1. REVIEW OF QUADRATIC EQUATIONS

For $k = \mathbf{Q}$ or \mathbf{Q}_p and $f(x, y) \in \mathbf{Q}[x, y]$, recall that

$$X_f(k) = \{(x, y) \in k^2 \mid f(x, y) = 0\}.$$

The basic question is to know if $X_f(\mathbf{Q}) \neq \emptyset$. When f(x,y) is a quadratic form, i.e. $f(x,y) = y^2 - ax^2 - b$, Hasse-Minkowski's theorem tells us that

$$X_f(\mathbf{Q}) \neq \emptyset \iff X_f(\mathbf{Q}_p) \neq \emptyset \text{ for all } p$$

$$\iff f' = ax^2 - y^2 \text{ represents } b \text{ in } \mathbf{Q}_p \text{ for all } p$$

$$\iff (b, -\delta(f'))_p = \mathrm{H}_p(f') = (1, -a)_p \text{ for all } p$$

$$\iff (a, b)_p = 1 \text{ for all } odd \ p|ab \text{ and } p = \infty,$$
(why don't we need to consider $p = 2$?).

Therefore, to know if $X_f(\mathbf{Q})$ is empty not not, it boils down to a finite amount of computation of Hilbert symbols at odd primes, which can be computed effectively via Gauss quadratic reciprocity law. We can also ask the following natural questions:

- (1) How to obtain a point in $X_f(\mathbf{Q})$ if it is not empty?
- (2) How many solutions in $X_f(\mathbf{Q})$?

When $f(x,y) = x^2 - ay^2 - b$, the answers to the above questions is fairly easy. The first one follows from the proof of the proof of Hasse-Minkowski's theorem for n = 3. As for the second one, we can show if $X_f(\mathbf{Q}) \neq \emptyset$, then $\#X_f(\mathbf{Q})$ is infinite, and we can write down all solutions.

Example 1.1. Let $f(x,y) = 5x^2 - y^2 - 19$. Write down all solutions in $X_f(\mathbf{Q})$.

2. Cubic equations: Elliptic curves

2.1. Let k be one of the fields \mathbb{F}_p , \mathbb{Q}_p , \mathbb{Q} , \mathbb{R} , \mathbb{C} . Take a cubic polynomial

$$g(x) = x^3 + ax^2 + bx + c$$
 with $a, b, c \in k$

and consider the cubic equations

$$f(x,y) = y^2 - g(x).$$

The homogeneous polynomial F(X,Y,Z) attached to f defined by

$$F(X,Y,Z) := Z^3 \cdot f(\frac{X}{Z}, \frac{Y}{Z}) = ZY^2 - (X^3 + aX^2Z + bXZ^2 + cZ^3).$$

We shall consider the set of k-rational points

$$X_f(k) = \{(x, y) \in k^2 \mid y^2 = g(x)\};$$

 $C_f(k) = \{[X, Y, Z] \in \mathbf{P}^2(k) \mid F(X, Y, Z) = 0\}.$

We have an obvious embedding

$$X_f(k) \hookrightarrow \mathcal{C}_f(k)$$

 $(x,y) \mapsto [x,y,1].$

It is clear that $C_f(k)$ contains the point [0, 1, 0], which is the only point with zero Z-coordinate and that

$$C_f(k) = X_f(k) \sqcup \{[0, 1, 0]\}.$$

We can ask the following natural questions regarding the size of $\mathcal{C}_f(\mathbf{Q})$ (or $X_f(\mathbf{Q})$):

- (1) When is $\#C_f(\mathbf{Q}) > 1$?
- (2) How to determine effectively if $\#\mathcal{C}_f(\mathbf{Q}) = \infty$?

Before we can study the above questions seriously, we need to understand some basic structures of $C_f(k)$.

2.2. Singular points on $C_f(k)$.

Definition 2.1. We say a point $P = [a, b, c] \in \mathcal{C}_f(k)$ is a singular point if

$$F(P) = F_X(P) = F_Y(P) = F_Z(P) = 0 \quad (F_X := \frac{\partial F}{\partial X}(X, Y, Z)).$$

By definition, the point [0, 1, 0] is not a singular point. If $(a, b) \in X_f(k)$ is a singular point, then

$$f(a,b) = f_x(a,b) = f_y(a,b) = 0$$

 $\iff g'(a) = g(a) = b = 0$
 \iff the equation $g(x) = 0$ has a multiple root.

Therefore, we can conclude that there is at most one singular point in $C_f(k)$. Let $\alpha_1, \alpha_2, \alpha_3$ are three roots of g(x) = 0 and let Δ_g be the discriminant of g(x) given by

$$\Delta_q := (\alpha_1 - \alpha_2)^2 (\alpha_2 - \alpha_3)^2 (\alpha_3 - \alpha_1)^2.$$

The above discussion shows that

Lemma 2.2. The cubic curve $C_f(k)$ has a singular point if and only if $\Delta_g = 0$.

2.3. The group structure on $C_f(k)$.

Definition 2.3 (Collinear points). Three points $P, Q, R \in \mathcal{C}_f(k)$ are called *collinear* if there exits a *line*

$$\mathcal{L}_{\lambda,\mu,\nu}(k) := \{ [X, Y, Z] \in \mathbf{P}^{2}(k) \mid \lambda X + \mu Y + \nu Z = 0 \} \quad ([\lambda, \mu, \nu] \in \mathbf{P}^{2}(k))$$

such that

$$\mathcal{L}_{\lambda,\mu,\nu}(k) \cap \mathcal{C}_f(k) = \{P,Q,R\}.$$

In the class, we explained the following proposition by direct computation:

Proposition 2.4. Let P and Q be two non-singular points in $C_f(k)$. There exists a unique point $R \in C_f(k)$ such that P, Q, R are collinear.

PROOF. Let $P = (x_1, y_1)$ and $Q = (x_2, y_2)$ be two points in $X_f(k) \subset \mathcal{C}_f(k)$. Suppose that $y_1 \neq -y_2$. Let

$$\lambda = \frac{y_1 - y_2}{x_1 - x_2}$$
 if $x_1 \neq x_2$, and $\lambda = \frac{g'(x_1)}{2y_1}$ if $x_1 = x_2$, $y_1 = y_2$ (so $P = Q$).

and let $\nu = y_1 - \lambda x_1$. Then we have

$$\mathcal{L}_{\lambda,-1,\nu}(k) \cap \mathcal{C}_f(k) = \{P,Q,R\},\,$$

where $R = (x_3, y_3)$ with

$$x_3 = \lambda^2 - a - x_1 - x_2, \quad y_3 = \lambda x_3 + \nu.$$

If $x_1 = x_2$ and $y_1 = -y_2$, then R = [0, 1, 0] and we have

$$\mathcal{L}_{1,0,-x_1}(k) \cap \mathcal{C}_f(k) = \{P,Q,R\}.$$

We leave the other cases to you as exercises.

Definition 2.5 (Group law). Suppose that $C_f(k)$ is non-singular. Namely, $\Delta_g \neq 0$. Then we define the group law on $C_f(k)$ as follows:

- (1) The identity element is $O := [0, 1, 0] \in \mathcal{C}_f(k)$.
- (2) For $P \in \mathcal{C}_f(k)$, define -P to be the unique element such that $\{P, O, -P\}$ are collinear.
- (3) For $P, Q \in \mathcal{C}_f(k)$, let P + Q be the unique point such that $\{P, Q, -(P + Q)\}$ are collinear.

By definition, if P, Q, R are collinear, then P + Q + R = O.

Theorem 2.6. Suppose $\Delta_g \neq 0$. Then the above definition gives an abelian group structure on $C_f(k)$ with the identity element O.

Definition 2.7 (Elliptic curves). The pair $(C_f(k), O)$ is called an *elliptic curve* defined by $f(x,y) = y^2 - g(x) = 0$. Following the convention, we shall use the notation E(k) to denote the abelian group $C_f(k)$ with non-zero discriminant $\Delta_q \neq 0$.

Example 2.8. Let $E: y^2 = x^3 + 17$. Let P = (-1, 4) and Q = (2, 5). Compute P + Q, 2P and 2Q.

2.4. Torsion points in E(k). Let $E: y^2 = g(x)$ be an elliptic curve over k. For each positive integer m > 1, we let E[m](k) be the m-torsion subgroup in E(k) defined by

$$E[m](k) := \{ P \in E(k) \mid m \cdot P = O = [0, 1, 0] \}.$$

Proposition 2.9. If E is an elliptic curve over the complex number C, then we have

$$E[2](\mathbf{C}) \simeq \mathbf{Z}/2\mathbf{Z} \oplus \mathbf{Z}/2\mathbf{Z}, \quad E[3](\mathbf{C}) \simeq \mathbf{Z}/3\mathbf{Z} \oplus \mathbf{Z}/3\mathbf{Z}.$$

Using the analytic method, in general one can show that

$$E[m](\mathbf{C}) \simeq \mathbf{Z}/m\mathbf{Z} \oplus \mathbf{Z}/m\mathbf{Z}.$$

Homework (Due date: 11/25)

Exercise 1 (5 pts). Show the discriminant Δ_g of $g(x) = x^3 + ax^2 + bx + c$ is given by the formula

$$\Delta_q = -4a^3c + a^2b^2 + 18abc - 4b^3 - 27c^2.$$

Exercise 2 (5 pts). Let $E: y^2 = x^3 + 17$ be an elliptic curve over \mathbf{Q} . Let P = (-2,3) and Q = (2,5). Compute the following points:

$$2P, P-Q, 3P-Q.$$

These points all have integral x, y coordinates.

Exercise 3 (5 pts). Let $E: y^2 = x^3 - 2x$. Let $i = \sqrt{-1} \in \mathbb{C}$. Define a map $u: E(\mathbb{C}) \to E(\mathbb{C})$ by

$$u(x, y) := (-x, iy) \text{ and } u(O) := O.$$

Show that the map u is a group homomorphism. In other words,

$$u(P+Q) = u(P) + u(Q).$$

Exercise 4 (10 pts). Consider the point P = (3, 8) on the elliptic curve $E : y^2 = x^3 - 43x + 166$. Compute P, 2P, 3P 4P and 8P. Show that 7P = O.

Exercise 5 (5 pts). Let $E: y^2 = x^3 + 1$. Find all points $P \in E(\mathbf{C})$ with 3P = O.