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Abstract

Recently, Benassi et al. (2002,2004) have defined the linear fractional and the

real harmonizable fractional processes driven by Lévy processes. The two processes

are of stationary increments, yet in general no longer selfsimilar, and Benassi et al.

study the local and the asymptotic selfsimilarity of the two processes, assuming that

the associated Lévy measure is truncated symmetric α-stable. In this report, we

establish the different Höler continuity for sample paths of these two fractional Lévy

processes, under the assumption that the driving Lévy process is symmetric and is

of second moment. Our result, together with an early paper of Billingsley (1974),

will imply that the two fractional Lévy processes are different processes in law, unless

the driving process is a Brownian motion. This corresponds the same question for

the case that the driving Lévy is non-Gaussian stable, discussed in Cambanis and

Maejima (1989).

1. Introduction

A real-valued stochastic process X = {X(t), t ≥ 0} is said to be an infinitely di-

visible process, if for every finite many times t1, · · · , tk the law of (X(t1), · · · , X(tk))

is a k-dimensional infinite divisible distribution; see for example, Rajput and Rosin-

ski (1989, in which the parameter set can be arbitrary). Under mild assumptions,

they proved (in their Theorem 4.11) that the process X = {X(t), t ≥ 0} admits an
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stochastic integral representation,

X(t) =

∫ ∞

−∞
f (t, u) dZ (u) ,

where the integrand is a certain kernel function and the integrator Z = {Z(u), u ∈ R}
is an additive process in law (that is, a process of which distributions are of indepen-

dent increments). The process X is in general not of stationary increments; yet in

case Z is a Lévy process in law (i.e. Z is also a process of stationary increments) then

X can be stationary or of stationary increments (which depends on the choice of the

kernel function); in such case, without loss of generality, we may also assume that Z

is of càdlág paths, and it is then a Lévy process in usual sense. We refer the precise

definitions on the additive (or Lévy) processes to the intensive book of Sato (1999).

There has been long interest to study the following two classes of non-Gaussian infin-

itely divisible processes; see, for example, the influential book of Samorodnitsky and

Taqqu (1994). Let 0 < H < 1 and 0 < α < 2,

∆H,1/α(t) =

∫ ∞

−∞

(
|t− u|H−1/α − |u|H−1/α

)
dZα(u), if H 6= 1

α
,

ΨH,1/α(t) = Re

(∫ ∞

−∞

eitu − 1

iu
|u|1−H−1/αdZ̃α(u)

)
,

where {Zα(u), u ∈ R} is a real-valued symmetric α-stable Lévy process , and {Z̃α(u), u ∈
R} is a complex-valued rotationally invariant α-stable Lévy process, both having

Lebesgue control measure. ∆H,1/α is the moving average (MA) type fractional process,

and ΨH,1/α is the real harmonizable (RH) type. These two fractional processes are

both selfsimilar with the same selfsimilar parameter H and both of stationary incre-

ments; see Samorodnitsky and Taqqu (1994, Chapter 7).

We recall that, a stochastic process X = {X(t), t ≥ 0} is said to be H-selfsimilar

for some H > 0 if {X(ct), t ≥ 0} d
= {cHX(t), t ≥ 0} for all c > 0, and to have

stationary increments if {X(t + b)−X(t), t ≥ 0} d
= {X(t), t ≥ 0} for all b > 0, where

d
= means equality of all finite dimensional distributions. Moreover, a real-valued

infinitely divisible process X = {X(t), t ≥ 0} is a symmetric α-stable process for

some 0 < α ≤ 2, if all finite combinations
∑k

n=1 anX(tn) have characteristic function

of the form exp{−c|θ|α} for some c = c(a1, · · · , ak, t1 · · · , tk) > 0.

It was shown firstly in Cambanis and Maejima (1989) that, if 1 < α < 2, then the

law of ∆H,1/α is distinct from that of ΨH,1/α for any given (H, α). However, it was not

proved for the case 0 < α ≤ 1 in Cambanis and Maejima (1989), since the existence
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of the first moments of the processes was required in the proof there. Remark that

when α = 2, both ∆H,1/α and ΨH,1/α are the same in law as the fractional Brownian

motion up to a scaling constant. Later, in Samorodnitsky and Taqqu (1994, Chapter

7, p. 358), they show that the two processes are essentially different(that is, they are

not equivalent up to a scaling factor), for all range 0 < α < 2.

As for the sample path regularity of these two fractional stable motions, standard

Kolmogorov criterion may give some Hölder continuity of the processes. Yet there

have been proved more precise uniform modulus of continuity, for the linear fractional

case, by Takashima (1989), and for the real harmonizable fractional case by Kôno and

Maejima (1991).

Recently Benassi et al. (2002,2004) have defined the the linear fractional and the

real harmonizable fractional processes driven by Lévy processes (indeed they consider

the multi-parameter case). The definitions of these two fractional Lévy processes,

abbreviated respectively as MAFLP and RHFLP, are respectively (we consider only

the one-parameter case),

∆H(t) =

∫ ∞

−∞

(
|t− u|H−1/2 − |u|H−1/2

)
dZ(u),

ΨH(t) = Re

(∫ ∞

−∞

eitu − 1

iu
|u|1−(H+1/2)dZ̃(u)

)
,

where {Z(u), u ∈ R} is a real-valued Lévy process which is centered, without Gaussian

part, and with all the p ≥ 1 moments. The {Z̃(u), u ∈ R} is a complex-valued

rotationally invariant Lévy process, with the real part of Z̃(u) being the same as

Z(u) (we may, for convenience, say that two driving process are the “same”). Here,

the rotational invariance happens, if the polar decomposition of the Lévy measure of

Z̃(u), when it is regarded as a 2-dimensional Lévy process, in Barndorff-Nielsen et

al. (2006, Lemma 2.1, with d = 2 there) has the uniform measure as their measure

λ(dξ) and their νξ is independent on ξ.

The two processes are of stationary increments, yet in general no longer selfsimi-

lar, and Benassi et al. (2002,2004) study the local and the asymptotic selfsimilarity of

the two processes, assuming that the associated Lévy measure is truncated symmetric

α-stable.

In this report, we establish the different Höler continuity for sample paths of these

two fractional Lévy processes, under the assumption that the driving Lévy process

is symmetric and is of the second moment. Our result, together with an early paper

of Billingsley (1974), will imply that the two fractional Lévy processes are different
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processes in law, unless the driving process is a Brownian motion. This corresponds

the same question for the case that the driving Lévy is non-Gaussian stable, discussed

in Cambanis and Maejima (1989).

We should mention that, such an idea of using sample path property to distinguish

the classes of the processes are unknown in previous literatures, to our knowledge.

We also mention that, under the second moment condition on Z, as we will impose

in this paper, it is natural to examine the covariance function; however, it is pointed

in Benassi et al. (2004, p. 358) that the both covariance functions are in the same

form as that of fractional BM with parameter H. Namely,

E
[
|X(t)−X(s)|2

]
= const · |t− s|2H

(the constant may be different).

Remark: The covariance function can be used successfully to distinguish the

two processes with finite second moments; for one recent example, we may see a

paper by Cheridito et al. (2003) for the two processes, Ornstein-Uhlenbeck process

and Lamperti process, driven by a fractional Brownian motion (fBM).

In the followings, we always assume the range 1/2 < H < 1, and the

symmetry and the second moment conditions on {Z(u), u ∈ R}.

2. Uniform Hölder continuity of sample paths

We firstly state the following uniform Hölder continuity for the process ∆H .

Theorem 2.1. There exists a version ∆̃H of ∆H whose sample paths are continuous

such that, for any positive continuous function φ(t) defined for t > 0,

(2.1) lim
δ↓0

sup
t,s∈[0,1]
|t−s|<δ

|∆̃H(t)− ∆̃H(s)|
|t− s|H−1/2 · φ(|t− s|)

= 0;

(2.2) lim
δ↓0

sup
t,s∈[0,1]
|t−s|<δ

|∆̃H(t)− ∆̃H(s)|
|t− s|H−1/2 · φ(|t− s|)

= ∞;

depending on limt↓0 φ(t) equals to ∞ or to 0.

Next, we state the following uniform Hölder continuity for the process ΨH , which

is rather different from the above result for ∆H .
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Theorem 2.2. There exists a version Ψ̃H of ΨH whose sample paths are continuous

such that, for any ε > 0,

(2.3) lim
δ↓0

sup
t,s∈[0,1]
|t−s|<δ

|Ψ̃H(t)− Ψ̃H(s)|
|t− s|H | log |t− s||1+ε

= 0

These two theorems are derived from useful alternate representations of the two

processes. For the ∆H , we have

Lemma 2.3. Let

f(t, u) := |t− u|H−1/2 − |u|H−1/2.

Then,

(2.4) YMA(t) :=

∫ ∞

−∞
Z(u)

−∂f(t, u)

∂u
du, t > 0, YMA(0) := 0,

defines essentially a version of ∆H .

Proof. Marquardt (2006, Theorem 3.4) pointed that, under the second moment

condition on Z, the linear fractional integral with respect to Z can be written pathwise

as a Riemann-type integral, and the by-parts formula holds. �

For ΨH , we need some notations as follows; they are adapted from Rosinski

(1989, Proposition 2). Let ν(dx) be the Lévy measure of the driving Lévy process

Z, and R(u), u > 0 be the right continuous inverse of the tail distribution function

x → ν(x,∞), x > 0; that is, R(u) = inf{x > 0 : ν(x,∞) ≤ u}. Let ϕ(x), x ∈ R,

be an everywhere positive probability density function on R. Let ξn be iid random

variables with common distribution ϕ. Let gn be iid C-valued standard normal ran-

dom sequence(i.e. the real part and the imaginary part of the random vector are

independent and are N(0, 1/2) distributed). Let Γn be a sequence of Poisson arrival

times with unit rate. Suppose that ξn, gn, Γn are totally independent.

Lemma 2.4. Let

f(t, u) :=
eitu−1

iu
|u|−1−(H+1/2).

Then,

(2.5) YRH(t) :=
∞∑

n=1

gnR(Γnϕ(ξn))f(t, ξn)

defines essentially a version of ΨH .
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Proof. This can be regarded as a special case of Rosinski (1989, Proposition 2,

with the q(s, dx) there being independent on s). Indeed, the author used symmetric

Bernoulli sequence as gn, and then remarked (in p. 79) that the Gaussian sequence

can also be used in a parallel way. �

Now, with the above two lemmas we can prove our different uniform Hölder con-

tinuity for the two fractional Lévy processes. The proofs are basically along the same

line as those in Takashima (1989) and Kôno and Maejima (1991) for the symmetric

α-stable driven case; therefore here we only sketch them.

Firstly, we observe that, since E
[
|X(t)−X(s)|2

]
= const · |t−s|2H , and H > 1/2,

by Kolmogorov Theorem, the both processes have continuous versions.

Proof of Theorem 2.1. It suffices to prove the theorem for the process YMA

defined in Lemma 2.3. Let β := H − 1/2. Since YMA is a path-wise defined process,

real analytic argument in Takashima (1989, p. 182-184) shows that the following

holds a.s. (which is the assertion of his Lemma 4.7)

lim
h↓0
{ sup

0<s<t≤1,t−s≤h
|YMA(t)− YMA(s)||t− s|−β} = max

−∞<u<∞
|f(1, u)| · sup

0≤u≤1
|∆Z(u)|.

On the right-handed side, the first term is 1, and the second term is a finitely positive

quantity. Therefore, the required assertion of the theorem follows from the multipli-

cation on the both sides of the above display by a the factor (φ(|t− s|))−1. �

Proof of Theorem 2.2. It suffices to prove the theorem for the process YRH defined

in Lemma 2.4. We observe that, the second moment assumption on Z, which means∫
|x|>1

x2ν(dx) < ∞, enforces that the decay of tail distribution ν(x,∞) is at least

O(x−2) as x →∞. Therefore the right-continuous inverse function R(u) = O(u−1/2)

as u →∞. We consider the expectation of |YRH(t)− YRH(s)|2 with respect to {gn},
and write it as a2(|t − s|). Let b(r) := rH

∣∣ log |r|
∣∣(1+ε)/2

, r > 0. Using the decay

R(u) = O(u−1/2) as u → ∞ and the arguments in Kôno and Maejima (1991, p.

96-97), we have that

lim
r↓0

a(r)

b(r)
= 0 a.s. ({ξn}, {Γn}),

and thus for small r > 0,

a(r) ≤ rH
∣∣ log |r|

∣∣(1+ε)/2
a.s. ({ξn}, {Γn}).

Therefore, we have, the expectation of |YRH(t)− YRH(s)|2 with respect to {gn},

E{gn}
[
|YRH(t)− YRH(s)|2

]
≤ σ2(|t− s|),
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with σ2(r) := Cr2H
∣∣ log |r|

∣∣1+ε
.

Since, for a.s. ({ξn}, {Γn}), {YRH(t)} is a Gaussian process defined by the iid

Gaussian sequence {gn}, the assertion of the theorem follows from the Lemma 2 in

Kôno and Maejima (1991, p. 95). �

3. MAFLP and RHFLP are different

We now use the different behavior of modulus of continuity of MAFLP and

RHFLP, together with an early result of Billingsley (1974) to prove the following

theorem

Theorem 3.1. Under the assumptions in Section 3, the MAFLP ∆H and the RHFLP

ΨH are essentially not equivalent in the law.

The result of Billingsley (1974) which we are going to use is the following. Suppose

L is a subset of the space RT of all real-valued functions on T = [0, 1]. Property ρ

is defined as that if there exists a version with sample paths in L a.s., then every

separable version has its sample paths in L a.s. The problem is which L has Property

ρ. For a countable dense subset D of T , let SD be the set of functions x in RT that

are separable with respect to D, namely, x ∈ SD if and only if for each t ∈ T there

exists s sequence {tn} ⊂ D such that tn → t and x(tn) → x(t). Let BT be the σ-field

in RT generated by the sets of the form {x : x(t) ≤ a}. Let L consist of those L in

RT such that, for each countable dense subset D ⊂ T , there exists a set L̄D in RT

such that

(3.1) L̄D ∈ BT , L̄D ⊃ L, L̄D − L ⊂ RT − SD.

Billingsley (1974) proved the following.

Proposition 3.2. Each L in L has Property ρ. Especially, the class of all continuous

functions on T has Property ρ.

We define

(3.2) L =

x ∈ RT : lim
δ↓0

sup
t,s∈T
|t−s|<δ

|x(t)− x(s)|
ϕ(|t− s|)

= 0

 ,

and claim that

Lemma 3.3. L is in L.
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Proof. The proof is similar to that of 6◦ in Billingsley (1974). Let C be the class

of all continuous functions on T . The natural candidate for L̄D is

αD(L) = {x : x agrees on D with some y in L}.

In Billingsley (1974), it is observed that if

L ⊂ C and αD(L) ∈ BT ,

then αD(L) will satisfy ((3.1)). It is obvious from the definition of L that L ⊂ C.

Also we have

αD(L) =
⋂
ε

⋃
δ

⋂
t,s∈D
|t−s|<δ

{
x :

|x(t)− x(s)|
ϕ(|t− s|)

< ε

}
,

where ε and δ range over the positive rationals. Thus αD(L) ∈ BD ⊂ BT , and we

conclude that L ∈ L. �

Now we can prove the theorem as follows. Suppose ∆H
d
= ΨH . Then any version

of ∆H whose sample paths are continuous is regarded as a separable version of ΨH , for

which, by Theorem 2.2, must be in the family L defined with ϕ(t) = |t|H | log |t||1+ε.

However, this contradicts Theorem 2.1, and concludes the theorem. �

A digressive remark: By the same idea of using sample-path behaviors to dis-

tinguish the processes, we can also see that the non-Gaussian Lévy-Chensov random

field constructed in Shieh (1996), which is (1/α)-selfsimilar and symmetric α-stable,

1 < α < 2, is not law-equivalent to the log-fractional symmetric α-stable field de-

fined in Cambanis and Maejima (1989). Indeed, in that paper, it was proved that

such Lévy-Chensov field has a separable version of sample path which is bounded and

nowhere continuous on any annulus of the parameter space; while for the log-fractional

case, it has a separable version of sample path which is nowhere bounded, see Mae-

jima (1983). Likewise, this non-Gaussian Lévy-Chensov field is not law-equivalent to

any field which has nowhere bounded sample paths, as those constructed in Samorod-

nitsky and Taqqu (1994, p. 402 and p. 453).

Some possible extensions: 1. We may relax the second moment condition

of the driving Z by assuming that Z has the moment E
[
|Z(1)|β

]
< ∞ for some

1 < β ≤ 2. Then we proceed the H − 1
β

instead of H − 1
2
. This can recover the

non-Gaussian symmetric α-stable, 1 < α < 2, case which was discussed in Cambanis

and Maejima (1989); we firstly let the β slightly less than α, and then let β ↑ α.

2. We may relax the symmetry condition of Z by the usual symmetrization; we
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consider the symmetric Lévy process Z(t) := Z1(t)− Z2(t), where Z1, Z2 are two in-

dependent copies of Z. One particular interesting case for such concern is the Gamma

process or more generally the Lévy process with GGC as its distribution at time 1;

see James et al. (2008).

3. A recent paper of Marcus and Rosinski (2005) discusses the continuity and bound-

edness of infinitely divisible processes based on Poisson point process approach. Their

results can apply to stochastic integrals of the general form on T , a compact metric

space or pseudo-metric space,

Y (t) =

∫
S

g(t, s)M(ds), t ∈ T.

where M is a zero-mean, independently scattered, infinitely divisible random measure

without Gaussian component. They give several examples which show that in many

cases the conditions obtained are quite sharp. It seems that such sharp estimates

can be proceeded for the fractional-type integrand and thus we may obtain the exact

modulus of continuity for fractional Lévy processes (the fBM can be obtained from

the vast literatures of regularity theory of Gaussian processes).
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