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Abstract

The purpose of this article is to consider the construction of free fields associ-

ated with the relativistic operator −(m −
√

m2 −∆). The study is based on the

viewpoint of pseudo-differential operators, and we present both the Gaussian case

and the non-Gaussian infinitely divisible case. We prove that, in the Gaussian

case our constructed field is singular with respect to the Gaussian free field based

on the non-relativistic m2 −∆ [15].

1 Introduction

The purpose of this article is to consider the construction of free fields associated with

the relativistic operator

−∆(r)
m := −(m−

√
m2 −∆),

where m > 0 is the normalized mass of a relativistic particle. On the one hand, the

operator −∆
(r)
m is the so-called free relativistic Hamiltonian, and is key to the physical

theory of stability of matter, pioneered by Lieb [7] in 1970’s. A seminal paper by Car-

mona et al. [3] investigated the mathematical theory of this operator, and in particular
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its close relation to Lévy processes; see also [12, 1] for the subsequent studies, including

a fractional version. A very recent article [4] contains the sharp estimate of the associ-

ated heat kernel and also useful references. The operator has interesting multi-scaling

property; see [17, 9]. On the other hand, Gaussian free fields (GFFs, for brevity) have

been understood as the building block of quantum field theory, and is also key to the

recent advent in quantum gravity [5] and the Schramm-Loewner evolution [14], see the

inspiring survey of Sheffield [15]. The GFF in [15] is mainly massless, and the mas-

sive case mentioned in Section 3.3 there is based on m2 − ∆ (for which we may say,

non-relativistic).

We aim to construct free fields associated with −∆
(r)
m from the viewpoint of the

theory of pseudo-differential operators; see, for example, the book of Wong [21] for a

basic treatment of the theory. We present both the Gaussian case and the non-Gaussian

infinitely divisible case. We prove that, in the Gaussian case our field constructed is

singular with respect to the GFF based on non-relativistic m2 −∆.

We present our results in Section 2, and all the proofs are given in Section 3.

Acknowledgement: This work is initialized while the author visited Department of

Mathematics, The Chinese University of Hong Kong, in Spring 2012. The hospitality of

the host is appreciated. I am indebted to K.S. Lau for helpful discussion on the analytic

theory of Green’s functions, and to M.W. Wong for helpful discussion ( via emails) on

the symmetry (the self-adjointness) of the operator −∆
(r)
m , related to [20]. I also thank

to the referee for her/his very careful reading and constructive comments, which make

the present version much more stylish and edged.

2 Main results

Since we treat −∆
(r)
m as a pseudo-differential operator, as that in [3] and [20]; we work

on the whole Euclidean space Rn, n ≥ 2, and is in the framework of tempered dis-

tributions. One may refer to, say, the book [21] for basic notions and properties of
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pseudo-differential operators and tempered distributions. The so-called restriction prob-

lem of free fields will be addressed elsewhere. Thus the space of test functions is the

Schwartz space S(Rn), consisting of all rapidly decreasing functions, equipped with the

Schwartz topology for such functions (somewhat different for those C∞ of compact sup-

ports); see [21]. Meanwhile, for an f ∈ L2(Rn, Leb), we use f̂ or Ff to denote the

Fourier (-Plancherel) transform of f . For an f ∈ S(Rn), define ∆
(r)
m f via the Fourier

transform

∆̂
(r)
m f(ξ) = θ(ξ)f̂(ξ), ξ ∈ Rn,

with

θ(ξ) := (m2 + |ξ|2)1/2 −m > 0, ∀ξ 6= 0.

The following proposition is the starting point of our study

Proposition 1. For f, g ∈ S(Rn), the operator ∆
(r)
m defines an inner product on Rn by

(f, g)(r)
m := (f,−∆(r)

m g) = (−∆(r)
m f, g),

where (·, ·) denotes the usual inner product on L2(Rn, Leb).

We observe that, since θ(ξ) ' |ξ| as the latter is large, the Hilbert-space closure of

S(Rn) under the inner product (f, g)
(r)
m is the Sobolev-Bessel space (see, for example,

[21], or the more advanced [19]).

H1,2(Rn) = {f ∈ L2(Rn, Leb) : F−1(1 + |ξ|2)1/2(Ff)(ξ) ∈ L2(Rn, Leb)}.

The following notion is essential to our study; it is natural to call the positive quantity

(f, f)
(r)
m for each nonzero f ∈ S(Rn), or for more general nonzero f ∈ H1,2(Rn), to be

the relativistic energy of f , and denote it by E (r)
m (f). The notion corresponds to the

(traditional) Dirichlet energy, denoted by E∇(f), based on the Dirichlet product (f, f)∇;

see [15, Section 2.1]. Now, we present the following definition:

Definition. Given an underlying complete probability space (Ω, P ), the free field

associated with −∆
(r)
m , denoted by X

(r)
m , is the unique linear random functional (X

(r)
m , f),
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indexed by f ∈ S(Rn) (the extension to more generally f will be discussed below), taking

values in L2(Ω, dP ) (the Hilbert space of square-integrable random variables defined on

Ω), and continuous in the sense that:

fn → 0 in S(Rn) ⇒ (X(r)
m , fn) → 0 in L2(dP ).

The random variables (X
(r)
m , f) are required to be centered (i.e. mean zero) and with the

covariance structure

E[(X(r)
m , f)(X(r)

m , g)] = (f, g)(r)
m ;

in the above, the notation E[ · ] denotes the expectation, i.e. the mean (the integral),

of a random variable with respect to the underlying probability measure P . Moreover,

we assume that each (X
(r)
m , f) is an infinitely divisible random variable, either Gaussian

or non-Gaussian.

We should remark that the above definition is consistent with the existing litera-

ture, as follows.

Firstly, by Proposition 1, (f, g)
(r)
m is a positive-definite bilinear form, it is qualified

to be a covariance structure, and therefore the above definition is indeed a kind of

generalized random field in the classic paper by Yaglom [22] on the correlation theory

(spectral analysis) of L2 random fields; this paper is mainly in the context of generalized

random fields, i.e. linear random functionals, except he used the C∞ functions with

compact supports as test functions. Secondly, in the theory of correlation theory, it

is mostly in the framework of the second moment, i.e. for random variables with the

L2(dP ) norm; while this article, as we have imposed in the definition, we assume further

that each (X
(r)
m , f) is an infinitely divisible (ID, for short) random variable. Then, due to

the linearity assumption, each finite linear combination a1(X
(r)
m , f1)+ · · ·+ak(X

(r)
m , fk) is

also an ID random variable. Therefore, the family of random variables (X
(r)
m , f), indexed

by f , is then a centered ID system with second moments; see Rajput and Rosinski [10] for

the intensive study of the structure of such ID systems. Thirdly, and most prominently,

in the Gaussian case our proposed definition in above is seen as a one mentioned in [6,

Example 1.16, p. 7].
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An ID random variable is characterized by its Lévy triplet (see, for example, Sato

[13]); the drift (which is zero since our field is centered), the Gaussian part, and the

jump-part (which is determined by its Lévy measure ν(dx)). We treat the Gaussian

and the non-Gaussian separately. Write, under the ID assumption, the characteristic

function (chf) as

ψ(s, f) := E[eis(X
(r)
m ,f)] := e−k(s,f), s ∈ R,

where k(s, f) is the Lévy-Khintchine representation; we treat separately as

∗ Gaussian: k(s, f) = c(f)s2, where c(f) is a positive constant to be determined.

∗∗ Non-Gaussian:

k(s, f) =

∫
R
[eisx − 1]ν(dx, f),

where the Lévy measure ν is to be determined; we remark that, since we have assumed

that (X
(r)
m , f) has second moment, it is legitimate and convenient to use the integral

representation for k(s, f) in this form. We have

Proposition 2. Let X
(r)
m be an ID free field associated with −∆

(r)
m , as defined above, for

which the Lévy-Khintchine representation of (X
(r)
m , f) is e−k(s,f). Then,

∗ Gaussian: k(s, f) = c(f)s2, with c(f) = E(r)
m (f)

2
.

∗∗ Non-Gaussian: k(s, f) =
∫

R[eisx − 1]ν(dx, f), with Lévy measure ν(dx, f) satisfy-

ing the scaling, for each nonzero a,

ν(d(x/a), f) = ν(dx, af).

Remark: In a subsequent paper [18], we choose ν(dx, f) to be with the density

q(x, f)dx, where

q(x, f) =
1

4π

1√
E (r)

m (f)

∫ ∞

0

[ 1√
u
· e

− x2

4uE(r)
m (f)

][e−m2u

u
3
2

]
du,

for which the required scaling in Proposition 2 is satisfied.

In theory of free fields, it is of essential importance to extend (X
(r)
m , f) defined for

more general f other than f ∈ S(Rn); see [15] for the detailed discussion of the (massless)
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GFFs based on the Dirichlet product, (f, f)∇ (the massive case also included). We treat

the Gaussian and the non-Gaussian separately. We assume Proposition 2 to be valid.

In the Gaussian case,

E[eis(X
(r)
m ,f)] := e

E(r)
m (f)

2
s2

.

Then, (X
(r)
m , f) is consequently defined for f ∈ H1,2(Rn). The latter space is the Hilbert

closure of S(Rn) under the (f, g)
(r)
m , as we have observed in above; therefore, we have

the Gaussian-Hilbert space [6, Definition 1.19, §3, Chapter 1] based on the relativistic

energy E (r)
m (f). One should compare it with the treatment in [15] based on the Dirichlet

energy E∇(f).

The main contribution of this article is to present the following “Green’s function

representation” for the free field defined above, including both the Gaussian and the

non-Gaussian case. We should remark that, the following theorem appears to be new,

to our knowledge, even in the Gaussian case.

Theorem 1. When n ≥ 3, there is a unique nonnegative function, for which we call

the relativistic Green’s function G
(r)
m (x, y) associated with ∆

(r)
m , such that G

(r)
m (x, y) =

G
(r)
m (y, x) and that, for f, g ∈ S(Rn),

(f, g)(r)
m =

∫ ∫
f(x)G(r)

m (x, y)g(y)dxdy =

∫ ∫
f(y)G(r)

m (y, x)g(x)dydx. (2.1)

For n = 2, it has to be confined to x, y ∈ D(0, R), an open disc with center at origin and

with radius R ( R can be arbitrarily large, yet needs to be finite); equivalently, it has to

assume that f, g are supported on D(0, R).

Symbolically, we may say that G
(r)
m (x, y) solves, in the sense of tempered distribu-

tions,

∆(r)
m G(r)

m (x, ·) = −δx(·);

we confer this notion to the Green’s function for the classical Laplacian in, say, [8, p.

148].

Here, the dimensionality n is crucial: for n ≥ 3, G
(r)
m (x, y) can be, as we will do in

the following context, defined for all x, y ∈ Rn; however, for n = 2, we need f, g to be
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supported on inD(0, R), an open disc with center at origin and with radius R ( R can

be arbitrarily large, yet needs to be finite). The proof of the above Theorem 1 (given in

Section 3) is mainly based on the probabilistic viewpoint, in which the dimension n = 2

has to be separated. The author is not able, it would be very interesting, to give an

wholly analytic proof.

Remark: It is here an occasion to mention a terminology in [17]. In that article,

the notation Gt(x, y) is also referred as a Green’s function, although it is better known

as the heat kernel associate with ∆
(r)
m .

We extend, as a consequence, (X
(r)
m , f) to f ∈ B+(Rn), the space of bounded nonneg-

ative functions, and the equation (2.1) in Theorem 1 thus holds for all f, g ∈ B+(Rn);

in the n = 2, we need to confine f, g being supported on D(0, R).

We remark that the Green’s function representation is crucial to employ GFFs to

both the quantum gravity [5] and the Schramm-Loewner evolution [14]. We mention

the Gaussian-Hilbert setting in the Gaussian case, mainly for the following

Theorem 2. The Gaussian-Hilbert space based on the relativistic energy E (r)
m (f) and

that one based on the Dirichlet energy E∇(f) are mutually singular.

We will prove this “natural” result by the Gaussian dichotomy, see (for example) [2,

Chapter 2], and by an early result of Shepp [16] (there are a lot of refinements on the

Gaussian dichotomy in vast literature, admittedly).

Remark: In general, the existence of “Green’s function” in other related models is

a core issue; see a very recent article on Kahane’s theory of multiplicative chaos [11].

3 Proofs

Proof of Proposition 1. Define, for each t > 0, a kernel Kt(x), x ∈ Rn, via its Fourier

transform by

K̂t(ξ) =
( 1√

2π

)n

e−tθ(ξ).
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The kernel Kt(x) is symmetric Kt(x) = Kt(−x), and is radial Kt(x) = Kt(||x||). We

then define a semigroup of operators on L2(Rn) by

Tt(f) = (Kt ∗ f)(x) =

∫
Kt(x− y)f(y)dy, T0f = f.

We claim that {Tt} is a contractive semigroup: ‖Ttf‖L2(Rn) ≤ ‖f‖L2(Rn); by the Fourier

transform for convolutions and the Plancherel identity, we have,∫
x

(Ttf)2(x) dx =

∫
ξ

|K̂t(ξ)f̂(ξ)|2 dξ

=

∫
ξ

e−tθ(ξ)f̂(ξ)|2

≤
∫

ξ

|f̂(ξ)|2 dξ =

∫
x

f 2(x) dx.

Now, we prove that, for each φ ∈ S(Rn),

‖(Tt − I)φ

t
+ ∆(r)

m φ‖L2(Rn) → 0, as t ↓ 0,

which means that, c.f. [20, Theorem 4.1], the infinitesimal generator of the L2 semigroup

{Tt} is −∆
(r)
m , at least acting on S(Rn). To prove the above display, write Dt(φ) =

(Tt−I)φ
t

+ ∆
(r)
m φ, and observe that∫

(Dtφ)2(x)dx =

∫
|D̂tφ|2(ξ)dξ

=

∫ [e−tθ(ξ) − 1

t
+ θ(ξ)

]2

φ̂(ξ)ξ.

For each ξ, the term in the above bracket tends to 0 as t ↓ 0; hence the whole integral

in the above must also tend to 0, since φ̂(ξ) is rapidly decreasing in ξ.

For each t > 0, we have the symmetric (the self-adjoint) property of Tt on S(Rn):

(f, Ttg) = (Ttf, g), which follows from the symmetry of the kernel Kt(x). Thus, so is for

the operator −∆
(r)
m , i.e. (f,−∆

(r)
m g) = (−∆

(r)
m f, g). Moreover, for each f ∈ S(Rn),∫

(−∆(r)
m f)(x) · f(x)dx =

∫
∆̂

(r)
m f(ξ) · f̂(ξ)dξ =

∫
θ(ξ)|f̂(ξ)|2dξ ≥ 0,

since θ(ξ) > 0,∀ξ 6= 0; the above equals to 0 only when f = 0. Therefore, the (f, g)
(r)
m

indeed defines an inner product on S(Rn).
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Proof of Proposition 2. Observe that the chf ψ(s, f) := E[eis(X
(r)
m ,f)] := e−k(s,f)

must satisfy

ψ′(s, f)|s=0 = iE[(X(r)
m , f)], ψ′′(s, f)|s=0 = −E[(X(r)

m , f)2].

Thus, for the Gaussian case, in which k(s, f) = c(f)s2, it follows that c(f) = E[(X
(r)
m , f)2]/2 =

E (r)
m (f)/2.

As for the non-Gaussian case, the k(s, f) =
∫

R[eisx − 1]ν(dx, f), with Lévy measure

ν(dx, f), gives, c.f. [13, p.163],∫
R
xν(dx, f) = 0,

∫
R
x2ν(dx, f) = E[(X(r)

m , f)2].

The scaling property of the Lévy measure then follow from the linear requirement of

X
(r)
m ; namely a(X

(r)
m , f) = (X

(r)
m , af).

Proof of Theorem 1. The following construction is already noted in [3]; see also

[12, 4]. Let B(t) be the n-dimensional standard Brownian motion, and let the so-called

relativistic 1
2
-subordinator be defined as a Lévy process Tt with increasing sample paths

and with the Laplace function determined by

E
[
e−uTt

]
= e−t(

√
m2+u−m), u > 0.

Assume that the process Tt and the Brownian motion Bt are totally independent, then

the subordinated process Xt = BTt is a Lévy process in Rn, for which the characteristic

function is given by,

E
[
ei<ξ,Xt>

]
= e−t(

√
m2+|ξ|2−m), ξ ∈ Rn.

The transition density function p(t, x, y) of the process Xt is then existent, jointly con-

tinuous in (t, x, y), and p(t, x, y) = p(t, 0, y − x). The estimate of p(t, x, y) given in

[3], see also the latest sharp one in [4] (with α = 1 there), tells that, for n ≥ 3, the

“probabilistic Green’s function”

G(x, y) :=

∫ ∞

0

p(t, x, y)dt,
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is defined, finite-valued and symmetric in x, y ∈ Rn.

We prove that this “probabilistic Green’s function” G(x, y) satisfies (2.1). Firstly, the

defining property of G(x, y) asserts that G(x, y) = G(y, x) = G(0, x− y) = G(0, y − x),

since p(t, x, y) has such spatial homogeneity for each t. Next, comparing the characteris-

tic function of Xt given in above and the Fourier transform of the kernel Kt in the proof

of Proposition 1, we see that Kt(x) = cn · p(t, 0, x), where cn is an absolute constant

depending only on the dimension n. Therefore, the symmetric (the self-adjoint) property

of Tt on S(Rn): (f, Ttg) = (Ttf, g), which is mentioned in the proof of Proposition 1,

can be re-written as, for t > 0 and for f, g ∈ S(Rn),∫ ∫
f(x)p(t, x, y)g(y)dxdy =

∫ ∫
f(y)p(t, y, x)g(x)dydx.

Integrating the above over t ∈ (0,∞), we have∫ ∫
f(x)G(x, y)g(y)dxdy =

∫ ∫
f(y)G(y, x)g(x)dydx;

we remark that it is legitimate to change the order of the integration, since G(x, y) has

been defined as a nonnegative finite-valued symmetric function in x, y ∈ Rn. To see the

above is equal to the (f, g)
(r)
m , and thus have the equation (2.1), with G

(r)
m (x, y) being this

“probabilistic Green’s function” G(x, y), we use the same argument as that in [8, p. 166]

for the Laplacian ∆ and the Gaussian heat kernel; it is also parallel to some argument in

the proof of [20, Theorem 4.1]. Indeed, −∆
(r)
m is shown to be the infinitesimal generator

of the semigroup {Tt} in the proof of Proposition 1, and thus Ttg = e−t∆
(r)
m g, at least for

g ∈ S(Rn). Thus, we have

−∆(r)
m Ttg =

d

dt
Ttg; (3.1)

confer to [8, p. 166]. We recall, from the proof of Proposition 1 and the relation of

Kt(x)& p(t, x, y) in above, that

Ttg(x) = (Kt ∗ g)(x) =

∫
Kt(x− y)g(y)dy =

∫
p(t, x, y)g(y)dy, T0g = g.
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We then have

(f, e−t∆
(r)
m g)Leb(dx) = (f, Ttg)Leb(dx) =

∫ ∫
f(x)p(t, x, y)g(y)dxdy.

Integrating the above over t ∈ (0,∞), we have∫ ∫
f(x)G(x, y)g(y)dxdy = (f, (∆(r)

m )−1g)Leb(dx) = (−∆(r)
m f, g)Leb(dx),

which is the left-handed side of (2.1). In the second term of the above, the inverse of the

operator ∆
(r)
m is implied by (3.1). This completes the proof of the theorem for n ≥ 3.

For the n = 2, as in [12, 4], we need to consider, not the whole process Xt but the

“subprocess” killed upon exiting D(0, R), i.e. XR
t := Xt, t < τR = inf{t ≥ 0; Xt 6∈

D(0, R)}, = ∂, t ≥ τR, and consider the residual pR(t, x, y) which is p(t, x, y)−rR(t, x, y)

(rR is the hitting probability density, see, for example, [12, p. 9]); the corresponding

Green’s function is then

G(x, y) := GR(x, y) :=

∫ ∞

0

pR(t, x, y)dt.

The killing is mandate for n = 2, due to the standard fact that the planar Brownian

motion is recurrent; while it is transient if the dimension is higher. Therefore, the (2.1)

in the dimension n = 2 must need f, g to be supported on D(0, R).

Remark: The proof in above, as we may have seen, blends the analysis and proba-

bility, and it hinges on that the probabilistic method in [12, 4] gives the proper estimate

to assert the integrability of Kt(x) = cn · p(t, 0, x) over t ∈ (0,∞).

Proof of Theorem 2. From the Gaussian dichotomy, the two (X
(r)
m , f) and (X, f)

must be either mutually singular or mutually equivalent. Notice that the Gaussian-

Hilbert space (X
(r)
m , f) is for f ∈ H1,2(Rn) while the Gaussian-Hilbert space (X, f) is

for f ∈ H2,2(Rn) (see the Section 2 for the first, and the [15] for the latter), and that

H2,2(Rn)  H1,2(Rn). For any

f ∈ H1,2(Rn) \H2,2(Rn),

which means that the relativistic energy E (r)
m (f) is finite and the (traditional) Dirichlet

energy E∇(f) is infinite, it must have, in the sense of probability distributions, (X, f) ∼
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δ0 (degenerate) while (X
(r)
m , f) ∼ N (0, E (r)

m (f)) (properly Gaussian distributed). This

show that the two Gaussian measures cannot be mutually equivalent, and hence must

be mutually singular.

We can also prove the mutual singularity of (X
(r)
m , f) and (X, f), for f indexed by the

Schwartz space S(Rn), as follows. We apply Shepp’s [16] result in the following form.

Let {Hl(r), l = 0, 1, 2, ...} be the Hermite polynomials, i.e.

Hl(x) = (−1)le
x2

2
dl

dxl
e−

x2

2 , for l ∈ {0, 1, 2, ...}, x ∈ R.

Thus, the Hermite functions

hl(x) :=
1

4
√

2π

1√
n!
e−

x2

4 Hl(x), l = 0, 1, 2, ...,

are in S(R1), and form an orthonormal basis for L2(R1, dx). Therefore,

hk̄(x) := hk1(x1) · · ·hkn(xn), k̄ = (k1, · · · , kn), x = ((x1, · · · , xn),

form an approximating family in S(Rn). We write, for l = 0, 1, 2, ...

πl := {hk̄(x), k̄ = (k1, · · · , kn), ki ≤ l,∀i}.

Let ρi, i = 0, 1, denote the covariance matrix associated, respectively, with (X, hk̄) and

(X
(r)
m , hk̄), and ρ be the average matrix ρ = ρ0+ρ1

2
. The Hellinger functional up to the

order l, H(πl), see [16, p. 169 (1.8)] (remark that we are now in the centered, that is

mean zero, and thus there is no exponential part in his (1.8)), is then

H(πl) =
(det ρ0(π

l))1/4(det ρ1(π
l))1/4

(det ρ(πl))1/2
.

The reciprocal of its 4th power is the product of l strictly positive numbers,
∏l

j
λj+1

2
·1+λ−1

j

2

[16, p.169 (1.10), p.170 (1.16)]. Each λj itself is split as λj = δj,0δ
−1
j,1 , where δj,i (j =

0, 1, 2, . . .) is the eigenvalues corresponding to ρi. The sequence of eigenvalues of the

covariance matrices ρi defined above is unbounded, and thus the l products in the above

tend to ∞ as l ↑ ∞. Consequently, the Hellinger functional H of the two Gaussian free

fields is zero, and thus they mutually singular.
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