, [IVleo =2 775
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%k
Proof. Decompose as before H = (Z %) ,

Let Hv = uv and v = (vy,w), w € C¥~1. Then

hvi+a-w = vy, avi+Bw=uw = w=(u—B) ltav
From the normalization, 1 = ||w||2 + |v1|%, we have
1 1
v1]? = <1 . (o= Nlaua|?)
1+Nza(u )2 NWzaeAfa

where recall A\q,uq are the ev's of B and let

A={Oé : |>\a—ﬂ|:%} g ~ (log N)®

Concentration ineq. and lower bound on the local DOS imply

Z §a 2 C|A| > cq
acA

with very high probability, thus

v1]? < % = ||[v]leo < N~ /2 modulo logs
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SUMMARY
e All results for general Wigner matrices, no Gaussian formulas

8
e \We established the Semicircle Law for the DOS on scale —('O%\,m

(optimal modulo logs)

e All eigenvectors are fully delocalized away from the spectral
edges. Optimal estimate on the sup norm (modulo logs)

OPEN QUESTIONS:
e Are all conditions necessary (strong decay plus log-Sobolev)?
e Wigner-Dyson distribution of level spacing [DREAM...]
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Large Deviations, Small
Default Probabilities and
Importance Sampling

Chuan-Hsiang Han
Dept. of Quantitative Finance, NTHU

TIMS

July 10, 2008



Outline
Credit Derivatives: market data and is-
sues

ApproachI- reduced form: copula method

Approach II - structural form: first pas-
sage time problem

Modification: stochastic correlation

Conclusions and Future works



Introduction of Credit Derivatives

e A contract between two parties whose
values are contingent on the creditwor-
thiness of underlying asset (s).

e Single-name: only one reference asset,
like CDS (Credit Default Swaps).

e Multi-name: several assets in one basket,
like CDO (Collateralized Debt Obliga-
tions) or BDS (Basket Default Swaps).
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Credit Default Swap

[ Credit Default Swap Outstandings (USD)
65,000B
52,0008
39,0008
26,0008
13,0008

0B
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ISDA Market Survey




Global CDO Market Issuance Data

US$ billion
w
o
S)

2004 2005 2006 2007 2008-1Q
Year

Source: Securities Industry and Financial Markets As-
sociation.



A Example: Credit Swap Evaluation

premium =
F{(1—R)xB(O,7) xI(r<T)}/

N
E{ Z Aj—l,j x B(0,t;) x I(T > t])}
J=1
Notations: 7: default time, R: recovery rate,

B(0,t): discount factor, A;_1 ;: time incre-
ment.



Some Mathematical Issues

e Modeling default time

e Modeling correlations between default times

e Estimating joint default probability: rare
event in high dimension



Approaches to Modeling Default Times

e Intensity-Based (Reduced Form)
View firm’'s default as extraneous, modeling
the hazard rate of the firm.

P(r<t)=F(t) = 1 — exp {— /Oth(s)ds} |

e Asset Value-Based (Structural Form)
First passage time problem: in 2-d

{ dS1t = p1 S1edt + o1 S1:dWhy
dSot = po Sordt + 02 S2e d(p Wi + /1 — p? Way)
Joint default occurs if S1; < By and Sy; < B»

for some t < T.



Reduced Form Approach: Copula Method*

Default Times Modeling: {TZ' = FZ._]L (Ui)}?—l ,
U's are (standard) uniform random variables.

A n-dimensional Copula is a distribution func-
tion on [0, 1]™ with uniform marginal distri-

butions.

Through a copula function, one can build
up correlations between default times.

*Cherubini, Luciano, Vecchiato (2004), Nel-
son(2006).



Gaussian Copula

e Li (2000) introduced Gaussian copula

Cluy,un, -, up,>) =
(DZ((D_l(ul)) (D_l(uQ)) B (D_l(un))a

where 2_ denotes the variance-covariance
matrix.

e Laurent and Gregory (2003) introduced
Gaussian Factor Copula so that parame-
ters numbers are reduced from O(n?) to
O(n).

e Easy to compute but lack of economic
sense.



Structural Form Approach: Review

e Merton (1974) applied Black-Scholes Op-
tion Theory (1973). Default time only
happens at maturity.

e Black and Cox (1976) proposed the first
passage time problem (1-dim) to model
default event.

e Zhou (2001) extended to 2-dim case.
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Credit Risk Modeling:
Structural Form Approach

Multi-Names Dynamics: for 1 <i:<n

dSit = pSidt + 0 S;pdWig,

d<Wit7 th> = p;j;dt.
Each default time 7; for the it* name is de-
fined as 7, = inf{t > 0 : S;; < B;}, where B;

denotes the " debt level.
The it" default event is defined as {r; < T'}.

11



Joint Default Probability:
First Passage Time Problem

Q: How to compute, for any finite n names,

DP = E{MI ) | Fi}7

Explicit Formulas exist for 1 and 2 names
cases so far...(no mention for stochastic cor-
relation/volaility...)
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Multi-Dimensional Girsanov Theorem

Given a Radon-Nikodym derivative

dP L h(s,85)-dWs—2 [1||h(s,8:)|2d
T:Q%ze(fo (5:5)-dWs=3 Jg [[nCs,55)|Pds)

Wi = Wi+ [§h(s, Ss)ds is a vector of Brown-
ian motions under P. Thus

DP = B {1 o@}).

If h = —ppol VDP, zero variance for the

new estimator.

13



Monte Carlo Simulations:
Importance Sampling

An importance sampling method is to select
a constant vector h = (hy,---, hn) to satisfy
the following n conditions

E {S;r|Fo} = Bj,i=1,---,n.

Each h; can be uniquely determined by the
linear system

’ : In B;/S; )
Z;zlpwh] = ’;_L—; — —O_Z’é ZO, for 1 = 1, s, M.
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Trajectories under different measures
Single Name Case

Simulation of the stock price :

Plain MC Importance Sampling
250 - 250
200 1 200
150 v A 180
5| oD e !
S0= 100 A n
50 :
; B -
0 0.5 1 0 05 1
dpP 0
ap
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Single Name Default Probability

B BMC Exact Sol Importance Sampling
50 | 0.0886 (0.0028) 0.0945 0.0890 (0.0016)

20 0 (0) 7.7%x107° | 7.2%x10°°(2.3%107°)
1 0 (0) 1.3x1073Y | 1.8x10739(3.4 x1073%)

Number of simulations are 10% and the Eu-
ler discretization takes time step size T'/400,
where T is one year. Other parameters are
So = 100, = 0.05 and ¢ = 0.4.
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Three-Names Joint Default Probability

P BMC Importance Sampling
0.3 0.0049(6.98 x 10—4) 0.0057(1.95 % 10~%)

0O | 3.00x107%(1.73%x10%) | 6.40 *107%(6.99 x 107>)
-0.3 0(0) 2.25%107°(1.13 % 107°)

Parameters are S19 = Sog = S30 = 100, 1 =
puo = p3 = 0.05, 01 =00 =0.4,03 = 0.3 and
B1 = B> = 50, B3 = 60. Standard errors are
shown in parenthesis.

Effect of Correlation! Debt to Asset Ratios
(B;/S;0) are not small.
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We propose an algorithm to compute the
joint default prob.

In fact, the choice of our new measure
IS optimal in Large Deviations Theory.
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LLarge Deviations T heory:
Cramer’s Theorem

Let {X;} be real-valued IID r.v.'s under P
and F X1 < oo. For any =z > FE X1, we have

1 Sn
im —InP|— >zx| =-T"(z) = — inf T (y).
n—00 n, [ n x] (z) > (y)
1. Sp =" 1X;: sample sum
2. M) =InE [eHXl}: the cumulant function

3. IM(xz) = supgep[@z—T(0)]: Legendre
transform of I (also called rate function).

19



Tie to Importance Sampling

Define an expo. change of measure Py by

P
Fy ey 5 nr o),
S
pn = P [;n > :U] = Fy [I&erwp(—ﬁ Sn+nl(0))].

The optimal 2™ moment (M32(0,z)) of the
new estimator can be shown as

M?2(6z,z) =~ p>, where M(z) = 0z z — " (62).

Under the optimal measure, the event is
not rare any more! (Note: Ey_ [Sn/n] = x.)

20



Large Deviation Principle (LDP)

A X-valued seq. {Z¢}: defined on (2, F, P)
satisfies a LDP with the rate function I if
(1) Upper Bound: for any closed subset I’ of
X, limsup. .o e InP[Zf € F] < —infycp I(x)
(2) Lower Bound: for any open subset G of
X, limsup._g e InP[Zf € G] > —infycq I(x)

If P C X st inf pol(x) =inf 5 = Ip,
then

limsup e InP[Z° € F] = —1Ip.

e—0

21



Freidlin-Wentzell Theorem

The solution of

dX¢
X0

b(XE)dt + /oo (XE)dW,,

L,

satisfies a LDP with the rate function

1(f) =
1T . |
S [ < F® bY@ OIS b)) > de

for some nice function f, or I(f) = oo oth-
erwise. a(z) = o(z) o/(z).
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Single-Name Default Prob. Approximation

Q

P

FE

Pe

o2
inf St = SO €<M—7>t—|—O'Wt S B

0<t<T

I 2
o
| — = < -1
§ (oért];:rg (“ 2 > treoWy = )]
1

(scaling by In(B/Sp) = ?)

exp( ! ) ( by F-W Thm )

e2252T
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Importance Sampling:
ond Moment Approximation

B inf S, < B|e2hWr=h?T
0<t<T
S, = Soe(u—T—ah)t—FJWt’ p— M In B/Sg




2nd Moment Approximation (Cont.)

— EII| inf 2 "2+1t+ W, < —1
- o<t<r \“\H T 2 ) T =T

2
T 1 T —1
X e(0+€JT) (scaling by In(B/Sp) = —)
€
= M?

—1
~ exp|———]. by F-W Thm
p(szazT) (- by )

Theorem: By M2 ~ (P:)? we observe the
optimality of chosen measure.
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The Optimal Variance Reduction:

A Numerical Evidence

T(a) vs Py(T), B = 15

10 :
(o)
P(T)
1072}
1 0730 Il Il Il Il Il Il Il Il
0 10 20 30 40 50 60 70 80 £
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A Modification: Stochastic Correlation

( dS} = rStdt + o1 StdW
dS? = rS2dt + o252d(p(Y1) AW + /1 — p2(Yy)dWP)

vy = Hon - pdt + Y2z,

Joint default probability

N\

) S
P (ta L1,I, y) -— Eazl,xg,y {I_I I{mintgugT SZ{SB'L}}
In this case, the construction of our IS method
fails!
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Full Expansion of P?°

T heorem

(0. @)
Po(t,z1,20,y) = Y 8'Py(t, z1,22,9),
i=0
where P’s can be obtained recursively and
the y variable can be factored out (separate).

Proof: by means of Singular Perturbation
Techniques.
Accuracy results are ensured given smooth-
ness of terminal condition.
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Leading Order Term

Py(t,xz1,x>) solves the homogenized PDE
(y-independent).

(51,0 + 551,1) Po(t,z1,22) =0
p =< p(y) >, average taken wrt the invar-
tiant measure of Y.

Differential operators are

5, 2 92 5,
r —
L0 af“gl > 022 Z D
82
L11 = 01022172

Ox10x>
29



Other Terms

T )
Popi(ton,oo0) = > @ W) Lo L] P
i>0,j>1

where a seq. of Poisson egns to be solved:
LotV W) = (¢ - < e w) >)
Lot TV () = (p(y) o () - < pei™ )

where Lo = [32 ° 4+ (m— y)ay
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Numerical Result I. Stochastic Correlation

= % BMC Importance Sampling
0.1 | 0.0037(6*10~%) (1%x107%)

1 0.0074(9 x 10~%) 0.0065(2 * 10~%)
10 | 0.0112(1 %1073 0.0116(4 * 10~%)
50 0.0163(1 * 1073) 0.0137(5 *107%)
100 0.016(1 x 1073) 0.0132(4 *107%)

Parameters are S1g = Sog = 100, B; = 50, By =
40,m =7 /4,v = 0.5, p(y) = |sin(y)|.

Using homogenization in IS, note the ef-
fect of correlation.
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Numerical Result II: Stochastic Correlation

o = % BMC Importance Sampling
0.1 0(0) (7 «1079)

1 0(0) 7.5%x107°(6%107")
10 0(0) 2.4%107°(2%107°)
50 1x107%(1%107%) | 2.9%x10°(3%107°)
100 | 1%10°%(1x107%) | 2.7 10 °>(2%10°°)

Parameters are S19 = Spog = 100, B; = 30, By =
20,m =n/4,v = 0.5.

Note the effect of correlation.
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Conclusion

e Credit risk models are introduced.

e A simple yet efficient importance sam-
pling method is proposed, justified by large
deviations theory.

e Full expansion of joint default probabil-
ity under stochastic correlation and its
application to importance sampling.
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Future Works

Generalized to stochastic volatility mod-
els.

Risk management of credit portfolios.

Similar variance analysis for Gaussian cop-
ula models.

Homogenization in Large Deviations.
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Pricing Formula

In a financial model with interest rate 0, stock price process (S) and risk
neutral probability measure P*, the price of European call option at time 0

is given by
m(K,T) = E*[(Sr — K)*], (1)

where T is the maturity and K is the strike price.
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Pricing Formula

In a financial model with interest rate 0, stock price process (S) and risk
neutral probability measure P*, the price of European call option at time 0
is given by

n(K,T) = E" [(Sr — K)'], (1)

where T is the maturity and K is the strike price.

Two methods to discuss it:
@ Stochastic analysis

@ Dynamic analysis

C.-T. Wu (NCTU-AM) Weak Brownian Motions July 10, 2006 3/22



Relation between 7 and S;

Method 1: Stochastic Analysis

ug: marginal utility of Sy under P*, Then 7 is determined by the
distribution function and the partial moment and

Tz (v, t) = ug with density function p(-, ).

C.-T. Wu (NCTU-AM) Weak Brownian Motions July 10, 2006 4 /22



Relation between 7 and S;

Method 1: Stochastic Analysis
ug: marginal utility of Sy under P*, Then 7 is determined by the
distribution function and the partial moment and

Tz (v, t) = ug with density function p(-, ).

Method 2: Dynamic Analysis
Suppose S; satisfies

dSt = St(bt dt + O'(St, t) th),
then we have Dupire equation

=g :B202(:B, DT py — TOWTy. (2)

Solve it!

C.-T. Wu (NCTU-AM) Weak Brownian Motions July 10, 2006 4/22



~__ Motivation |
Another Point of View

Consider
m(K,T) = E* [(S7 — K)*],

where (S;) is a martingale with respect to P*.
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Another Point of View

Consider
m(K,T) = E*[(Sr — K)*],
where (S;) is a martingale with respect to P*.
Breeden and Litzenberger (1978) and Dupire (1997) show that

0
0K+

P*(Sp > K) = (K, T),

where (K, t) means the right-derivative of 7 with respect to K.

0K+
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Another Point of View

Consider
m(K,T) = E*[(Sr — K)*],
where (S;) is a martingale with respect to P*.
Breeden and Litzenberger (1978) and Dupire (1997) show that

0
0K+

P*(Sp > K) = (K, T),

where

8K+7T(K’ t) means the right-derivative of 7 with respect to K.

Question

Does there exist a stochastic process whose marginal (or k-marginal) is
identical to the marginal of (S;)?
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Stoyanov's Conjecture

Stoyanov's Conjecture
There exists a stochastic process X with Xy = 0 satisfying
Q@ X, — X ~N(0,t—s) for all s < t.

Q@ X, — Xy, and Xy, — Xy, are independent for 0 <t; <ty <t3 < ty.

But X is not a Brownian motion.
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Stoyanov's Conjecture

Stoyanov's Conjecture
There exists a stochastic process X with Xy = 0 satisfying
Q@ X, — X ~N(0,t—s) for all s < t.
Q@ X, — Xy, and Xy, — Xy, are independent for 0 <t; <ty <t3 < ty.

But X is not a Brownian motion.

Thus,

We aim to see if there exists a stochastic process whose marginal (or
k-marginal) is identical to the marginal of a Brownian motion, but is not a
Brownian motion.
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Definition

Definition
A stochastic process X is called a weak Brownian motion of order k, if for
all (tl, to, ..., tk)

(law)

(thutha -'~7th) == (Bt17Bt27 ceey Btk) )

where B is a Brownian motion.
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Definition

Definition
A stochastic process X is called a weak Brownian motion of order k, if for
all (tl, to, ..., tk)

(law)

(thutha -'~7th) == (Bt1aBt27 ceey Btk) )

where B is a Brownian motion.

Another formulation

Elfi(Xy) - fu(Xe,)] = E[f1(By) - - fr(By,)]
for fi,..., fr € C}(R).
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Definition

Definition
A stochastic process X is called a weak Brownian motion of order k, if for
all (tl, to, ..., tk)

(law)

(thutha -'~7th) == (Bt17Bt27 ceey Btk) )

where B is a Brownian motion.

Another formulation

Elfi(Xy) - fu(Xe,)] = E[f1(By) - - fr(By,)]
for fi,..., fr € C}(R).

Stoyanov's Conjecture

There exists weak Brownian motion of order 4 which differs from Brownian
motion.

V.
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Weak Brownian Motions

Main Results

Theorem (Follmer-W.-Yor (2000))

Let k € N. There exists a process (X¢)o<t<1 which is not Brownian

motion such that the k-dimensional marginals of X are identical to those
of Brownian motion.
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Main Results

Theorem (Follmer-W.-Yor (2000))

Let k € N. There exists a process (X¢)o<t<1 which is not Brownian
motion such that the k-dimensional marginals of X are identical to those
of Brownian motion.

Theorem

For every € > 0, there exists a probability measure Q # P on C([0, 1])
such that

O Q=P
QQLP
and satisfies

Q=P onFy=o0(X;:teld)

for any J C [0,1] such that J¢ contains some interval of length .

v
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Properties

Proposition
Let X be a weak Brownian motion of order k.

@ If kK > 2, then X has a continuous version. Moreover, if X is a
Gaussian process, then X is a Brownian motion

@ If k > 4, then (X); = t. Moreover, if X is a martingale, then X is a
Brownian motion.
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Properties

Proposition
Let X be a weak Brownian motion of order k.

@ If kK > 2, then X has a continuous version. Moreover, if X is a
Gaussian process, then X is a Brownian motion

@ If k > 4, then (X); = t. Moreover, if X is a martingale, then X is a

Brownian motion.

Remark

A weak Brownian motion may not be a martingale, e.g.,

. Wt7
MEN WL (VE- D)W

1
2

t<1/2,
t>1/2.
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It Integral

If X is a continuous weak Brownian motion of order k > 1 whose paths
have quadratic variation

then the It0 integral
t
| s ax,
0

exists as a pathwise limit of non-nticipting Riemann sums along dyadic
partitions for any bounded f € C! and satisfies the Itd's formula even
though X may not be a semimartingale, see Follmer (1981).
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It Integral

If X is a continuous weak Brownian motion of order k > 1 whose paths
have quadratic variation

then the It0 integral
t
| s ax,
0

exists as a pathwise limit of non-nticipting Riemann sums along dyadic
partitions for any bounded f € C! and satisfies the Itd's formula even
though X may not be a semimartingale, see Follmer (1981). Moreover,

t
E [ | 1 dXt] 0
0
which may be viewed as a weak form of martingale property.
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Characterization

@ W is a Brownian motion if and only if there exist an orthonormal
basis (¢,,) on L?([-0,1]) and a sequence of i.i.d. N(0, 1)-distributed
random variables (&) such that

e}

Wi=>_ (/Ot ©n(u) du> £n.

k=1
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Characterization

@ W is a Brownian motion if and only if there exist an orthonormal
basis (¢,,) on L?([-0,1]) and a sequence of i.i.d. N(0, 1)-distributed
random variables (&) such that

o0 t
Wy = Z (/ on(u) du> &n.
k=1 /0

@ X is a weak Brownian motion of order k if and only if there exist an
orthonormal basis (¢,,) on L?([—0,1]) and a sequence of uncorrelated
N (0, 1)-distributed random variables (7,,) such that

i (Al /Otl () dui + - -+ Mg /Otk on (1) du> "

k=1
is Gaussian for all Ay,..., \p € R, t; <ty <--- <t and

5=y </Otgon(u) du> "

k=1

C.-T. Wu (NCTU-AM) Weak Brownian Motions July 10, 2006 11 /22



Martingale Marginal

Definition

The family of densities Q = {g(z,t) : t > 0} has martingale marginal
property if there exists a probability space on which one may define a
martingale (M) such that for every ¢, the law of M is given by the density
q(M,t).
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Martingale Marginal

Definition

The family of densities Q = {g(z,t) : t > 0} has martingale marginal
property if there exists a probability space on which one may define a
martingale (M) such that for every ¢, the law of M is given by the density
q(M,t).

v

Theorem (Strassen (1965))

A family of probability measures (ji)n>0 has martingale marginal property

if and only if for alln > 0, [ |x| un(dz) < 0o, and for any concave

Un-integrable function 1, the sequence < / () ,un(dx)> is

non-increasing (the values of the integrals may be —oc).
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Generalizations

Remark
Doob (1968) proved the continuous version of above result. J
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Generalizations

Remark
Doob (1968) proved the continuous version of above result.

Theorem (Rothschild and Stiglitz (1970, 1971))

{q(z,t) : t > 0} has martingale marginal property if and only if for all K
and for all Ty < T

o0 o0
/ @wmmwg/ Sq(S.T) dS
0 0

/m@—Kﬁﬂ&Bmsz/ww—Kﬁﬂ&ﬂma
0 0
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Generalizations

Remark
Doob (1968) proved the continuous version of above result.

Theorem (Rothschild and Stiglitz (1970, 1971))

{q(z,t) : t > 0} has martingale marginal property if and only if for all K
and for all Ty < T

o0 o0
/ @wmmwg/ Sq(S.T) dS
0 0

/m@—Kﬁﬂ&Bmsz/ww—Kﬁﬂ&ﬂma
0 0

Remark
This concept is relative to stochastic orders, see Follmer and Schied
(2004).
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Martingale Marginal Property

Markov Martingales

Question

Given a family of densities {g(x,t) : t > 0}, does there exist a probability
space on which one can define a Markov martingale (M) such that for
every t, the law of M is given by the density q(M,t)?
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Markov Martingales

Question

Given a family of densities {g(x,t) : t > 0}, does there exist a probability
space on which one can define a Markov martingale (M;) such that for
every t, the law of M is given by the density q(M,t)?

Theorem (Kellerer (1972))

Q Let {q(z,t) : t > 0} be a family of marginal densities, with finite first
moment, such that for s <t

[ @@= [ f@atw.s)da

for all convex non-decreasing functions f, then there exists a Markov
submartingale (M) with marginal densities {q(My,t) : t > 0}.

@ Furthermore, if the means are independent of t, then (M,) is a
Markov martingale.

.
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Constructions

Define the family of barycetre functions

Y(z,t) = 17 valy,t) dy

densities.

C.-T. Wu (NCTU-AM) Weak Brownian Motions
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Constructions

Define the family of barycetre functions

[ waly.t) dy
V) =y B dy

Suppose ¥ (x,t) is increasing in t and ¢(z,t) is a family of zero mean
densities.

Theorem (Madan and Yor (2002))

Let (B;) be a standard Brownian motion. Define a stopping time

7 = inf {s : sup B, > w(Bs,t)} .

0<u<s

Then M, := By, is an inhomogeneous Markov martingale with density q.
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Consequence of the Main Results

Let X represent the coordinate process and L%(P) = L?(C([0,1]),P).

Notation
For every k € N, define

k
I, = {H fi(Xy,) i1 < -+ <t <1, f; is bounded, Borel measurable} .
i=1

C.-T. Wu (NCTU-AM) Weak Brownian Motions July 10, 2006 16 / 22



Consequence of the Main Results

Let X represent the coordinate process and L%(P) = L?(C([0,1]),P).

Notation
For every k € N, define

k
I, = {H fi(Xy,) i1 < -+ <t <1, f; is bounded, Borel measurable} .
i=1

Then

Corollary
For every k, II}, is not total in L?(P). J
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Decomposition

Notation
For every k € N, define

Ko :=1lp =R, Kpy1 = Hp1 N1y,

where | denotes orthogonality relation in L?(P).
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Decomposition

Notation
For every k € N, define

Ko :=1lp =R, Kpy1 = Hp1 N1y,

where | denotes orthogonality relation in L?(P).

Lemma

L*(P) = éKn.
n=1
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Decomposition

Notation
For every k € N, define

Ko :=1lp =R, Kpy1 = Hp1 N1y,

where | denotes orthogonality relation in L?(P).

Lemma

L*(P) = éKn.
n=1

Remark

K, is called the nth time-space Wiener chaos.
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Time-Space Wiener Chaos

For every u < 1, we define the Brownian bridge by

t
Xu_Xs
0 u—Ss

x" =X, - ds t<u.

Then (Xt(”)) is a Brownian motion w.r.t. the enlarged filtration
FiVo(X,), see, e.g., Yor (1992).
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Time-Space Wiener Chaos
For every u < 1, we define the Brownian bridge by

X, - X
Xt(u) =X — | —/——ds t<u.
0 u—S

Then (Xt(u)) is a Brownian motion w.r.t. the enlarged filtration
FiVo(X,), see, e.g., Yor (1992).

Theorem (Peccati (2001))

H € K, if and only if there exists a measurable deterministic function
h(u1, 215 ...; Up, Ty Such that

/ / / h2 ul,Xul,...;un,Xun)] duy, - - - dug duy < 00,
(3)
H = // / h(ut, Xuy s oosi Uny Xuy ) dX S0 o d X ) dX,
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Consequences

Corollary

Let F be a real random variable in L?(IP), then there exists a sequence of
measurable functions hf,,) satisfying the integrability condition (3) such
that

F = E[F] +Z// / ydx =) dx (W dx,,.
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Consequences

Corollary

Let F be a real random variable in L?(IP), then there exists a sequence of
measurable functions h () satisfying the integrability condition (3) such
that

F = E[F] +Z// / ydx =) dx (W dx,,.

Comparison (Wiener chaos)

Let F' be a real random variable in L?(IP), then there exists a sequence of
deterministic square integrable functions ¢(r,) : R" — R such that

F]+Z / / / o d Xy dX .
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Future Works

Q For k=23, (X): =17
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@ Generalization of weak martingales.
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Future Works

Q For k=23, (X): =17

@ Generalization of weak martingales.

© The construction of martingale k-marginal property and Markov
martingale k-marginal property.
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Future Works

For k=2,3, (X); =17

Generalization of weak martingales.

© 00

The construction of martingale k-marginal property and Markov
martingale k-marginal property.

@ The relationship between the weak Brownian motion of order k, the
kth Wiener chaos, kth time-space Wiener chaos, and the
generalization of the stochastic order.
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Future Works

For k =2,3, (X); =17
Generalization of weak martingales.

© 00

The construction of martingale k-marginal property and Markov
martingale k-marginal property.

@ The relationship between the weak Brownian motion of order k, the
kth Wiener chaos, kth time-space Wiener chaos, and the
generalization of the stochastic order.

© N-complete market, N-mixed trading strategies (Campi (2004)).
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Random transpositions
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Random transpositions

Forn=1,2,...,
@ S,: the symmetric group of degree n, id, : the identity of S,
@ pl : the probability on S, after t shuffles of random transposition
starting from the identity. That is,

=Y piH(o)pa(c710)

O'ESn
where
I ifo=id,
pa(0) =< % ifo=(ij)withl<i<j<n
0 otherwise

@ U, : the uniform probability on S,

as t — o0

VB C Sn pi(B) — Un(B)



Total variation and [2-distance

o Total variation: For any two measures 1, v on a set  equipped with
a o-algebra B, their total variation is defined by

e = vllrv = sup |u(B) — v(B)|
BeB

o L2-distance: Let j, v be measures on Q which are absolutely
continuous w.r.t. m with Randon-Nikodym derivatives f,g. The
L2(£, 7)-distance between p and v is defined to be

1/2
IF = glla = (/Q |f—g|2dw.) .



Results on Random transpositions

@ Concerning the random transpositions, as a function of the time
t € {0,1,2,...}, the total variation and the L?-distance

dpn _1

Es 1Pt = Upllrys £ H

2

are non-increasing in t and converge to 0 as t — 0.
o Diaconis & Shahshahoni (1981): Let t, = Snlogn.

1 forae (0,1)
0 forae(1,00)

im_[p3* — Unllrv _{

and
atp
m Hdpn o 2 for a € (0,1)
n—oo || dU, 5 0 forae(l,00)



Markov transition function, invariant measure

o (Q,B): a measurable space, T: either [0,00) or N={0,1,2,...}.

e A Markov transition function is a family {p(t,x,-) : t € T,x € Q}
of probability measures on (2, B) satisfying

p(0,x, 2\ {x}) =0

and, for t € T, A€ B, p(t,-,A) is a B-measurable function and
satisfies

ple +5.x.4) = [ pls.y. App(e.x. )

An invariant measure 7 of p(t, x, ) is a measure on (2 satisfying

/ p(t %, A)r(dx) = 7(A), t>0,AcB.
Q



Semigroup and spectral gap

@ For t > 0, let P; be an operator defined by

Pef(x) = /Q F(y)p(t. x. dy).

where f is any bounded measurable function.
e For any probability x on (2, B), let uP; be a probability defined by

HP(A) = /Q p(t, x, A)pu(d).

e Let p(t,-,-) be a Markov transition function with invariant probability
7 and let P; be the associated operator as before. The spectral gap
of P; is the largest constant ¢ such that

1Pt — Exll 2y 120y < €7 VE>0,

where E;f = w(f)1.



The L?-distance and the L?-mixing time

o If uP; has a density h(t, u1,-) w.r.t. m, then the L2-distance between
p(t, p,-) and 7 is defined by

1/2
Do ) = [1h(t.11,) — 1]z = ( [ Pt mtan - 1) |

Otherwise, Dy(u, t) is set to be infinity.

o Corresponding to the above setting, the e-L2-mixing time for p(t, 11, -)
is defined by

To(p,e) =inf{t € T : Da(u, t) < €}.



The L2-cutoff

Consider a family of Markov transition functions
F=Apn(t,x,"),t € T,x€Q,:n=1,2,...}.

with initial probabilities ji,. The family F is said to present an L2-cutoff
if there exists a positive sequence t, such that

f 0,1
lim Dn,2(,un,3tn) _ oo for a € ( ’ )
n—00 0 forae(l,00)

Here, t, is called the L2-cutoff time.

The family {pn(t, ptn,-) : n =1,2,...} has an L2-cutoff if and only if

_,_
Ilm n72(/'1/n? 6)

=1 V0<ed<oo.
n—oo n,Z(Nn;(S)

Moreover, T, 2(in,€) can be an L?-cutoff time for any € € (0, c0).




The [?-distance for random walks on finite groups

e G: a finite group
@ Q: a probability on G
@ U: the uniform probability on G.

Then
2

2
where d, is the dimension of p, a(p) is the Fourier transformation of
Q at p defined by

Qp) =Y _ Qg)n(8)

geG

and the summation is over all irreducible representations p of G
except the trivial one.



The L2-distance for reversible Markov processes

e (Q,B): a measurable space, T: [0,00) or {0,1,2,...}
e p(t,-,-), t € T: a Markov transition function on Q with invariant
probability 7

@ P;: the operator on L?(§, 7) associated with p(t,-,-)
@ \: The spectral gap of P
Assume that
@ P, is self-adjoint for t € [0,1] N T (or equivalently, 7 is reversible);

@ P; is strongly continuous if T = [0, c0) with infinitesimal generator A;
o A>0;

@ 4 is a probability whose density f w.r.t. 7 is in L?(Q,7).
Let {Eg|B € B(R)} be the resolution of the identity for P; (resp. —A) if
T =N (resp. T =1[0,00)). Then, fort € T,

—2t’y . _
Da(u, t)2 = {fp\oo N d{E\f,f)x !f T =0, 0)
Jnoo) YE(ESF ) i T ={0,1,2,...}



The L2-distance for reversible finite Markov chains

o Q: afiniteset, T: [0,00)or N
@ p(t,-,-): a Markov transition functions on Q. For T =N,
p(L,x,y) = K(x,y), p(t,x,y) =Y K (x,2)K(z,).
zeQ

and, for T = [0, ),

- et
p(tx.y) =e T (xy) = e ') K (x.y).
n=0

@ Assume that 7 is a reversible probability for p(t,-,-) and K has
eigenvalues \g = 1, Aq, ... )‘\QI 1 and normalized eigenvectors
Yo = 1,91, ..., Y)q|—1 in L?(Q, 7). Then, fort e T,

|2[—1 N2p—2(1=2)t _
o SR () e if T=1[0,00)
Pales )" = {z"z' b () 2A2t if T=1{0,1,2,..}



A sufficient condition on the L2-cutoff

Theorem (Chen & Saloff-Coste, 2008)

Consider a family F of Markov transition functions p,(t, x,-), t € T and
x € Q,, with invariant probability 7, and spectral gap A, > 0. For n > 1,
let 1n be a probability on (2,,8,) and set ty(e) = Tp2(n,€).

(i) For T =0, 00), if there exists € > 0 such that

Antn(€) — o0,

then F has an L2-cutoff with cutoff time t,(¢).
(i) For T =N, let v, = min{1, A\, }. If there exists ¢ > 0 such that

7ntn(€) — o0,

then F has an L2-cutoff with cutoff time t,(¢).




An equivalent condition on the L?-cutoff

Theorem (Continuous-time finite Markov chain)
Forn>1,

@ K, is a Markov kernel on a finite set 2, with invariant probability 7;
) pn(t’ . ) — e_t(l_Kn)
@ x, € Q,.

Assume that K, is irreducible and reversible w.r.t. 7, with eigenvalues
1> >\n,1 > )\n,2 > 2> )\n7|Q,,\—1

and eigenvectors (normalized in L2(Q,,7,))

17 wn,la wn,2> seey wn,|ﬂn‘—1'




An equivalent condition for the L?-cutoff

Theorem (Continuous-time finite Markov chain)
For C > 0, set

Jin = jn(C) = min {j > 105 i ()2 > C}

I J:_ n,i\Xn 2
7o = 7a(C) = supjs, { B () )}

Then, the family {p,(t, xn,-)|n = 1,2,...} has an L?-cutoff if and only if,
for some C > 0 and € > 0,

Jn—1
n||_>ngo Ta(l — )‘n,jn) = 00, n||_>r20 Zl |,¢)n7i(xn)|26—6(1—)\n,i)7'n —0. (1)
=

Furthermore, if the above limit holds, then 7, is an L2-cutoff time.




Remarks on the main theorem

(a) If (1) holds true for some C > 0 and € > 0, then it must be true for
all C >0ande>0.

(b) The theorem remains true if 7, is replaced by the L?-mixing time
Thn2(xn, €).

(c) Consider the case that p,(t,-,-) is invariant under transitive group
action, that is, some compact group G, acts transitively on €, with

pn(t,gx,8y) = pPn(t,x,y) Vx,y € Qn,g € Gp.

Then, v, i(xn) can be replaced by 1.



Random walks on hypercubes

e Q,: the finite group (Z2)"
@ K,: a Markov kernel on €2, given by

1

Kn(x,y) = {”*1

0 otherwise

ify=xory=x+e,;

where

For n = 4,
0010

N

1010 0110 0010 0000 OO11

o py(t,-,-): the Markov transition function e~ t(/=Kn),



L2-cutoff for random walks on hypercubes

@ K, has eigenvectors v, x, X € €2, where

?/)n,x(Y) = (—1)X'y7 X-y=Xx1y1+- -+ XpyYn-

and eigenvalues

2|x| _
-5 Xl=xi+x+ -+ x

@ For C = 1/2, Jn(C) =11- )‘n,jn(C) = n<2k1 and

7(C) = max (Iog(i—i— 1)> _ (n+1)log(n+1)

C1<i<on 2, 4

Using the main theorem, the family has an L2-cutoff with cutoff time
inl
anlogn.



Ehrenfest processes

e Q,=1{0,1,...,n}, K, is a Markov kernel on Q, given by

. -
Ko(iyi+1)=1-1, Ky(i+Li)='""2 wo<i<n.
n n

@ Let K, be the simple random walk on (Z3)", that is,
KL (x,x+ en;i) = %, Vx € (Z2)",1 < i <n.
Let Xi = {x € (Z2)" : |x| =i} for 0 < i < n and set
K (Xi, Xj) = Kj(xi, %)
where x; € X;j and x; € X;. Then,

Kn(la.j) = KI/1,(Xi7 Xj)



Spectral information for Ehrenfest processes

Theorem

Let K, be the Markov kernel of the Ehrenfest chain on {0,1,...,n}. Then,
Kp, has invariant probability m,(i) = (7)27", eigenvalues

"
Ami=1-2, 0<i<n,
n

and eigenvectors

Pn,i(x) = <7> o ;(—U"(i) (7::) 0<ix<n

which are normalized in L?(r,).

Note that the vectors 1), ; are in fact the Krawtchouk polynomials.




[?-cutoff for Ehrenfest processes

Theorem

For n > 1, let K,, be the Markov kernel of the Ehrenfest chain on
{0,1,...,n} and py(t,-,-) = e tU=K0)_ Let 0 < x, < n be a sequence of
starting states. Then the family p,(t, x,-) has an L2-cutoff if and only if

lim In = 2| =
n—o00 \/ﬁ
Moreover, if there is an L2-cutoff, then the cutoff time can be
n n — 2x
t, = = log M

2 Vn




Constant rate birth-and-death processes

e Q,=1{0,1,...,n}
@ K,: a Markov kernel on £, given by

YO<x<n

Kn(x,x+1) = Ky(n,n) =p
Kn(x +1,x) = Kn(0,0) =g=1—p

with p < 1/2.
d d d d d d d
§ssssssasasssss (P
b b P b P P P
t(l—Kn)

) pn(t’ ° ) — e
® xp € {0, ..., n}: the initial state



Constant rate birth-and-death processes

@ K, has invariant probability 7, given by

1 —
71'n(X) = Cn(p/q)X7 Cn = ]__(p/pcj)crlwl

and eigenvalues

Ano =1, Apj=2,/pqcos

jm .
1<j<n
n+17 —J— b

and normalized eigenvectors 0 =1,

(x+1)/2 ; (x4+2)/2 .
'(;bn,j(x) = Cn,j { <q> Sif'l'M — (q> sin Ll }
p n+1 p n+1

for 1 <j < n, where C,j = (ca(n+ 1)g(1 — AnJ)/(sz))_l/z'




[-cutoff for constant rate birth-and-death processes

Theorem

For n > 1, let p,(t,-,-) be the continuous-time (p, g)-random walks on
Q,=1{0,1,...,n} with p € (0,1/2) and let x, € Q,. Then, the family
pn(t, xn,-) has an L2-cutoff if and only if x, — co. Moreover, if there
exists an L2-cutoff, then the cutoff time can be

_ logg—logp

) = =0
2(1 - 2,/p9)




(p, g)-random walks on nonnegative integers

e 0=1{0,1,2,...}, K: the Markov kernel on Q given by

Vx > 0.

K(x,x+1)=p
K(x+1,x)=K(0,00)=g=1—p

g g g g g 0 0
‘§ scssssssssss sl
b p P b P P D

o p(t7 . ) — e_t(I_K)

e For p < 1/2, K has an invariant probability 7 given by

m(x) = (1= p/a9)(p/q)*, x=0.



(p, g)-random walks on nonnegative integers

Theorem

Let p(t,-,-) be the Markov transition function for the (p, g)-random walk
on {0,1,...} with p € (0,1/2) and g =1 — p. Then, the family
{p(t,xn,-)|n=1,2,...} has an L?-cutoff if and only if

Xp — OQ.
Furthermore, if the L2-cutoff exists, then the cutoff time can be

|ogq—logp
21— 2p9) "

n




Sketch of the proof for the main theorem

Tn(]-/z)(]- - /\n‘l) — 00 = L2-CUtOfF.

Here, we prove the case that p,(t,-,-) is invariant under transitive group
action. If Dpa(x, t) is the L2-distance between p,(t,x,-) and 7, then

Dna(x,t)* = Z e~ 2(1=Ani)t,

i>1

Let j > 1 be such that 7, = 2'?%9;1}). Then, D, 2(xn, 7a(1/2)) > 1/2 and,

hence, 7,(1/2) < Ty 2(xn,1/2).

Tn(1/2)(1 = Ap1) w00 = Tpo(xn, 1/2)(1 — Ap1) — 00
= [?_cutoff




Sketch of the proof for the main theorem

L2-cutoff = 7,(1/2)(1 — \,1) — o0.
© Fix €>0. Let Npj=[{i >1:1=An; < (1= Ap1)(1+ep*H.

|Og Nn,j < 2(1 - >\n,1)7'n(1/2)(1 + 6)j+1
= { Dn2(xn, t)? < >0 Nnjexp{—2t(1 — Ap1)(1 + ey}
1
1 —exp{—2€2(1 — A\p1)7n(1/2)}
o Set e =€, = ((1 — Ap1)7n(1/2))"Y/2. Then,

= Dn,2(Xn; (1+ 6)27',1(1/2))2 <

Dn2(xn, (1 + €n)?7n(1/2))2 < (1 —1/€*)7 1 <2

@ Since €, < /2/log2 < 2,

= 9(1 = An1)7n(1/2) = (1 = A1) Tn2(xm 2) — 00




Sketch of the proof for the main theorem

@ As a consequence of the above proof, if e, = ((1 — )\,771)7—”(1/2))—1/2,
then

(14 €n) 2 Tna(xn,2) < 7a(1/2) < Tn2(xn, 1/2).
@ Recall that

[-cutoff & (1 —Xp1)Tn2(xn €) — 0o for some € > 0
A Tn72(Xn7 6)/Tn,Z(Xn; 5) —1 VE,(S >0
A d (1 - )\n,l)Tn(l/Q) — 0

@ Thus, €, — 0 and

a(1/2)/ Ta2(xn,€) = 1 Ve > 0.
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Some Stochastic Analysis of
ORNSTEIN-UHLENBECK-type Processes

Narn-Rueih Shieh

Department of Mathematics, National Taiwan University

Abstract

In this talk, we report some recent works on the expected maximum
increments and the correlation decay of the exponential process deter-
mined by an OU-type process. As an application, the works show that a
scheme for large-deviation-based multifractal spectra proposed by Man-
nersalo etal can be carried out for such processes. These are joint works
with Vo Anh(Brisbane), Nikolai Leonenko(Cardiff), and Muneya Mat-
sui(Yokohama).



1. OU Process and its generalization

The (unique) stationary process X which solves the SDE

dX(t) = —AX(t)dt + dB(t),

or in a mean-reverting form
dX(t) = —0(X(t) — p)dt + dB(t).

To generalize, we may consider
1. the background driving process can be a Lévy process, or a
fractional BM.

2. the more general mean-reverting process as the solution of

SDE

dX(t) = —0(X(t) — p)dt + Ju(X(£))dB(2).



2. Exponential Process
Given a process X with exp moment, let ¢(t) be the normalizing

factor so that

Y (t) 1= eX0—c)

is a positive-valued mean 1 process.

When X is stationary, ¢(t) is a constant in ¢.

The object of the works:

1. the estimate of correlation decay E(Y (t+ s)Y (t)).

2. the estimate of the expectation F[maxo<s<p |Y(t + s) —
Y (1))



3. An application

The papers of J.P. Kahane (1985,1987,1989,2000) on positive
T-martingales and multiplicative chaos lead to a certain multi-
scale fractional analysis of some random clustering phenomena.
In particular, the MF products of stationary stochastic processes
by Mannersalo, Norros and Riedi (AAP 2002).

The above two are crucial steps toward to the scheme.
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