
1. Review of quadratic equations

For k = Q or Qp and f(x, y) ∈ Q[x, y], recall that

Xf (k) =
{

(x, y) ∈ k2 | f(x, y) = 0
}
.

The basic question is to know if Xf (Q) 6= ∅. When f(x, y) is a quadratic form, i.e. f(x, y) =
y2 − ax2 − b, Hasse-Minkowski’s theorem tells us that

Xf (Q) 6= ∅ ⇐⇒ Xf (Qp) 6= ∅ for all p
⇐⇒ f ′ = ax2 − y2 represents b in Qp for all p
⇐⇒ (b,−δ(f ′))p = Hp(f

′) = (1,−a)p for all p
⇐⇒ (a, b)p = 1 for all odd p|ab and p =∞,

(why don’t we need to consider p = 2?).

Therefore, to know if Xf (Q) is empty not not, it boils down to a finite amount of computation
of Hilbert symbols at odd primes, which can be computed effectively via Gauss quadratic
reciprocity law. We can also ask the following natural questions:

(1) How to obtain a point in Xf (Q) if it is not empty?
(2) How many solutions in Xf (Q)?

When f(x, y) = x2 − ay2 − b, the answers to the above questions is fairly easy. The first one
follows from the proof of the proof of Hasse-Minkowski’s theorem for n = 3. As for the second
one, we can show if Xf (Q) 6= ∅, then #Xf (Q) is infinite, and we can write down all solutions.

Example 1.1. Let f(x, y) = 5x2 − y2 − 19. Write down all solutions in Xf (Q).

2. Cubic equations: Elliptic curves

2.1. Let k be one of the fields Fp,Qp,Q,R,C. Take a cubic polynomial

g(x) = x3 + ax2 + bx+ c with a, b, c ∈ k
and consider the cubic equations

f(x, y) = y2 − g(x).

The homogeneous polynomial F (X, Y, Z) attached to f defined by

F (X, Y, Z) := Z3 · f(
X

Z
,
Y

Z
) = ZY 2 − (X3 + aX2Z + bXZ2 + cZ3).

We shall consider the set of k-rational points

Xf (k) =
{

(x, y) ∈ k2 | y2 = g(x)
}

;

Cf (k) =
{

[X, Y, Z] ∈ P2(k) | F (X, Y, Z) = 0
}
.

We have an obvious embedding

Xf (k) ↪→ Cf (k)

(x, y) 7→ [x, y, 1].

It is clear that Cf (k) contains the point [0, 1, 0], which is the only point with zero Z-coordinate
and that

Cf (k) = Xf (k) t {[0, 1, 0]} .
1
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We can ask the following natural questions regarding the size of Cf (Q) (or Xf (Q)):
(1) When is #Cf (Q) > 1?
(2) How to determine effectively if #Cf (Q) =∞?

Before we can study the above questions seriously, we need to understand some basic structures
of Cf (k).

2.2. Singular points on Cf (k).

Definition 2.1. We say a point P = [a, b, c] ∈ Cf (k) is a singular point if

F (P ) = FX(P ) = FY (P ) = FZ(P ) = 0 (FX :=
∂F

∂X
(X, Y, Z)).

By definition, the point [0, 1, 0] is not a singular point. If (a, b) ∈ Xf (k) is a singular point,
then

f(a, b) = fx(a, b) = fy(a, b) = 0

⇐⇒ g′(a) = g(a) = b = 0

⇐⇒ the equation g(x) = 0 has a multiple root.

Therefore, we can conclude that there is at most one singular point in Cf (k). Let α1, α2, α3

are three roots of g(x) = 0 and let ∆g be the discriminant of g(x) given by

∆g := (α1 − α2)
2(α2 − α3)

2(α3 − α1)
2.

The above discussion shows that

Lemma 2.2. The cubic curve Cf (k) has a singular point if and only if ∆g = 0.

2.3. The group structure on Cf (k).

Definition 2.3 (Collinear points). Three points P,Q,R ∈ Cf (k) are called collinear if there
exits a line

Lλ,µ,ν(k) :=
{

[X, Y, Z] ∈ P2(k) | λX + µY + νZ = 0
}

([λ, µ, ν] ∈ P2(k))

such that
Lλ,µ,ν(k) ∩ Cf (k) = {P,Q,R} .

In the class, we explained the following proposition by direct computation:

Proposition 2.4. Let P and Q be two non-singular points in Cf (k). There exists a unique
point R ∈ Cf (k) such that P,Q,R are collinear.

Proof. Let P = (x1, y1) and Q = (x2, y2) be two points in Xf (k) ⊂ Cf (k). Suppose that
y1 6= −y2. Let

λ =
y1 − y2
x1 − x2

if x1 6= x2, and

λ =
g′(x1)

2y1
if x1 = x2, y1 = y2 (so P = Q).

and let ν = y1 − λx1. Then we have

Lλ,−1,ν(k) ∩ Cf (k) = {P,Q,R} ,
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where R = (x3, y3) with

x3 =λ2 − a− x1 − x2, y3 = λx3 + ν.

If x1 = x2 and y1 = −y2, then R = [0, 1, 0] and we have

L1,0,−x1(k) ∩ Cf (k) = {P,Q,R} .
We leave the other cases to you as exercises. �

Definition 2.5 (Group law). Suppose that Cf (k) is non-singular. Namely, ∆g 6= 0. Then we
define the group law on Cf (k) as follows:

(1) The identity element is O := [0, 1, 0] ∈ Cf (k).
(2) For P ∈ Cf (k), define −P to be the unique element such that {P,O,−P} are collinear.
(3) For P,Q ∈ Cf (k), let P + Q be the unique point such that {P,Q,−(P +Q)} are

collinear.
By definition, if P,Q,R are collinear, then P +Q+R = O.

Theorem 2.6. Suppose ∆g 6= 0. Then the above definition gives an abelian group structure
on Cf (k) with the identity element O.

Definition 2.7 (Elliptic curves). The pair (Cf (k), O) is called an elliptic curve defined by
f(x, y) = y2 − g(x) = 0. Following the convention, we shall use the notation E(k) to denote
the abelian group Cf (k) with non-zero discriminant ∆g 6= 0.

Example 2.8. Let E : y2 = x3 + 17. Let P = (−1, 4) and Q = (2, 5). Compute P +
Q, 2P and 2Q.

2.4. Torsion points in E(k). Let E : y2 = g(x) be an elliptic curve over k. For each positive
integer m > 1, we let E[m](k) be the m-torsion subgroup in E(k) defined by

E[m](k) := {P ∈ E(k) | m · P = O = [0, 1, 0]} .

Proposition 2.9. If E is an elliptic curve over the complex number C, then we have

E[2](C) ' Z/2Z⊕ Z/2Z, E[3](C) ' Z/3Z⊕ Z/3Z.

Using the analytic method, in general one can show that

E[m](C) ' Z/mZ⊕ Z/mZ.
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Homework (Due date: 11/25)

Exercise 1 (5 pts). Show the discriminant ∆g of g(x) = x3 + ax2 + bx + c is given by the
formula

∆g = −4a3c+ a2b2 + 18abc− 4b3 − 27c2.

Exercise 2 (5 pts). Let E : y2 = x3 + 17 be an elliptic curve over Q. Let P = (−2, 3) and
Q = (2, 5). Compute the following points:

2P, P −Q, 3P −Q.
These points all have integral x, y coordinates.

Exercise 3 (5 pts). Let E : y2 = x3−2x. Let i =
√
−1 ∈ C. Define a map u : E(C)→ E(C)

by
u(x, y) := (−x, iy) and u(O) := O.

Show that the map u is a group homomorphism. In other words,

u(P +Q) = u(P ) + u(Q).

Exercise 4 (10 pts). Consider the point P = (3, 8) on the elliptic curve E : y2 = x3−43x+166.
Compute P , 2P , 3P 4P and 8P . Show that 7P = O.

Exercise 5 (5 pts). Let E : y2 = x3 + 1. Find all points P ∈ E(C) with 3P = O.


