1. REVIEW OF QUADRATIC EQUATIONS
For k = Q or Q, and f(x,y) € Q|z,y], recall that

Xf(k) = {(ZL‘,y) €k2 | f(x,y) :0}

The basic question is to know if X((Q) # . When f(z,y) is a quadratic form, i.e. f(z,y) =

y? — ax?® — b, Hasse-Minkowski’s theorem tells us that

X/(Q) £0 <= X/(Q,) £ 0 for all p
< f'=ax® — y® represents b in Q, for all p
< (b,=(f"), = Hy(f") = (1,—a), for all p
<= (a,b), =1 for all odd p|ab and p = oo,
(why don’t we need to consider p = 27).

Therefore, to know if X(Q) is empty not not, it boils down to a finite amount of computation
of Hilbert symbols at odd primes, which can be computed effectively via Gauss quadratic
reciprocity law. We can also ask the following natural questions:

(1) How to obtain a point in X;(Q) if it is not empty?
(2) How many solutions in X(Q)?

When f(z,y) = 2? — ay® — b, the answers to the above questions is fairly easy. The first one
follows from the proof of the proof of Hasse-Minkowski’s theorem for n = 3. As for the second
one, we can show if X¢(Q) # 0, then #X;(Q) is infinite, and we can write down all solutions.

Example 1.1. Let f(z,y) = 52% — y* — 19. Write down all solutions in X;(Q).

2. CUBIC EQUATIONS: ELLIPTIC CURVES

2.1. Let k be one of the fields F,, Q,, Q, R, C. Take a cubic polynomial
g(z) = 2* + ax® + bz + ¢ with a,b,c € k
and consider the cubic equations
flx,y) =y* = g().

The homogeneous polynomial F(X,Y, Z) attached to f defined by
XY
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We shall consider the set of k-rational points

Xp(k) ={(z,y) € * | y* = g(2) };

Cs(k) ={[X,Y,Z] € P*(k) | F(X,Y,Z) =0} .

We have an obvious embedding

F(X,)Y,Z):=2Z% f( = 2Y? — (X +aX?Z + bX 22 + cZ%).

Xy (k) = Cs(k)

(z,y) = [z,y,1].
It is clear that C;(k) contains the point [0, 1, 0], which is the only point with zero Z-coordinate
and that

Cr(k) = Xf(kl) {10, 1,01}



We can ask the following natural questions regarding the size of C(Q) (or X¢(Q)):
(1) When is #C;(Q) > 17
(2) How to determine effectively if #C;(Q) = 00?
Before we can study the above questions seriously, we need to understand some basic structures
of Cf(k)
2.2. Singular points on C(k).

Definition 2.1. We say a point P = [a, b, c| € Cf(k) is a singular point if
oF
By definition, the point [0, 1, 0] is not a singular point. If (a,b) € X(k) is a singular point,
then

X,Y, 2)).

f(avb) = fx(aab) = fy(aa b) =0
—g'(a) =g(a) =b=0
<= the equation g(x) = 0 has a multiple root.

Therefore, we can conclude that there is at most one singular point in C¢(k). Let oy, as, as
are three roots of g(z) = 0 and let A, be the discriminant of g(z) given by

Ay = (g — an)? (o — az)?(ag — o).
The above discussion shows that
Lemma 2.2. The cubic curve C¢(k) has a singular point if and only if A, = 0.
2.3. The group structure on C¢(k).
Definition 2.3 (Collinear points). Three points P, Q, R € Cs(k) are called collinear if there

exits a line
Louwn(k) ={[X,Y,Z] € P*(k) | \X + pY +vZ =0} ([ p,v] € P*(k))
such that
Ly,0(k)NCr(k) ={P,Q,R}.

In the class, we explained the following proposition by direct computation:

Proposition 2.4. Let P and Q be two non-singular points in Cs(k). There ezists a unique
point R € Cs(k) such that P,Q, R are collinear.

PROOF. Let P = (z1,y1) and @ = (22, y2) be two points in X;(k) C Cs(k). Suppose that
Y1 # —1yo. Let

A a7 if 1 # x5, and
T1 — T2

y 9 (@)
AT
and let v = y; — Az;. Then we have

E)\,fl,u(k) N Cf(k) = {P7 Qa R} )

ifxy =29, 11 =y2 (so P=0Q).



where R = (z3,y3) with
3 =N —a — 11 — 29, Y3 = \T3+ L.
If x1 = x9 and y; = —ys, then R = [0, 1,0] and we have
‘CLO,—wl (k) N Cf(k) = {Pv Q? R} :

We leave the other cases to you as exercises. O
Definition 2.5 (Group law). Suppose that Cs(k) is non-singular. Namely, A, # 0. Then we
define the group law on Cs(k) as follows:

(1) The identity element is O := [0,1,0] € Cs(k).

(2) For P € Cy(k), define —P to be the unique element such that {P, O, —P} are collinear.

(3) For P,Q € Cs(k), let P 4+ @ be the unique point such that {P,Q,—(P + Q)} are
collinear.

By definition, if P, @, R are collinear, then P + Q) + R = O.

Theorem 2.6. Suppose A, # 0. Then the above definition gives an abelian group structure
on Cy(k) with the identity element O.

Definition 2.7 (Elliptic curves). The pair (C¢(k),O) is called an elliptic curve defined by
f(x,y) = y* — g(x) = 0. Following the convention, we shall use the notation F(k) to denote
the abelian group Cs(k) with non-zero discriminant A, # 0.

Example 2.8. Let F : y> = 23 +17. Let P = (—1,4) and Q = (2,5). Compute P +
Q, 2P and 2Q).

2.4. Torsion points in F(k). Let E : y* = g(x) be an elliptic curve over k. For each positive
integer m > 1, we let E[m](k) be the m-torsion subgroup in E(k) defined by

Eml(k) :={Pe€ E(k)|m-P=0=][0,1,0]}.
Proposition 2.9. If E is an elliptic curve over the complex number C, then we have
E2)(C)~Z/2Z®Z/2Z, FE[3](C)~Z/3Z 3 7Z/3Z.
Using the analytic method, in general one can show that

E[m|(C) ~Z/mZ & Z/mZ.



HOMEWORK (DUE DATE: 11/25)

Exercise 1 (5 pts). Show the discriminant A, of g(z) = 2 + az® + bx + ¢ is given by the
formula
A, = —4a’c + a®b® + 18abe — 4b° — 27¢2.
Exercise 2 (5 pts). Let F : y?> = 3 4 17 be an elliptic curve over Q. Let P = (—2,3) and
Q = (2,5). Compute the following points:
9P, P—Q,3P Q.
These points all have integral x,y coordinates.

Exercise 3 (5 pts). Let F : y? = 2° —2z. Let : = v/—1 € C. Define a map u : F(C) — E(C)
by
u(z,y) = (—z,iy) and u(0O) := O.
Show that the map u is a group homomorphism. In other words,
w(P + Q) = u(P) +u(Q).
Exercise 4 (10 pts). Consider the point P = (3, 8) on the elliptic curve E : y? = x3—43x+166.
Compute P, 2P, 3P 4P and 8P. Show that 7P = O.

Exercise 5 (5 pts). Let £ : y* = 23 + 1. Find all points P € E(C) with 3P = O.



