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Abstract. We construct the four-variable primitive p-adic L-functions associated with the triple product of
Hida families and prove the explicit interpolation formulae at all critical points in the balanced range. Our
construction is to carry out the p-adic interpolation of Garrett’s integral representation of triple product L-
functions via the p-adic Rankin-Selberg convolution method. The main novelty in this paper is the construction
and the patching of four p-adic families of the pull-back of nearly holomorphic Siegel Eisenstein series on
GSp(6). As an application, we obtain the cyclotomic p-adic L-function for the motive associated with the
triple product of p-ordinary elliptic curves and prove the trivial zero conjecture for this motive. In particular,
this proves the first cases of the Greenberg-Benois trivial zero conjecture where multiple trivial zeros are
present and the Galois representation is not of GL(2)-type.
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1. Introduction

The aim of this paper is to construct the four-variable p-adic triple product L-functions for the triple product
of Hida families of elliptic newforms with explicit interpolation formulae at all critical specializations in the
balanced region. This extends the construction of three-variable p-adic L-functions in [GS20] and [Hsi21] by
incorporating the cyclotomic variable. As an application, we prove the trivial zero conjecture for triple product
of elliptic curves with semi-stable reduction at p. Let p be an arbitrary prime number and fix a valuation
ring O finite flat over Zp. Let I be a normal domain finite flat over the Iwasawa algebra Λ = OJΓK of the
topological group Γ = 1 + pZp, where p = p or p = 4 according as p is odd or even. Let

F = (f , g,h)

be a triplet of primitive Hida families of tame conductor (N1, N2, N3) and nebentypus (χ1, χ2, χ3) with coeffi-
cients in I. We will construct a four-variable Iwasawa function that interpolates the algebraic part of critical
values of the triple product L-function attached to F at all balanced critical specializations twisted by Dirich-
let characters. Our formulae completely comply with the conjectural form described in [CPR89], [Coa89a]
and [Coa89b]. In order to state our result precisely, we begin with some notation in Hida theory for elliptic
modular forms and technical items such as the modified Euler factors at p.
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1.1. Galois representations attached to Hida families. Given a field F , we denote its separable closure
by F and put GF = Gal(F/F ). If F =

∑∞
n=1 a(n,F)qn ∈ IJqK is a primitive cuspidal Hida family of tame

conductor NF and nebentypus χF , let ρF : GQ → GL2(Frac I) be the associated big Galois representation
such that Tr ρF (Frob`) = a(`,F) for primes ` - NFp, where Frob` is the geometric Frobenius at `. Let VF
be the natural realization of ρF inside the étale cohomology groups of modular curves, so VF is a lattice in
(Frac I)2 with the continuous Galois action via ρF , and the GQp -invariant subspace Fil0 VF := V

Ip
F fixed by

the inertia group Ip at p is free of rank one over I at least if p ≥ 5 ([Oht00, Corollary, page 558]). A point

Q ∈ Spec I(Qp) is called an arithmetic point if Q|Γ : Γ ↪→ Λ×
Q−→Q

×
p is given by Q(x) = xkQεQ(x) for some

integer kQ ≥ 2 and a finite order character εQ : Γ→ Q
×
p . Let X

+
I be the set of arithmetic points of I. For each

arithmetic point Q ∈ X+
I , the specialization VFQ := VF ⊗I,Q Qp is the geometric p-adic Galois representation

associated with the p-stabilized newform FQ =
∑∞
n=1Q(a(n,F))qn.

1.2. Triple product L-functions. The p-adic cyclotomic character εcyc : GQ → Z×p is defined by σ(ζ) =

ζεcyc(σ) for every p-power root ζ of unity and σ ∈ GQ. We denote by Q∞ the cyclotomic Zp-extension of Q, by
ω : GQ → µp−1 ↪→ Z×p the Teichmüller character, and by 〈εcyc〉T : GQ � Gal(Q∞/Q) ↪→ ZpJGal(Q∞/Q)K×

the universal cyclotomic character. Let

I3 = I⊗̂OI⊗̂OI, I4 = I3JGal(Q∞/Q)K

be finite extensions of the three and four-variable Iwasawa algebras.
Fix a ∈ Z/lZ with l = 2

⌈
p
2

⌉
. The main object of this paper is a construction of the p-adic L-function for

the triple tensor product Galois representation

V = Vf ⊗̂OVg⊗̂OVh, V = V⊗̂Oωa 〈εcyc〉T
of rank eight over I4. If (k1, k2, k3) is a triplet of positive integers, we say (k1, k2, k3) is balanced if k1+k2+k3 >
2k∗ with k∗ := max {k1, k2, k3}. Let Xbal

I3
denote the set of balanced arithmetic points of (X+

I )3. An integer k
is said to be critical for (k1, k2, k3) if

k∗ ≤ k ≤ k1 + k2 + k3 − k∗ − 2.

We define the weight space Xbal
I4
⊂ Spec I4(Qp) to be the set of balanced critical points of I4 given by

Xbal
I4 = {(Q1, Q2, Q3, P ) ∈ Xbal

I3 × X+
Λ | kP is critical for (kQ1 , kQ2 , kQ3)}.

For each point (Q,P ) = (Q1, Q2, Q3, P ) ∈ Xbal
I4

, the specialization V(Q,P ) = VQ ⊗ εkPcycεPω
a−kP is a p-adic

geometric Galois representation, where VQ = VfQ1
⊗VgQ2

⊗VhQ3
and εP is regarded as a Galois character via

εP ◦ εcyc.
Next we briefly recall the motivic L-function associated with the specialization V(Q,P ). To the geometric

p-adic Galois representation V(Q,P ), we can associate the Weil-Deligne representation WD`(V(Q,P )) of the
Weil-Deligne group of Q` over Qp (See [Tat79, (4.2.1)] for ` 6= p and [Fon94, (4.2.3)] for ` = p). Fixing an
isomorphism ιp : Qp ' C once and for all, we define the motivic L-function of V(Q,P ) by the Euler product

L(V(Q,P ), s) =
∏
`<∞

L`(V(Q,P ), s)

of the local L-factors L`(V(Q,P ), s) attached to WD`(V(Q,P )) ⊗Qp,ιp
C (cf. [Del79, (1.2.2)], [Tay04, page

85]). On the other hand, we denote by πfQ1
(resp. πgQ2

, πhQ3
) the irreducible unitary cuspidal automorphic

representation of GL2(A) associated with fQ1
(resp. gQ2

,hQ3). Let L(s, πfQ1
× πgQ2

× πhQ3
⊗ εPωa−kP ) be

the automorphic L-function attached to the triple product of πfQ1
, πgQ2

, and πhQ3
⊗εPωa−kP , as constructed

by Garrett [Gar87] in the classical setting and by Piatetski-Shapiro and Rallis [PSR87] in the adèlic setting.
The analytic theory of L(s, πfQ1

×πgQ2
×πhQ3

⊗εPωa−kP ) such as meromorphic continuation and a functional
equation has been explored extensively in the literatures (cf. [PSR87, Ike89, Ike92]), and thanks to [Ram00,
Theorem 4.4.1], we have

L(s+ kP − wQ/2, πfQ1
× πgQ2

× πhQ3
⊗ εPωa−kP ) = ΓV(Q,P )

(s) · L(V(Q,P ), s),
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where wQ := kQ1
+ kQ2

+ kQ3
− 3 and ΓV(Q,P )

(s) is the Gamma factor of V(Q,P ) as given by

ΓV(Q,P )
(s) := ΓC(s+ kP )ΓC(s+ 1 + kP − kQ1)ΓC(s+ 1 + kP − kQ2)ΓC(s+ 1 + kP − kQ3).

Here ΓC(s) = 2(2π)−sΓ(s). Hence we have a good understanding of the analytic properties of the motivic L-
function L(V(Q,P ), s). The rationality of its critical L-values in the balanced region was proved in [Orl87] and
[GH93], where the authors verify that the Deligne’s period for V(Q,P ) is the product of Petersson norms of fQ1

,
gQ2

, hQ3
. In this article we shall investigate the arithmetic of critical values L(V(Q,P ), 0) for (Q,P ) ∈ Xbal

I4

and study the p-adic analytic behavior of its algebraic part viewed as a function on the weight space Xbal
I4

.

1.3. The modified Euler factors at p and ∞. Let GQp denote the decomposition group at p. Define the
rank four GQp

-invariant subspace of V by

Fil+ V := Fil+ V ⊗ ωa 〈εcyc〉T ,

where

Fil+ V := Fil0 Vf ⊗ Fil0 Vg ⊗ Vh + Vf ⊗ Fil0 Vg ⊗ Fil0 Vh + Fil0 Vf ⊗ Vg ⊗ Fil0 Vh.

The pair (Fil+ V,Xbal
I4

) satisfies the Panchishkin condition in [Gre94a, page 217] in the sense that for each
arithmetic point (Q,P ) ∈ Xbal

I4
, the Hodge-Tate numbers of Fil+ V(Q,P ) are all positive, while none of the

Hodge-Tate numbers of V(Q,P )/Fil+ V(Q,P ) is positive. Here the Hodge-Tate number of Qp(1) is one in our
convention. Now we can define the modified p-Euler factor by

Ep(Fil+ V(Q,P )) :=
Lp(Fil+ V(Q,P ), 0)

ε(WDp(Fil+ V(Q,P ))) · Lp((Fil+ V(Q,P ))∨, 1)
· 1

Lp(V(Q,P ), 0)
.

We note that this modified p-Euler factor is precisely the ratio between the factor L(ρ)
p (V(Q,P )) in [Coa89b,

page 109, (18)] and the local L-factor Lp(V(Q,P ), 0).
In the theory of p-adic L-functions, we also need the modified Euler factor E∞(V(Q,P )) at the archimedean

place observed by Deligne. It is defined to be the ratio between the factor L(
√
−1)

∞ (V(Q,P )) in [Coa89b, page
103 (4)] and the Gamma factor ΓV(Q,P )

(0). In our current case it is explicitly given by

E∞(V(Q,P )) = (
√
−1)kQ1

+kQ2
+kQ3

−3.

1.4. The p-modified periods. To give the precise definition of periods for the motive V(Q,P ), we introduce
the p-modified period of an I-adic primitive cuspidal Hida family F of tame conductor NF . We denote by
F◦Q the normalized newform of weight kQ, conductor NQ = NFp

nQ with nebentypus χQ corresponding to FQ.
There is a unique decomposition χQ = χ′QχQ,(p), where χ

′
Q and χQ,(p) are Dirichlet characters modulo NF

and pnQ respectively. Let αQ = a(p,FQ). Define the modified Euler factor Ep(FQ,Ad) for the adjoint motive
of FQ by

Ep(FQ,Ad) =


(1− α−2

Q χQ(p)pkQ−1)(1− α−2
Q χQ(p)pkQ−2) if nQ = 0,

−1 if nQ = 1, χQ,(p) = 1 (so kQ = 2),

(α−2
Q p(kQ−2))nQg(χQ,(p))χQ,(p)(−1) if nQ > 0, χQ,(p) 6= 1.

Here g(χQ,(p)) is the usual Gauss sum. Fixing the choice of a generator ηF and letting ‖F◦Q‖2Γ0(NQ) be the

usual Petersson norm of F◦Q, we define the p-modified period Ω†FQ of F at Q by

Ω†FQ := (−2
√
−1)kQ+1 · ‖F◦Q‖2Γ0(NQ) · Ep(FQ,Ad) ∈ C×.

By [Hid16, Corollary 6.24, Theorem 6.28], one can show that for each arithmetic point Q, up to a p-adic unit,
the product of the normalized period Ω†FQ and the congruence number of FQ is equal to the product of the
plus/minus canonical periods Ω(+ ;F◦Q)Ω(− ;F◦Q) introduced in [Hid94, page 488].
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1.5. Statement of the main result. We impose the following technical assumption:

(sf) Ni is square-free and χi = ωai is a power of the Teichmüller character for i = 1, 2, 3.

Our main result is a construction of the balanced p-adic triple product L-functions with the the interpolation
formulae at all critical points in the precise form conjectured by Coates and Perrin-Riou:

Theorem A. Suppose that (sf) holds. Put l = 2
⌈
p
2

⌉
. Then for each a ∈ Z/lZ, there exists an element

LF ,(a) ∈ I3JGal(Q∞/Q)K⊗I3 (Frac I⊗ Frac I⊗ Frac I)

such that
• for each balanced critical (Q,P ) = (Q1, Q2, Q3, P ) ∈ Xbal

I4
,

LF ,(a)(Q,P ) =
ΓV(Q,P )

(0)L(V(Q,P ), 0)

Ω†fQ1

Ω†gQ2
Ω†hQ3

· (
√
−1)kQ1

+kQ2
+kQ3

−3 · Ep(Fil+ V(Q,P ));

• for any H1, H2 and H3 in the congruence ideals of f , g and h,

H1H2H3 · LF ,(a) ∈ I4.

In the literature, the three weight variable p-adic L-function for the triple product of Hida families in the
balanced case has been extensively studied by Greenberg-Seveso [GS20], the first author [Hsi21] and so on.
These works, based on Ichino’s formula [Ich08], focus on the p-adic interpolation of central values and hence the
cyclotomic variable is excluded. Our four-variable p-adic L-function LF ,(a) specializes to this three variable
p-adic L-function along the central critical line (see Remark 7.7). To the best of our knowledge, the first
attempt to construct the cyclotomic p-adic triple product L-functions was made by Böcherer and Panchishkin
[BP06, BP09], where they constructed one-variable p-adic L-functions associated with three primitive elliptic
newforms by using the pull-back of Siegel Eisenstein series on GSp(6) and Garrett’s integral representation of
triple product L-functions. Their construction is not restricted to the ordinary case, but the p-integrality of
the p-adic L-function is not discussed; the interpolation formula is less complete, for example the interpolation
at the trivial character is not covered. To obtain an explicit and complete interpolation formula, we introduce
new p-adic sections and archimedean sections in the construction of Siegel Eisenstein series on GSp(6).

Remark 1.1. We put a few words about our assumption.
(1) The assumption (sf) on the conductors of modular forms and characters is imposed due to the com-

plexity of choosing nice test vectors in local zeta integrals arising from Garrett’s integral representation
of triple product L-functions.

(2) The p-adic L-function LF ,(a) may have some poles outside critical points. Under a Gorensteiness
hypothesis of Hecke algebras (the Hypothesis (CR) in §7.3), we can construct an optimal four-variable
p-adic triple product L-function without denominators by multiplying generators of the congruence
ideals of f , g, and h (see Proposition 7.5).

1.6. Application to the trivial zero conjecture. Let Ei be a p-ordinary semi-stable elliptic curve over
the rationals Q for i = 1, 2, 3. We write L(E, s) for the degree eight motivic L-function for the triple product

(1.1) VE = H1
ét(E1/Q,Qp)⊗H1

ét(E2/Q,Qp)⊗H1
ét(E3/Q,Qp)

realized in the middle cohomology of the abelian variety E = E1 × E2 × E3 by the Künneth formula. Hence

L(H3
ét(E/Q,Qp), s) = L(E, s)

3∏
i=1

L(Ei, s− 1)2.

Our four-variable p-adic L-function yields a cyclotomic p-adic L-function

Lp(E) ∈ ZpJGal(Q∞/Q)K⊗Qp,

which roughly interpolates the algebraic part of central values L(E⊗χ,2)
Ω with a fixed period Ω for all finite

order characters χ of Gal(Q∞/Q). Define an analytic function Lp(E, s) := εs−2
cyc (Lp(E)) for s ∈ Zp (See

Proposition 8.2 for the precise statement). The Euler-like factor Ep(Fil+ VE(2)) can possibly vanish. In this
case the interpolation formula forces Lp(E, 2) to be zero. Such a zero is called a trivial zero. For example, a
trivial zero appears if all Ei have split multiplicative reduction at p (see Remark 8.3). In this particular case,
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the trivial zero conjecture predicts that the leading coefficient of Lp(E, s) is the product of the L -invariants for
Ei and the algebraic part of the complex central value L(E, 2) (cf. [Gre94b, (25), p. 166] and [Ben11, p. 1579]).
We recall that if E/Q is an elliptic curve with split multiplicative reduction at p, denote by Lp(E) =

logp qE
ordpqE

the L -invariant of E with Tate’s p-adic period qE attached to E. We construct several improved p-adic triple
product L-functions and apply the idea of Greenberg-Stevens [GS93] and [BDJ22] to establish the trivial zero
conjecture for the triple product of elliptic curves. The following result is a special case of our more general
result (see Theorem 8.4).

Theorem B. Suppose that E1 has split multiplicative reduction at p.
(1) If E2 and E3 are both split multiplicative at p, then Lp(E, s) has at least a triple zero at s = 2, and

lim
s→2

Lp(E, s)

(s− 2)3
= −p

3∏
i=1

Lp(Ei) ·
L(E, 2)

Ω
.

(2) If E2 and E3 are both good ordinary at p with ap(E2) = ap(E3), where

ap(Ei) = 1 + p−#Ei(Fp),

then Lp(E, s) has at least a double zero at s = 2 and

lim
s→2

Lp(E, s)

(s− 2)2
= (−pα−2

2 )(1− α−2
2 )2Lp(E1) · L(E, 2)

Ω
,

where α2 is the unit root of the Hecke polynomial X2 − ap(E2)X + p of E2.

In the case of the p-adic L-function Lp(E, s) of an elliptic curve E over Q the trivial zero arises if and only
if E is split multiplicative at p. An analogous formula for L′p(E, 1) was experimentally discovered in [MTT86]
and proved in [GS93], and for Hilbert modular forms in [Mok09], [Spi14] and [BDJ22]. Later Greenberg
formulated a more general trivial zero conjecture for ordinary motives [Gre94b], and Benois further extended
this conjecture to semistable representations [Ben11]. The non-vanishing of L -invariants L (Ei) is known
thanks to [BSDGP96]. Our result thus proves the first cases of the Greenberg-Benois trivial zero conjecture
where multiple trivial zeros are present and the Galois representation is not of GL(2)-type.

Remark 1.2. In this paper, we focus on the p-adic split triple product L-functions in the p-ordinary setting.
In a forthcoming work, we manage to remove the assumption (sf) and further extend our construction to
more general p-adic triple product L-functions, including the twisted triple product of modular forms of finite
slopes.

1.7. The construction of LF ,(a). We give a sketch of the construction of LF ,(a). Our method is the com-
bination of Garrett’s integral representation of the triple product L-function, an integrality result of crit-
ical L-values for triple products in [Miz90] and Hida’s p-adic Rankin-Selberg method. We begin with a
construction of the four-variable p-adic family of the pull-back of Siegel Eisenstein series. For each point
x = (Q1, Q2, Q3, P ) ∈ Xbal

I4
, we reorder the weights {kQ1

, kQ2
, kQ3

} = {kx, lx,mx} so that kx ≥ lx ≥ mx. For
each ν1, ν2 ∈ {0, 1}, we put

Xbal
(ν1,ν2) =

{
x ∈ Xbal

I4 | kx ≡ lx + ν1 ≡ mx + ν2 (mod 2)
}
.

Hence we have the partition of the weight space

Xbal
I4 =

∐
ν1,ν2∈{0,1}

Xbal
(ν1,ν2).

Let N = lcm(N1, N2, N3). When χ is a Dirichlet character, we write c(χ) for the exponent of the
p-part of its conductor. For each x = (Q1, Q2, Q3, P ) ∈ Xbal

(ν1,ν2) we shall construct a nearly holomor-

phic Siegel Eisenstein series E
(ν1,ν2)
x (Z, s) of degree three whose restriction to the three-fold product H3

1

of the upper half-plane H1 is a modular form of weight (kx, kx − ν1, kx − ν2) and level Γ1(Npn)3, where
n = max{1, c(εQ1), c(εQ2), c(εQ3), c(εP )}. We consider the pull-back given by

G(ν1,ν2)
x (z1, z2, z3) := eord Hol

(
λ
kx−lx−ν1

2
z2 λ

kx−mx−ν2
2

z3 E(ν1,ν2)
x

(
diag(z1, z2, z3), kP −

wQ + 1

2

))
,
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where λz := − 1
2π
√
−1

(Im z)2 ∂
∂z is the weight-lowering differential operator, Hol is the holomorphic projec-

tion and eord is Hida’s ordinary projector. Then we show that G(ν1,ν2)
x is a p-ordinary cusp form of weight

(kx, lx,mx) on H3
1 the product of three copies of the upper half plane.

Remark 1.3. The idea of using the weight-lowering differential operator is inspired by [Miz90] and is different
from the use of weight-raising differential operators in [BP09], where the authors applied differential operators
of Ibukiyama-type to study the algebraicity of critical values of the triple product L-functions in the balanced
case, and the p-adic interpolation is outlined without details.

Perhaps the most crucial and surprising point in our construction of p-adic families of Siegel Eisenstein series
is that the four classes of Siegel Eisenstein series E

(ν1,ν2)
x can be constructed so that the pull-backs G(ν1,ν2)

x

can be glued into a single four-variable Hida family of triple product modular form due to a miraculous effect
of the ordinary projector on the Fourier expansions of the pull-back of our Siegel Eisenstein series (See the
proof of Proposition 6.3). More precisely, let Sord(N,χ) denote the space of ordinary Λ-adic modular forms
of tame level N and character χ. In the following we associate to a ∈ Z/lZ and χ = (χ1, χ2, χ3) an explicit
triple product ordinary Λ-adic form

G(a)
χ ∈ Sord(N,χ1,ZpJX1K)⊗̂ZpS

ord(N,χ2,ZpJX2K)⊗̂ZpS
ord(N,χ3,ZpJX3K)⊗̂ZpZpJGal(Q∞/Q)K.

Let T+
3 be the set of positive definite half-integral matrices of size 3. The Siegel series attached to B ∈ T+

3

and a rational prime ` is defined by

b`(B, s) =
∑

z∈Sym3(Q`)/ Sym3(Z`)

ψ(− tr(Bz))ν[z]−s,

where ψ is an arbitrarily fixed additive character on Q` of order 0 and ν[z] is the product of denominators of
elementary divisors of z. There exists a polynomial FB,`(X) ∈ Z[X] such that

b`(B, s) = (1− `−s)(1− `2−2s)FB,`(`
−s).

Let z 7→ [z] denote the inclusion of group-like elements 1 +pZp ↪→ ZpJ1 + pZpK×. Fix a topological generator
u ∈ 1 +pZp and identify ZpJ1 + pZpK with ZpJXK, where X = [u]− 1. Define a character 〈·〉 : Z×p → 1 +pZp
by 〈x〉 = xω(x)−1 and write 〈x〉X = [〈x〉] = (1 + X)logp z/ logp u ∈ ZpJXK. Let Ξp be the set of symmetric
matrices of size 3 over Qp whose off-diagonal entries times 2 are p-units but whose diagonal entries belong to
pZp. Now the seven-variable formal power series is presented by

G(a)
χ =

∑
B=(bij)∈T+

3 ∩Ξp

Q(a)
B (X1, X2, X3, T ) · F (a)

B (X1, X2, X3, T ) · qb11
1 qb22

2 qb33
3 ,

where Q(a)
B ,F (a)

B ∈ ZpJX1, X2, X3, T K are given by

Q(a)
B (X1, X2, X3, T ) =

ωa(8b23b31b12) 〈8b23b31b12〉T
χ1(2b23)χ2(2b31)χ3(2b12) 〈2b23〉X1

〈2b31〉X2
〈2b12〉X3

,

F (a)
B (X1, X2, X3, T ) =

∏
`-pN

FB,`(〈`〉−2
T (ω−2aχ1χ2χ3)(`) 〈`〉X1

〈`〉X2
〈`〉X3

`−4).

By an explicit calculation of Fourier coefficients of G(ν1,ν2)
x , we prove in Proposition 6.8 that the specialization

G(a)
χ (x) at every x ∈ Xbal

I4
is the q-expansion of the cusp form G

(ν1,ν2)
x .

Now we apply the p-adic Rankin-Selberg method to define the p-adic L-function. Denote by T(N, I) the
I-algebras generated by Hecke operators on the space of ordinary Λ-adic cusp forms of level N . For each
? ∈ {f , g,h} we write 1? ∈ T(N, I)⊗I FracI for the idempotent corresponding to ?. We define

L̆F ,(a) := the first Fourier coefficient of 1f ⊗ 1g ⊗ 1h(TrN/N1
⊗TrN/N2

⊗TrN/N3
(G(a)
χ ) ∈ I3JT K,

where TrN/Ni : Sord(N,χi, I) → Sord(Ni, χi, I) is the usual trace map, and then the p-adic triple product
L-function is defined to be LF ,(a) = L̆F ,(a) · f

−1
χ,a,N1,N2,N3

, where fχ,a,N1,N2,N3
∈ I×4 is a fudge factor which is
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essentially a product of epsilon factors at prime-to-p finite places. The p-adic Rankin-Selberg method tells us
that the interpolation formula for the value L̆F ,(a)(x) at x ∈ Xbal

I4
is roughly given by

lim
s→kP−

wQ+1

2

〈fQ1
⊗ δ

kx−lx−ν1
2

lx
gQ2
⊗ δ

kx−mx−ν2
2

mx hQ3 ,E
(ν1,ν2)
x (s)〉

‖fQ1
‖2‖gQ2

‖2‖hQ3
‖2

(cf. Lemma 7.3), where δmk is the Maass-Shimura differential operator and 〈 , 〉 is the Petersson pairing on
H3

1 and ‖·‖ is the Petersson norm on H1. The series E
(ν1,ν2)
x (Z, s) is constructed from a factorizable section

of a certain family of induced representations. By means of the generalization of Garrett’s work, carried out
in [PSR87, Ike89] (see Lemma 7.1) the pairing can be unfolded and written as a product of L

(
s + 1

2 , πfQ1
×

πgQ2
× πhQ3

⊗ εPωa−kP
)
and the normalized local zeta integrals at primes dividing pN . It turns out that

these local zeta integrals are essentially given by the modified Euler factor Ep(Fil+ V(Q,P )) at p and the local
epsilon factors fχ,a,N1,N2,N3

at primes `|N . In both calculations the key ingredients are Lemma 2.1 and the
local functional equations for GL1 and GL2, by which we can generalize Proposition 4.2 of [GK92] without
brute force calculations (see Remark 3.3).

This paper is organized as follows. In the local part of this paper §2, §3 and §4, we prepare the local
ingredients in the construction of Siegel Eisenstein series E(ν1,ν2)

x (Z, s) and carry out the explicit computations
of degenerate Whittaker functions, which appear in the Fourier coefficients of E(ν1,ν2)

x (Z, s), and local zeta
integrals that appear in Garrett’s integral representation of triple product L-functions. The non-archimedean
case is treated in §2 and §3, and the archimedean case is carried out in §4. The global part of this paper
consists of §5, §6 and §7. After recalling basic materials in Hida theory in §5, we show that the Fourier
expansion of G(ν1,ν2)

x can be p-adically interpolated by the power series G(a)
χ in §6. We remark that the most

crucial ingredient in this section is Proposition 6.3 about the computation of Fourier coefficients of G(ν1,ν2)
x .

In §7, we put together the local computations in §2, 3, and 4 and prove the main interpolation formulae
in Theorem 7.5. Finally, in §8 we construct several improved p-adic L-functions in Lemmas 8.5 and 8.6 by
modifying the construction of four variable and three variable p-adic L-functions in §6 and [Hsi21] respectively,
and prove Theorem 8.4 the trivial zero conjecture for the triple product of elliptic curves in §8.4 and §8.5 by
the Greenberg-Stevens method.

Notation. The following notations will be used frequently throughout the paper. For an associative ring R
with identity element, we denote by R× the group of all its invertible elements, and by Mm,n(R) the module of
allm×nmatrices with entries in R. Put Mn(R) = Mn,n(R) and GLn(R) = Mn(R)× particularly when we view
the set as a ring. The identity and zero elements of the ring Mn(R) are denoted by 1n and 0n (when n needs to
be stressed) respectively. The transpose of a matrix x is denoted by xt. Let Symn(R) = {z ∈ Mn(R) | zt = z}
be the space of symmetric matrices of size n over R. For any set X we denote by IX the characteristic function
of X. When X is a finite set, we denote by ]X the number of elements in X. When X is a totally disconnected
locally compact topological space or a smooth real manifold, we write S(X) for the space of Schwartz-Bruhat
functions on X. If x is a real number, then we put dxe = max{i ∈ Z | i ≤ x}.

If R is a commutative ring and G = GL2(R), we denote by ρ the right translation of G on the space
of C-valued functions on G. Thus (ρ(g)f)(g′) = f(g′g). We write 1 : G → C for the constant function
1(g) = 1. For a function f : G → C and a character χ : R× → C×, let f ⊗ χ : G → C denote the function
f ⊗ χ(g) = f(g)χ(det g).

Measures. Let F be either a non-archimedean local field or F = R. We shall fix the normalization of the
Haar measures on some groups over F through the paper. If F is non-archimedean with o the ring of integers
of F , we normalize the Haar measures on F and F× so that vol(o,dx) = vol(o×,d×a) = 1. If F = R, then dx
denotes the usual Lebesgue measure on R and d×x = dx

|x| . Define the compact subgroups K of GL2(F ) and
K′ of SL2(F ) as follows: If F is non-archimedean, put

K = GL2(o), K′ = SL2(o).

If F = R, put
K = O(2,R), K′ = SO(2,R).
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Let dk and dk′ be the Haar measures on K and K′ which have total volume 1. Define the Haar measures on

PGL2(F ) and SL2(F ) by dg = dxd×y
|y| dk and dg′ = dxd×y

|y|2 dk′ for g =

(
y x
0 1

)
k and g′ =

(
y xy−1

0 y−1

)
k′ with

y ∈ F×, x ∈ F , k ∈ K and k ∈ K′.

2. Computation of the local zeta integral: the p-adic case

2.1. The local zeta integral. Let Tn be the subgroup of diagonal matrices in GLn, Un the subgroup of
upper triangular unipotent matrices in GLn, Zn the subgroup of scalar matrices in GLn and Bn = TnUn the
standard Borel subgroup of GLn. The symplectic similitude group of degree n is defined by

GSp2n = {g ∈ GL2n | gJngt = νn(g)Jn, νn(g) ∈ GL1}, Jn =

(
0 −1n
1n 0

)
.

We define the homomorphisms

m : GLn×GL1 → GSp2n, n, n− : Symn → GSp2n

by

m(A, ν) =

(
A 0
0 ν(At)−1

)
, n(z) =

(
1n z
0 1n

)
, n−(z) =

(
1n 0
z 1n

)
.

We write

m(A) = m(A, 1), d(ν) = m(1n, ν).

A maximal parabolic subgroup Pn =MnNn of GSp2n is defined by

Mn = m(GLn×GL1), Nn = n(Symn).

Define algebraic groups of U0 ⊂ U ⊂ H by

H = {(g1, g2, g3) ∈ (GL2)3 | det g1 = det g2 = det g3},
U = {(n(x1),n(x2),n(x3)) | x1, x2, x3 ∈ M1},
U0 = {(n(x1),n(x2),n(x3)) | x1 + x2 + x3 = 0}.

We define the embedding ι : H ↪→ GSp6 by

ι

((
a1 b1
c1 d1

)
,

(
a2 b2
c2 d2

)
,

(
a3 b3
c3 d3

))
=



a1 b1
a2 b2

a3 b3
c1 d1

c2 d2

c3 d3

 .

We identity Z = Z6 with the center of GSp6. Once and for all we choose a representative η for the open
orbit of H in P3\GSp6 (cf. [Ike89, Lemma 1.1] and Lemma 2.1 below). The dependence on the choice of η is
explicated in [Che21, §§4.1–4.2]. Let

η =



0 0 0 −1 0 0
0 1 0 0 0 0
0 0 1 0 0 0

1 1 1 0 0 0
0 0 0 −1 1 0
0 0 0 −1 0 1

 .

This particular choice is made in [GS93, p. 206], [Ich08, p. 293] and [Che21, p. 762].
Let F be a local field of characteristic zero. In the nonarchimedean case, F contains a ring o of integers

having a single prime ideal p, and the absolute value αF = | · | on F is normalized via |$| = q−1 for any
generator $ of p, where q denotes the order of the residue field o/p. Fix an additive character ψ on F which
is trivial on o but non-trivial on p−1. When F = R, we define ψ(x) = e2π

√
−1x for x ∈ R.
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We remind the readers that in this and the next sections χ and ω̂ stand for quasi-characters of F×, but on
the other hand, in the global setting §6.1 χ and ω̂ denote Dirichlet characters of p-power conductor, which we
sometimes view as finite order characters of Z×p (see §5.1 for our convention in the global setting).

Let K be a standard maximal compact subgroup of GSp6(F ). For quasi-characters ω̂, χ : F× → C× we let
I3(ω̂, χ) := Ind

GSp6(F )
P3

χ2ω̂ � χ−3ω̂−1 be the space of all right K-finite functions f on GSp6(F ) which satisfy

f(m(A, λ)n(z)g) = ω̂(λ−2 detA)χ(λ−3(detA)2)|λ−3(detA)2|f(g)

for A ∈ GL3(F ), λ ∈ F×, z ∈ Sym3(F ) and g ∈ GSp6(F ). The group GSp6(F ) acts on I3(ω̂, χ) by right
translation ρ3. It is important to note that for t = diag(a, d) ∈ T2

(2.1) f(ηι(tg1, tg2, tg3)) = ω̂(d)−1χ(ad−1)|ad−1|f(ηι(g1, g2, g3))

(cf. [GH93, (4.9.11)]). It is well worthy of notice that

(2.2) I3(ω̂, χ)⊗ µ ◦ ν3 = I3(ω̂µ−2, χµ).

We call a K-finite function (s, g) 7→ fs(g) on C×GSp6(F ) a holomorphic section of I3(ω̂, χαsF ) if fs(g) is
holomorphic in s for each g ∈ GSp6(F ) and fs ∈ I3(ω̂, χαsF ) for each s ∈ C. We associate to a non-degenerate
symmetric matrix B of size 3 and fs ∈ I3(ω̂, χαsF ) the degenerate Whittaker function

(2.3) WB(g, fs) =

∫
Sym3(F )

fs(J3n(z)g)ψ(− tr(Bz)) dz (g ∈ GSp6(F )),

where dz is the Haar measure on Symn(F ) self-dual with respect to the pairing ψ(tr(zw)). The integral
converges if Re s is sufficiently large and can be continued to an entire function. By definition, it is clear that

WB(n(z)g, fs) = ψ(tr(Bz))WB(g, fs).

This yields the degenerate Whittaker functional given by

WB : I3(ω̂, χαsF )→ C, WB(fs) :=WB(13, fs).

The study of the triple product L-function began with Garrett in [Gar87]. Piatetski-Shapiro and Rallis
modified this construction to give a twisted triple product L-function associated with a cuspidal automorphic
form on GL(2) over a cubic algebra in [PSR87]. Ikeda precisely described the poles of this L-function in
[Ike92]. When it is associated with holomorphic cusp forms, the algebraicity of its special values has been
deeply investigated in [Orl87, GH93, GK92, BP09] and so on. We will focus on the p-adic aspects in this
section.

Given an irreducible admissible infinite dimensional representation π of GL2(F ), we denote by W (π) the
Whittaker model of π with respect to ψ. Let π1, π2, π3 be a triplet of irreducible admissible infinite dimensional
representations of GL2(F ). We denote the central character of πi by ωi. Set ω̂ = ω1ω2ω3. We associate to a
holomorphic section fs of I(ω̂, χαsF ) and Whittaker functions Wi ∈ W (πi) the local zeta integral of Garrett,
Piatetski-Shapiro and Rallis (cf. [PSR87, (3-1), p.48])

(2.4) Z(W1,W2,W3, fs) =

∫
U0Z\H

W1(g1)W2(g2)W3(g3)fs(ηι(g1, g2, g3)) dg1dg′2dg′3,

where the Haar measure dg1dg′2dg′3 is obtained via Z\H ' PGL2(F )×SL2(F )×SL2(F ). It is proved in [PSR87,
Ike89] that Z(W1,W2,W3, fs) converges absolutely for Re s � 0 and admits meromorphic continuation to
s ∈ C and the functional equation. Let σi be the representation of the Weil-Deligne groupWF of F associated
to πi by the local Langlands correspondence. Then L

(
s+ 1

2 , π1× π2× π3⊗χ
)
:= L

(
s+ 1

2 , σ1⊗ σ2⊗ σ3⊗χ
)
is

precisely the GCD for the family of Z(W1,W2,W3, fs) associated to ‘good’ sections fs, provided that π1, π2, π3

arise as local components of cuspidal automorphic representations (see [Ike99, Ram00]).
Put T = {(t, t, t) ∈ H | t ∈ T2}. We define a map ι0 : H ↪→ GSp6 by

(2.5) ι0(g1, g2, g3) = ηι(g1, g2J1, g3J1).

As a preliminary step, we choose a coordinate system on an open dense subset of U0T\H (cf. (2.1)).
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Lemma 2.1. If (x1, u1, u2, u3, a2, a3) ∈ F 4 ⊕ F×2, then

ι0(n−(u1)n(x1),m(a2)n−(u2),m(a3)n−(u3)) =

(
A B
03 (At)−1

)
J3n(−z),

where

A =

1 a2u1 a3u1

0 a2 0
0 0 a3

 , B =

−u1 0 0
0 0 0
0 0 0

 , z =

−x1 a2 a3

a2 u2 + a2
2u1 a2a3u1

a3 a2a3u1 u3 + a2
3u1

 .

Proof. We can prove Lemma 2.1 by the matrix expression of ι0. �

2.2. The unramified case. From now on we assume that F is nonarchimedean until the end of §3. Denote
by ζ(s) = (1 − q−s)−1 the local zeta function for F . When πi is unramified, we write W 0

i ∈ W (πi) for the
unique Whittaker function which takes the value 1 on GL2(o). Assume that ω̂ and χ are unramified. Then
we define the holomorphic section f0

s (χ) of I3(ω̂, χαsF ) by the condition that f0
s (k, χ) = 1 for k ∈ GSp6(o).

Garrett has proved that

Z(W 0
1 ,W

0
2 ,W

0
3 , f

0
s (χ)) =

L
(
s+ 1

2 , π1 × π2 × π3 ⊗ χ
)

L(2s+ 2, χ2ω̂)L(4s+ 2, χ4ω̂2)
.

The reader who has interest in the proof of this formula can consult [PSR87, Theorem 3.1], which is better
suited for the local calculation.

We associate to a half-integral symmetric matrix B the series defined by

b(B, s) =
∑

z∈Sym3(F )/ Sym3(o)

ψ(− tr(Bz))ν[z]−s,

where ψ is an arbitrarily fixed additive character on F of order 0 and ν[z] = [zo3 + o3 : o3]. If detB 6= 0, then
there exists a polynomial FB(X) ∈ Z[X] such that

(2.6) b(B, s) = (1− q−s)(1− q2−2s)FB(q−s).

The unramified degenerate Whittaker function is a representation theoretic interpretation of the Siegel series.
When χ = ω̂ = 1, we have WB(f0

s (1)) = b(B, 2s+ 2) by [Shi97, Proposition 19.2, page 158]. Therefore

(2.7) WB(f0
s (χ)) =

FB(χ2ω̂($)q−2s−2)

L(2s+ 2, χ2ω̂)L(4s+ 2, χ4ω̂2)
.

2.3. The p-adic sections. Let St stand for the Steinberg representation of GL2(F ). For quasi-characters
µ, ν of F× the representation I(µ, ν) is realized on the space of functions f : GL2(F )→ C which satisfy

f

((
a b
0 d

)
g

)
= µ(a)ν(d)

∣∣∣a
d

∣∣∣1/2 f(g)

for a, d ∈ F×, b ∈ F and g ∈ GL2(F ), where GL2(F ) acts by right translation ρ. Hereafter we assume that πi
are not supercuspidal and are infinite dimensional. Then πi is a quotient of a principal series representation
I(µi, νi) with quasi-characters µi, νi. If µiν

−1
i 6= α−1

F , then πi ' I(µi, νi). If µiν
−1
i = α−1

F , then πi '
St⊗ µiα1/2

F . Given a character µ of o×, we define ϕµ ∈ S(F ) by

ϕµ(x) = µ(x)Io×(x).

We write c(µ) for the smallest integer n such that µ is trivial on o× ∩ (1 + pn). Define the open compact
subgroup K(m)

0 (pn) of GSp2m(F ) by

K
(m)
0 (pn) =

{(
a b
c d

)
∈ GSp2m(o)

∣∣∣∣ c ∈ Mm(pn)

}
.

Provided that n ≥ c(µ), we can define characters µ↑ and µ↓ of K(1)
0 (pn) by

µ↑
((

a b
c d

))
= µ(a), µ↓

((
a b
c d

))
= µ(d).(2.8)

Our construction of p-adic L-functions relies on an explicit construction of p-adic families of Siegel Eisenstein
series of degree three, and hence the main local problem is a choice of special sections in I3(ω̂, χ). We shall
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consider the following sections supported in the open cell. These sections have appeared in the study of poles
of an intertwining operator ([PSR87, Lemma 4.1]) and was used in the construction of p-adic families of Siegel
Eisenstein series on unitary groups ([HLS06, (3.3.4)]).

Definition 2.2 (sections supported in the open cell). Since J3N3J
−1
3 = n−(Sym3(F )) is the unipotent radical

of the parabolic subgroup opposite to P3, if p, p′ ∈ P3, u, u′ ∈ N3 and pJ3u = p′J3u
′, then p = p′ and u = u′.

Given a Schwartz function Φ ∈ S(Sym3(F )), we can therefore define a function fΦ(χ) : P3J3N3 → C by

fΦ(m(A, λ)uJ3n(z), χ) = ω̂(λ−2 detA)χ(λ−3(detA)2)|λ−3(detA)2|Φ(z)

for A ∈ GL3(F ), λ ∈ F×, u ∈ N3 and z ∈ Sym3(F ). Since P3J3N3 = P3J3P3 is the cell of the longest Weyl
element J3 in the Bruhat decomposition of GSp6(F ), we can extend fΦ(χ) by zero to a function on GSp6(F ),
which is an element of I3(ω̂, χ) (cf. [Car79, (B), p. 138]).

Remark 2.3. The family {fΦ(χ)} is stable under the action of P3 by definition. The group GL3(F ) × F×
acts on the space S(Sym3(F )) of functions on symmetric matrices of size 3 by

(r(A, λ)Φ)(z) = Φ(λA−1z(At)−1).

Since

ρ3(m(A, λ))fΦ(J3n(z), χ) = fΦ

((
λ(At)−1

A

)
J3n(λA−1z(At)−1), χ

)
for z ∈ Sym3(F ), we see that for A ∈ GL3(F ) and λ ∈ F×

ρ3(m(A, λ))fΦ(χ) = ω̂(λ(detA)−1)(χαF )(λ3(detA)−2)fr(A,λ)Φ(χ).

The element fΦ(χ) has a simple form of degenerate Whittaker coefficients (see (2.12) below), and

(2.9) fΦ(ι0(n−(u1)n(x1),m(a2)n−(u2),m(a3)n−(u3)), χ)

= ω̂(a2a3)χ(a2a3)2|a2a3|2Φ

 x1 −a2 −a3

−a2 −u2 − a2
2u1 −a2a3u1

−a3 −a2a3u1 −u3 − a2
3u1


by Lemma 2.1. We may assume that Φ ∈ S(Sym3(F )) is of the form

(2.10) Φ

u1 x3 x2

x3 u2 x1

x2 x1 u3

 =

3∏
i=1

φi(ui)ϕi(xi)

with φ1, φ2, φ3, ϕ1, ϕ2, ϕ3 ∈ S(F ). We define a special Bruhat-Schwartz function Φ ∈ S(Sym3(F )) by letting

φ1 = φ2 = φ3 = Îp, ϕ1 = ̂ϕχµ1ν2ν3 , ϕ2 = ̂ϕχν1µ2ν3 , ϕ3 = ̂ϕχν1ν2µ3 .

In what follows, we shall show that fΦ(χ) has an appropriate K-type (see Lemma 2.5 below) and a suitable
formula of the local zeta integral (see Proposition 2.7 below). Here we define the Fourier transform of a
Bruhat-Schwartz function Φ on the space of symmetric matrices of size m over F with respect to ψ by

Φ̂(w) =

∫
Symm(F )

Φ(z)ψ(tr(zw)) dz,

where we recall that dz is the self-dual Haar measure on Symm(F ).

Remark 2.4. The choice of ϕ1, ϕ2, ϕ3 should be related to the twisting operator defined in (1.12) of [BP06].

The choices of these functions are ad-hoc and the proof is mainly computational, so the reader is advised
to skip it on a first reading.

Lemma 2.5. If n ≥ max{1, c(χ), c(µi), c(νi) | i = 1, 2, 3}, then

ρ3(ι(g1, g2, g3))fΦ(χ) = fΦ(χ)

3∏
i=1

µ↑i (gi)
−1ν↓i (gi)

−1

for g1, g2, g3 ∈ K(1)
0 (p2n) with det g1 = det g2 = det g3.
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Proof. One can easily check that

ϕ̂µ ∈ S(p−n), ϕ̂µ(ax) = µ(a)−1ϕ̂µ(x), ϕ̂µ(x+ b) = ϕ̂µ(x)(2.11)

for a ∈ o×, b ∈ o and x ∈ F . Simply because φi = Ip−1 , we see that Φ(z + c) = Φ(z) for c ∈ Sym3(o), which
means that fΦ(χ) is fixed by the action of n(Sym3(o)). Put

χ1 = χµ1ν2ν3, χ2 = χν1µ2ν3, χ3 = χν1ν2µ3.

If ai, di ∈ o× and λ = a1d1 = a2d2 = a3d3, then

ρ3(ι(diag(a1, d1),diag(a2, d2),diag(a3, d3)))fΦ(χ) = ω̂(λ(a1a2a3)−1)χ(λ3(a1a2a3)−2)fr(A,λ)Φ(χ)

by Remark 2.3, where we put A = diag(a1, a2, a3). Since

(r(A, λ)Φ)

u1 x3 x2

x3 u2 x1

x2 x1 u3

 = Φ




λu1

a2
1

λx3

a1a2

λx2

a1a3

λx3

a1a2

λu2

a2
2

λx1

a2a3

λx2

a1a3

λx1

a2a3

λu3

a2
3


 ,

we have
r(A, λ)Φ = χ1(λ−1a2a3)χ2(λ−1a1a3)χ3(λ−1a1a2)Φ

by (2.11). Observe that

χ1(λ−1a2a3)χ2(λ−1a1a3)χ3(λ−1a1a2)

=χ(λ−3(a1a2a3)2) · (µ1ν2ν3)(λ−1a2a3)(ν1µ2ν3)(λ−1a1a3)(ν1ν2µ3)(λ−1a1a2)

=χ(λ−3(a1a2a3)2) · (ω̂ν1ν2ν3)(λ−1a1a2a3) · (µ1ν2ν3)(a−1
1 )(ν1µ2ν3)(a−1

2 )(ν1ν2µ3)(a−1
3 )

=χ(λ−3(a1a2a3)2) · ω̂(λ−1a1a2a3) · ν1(d−1
1 )ν2(d−1

2 )ν3(d−1
3 )µ1(a−1

1 )µ2(a−1
2 )µ3(a−1

3 ),

from which we conclude that

ρ3(ι(diag(a1, d1),diag(a2, d2),diag(a3, d3)))fΦ(χ) = fΦ(χ)

3∏
i=1

µi(ai)
−1νi(di)

−1.

Let w ∈ Sym3(p2n). If fΦ(gn−(w), χ) 6= 0, then since gn−(w) ∈ P3J3n(z) with z ∈ Sym3(p−n) and since

n(z)n−(−w) =

(
13 − zw 03

−w (13 − wz)−1

)
n((13 − zw)−1z),

we have g ∈ P3J3n(Sym3(p−n)). We see by the identity above that

fΦ(J3n(z)n−(w), χ) = fΦ(J3n((13 + zw)−1z), χ) = fΦ(J3n(z), χ)

for z ∈ Sym3(p−n) and w ∈ Sym3(p2n). We conclude that fΦ(χ) is fixed by right translation by n−(Sym3(p2n)).
The proof is complete by K(1)

0 (pm) = n(o)d(o×)m(o×)n−(pm). �

2.4. Degenerate Whittaker functions at p. Let Ξp be a subset of Sym3(F ) which consists of symmetric
matrices whose the diagonal entries belong to p and whose off-diagonal entries belong to 1

2o
×.

Proposition 2.6. Let B = (bij) ∈ Sym3(F ). Put yi = bjk whenever {i, j, k} = {1, 2, 3}. Then

WB(fΦ(χ)) = χ(8y1y2y3)

3∏
i=1

µi(2yi)Io×(2yi)Ip(bii)
∏

j∈{1,2,3}r{i}

νj(2yi).

In particular, WB(fΦ(χ)) 6= 0 if and only if B ∈ Ξp.

Proof. Observe that

WB(fΦ(χ)) =

∫
Sym3(F )

fΦ(J3n(z), χ)ψ(− tr(Bz)) dz = Φ̂(−B)(2.12)
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for any Φ ∈ S(Sym3(F )). We have

Φ̂

−
b11 y3 y2

y3 b22 y1

y2 y1 b33

 =

3∏
i=1

ϕ̂i(−2yi)φ̂i(−bii)

= ϕχµ1ν2ν3(2y1)ϕχν1µ2ν3(2y2)ϕχν1ν2µ3(2y3)

3∏
i=1

Ip(bii)

by definition. �

2.5. The p-adic zeta integral. We introduce some special Whittaker functions that will be used in the
p-adic zeta integral of Garrett, Piatetski-Shapiro and Rallis. Define the embedding t : F× → GL2(F ) by
t(a) = diag(a, 1). The Kirillov model of πi is given by K (πi) = {W ◦ t | W ∈ W (πi)}. The restriction map
◦t : W (πi)→ K (πi) is injective by [Bum97, Proposition 4.4.7]. Let Wνi ∈ W (πi) be the Whittaker function
uniquely characterized by

Wνi(t(a)) = νi(a)|a|1/2Io(a)

for a ∈ F×. This vector belongs to the ordinary line W (π)ord(νi) with respect to νi in the Whittaker model
introduced in [Hsi21, §2.5, Corollary 2.3]. Its connection with the classical p-ordinary elliptic modular forms
can be found in [Hsi21, Remark 2.5]. Moreover, Wνi corresponds to the section f†i ∈ I(µi, νi) supported in
the open cell (see (2.14) below). Fix a prime element $ of o. For each non-negative integer n we put

mn = m($n), tn = J−1
1 mn, W

(n)
i = πi(tn)Wνi .

Proposition 2.7. If n ≥ max{1, c(χ), c(µi), c(νi) | i = 1, 2, 3}, then

Z(W
(n)
1 ,W

(n)
2 ,W

(n)
3 , fΦ(χ)) = (1 + q−1)−3

3∏
j=1

(
βj
qαj

)n

× (χν1ν2ν3)(−1)γ

(
1

2
, π1 ⊗ χν2ν3,ψ

)−1 ∏
i=2,3

γ

(
1

2
, χν1νiµ5−i,ψ

)−1

,

where αi = µi($) and βi = νi($).

Proof. For a quasi-character χ we define Reχ as the unique real number σ such that χα−σF is unitary.
We associate to fi ∈ I(µi, νi) a function W (fi) ∈ W (πi) by

W (g, fi) =

∫
F

fi(J1n(u)g)ψ(−u) du = lim
k→∞

∫
p−k

fi(J1n(u)g)ψ(−u) du,

where g ∈ GL2(F ) is arbitrarily fixed. Here the limit stabilizes and the integral makes sense for any fi ∈ πi
(see [Bum97, p. 485]). The integralW factors through the quotient I(µi, νi) � St⊗µiα1/2

F when µiν
−1
i = α−1

F .
Put f ′i = ρ(J1)fi. Then

Z(W (f1),W (f2),W (f3), fΦ(χ)) =

∫
U0Z\H

W (g1, f1)W (g2, f
′
2)W (g3, f

′
3)fΦ(ι0(g1, g2, g3), χ) dg1dg′2dg′3

by the definition (2.5) of ι0. Observe that

W (g1, f1)W (g2, f
′
2)W (g3, f

′
3) =

∫
U0

W1(u0(g1, g2, g3); f ′2, f
′
3) du0,

where
W1(g1, g2, g3; f ′2, f

′
3) = W (g1, f1)f ′2(J1g2)f ′3(J1g3).

Substituting this expression, we are led to

Z(W (f1),W (f2),W (f3), fΦ(χ)) =

∫
Z\H

W1(g; f ′2, f
′
3) fΦ(ι0(g), χ) dg.

Define a function F on SL2(F ) by

F(g) =

∫
SL2(F )2

f ′2(J1g2)f ′3(J1g3)fΦ(ι0(g, g2, g3), χ) dg′2dg′3.
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Let T ′ = m(F×) be the diagonal torus of SL2(F ). Then

Z(W (f1),W (f2),W (f3), fΦ(χ)) =

∫
F×

d×a

∫
T ′\ SL2(F )

W (t(a)g, f1)

∫
SL2(F )2

f ′2(J1t(a)g2)f ′3(J1t(a)g3)fΦ(ι0(t(a)g, t(a)g2, t(a)g3), χ) dg′2dg′3dg′

=

∫
F×

∫
T ′\ SL2(F )

W (t(a)g, f1)χ(a)ν2(a)ν3(a)F(g) dg′d×a(2.13)

by (2.1). To justify the manipulations we show that the integral∫
F×

∫
SL2(o)

∫
F

|W (t(a)k, f1)χ(a)ν2(a)ν3(a)F(n(x)k)|dxdkd×a

is convergent at least for Reχ� 0 and our choice of test vectors. The integral∫
F×
|W (t(a)k, f1)χ(a)ν2(a)ν3(a)|d×a

is absolutely convergent. Recall that

t(a) =

(
a 0
0 1

)
, m(a) =

(
a 0
0 a−1

)
, n(x) =

(
1 x
0 1

)
, n−(u) =

(
1 0
u 1

)
.

We frequently use the integration formula∫
SL2(F )

h(g) dg′ =
ζ(2)

ζ(1)

∫
F

∫
F

∫
F×

h(m(a)n−(u)n(x)) d×adudx

for an integrable function h on SL2(F ) (cf. [MV10, 3.1.6, p. 206]). Observe that

F(g) =
ζ(2)2

ζ(1)2

∫
F 2

dx2dx3 f
′
2(J1n(x2))f ′3(J1n(x3))

∫
F×2

∏
i=2,3

(νiµ
−1
i )(ai)

d×ai
|ai|

×
∫
F 2

fΦ(ι0(g,m(a2)n−(u2)n(x2),m(a3)n−(u3)n(x3)), χ) du2du3.

Let f†i ∈ I(µi, νi) be such that f†i (g) = 0 unless g ∈ B2J1U2 and such that f†i (J1n(x)) = Io(x) for x ∈ F
(cf. Definition 2.2 and Remark 2.3). One can easily check

Wνi = W (f†i ), W
(n)
i = W (ρ(tn)f†i ).(2.14)

Now we let fi = ρ(tn)f†i . Since mn = J1tn = diag($n, $−n), f ′i = ρ(mn)f†i ∈ I(µi, νi). Observe that

f ′i(J1n(x)) = f†i (J1mnn(x$−2n)) = βni α
−n
i qnIp2n(x).

Lemma 2.5 shows that if Φ = Φ or n is sufficiently large, then

ρ3(ι(12,n(x2),n(x3))J3)fΦ(χ) = ρ3(J3)fΦ(χ) (x2, x3 ∈ p2n).

It follows that F(g) equals the product of f ′2(J1)f ′3(J1)
q4n(1+q−1)2 and∫

F×2⊕F 2

fΦ(ι0(g,m(a2)n−(u2),m(a3)n−(u3)), χ)
∏
i=2,3

νi(ai)d
×ai

µi(ai)|ai|
dui.

In particular, F(n−(u)n(x)) equals the product of f ′2(J1)f ′3(J1)
q4n(1+q−1)2 and

∫
F×2⊕F 2

Φ

 x −a2 −a3

−a2 −u2 −a2a3u
−a3 −a2a3u −u3

 ∏
i=2,3

(ω̂χ2νiµ
−1
i )(ai)|ai|d×aidui

=

∫
F×2⊕F 2

ϕ1(−a2a3u)ϕ2(−a2)ϕ3(−a3)φ1(x)φ3(−u2)φ2(−u3)
∏
i=2,3

(ω̂χ2νiµ
−1
i )(ai)|ai|d×aidui

by (2.9) and (2.10). Its integral over x, u ∈ F converges absolutely if Reχ is large.
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Recall the functional equations

γ

(
1

2
, π1 ⊗ χ,ψ

)∫
F×

W1(t(a)g)χ(a)d×a =

∫
F×

W1(t(a)J−1
1 g)(χω1)−1(a)d×a,

γ(s, χ,ψ)

∫
F×

ϕ(a)χ(a)|a|s d×a =

∫
F×

ϕ̂(a)χ(a)−1|a|1−s d×a(2.15)

for W1 ∈ W (π1) and ϕ ∈ S(F ) (see [Bum97, Theorem 4.7.5, Proposition 3.1.5]). It follows from (2.13) that

γ

(
1

2
, π1 ⊗ χν2ν3,ψ

)
Z(W

(n)
1 ,W

(n)
2 ,W

(n)
3 , fΦ(χ))

=

∫
F×

∫
T ′\ SL2(F )

W
(n)
1 (t(a)J−1

1 g)(χν2ν3ω1)(a)−1F(g) dg′d×a

=

∫
F×

∫
F

W
(n)
1 (t(a)J−1

1 n(x))(χν2ν3ω1)(a)−1Fψ(a, x) dxd×a,(2.16)

where

Fψ(a, x) = (1 + q−1)−1

∫
F

F(n−(u)n(x))ψ(−au) du.

We have seen that

q4n(1 + q−1)3

f ′2(J1)f ′3(J1)
Fψ(a, x) =

∫
F×2

ω̂(a2a3)χ(a2a3)2|a2a3|2ϕ3(−a2)ϕ2(−a3)

×
∫
F

ϕ1(−a2a3u)ψ(au)duφ1(x)
∏
i=2,3

νi(ai)d
×ai

µi(ai)|ai|

∫
F

φi(ui) dui

=φ1(x)

∫
F×2

ϕ̂1

(
a

a2a3

) ∏
i=2,3

φ̂i(0)(ω̂χ2νiµ
−1
i )(ai)ϕ5−i(−ai) d×ai.

If xu 6= −1, then

J1n(x)n−(u) = m((1 + ux)−1)n(−(1 + xu)u)J1n((1 + xu)−1x),

which implies that

ρ(n−(u))f†1 = f†1 , π1(n−(u))Wν1
= Wν1

for u ∈ pn. If φ1(x) 6= 0, then since x ∈ p−1,

W
(n)
1 (t(a)J1n(x)) = Wν1

(t(a)mnn
−(−$2nx)) = q−nβn1 α

−n
1 ν1(a)|a|1/2Io(a$2n).

We conclude by (2.16) that

γ

(
1

2
, π1 ⊗ χν2ν3,ψ

)
Z(W

(n)
1 ,W

(n)
2 ,W

(n)
3 , fΦ(χ))

=

∫
F×

∫
F

W
(n)
1 (t(a)J−1

1 n(x))(χν2ν3ω1)(a)−1 f
′
2(J1)f ′3(J1)

q4n(1 + q−1)3
Fψ(a, x) dxd×a

=

∫
F×

W
(n)
1 (t(a)J−1

1 )(χν2ν3ω1)(a)−1 f
′
2(J1)f ′3(J1)

q4n(1 + q−1)3

∫
F

Fψ(a, x) dxd×a

=
f ′2(J1)f ′3(J1)

q4n(1 + q−1)3
φ̂1(0)φ̂2(0)φ̂3(0)

×
∫
F×3

W
(n)
1 (t(a)J−1

1 )

(χν2ν3ω1)(a)
ϕ̂1

(
a

a2a3

)
d×a

∏
i=2,3

(ω̂χ2νiµ
−1
i )(ai)ϕ5−i(−ai) d×ai.
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The last integral is equal to

ω̂(−1)

∫
F×3

W
(n)
1 (t(aa2a3)J1)

(χν2ν3ω1)(a)
ϕ̂1(a) d×a

∏
i=2,3

(χνiµ5−i)(ai)ϕ5−i(ai) d×ai

=ω̂(−1)W
(n)
1 (J1)

∫
F×3

ν1(aa2a3)

(χν2ν3ω1)(a)
|aa2a3|1/2Io(aa1a2$

2n)ϕ̂1(a) d×a
∏
i=2,3

(χνiµ5−i)(ai)ϕ5−i(ai) d×ai

=ω̂(−1)W
(n)
1 (J1)

∫
F×3

|a|1/2ϕ̂1(a)

(χµ1ν2ν3)(a)
Io(aa1a2$

2n) d×a
∏
i=2,3

ϕ5−i(ai)(χν1νiµ5−i)(ai)|ai|1/2 d×ai.

Now we let φ1 = φ2 = φ3 = Îp, ϕ1 = ̂ϕχµ1ν2ν3
, ϕ2 = ̂ϕχν1µ2ν3

and ϕ3 = ̂ϕχν1ν2µ3
. Since if ϕ5−i(ai) 6= 0,

then ai ∈ p−n, the integral above coincides with the product

(χµ1ν2ν3)(−1)
∏
i=2,3

Z(ϕ5−i, χν1νiµ5−iα
1/2
F ).

The proof is complete by f ′i(J1) = βni α
−n
i qn, W (n)

1 (J1) = βn1 α
−n
1 q−n and the functional equation (2.15). �

We specify φi, ϕi at the final stage of the proof of Proposition 2.7. For all Φ ∈ S(Sym3(F )) the computation
is valid if n is sufficiently large. We record the following formula.

Corollary 2.8. For arbitrarily chosen φi, ϕi ∈ S(F ), if ` is sufficiently large, then

γ

(
1

2
, π1 ⊗ χν2ν3,ψ

)
γ

(
1

2
, χν1ν2µ3,ψ

)
γ

(
1

2
, χν1µ2ν3,ψ

)
Z(W

(`)
1 ,W

(`)
2 ,W

(`)
3 , fΦ(χ))

=ω̂(−1)

∏3
j=1(q−1α−1

j βj)
`

(1 + q−1)3
φ̂1(0)φ̂2(0)φ̂3(0)Z(ϕ̂1, (χµ1ν2ν3)−1α

1/2
F )

∏
i=2,3

Z(ϕ̂5−i, (χν1νiµ5−i)
−1α

1/2
F ).

2.6. Restatements. We rewrite Propositions 2.7 and 2.6 in a form which is more convenient for our later
application. Suppose that πi is the irreducible subrepresentation of I(µi, νi) with µi unramified. Thus the
contragredient π∨i ' πi⊗ω

−1
i is the irreducible quotient of I(µ−1

i , ν−1
i ) and ωi = µiνi coincides with νi on o×.

Let W̆i := Wν−1
i
∈ W (π∨i ). By definition

W̆i(t(a)) = νi(a)−1|a|1/2Io(a).

Definition 2.9. We associate to the quadruplet of characters of o×

D = (χ, ω1, ω2, ω3)

a holomorphic section fD,s = fΦD (χω̂αsF ) of I3(ω̂−1, χω̂αsF ) by

ΦD

u1 x3 x2

x3 u2 x1

x2 x1 u3

 =

3∏
i=1

Îp(ui)ϕ̂χωi(xi).

For each quadruplet (χ0, χ1, χ2, χ3) of characters of o×, valued in a commutative ring R we set

(2.17) QB(χ0, χ1, χ2, χ3) := χ0(8b12b23b13) · χ1(2b23)χ2(2b13)χ3(2b12)IΞp
(B).

Given a section fs of I3(ω̂−1, χω̂αsF ), we are interested in the quantity

(2.18) Z∗p(fs) =
Z(ρ(tn)W̆1, ρ(tn)W̆2, ρ(tn)W̆3, fs)

L
(
s+ 1

2 , π1 × π2 × π3 ⊗ χ
) 3∏

i=1

ζ(1)

ζ(2)

(
ωi($)q

µi($)2

)n
.

Proposition 2.10. Notations and assumptions being as above, we have

ρ3(ι(g1, g2, g3))fD,s = fD,s

3∏
i=1

ω↓i (gi), g1, g2, g3 ∈ K(1)
0 (p2n)
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if det g1 = det g2 = det g3 and n ≥ max{1, c(χ), c(ω1), c(ω2), c(ω3)}. Moreover,

WB(fD,s) = QB(D), Z∗p(fD,s) = χ(−1)Ep

(
s+

1

2
, π1 × π2 × π3 ⊗ χ

)
,

where

Ep(s, π1 × π2 × π3 ⊗ χ)−1 =L(s, π1 × π2 × π3 ⊗ χ)γ(s, π1 ⊗ χµ2µ3,ψ)
∏
i=2,3

γ(s, χµ1µiν5−i,ψ).

Proof. Since ωi coincides with νi on o×, we apply Proposition 2.6 and get the formula for WB(fD,s) by
replacing πi, ωi, µi, νi, χ by π∨i , ω

−1
i , µ−1

i , ν−1
i , χω̂, respectively. Proposition 2.7 applied to Wν−1

i
= W̆i and

I3(ω̂−1, χω̂) gives

Z(ρ(tn)W̆1, ρ(tn)W̆2, ρ(tn)W̆3, fD,s) = (1 + q−1)−3
3∏
i=1

(
νi($)−1

qµi($)−1

)n
× χ(−1)γ

(
s+

1

2
, π∨1 ⊗ (χω̂)ν−1

2 ν−1
3 ,ψ

)−1 ∏
i=2,3

γ

(
s+

1

2
, (χω̂)ν−1

1 ν−1
i µ−1

5−i,ψ

)−1

,

from which the formula for Z∗p(fD,s) readily follows. �

For later use we rewrite Corollary 2.8 in the following way:

Corollary 2.11. For arbitrarily chosen φi, ϕi ∈ S(F ), if n is sufficiently large, then

Z∗p(fΦ(χ)) =ω̂(−1)Ep

(
1

2
, π1 × π2 × π3 ⊗ χ

)
× φ̂1(0)φ̂2(0)φ̂3(0)Z(ϕ̂1, (χν1µ2µ3)−1α

1/2
F )

∏
i=2,3

Z(ϕ̂5−i, (χµ1µiν5−i)
−1α

1/2
F ).

We will use the following lemma to achieve the functional equation of the p-adic L-function in §7.7.

Lemma 2.12. Put χ̆ = χ−1ω̂−1. Then

Ep(1− s, π1 × π2 × π3 ⊗ χ̆) = ω̂(−1)Ep(s, π1 × π2 × π3 ⊗ χ)ε(s, π1 × π2 × π3 ⊗ χ,ψ).

Proof. Since πi ⊗ ω−1
i ' π∨i , we get

Ep(s, π1 × π2 × π3 ⊗ χ̆)−1 =L(s, π∨1 × π∨2 × π∨3 ⊗ χ)γ(s, π∨1 ⊗ χν2ν3,ψ)
∏
i=2,3

γ(s, χν1νiµ5−i,ψ),

where πi ' I(µi, νi). By definition we arrive at

ε(s, π1 × π2 × π3 ⊗ χ,ψ)L(s, π1 × π2 × π3 ⊗ χ)−1Ep (1− s, π1 × π2 × π3 ⊗ χ̆)
−1

=γ(s, π1 × π2 × π3 ⊗ χ,ψ)γ(1− s, π∨1 ⊗ χµ2µ3,ψ)
∏
i=2,3

γ(1− s, χµ1µiν5−i,ψ).

The statement can now be deduced from multiplicativity and the functional equation of gamma factors. �

3. Computation of the local zeta integral: the ramified case

Recall that St denotes the Steinberg representation of GL2(F ). We deal with two types of representa-
tions πi of GL2(F ): either (i) an irreducible unramified principal series representation or (ii) the Steinberg
representation twisted by an unramified character. Since

(3.1) Z(W1 ⊗ χ1,W2 ⊗ χ2,W3 ⊗ χ3, f) = Z(W1,W2,W3, f ⊗ (χ1χ2χ3) ◦ ν3)

for characters χ1, χ2, χ3 of F×, where

(Wi ⊗ χi)(gi) = Wi(gi)χi(det gi), (f ⊗ χ ◦ ν3)(g) = f(g)χ(ν3(g))

for g1, g2, g3 ∈ GL2(F ) and g ∈ GSp6(F ), there is no harm in assuming that πi ' I(α−tiF ,αtiF ) with ti ∈ C in
Case (i) or πi ' St in Case (ii). When πi ' I(α−tiF ,αtiF ), we denote the unique Whittaker function which takes
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the value 1 on GL2(o) by W 0
i ∈ W (πi) and let W±i ∈ W (πi) be the unique Whittaker function characterized

by
W±i (t(a)) = |a|(±2ti+1)/2Io(a)

for a ∈ F×. When πi ' St, we define W+
i ∈ W (St) by

W+
i (t(a)) = |a|Io(a).

We set ti = 1
2 in Case (ii). Then πi is a quotient of I(α−tiF ,αtiF ) in both cases. We define f†i ∈ I(α−tiF ,αtiF ) as

in the proof of Proposition 2.7. Recall that W+
i = W (f†i ). Put

η1 =

(
0 −1
$ 0

)
, W±i = πi(η1)W±i , W0

i = πi(η1)W 0
i .

Lemma 3.1. If πi is an irreducible unramified principal series, then

W 0
i = q1/2W

+
i −W

−
i

q−ti − qti
.

Proof. Since the ordinary vector W±i is obtained as the stabilization of the spherical vector W 0
i with

respect to q(∓2ti+1)/2, we get the relation W±i = W 0
i − q−(∓2ti+1)/2W0

i (see §3.2 of [CH18]). The stated
identity now follows in view of πi(η1)W0

i = W 0
i . �

Fix an unramified character χ = αsF of F×. We will abbreviate I3(χ) = I3(1, χ). We consider the section

fΦ0(χ) ∈ I3(χ), Φ0 = ISym3(o).

By the Iwahori decomposition of K(3)
0 (p)

P3J3n(Sym3(o)) = P3J3K
(3)
0 (p) = P3K

(3)
0 (p)J3K

(3)
0 (p).

The restriction of the section fΦ0(χ) to GSp6(o) is the characteristic function of K(3)
0 (p)J3K

(3)
0 (p). In partic-

ular,
ρ3(k)fΦ0(χ) = fΦ0(χ)

for k ∈ K(3)
0 (p) (cf. Lemma 2.5).

Lemma 3.2. Assume that π1 ' St. Then

Z(W+
1 ,W

+
2 ,W

+
3 , fΦ0(χ)) = − qs−2

(1 + q−1)3
ζ(s+ 1 + t2 + t3)

∏
i=2,3

ζ(s+ 1 + ti − t5−i).

Remark 3.3. When π1, π2, π3 are discrete series of PGL2(F ) of level p, Gross and Kudla [GK92] constructed
a K(3)

0 (p)-fixed section Φ\(s) ∈ I3(1, χ) with nice properties and showed that Z(W+
1 ,W

+
2 ,W

+
3 ,Φ

\(s)) equals
L
(
s + 1

2 , π1 × π2 × π3) times a normalizing factor. The section Φ\(s), which depends on the sign ε
(

1
2 , π1 ×

π2 × π3,ψ
)
(cf. Remark 3.5 below), is different from our choice fΦ0(χ). However, Lemma 3.2 is compatible

with their computation. Let h0(χ) ∈ I3(χ) be the function whose restriction to GSp6(o) is the characteristic
function of K(3)

0 (p). Put η3 = ι(η1, η1, η1). Then

η3K
(3)
0 (p)η−1

3 = K
(3)
0 (p), fΦ0(χ) = q3+3sρ3(η3)h0(χ)

by Lemma 3.1 of [GK92]. We obtain

Z(W+
1 ,W

+
2 ,W

+
3 , fΦ0(χ)) =q3+3sZ(W+

1 ,W
+
2 ,W

+
3 , h

0(χ)).

When π1 ' π2 ' π3 ' St, Proposition 4.2 of [GK92] gives

Z(W+
1 ,W

+
2 ,W

+
3 , h

0(χ)) = −(q + 1)−3q−2s−2L

(
s+

1

2
,St× St× St

)
.
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Proof. Applying (2.13) with χ = αsF , µi = α−tiF , νi = αtiF , fi = ρ(η1)f†i and Φ = Φ0, we have

Z(W+
1 ,W

+
2 ,W

+
3 , fΦ0(χ)) =

∫
F×

∫
T ′\ SL2(F )

W+
1 (t(a)g)|a|s+t2+t3F(g) dg′d×a.

Let f ′i = ρ(J1)fi = ρ(t($))f†i . Since

f ′i(J1n(x)) = f†i (J1t($)n(x/$)) = q(1−2ti)/2Ip(x),

we get

F(g) = (1 + q−1)−2

∫
F 2

dx2dx3 f
′
2(J1n(x2))f ′3(J1n(x3))

∫
F×2

∏
i=2,3

|ai|2ti
d×ai
|ai|

×
∫
F 2

fΦ0(ι0(g,m(a2)n−(u2)n(x2),m(a3)n−(u3)n(x3)), χ) du2du3

=

∫
F×2⊕F 2

fΦ0(ι0(g,m(a2)n−(u2),m(a3)n−(u3)), χ)

∏
i=2,3 |ai|2ti−1d×aidui

q1+t2+t3(1 + q−1)2
.

In view of (2.9)

F(n−(u)n(x)) =

∫
F×2⊕F 2

Φ0

 x −a2 −a3

−a2 −u2 −a2a3u
−a3 −a2a3u −u3

 ∏i=2,3 |ai|1+2s+2tid×aidui

q1+t2+t3(1 + q−1)2

= q−1−t2−t3(1 + q−1)−2Io(x)

∫
o2

Io(a2a3u)
∏
i=2,3

|ai|1+2s+2tid×ai.

Owing to (2.16) we arrive at

γ

(
s+

1

2
, π1 ⊗αt2+t3

F ,ψ

)
Z(W+

1 ,W
+
2 ,W

+
3 , fΦ0(χ))

=

∫
F×

∫
F

W+
1 (t(a)J−1

1 n(x))|a|−s−t2−t3Fψ(a, x) dxd×a,

where

Fψ(a, x) = (1 + q−1)−1

∫
F

F(n−(u)n(x))ψ(−au) du

= q−1−t2−t3(1 + q−1)−3Io(x)

∫
o2

Io
(

a

a2a3

) ∏
i=2,3

|ai|2s+2tid×ai.

We conclude that

q1+t2+t3(1 + q−1)3γ

(
s+

1

2
, π1 ⊗αt2+t3

F ,ψ

)
Z(W+

1 ,W
+
2 ,W

+
3 , fΦ0(χ))

=

∫
F×

∫
F

dxd×a
W+

1 (t(a)J−1
1 n(x))

|a|s+t2+t3
Io(x)

∫
o2

Io
(

a

a2a3

) ∏
i=2,3

|ai|2s+2tid×ai

=

∫
F×

d×a
W+

1 (t(a2a3a)J−1
1 )

|a2a3a|s+t2+t3

∫
o2

Io(a)
∏
i=2,3

|ai|2s+2tid×ai

=

∫
o

d×a
W+

1 (t(a2a3a$))

|a|s+t2+t3

∏
i=2,3

∫
o

|ai|s+ti−t5−id×ai

=
ζ
(

1
2 − s+ t1 − t2 − t3

)
q(2t1+1)/2

∏
i=2,3

ζ

(
s+

1

2
+ t1 + ti − t5−i

)
.

Assume that π1 ' St. Then t1 = 1
2 and

γ

(
s+

1

2
, π1 ⊗αt2+t3

F ,ψ

)
= −q−s−t2−t3 ζ(1− s− t2 − t3)

ζ(s+ 1 + t2 + t3)
,
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from which we complete our proof. �

Proposition 3.4. Let πi be either an unramified principal series representation or the Steinberg representation
twisted by an unramified character. Set Wi = W 0

i in the former case and Wi = W+
i in the latter case. Put

W̆i = Wi ⊗ ω
−1
i . If not all πi are principal series, then for an unramified character χ of F×

Z(W1,W2,W3, fΦ0(χ)) = Z(W̆1, W̆2, W̆3, fΦ0(χω̂))

= −(ω̂2χ4)($)q(1 + q)−3 L
(

1
2 , π1 × π2 × π3 ⊗ χ

)
ε
(

1
2 , π1 × π2 × π3 ⊗ χ,ψ

) .
Remark 3.5. If π1 and π2 are irreducible unramified principal series representations, then

L(s, π1 × π2 × St) = L

(
s+

1

2
, π1 × π2

)
, ε(s, π1 × π2 × St,ψ) = q−4s+2ω1($)2ω2($)2,

L(s, π1 × St× St) = L(s, π1)L(s+ 1, π1), ε(s, π1 × St× St,ψ) = q−4s+2ω1($)2,

L(s,St× St× St) = ζ

(
s+

3

2

)
ζ

(
s+

1

2

)2

, ε(s,St× St× St,ψ) = −q−(10s−5)/2.

Proof. In view of [Ike89, Lemma 3.1] and (3.1) we may assume that π1 ' St and πi is a quotient of
I(α−tiF ,αtiF ) for i = 2, 3. If all πi are discrete series representations, then since W+

1 = −W1, the result follows
from Lemma 3.2. Let χ = αsF and π3 ' I(α−t3F ,αt3F ). Lemma 3.2 gives

Z(W+
1 ,W

+
2 ,W

±
3 , fΦ0(χ)) =

qs−2

(1 + q−1)3
L(s+ 1 + t2, π3)ζ(s+ 1− t2 ± t3).

Thanks to Lemma 3.1 we obtain

Z(W+
1 ,W

+
2 ,W

0
3 , fΦ0(χ))

qs−2L(s+ 1 + t2, π3)
= q1/2 ζ(s+ 1− t2 + t3)− ζ(s+ 1− t2 − t3)

(1 + q−1)3(q−t3 − qt3)

= (1 + q−1)−3q1/2q−s−1+t2L(s+ 1− t2, π3).

If π2 ' I(α−t2F ,αt2F ), then

Z(W+
1 ,W

+
2 ,W

0
3 , fΦ0(χ)) = (1 + q−1)−3q(2t2−5)/2L(s+ 1, π2 × π3),

and so again by Lemma 3.1,

Z(W+
1 ,W

0
2 ,W

0
3 , fΦ0(χ)) = (1 + q−1)−3L(s+ 1, π2 × π3)

qt2−2 − q−t2−2

q−t2 − qt2
= −(1 + q−1)−3q−2L(s+ 1, π2 × π3).

If π2 ' St, we obtain the claimed result by letting t2 = 1
2 . �

4. Computation of the local zeta integral: the archimedean case

4.1. The archimedean sections. We define the sign character sgn : R× → {±1} by sgn(x) = x
|x| . Let

Sym+
n (R) denote the set of positive definite symmetric matrices of rank n. The Siegel upper half-space Hn

of degree n consists of complex symmetric matrices of size n with positive definite imaginary part. The Lie
group GSp+

2n(R) = {g ∈ GSp2n(R) | νn(g) > 0} acts on the space Hn by g ·Z = (AZ +B)(CZ +D)−1, where

Z ∈ Hn and g =

(
A B
C D

)
with matrices A,B,C,D of size n. Let C∞(Hn) be the space of C-valued smooth

functions on the upper half complex plane Hn. For an integer k and f ∈ C∞(Hn) we define

f |kg(Z) = f(g · Z)J(g, Z)−k, J(g, Z) = νn(g)−n/2 det(CZ +D).(4.1)

Put i =
√
−11n. We shall identify the compact unitary group U(n) = {u ∈ GLn(C) | ūtu = 1n} with the

stabilizer {g ∈ Sp2n(R) | g · i = i} of i via the map g 7→ J(g, i).
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We recall special functions Hij on U(3) introduced in [Ike98, §1] for 1 ≤ i, j ≤ 3. For u ∈ U(3), we define
Hij(u) to be the (i, j)-entry of the matrix utu. By definition, Hij is a function on O(3)\U(3), and hence we
can extend it to a unique function on GSp6(R) such that

Hij(n(z)m(A, ν)u) = Hij(u) (z ∈ Sym3(R), A ∈ GL3(R), ν ∈ R×, u ∈ U(3)).

A parity type is a triplet λ = (λ1, λ2, λ3) of integers which belongs to one of the following triplets

λ ∈ {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 2)} .

Note that λ3 = λ1 + λ2. Put

Hλ :=


1 if λ = (0, 0, 0),

H23 if λ = (0, 1, 1),

H12 if λ = (1, 0, 1),

H12H23 if λ = (1, 1, 2).

Let χ∞ be a character of R×. For each integer k and parity type λ, we define the archimedean section
f

[k,λ]
∞,s ∈ I3(sgnk−λ1 , χ∞ sgnk−λ1 αsR) by

f [k,λ]
s,∞ (g) := Hλ(g)χ∞(ν3(g)) · J(g, i)−k+λ1 |J(g, i)|k−λ1−2s−2

.

One verifies that

Hij(gι(κθ1 , κθ2 , κθ3)) = e
√
−1(θi+θj)Hij(g), κθ =

(
cos θ sin θ
− sin θ cos θ

)
,

so we have

(4.2) f [k,λ]
s,∞ (gι(κθ1 , κθ2 , κθ3)) = f [k,λ]

s,∞ (g)e
√
−1{kθ1+(k−λ2)θ2+(k−λ3)θ3}.

Namely the SO2(R)3-type of f [k,λ]
s,∞ is (k, k − λ2, k − λ3).

Remark 4.1. Ikeda introduced a spherical function Hµ on O(3)\U(3) with highest weight µ in [Ike98] and
computed the zeta integral of the holomorphic section associated to a spherical function Hµ|κ of weight
κ = (k, l,m) which he constructed by applying differential operators on U(3) to Hµ. However, it seems difficult
to compute the Fourier coefficients of the Eisenstein series associated to this section. On the other hand, we
start with the holomorphic section f [k,λ]

s,∞ above. We will compute the associated degenerate Whittaker function
in §§4.2–4.4, which shows that the pull-back of the associated Eisenstein series is nearly holomorphic. Lemma
4.10 below computes the zeta integral (4.11). Inspired by [Miz90], we construct a triple product of nearly
homomorphic modular forms of weight κ by applying weight lowering operators to this pull-back. Proposition
6.3 below computes the Fourier expansion of the ordinary projection of its holomorphic projection.

4.2. Archimedean degenerate Whittaker functions. Recall that in (2.3), the degenerate Whittaker func-
tion associated with the section f [k,λ]

s,∞ and B ∈ Sym3(R) is given by

WB(g, f [k,λ]
s,∞ ) =

∫
Sym3(R)

f [k,λ]
s,∞ (J3n(x)g)e−2π

√
−1 tr(Bx) dx (g ∈ GSp6(R)).

The Whittaker function WB(g, f
[k,λ]
s,∞ ) will appear later as the archimedean contribution in the Fourier expan-

sion of Siegel Eisenstein series (cf. Proposition 6.1). In this subsection, we give an expression of the value
WB(m(A), f

[k,λ]
s,∞ ) for A ∈ GL3(R) in terms of the derivatives of the confluent hypergeometric functions. For

a positive integer m we put

Γm(s) = πm(m−1)/4
m−1∏
j=0

Γ

(
s− j

2

)
.

Following [Shi82, (3.6)], for z ∈ Sym+
3 (R) and (α, β) ∈ C2 we put

ω(z;α, β) :=
det(z)β

Γ3(β)

∫
Sym+

3 (R)

e− tr(zu) det(u+ 13)α−2(detu)β−2 du.
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Thanks to [Shi82, Theorem 3.1], this integral is absolutely convergent for Reβ > 2 and can be continued to
a holomorphic function on (α, β) ∈ C2. We shall consider the confluent hypergeometric function ω?(z;α, β)
defined by

(4.3)
ω?(z;α, β) : = det(4πz)α−2 · ω(4πz;α, β)

=
1

Γ3(β)

∫
Sym+

3 (R)

e− tr(u) det(u+ 4πz)α−2(detu)β−2 du.

Lemma 4.2. Let P (T ) be a polynomial in T = (Tij) ∈ Sym3(R). We have∫
Sym+

3 (R)

e− tr(u)P (u)
(detu)s−2

Γ3(s)
du = P (−∂ij)(detT )−s|T=13

.

Proof. If T is positive definite and Re s > 2, then∫
Sym+

3 (R)

e− tr(Tu) (detu)s−2

Γ3(s)
du = (detT )−s

by [Shi81, (1.14)]. The declared formula follows immediately from the fact that

P (−∂ij)(e− tr(Tu)) = P (u)e− tr(Tu). �

Remark 4.3. In view of Lemma 4.2, we find that if (α, β) ∈ Z2 with α ≥ 2 and β ≤ 0, then ω?(z;α, β) is a
polynomial function in z of degree at most α− 2. In particular, the definition of ω?(z;α, β) can be extended
to arbitrary symmetric matrices z ∈ Sym3(R) by continuity if (α, β) ∈ Z≥2 × Z≤0. We also remark that by
the functional equation

ω(z; 2− β, 2− α) = ω(z;α, β)

in [Shi82, (3.7)], the polynomial

ω?(z;α, β) = det(4πz)α+β−2ω?(z; 2− β, 2− α)

is divisible by det(z)max{α+β−2,0} in C[z].

Lemma 4.4. For x ∈ Sym3(R) we have

H23(J3n(x)) = 2
√
−1(x11x23 − x12x13 +

√
−1x23)/det(x+ i),

H12(J3n(x)) = 2
√
−1(x12x33 − x23x13 +

√
−1x12)/det(x+ i).

Proof. The Iwasawa decomposition of J3n(x) can be written as

J3n(x) =

(
zt ∗
0 z−1

)(
zx −z
z zx

)
, z ∈ GL3(R)

with ztz = (13 + x2)−1. Let u = z(x− i) ∈ U(3). Then utu = (x− i)(x+ i)−1. We denote the adjugate of a
matrix A ∈ M3(R) by adj(A). Since A · adj(A) = (detA)13, we have

utu = det(x+ i)−1(x− i)adj(x+ i) = −2
√
−1 det(x+ i)−1adj(x+ i) + 13.

By definition we find that

H23(J3n(x)) = H23(u) = det(x+ i)−1 · 2
√
−1 det

(
x11 +

√
−1 x12

x13 x23

)
= det(x+ i)−1 · 2

√
−1(x11x23 − x12x13 +

√
−1x23).

One can compute H12(J3n(x)) in the same way. �

Definition 4.5. We associate to a parity type λ the differential operator Dλ on T = (Tij) ∈ Sym3(R) by

D(0,1,1) :=
1

2π2
√
−1
{∂13∂12 − ∂23(∂11 − 4π)}, D(0,0,0) = id,

D(1,0,1) :=
1

2π2
√
−1
{∂12∂33 − ∂23∂13}, D(1,1,2) := D(0,1,1)D(1,0,1).
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Here

∂ij :=
∂

∂Tij
·

{
1 if i = j,
1
2 if i 6= j.

Definition 4.6. For each parity type λ, writing ω?s(T ) := ω?(T, k − r, s) for T ∈ Sym3(R), we define

Dλω
?(T, k − r, s) := Dλ(ω?s)(T )

=
1

Γ3(s)

∫
Sym+

3 (R)

e− tr(u)Dλ

(
det(4πT + u)M

)
(detu)s−2 du.

Proposition 4.7. Let r be an integer with λ2 ≤ r ≤ k − 2. Let A ∈ GL3(R)+ and B ∈ Sym3(Q) with
detB 6= 0. If B is positive definite, then

lim
s→ k−λ1

2 −r−1

WB(m(A), f [k,λ]
s,∞ ) = C

[k,r,λ]
1 e−2π tr(AtBA) Dλω

? (AtBA; k − r, λ2 − r)
(detA)k−λ1−2r−4

,

where

C
[k,r,λ]
1 = (

√
−1)k−λ2

23(3+2r−k−λ2)π6

Γ3(k − r)
.

If B is not positive definite, then

lim
s→ k−λ1

2 −r−1

WB(m(A), f [k,λ]
s,∞ ) = 0.

Proof. In view of the equation

WB(m(A), f [k,λ]
s,∞ ) = (detA)−2s−2WAtBA(16, f

[k,λ]
s,∞ ) = (detA)−2s−2WAtBA(f [k,λ]

s,∞ ),

we may assume A = 13. By definition,

(4.4) WB(f [k,λ]
s,∞ ) =

∫
Sym3(R)

det(x+ i)−α0 det(x− i)−β0Hλ(J3n(x))e−2π
√
−1 tr(Bx) dx.

To proceed, we introduce a new set of differential operators Dλ on the space of smooth functions on Sym3(R)
for each parity type λ defined by

D(0,1,1) :=
1

2π2
√
−1
{∂13∂12 − ∂23(∂11 − 2π)}, D(0,0,0) := id,

D(1,0,1) :=
1

2π2
√
−1
{∂12(∂33 + 2π)− ∂23∂13}, D(1,1,2) := D(0,1,1)D(1,0,1).

It is easy to verify that the actions of the two sets of differential operators Dλ and Dλ on polynomials P on
Sym3(R) are related by the following equation

(4.5) Dλ(e−2π tr(T )P (T )) = e−2π tr(T )DλP (T ).

A direct computation combined with Lemma 4.4 shows that

Dλ(e−2π
√
−1 tr(Tx)) = det(x+ i)λ1 det(x− i)λ2Hλ(J3n(x))e−2π

√
−1 tr(Tx).

Following [Shi82, (1.25)], for (g, T ) ∈ Sym+
3 (R)× Sym3(R) and (α, β) ∈ C, we put

ξ(g, T, α, β) =

∫
Sym3(R)

det(x+ ig)−α det(x− ig)−βe−2π
√
−1 tr(Tx) dx.

Then (4.4) can be rephrased as

WB(f [k,λ]
s,∞ ) =Dλ(ξ(13, T ;α0 + λ1, β0 + λ2))|T=B

with α0 = s+ 1 + k−λ1

2 and β0 = s+ 1− k−λ1

2 . On the other hand, by [Shi82, (1.29)] we have

ξ(13, T ;α, β) = (
√
−1)3(β−α) (2π)6e−2π tr(T )

23Γ3(α)Γ3(β)

∫
u>0, u>−2πT

e−2 tr(u) det(u+ 2πT )α−2(detu)β−2 du.
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If T ∈ Sym+
3 (R), then the last integral equals 23(2−α−β)ω?(T ;α, β) · Γ3(β), and hence by (4.5) we obtain

lim
s→ k−λ1

2 −r−1

WB(f [k,λ]
s,∞ ) = lim

s→λ2−r
C

[k,r,λ]
1 Dλ

(
e−2 tr(T )ω?(T ; k − r, s)

)
|T=B

= C
[k,r,λ]
1 · e−2π tr(B)Dλω

? (B; k − r, λ2 − r) .
This proves the proposition if B is positive definite. If the signature of T is (p, q) with q > 0 and p + q = 3,
then [Shi82, Theorem 4.2] shows that there exists a holomorphic function ω̆(α, β) such that

ξ(13, T ;α, β) =
Γp
(
β − q

2

)
Γq
(
α− p

2

)
Γ3(α)Γ3(β)

· ω̆(α, β).

This in particular implies that ξ(13, T ; k − r, λ2 − r) = 0 for λ2 ≤ r ≤ k − 2, and hence

lim
s→ k−λ1

2 −r−1

WB(f [k,λ]
s,∞ ) = Dλ(ξ(13, T ; k − r, λ2 − r))|T=B = 0

if B is not positive definite. �

4.3. The polynomial expansion of the Whittaker functions. Let

y = diag(y1, y2, y3) ∈ R3
+; A = diag(

√
y1,
√
y2,
√
y3) ∈ GL3(R).

For B = (bij) ∈ Sym3(R), we define the Whittaker functionW[k,r,λ]
B (y) by

W
[k,r,λ]
B (y) := (detA)2r−2k+4+λ1

√
y2
λ2
√
y3
λ1+λ2 ·Dλω

?(AtBA, k − r, λ2 − r).
If B is positive definite, then Proposition 4.7 yields

(4.6) lim
s→ k−λ1

2 −r−1

WB(m(A), f [k,λ]
s,∞ ) = C

[k,r,λ]
1 · (detA)k

√
y2
λ2
√
y3
λ1+λ2

W
[k,r,λ]
B (y) · e−2π(b11y1+b22y2+b33y3).

Let us elaborate on the polynomial expansion of W[k,r,λ]
B (y). Put

M = k − r − 2.

Note that M ≥ 0 and λ2 − r ≤ 0. We have seen in Remark 4.3 that ω?(T ;M + 2, λ2 − r) is a polynomial
function in T of degree at most M . We write

ω?(T ;M + 2, λ2 − r) =
∑

0≤j1,j2,j3≤M

cj1j2j3T
j3
12T

j1
23T

j2
13 , cj1j2j3 ∈ C[T11, T22, T33],

where T = (Tij) ∈ Sym3(R). Since

ω?(εtTε;α, β) = ω?(T ;α, β), ε = diag(−1, 1, 1)

in view of the expression (4.3), we get cj1j2j3 = (−1)j2+j3cj1j2j3 . Thus cj1j2j3 = 0 unless j2 ≡ j3 (mod 2).
By symmetry we conclude that cj1j2j3 = 0 unless j1 ≡ j2 ≡ j3 (mod 2). On the other hand, Remark 4.3 also
explains that ω?(T ;M + 2, λ2 − r) is divisible by det(T )max{M−r+λ2,0}. Observing that(

Tλ1
23 T

λ2
12 T

λ1+λ2
13 Dλ detT

)
|T=AtBA

is divisible by y1y2y3, we obtain(
Tλ1

23 T
λ2
12 T

λ1+λ2
13 Dλω

?(T,M + 2, λ2 − r)
)
|T=AtBA

=
∑

max{M−r+λ2,0}≤j2,j3≤M
max{M−r+λ2,0}≤j1≤M+λ2

aj1j2j3y
j1
1 y

j2
2 y

j3
3 ∈ C[y1, y2, y3].

This shows that

W
[k,r,λ]
B (y) = (y1y2y3)−My−λ2

1 ·
(
Tλ1

23 T
λ2
12 T

λ1+λ2
13 Dλω

?(T,M + 2λ2 − r)
)
|T=AtBA

is a polynomial in C[y−1
1 , y−1

2 , y−1
3 ] of the form

(4.7) W
[k,r,λ]
B (y) =

∑
0≤b,c≤min{r−λ2,k−r−2}
0≤a≤min{r,k−r−2+λ2}

Q
[k,λ]
a,b,c(B, r)y

−a
1 y−b2 y−c3 ,
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and each coefficient Q[k,λ]
a,b,c(B, r) is a polynomial in B.

4.4. The coefficients of W[k,r,λ]
B (y). Put

Sym0
3(R) :=

B ∈ Sym3(R)

∣∣∣∣∣ B =

 0 b3 b2
b3 0 b1
b2 b1 0

 , detB 6= 0


We shall determine explicitly the coefficient Q[k,λ]

0,b,c(B, r) ofW
[k,r,λ]
B (y) in the expression (4.7) for B ∈ Sym0

3(R).

Note that B ∈ Sym0
3(R) is never to be positive definite, so WB(m(A), f

[k,λ]
s,∞ )|

s=
k−λ1

2 −r−1
= 0 by Proposi-

tion 4.7. However, we will see later in Proposition 6.3 that these coefficients of W[k,r,λ]
B (y) with B ∈ Sym0

3(R)
surprisingly contribute to the Fourier expansion of the ordinary and holomorphic part of the pull-back of our
Eisenstein series due to the miraculous effect of the ordinary projector.

We begin with a lemma. Let λ be a parity type. For every non-negative integer M and (T, u) ∈ Sym3(R)×
Sym3(R), we put

KM
λ (T ;u) := Dλ(det(4πT + u)M ) ∈ C[T ].

Then Definition 4.6 can be rephrased as

(4.8) Dλω
?(T,M + 2, s) =

1

Γ3(s)

∫
Sym+

3 (R)

e− tr(u)KM
λ (T ;u)(detu)s−2 du.

Let Y be the matrix with variables Y1, Y2, Y3 given by

Y =

 0
√
Y1Y2

√
Y1Y3√

Y1Y2 0
√
Y2Y3√

Y1Y3

√
Y2Y3 0

 .

For two functions f, g : R+ → C and c ∈ R we say that f(y) = g(y) + o(yc) if limy→∞
f(y)−g(y)

yc = 0.

Lemma 4.8. The polynomial KM
λ

(
(4π)−1Y;u

)
∈ C[

√
Y1,
√
Y2,
√
Y3, u] has the expression

KM
λ ((4π)−1Y;u) = C

[k,r,λ]
2 cλ(Y2, Y3;u) · YM−

λ1
2

1 + o(Y
M−λ1

2
1 )

with C [k,r,λ]
2 ∈ C and cλ(Y2, Y3;u) ∈ C[

√
Y2,
√
Y3, u] give by

C
[k,r,λ]
2 =

(2M + λ1)!

(2M)!
· 23(λ1+λ2)−λ1M !

(
√
−1)λ2−λ1(M − λ1 − λ2)!

,

cλ(Y2, Y3;u) =
(
−u22Y3 − u33Y2 + 2Y2Y3 + 2u23

√
Y2Y3

)M−λ1−λ2

·
√
Y2

λ1+λ2
√
Y3

λ2

.

Proof. This is proved by a direct computation. Note that

∂11 det(T + u) =(T22 + u22)(T33 + u33)− (T23 + u23)2,

∂12 det(T + u) =− (T12 + u12)(T33 + u33) + (T23 + u23)(T13 + u13),

∂13 det(T + u) =− (T13 + u13)(T22 + u22) + (T12 + u12)(T23 + u23),

∂23 det(T + u) =− (T23 + u23)(T11 + u11) + (T12 + u12)(T13 + u13),

∂33 det(T + u) =(T11 + u11)(T22 + u22)− (T12 + u12)2.

Put

∆ = det(T + u), R = (−u22Y3 − u33Y2 + 2Y2Y3 + 2u23

√
Y2Y3)Y1.
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Since ∆|T=Y = R+ o(Y1), we have

KM
(0,1,1)((4π)−1Y;u)

=(2π2
√
−1)−1 · (4π)2{∂13∂12 − ∂23(∂11 − 1)}∆M |T=Y

≡− 8
√
−1[M(M − 1)RM−2(∂13∆∂12∆− ∂23∆∂11∆) +MRM−1{∂13∂12 − ∂23(∂11 − 1)}∆]|T=Y

≡− 8
√
−1MRM−1∂23∆|T=Y

≡− 8
√
−1MRM−1

√
Y2Y3Y1 (mod o(YM1 )),

which verifies the case λ = (0, 1, 1). When λ = (1, 0, 1), we have

KM
(1,0,1)((4π)−1Y;u)

≡− 8
√
−1{M(M − 1)RM−2(∂12∆∂33∆− ∂13∆∂23∆) +MRM−1(∂12∂33∆− ∂13∂23∆)}|T=Y

≡− 8
√
−1

{
M(M − 1)RM−2(−R

√
Y1Y2) +MRM−1

(
−3

2

√
Y1Y2

)}
≡4
√
−1M(2M + 1)RM−1

√
Y1Y2 (mod o(Y

M− 1
2

1 ))

as claimed. Since
D(0,1,1)∆

M |T=Y = −8
√
−1M∆M−1T12T13|T=Y + o(YM1 ),

we have

KM
(1,1,2)((4π)−1Y;u) ≡32M(M − 1)(2M − 1)RM−2

√
Y1Y2Y1

√
Y2Y3

− 64M(M − 1)∆M−2(T13∂33∆− T12∂23∆)|T=Y (mod o(Y
M− 1

2
1 )),

which proves the case λ = (1, 1, 2). �

Let (k, l,m) be a triplet of integers such that k ≥ l ≥ m ≥ 2. We say that the triplet (k, l,m) has the parity
type λ if

(4.9) λ1, λ2 ∈ {0, 1}, λ1 ≡ l −m (mod 2), λ2 ≡ k − l (mod 2), λ3 = λ1 + λ2.

The following explicit formula of the coefficient Q[k,λ]
0,b,c(B, r) is a key ingredient in the proof of Proposition 6.3.

Lemma 4.9. Let λ be the parity type of (k, l,m). Suppose that

k ≤ l +m− 1.

Let r be an integer such that

λ2 ≤ k −
l +m+ λ1

2
≤ r ≤ l +m

2
− 2 ≤ k − 2.

Put

M = k − r − 2, b =
1

2
(k − l − λ2), c =

1

2
(k −m− λ3), n = M +

1

2
(l +m− λ1).

If

B =

 0 b3 b2
b3 0 b1
b2 b1 0

 ∈ Sym0
3(R)

has zero diagonal entries, then we have

Q
[k,λ]
0,b,c(B, r) = w0,b,c · (b1b2b3)nb−k1 b−l2 b−m3 ,

where

w0,b,c = (4π)3M−b−c−2λ1−λ22M+λ1+2λ2−b−c (
√
−1)λ1−λ2(2M + λ1)!M !

(2M)!(M − λ1 − λ2 − b− c)!
(r − λ2)!

b!c!(r − λ2 − b− c)!
.
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Proof. Substitute Yi = 4π b1b2b3
b2i

yi into the matrix Y. Then Y = 4πAtBA and

W
[k,r,λ]
B (y) =

∑
a,b,c

Q
[k,λ]
a,b,c(B, r)(4π)a+b+cY −a1 Y −b2 Y −c3 · bb+c−a1 ba+c−b

2 ba+b−c
3 .

On the other hand, by definition we have

W
[k,r,λ]
B (y) =

(
(4π)3b1b2b3
Y1Y2Y3

)M √
Y1
λ1
√
Y2
λ1+λ2

√
Y3

2λ1+λ2

(4π)2λ1+λ2bλ1+λ2
1 bλ1

2

Dλω
?((4π)−1Y,M + 2, λ2 − r)

with M = k − r − 2. From these equations, we find that

Q
[k,λ]
0,b,c(B, r) = w0,b,c · (b1b2b3)nb−k1 b−l2 b−m3 for some w0,b,c ∈ C.

Our task is to determine w0,b,c. In view of (4.8) and Lemma 4.8, we see that w0,b,c is the coefficient of
YM−λ1−λ2−b

2 YM−λ1−λ2−c
3 in the polynomial

(4π)3M−b−c−2λ1−λ2

√
Y2
λ1+λ2

√
Y3
λ2

∫
Sym+

3 (R)

e− tr(u)C
[k,r,λ]
2 cλ(Y2, Y3;u)

(detu)s−2

Γ3(s)
du

∣∣∣∣
s=λ2−r

=(4π)3M−b−c−2λ1−λ2C
[k,r,λ]
2

×
∫

Sym+
3 (R)

e− tr(u)
(
−u22Y3 − u33Y2 + 2Y2Y3 + 2u23

√
Y2Y3

)M−λ1−λ2 (detu)s−2

Γ3(s)
du|s=λ2−r

Here we have used Lemma 4.2 in the above equality. Put

L = M − λ1 − λ2, r1 = r − λ2.

Notice that b ≤ c by assumption. The coefficient of Y L−b2 Y L−c3 in the last integral is given by
b∑
i=0

2L−b−c(−1)b+c · L!

(b− i)!(c− i)!(L− b− c)!(2i)!

∫
Sym+

3 (R)

e− tr(u)ub−i33 uc−i22 (2u23)2i (detu)s−2

Γ3(s)
du|s=−r1

=

b∑
i=0

2L−b−c · L!22i

(b− i)!(c− i)!(L− b− c)!(2i)!
∂b−i33 ∂c−i22 ∂2i

23(T22T33 − T 2
23)r1 |T22=T33=1,T23=0

=

b∑
i=0

2L−b−c · L!22i

(b− i)!(c− i)!(L− b− c)!(2i)!

r1∑
j=0

(
r1

j

)
∂b−i33 ∂c−i22 ∂2i

23T
r1−j
22 T r1−j33 (−T 2

23)j |T22=T33=1,T23=0

=

b∑
i=0

2L−b−c · L!

(b− i)!(c− i)!(L− b− c)!

(
r1

i

)
(−1)i∂b−i33 ∂c−i22 (T r1−i22 T r1−i33 )|T22=T33=1

=
2L−b−c · L!

(L− b− c)!

b∑
i=0

(
r1

i

)(
r1 − i
b− i

)(
r1 − i
c− i

)
(−1)i

in view of Lemma 4.2. The last summation equals

r1!

(r1 − b)!b!

b∑
i=0

(
b

i

)(
r1 − i
r1 − c

)
(−1)i =

r1!

(r1 − b)!b!
·
(

r1 − b
r1 − b− c

)
=

r1!

b!c!(r1 − b− c)!
,

where we can deduce this equality by equating the terms of degree r1 − c of the identity
b∑
i=0

(
b

i

)
(1 +X)r1−i(−1)i = (1 +X)r1

(
1− 1

1 +X

)b
= (1 +X)r1−bXb,

Finally, we see that w0,b,c equals

(4π)3M−b−c−2λ1−λ2C
[k,r,λ]
2

2M−λ1−λ2−b−c · (M − λ1 − λ2)!

(M − λ1 − λ2 − b− c)!
(r − λ2)!

b!c!(r − λ2 − b− c)!
by putting together the above computations, which completes our proof. �
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4.5. The archimedean zeta integral. Let V± be the weight raising/lowering operator given by

V± :=
1

(−8π)

((
1 0
0 −1

)
⊗ 1±

(
0 1
1 0

)
⊗
√
−1

)
∈ Lie(GL2(R))⊗R C.

For each integer k ≥ 2 we denote by σk the discrete series of GL2(R) of the minimal weight k and by Wk the
Whittaker function of σk characterized by

Wk(diag(y, 1)) = yk/2e−2πyIR+(y).

Set W [t]
k = V t+Wk. It follows from (6.4) below that

(4.10) W
[t]
k (diag(y, 1)) =

t∑
j=0

(−4π)j−t
(
t

j

)
Γ(t+ k)

Γ(j + k)
· y k2 +je−2πyIR+(y).

Let (k, l,m) be the triplet of integers as in the previous subsection. In the literature, the various archimedean
zeta integral of Garrett, Piatetski-Shapiro and Rallis have been evaluated for different purposes (cf. [Gar87],
[Orl87], [GH93], [Ike98, Ike99] and [BP09]). When the parity type λ = (0, 0, 0), i.e. k ≡ l ≡ m (mod 2),
the integral Z∞(s) is essentially computed in [Orl87]. We shall extend Orloff’s computation to general parity

types. Put J∞ =

(
−1 0
0 1

)
. We will evaluate the archimedean zeta integral in (2.4) with the above choices

of sections and Whittaker functions. We put

(4.11) Z∞(s) := Z

(
ρ(J∞)Wk, ρ(J∞)W

[
k−l−λ2

2

]
l , ρ(J∞)W

[
k−m−λ3

2

]
m , f [k,λ]

s,∞

)
,

where λ = (λ1, λ2, λ3) is the parity type of (k, l,m). Put

γ?(k,m,l)(s) = (
√
−1)k+2λ2+λ1

Γ
(
s+ k−m−l

2 + 1
)

Γ
(
s− k−λ1

2 + λ2 + 1
) · Γ

(
s+ k+λ1

2

)
Γ
(
s+ k+λ1

2 + 1
) · π3s+1(4π)l+m−

k−λ1
2 +λ2

4Γ
(
s+ m+l−k

2

)
Γ(2s+ k)

.

We remark that the special value γ?(k,m,l)(
k−λ1

2 −r−1) is very similar to w0,b,c if k < l+m−1. This point is
crucial in the normalization of Eisenstein series and will be explicated in (6.5). Recall that L(s, σk × σl × σm)
equals

ΓC

(
s+

k + l +m− 3

2

)
ΓC

(
s+

k − l +m− 1

2

)
ΓC

(
s+

k + l −m− 1

2

)
ΓC

(
s+

m+ l − k − 1

2

)
if k < l +m, and

ΓC

(
s+

k + l +m− 3

2

)
ΓC

(
s+

k − l +m− 1

2

)
ΓC

(
s+

k + l −m− 1

2

)
ΓC

(
s+

k − l −m+ 1

2

)
if k ≥ l+m. When k ≥ l+m, the (unbalanced) critical points are s = n− k+l+m−3

2 with n ∈ Z, l+m− 1 ≤
n ≤ k − 1. It is important to note that γ?(k,m,l)

(
s− 1

2

)
has a zero at these points, which is one of reasons for

our restriction to the balanced critical points.

Lemma 4.10. Let λ be the parity type of (k, l,m). Then

Z∞(s) = χ∞(−1) ·
γ?(k,m,l)(s)

25+(k+m+l)
L

(
s+

1

2
, σk × σl × σm

)
×

1 if k < l +m,
ΓC(s+ l+m−k

2 )
ΓC(s+ k−l−m

2 +1)
if k ≥ l +m.

Proof. For a = (a1, a2, a3) ∈ R3
+ and x ∈ R, we set

t(a) = diag

((
a1 0
0 a−1

1

)
,

(
a2 0
0 a−1

2

)
,

(
a3 0
0 a−1

3

))
,

u(x) = diag

((
1 x

3

0 1

)
,

(
1 x

3

0 1

)
,

(
1 x

3

0 1

))
.
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When x 6= 0, the Iwasawa decomposition of ηι(u(x)t(a)) can described as follows: Put

P =

 a2
1 a1a2 a1a3

a1a2 a2
2 a2a3

a1a3 a2a3 a2
3

 .

We write ηι(u(x)t(a)) = n(b)m(A)u with b ∈ Sym3(R), A ∈ GL3(R) and u =

(
D −C
C D

)
∈ U(3). Since

D−1C = x−1P , we can choose U ∈ GL3(R) so that

U tU = (x213 + P 2)−1, u =

(
Ux −UP
UP Ux

)
∈ U(3).

Put u = Ux−
√
−1UP . Then utu = (x13 − P

√
−1)(x13 + P

√
−1)−1. By direct computations we get

detA = a1a2a3 |z|−1
, detu =

z̄

|z|
, H23(u) = −2

√
−1

a2a3

z
, H12(u) = −2

√
−1

a1a2

z
,

where z = x+
√
−1(a2

1 + a2
2 + a2

3) (see [GK92, (6.7), (6.8)]). Put

b =
1

2
(k − l − λ2), c =

1

2
(k −m− λ3), (s,k, l,m) =

(
s+

λ3

2
, k − λ2, l,m− λ1

)
.

Recall that ω̂ = sgnk−λ1 . It follows that

f [k,λ]
s,∞ (ηι(u(x)t(a)d(−1))) = χ∞(−1)(−1)k−λ1

(
2
√
−1

a1a2

z̄

)λ1
(
−2
√
−1

a2a3

z

)λ2
(
a1a2a3

|z|

)2s+2(
z

|z|

)k−λ1

= χ∞(−1)2λ1+λ2
√
−1

λ2−λ1
(a1a2a3)2s+2a−λ2

1 a−λ1
3 |z|−2s−2−k(−z)k.

From (4.2) and (4.10), we see that 2Z∞(s) equals

ω̂(−1)

∫
R

∫
R3

+

Wk(n(x/3)m(a1))W
[b]
l (n(x/3)m(a2))W [c]

m (n(x/3)m(a3))f [k,λ]
s,∞ (ηι(u(x)t(a)d(−1))) dx

3∏
j=1

d×aj

|aj |2

=(χ∞ω̂)(−1)2λ1+λ2
√
−1

λ2−λ1
(−4π)−b−c

∞∑
A=0

∞∑
B=0

(−4π)A+B

(
b

A

)(
c

B

)
Γ(l + b)

Γ(l +A)

Γ(m+ c)

Γ(m+B)

×
∫
R

∫
R3

+

a2s+k
1 a2s+l+2A

2 a2s+m+2B
3 |z|−2s−2−k

(−z)ke2π
√
−1xe−2π(a2

1+a2
2+a2

3) dx

3∏
j=1

d×aj .

Put α = s + 1 + k
2 and β = s + 1− k

2 . The last integral equals

(−2π
√
−1)α(2π

√
−1)β

Γ(α)Γ(β)

∫
R4

+

ak+2s
1 al+2A+2s

2 am+2B+2s
3

(1 + t)α−1tβ−1

e4π(a2
1+a2

2+a2
3)(1+t)

dt

3∏
j=1

d×aj .

We here use the identity∫
R

e−2π
√
−1x dx

(x+
√
−1y)α(x−

√
−1y)β

=
(−2π

√
−1)α(2π

√
−1)β

Γ(α)Γ(β)

∫
R+

(t+ 1)α−1tβ−1

e2πy(1+2t)
dt

(see [GK92, (6.11)]). The quadruple integral above equals

1

(4π)
k+l+m

2 +3s+A+B

∫
R4

+

ak+2s
1 al+2A+2s

2 am+2B+2s
3 (1 + t)α−1tβ−1

ea
2
1+a2

2+a2
3(1 + t)

k+l+m
2 +3s+A+B

dt

3∏
j=1

d×aj

=
Γ
(
k
2 + s

)
Γ
(
l
2 + s +A

)
Γ
(
m
2 + s +B

)
23(4π)

k+l+m
2 +3s+A+B

∫
R+

(1 + t)α−1tβ−1

(1 + t)
k+l+m

2 +3s+A+B
dt.
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Recall that ∫ ∞
0

(1 + t)α−1tβ−1

(1 + t)
k+l+m

2 +3s+A+B
dt =B

(
β, 1− α− β +

k + l + m

2
+ 3s +A+B

)
=

Γ(β)Γ
(
1− α− β + k+l+m

2 + 3s +A+B
)

Γ
(
1− α+ k+l+m

2 + 3s +A+B
) .

We finally get

Z∞(s) =χ∞(−1)2λ1+2λ2−2−4s−3kπ2−s+λ2+λ3−3k
2 (

√
−1)k+λ1(−1)λ2+b+c

×
Γ
(
s + k

2

)
Γ
(
s + k

2 + 1
)Γ(l + b)Γ(m+ c)

∑
A,B

(−1)A+B

(
b

A

)(
c

B

)
Γ∞(s;A,B)

Γ(l +A)Γ(m+B)
,

where

Γ∞(s;A,B) =
Γ
(
s + l

2 +A
)
Γ
(
s + m

2 +B
)
Γ(s + k+l+m

2 − 1 +A+B)

Γ(2s + l+m
2 +A+B)

.

Lemma 3 of [Orl87] with α = l = l, t = s + l
2 , β = B + m−l

2 and N = b gives

Γ(l + b)

b∑
A=0

(−1)A
(
b

A

)
Γ
(
s + l

2 +A
)
Γ(s + k+l+m

2 − 1 +A+B)

Γ(l +A)Γ(2s + l+m
2 +A+B)

=(−1)b
Γ
(
s + l

2

)
Γ
(
s +B + m

2 + l + b− 1
)
Γ
(
s +B + m

2 + b
)
Γ
(
s− l

2 + 1
)

Γ
(
2s +B + m+l

2 + b
)
Γ
(
s +B + m

2

)
Γ
(
s− l

2 − b+ 1
) .

It follows that

Γ(l + b)Γ(m+ c)
∑
A,B

(−1)A+B

(
b

A

)(
c

B

)
Γ∞(s;A,B)

Γ(l +A)Γ(m+B)

=(−1)b
Γ
(
s + l

2

)
Γ
(
s− l

2 + 1
)

Γ
(
s− l

2 − b+ 1
) Γ(m+ c)

∑
B

(−1)B
(
c

B

)
Γ
(
s +B + m

2 + l + b− 1
)
Γ
(
s +B + m

2 + b
)

Γ
(
2s +B + m+l

2 + b
)
Γ(m+B)

.

Again we apply Lemma 3 of [Orl87] with α = m, t = s + m
2 + b, β = l−m

2 − b and N = c to obtain

Γ(m+ c)
∑
B

(−1)B
(
c

B

)
Γ
(
s +B + m

2 + l + b− 1
)
Γ
(
s +B + m

2 + b
)

Γ
(
2s +B + m+l

2 + b
)
Γ(m+B)

=(−1)c
Γ
(
s + m

2 + b
)
Γ
(
s + l

2 +m+ c− 1
)
Γ
(
s + l

2 + c
)
Γ
(
s + m

2 + b−m+ 1
)

Γ
(
2s + m+l

2 + b+ c
)
Γ
(
s + l

2

)
Γ
(
s + m

2 −m+ b− c+ 1
) .

Then we can see that the double summation equals

(−1)b+c
Γ
(
s + m

2 + b
)
Γ
(
s + l

2 +m+ c− 1
)
Γ
(
s + l

2 + c
)
Γ
(
s + c− l

2 + 1
)

Γ
(
s− l

2 − b+ 1
)
Γ
(
2s + m+l

2 + b+ c
)

=(−1)b+c
Γ
(
s+ k−l+m

2

)
Γ
(
s+ k+l+m

2 − 1
)
Γ
(
s+ k−m+l

2

)
Γ
(
s+ k−l−m

2 + 1
)

Γ(2s+ k)
· 1

Γ
(
s− k

2 + 1
) .

The last equality uses b = k−l
2 , m+ c = k+m

2 , s + c = s+ k−m
2 and 2s + k + m = 2s+ k +m. �

5. Classical and p-adic modular forms

5.1. Notation and conventions. Besides the standard symbols Z, Q, R, C, Z`, Q` we denote by R+ the
group of strictly positive real numbers. Fix algebraic closures of Q and Qp, denoting them by Q and Qp. Let
A be the ring of adèles of Q and µn the group of n-th roots of unity in Q. Put Ẑ =

∏
` Z`. For each place v

of Q, we write Qv for the completion of Q with respect to v. We shall regard Qv and Q×v as subgroups of A
and A× in a natural way. For a ∈ A×, let av ∈ Q×v denote the v-component of a.

We denote by the formal symbol∞ the real place of Q. The notation ` is often referred to a rational prime.
Let ψQ : A/Q → C× be the additive character with the archimedean component ψ∞(x) = e2π

√
−1x and

ψ` : Q` → C× the local component of ψQ at `. Let αA : Q×\A× → R+ be the adèlic absolute value given
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by αA(a) = |a|A =
∏
v |av|v. For each rational prime `, let v` : Q×` → Z denote the valuation normalized so

that v`(`) = 1. To avoid possible confusion, denote by $` = ($`,v) ∈ A× the idèle defined by $`,` = ` and
$`,v = 1 if v 6= `.

If ω : Q×\A× → C× is a Hecke character, then we denote by ωv : Q×v → C× the restriction of ω to Q×v . If
χ : (Z/NZ)× → Q

×
is a Dirichlet character modulo N , let χA : Q×R+\A×/(1 +N Ẑ)× → Q

×
be the unique

Hecke character of Q such that χA($`) = χ(`)−1 for any prime number ` - N . We shall call χA the adèlic
lift of χ. If no confusion can arise, we write χv = χA,v for the restriction of χA to Q×v . Then by definition
χ(b) =

∏
`|N χ`(b) if b is an integer prime to N , and

(5.1) χ`(`) = χ(`)−1 for ` - N.

Let ζQ(s) be the complete Riemann zeta function given by

ζQ(s) = π−
s
2 Γ

(
s

2

)∏
`<∞

ζ`(s), ζ`(s) := (1− `−s)−1.

It is well-known that ζQ(2) = π
6 .

Definition 5.1 (Teichmüller and cyclotomic characters). Let p be a prime. We let p = 4 if p = 2 and p = p
otherwise. The action of GQ on µp∞ := lim

−→n
µpn gives rise to a continuous homomorphism εcyc : GQ → Z×p ,

called the p-adic cyclotomic character, defined by σ(ζ) = ζεcyc(σ) for every ζ ∈ µp∞ . The character εcyc splits
into the p-adic Teichmüller character ω : GQ � Gal(Q(µp)/Q)→ Z×p and 〈·〉 : GQ � Gal(Q∞/Q)

∼→ 1+pZp.
The character ω sends σ to the unique solution in Z×p of ω(σ)l+1 = ω(σ) ≡ εcyc(σ) (mod p), where l = 2

⌈
p
2

⌉
.

We often regard ω and 〈·〉s with s ∈ Zp as characters of Z×p . We sometimes identify ω with the Dirichlet
character ιp ◦ ω : (Z/pZ)× → C×.

Now we fix an arbitrary rational prime p and an isomorphism ιp : Qp ' C for the remaining part of this
paper. Let χ be a character of Z×p of finite order, which can be regard as either a complex character or a
p-adic character via composition with ιp. Let c(χ) be the exponent of the conductor of χ. We view χ as a
character of GQ via composition with the cyclotomic character εcyc. Let Qab =

⋃∞
N=1 Q(µN ) be the maximal

abelian extension of Q and
recQ : Q×R+\A×

∼−→ Gal(Qab/Q)

the geometrically normalized reciprocity law map, i.e., recQ($`)|Qab = Frob`. Since χ factors through the
quotient Z×p � (Z/pc(χ)Z)×, we can identify χ with a Dirichlet character of p-power conductor. Then since
χA($`) = χ(`)−1 = χ(εcyc(Frob`)) for ` 6= p,

χA = χ ◦ εcyc ◦ recQ, χp|Z×p = χ.

5.2. Differential operators and nearly holomorphic modular forms. Let GL+
2 (R) be the subgroup of

GL2(R) consisting of matrices with positive determinant and H1 the upper half plane on which GL+
2 (R) acts

via fractional transformation. Define a subgroup of SL2(Z) of finite index

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ c is divisible by N
}
.

The Lie group GL+
2 (R) acts on the complex vector space of complex valued functions f on H1 as in (4.1).

The Maass-Shimura differential operators δk and λz on C∞(H1) are given by

δk =
1

2π
√
−1

(
∂

∂z
+

k

2
√
−1y

)
, λz = − 1

2π
√
−1

y2 ∂

∂z

with y = Im z ∈ R+. Let χ : (Z/NZ)× → C× be a Dirichlet character, which we extend to a character

χ↓ : Γ0(N) → C× by χ↓
((

a b
c d

))
= χ(d). For a non-negative integer m the space N [t]

k (N,χ) of nearly

holomorphic modular forms of weight k, level N and character χ consists of slowly increasing functions
f ∈ C∞(H1) such that λt+1

z f = 0 and f |kγ = χ↓(γ)f for γ ∈ Γ0(N) (cf. [Hid93, page 314]). By definition
N [0]
k (N,χ) = Mk(N,χ) is the space of elliptic modular forms of weight k, level N and character χ. Put

Nk(N,χ) =
⋃b k2 c
m=0N

[t]
k (N,χ).
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Denote the space of elliptic cusp forms in Mk(N,χ) by Sk(N,χ). Put δmk = δk+2m−2 · · · δk+2δk. If f ∈
Nk(N,χ), then δmk f ∈ Nk+2m(N,χ) (see [Hid93, page 312]).

Define an open compact subgroup of GL2(Ẑ) by

U0(N) =

{
g ∈ GL2(Ẑ)

∣∣∣∣ g ≡ (∗ ∗0 ∗

)
(mod N Ẑ)

}
.

We extend χA to a character χ↓A of U0(N) by χ↓A(g) =
∏
`|N χ

↓
` (g`) (see (2.8) for the definition of χ↓` ). Let

Ak(N,χ−1
A ) be the space of functions Φ : GL2(A)→ C such that V m− Φ = 0 for some m and such that

Φ(zγgκθu) = χA(z)−1Φ(g)e
√
−1kθχ↓A(u)−1 (z ∈ A×, γ ∈ GL2(Q), θ ∈ R, u ∈ U0(N)).

Definition 5.2 (The adèlic lift). With each nearly holomorphic modular form f ∈ Nk(N,χ) we can associate
a unique automorphic form Φ(f) ∈ Ak(N,χ−1

A ) defined by the equation

Φ(f)(γg∞u) := (f |kg∞)(
√
−1) · χ↓A(u)−1

for γ ∈ GL2(Q), g∞ ∈ GL+
2 (R) and u ∈ U0(N) (cf. [Cas73, §3]). We call Φ(f) the adèlic lift of f . Conversely,

we can recover f from Φ(f) by

f(x+
√
−1y) = y−k/2Φ(f)

((
y x
0 1

))
.

Recall that V± are the operators as defined in §4.5. By definition we have

Φ(δkf) = V+Φ(f), Φ(λzf) = V−Φ(f).

We define the Whittaker coefficient and the constant term of Φ ∈ Ak(N,χ−1
A ) by

W (g, Φ) =

∫
Q\A

Φ(n(x)g)ψQ(−x) dx, a0(g, Φ) =

∫
Q\A

Φ(n(x)g) dx.

5.3. Ordinary I-adic modular forms. For any subring A ⊂ C the space Sk(N,χ;A) consists of elliptic cusp
forms f =

∑∞
n=1 a(n, f)qn ∈ Sk(N,χ) such that a(n, f) ∈ A for all n. For every subring A ⊂ Qp containing

Z[χ] we define the space of cusp forms over A by

Sk(N,χ;A) = Sk(N,χ;Z[χ])⊗Z[χ] A.

Here we have viewed χ as a p-adic Dirichlet character via ι−1
p .

Definition 5.3 (p-stabilized newforms). We say that a normalized Hecke eigenform f ∈ Sk(Np, χ) is an
(ordinary) p-stabilized newform (with respect to ιp : C ' Qp) if f is new outside p and the eigenvalue of Up,
i.e. the p-th Fourier coefficient ιp(a(p, f)), is a p-adic unit. The prime-to-p part N ′ of the conductor of f is
called the tame conductor of f . There is a unique decomposition χ = χ′ωaε with a ∈ Z/lZ, where l = 2

⌈
p
2

⌉
,

χ′ is a Dirichlet character modulo N ′ and ε is a character of 1 +pZp. We call χ′ωa the tame nebentypus of f .

Let f◦ =
∑∞
n=1 a(n, f◦)qn ∈ Sk(Np, χ) be a primitive Hecke eigenform of conductor Nf◦ . We call f◦

ordinary if ι−1
p (a(p, f◦)) is a p-adic unit. If this is the case, then precisely one of the roots of the polynomial

X2 − a(p, f◦)X + χ(p)pk−1 (call it αp(f)) satisfies |ιp(αp(f))|p = 1. We associate to an ordinary primitive
form f◦ the p-stabilized newform by

(5.2) f(τ) = f◦(τ)− χ(p)pk−1

αp(f)
f◦(pτ) ∈ Sk(Nf◦p, χ),

if Nf◦ and p are coprime, and f = f◦ if p divides Nf◦ .
Let O be the ring of integers of a finite extension of Qp and I be a normal domain finite flat over Λ =

OJ1 + pZpK. A point Q ∈ Spec I(Qp), a ring homomorphism Q : I→ Qp, is said to be locally algebraic if the
restriction of Q to 1 + pZp is of the form Q(z) = zkQεQ(z) with kQ an integer and εQ(z) ∈ µp∞ . We shall call
kQ the weight of Q and εQ the finite part of Q. Let XI be the set of locally algebraic points Q ∈ Spec I(Qp)

of weight kQ ≥ 1. A point Q ∈ XI is said to be arithmetic if kQ ≥ 2. Let X+
I be the set of arithmetic points,

℘Q = KerQ the prime ideal of I corresponding to Q and O(Q) the image of I under Q.
Let N be a positive integer prime to p and χ : (Z/NpZ)× → O× a Dirichlet character modulo Np. An

I-adic cusp form is a formal power series f(q) =
∑∞
n=1 a(n,f)qn ∈ IJqK with the following property: there
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exists an integer af such that for arithmetic points Q ∈ X+
I with kQ ≥ af , the specialization fQ(q) =∑∞

n=1Q(a(n,f))qn is the Fourier expansion of a cusp form fQ ∈ SkQ(Npe, χω−kQεQ;O(Q)). Denote by
S(N,χ, I) the space of I-adic cusp forms of tame level N and (even) branch character χ. This space S(N,χ, I)
is equipped with the action of the Hecke operators T` for ` - Np as in [Wil88, page 537] and the operators U`

for ` | pN given by U`(
∑
n a(n,f)qn) =

∑
n a(n`,f)qn.

Hida’s ordinary projector eord is defined by

eord := lim
n→∞

Un!
p .

It has a well-defined action on the space of classical modular forms over a p-adically complete ring, which
preserves the cuspidal part as well as on the space S(N,χ, I) (cf. [Wil88, page 537 and Proposition 1.2.1]).
The space Sord(N,χ, I) := eordS(N,χ, I) is called the space of ordinary I-adic forms with respect to χ. For
any p-adically complete Z[χ]-algebra A, we put

Mord
k (N,χ;A) = eordMk(Npe, χ;A); Sord

k (N,χ;A) = eordSk(Npe, χ;A),

where e is any integer that is greater than the exponent of the p-primary part of the conductor of χ. A key
result in Hida’s theory for ordinary I-adic cusp forms is that if f ∈ Sord(N,χ, I), then for every arithmetic
point Q ∈ X+

I , we have fQ ∈ Sord
kQ

(N,χω−kQεQ;O(Q)) (cf. [Hid93, Theorem 3, p.215] or [GK13] for p = 2).
We call f ∈ Sord(N,χ, I) a primitive Hida family if fQ is a cuspidal p-stabilized newform of tame level N for
every arithmetic point Q ∈ X+

I .

5.4. Galois representations. If f ∈ Sord(N,χ, I) is a primitive Hida family of cusp forms, we denote by
Vf the associated p-adic Galois representation. Recall that Vf is a lattice in (Frac I)2 with a continuous
Galois action such that Vf ⊗I,QQp is the Deligne’s p-adic Galois representation associated with fQ for every
arithmetic point Q of I. For Q ∈ X+

I , denote by WD`(VfQ) the representation of the Weil-Deligne group
WQ`

attached to VfQ for each prime `. We remark that if ` ‖ N but ` does not divide the conductor of χ,
then WD`(VfQ) is the Steinberg representation twisted by an unramified character. Moreover, there is an

unramified finite order character ξf ,` : GQ`
→ Q

×
such that ξ2

f ,` = χ−1
` and

(5.3) Vf |GQ`
'

(
ξf ,`εcyc 〈εcyc〉−1/2

I ∗
0 ξf ,` 〈εcyc〉−1/2

I

)
.

6. A p-adic family of pull-backs of Siegel Eisenstein series

6.1. Siegel Eisenstein series. We work in adèlic form, which allows us to assemble Eisenstein series out
of local data. Put Kn = U(n) GSp2n(Ẑ). Let p be a fixed rational prime as in the previous section. Fix
characters χ, ω̂ of Z×p of finite order and extend them to Hecke characters χA, ω̂A : Q×\A× → C× by
composition with the quotient map Q×R+\A× ' Ẑ× � Z×p . We regard χ as either a p-adic character or a
complex character via composition with ιp. Let

I3(ω̂−1
A , χAω̂Aα

s
A) = Ind

GSp6(A)
P3(A) (χ2

Aω̂A � χ−3
A ω̂−1

A αsA) ' ⊗′vI3(ω̂−1
v , χvω̂vα

s
Qv

)

be the global degenerate principal series representation of GSp6(A) on the space of right K3-finite functions
f : GSp6(A)→ C satisfying the transformation laws

f(n(z)m(A, ν)g) = ω̂A(ν−1 detA)χA(ν−3(detA)2)
∣∣ν−3(detA)2

∣∣1+s

A
f(g)

for A ∈ GL3(A), ν ∈ A×, z ∈ Sym3(A) and g ∈ GSp6(A). We define global holomorphic sections of
I3(ω̂−1

A , χAω̂Aα
s
A) similarly. The Eisenstein series associated to a holomorphic section fs of I3(ω̂−1

A , χAω̂Aα
s
A)

is defined by
EA(g, fs) =

∑
γ∈P3(Q)\GSp6(Q)

fs(γg).

Such series is absolutely convergent for Re s > 1 and can be continued to a meromorphic function in s on the
whole plane.



34 MING-LUN HSIEH AND SHUNSUKE YAMANA

Fix a triplet (k, l,m) of positive integers with k ≥ l ≥ m ≥ 2 and let λ = (λ1, λ2, λ3) be the parity type of
(k, l,m) introduced in (4.9). Fix a square-free integer N which is not divisible by p. We write ω̂ = ω1ω2ω3 as
a product of three characters ω1, ω2, ω3 of Z×p . Set

D = (χ, ω1, ω2, ω3).

Assume that ω̂∞ = sgnk−λ1 . Now we define a distinguished section of I3(ω̂−1
v , χvω̂vα

s
Qv

) for each v - N :

• In the archimedean case we consider the section f [k,λ]
s,∞ defined in §4.1;

• In the p-adic case we consider fD,s,p, where the section fD,s,p of I3(ω̂−1
p , χpω̂pα

s
Qp

) is attached to the
quadruplet D in Definition 2.9;

• If ` and Np are coprime, then f0
s,` is the section with f0

s,`(GSp6(Z`)) = 1.

Let fs,N = ⊗`|Nfs,` be an arbitrary holomorphic section of
⊗

`|N I3(ω̂−1
` , χ`ω̂`α

s
Q`

) such that fs,` is invariant

by K(3)
0 (NZ`) for all `|N . Define the normalized Siegel Eisenstein series

(6.1) E?A(g, f
[k,λ]
D,s,N ) = L(∞pN)(2s+ 2, χ2

Aω̂A)L(∞pN)(4s+ 2, χ4
Aω̂

2
A)γ?(k,l,m)(s)

−1 · EA(g, f
[k,λ]
D,s,N ),

where γ?(k,l,m)(s) is defined in §4.5 and f [k,λ]
D,s,N is a global holomorphic section of I3(ω̂−1

A , χAω̂Aα
s
A) defined by

f
[k,λ]
D,s,N (g) = f [k,λ]

s,∞ (g∞)fD,s,p(gp)fs,N ((g`)`|N )
∏
`-Np

f0
s,`(g`).

Since fD,s,p is supported in the big cell P3(Qp)J3P3(Qp), according to [HLS06, (3.2.2.2)] for g ∈ GSp6(A)
with gp ∈ P3(Qp), we have the Fourier expansion

EA(g, f
[k,λ]
D,s,N ) =

∑
B∈Sym3(Q)

WB(g, f
[k,λ]
D,s,N ),(6.2)

where

WB(g, f
[k,λ]
D,s,N ) =

∫
Sym3(A)

f
[k,λ]
D,s,N (J3n(z)g)ψQ(− tr(Bz)) dz.

6.2. The Fourier expansion of the pull-back of Eisenstein series. Let r be an integer with λ2 ≤ r ≤
k − 2. Put

s0 =
k − λ1

2
− r − 1.

Let E[k,r,λ]
D,N (fs0,N ) : H3

1 → C be the modular form of weight (k, k − λ2, k − λ3) defined by

E
[k,r,λ]
D,N (fs0,N )(x+ y

√
−1) := lim

s→s0

E?A
(
ι(n(x1)m(

√
y1),n(x2)m(

√
y2),n(x3)m(

√
y3)), f

[k,λ]
D,s,N

)
√
y1
k√y2

k−λ2
√
y3
k−λ3

for y = (y1, y2, y3) ∈ R3
+ and x = (x1, x2, x3) ∈ R3. We give the Fourier expansion of E[k,r,λ]

D,N (fs0,N ) after
preparing some notation. For any reduced ring R, we put

Sym∗3(R) = {A ∈ Sym3(Frac(R)) | Tr(AB) ∈ R for all B ∈ Sym3(R)} .
Let Sym+

3 denote the set of positive definite rational symmetric matrices of rank 3. Let T+
3 = Sym+ ∩ Sym∗3(Z)

denote the set of positive definite symmetric half-integral matrices of rank 3. Recall that

Ξp = {(bij) ∈ Sym∗3(Zp) | b11, b22, b33 ∈ pZp and b12, b23, b31 ∈ 2−1Z×p }.
For ` - N , FB,` denotes the polynomial FB with the base field F = Q` in (2.6). Set QN =

∏
`|N Q`.

Proposition 6.1. Put n = max{1, c(χ), c(ωi)} and t = min {k − r − 2 + λ2, r} < k
2 . The pull-back

E
[k,r,λ]
D,N (fs0,N ) ∈ N [t]

k (N,ω−1
1 )⊗C N [t]

k (N,ω−1
2 )⊗C N [t]

k (N,ω−1
3 )

is a nearly holomorphic modular form on H3
1 of level Γ0(Np2n)3 and nebentypus (ω−1

1 , ω−1
2 , ω−1

3 ) with the
Fourier expansion given by

E
[k,r,λ]
D,N (fs0,N ) =

C
[k,r,λ]
1

γ?(k,l,m)

(
s0)

∑
B∈T+

3 ∩Ξp

W
[k,r,λ]
B (y) · QB(D)aB(χ2ω̂, k − 2r − λ1)b

[k,r,λ]
B,N qb11

1 qb22
2 qb33

3 ,
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where QB(D) = QB(χ, ω1, ω2, ω3) is defined as in (2.17), qi = e2π
√
−1(xi+

√
−1yi),

aB(χ2ω̂, k − 2r − λ1) :=
∏
`-Np

FB,`(χ`(`)
2ω̂`(`)`

2r+λ1−k);

b
[k,r,λ]
B,N := lim

s→s0

∫
Sym3(QN )

fs,N (J3n(z))ψQ(− tr(Bz)) dz.

Proof. Note that detB ∈ Z×p for B ∈ Ξp, soWB(g, f
[k,λ]
D,s,N ) = 0 unless detB 6= 0. The level and nebentypus

are determined by Proposition 2.10. In particular, our section f
[k,λ]
D,s,N is right invariant by n(Sym3(Ẑ)).

Combined with Proposition 4.7, this shows that WB(g, f
[k,λ]
D,s,N ) = 0 unless B ∈ T+

3 . We can derive the Fourier
expansion formula from (6.2) combined with the factorization

WB(n(z)m(A), f
[k,λ]
D,s,N ) = e2π

√
−1(b11x1+b22x2+b33x3)WB(m(A), f [k,λ]

s,∞ )WB(fD,s,p)
∏
`|N

WB(fs,`)
∏
`-Np

WB(f0
s,`)

(A = diag(
√
y1,
√
y2,
√
y3) ∈ GL3(R), z = diag(x1, x2, x3) ∈ Sym3(R)).

and the computations of local Whittaker functions

lim
s→s0

WB(m(A), f [k,λ]
s,∞ ), WB(f0

s,`); WB(fD,s,p)

in (4.6), (2.7), and Proposition 2.10 respectively. With this Fourier expansion, we can deduce thatE[k,r,λ]
D,N (fs0,N )

is nearly holomorphic with
λt+1
z1 λ

t+1
z2 λ

t+1
z3 E

[k,r,λ]
D,N (fs0,N ) = 0

from the fact that W[k,r,λ]
B (y) is a polynomial in C[y−1

1 , y−1
2 , y−1

3 ] of degree less than or equal to

t = min {k − r − 2 + λ2, r} ≤
k − 2 + λ2

2
<
k

2

in view of (4.7). �

Definition 6.2. For `|N , we define f∗s,` := fΦ0
`
(χ`ω̂`α

s
Q`

) ∈ I3(ω̂−1
` , χ`ω̂`α

s
Q`

) associated with Φ0
` = ISym3(Z`)

the holomorphic section supported in the open cell introduced in Definition 2.2. Put

E
[k,r,λ]
D,N = E

[k,r,λ]
D,N (f∗s0,N ); f∗s,N :=

⊗
`|N

f∗s,`.

If B ∈ T+
3 , by (2.12) we have

b
[k,r,λ]
B,N = ÎSym3(ZN )(−B) = ISym∗3(ZN )(B) = 1.

It follows immediately from Proposition 6.1 that

(6.3) E
[k,r,λ]
D,N =

C
[k,r,λ]
1

γ?(k,l,m)(s0)

∑
B∈T+

3 ∩Ξp

W
[k,r,λ]
B (y) · QB(D)aB(χ2ω̂, k − 2r − λ1)qb11

1 qb22
2 qb33

3 .

6.3. Holomorphic and ordinary projections of E
[k,r,λ]
D,N . Recall that λz is the weight-lowering operator

defined in §5.2. For k ≥ 2 and t < k/2, we write Hol : N [t]
k (N,χ) → Mk(N,χ) for the holomorphic

projection on the space of nearly holomorphic modular forms (cf. [Hid93, (8a), page 314]). Recall that if
f ∈ N [t]

k (N,χ), then Hol(f) ∈Mk(N,χ) is the unique holomorphic form such that f = Hol(f)+
∑t
j=1 δ

j
k−2jhj

with hj ∈ Mk−2j(N,χ). Motivated by [Miz90, (3.6)], we consider the modular forms obtained by applying
the weight-lowering operators to the pull-back of Siegel Eisenstein series. This is different from the classical
Rankin-Selberg setting (cf. [CH20]), where the weight-raising operators are used instead.

Proposition 6.3. Suppose that k < l +m− 1. Let r be an integer which satisfies

k − l +m+ λ1

2
≤ r ≤ l +m

2
− 2.
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Put n = k − r − 2 + l+m−λ1

2 . Then eord Hol
(
λ
k−l−λ2

2
z2 λ

k−m−λ3
2

z3 E
[k,r,λ]
D,N

)
has the q-expansion

(−1)k+
m+l+λ1

2 +λ2

∑
B=(bij)∈T+

3 ∩Ξp

QB(χεncyc, ω1ε
−k
cyc, ω2ε

−l
cyc, ω3ε

−m
cyc )aB(χ2ω̂, k − 2r − λ1)qb11

1 qb22
2 qb33

3 .

Proof. Put b = k−l−λ2

2 and c = k−m−λ3

2 . If f is a holomorphic function on H1, then

λnz (y−af) =

{
(4π)−nn!

(
a
n

)
· yn−af if n ≤ a,

0 if n > a.

By the Fourier expansion (6.3) and the polynomial expansion (4.7) of Whittaker functions, the difference

λbz2λ
c
z3E

[k,r,λ]
D,N − C

[k,r,λ]
1

γ?(k,l,m)(s0)

∑
B

b!c!

(4π)b+c
Q

[k,λ]
0,b,c(B, r)QB(D)aB(χ2ω̂, k − 2r − λ1)qb11

1 qb22
2 qb33

3

belongs to (y−1
1 , y−1

2 , y−1
3 )C[y−1

1 , y−1
2 , y−1

3 ]Jq1, q2, q3K. On the other hand, we can write

λbz2λ
c
z3E

[k,r,λ]
D,N = Hol(λbz2λ

c
z3E

[k,r,λ]
D,N ) +

∑
i+j+t≥1

δik−ifi(q1)δjl−jgj(q2)δtm−tht(q3),

where fi, gj and ht are holomorphic modular forms. Equating the constant terms of this identity as a
polynomial in y−1

1 , y−1
2 , y−1

3 and employing the relation

(6.4) δtk =

t∑
a=0

(
t

a

)
Γ(t+ k)

Γ(a+ k)
(−4πy)a−t

(
1

2π
√
−1

∂

∂z

)a
(see [Hid93, (3), page 311]), we see that the holomorphic projection Hol(λbz2λ

c
z3E

[k,r,λ]
D,N )(q) equals

C
[k,r,λ]
1

γ?(k,l,m)(s0)

∑
B

b! c!

(4π)b+c
Q

[k,λ]
0,b,c(B, r)QB(D)aB(χ2ω̂, k − 2r − λ1)qb11

1 qb22
2 qb33

3 −
∑

i+j+t≥1

θifi(q1)θjgj(q2)θtht(q3).

Here θ stands for the Serre’s operator θ(
∑
i aiq

i) =
∑
i iaiq

i. Since eordθ = 0, the q-expansion of the ordinary
projection eord Hol(λbz2λ

c
z3E

[k,r,λ]
D,N )(q) equals

C
[k,r,λ]
1

γ?(k,l,m)(s0)

∑
B

b! c!

(4π)b+c
cB · qb11

1 qb22
2 qb33

3 ,

where

cB = lim
j→∞

Q
[k,λ]
0,b,c(Bj , r)QBj (D)aBj (χ

2ω̂, k − 2r − λ1), Bj :=

pj!b11 b12 b13

b12 pj!b22 b23

b13 b23 pj!b33

 .

We recall that in the above expression of cB ,

• Q[k,λ]
0,b,c(Bj , r) is the archimedean contribution from the coefficients in the polynomial expansion of

W
[k,r,λ]
B (y) in (4.7),

• QB(D) given in (2.17) of Definition 2.9 is the contribution from the p-adic Whittaker functions;

• aBj (χ2ω̂, k − 2r − λ1) defined in Proposition 6.1 is obtained from the spherical Whittaker functions.
Since pj! → 1 in Z` as j →∞ for any rational prime ` 6= p, we find by definition that

QBj (D) = QB(D), lim
j→∞

aBj (χ
2ω̂, k − 2r − λ1) = aB(χ2ω̂, k − 2r − λ1).

Note that Q[k,λ]
0,b,c(B, r) is a polynomial in B, so we have

cB = Q
[k,λ]
0,b,c(B∞, r)QB(D)aB(χ2ω̂, k − 2r − λ1), B∞ =

 0 b12 b13

b12 0 b23

b13 b23 0

 .
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By the formula of Q[k,λ]
0,b,c(B∞, r) in Lemma 4.9 and Definition 2.9 of QB , we obtain

Q
[k,λ]
0,b,c(B∞, r) = w0,b,c2

−3n+k+l+mQB(εncyc, ε
−k
cyc, ε

−l
cyc, ε

−m
cyc ),

and it follows that

cB = w0,b,c · 2−3n+k+l+mQB(χεncyc, ω1ε
−k
cyc, ω2ε

−l
cyc, ω3ε

−m
cyc )aB(χ2ω̂, k − 2r − λ1).

We thus obtain the lemma by noting the equality

(6.5) (−1)k+
m+l+λ1

2 +λ2γ?(k,l,m)

(
k − λ1

2
− r − 1

)
=
C

[k,r,λ]
1 b! c!

(4π)b+c
2−3n+k+l+m · w0,b,c.

The constant C [k,r,λ]
1 is defined in Proposition 4.7. The equality can be checked by the following items:

• The power of 2:

3(3 + 2r − k − λ2) + {2(k − r)− 3} − 2b− 2c+ (k + l +m− 3n)

+ (7M − 3b− 3c− 3λ1) = −2− k + 2(l +m) + λ1 + 2λ2.

• The power of π: (6− 2)− b− c+ (3M − b− c− 2λ1 − λ2) = −3r + k + l +m+ λ2 − λ1 − 2.
�

6.4. The modular forms G[n]
k1,k2,k3

(D).

Definition 6.4. Let (k1, k2, k3) be a triplet of positive integers. Put k∗ = max {k1, k2, k3}. We say that
(k1, k2, k3) is balanced if 2k∗ < k1 + k2 + k3. An integer n is said to be critical for (k1, k2, k3) if

k∗ ≤ n ≤ k1 + k2 + k3 − k∗ − 2.

Note that critical integers exist if and only if 2k∗ < k1 + k2 + k3 − 1.

Definition 6.5. Fix a balanced triplet (k1, k2, k3) of positive integers. Take a permutation σ of {1, 2, 3} so
that k∗ = kσ(1) ≥ kσ(2) ≥ kσ(3). Denote the parity type of (kσ(1), kσ(2), kσ(3)) by δ = (δ1, δ2, δ3). For each
critical integer n for (k1, k2, k3) and quadruplet D = (ε0, ε1, ε2, ε3) of finite-order p-adic characters of Z×p we
define the modular form G

[n]
k1,k2,k3

(D) by

G
[n]
k1,k2,k3

(D) := (−1)k+
m+l+λ1

2 +λ2eord Hol

(
λ
k∗−kσ(2)−δ2

2

zσ(2) λ
k∗−kσ(3)−δ3

2
zσ(3)

E
[k∗,r,δ]
D

)
,

where r =
⌈
k∗+k1+k2+k3

2

⌉
− n− 2 and D = (ιp ◦ ε0, ιp ◦ ε1, ιp ◦ ε2, ιp ◦ ε3).

Corollary 6.6. With notation in Definition 6.5, G[n]
k1,k2,k3

(D) is an ordinary cusp form of weight (k1, k2, k3),
level Γ0(Np∞)3 and nebentypus (ε−1

1 , ε−1
2 , ε−1

3 ) whose q-expansion at the infinity cusp is given by∑
B=(bij)∈T+

3 ∩Ξp

QB(ε0ε
n
cyc, ε1ε

−k1
cyc , ε2ε

−k2
cyc , ε3ε

−k3
cyc )aB(ε20ε1ε2ε3, 2n− (k1 + k2 + k3) + 4) · qb11

1 qb22
2 qb33

3 .

Proof. The assertion for the Fourier expansion is a direct consequence of Proposition 6.3 by symmetry.
Lemma 6.7 below implies the cuspidality of G[n]

k1,k2,k3
(D). �

Lemma 6.7. Let f ∈ Mk(N,χ;A) and Φ(f) be the adèlic lift of f . Assume that a0(g, Φ(f)) = 0 whenever
gp ∈ B2(Qp). Then eordf ∈ Sord

k (N,χ;A).

Proof. We write Φ = Φ(f) for brevity. Out task is to prove that a0(g, Φ) = 0 for all g ∈ GL2(A). Since

a0(γn(x)diag(a, d)gκθ, Φ) = (ad−1)k/2e
√
−1kθa0(gf , Φ)

for γ ∈ B2(Q), x ∈ A, a, d ∈ R+ and θ ∈ R, it suffices to show that a0(g, Φ) = 0 for all g ∈ GL2(Ẑ). Since

GL2(Zp) = n−(pZp)B2(Zp) t n(Zp)J1B2(Zp),
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where J1 =

(
0 −1
1 0

)
, it suffices to show that a0(hn−(y), Φ) = a0(hJ1, Φ) = 0 for any h ∈ GL2(Ẑ(p)) and

y ∈ pZp. Recall that the operator Up is defined by

UpΦ(g) = p(k−2)/2
∑

x∈Zp/pZp

Φ

(
g

(
$p x
0 1

))
.

Recall that $p ∈ Q̂× is defined by $p,p = p and $p,` = 1 for ` 6= p. Since(
1 0
y 1

)(
$m
p x
0 1

)
=

(
$mp

1+xy
x

1+xy

0 1

)(
1 0

$m
p y 1 + xy

)
∈ B2(Qp)U0(N)

for y ∈ pZp, x ∈ Zp and sufficiently large m, we get

a0(hn−(y),Um
p Φ) = p(k−2)m/2

∑
x∈Zp/pZp

Φ

(
h

(
$mp

1+xy
x

1+xy

0 1

))
= 0

by assumption. It follows that a0(hn−(y), Φ) = lim
n→∞

a0(hn−(y),Un!
p f) = 0. If x ∈ pnZ×p with n < m, then(

0 −1
1 0

)(
$m
p x
0 1

)
=

(
$m−n
p −$n

px
−1

0 $n
p

)(
$n
px
−1 0

$m−n
p $−np x

)
∈ B2(Qp)n

−(pZp).

One can therefore see that

a0(hJ1,U
m
p Φ) = p(k−2)m/2a0(hJ1diag($m

p , 1), f) = p(k−1)m/2a0(diag(1, $−m(p) )hJ1Φ),

from which we conclude that

a0(hJ1, Φ) = lim
n→∞

p(k−1)n!/2a0(diag(1, $−n!
(p) )hJ1, Φ) = 0.

Here $(p) ∈ Ẑ× is defined by $(p),p = 1 and $(p),` = p for ` 6= p. �

6.5. The p-adic interpolation of G[n]
k1,k2,k3

(D). Let u = 1 + p ∈ 1 + pZp be a topological generator. We
identify OJGal(Q∞/Q)K with OJXK where X = [u]− 1 with the group-like element [u] in Λ. Put

Λ = OJGal(Q∞/Q)K, Λ3 = OJX1, X2, X3K, Λ4 = Λ3JT K.

For each ` and B ∈ T+
3 , let FB,`(X) ∈ Z[X] be as defined in (2.7). Let αX : Z×p → ZpJXK× be the character

αX(z) = 〈z〉X = (1 + X)logp z/ logp u. Let χ = (χ1, χ2, χ3) be a triplet of O-valued finite-order characters of
Z×p . For each a ∈ Z/(p− 1)Z we define the formal power series G(a)

χ ∈ Λ4Jq1, q2, q3K by

G(a)
χ (X1, X2, X3, T ) =

∑
B=(bij)∈T+

3 ∩Ξp

Q(a)
B (X1, X2, X3, T ) · F (a)

B (X1, X2, X3, T ) · qb11
1 qb22

2 qb33
3 ,

where Q(a)
B and F (a)

B ∈ Λ3JT K are power series given by

Q(a)
B (X1, X2, X3, T ) = ω(8b23b31b12)a 〈8b23b31b12〉T χ1(2b23)−1 〈2b23〉−1

X1
χ2(2b31)−1 〈2b31〉−1

X2
χ3(2b12)−1 〈2b12〉−1

X3
,

F (a)
B (X1, X2, X3, T ) =

∏
`-pN

FB,`(〈`〉(a)
X1,X2,X3,T

`−2),

where

(6.6) 〈`〉(a)
X1,X2,X3,T

:= (ω−2aχ1χ2χ3)(`)`−2 · 〈`〉X1
〈`〉X2

〈`〉X3
〈`〉−2

T ∈ Λ×4 .

Here the set Xbal
Λ4

consists of (Q,P ) = (Q1, Q2, Q3, P ) ∈ (X+
Λ)3 × XΛ ⊂ Spec Λ4(Qp) such that (kQ1

, kQ2
, kQ3

)
is balanced and kP is critical for (kQ1

, kQ2
, kQ3

).

Proposition 6.8. For every (Q,P ) ∈ Xbal
Λ4

, we have

G(a)
χ (Q,P ) = G

[kP ]
kQ1

,kQ2
,kQ3

(εPω
a−kP , χ−1

1 ε−1
Q1
ωkQ1 , χ−1

2 ε−1
Q2
ωkQ2 , χ−1

3 ε−1
Q3
ωkQ3 ).

In particular, this implies that

G(a)
χ ∈ Sord(N,χ1,OJX1K)⊗̂OSord(N,χ2,OJX2K)⊗̂OSord(N,χ3,OJX3K)⊗̂OOJT K.
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Proof. Set χ := εPω
a−kP , ωi = χ−1

i ε−1
Qi
ωkQi and ω̂ = ω1ω2ω3. One can check that

Q(a)
B (Q,P ) =

(εPω
a)(8b12b23b13) 〈8b12b23b13〉kP

(χ1εQ1
)(2b23)(χ2εQ2

)(2b13)(χ3εQ3
)(2b12) 〈2b23〉kQ1 〈2b31〉kQ2 〈2b12〉kQ3

= QB(χεkPcyc, ω1ε
−kQ1
cyc , ω2ε

−kQ2
cyc , ω3ε

−kQ3
cyc ),

〈`〉(a)
X1,X2,X3,T

(Q,P ) = (ω−2aχ1χ2χ3)(`)`−2 · (εQ1εQ2εQ3ε
−2
P ω

2kP−kQ1
−kQ2

−kQ3 )(`)−1`kQ1
+kQ2

+kQ3
−2kP

= χ2
`(`) |`|

2kP+2
ω̂`(`) |`|−(kQ1

+kQ2
+kQ3

)
,

F (a)
B (Q,P ) = aB(χ2ω̂, 2kP − (kQ1 + kQ2 + kQ3) + 4)

(see Definition 2.9 of QB). Recall our convention in (5.1) that χ`(`) = ιp(χ(`))−1 and ω̂`(`) = ιp(ω̂(`))−1.
From Corollary 6.6, we deduce the interpolation formula and that

(6.7) G(a)
χ (Q,P ) ∈ Sord

kQ1
(N,ω−1

1 ;O(Q1))⊗̂OSord
kQ2

(N,ω−1
2 ;O(Q2))⊗̂OSord

kQ3
(N,ω−1

3 ;O(Q3))⊗̂OO(P ).

By the control theorem for ordinary Λ-adic forms [Hid93, Theorem 3, p.215], for any arithmetic point Q, the
specialization map X 7→ ukQεQ(u)− 1 yields an isomorphism

Sord(N,χ,OJXK)/(1 +X − ukQεQ(u)) ' Sord
kQ (N,χω−kQεQ;O(Q)).

Hence, from (6.7) we find that for all P with kP = 2

G(a)
χ (X1, X2, X3, P ) ∈ Sord(N,χ1,OJX1K)⊗̂OSord(N,χ2,OJX2K)⊗̂OSord(N,χ3,OJX3K)⊗O O(P ).

Now we can deduce the second statement from the above equation combined with the argument in [Hid93,
Lemma 1, page 328]. �

7. Four-variable p-adic triple product L-functions

7.1. Measures. The Tamagawa measures dg on PGL2(A) and dg′ on SL2(A) are given by dg = ζQ(2)−1
∏
v dgv

and dg′ = ζQ(2)−1
∏
v dg′v. Since Z\H ' PGL2× SL2×SL2, we can define the Tamagawa measure on Z\H

by dg1dg′2dg′3, where dg1 is the Tamagawa measure on PGL2(A) and dg′2 = dg′3 are that on SL2(A). The
Tamagawa numbers of PGL2, SL2 and Z\H are 2, 1 and 2, respectively (cf. [IP21, Lemma 6.1.1]).

7.2. Garrett’s integral representation. Let πi (i = 1, 2, 3) be an irreducible cuspidal automorphic repre-
sentation of GL2(A) generated by an elliptic cusp form of weight ki and nebentypus ω−1

i . Put ω̂ = ω1ω2ω3

and π̆i = πi ⊗ ω
−1
i,A for i = 1, 2, 3. Fix a character χA of A×/Q×R+. For each triplet of cusp forms ϕi ∈ π̆i

and a holomorphic section fs of I3(ω̂−1
A , χAω̂Aα

s
A) we consider the global zeta integral defined by

Z(ϕ1, ϕ2, ϕ3, EA(−, fs)) =

∫
Z(A)H(Q)\H(A)

ϕ1(g1)ϕ2(g2)ϕ3(g3)EA(ι(g1, g2, g3), fs) dg1dg′2dg′3.

The integral converges absolutely for all s away from the poles of the Eisenstein series and is hence meromorphic
in s. Unfolding the Eisenstein series as in [PSR87], we get

Z(ϕ1, ϕ2, ϕ3, EA(−, fs)) =

∫
Z(A)U0(A)\H(A)

W (g1, ϕ1)W (g2, ϕ2)W (g3, ϕ3)fs(ηι(g1, g2, g3)) dg1dg′2dg′3.

If W (g, ϕi) =
∏
vWi,v(gv) and fs(g) =

∏
v fs,v(gv) are factorizable, then the integral factors into a product

of local integrals and so by §2.2

Z(ϕ1, ϕ2, ϕ3, EA(−, fs)) =
ζQ(2)−3L

(
s+ 1

2 , π1 × π2 × π3 ⊗ χA

)
LS(2s+ 2, χ2

Aω̂A)LS(4s+ 2, χ4
Aω̂

2
A)

∏
v∈S

Z(W1,v,W2,v,W3,v, fs,v)

L
(
s+ 1

2 , π1,v × π2,v × π3,v ⊗ χv
) ,

where S is a large enough set of places such that πi,`, Wi,`, χ` and fs,` are unramified for all ` /∈ S. The
complete L-function L(s, π1 × π2 × π3 ⊗ χA) admits meromorphic continuation and a functional equation

L(s, π1 × π2 × π3 ⊗ χA) = ε(s, π1 × π2 × π3 ⊗ χA)L(1− s, π1 × π2 × π3 ⊗ ω̂−1
A χ−1

A ).

By Theorem 2.7 of [Ike92] the L-function L(s, π1 × π2 × π3 ⊗ χA) has a pole if and only if there exists an
imaginary quadratic field E and characters of χi ofA×E/E

× such that χ1χ2χ3χ
E = 1 and such that πi is induced
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automorphically from χi, where χE denotes the base change of χ to E. Recall that k∗ = max{k1, k2, k3}. In
particular, if k1 + k2 + k3 ≥ 2k∗ + 2, then L(s, π1 × π2 × π3 ⊗ χA) is holomorphic everywhere. Let us put

J∞ =

(
−1 0
0 1

)
∈ GL2(R), tn =

(
0 p−n

−pn 0

)
∈ GL2(Qp) ↪→ GL2(A).

Let λ be the parity type of (k1, k2, k3). Suppose that k∗ = k1 and k1 < k2 + k3. Let E?A
(
−, f [k1,λ]

D,s,N
)
be the

Eisenstein series defined in (6.1).

Lemma 7.1. Let fi ∈ Ski(Ni, ω−1
i ) be an ordinary p-stabilized newform. Put

ϕi = Φ(fi), ϕ̆i = ϕi ⊗ ω−1
i,A, W (ϕi) =

∏
v

Wi,v, W̆i,v = Wi,v ⊗ ω−1
i,v ,

Let χ be a character of Z×p of finite order. Put n = max{1, c(χ), c(ω1), c(ω2), c(ω3)}. Let N be the least
common multiple of N1, N2, N3. If N is square-free, then

Z
(
ρ(J∞tn)ϕ̆1, ρ(J∞tn)V

k1−k2−λ2
2

+ ϕ̆2, ρ(J∞tn)V
k1−k3−λ3

2
+ ϕ̆3, E

?
A

(
−, f [k1,λ]

D,s,N
))

=L(N)

(
s+

1

2
, π1 × π2 × π3 ⊗ χA

)
Ep

(
s+

1

2
, π1,p × π2,p × π3,p ⊗ χp

)
×

3∏
i=1

ζp(2)

ζp(1)

(
αp(fi)

2

pkiωi,p(p)

)n ∏
`|N Z(W̆1,`, W̆2,`, W̆3,`, fs,`)

ζQ(2)325+(k1+k2+k3)

Proof. By Garrett’s integral representation of triple L-functions the left hand side equals

ζQ(2)−3L(∞pN)

(
s+

1

2
, π1 × π2 × π3 ⊗ χA

)
×γ?(k1,k2,k3)(s)

−1Z
(
ρ(J∞)W̆1,∞, ρ(J∞)V

k1−k2−λ2
2

+ W̆2,∞, ρ(J∞)V
k1−k3−λ3

2
+ W̆3,∞, f

[k1,λ]
s,∞

)
×Z(ρ(tn)W̆1,p, ρ(tn)W̆2,p, ρ(tn)W̆3,p, fD,s,p)

∏
`|N

Z(W̆1,`, W̆2,`, W̆3,`, fs,`)

in view of Definition 6.2 of E?A
(
f

[k1,λ]
D,s

)
. Since W̆i,∞ = Wi,∞, Lemma 4.10 yields

Z
(
ρ(J∞)W̆1,∞, ρ(J∞)V

k1−k2−λ2
2

+ W̆2,∞, ρ(J∞)V
k1−k3−λ3

2
+ W̆3,∞, f

[k1,λ]
s,∞

)
=Z∞(s) = χ∞(−1)

γ?(k1,k2,k3)(s)

25+(k1+k2+k3)
L

(
s+

1

2
, σk1

× σk2
× σk3

⊗ χ∞
)
.

Proposition 2.10 calculates the p-adic part:

Z(ρ(tn)W̆1,p, ρ(tn)W̆2,p, ρ(tn)W̆3,p, fD,s,p)

L
(
s+ 1

2 , π1,p × π2,p × π3,p ⊗ χp
) 3∏

i=1

ζp(1)

ζp(2)

(
pkiωi,p(p)

αp(fi)2

)n
=Z∗p (fD,s,p) = χp(−1)Ep

(
s+

1

2
, π1,p × π2,p × π3,p ⊗ χp

)
.

Since χA is unramified outside p, we have χ∞(−1) = χp(−1). �

7.3. The congruence number. Put ∆ = (Z/NpZ)×. Let ∆̂ be the group of Dirichlet characters modulo
Np. Enlarging O if necessary, we assume that every χ ∈ ∆̂ takes value in O×. Let

Sord(N, I) := ⊕χ∈∆̂Sord(N,χ, I)

be the space of ordinary I-adic cusp forms of tame level Γ1(N). Let σd denote the usual diamond operator for
d ∈ ∆ acting on Sord(N, I) by σd(f)χ∈∆̂ = (χ(d)f)χ∈∆̂. The ordinary I-adic cuspidal Hecke algebra T(N, I)

is defined as the I-subalgebra of EndI S
ord(N, I) generated over I by the Hecke operators T` with ` - Np, the

operators U` with `|Np and the diamond operators σd with d ∈ ∆. Let Tord
k (N,χ) denote the O-subalgebra of

EndO eordSk(N,χ) generated over O by the operators T` with ` - Np and U` with `|Np. For any p-stabilized
newform f in eordSk(N,χ;O), let λf : Tord

k (N,χ) → O be the homomorphism corresponding to f such that
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λf (T`) = a(`, f) if ` - Np, λf (U`) = a(`, f) for ` | Np. Let 1f ∈ Tord
k (N,χ)⊗ FracO be the idempotent with

λf (1f ) = 1.
Let f ∈ Sord(N,χ, I) be a primitive Hida family of tame conductor N and character χ. The corresponding

homomorphism λf : T(N, I) → I is defined by λf (T`) = a(`,f) for ` - Np, λf (U`) = a(`,f) for ` | Np and
λf (σd) = χ(d) for d ∈ ∆. We denote by mf the maximal ideal of T(N, I) containing Kerλf and by Tmf

the
localization of T(N, I) at mf . It is the local ring of T(N, I) through which λf factors. It is well-known that
Tmf

is a local finite flat Λ-algebra, and there is an algebra direct sum decomposition

λ̃f : Tmf
⊗I Frac I ' Frac I⊕B, t 7→ λ̃f (t) = (λf (t), λB(t)),(7.1)

where B is some finite dimensional (Frac I)-algebra ([Hid88b, Corollary 3.7]). Let

1f = λ̃−1
f ((1, 0)) ∈ Tmf

⊗I Frac I

be the idempotent corresponding to the direct summand Frac I in the above decomposition. Recall that the
congruence ideal C(f) of the morphism λf : Tmf

→ I is defined by

C(f) := λf (AnnTmf
(Kerλf )) ⊂ I.

Note that by definition H · 1f ∈ Tmf
for any H ∈ C(f) and

C(f) = λf (Tmf
∩ λ̃−1

f (Frac I⊕ {0})).
Now we consider the following hypothesis:

Hypothesis (CR). The residual Galois representation ρf of ρf is absolutely irreducible and p-distinguished.

Suppose that p > 3. Under the hypothesis (CR), Tmf
is Gorenstein by [Wil95, Corollary 2, page 482].

With this property of Tmf
Hida in [Hid88a] proved that the congruence ideal C(f) is generated by a non-zero

element ηf ∈ I, called the congruence number for f . Let 1∗f be the unique element in Tmf
∩ λ̃−1

f (Frac I⊕{0})
such that λf (1∗f ) = ηf . Then 1∗f = ηf · 1f by definition. For Q ∈ X+

I and χ ∈ ∆̂, we write ℘Q,χ for the ideal
of T(N, I) generated by ℘Q = KerQ and {σd − χ(d)}d∈∆. A classical result in Hida theory asserts that

T(N, I)/℘Q,χ ' Tord
kQ (Npe, χω−kQεQ)⊗O O(Q)

(see Theorem 3.4 of [Hid88b]). Moreover, for each arithmetic point Q, it is also shown by Hida that the
specialization ηf (Q) ∈ O(Q) is the congruence number for fQ and

1fQ = η−1
f 1∗f (mod ℘χ,Q) ∈ Tord

kQ (Npe, χω−kQεQ)⊗O FracO(Q)

is the idempotent with λfQ(1fQ) = 1.

Definition 7.2. Let f be a primitive Hida family satisfying (CR). To each choice of the congruence number ηf
we associate Hida’s canonical period Ωf of a p-ordinary newform f of weight k obtained by the specialization
of f defined by

Ωf := η−1
f · (−2

√
−1)k+1‖f◦‖2Γ0(Nf◦ ) · Ep(f,Ad),

where ηf is the specialization of ηf , f◦ the primitive form associated with f , Nf◦ its conductor and Ep(f,Ad)
the modified p-Euler factor attached to the adjoint motive of f (see §1.4).

7.4. Hida’s functional. When ϕ ∈ Ak(N,ωA) and ϕ′ ∈ Ak(N,ω−1
A ) are cuspidal, we define the pairing by

〈ρ(J∞)ϕ,ϕ′〉 =

∫
A× GL2(Q)\GL2(A)

ϕ(gJ∞)ϕ′(g) dg.

Let f ∈ Sk(Nf , ω
−1) be an ordinary p-stabilized newform of level Nf , i.e., Upf = αp(f)f with p-unit

ι−1
p (αp(f)). Write Nf = Ntp

c with Nt prime to p. For n ≥ c, we define Hida’s functional Lf on Sk(Ntp
2n, ω;O)

by

Lf (F) =

(
ωp(p)p

k

αp(f)2

)n−1 〈ρ(J∞tn)(ϕ ⊗ ω−1
A ), Φ(F)〉

〈ρ(J∞t1)(ϕ ⊗ ω−1
A ), ϕ〉

,

where ϕ = Φ(f) is the adèlic lift of f . Note that for F ∈ Sk(Np2n, ω) with Nt | N ,

Lf (F) = [Γ0(N) : Γ0(Nt)]
−1Lf (TrN/Nt

F).
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Lemma 7.3. (1) Lf (f) = 1.
(2) If F0 ∈ Nk+2m(Np2n, ω) with Nt | N , then

Lf (1∗f TrN/Nt
eord Hol(λmz F0))

ζQ(2)[SL2(Z) : Γ0(N)]
= (−1)m+1(2

√
−1)k+1 〈ρ(J∞tn)(V m+ ϕ ⊗ ω−1

A ), Φ(F0)〉

Ωf

(
αp(f)2

pkωp(p)

)n
ζp(2)
ζp(1)

.

Proof. The first assertion follows from the following formula stated in [Hsi21, Lemma 3.6]:

〈ρ(J∞tn)(ϕ ⊗ ω−1
A ), ϕ〉 = ω∞(−1)〈ρ(J∞tn)ϕ⊗ ω−1

A , ϕ〉

=
(−1)kζQ(2)−1

[SL2(Z) : Γ0(Nt)]
· ‖f◦‖2Γ0(Nf◦ ) · Ep(f,Ad) · αp(f)2nζp(2)

pknωp(p)nζp(1)

= − ζQ(2)−1

[SL2(Z) : Γ0(Nt)]
· ηfΩf

(2
√
−1)k+1

·
(
αp(f)2

pkωp(p)

)n
ζp(2)

ζp(1)
.

We remark that ϕ̆ = ϕ and ω(p) = ωA in the notation of [Hsi21].
To see the second part, we note that as a consequence of strong multiplicity one theorem for elliptic modular

forms, the idempotent 1f is generated by the Hecke operators T` with ` - Np, which implies that 1f is the
adjoint operator of 1ϕ⊗ω−1

A
with respect to the pairing. We are thus led to Lf (1∗fF) = ηfLf (F). Moreover,

Lf (UpF) = αp(f)Lf (F) (cf. the proof of Proposition 2.10 of [Kob13]) and hence

Lf (eordF) = lim
j→∞

Lf (Uj!
p F) = lim

j→∞
αp(f)j!Lf (F) = Lf (F).

One can easily verify that for φ ∈ Φ(Sk(M,χ−1)), F1 ∈ Nk(M,χ) and F2 ∈ Nk+2(M,χ)

〈ρ(J∞)φ, Φ(HolF1)〉 = 〈ρ(J∞)φ, Φ(F1)〉, 〈ρ(J∞)φ, Φ(λzF2)〉 = −〈ρ(J∞)V+φ, Φ(F2)〉.

The second part is a consequence of these results. �

7.5. The construction of p-adic L-functions. Let

F = (f , g,h) ∈ Sord(N1, χ1, I)× Sord(N2, χ2, I)× Sord(N3, χ3, I)

be a triplet of primitive I-adic Hida families of tame square-free level (N1, N2, N3) and tame characters
(χ1, χ2, χ3), where I is a finite flat domain over Λ = OJΓK. Assuming that p > 3 and that all f , g and h
satisfy Hypothesis (CR), we fix a choice of the congruence numbers (ηf , ηg, ηh). Let

1∗f ∈ T(N1, I), 1∗g ∈ T(N2, I), 1∗h ∈ T(N3, I)

be the idempotents multiplied by a fixed choice of congruence numbers (ηf , ηg, ηh) in the Hecke algebras
attached to the newforms (f , g,h). Put

N := lcm(N1, N2, N3), N− := gcd(N1, N2, N3), I3 := I⊗̂OI⊗̂OI.

Definition 7.4. Define the p-adic triple product L-function LF ,(a) in I3JT K by

LF ,(a) := the first Fourier coefficient of 1∗f ⊗ 1∗g ⊗ 1∗h(TrN/N1
⊗TrN/N2

⊗TrN/N3
(G(a)
χ )) ∈ I3JT K.

We proceed to show the interpolation LF ,(a)(Q,P ) at (Q,P ) ∈ Xbal
I4

is given by critical values of motivic
L-functions associated with triple product of elliptic modular forms.

7.6. The interpolation formulae. In the notation of the introduction, we let V = Vf ⊗̂OVg⊗̂OVh and
V = V⊗̂Oωa 〈εcyc〉T be the triple tensor product of I-adic Galois representations associated with primitive
Hida families f , g and h twisted by ωa 〈εcyc〉T . Let NV = N−N4 be the tame conductor of V and let tV
denote the number of prime factors of N−. Define the rank four GQp

-invariant subspace of V by

Fil+ V = (Fil0 Vf ⊗ Fil0 Vg ⊗ Vh + Fil0 Vf ⊗ Vg ⊗ Fil0 Vh + Vf ⊗ Fil0 Vg ⊗ Fil0 Vh)⊗ ωa 〈εcyc〉T .

For each `|N−, let
√
〈`〉(a)

X1,X2,X3,T
∈ I×4 be a square root of 〈`〉(a)

X1,X2,X3,T
in (6.6) defined by√

〈`〉(a)
X1,X2,X3,T

:= (ω−aξf ,`ξg,`ξh,`)(`)`
−1 · 〈`〉1/2X1

〈`〉1/2X2
〈`〉1/2X3

〈`〉−1
T ,
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where ξf ,` (resp. ξg,` and ξh,`) is the unramified character of GQ`
in (5.3). Recall that wQ = kQ1

+kQ2
+kQ3

−3

and ΓV(Q,P )
(s) = L∞

(
s+ kP −

wQ
2 , πfQ1

× πgQ2
× πhQ3

)
. Let Ep(Fil+ V(Q,P )) be the modified p-Euler factor

defined in §1.3.

Theorem 7.5. Let p > 3. Assume that N := lcm(N1, N2, N3) is square-free and that the conductor of tame
nebentypus χi divides p. Let t denote the number of prime factors of N . If f , g and h satisfy Hypothesis
(CR), then for each arithmetic point (Q,P ) = (Q1, Q2, Q3, P ) ∈ Xbal

I4
we have

LF ,(a)(Q,P ) =ΓV(Q,P )
(0) ·

L(V(Q,P ), 0)

ΩfQ1
ΩgQ2

ΩhQ3

· (
√
−1)kQ1

+kQ2
+kQ3

−3 · Ep(Fil+ V(Q,P )) · fχ,a,N1,N2,N3
(Q,P ),

where fχ,a,N1,N2,N3
∈ I×4 is the fudge factor given by

fχ,a,N1,N2,N3
:=

(−1)t−tV

N
∏
`|N−

√
〈`〉(a)

X1,X2,X3,T

.

Proof. For brevity we write (f1, f2, f3) = (fQ1
, gQ2

,hQ3
), (k, l,m) = (kQ1

, kQ2
, kQ3

), πi = πfi and Ni =
Nfi . We may assume that k ≥ l ≥ m. Then we must have k < l+m− 1. Let λ be the parity type of (k, l,m).
Put

χ = εPω
a−kP , ωi = ωkQiχ−1

i ε−1
Qi
, D = (χ, ω−1

1 , ω−1
2 , ω−1

3 ), n = max{1, c(ωi), c(χ)}.

We define the functional Lf1,f2,f3
on

Sk(N1p
2n, ω−1

1 ;O(Q1))⊗O Sl(N2p
2n, ω−1

2 ;O(Q2))⊗O Sm(N3p
2n, ω−1

3 ;O(Q3))

by
Lf1,f2,f3

(F1 ⊗F2 ⊗F3) = Lf1
(F1)Lf2

(F2)Lf3
(F3).

Let 1∗f1
be the specialization of 1∗f at Q1. By definition and the theory of newforms

1∗f1
⊗ 1∗f2

⊗ 1∗f3
(TrN/N1

⊗TrN/N2
⊗TrN/N3

(G(a)
χ (Q,P ))) = LF ,(a)(Q,P ) · f1 ⊗ f2 ⊗ f3.

We apply the functional Lf1,f2,f3
to both the sides to get

LF ,(a)(Q,P ) = Lf1,f2,f3(1∗f1
⊗ 1∗f2

⊗ 1∗f3
(TrN/N1

⊗TrN/N2
⊗TrN/N3

(G(a)
χ (Q,P )))),

taking Lemma 7.3(1) into account. Let ϕi = Φ(fi) and GA(D) = Φ(G(a)
χ (Q,P )) be the adèlic lifts. Put

ϕ̆i = ϕi ⊗ ω
−1
i,A. In the previous section we verified that

GA(D) = lim
s→−r+ k−λ1

2 −1

(−1)k+
l+m+λ1

2 +λ2eord Hol
((

1⊗ V
k−l−λ2

2
− ⊗ V

k−m−λ3
2

−

)
ι∗E?A

(
−, f [k,λ]

D,s,N
))
,

where r = k− kP + l+m−λ1

2 − 2, where E?A
(
−, f [k,λ]

D,s,N ) is the normalized Eisenstein series in Definition 6.2 (see
Proposition 6.8 and Definition 6.5). Therefore Lemma 7.3 (2) yields

LF ,(a)(Q,P )

ζQ(2)3[SL2(Z) : Γ0(N)]3
= −(2

√
−1)k+l+m+3 ζp(1)3

ζp(2)3

3∏
i=1

Ω−1
fi

(
pkQiωi,p(p)

αp(fi)2

)n
× 4 lim

s→kP− k+l+m
2 +1

Z
(
ρ(J∞tn)ϕ̆1, ρ(J∞tn)V

k−l−λ2
2

+ ϕ̆2, ρ(J∞tn)V
k−m−λ3

2
+ ϕ̆3, E

?
A

(
−, f [k,λ]

D,s,N
))
.

Let W (ϕi) =
∏
vWi,v be the Whittaker function of ϕi and put W̆i,v := Wi,v ⊗ ω−1

i,v . Let πi be the
automorphic representation generated by ϕi. We obtain by Lemma 7.1 that

LF ,(a)(Q,P ) =
L
(
kP − k+l+m−3

2 , π1 × π2 × π3 ⊗ χA

)
(
√
−1)3−(k+l+m)Ωf1

Ωf2
Ωf3

Ep(Fil+ V(Q,P ))
∏
`|N

Z∗` ,

where

Z∗` = [SL2(Z) : Γ0(`)]3 lim
s→kP− k+l+m

2 +1

Z(W̆1,`, W̆2,`, W̆3,`, f
∗
s,`)

L
(
s+ 1

2 , π1,` × π2,` × π3,` ⊗ χ`
) .
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For ` | N , Proposition 3.4 gives

Z∗` = −`(ω̂2
`χ

4
`)(`)|`|4kP−2(k+l+m)+4ε

(
kP −

k + l +m− 3

2
, π1,` × π2,` × π3,` ⊗ χ`,ψ`

)−1

.

By what we have seen in the proof of Proposition 6.8

χ2
` ω̂`(`)`

−2kP+(k+l+m)−2 = 〈`〉X1,X2,X3,T
(Q,P ).

The proof of Lemma 7.9 completes the proof. �

Definition 7.6. We normalize p-adic triple product L-function by

L∗F ,(a) := LF ,(a) · f−1
χ,a,N1,N2,N3

.

Remark 7.7. Provided that p > 3, χ1χ2χ3 = ω2a for some a, a three-variable p-adic L-function Lbal
F ∈ I3

was constructed by a different approach in [Hsi21, Theorem B] such that for each balanced central point
Q = (Q1, Q2, Q3) ∈ Xbal

I3(
Lbal
F (Q)

)2
= ΓVQ

(0) ·
L(V†Q, 0)

ΩfQ1
ΩgQ2

ΩhQ3

· (
√
−1)kQ1

+kQ2
+kQ3

−3 · Ep(Fil+ V†Q),

where

V† := V ⊗ ωa 〈εcyc〉1/2X1
〈εcyc〉1/2X2

〈εcyc〉1/2X3
ε−1

cyc,

Fil+ V† = Fil+ V ⊗ ωa 〈εcyc〉1/2X1
〈εcyc〉1/2X2

〈εcyc〉1/2X3
ε−1

cyc.

We remark that detVf = (χ1 ◦ εcyc)−1 〈εcyc〉−1
I εcyc. By the interpolation formulae, we find that

L∗F ,(a−1)(X1, X2, X3,u
−1{(1 +X1)(1 +X2)(1 +X3)}1/2 − 1) = Lbal

F (X1, X2, X3)2.

This shows that the compatibility between p-adic L-functions constructed by different methods.

Without the assumption p > 3 and Hypothesis (CR), our method yields the construction of the p-adic
L-function with denominators. For each p-stabilized newform f of weight k, define the p-modified period by

Ω†f := (−2
√
−1)k+1 · ‖f◦‖2Γ0(Nf◦ ) · Ep(f,Ad).

By definition, Ω†f · ηf is equal to Hida’s canonical period Ωf up to p-adic units.

Corollary 7.8. Let p be an arbitrary rational prime. There exists an element

L∗∗F ,(a) ∈ I4 ⊗I3 (Frac I⊗ Frac I⊗ Frac I)

such that
• for each balanced critical (Q,P ) = (Q1, Q2, Q3, P ) ∈ Xbal

I4
,

L∗∗F ,(a)(Q,P ) =
ΓV(Q,P )

(0)L(V(Q,P ), 0)

Ω†fQ1

Ω†gQ2
Ω†hQ3

· (
√
−1)kQ1

+kQ2
+kQ3

−3 · Ep(Fil+ V(Q,P ));

• for any H1, H2 and H3 in the congruence ideals of f , g and h,

H1H2H3 · L∗∗F ,(a) ∈ I4.

Proof. For any H1, H2 and H3 in the congruence ideals of f , g and h, we let LH ∈ I3JT K be the first
Fourier coefficient of

H11f ⊗H21g ⊗H31h

(
TrN/N1

⊗TrN/N2
⊗TrN/N3

(G(a)
χ )
)
∈ I3JT KJq1, q2, q3K.

Then L∗∗F ,(a) := LH · (H1H2H3)−1 · f−1
χ,a,N1,N2,N3

enjoys the desired properties. �

This p-adic L-function L∗∗F ,(a) is more canonical in the sense that it does not depend on any particular choice
of generators of the congruence ideal of f , g and h.
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7.7. The functional equation. We introduce the I4-adic epsilon factor and the functional equation of our
p-adic L-functions. For each (Q,P ) ∈ Xbal

I4
, the local epsilon factor of the triple tensor product representation

V(Q,P ) at ` 6= p is defined by

ε`(V(Q,P ), s) = ε(s+ kP − wQ/2,WD`(VfQ1
)⊗WD`(VgQ2

)⊗WD`(VhQ3
)⊗ ωa−kP εP ,ψ`).

Note that with the assumption (sf), WD`(VfQ1
), WD`(VgQ2

), WD`(VhQ3
) are either unramified or the Stein-

berg representation twisted by an unramified character. We define the I4-adic epsilon factor ε(p∞)(V) ∈ I×4
by

(7.2) ε(p∞)(V) = (−1)tV
∏
`|N

〈
`2
〉(a)

X1,X2,X3,T

∏
`|N−

√
〈`〉(a)

X1,X2,X3,T
.

Lemma 7.9 (Interpolation of the epsilon factors). Notation being as above, we get

ε(p∞)(V(Q,P )) =
∏
6̀=p

ε`(V(Q,P ), 0).

Proof. We retain the notation of the proof of Proposition 6.8. Remark 3.5 gives

ε`(V(Q,P ), 0) = χ`(`)
4ω̂(`)2`−4kP+2(kQ1

+kQ2
+kQ3

)−4 =
〈
`2
〉(a)

X1,X2,X3,T
(Q,P )

if ` divides N/N−. If ` divides N−, putting ξ` = ξf ,`ξg,`ξh,`, we have

ε`(V(Q,P ), 0) = −χ`(`)5ξ`(Frob`)
5`5(−2kP+kQ1

+kQ2
+kQ3

−2)/2

= −
〈
`2
〉(a)

X1,X2,X3,T
(Q,P )

√
〈`〉(a)

X1,X2,X3,T
(Q,P ).

We have thus completed our proof. �

Recall that we have fixed the topological generator u = 1 + p of Γ = 1 + pZp as in §6.5.

Proposition 7.10. With the hypotheses in Proposition 7.5, we further assume that χ1χ2χ3 = ωa0 . Then

L∗F ,(a)(X1, X2, X3, T ) = (−ε(p∞)(V)) · L∗F ,(a0−a−2)

(
X1, X2, X3,

(1 +X1)(1 +X2)(1 +X3)

u2(1 + T )
− 1

)
.

Proof. Recall that χ = εPω
a−kP and ωi = χ−1

i ε−1
Qi
ωkQi . Put

kP̆ = kQ1
+ kQ2

+ kQ3
− kP − 2, εP̆ = ε−1

P εQ1
εQ2

εQ3
, χ̆ = εP̆ω

a0−a−2−kP̆ = χ−1ω−1
1 ω−1

2 ω−1
3 .

Thus the left hand side specialized at (Q, P̆ ) equals

L∗F ,(a0−a−2)(Q, P̆ ) =
L(1− s0, π

∨
1 × π∨2 × π∨3 ⊗ χ−1

A )

(
√
−1)3−(kQ1

+kQ2
+kQ3

)Ωf1
Ωf2

Ωf3

Ep (1− s0, π1,p × π2,p × π3,p ⊗ χp) ,

where s0 = kP −
kQ1

+kQ2
+kQ3

−3

2 = 1−
(
kP̆ −

kQ1
+kQ2

+kQ3
−3

2

)
.

Since (kQ1 , kQ2 , kQ3) is balanced, we know that

ε(s, π1,∞ × π2,∞ × π3,∞ ⊗ χ∞) = (−1)kQ1
+kQ2

+kQ3
+1 = −ω̂∞(−1) = −ω̂p(−1).

By the global functional equation we get

L∗F ,(a0−a−2)(Q, P̆ ) =
L(s0, π1 × π2 × π3 ⊗ χA)

(
√
−1)3−(kQ1

+kQ2
+kQ3

)Ωf1
Ωf2

Ωf3

· −Ep (s0, π1,p × π2,p × π3,p ⊗ χ̆p)∏
6̀=p ε(s0, π1,` × π2,` × π3,` ⊗ χ`,ψ`)

in view of Lemma 2.12. �
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8. The trivial zero for the triple product of elliptic curves

8.1. The cyclotomic p-adic triple product L-functions for elliptic curves. Let E = E1 ×E2 ×E3 be
the triple fiber product of rational elliptic curves Ei of square-free conductor Mi for i = 1, 2, 3. We denote
by Ni the prime-to-p part of Mi. Recall the rank eight p-adic Galois representation VE defined in (1.1). We
write L(E ⊗ χ, s) for the complex L-series attached to VE twisted by a Dirichlet character χ. Let M (resp.
N) and M− (resp. N−) be the least common multiple and the greatest common divisor of M1,M2,M3 (resp.
N1, N2, N3).

Remark 8.1. Let Σ− be the set of prime factors ` of M− such that a`(E1)a`(E2)a`(E3) = 1. From Remark
3.5, ε(E) = −(−1)#Σ− is the sign in the functional equation for L(s,E). From the formula (7.2) for the p-adic
root number the p-adic sign εp(E) = −ε(p∞)(VE(2)) differs from ε(E) if and only if p ∈ Σ−.

Let f◦i =
∑∞
n=1 an(Ei)q

n ∈ S2(Mi, 1;Z) be the primitive Hecke eigenform associated with the p-adic Galois
representation H1

ét(Ei/Q,Qp) by Wiles’ modularity theorem. Hereafter, we assume that Ei has either good
ordinary reduction or multiplicative reduction at p. Let fi ∈ S2(pMi, 1;Zp) be the p-stabilization of f◦i (see
(5.2)). If p and Mi are coprime, then αi = αp(fi) ∈ Z×p denotes the p-adic unit root of the Hecke polynomial
X2 − ap(Ei)X + p while if p divides Mi, then αi = ap(Ei). Define a period and a fudge factor by

Ω(E) =
3∏
i=1

Λ(1, Ei,Ad), cp =

3∏
i=1

Ep(fi,Ad),

where Λ(s, Ei,Ad) denotes the complete adjoint L-function for fi
Let Ti = T(Ni,Λ) be the big cuspidal ordinary Hecke algebra over Λ = ZpJXK with X = [u] − 1. Each

fi induces a surjective homomorphism λfi : Ti � Zp. Let mi be the maximal ideal of Ti containing kerλfi
and Ii = (Ti)mi be the localization at mi. Let f i =

∑∞
n=1 a(n,f i)q

n ∈ Sord(Ni,ω
2, Ii) be the primitive Hida

family of tame level Ni such that fi is the specialization f i,Qoi at some arithmetic point Qoi with kQoi = 2

and εQoi = 1 (cf. [Wil88, Theorem 1.4.1]). Now we consider the four-variable p-adic L-function L∗∗F ,(2) in
Corollary 7.8 with F = (f1,f2,f3) and a = 2. Define the cyclotomic p-adic L-function by

Lp(E, T ) := cp · L∗∗F ,(2)(Q
o
1, Q

o
2, Q

o
3,u

2(1 + T )− 1) ∈ ZpJGal(Q∞/Q)K⊗Qp.

Proposition 8.2. The element Lp(E) ∈ ZpJGal(Q∞/Q)K⊗Qp satisfies the following interpolation property

χ̂(Lp(E)) =
L(E ⊗ χ̂, 2)

24π5Ω(E)
Ep(Fil+ VE ⊗ χ̂)

for all finite-order characters χ̂ of Gal(Q∞/Q). Moreover, it satisfies the functional equation

Lp(E, T ) = εp(E)
〈
N−N4

〉−1

T
Lp(E, (1 + T )−1 − 1).

Proof. Define (Qo, P ) = (Qo1, Q
o
2, Q

o
3, P ) ∈ Xbal

I4
with Qoi as above, kP = 2 and εP = χ̂. Then V(Qo,P ) =

VE(2)⊗ χ̂ and χ̂(Lp(E)) = cp ·L∗∗F ,(2)(Q
o, P ). The assertions follows from Corollary 7.8, Proposition 7.10 and

the equation 22‖f◦i ‖ = MiΛ(1, Ei,Ad) by [CH18, Proposition 3.3]. �

8.2. The trivial zero conjecture for the triple product of elliptic curves. We prove the trivial zero
conjecture for the cyclotomic p-adic triple product L-function. We define a function on Zp by

Lp(E, s) := Lp(E,u
s−2 − 1).

We consider the case where Lp(E, s) has a trivial zero at the critical value s = 2. By Remark 8.3 below we
essentially only need to consider the following two cases:

(i) all E1, E2 and E3 have multiplicative reduction at p such that α1α2α3 = 1.
(ii) E1 has multiplicative reduction at p; E2 and E3 have good ordinary reduction at p such that α2 = α1α3.

Remark 8.3. Let βi = pα−1
i . Then Ep(Fil+ VE(2)) = 0 if and only if Lp((Fil+ VE(2))∨, 1)−1 = 0 if and only

if one of the following equations holds:

β1β2β3 = p2, β1β2α3 = p2, β1α2β3 = p2, α1β2β3 = p2.

The ordinality hypothesis rules out the first equation. The Ramanujan conjecture forces one or all of Ei to
have multiplicative reduction at p. When E1 is multiplicative at p, we will have α1 ∈ {±1} and α2 = α1α3.
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In the above cases (i) and (ii), the trivial zero conjecture predicts that the leading coefficient of the Taylor
expansion of Lp(E, s) at s = 2 should be essentially the product of Greenberg’s L -invariant for E and the
central value L(E, 2). Note that the localization of Ii at Qoi is that of Λ at P2, where P2 is the principal
ideal generated by (1 + X)u−2 − 1, so Ii is contained in Λ[t−1

i ] with some ti(u2 − 1) 6= 0. In what follows,
we shall replace Ii by Λ[t−1

i ] with some ti(u2 − 1) 6= 0. Let U ⊂ Zp be a neighborhood around 0 such that
(t1t2t3)(us+2 − 1) 6= 0 for any s ∈ U . To introduce Greenberg’s L -invariants, we let

ai(s) := a(p,f i)(u
s+2 − 1); `i := α−1

i ·
dai(s)

ds

∣∣∣
s=0

(s ∈ U).

Note that ai(0) = αi by definition. If αi = 1, then −2`i =
logp qEi
ordpqEi

by [GS93, Theorem 3.18] (the assumption
p ≥ 5 therein is not necessary). According to the discussion in [Gre94b, §3], Greenberg’s L -invariant for the
Galois representation (1.1) is given by

Lp(E) :=

{
−8`1`2`3 in Case (i);
4`21 in Case (ii).

The non-vanishing of these L -invariants is known, thanks to the work [BSDGP96]. The aim of this section is
to prove the following:

Theorem 8.4 (Trivial zero conjecture). (1) In Case (i), ords=2Lp(E, s) ≥ 3, and

Lp(E, s)

(s− 2)3

∣∣∣
s=2

= −pLp(E) · L(E, 2)

24π5Ω(E)
.

(2) In Case (ii), ords=2Lp(E, s) ≥ 2 and

Lp(E, s)

(s− 2)2

∣∣∣
s=2

= Lp(E)(−pα−2
2 )(1− α−2

2 )2 · L(E, 2)

24π5Ω(E)
.

8.3. Improved p-adic L-functions. We define an analytic function on U3 × Zp ⊂ Z4
p by

Lp(x, y, z, s) := cp ·
〈
N−N4

〉 2s−(x+y+z)
4 L∗∗F ,(2)(u

x+2 − 1,uy+2 − 1,uz+2 − 1,us+2 − 1),

which satisfies

Lp(0, 0, 0, s) =
〈
N−N4

〉s/2
Lp(E, s+ 2), Lp(x, y, z, s) = εp(E) · Lp(x, y, z, x+ y + z − s).(8.1)

To apply the idea in [GS93] (cf. [BDJ22]), we will introduce several improved p-adic L-functions in Lemma 8.5
and Lemma 8.6. The construction of these improved p-adic L-functions is merely a simple modification of the
previous ones, but the details are quite tedious.

Lemma 8.5 (Improved p-adic L-functions). Suppose that f◦1 is special at p, i.e. α1 = a1(0) = ±1.
(1) There exist a two-variable improved p-adic L-function L†p(x, s) and a one-variable improved p-adic

L-function L††p (s) such that

Lp(x, s, s, s) =
(

1− a2(s)

a1(x)a3(s)

)(
1− a3(s)

a1(x)a2(s)

)
L†p(x, s), L†p(s, s) =

(
1− a1(s)

a2(s)a3(s)

)
L††p (s).

(2) For any positive integer k with k ≡ 2 (mod p− 1) and k − 2 ∈ U , we have the interpolation formula

L†p(0, k − 2) = E†(k − 2) · Γ(k − 1)Γ(k)

22k−3(π
√
−1)2k+1

·
L
(

1
2 , πf1

× πf2,k
× πf3,k

)
c−1
p Ω†f1

Ω†f2,k
Ω†f3,k

,

where πf i,k is the automorphic representation generated by f i,k = f i(u
k − 1) ∈ Sk(Nip, 1;Q), and

E†(s) = (−α1)a2(s)−1a3(s)−1ps+1(1− α1 · a2(s)−1a3(s)−1ps)2.

(3) If εp(E) = −1, then

L†p(0, s) = 0,
∂L†p
∂x

(0, 0) = (`2 + `3 − `1)L††p (0), ords=2Lp(E, s) ≥ 3.

(4) In Case (i), L††p (0) = −p L(E,2)
24π5Ω(E) .
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Proof. The construction of these improved L-functions are similar to that of LF ,(a) except that we need
to replace the Λ4-adic modular form G(a)

χ in §6.5 with improved ones. To do so, we have to go back to §6.1
and modify the p-adic section fD,s,p used in the construction of the Siegel Eisenstein series EA(g, f

[k,λ]
D,s,N ). In

the notation of Definition 2.9, for a datum D = (χ, ω1, ω2, ω3) of characters of Z×p and a Bruhat-Schwartz
function ϕ1 ∈ S(Qp), we modify the definition of Bruhat-Schwartz functions defined in (2.10) by

ΦD(ϕ1)

u1 x3 x2

x3 u2 x1

x2 x1 u3

 =

3∏
i=1

φi(ui)ϕi(xi),

where

φ1 = φ2 = φ3 = ÎpZp , ϕ2 = ϕ3 = IZp .

Define the modified Bruhat-Schwartz functions by

Φ†D = ΦD(ϕ̂χω1
), Φ††D = ΦD(IZp).

Following Definition 2.2, we define the modified p-adic section f•D,s,p := fΦ•D
(χω̂αsQp

) for • ∈ {†, ††}. Then
the local degenerate Whittaker functions for these modified p-adic sections are given by

WB(f†D,s,p) = (χω1)(2b23)IΞ†p(B), WB(f††D,s,p) = IΞ††p (B),

for B = (bij) ∈ Sym3(Qp), where

Ξ††p := {(bij) ∈ Sym∗3(Zp) | b11, b22, b33 ∈ pZp} , Ξ†p :=
{

(bij) ∈ Ξ††p | 2b23 ∈ Z×p
}
.

Notation is as in §6.1. With the table of local Whittaker coefficients outside p in [LR20, page 210], one
can apply the same argument in [Liu20, §5.2] to obtain two power series G†(T,X) ∈ ZpJT,XKJq1, q2, q3K and
G††(T ) ∈ ZpJT KJq1, q2, q3K such that for arithmetic points (Q,P ) with kQ = 2 we have

G†(Q,P ) = eordE
[kP ,r,λ]

D†,N (τ, f†D†,s,N )|s=0, G††(P ) = eordE
[kP ,r,λ]

D††,N (τ, f††D††,s,N )|s=0

with λ = (0, 0, 0) and r = kP
2 − 1, where we have written

D† := (εPω
2−kP , ε−1

Q ω
kQ−2, ε−1

P ω
kP−2, ε−1

P ω
kP−2),

D†† := (εPω
2−kP , ε−1

P ω
kP−2, ε−1

P ω
kP−2, ε−1

P ω
kP−2),

f•D•,s,N := f [kP ,λ]
s,∞ ⊗ f•D•,s,p ⊗ f∗s,N ⊗`-Np f0

s,`.

Let ΛT := ZpJT K. As in Proposition 6.8 we see that

G†(T,X) ∈Mord(N,ω2,ΛX)⊗̂ZpM
ord(N,ω2,ΛT )⊗ΛT Mord(N,ω2,ΛT );

G††(T ) ∈Mord(N,ω2,ΛT )⊗ΛT Mord(N,ω2,ΛT )⊗ΛT Mord(N,ω2,ΛT ),

where Mord(N,ω2,ΛT ) is the space of ordinary ΛT -adic modular forms of level N and character ω2. Let 1̃f i
be idempotent associated with f i in the Hecke algebra acting on the ordinary Λ-adic modular forms (not only
cusp forms). Choose an element Hi with Hi(u

2 − 1) 6= 0 in the congruence ideal of f i among ordinary Λ-adic
modular forms (or rather the ideal generated by the denominators of 1̃f i . We define the improved p-adic
L-functions L†F ,(2)(X,T ) and L††F ,(2)(T ) as the first Fourier coefficients of

1̃f1
⊗ 1̃f2

⊗ 1̃f3
(TrN/N1

⊗TrN/N2
⊗TrN/N3

(G†)) ∈ ZpJX,T K[
1

H†
];

1̃f1
⊗ 1̃f2

⊗ 1̃f3
(TrN/N1

⊗TrN/N2
⊗TrN/N3

(G††)) ∈ ZpJT K[
1

H††
]

respectively, where H† = t1H1(X)t2H2t3H3(T ) and H†† = t1H1t2H2t3H3(T ). Define

L†p(x, s) := cp ·
〈
N−N4

〉−x
4 L†F ,(2)(u

x+2 − 1,us+2 − 1), L††p (s) := cp ·
〈
N−N4

〉−s
4 L††F ,(2)(u

s+2 − 1).

In view of the proof of Lemma 7.1, to prove the interpolation formulae for L†p(x, s) and L††p (s), we need to
compute the quantity Z∗p (f•D,s,p) defined in (2.18) attached to our modified p-adic sections f•D,s,p as well as a
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subrepresentation πi of the induced representation I(µi, νi) of GL2(Qp) with µi unramified for i = 1, 2, 3. Put
ωi = µiνi. Applying Corollary 2.11, we find that whenever χω2 and χω3 are unramified,

Z∗p (f†D,s,p) = Z∗p (fD,s,p)
∏
i=2,3

L
(1

2
− s, χ−1µ−1

1 µ−1
i ν−1

5−i

)
and that when χωi are unramified for i = 1, 2, 3,

Z∗p (f††D,s,p) = Z∗p (f†D,s,p)L
(1

2
− s, χ−1ν−1

1 µ−1
2 µ−1

3

)
.

From the proof of Theorem 7.5 we can deduce the interpolation formulae for the improved L-functions. The
formula for E+(s) follows from that for Z∗p (fD,s,p) proved in Proposition 2.10 and Remark 3.5. Observe that
if πi ' St⊗ χi for i = 1, 2, 3, i.e., µi = χiα

1/2
Qp

, then

Ep

(1

2
+ s, π1 × π2 × π3

)
= −(χ1χ2χ3)(p)p1+s(1− (χ1χ2χ3)(p)ps)3,

from which (4) follows.
Whenever k > 2, the central sign for L(s, πf1

× πf2,k
× πf3,k

) is εp(E). Therefore if εp(E) = −1, then

L†p(0, s) = 0 by (2), which implies that ∂L†p
∂x (0, 0) = lim

s→0

L†p(s,s)

s . The second equality of (1) gives the expression

of lim
s→0

L†p(s,s)

s . We write

Lp(x, y, z, s) =

∞∑
j=0

Aj(x, y, z)
(
s− x+ y + z

2

)j
.

If i ≤ r := ords=2Lp(E, s), then

r = min{j | Aj(0, 0, 0) 6= 0}, lim
s→2

Lp(E, s)

(s− 2)i
= Ai(0, 0, 0).(8.2)

Letting y = z = s = 0, we see by (1) that the power series
∞∑
j=0

Aj(x, 0, 0)
(
− x

2

)j
= (1− α1a1(x)−1)2L†p(x, 0)

has at least a double zero at x = 0. If εp(E) = −1, then since A2n(x, y, z) = 0 for all non-negative integers n
by the functional equation (8.1), we get A1(0, 0, 0) = 0 and r ≥ 3. �

8.4. The proof of Theorem 8.4(1). We discuss Case (i). Then εp(E) = −ε(E) by Remark 8.1. First
suppose that ε(E) = 1. The functional equation (8.1) allows us to write

Lp(x, y, z, s) = A1(x, y, z)
(
s− x+ y + z

2

)
+A3(x, y, z)

(
s− x+ y + z

2

)3

+ · · ·

The proof of Lemma 8.5(3) gives A1(0, 0, 0) = 0. From (8.2) and Lemma 8.5(4) the formula boils down to

A3(0, 0, 0) = −8`1`2`3L
††
p (0).

If we denote the degree two term of A1(x, y, z) by ax2 + by2 + cz2 + dxy+ eyz+ fxz, then the degree three
term of Lp(x, s, s, s) is given by

L(3)(x, s) = {ax2 + (b+ c+ e)s2 + (d+ f)xs}(−x/2) +A3(0, 0, 0)(−x/2)3.

On the other hand, from Lemma 8.5(1), (3) we find that

L(3)(x, s) = (`1x+ (`3 − `2)s) · (`1x+ (`2 − `3)s)x · lim
x→0

x−1L†p(x, 0)

= (`21x
2 − (`2 − `3)2s2)x · (`2 + `3 − `1)L††p (0).

Comparing the coefficients of x2s, xs2 and x3, we obtain the relations

d+ f = 0, b+ c+ e = 2(`2 − `3)2(`2 + `3 − `1)L††p (0), 4a+A3(0, 0, 0) = −8`21(`2 + `3 − `1)L††p (0).
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By symmetry we get

d+ e = 0, e+ f = 0;

a+ c+ f = 2(`1 − `3)2(`1 + `3 − `2)L††p (0), a+ b+ d = 2(`1 − `2)2(`1 + `2 − `3)L††p (0).

From these equations we conclude that d = e = f = 0 and

a = {(`1 − `2)2(`1 + `2 − `3) + (`1 − `3)2(`1 + `3 − `2)− (`2 − `3)2(`2 + `3 − `1)}L††p (0),

A3(0, 0, 0) = −8`21(`2 + `3 − `1)L††p (0)− 4a = −8`1`2`3L
††
p (0).

Next assume that ε(E) = −1. Then εp(E) = 1. By (8.1) and Lemma 8.5(1)
∞∑
n=0

A2n(x, s, s)
(s

2

)2n

=

(
1− a2(s)

a1(x)a3(s)

)(
1− a3(s)

a1(x)a2(s)

)
L†p(x, s).

Since L†p(0, 0) = 0, every term in the right hand side has degree at least three. In particular, the constant
term A0(0, 0, 0) of the left hand side is zero. If we denote the degree two term of A0(x, y, z) by αx2 + βy2 +
γz2 + ξxy + ηyz + ζxz, then the degree two term of the left hand side is

αx2 + (β + γ + η)s2 + (ξ + ζ)xs+A2(0, 0, 0)(x/2)2.

It is zero, and so by symmetry we get

A2(0, 0, 0) = −4α, β + γ + η = 0, ξ + ζ = 0;

A2(0, 0, 0) = −4β, α+ γ + ζ = 0, ξ + η = 0;

A2(0, 0, 0) = −4γ, α+ β + ξ = 0, η + ζ = 0.

We arrive at ξ = η = ζ = α = β = γ = A2(0, 0, 0) = 0. Hence ords=2Lp(E, s) ≥ 4.

8.5. The proof of Theorem 8.4(2). We discuss Case (ii). Then εp(E) = ε(E) by Remark 8.1. If ε(E) = −1,
then ords=2Lp(E, s) ≥ 3 by Lemma 8.5(3), and both sides of the declared identity are zero. We will consider
the case ε(E) = 1, i.e. Σ− has odd cardinality. Unlike Case (i) we cannot apply Lemma 8.5(3). Our proof
relies on the three-variable p-adic triple product L-function in the balanced case constructed in [Hsi21, §4].

We will freely use the notation in [Hsi21, §4]. LetD be the definite quaternion algebra overQ of discriminant
N− and SD(N,Λ) the space of Λ-adic modular forms on D× defined in [Hsi21, Definition 4.1]. Let fDi ∈
SD(N,Λ[t−1

i ]) be a Jacquet-Langlands lift of f i in the sense of [Hsi21, §4.5]. Since we do not assume Hypothesis
(CR,Σ−) of [Hsi21, §1.4], we cannot choose fDi to be a primitive Jacquet-Langlands lift as in [Hsi21, Theorem
4.5]. Nonetheless, fDi can be chosen so that fDi (u2 − 1) is a non-zero Jacquet-Langlnads lift of fi. Replacing
the triple FD = (fD1 ,f

D
2 ,f

D
3 ) with the well-chosen test vectors in [Hsi21, Definition 4.8], we can associate to

FD the three-variable theta element ΘFD (X1, X2, X3) in loc.cit. Define an analytic function on U3 ⊂ Z3
p by

Θ(x, y, z) = ΘFD (ux+2 − 1,uy+2 − 1,uz+2 − 1).

By the interpolation formula for ΘFD in [Hsi21, Theorem 7.1] (see Remark 7.7), we can find an analytic
function H(x, y, z) with H(0, 0, 0) 6= 0 such that

H(x, y, z) ·Θ(x, y, z)2 = Lp

(
x, y, z,

x+ y + z

2

)
.

To proceed, we introduce two-variable improved theta elements.

Lemma 8.6 (Improved theta elements). There exist analytic functions Θ‡2(x, z), Θ‡3(x, y) such that

Θ‡2(0, 0) = −Θ‡3(0, 0),

Θ(x, x+ z, z) =

(
1− a2(x+ z)

a1(x)a3(z)

)
Θ‡2(x, z), Θ(x, y, x+ y) =

(
1− a3(x+ y)

a1(x)a2(y)

)
Θ‡3(x, y).

Proof. The idea of the construction of improved theta elements is close to [Hsi21, Proposition 8.3]. The
proofs are based on elementary but tedious calculations. We give a sketch here. For every integer n, let Rn be
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the Eichler order of level pnN/N− in D and let X0(pnN) = D×\D̂×/R̂×n , where D̂ = D⊗Q̂ and R̂n = Rn⊗Ẑ.
Through an isomorphism R0 ⊗ Zp ' M2(Zp) we define

U1(pn) :=

{
g ∈ R̂n

∣∣∣∣ gp ≡ (∗ ∗0 1

)
(mod pn)

}
.

Recall that ai(Q) = a(p,f i,Q) and that $p ∈ Q̂× is the element with $p,p = p and $p,` = 1 for ` 6= p.
For all but finitely many arithmetic points Q with kQ = 2, the specialization fDi,Q : D×\D̂×/U1(pn) → Cp

is a p-stabilized form on D̂× with the same Hecke eigenvalues with f i,Q and the central character ε−1
Q :

Q×\Q̂×/(1 + pnẐ)× → µp∞ for any sufficiently large n. In particular, fDi,Q is a Up-eigenform with eigenvalue
ai(Q). Namely,

(8.3) Upf
D
i,Q(h) :=

∑
b∈Zp/pnZp

fDi,Q

(
h

(
$n
p b

0 1

))
= ai(Q)nfDi,Q(h) (h ∈ D̂×).

In what follows, we shall write (fD, gD,hD) = (fD1 ,f
D
2 ,f

D
3 ). Let ND : D → Q be the reduced norm. Put

τpn =

(
0 1
−$n

p 0

)
∈ GL2(Qp) ⊂ D̂×. By definition,

(8.4) Θ(Q1, Q2, Q3) = a1(Q1)−na2(Q2)−na3(Q3)−n∑
[h]∈X0(pnN)

∑
b∈Zp/pnZp

c∈(Zp/p
nZp)×

fDQ1

(
h

(
$n
p b

0 1

))
gDQ2

(
h

(
$n
p b+ c

0 1

))
hDQ3

(hτpn)ε
1
2

Q1Q2Q
−1
3

(c)ε
1
2

Q1Q2Q3
(ND(h)).

We replace the twisted diagonal cycle ∆n in [Hsi21, Definition 4.6] by the improved diagonal cycle

∆‡n :=
∑

[h]∈X0(Npn)

∑
b∈Zp/pnZp

[(
h

(
$n
p b

0 1

)
, hτpn , h

)]
.

We can define the regularized improved diagonal cycle by

∆‡∞ := lim←−
n→∞

(U−np ⊗U−np ⊗ 1)eE(∆‡n),

and the improved theta element

Θ‡2(X1, X3) := (FD)∗(∆‡∞)(X1, (1 +X1)(1 +X3)− 1, X3) ∈ ZpJX1, X3K[t−1].

for t = t1 · t2((1 +X1)(1 +X3)− 1) · t3. Put Θ‡2(x, z) := Θ‡2(ux+2 − 1,uz+2 − 1) for (x, z) ∈ U2. By definition
and (8.3), for all but finitely many arithmetic points (Q1, Q3) with kQ1 = kQ3 = 2

Θ‡2(Q1, Q3) = a2(Q1Q3)−n
∑

[h]∈X0(Npn)

fDQ1
(h)gDQ1Q3

(hτpn)hDQ3
(h)εQ1Q3

(ND(h)).

The above expression holds for any n such that pn is bigger than the conductors of εQ1
and εQ2

. Likewise we
can define Θ‡3 ∈ ZpJX1, X2K and Θ‡3(x, y) with the interpolation property:

Θ‡3(Q1, Q2) = a3(Q1Q2)−n
∑

[h]∈X0(Npn)

fDQ1
(hτpn)gDQ2

(h)hDQ1Q2
(h)εQ1Q2

(ND(h)).

To see the first equation in the lemma, we note that

Θ‡2(0, 0) =α−1
2

∑
[h]∈X0(Np)

fD0 (h)gD0 (hτp)h
D
0 (h), Θ‡3(0, 0) =α−1

3

∑
[a]∈X0(Np)

fD0 (h)gD0 (h)hD0 (hτp).

Since fD0 is a newform that is special at p, fD0 (hτp) = (−α1)fD0 (h), and hence Θ‡2(0, 0) = −Θ‡3(0, 0).
To prove the last equation in the lemma, it suffices to verify the following equation

Θ(Q1, Q1Q3, Q3) =

(
1− a2(Q1Q3)

a1(Q1)a3(Q3)

)
Θ‡2(Q1, Q3)(8.5)
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for all but finitely many arithmetic points (Q1, Q3) with kQ1
= kQ3

= 2. The formula for Θ‡3 can be done by
a similar computation, so we leave it to the reader. Let n be a sufficiently large integer. From (8.4), we find
that

a1(Q1)na2(Q1Q3)na3(Q3)np−n vol(R̂×n ) ·Θ(Q1, Q1Q3, Q3)

=

∫
D×\D̂×

d×h
∑

c∈(Zp/pnZp)×

fDQ1

(
h

(
1 −c$−np
0 1

))
gDQ1Q3

(h)hDQ3

(
hτpn

(
1 0
0 $−np

))
εQ1

(c)εQ1Q3
(ND(h))

=

∫
D×\D̂×

d×h
∑

c∈(Zp/pnZp)×

fDQ1

(
hτpn

(
1 −$−np
0 c−1

))
gDQ1Q3

(hτpn)hDQ3

(
h

(
1 0
0 $−np

))
εQ1Q3

(ND(h)).

From (8.3) and the equations

τpn

(
1 −$−np
0 c−1

)
=

(
$n
p c−1

0 1

)(
c−1 0
−$n

p 1

)
, εQ1

($p) = εQ3
($p) = 1,

we find that the last integral equals∫
D×\D̂×

d×h
∑

c∈(Zp/pnZp)×

fDQ1

(
h

(
$n
p c

0 1

))
gDQ1Q3

(hτpn)hDQ3

(
h

(
$n
p 0

0 1

))
εQ1Q3

(ND(h))

=

∫
D×\D̂×

d×ha1(Q1)n ·
{
fDQ1

(h)− a1(Q1)−1fDQ1

(
h

(
$p 0
0 1

))}
gDQ1Q3

(hτpn)hDQ3

(
h

(
$n
p 0

0 1

))
εQ1Q3(ND(h))

=a1(Q1)n
∫
D×\D̂×

d×hfDQ1
(h)gDQ1Q3

(hτpn)p−n
∑

b∈Zp/pnZp

hDQ3

(
h

(
$n
p b

0 1

))
εQ1Q3

(ND(h))

− a1(Q1)n−1

∫
D×\D̂×

d×hfDQ1
(h)gDQ1Q3

(hτpn+1)p−(n−1)
∑

b∈Zp/pn−1Zp

hDQ3

(
h

(
$n−1
p b
0 1

))
εQ1Q3

(ND(h))

={(a1(Q1)a3(Q3)a2(Q1Q3)/p)n vol(R̂×n )− (a1(Q1)a3(Q3)/p)n−1a2(Q1Q3)n+1 vol(R̂×n+1)}Θ‡2(Q1, Q3)

=a1(Q1)na3(Q3)na2(Q1Q3)n
(

1− a2(Q1Q3)

a1(Q1)a3(Q3)

)
p−n vol(R̂×n )Θ‡2(Q1, Q3).

This verifies (8.5). �

Now we return to the proof of Theorem 8.4(2). Write Θx for the partial derivative ∂Θ
∂x . Put

a = Θx(0, 0, 0), b = Θy(0, 0, 0), c = Θz(0, 0, 0).

Taking derivatives Θ(x, y, x+ y) with respect to x and y at (0, 0) in Lemma 8.6, we have

a+ c = (`1 − `3)Θ‡3(0, 0), b+ c = (`2 − `3)Θ‡3(0, 0).

Similarly, we have

a+ b = (`1 − `2)Θ‡2(0, 0) = (`2 − `1)Θ‡3(0, 0).

These imply that

a = 0, b = (`2 − `1)Θ‡3(0, 0), c = (`1 − `3)Θ‡3(0, 0).

On the other hand, by the functional equation (8.1) we obtain the Taylor expansion

Lp(x, y, z, s) = H(x, y, z)Θ(x, y, z)2 +A2(x, y, z) ·
(
s− x+ y + z

2

)2

+ · · · .

By Lemma 8.5(1), we find

(1− α1a1(x)−1)2L†p(x, 0) = H(x, 0, 0)Θ(x, 0, 0)2 +A2(x, 0, 0) · x2/4 + · · · .

From the vanishing of Θx(0, 0, 0) we deduce that

A2(0, 0, 0) = 4`21L
†
p(0, 0).

Lemma 8.5(2) and (8.2) complete the proof of Theorem 8.4(2).
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